Univerzita Karlova v Praze

Matematicko-fyzikalni fakulta

DIPLOMOVA PRACE

)

Zy

I} !
Ly i
S5

g

WATH £
5

Stepan Vondrak

Nefotorealistické zobrazovani
v realném case

Kabinet software a vyuky informatiky
Vedouci diplomové préce: Doc. Ing. Jifi Zara, CSc.

Studijni program: Informatika

R4d bych podékoval vedoucimu diplomové price Doc. Ing. Jifimu Zarovi,
CSc. za poskytnuti studijnich materidla a Ing. Danielu Sykorovi za cenné rady
a pripominky. Dékuji své rodiné, pratelum a kolegum za jejich podporu, trpélivost
a porozumenti.

Prohlasuji, ze jsem svou diplomovou préaci napsal samostatné a vyhradné s
pouzitim citovanych pramenu. Souhlasim se zapujcovanim préce.

V Praze dne 16. dubna 2006 Stepan Vondrak

Contents

5.2
5.3

1 Introduction
2 NPRView framework
2.1 Framework overview
2.2 Components o e
2.2.1 Component descriptors
2.2.2 Component variables L oo
2.2.3 Component descriptor inheritance
2.3 Implementing new core component
2.3.1 Component interface
2.3.2 Component implementation
2.3.3 Component descriptor
2.3.4 Component registration
3 Drawing image edges
3.1 Previouswork Lo
3.2 Image-space edge detectors oL,
3.3 Implemented edge rendering methods
3.3.1 Detecting edges as discontinuities in surface normals
3.3.2 Detecting edges in depth image
3.3.3 Detecting edges in region identifier image
3.3.4 Combined edge detector
3.4 Discussion and future worko
4 Cartoon-style rendering
4.1 Previouswork
4.2 Cartoon shader
4.3 Discussion and future work
5 Mosaics
5.1 Previouswork Lo o

Mosaic renderer overviewo
Tile positioning
5.3.1 Constructing CVDson GPU

23
23
24
27
27
32
40
40
41

45
45
46
49

5.3.2 Ourapproach Lo 60

5.4 Edge direction image L oo oL 63
5.5 Tilerendering Lo o 67
5.5.1 Edgeavoidance oo 67

5.5.2 Tile orientation oo 69

5.5.3 Drawing the tiles00 69

5.6 Discussion and future worko 70

6 Conclusions 75

Nazev prace: Nefotorealistické zobrazovani v realném case

Autor: Stépin Vondrak

Katedra: Kabinet software a vyuky informatiky

Vedouci diplomové préace: Doc. Ing. Jiff Zéra, CSc.

e-mail vedouciho: zara@fel.cvut.cz

Abstrakt: Cilem této prace je prostudovat metody nefotorealistického zobra-
zovani (NPR) s ohledem na jejich pouziti pfi zobrazovéani v redlnem case a vyuzit
moznosti modernich grafickych karet k implementaci nékolika NPR technik. Prvni
Cast srovnava implementaci tii hranovych detektoru, které funguji na principu
hledéni nespojitosti v obrazech s normélami, druhymi derivacemi hloubek ¢i iden-
tifikdtory jednotlivych regionti vykreslované scény. Spole¢nym pouzitim téchto
detektorii 1ze nalézt siluety objekt, okrajové hrany, ostré hrany a rozhrani mezi
materidly. Kombinace zvyraznovani dilezitych hran a stupnovitého stinovani
povrchu objekt je pouzita k zobrazeni scény ve stylu kreslenych filmu. Zavéreéna
Cast prace se vénuje inovativnimu piistupu k zobrazovni trojrozmérnych modela
ve stylu mozaik. Ten oproti diive prezentovanym metodam dokéze vykreslovat
i slozité scény v realném case. Hlavniho urychleni je docileno tim, ze k vypoctu
pozic jednotlivych dlazdic je namisto tradi¢nitho Voroného diagramu pouzita sim-
ulace sytému tuhych pruzin.

Klicova slova: pocitacova grafika, nefotorealistické zobrazovani, hranové detek-
tory, kresleny film, mozaiky

Title: Real-time non-photorealistic rendering

Author: Stépin Vondrik

Department: Department of Software and Computer Science Education
Supervisor: Doc. Ing. Jii{ Zara, CSc.

Supervisor’s e-mail: zara@fel.cvut.cz

Abstract: The goal of this thesis is to examine non-photorealistic rendering
(NPR) methods with respect to their application in real-time rendering and to
utilize the features of modern programmable graphics processing units (GPUs)
to implement several NPR techniques. To achieve maximal efficiency of the im-
plemented rendering styles, extra care is taken to offload all geometry processing
from the CPU to the GPU. Implementations of three image-space edge detec-
tors are presented and compared. Silhouettes, border edges, creases and material
boundaries can be identified by detecting discontinuities in an image with world-
space normals, in the second derivative of the depth buffer and in an image with
region identifiers. Combination of the edge detectors and a stepped shader is
used to render objects in a cartoon style. A novel approach to rendering of a
three-dimensional scene in mosaic style is proposed. Unlike previously presented
methods, the implemented technique can render complex scenes at interactive
framerates. To achieve real-time performance, a simulation of a system of in-
finitely stiff springs is used instead of centroidal Voronoi diagrams.

Keywords: computer graphics, non-photorealistic rendering, edge detection, car-
toon, mosaics

Chapter 1

Introduction

As the performance of computers, video cards and game consoles increases, the
complexity and realism of movie visual effects, computer-rendered movies and
video games dramatically rises. However, as the rendered graphics gets closer to
portraying the reality, people start to wonder whether we are also getting closer
to the Uncanny Valley.

The Uncanny Valley is a term conceived by Masahiro Mori [26] in 1970. It
is a principle of robotics concerning the emotional response of humans to robots
and other non-human entities. It states that as a robot is made more humanlike,
the emotional response from a human to the robot will become increasingly pos-
itive, until a point is reached at which the robot’s appearance becomes strongly
repulsive.

While many disagreed and criticized this theory, lately it has become very
popular especially in regard to computer animation characters. For example, the
box-office failure of Square Pictures’ movie Final Fantasy: The Spirit Within is
often cited as an example of the Uncanny Valley — the characters portrayed in the
movie look very realistic, utilizing complex skin and hair shaders and cloth physics
simulation, yet they don’t move and behave like real humans and are perceived as
alien of just “strange”. On the other hand, most characters in Pixar movies are
more stylized or even “cartoony” and appeal to a much wider audience.

In the past, when fast consumer 3-D graphics accelerators became available,
most people expected the games to have as realistic graphics as possible and the
developers strived for realism. Advances in video card capabilities lead to corre-
sponding advances in graphics engines — from textured polygons with static pre-
computed lighting to complex scenes with dynamic lighting and shadows, normal-
mapped or parallax-mapped surfaces or shaders simulating water surfaces. With
the next generation of GPUs and game consoles, there is a risk that the Uncanny
Valley might become a problem in the game industry too.

Recently, perhaps to prevent a fall into the valley, or just to differentiate their
products from the mass of “realistic” games, many game developers started to
employ a wide range of non-photorealistic visual styles.

This thesis focuses on the real-time non-photorealistic rendering of three-
dimensional polygonal scenes. The goal is to implement NPR techniques that
utilize the modern programmable GPUs to achieve interactive framerates. FEx-
tra care is taken to do as little scene and image processing on the CPU. This
limitation is very important for real-time performance, especially when scenes
with hundredths of thousands polygons are rendered. Any CPU scene processing
or heavy communication between the processor and the video card, such as im-
age uploading and downloading, can become a major bottleneck in the rendering
pipeline. Because the speed of the GPUs rises much faster than the speed of CPUs,
the gap widens each year. Also, in interactive three-dimensional applications, the
CPU is needed to simulate the avatar’s movement in the virtual world, the world’s
physics or the Al of the computer-controlled avatars, therefore it is always helpful
to offload the scene rendering to the GPU.

The rest of the thesis is organized as follows. First, the framework of the
NPRView application which was used to develop, test and tweak the implemented
NPR techniques is described. Next, the individual NPR techniques are introduced
and their real-time implementation is presented and evaluated.

Chapter 2

NPRView framework

In this chapter the core framework of the NPRView application is described. The
framework shares some traits with NVIDIA’s FX Composer, but its goals are
different.

The primary purpose of FX Composer is to provide an IDE for easy shader
development and debugging. It allows a user to assign material shaders to individ-
ual objects and post-processing shaders to the scene and to tweak the parameters
of the shaders.

The NPRView framework is designed to allow an easy way to prototype, test
and implement new rendering techniques. Each technique consists of a sequence
of one or more rendering passes. When compared to FX Composer, a rendering
pass is roughly equivalent to rendering the scene using a specified material shader
or to applying a post-processing shader to the scene. But the framework allows
implementation of any kind of passes and is not limited just to these two cases.
The parameters controlling the behavior of the passes are exposed in the user
interface and can be modified at run-time.

2.1 Framework overview

The framework allows a user to define any number rendering techniques. Some
of the implemented techniques include a cartoon shader or a mosaic renderer.
But there are also techniques that do not display a scene in a non-photorealistic
rendering style, instead they can be used to debug, tweak or fine-tune Cg programs
or the parameters of rendering components. For example, several implemented
techniques can be used to present how the implemented edge detectors work and
compare their results.

Techniques consist of one or more rendering passes which are processed in a
sequential order. Fach pass utilizes a single rendering component that implements
its functionality. The pass provides initial values of the component’s variables,
which control the component’s behavior.

At run-time, the user can switch between all implemented techniques, tweak

the values of the component variables of all passes and immediately view the
results.

Program 2.1 shows an example of a simple depth-based screenspace edge de-
tector technique. Figure 2.1 on page 9 illustrates how the example technique
works.

First pass named phong_and_depth uses component render_phong to draw the scene.

pass render_phong phong_and_depth {
render_target "phong" ; # Render the scene into a terture instead of framebuffer.

b
Second pass named edge_detect detects edges in depth texture gemerated in pass 1.

pass edge_detect_depth_2nd_derivative edge_detect {
texture "<generated>:phong_depth" ;

J

Program 2.1: Simple edge detector technique.

The technique consists of two passes. The name of the first pass is
phong_and depth. The name is optional and is used only to distinguish
individual passes in the user interface. The pass uses component render_phong
to render the scene into two textures. The names of the two textures are
derived from the value of the render_target component variable, which is
“phong” in this case; the color buffer will be rendered into a texture named
"<generated>:phong color", and the depth buffer will be rendered into a
texture named "<generated>:phong depth". Texture name syntax is explained
in subsection 2.2.2 on page 12.

The second pass is called edge.detect and utilizes the
edge_detect_depth_2nd derivative component to detect edges in the
depth texture specified in its texture variable. In the example, the depth buffer
rendered in the first pass is used to detect the edges. Since no render-target is
specified in the second pass, the resulting image is rendered into the framebuffer.

The following list summarizes the basic NPRView framework terminology:

Technique A sequence of rendering passes.

Pass A rendering pass specifies which component should be used to render the
pass as well as initial values of the component’s variables. The example
technique has 2 passes named phong_and_depth and edge_detect.

Component A component is a C++ object that implements a single
rendering pass. In the example, two components are used: render_phong
draws currently selected scene wusing the Phong shading and
edge_detect_depth_2nd _derivative detects edges in the provided texture.

10

"phong”

v

render_target

<generated>:phong_color

render_phong

RN
current scene Pass 1: phong_and_depth

N /
-
ﬁ <generated>:phong_depth
edge_color /,//A\ .
texture threshold / N
nonedge_color P,)
| ¢
)
/ \
edge_detect_depth \> |
ge L. pth_ ———— \% ! /
2nd_derivative N\
— \%\//
Pass 2: edge_detect .
- 9o J framebuffer

Figure 2.1: Simple edge detector technique.

The behavior of each component is controlled by its component variables.
The initial values of the variables are specified in the pass and selected
variables may be tweaked by a user at run-time.

Component variable A typed variable that is used to specify component setup.
Component variables have additional properties such as a range (minimum
and maximum) or a default value.

Component descriptor Describes the interface to the component. Descriptors
list all variables of each implemented component, and specify properties of
the variables.

The rest of this chapter describes components and techniques in more detail.

2.2 Components

Components are the core building stones of rendering techniques. All components
are implemented as C++ objects inheriting the Component class.

Several components are implemented in NPRView. They can be divided into
two groups:

e Generic components that rely on Cg programs specified as their parameters
to do the hard work. For example, the simple render component draws

current scene using vertex and fragment programs specified by its component
variables.

e Technique-specific components which are utilized by technique passes that
can not be easily implemented using a generic component. For example,
the draw_tiles component generates mosaic tile geometry from information
about the tile positions and orientations provided in its input textures.

2.2.1 Component descriptors

For each component, a corresponding component descriptor defines the interface
to the component. The descriptor lists the component variables of the component
it describes, and provides information about the types of the variables, their limits
or user interface properties.

Component descriptors are stored in external textual files and are loaded at
the NPRView startup, which allows component customization without recompiling
the application. More complex component customization can be accomplished by
component descriptor inheritance, described later.

At technique load-time, when a pass definition is loaded, the descriptor of the
component is used to parse the initial values of the component’s variables, and
instantiate the corresponding component. At run-time, the descriptor is used by
the NPRView user interface to allow a user to modify the component variables.

Program listing 2.2 on page 13 shows the component descriptor of a component
simple _render. It is used as an example of various features in the latter sections
of this chapter.

Figure 2.2 on page 11 demonstrates how the simple render component can
be used within the framework. The component object instance is displayed in the
middle of the picture. It has two input sources:

e Implicit inputs (on the left of the picture) are data that are always read
by the component implementation. In this case, the component renders the
current scene, so the scene is the only implicit input.

e The component behavior is controlled by its component variables. The inter-
face to the variables is defined by the component descriptor (shown directly
above the component), the initial values are defined in the pass that uses
the component, and some of the variables may be modified at run-time in
the NPRView user interface.

The component renders its output either to the framebuffer (when no render
target is specified), or to the specified render target textures (which can be further
processed in the following passes), as shown at the bottom of the picture.

Figure 2.3 shows how the component variables of a pass using the
simple_render component can be modified at run-time, and how the resulting
color outputs of the pass are affected by such changes.

10

Techraue Options
Pass; 1: simple_render | &

Pass Opti

render

clear_color

red: 0.5 T -
green; 0.5 B
blue: 0.5 L

texture: [images ~[v fiter
vertex_program: [default:default_transform
RN - o oo

User interface:
Allows modification of component g
variable values at run-time

Pass: defines initial values e d
of component variables \ +

values of component variables

Component descriptor: defines

] [| | [
interface to the component\,‘. + + + + *
render_ clear_ texture vertex_ fragment_
i| target color program program

simple_render

\ Component object

—————— implemented in C++

Implicit component input:
depends on component
implementation

Component output:
depends on implementation, inputs and
current values of component variables

Figure 2.2: Component simple_render and surrounding framework.

11

The most important component variables of simple render are
vertex_program and fragment_program, which specify the Cg program to use
when rendering the scene. By using different programs, the component can be
used to produce vastly different results. And since both techniques (and therefore
all their passes) and Cg programs are loaded from external files at NPRView
startup, it is possible to implement new techniques without the need to change
and recompile the NPRView application; only component implementations are
written in C4++. The figure shows two different fragment programs. One draws
the scene using the Phong shading, the other one draw world-space surface
normals.

Pass Qptions
render
clear

clear_colar

red: 0.5 | .
green: 0.5]
blue: 0.5 |

texture: I\mages 'I”‘ w | filter

vertex_program: Idefault: default_transform

fragment_program: Idefault:phnng

Pass Qptions
render
clear

clear_colar

red: 0.5 | .
green: 0.5]
blue: 1] I

texture: I\mages 'I”‘ w | filter

vertex_program: Idefault: default_transform

fragment_program: Iedge_detect: normal_to_rgb

Figure 2.3: Changing simple_render setup at run-time.

2.2.2 Component variables

Component variables provide an easy way to tweak component parameters. First,
variable types and properties are described in a component descriptor as shown
in program listing 2.2 on page 13. Next, initial variable values can be changed
per-pass in technique definition as illustrated in program listing 2.1 on page 8.
Finally, variable values may be tweaked at run-time in NPRView application,
unless a component descriptor hides them from the user interface.

The following component variable types are supported:

bool A boolean variable, with either false or true value. Value can be also spec-

12

component simple_render {

Render-to-texture variables.

string render_target {
default "" ; # No render-target texture - render to framebuffer by default.
internal 1 ; # This hides the variable from the user interface.
b
int render_target_width {
default O ;
minimum —64 ; 10
maximum 1024 ;
internal 1 ;
b
int render_target_height {
default O ;
minimum —64 ;
maximum 1024 ;
internal 1 ;
+
20
Color to use when clearing the framebuffer.

rgb clear_color {
default 0.5 0.5 0.5 ; # Default color - grey.
minimum 0.0 0.0 0.0 ; # “Minimum” color - black.
maximum 1.0 1.0 1.0 ; # “Mazimum” color - white.

J

Optional texture to apply to meshes in the scene.
30
texture texture {
default "images:*" ; # Use the first available image in the “images” directory.

s

Names of vertex and fragment programs to use to render the scene.
These strings must be specified in the pass definition (or when inheriting
component descriptor). The specified programs will be used to render the scene.
By using different programs, the simple_render component may be used to
render the scene in vastly different ways.
40
string vertex_program ;
string fragment_program ;

Program 2.2: Component descriptor of simple_render.

13

ified as an integer, a zero value being equal to false, a non-zero value to
true.

int A 32-bit signed integer.
number A 32-bit floating-point number.

string A string value. When a string is interpreted as a Cg program name,
its value is expected to have file:function format, where file is the base
file name of a Cg file to load (without an extension or a path), and
function is the name of a vertex or a fragment function to call. For
example, "edge _detect:normal to_rgb" refers to program entry function
normal _to_rgb() read from file edge _detect.cg.

vector2 A two-component vector of 32-bit floating-point numbers. In textual files
(component descriptors or technique definitions), vector values are stored as
individual component values separated by a whitespace.

vector3 A three-component vector.
vector4 A four-component vector.

rgb A three-component color (red, green, blue). Colors are stored in the same
way as vectors, with the standard value range of individual color components
being 0.0-1.0.

As an example of a rgb variable descriptor, the descriptor of the
simple_render on page 13 defines variable clear_color, with allowed
range from black to pure white, and grey as a default color.

rgba A four-component color (red, green, blue, alpha). When interpreted as a
transparency value, an alpha equal to 0.0 corresponds to a transparent color,
and an alpha equal to 1.0 corresponds to an opaque color.

texture A texture. Texture variable values use directory:image:filter syntax,
where directory is a directory name relative to one of the configured image
source directories, image is a base image file name without an extension,
and filter is a 0/1 integral value specifying whether the trilinear (when the
value is equal to 1) or the nearest (when the value is equal to 0) filtering
should be used when the texture is sampled.

When an asterisk is used as image, the first available image in the directory
is used. If the filter specification is omitted, it is interpreted as : 1.

The special directory <generated> contains textures generated by compo-
nents. The filter specification of generated textures is ignored, the nearest
sampling is always used.

Several examples of texture variable values were already mentioned. In pro-
gram listing 2.1 on page 8, <generated>:phong_depth is used as the source

14

texture of the edge detector component. In program listing 2.2 on page 13,
the variable texture defaults to images:*, i.e. the first available image in
the images directory.

A variable type and name specification can be optionally followed by a defini-
tion of component variable properties, as shown in the simple_render example.
The following properties are supported:

default value Defines the default value of the variable. The default is used
when a pass does not specify any initial value for the variable. If no default
is defined in the variable descriptor, the initial value of the variable must be
set in each pass using the component.

minimum value The minimal value of the variable. Extreme values can not be
set for variables of type bool, string or texture. When a value outside
of the specified range is set to the variable, a warning is printed and the
value is clamped to the range. Extremes for multi-component variable types
(vectors and colors) are interpreted component-wise.

maximum value The maximal value of the variable.

ui_minimum wvalue The user interface minimal value of the variable, also called
a “soft minimum”. It is used to limit the ranges of user interface sliders. A
value outside the soft range can still be set to the variable in the numeric
edit box control. Note that setting a minimum also sets the corresponding
ui_minimum to the same value automatically, so definition of an ui_minimum
is needed only if the user interface slider limits should be more strict than
the “hard” limits.

ui_maximum wvalue The user-interface maximal value of the variable, also called
“soft maximum”. Note that setting a mazimum also sets the corresponding
ui-maximum to the same value automatically.

vertex_parameter boolean-value If set to true, the value of the variable will
be automatically applied to the corresponding uniform parameter of the
Cg vertex program used by the component. This parameter, along with
fragment_parameter, provides a way to bind any component variable to a
Cg program uniform, and thus allow a user to tweak the uniform parameter
at run-time.

Both vertex_parameter and fragment_parameter are silently ignored by

components that do not use a Cg vertex or fragment program, respectively.

fragment_parameter boolean-value If set to true, the value of the variable
will be automatically applied to the corresponding uniform parameter of the
Cg fragment program used by the component.

15

read_only boolean-value Marks the variable as read-only in the user interface.
The variable and its value will be visible in the NPRView application, but
it will not be possible to change the value.

internal boolean-value Hides the variable from the user interface.

2.2.3 Component descriptor inheritance

Sometimes it is useful to define multiple components which use the same core C++
object, but have slightly different component descriptors. Component descriptor
inheritance serves that purpose — it allows definition of a new component by
modifying the component descriptor of an already existing component. The core
component implementation remains the same, only the interface changes.

Neither component used in the technique defined in program
listing 2.1 on page 8 is a core component', both render_phong and
edge_detect_depth_2nd _derivative use component descriptor inheritance.

For example, the render phong component is created by inheriting
simple render descriptor. Definition of the simple render component
descriptor was already shown in program listing 2.2 on page 13. The descriptor of
the render_phong component specifies defaults for vertex and fragment program
variables and hides them from the user interface, as shown in program listing 2.3
on page 17. It also overrides the default value of the clear color, and hides the
texture variable from the user interface, as the Phong shader fragment program
does not use a texture.

Figure 2.4 illustrates this component descriptor inheritance. The
render_phong component uses the same core C++ component implementation
object as the simple render component (SimpleRender), but has a different
descriptor (interface to the component).

2.3 Implementing new core component

In many cases, the components that are already implemented in NPRView are
generic and powerful enough to implement new rendering techniques. However,
in same cases, a more complicated technique may require a special component to
implement one or more of its passes.

This section describes how to implement a new core component. The im-
plementation of the copy_to_texture component is used as an example. This
component is rather simple; it copies the contents of the framebuffer (either the
color or the depth buffer) to a specified texture, as illustrated in figure 2.5. The
implicit input of the component is the current framebuffer contents. The source
buffer (color or depth) is specified by the boolean variable depth, and the name of
the output texture is read from the string variable texture. The output texture

! Components implemented as C++ objects, such as simple_render are referred to as core
components, in contrast to components that are defined using component descriptor inheritance.

16

component render_phong : simple_render {
The “modify” keyword can be used to modify properties of
an already defined component variable.

modify vertex_program {
default "default:default_transform" ;
internal 1 ;

b

modify fragment_program {
default "default:phong" ;
internal 1 ;

b

modify clear_color {
default 0.5 0.5 0.5 ;

b

modify texture {
internal 1 ;

b

}s

Program 2.3: Component descriptor of render_phong.

4) 4)
simple_render inherits render_phong
(component descriptor) € (component descriptor)
SimpleRender SimpleRender
(component object) (component object)
- J - J
a) simple_render component b) render_phong component

Figure 2.4: Component descriptor inheritance. The render_phong component in-
herits and modifies the descriptor of simple_render, but the core implementation
(SimpleRender) remains the same.

17

color buffer

depth texture

input output
buffer texture
switch name

L I

copy_to_texture output texture

Rt

depth buffer

framebuffer

Figure 2.5: The copy_to_texture component. The framebuffer always consists
of the color and depth buffer in NPRView. The component reads one of them
depending on the value of the depth variable, and copies the contents to a texture
specified by the texture variable.

is automatically stored in the <generated> directory, i.e. the complete texture
name will be <generated>: texture.

Some unimportant source parts are omitted from the code listings, the com-
plete sources are available in the src/components directory.

To implement a new component, the following steps must be performed:

1. Implement a C++ class inherited from the Component class. Each pass using
the new component creates an instance of the class, and when such pass is
rendered, the render () method of the component object is called.

2. Write the component descriptor of the component.

3. Register the component to the component manager.

2.3.1 Component interface

The basic features of the base Component class can be seen in program listing 2.4
on page 19.

Each component class must have its component descriptor and component cre-
ation function registered to the component manager as explained in section 2.3.4.
The type of the creation function is defined as Component: :CreateFn. When the
definition of a pass is read from a technique file, the component manager calls the
component creation function with a reference to the pass as its only argument.
The component instance keeps the reference to the pass in pass.

18

class Component {
/// A function that creates a component.
typedef Component * CreateFn(const Pass & pass) ;

/// Reference to pass using this component.
const Pass & pass ;

/// “render” boolean variable.

const ComponentVariable & v_render ;

virtual void render(RenderContext & render_context) = O ;

Program 2.4: Component interface.

In addition to other information about the pass, each Pass object has a con-
tainer mapping component variable names to their values. As a convenience, most
components keep references to all component variable values they’re interested in.?
In this case, v_render references a boolean variable that specifies whether the pass
should be rendered (when true), or the rendering of the pass should be skipped
(when false). This variable is automatically available to all components and does
not have to be defined in a component descriptor, although it may be modified
using the modify keyword, to override its default value or to hide it from the user
interface, for example.

The core functionality of each component is implemented by the render ()
method. It is called once by each technique pass when the technique is rendered.
The render_context object, received as the method argument, provides informa-
tion about the current scene, camera settings and the repository of all available
Cg programs.

2.3.2 Component implementation

Each core component class must inherit the Component class, define the
component’s name as a static member string name, define a creation static
method create() with type Component: :CreateFn, and override and implement
the render() method. The definition of the CopyToTexture class that
implements the copy_to_texture component is shown in program 2.5 on page 20.

The example component also has references to both of its component variables.
v_texture and v_depth, and a pointer to the destination texture object (texture).

Program listing 2.6 contains the implementation of the component.

The meaning of component name and creation function was already explained,
and their definitions are pretty straightforward.

2While referencing a container members is usually not a good idea in C++, it is allowed here
because the pass structures never change once they’re initialized.

19

10

class CopyToTexture : public Component {
/// Component name and creation function.
static const std::string name ;
static Component * create(const Pass & pass) ;

/// Target texture name, without the ’generated’ directory part.
const ComponentVariable & v_texture ;

/// Copy depth instead of rgba?
const ComponentVariable & v_depth ;

/// The texture itself.
ManagedTexture * texture ;

CopyToTexture(const Pass & pass) ;
virtual ~“CopyToTexture() ;
virtual void render(RenderContext & render_context) ;

Program 2.5: CopyToTexture interface.

The constructor calls the base class (Component) constructor first, which stores
the pass reference in the component object, and initializes a reference to the
standard render component variable. Then, references to the both component
variables are extracted from the pass, and the destination texture is created.

All texture objects are reference counted — the texture object returned by the
create_generated texture() method of the texture manager might be shared
by multiple components. Therefore the destructor can’t delete the texture object
directly. Instead, it just removes its reference. The texture manager can then
automatically destroy unreferenced texture objects.?

The CopyToTexture::render() method first checks if the pass rendering
should be skipped.* Then it changes the size and the format of the destination
texture if required, and copies the framebuffer contents into the texture.

The copy_to_texture component example is rather simple, since it does not
use the more complex features of the render manager (access to current scene
or Cg program handling) and the texture manager. These features are used in
other core components, their implementation is available in the src/components
directory.

3The texture object is not destroyed immediately when its reference count drops to zero to
prevent unnecessary reloading of texture images from the disk.

4The Component: : should_skip() method simply returns negation of the render component
variable, referenced by v_render.

20

10

/// Component name.
const std::string CopyToTexture::name = "copy_to_texture" ;

/// Create CopyToTexture object.
Component * CopyToTexture::create(const Pass & pass)

{

}

/// Constructor.

CopyToTexture::CopyToTexture(const Pass & pass)
: Component(pass)
, v_texture(pass.get_variable("texture"))
, v_depth(pass.get_variable("depth"))

return new CopyToTexture(pass) ;

// Crreate the texture to ensure it’s already available to other passes.

texture = &get_global_texture_manager().create_generated_texture(...

}

/// Destructor.
CopyToTexture::~CopyToTexture()

{
}

if (texture) { texture—>remove_reference() ; }

/// Render component - copy framebuffer contents to a texture.
void CopyToTexture::render(RenderContext & render_context)

{

// Skip the pass if requested.

if (should_skip()) { return ; }

// Get framebuffer sizes and ensure the texture has correct format and dimensions.

unsigned width, height ;
render_context.get_framebuffer_sizes(width, height) ;

texture—>initialize_generated(get_texture_format(), width, height) ;

// Copy framebuffer contents to the texture.

gl::Texture * const gl_texture = texture—>get_texture() ;
gl_texture—>bind() ;

10

20

30

40

glCopyTexSublmage2D(gl_texture—>get_target(), 0, 0, 0, 0, 0, width, height) ;

Program 2.6: CopyToTexture implementation.

21

2.3.3 Component descriptor

As already mentioned, each component, including a core one, requires a component
descriptor. All descriptors are loaded on the NPRView application startup, and
they’re used to parse pass definitions and to initialize the user interface.

Descriptors of all core components are stored in file core. component in direc-
tory data/components. Listing of the copy_to_texture component descriptor is
shown in program 2.7 on page 22.

Note that the texture component variable is of type string, not texture,
since it contains the name of the image to generate. On the other hand, variables
of type texture contain a texture object directly, and are usually used when a
component uses the texture as an input.

Both texture and depth variables are also marked as internal, which hides
them from the user interface, because this component can not handle change of
these parameters at run-time. This is a limitation of the component itself, not
the framework. It would be easily possible to rewrite the component to handle
modifications of the variables by reinitialing the destination texture object when
needed. For example, the generate_texture and ping pong components support
such changes to their output and temporary texture objects, respectively.

component copy_to_texture {
Texture to copy the framebuffer contents to.

string texture { read_only 1 ; } :
If false, copies the color buffer, if true, copies the depth buffer.

bool depth { default false ; read_only 1 ; } ;
T

Program 2.7: copy_to_texture component descriptor.

2.3.4 Component registration

Finally, it is important to let the framework know about the newly
implemented core component. All components are registered at the NPRView
application startup in the initialize_render() method defined in file
src/nprview/init.cpp.

22

Chapter 3
Drawing image edges

For a long time, many drawing styles have heavily relied on highlighting the im-
portant features of the scene by accenting specific lines in the image. Lines have
been used both in artistic drawing or non-photorealistic rendering (comics, pencil
or pen-and-ink drawings) and technical or medical illustrations. When rendering
polygonal meshes, these lines correspond to polygon edges, and can be classified
into the following categories:

Silhouette Edges shared by a front-facing and a back-facing polygons.

Countour The subset of a silhouette that separates an object from the back-
ground.

Border edge An edge adjacent to only one polygon.

Crease An edge between two polygons whose dihedral angle is greater than a
specified threshold.

Material boundary An edge between two polygons with a different material
(texture).

Artistic edges Edges manually tagged by an artist that should be always drawn.

3.1 Previous work

Since line drawing is integral to a lot of rendering styles, many algorithms for line
rendering have been developed. A very thorough overview of various line detection
algorithms and line rendering styles is provided by Isenberg et al.[15] The methods
can be divided into two distinct groups: object-space and image-space algorithms.

Object-space methods extract information about important edges from the
mesh polygons and then draw the edges using a variety of edge rendering styles.
Polygonal meshes can be preprocessed to detect crease and artistic edges, but
silhouette edges are view-dependent and can change from frame to frame, therefore
the mesh must be processed regularly to detect them.

23

The trivial methods process all edges of the mesh at each frame and classify
all edges shared by front- and back-facing polygons as silhouettes. Several data
structures and algorithms have been proposed to speed-up the mesh processing,
for example an edge buffer by Buchanan and Sousa [1]. Freudenberg et al. [8] re-
duce the number of potential silhouette edge candidates by analyzing only strictly
convex smooth edges. Other rendering techniques use probabilistic methods and
interframe coherence to approximate the silhouette, for example Markosian et
al. [23]

Image-space algorithms process an image produced by rendering the scene,
and detect discontinuities in the image to extract edge pixels. The result is a
new image with the same resolution. It can either classify the pixels as edges and
non-edges (the result is a binary image), or contain edge intensities.

Edges usually can not be successfully detected by processing the color buffer
that is the result of a photorealistic rendering method, such as Phong shading
with texturing. Saito and Takahashi [29] detect discontinuities in the depth buffer
(silhouettes) and in the first derivative of the depth buffer (creases). Decaudin [4]
proposes to render world-space normals at each pixel by drawing all meshes as
pure-white with special lighting in several passes, and then classifies discontinuities
in the normal image as edges. Mitchell [25] was the first to implement combination
of these techniques on a GPU.

Unlike object-space edge detection, image-space edge rendering methods map
to current programmable video cards very well. Fragment programs are flexible
enough to render various information about each scene pixel into the color buffer
(for example, scene world-space normals), and then process the rendered image
(for example, detecting discontinuities in the normal image). Since the output of
image-space algorithms is a texture, no information is provided about the edge
geometry. Therefore they are not suitable for artistic or stylistic rendering of the
edges, such as the one presented by Sousa and Prusinkiewicz [32].

3.2 Image-space edge detectors

Image-space edge detection is a long-researched problem and a lot of different
algorithms have been developed over the history. The detectors differ in their
mathematical and algorithmic properties, some of them are tailored to a specific
task.

This section provides an overview of several basic step edge detectors. A much
more detailed overview of image-space edge detectors is provided by Ziou and
Tabbone [33]. Heath et al. [14] performed a thorough comparison and evaluation
of several well-known edge detectors.

A step edge in an intensity image can be detected either as a maximum in
the first derivative (gradient) of the image, or as a zero crossing in the second
derivative of the image, as shown in figure 3.1

The gradients in horizontal and vertical directions (G, and Gy) of a two-

24

NG

(a) Image intensity (b) First derivative (c¢) Second derivative

Figure 3.1: An edge in 1D function.

dimensional image can be approximated by applying the Sobel operator to the
image. The operator is implemented as a pair of 3 * 3 convolution kernels shown
in figures 3.2(a) and 3.2(b). Edges can then be detected by thresholding the
magnitude of the gradient, defined as:

‘G’ =\ GIQ + Gy2 (3.1)

Usually, the magnitude is approximated by
G| = |Ge| + |Gy (32)

which can be computed much faster.
Also, the orientation of the edge can be computed as

0 — arctan <Gy> (3.3)

Gy
A 0 | -1 1| 2| - o 1] o0
+2 0 -2 0 0 0 1 -4 1
Al o | - A |2 | 41 o| 1] o
(a) Sobel (horizontal) (b) Sobel (vertical) (c) Laplacian

Figure 3.2: Sobel and Laplacian convolution kernels.

To measure the second derivative of an image, the Laplacian of the image can
be used. The Laplacian L(x,y) of intensity image I(x,y) is defined as:
9’1 01

L(z,y) = 922 + o2 (3.4)

25

The Laplacian of a discrete image can be approximated by convolution with kernel
shown in figure 3.2(c). The edges in an image can be then located by searching
for zero crossings in its Laplacian.

Approximation of a second derivative measurement on the image is very sen-
sitive to noise. The Gaussian smoothing operator is usually applied to the image
to suppress the noise before the Laplacian is computed. In two dimensions, the
Gaussian has the form:

G(z,y) = e 202 (3.5)

- 2702

where o is the standard deviation of the distribution.

Figure 3.3: Gaussian and Laplacian of Gaussian.

Since the convolution operation is associative, the Gaussian smoothing filter
can be convolved with the Laplacian filter to get the “Laplacian of Gaussian”
(LoG). When LoG is convolved with the image, it smooths it and computes the
Laplacian at the same time. The two-dimensional LoG function with Gaussian
standard deviation ¢ has the form:

LoG(z,y) = —— 207 (3.6)

The two-dimensional Gaussian and Laplacian of Gaussian functions are shown
in figure 3.3.

These generic edge detectors are usually used on color or monochromatic im-
ages, for example photos, which can be very noisy, distorted, bad-lit, out-of-focus,
or contain various objects with distinctive textures. It is hard to define which
parts of such images should be classified as edges, and even harder to conceive an
algorithm that detects the edges. The more complex edge detectors try to deal
with these problems as well as possible.

In this regard, detecting edges in a rendered three-dimensional scene is a much
easier problem, as many kinds of information about the scene (for example pixel
normals or depths) can be extracted and then processed by a specialized edge
detector. Also, there is no noise in a rendered image, therefore no complicated
smoothing is necessary.

26

3.3 Implemented edge rendering methods

Edge detecting techniques implemented in NPRView use a combination of sev-
eral image-space methods. Edges are detected in images with the following pixel
properties:

Normals Discontinuities in the dot products of the world-space normals of adja-
cent pixels are classified as edges.

Depths Discontinuities in the first or the second derivative of the depth buffer
are classified as edges.

Region identifiers Edges are reported at boundaries between pixels with differ-
ent region identifiers.

When combined, the methods are able to outline object silhouettes, creases and
folds, and material boundaries.

All implemented techniques consist of two or more passes. In the first pass,
the scene is rendered into a texture using a specific Cg fragment program. The
fragment program outputs information about each scene pixel depending on the
selected edge detector, for example pixel depths or normals. In the subsequent
pass, the generated texture is processed by the edge detector and a binary image
distinguishing edge and non-edge pixels is drawn. Optionally, more passes that
further modify the image may follow. This is illustrated in figure 3.4.

This approach requires no scene preprocessing at all. This is a very important
characteristic, as any processing of the scene on the CPU could hurt the perfor-
mance a lot, especially with the scene sizes the latest GPUs can handle. It also
allows us to store all static scene data on the GPU to conserve computer memory.

The implemented texture-processing edge detectors (pass 2 in figure 3.4) sam-
ple a cross-shaped neighborhood of a texel to decide whether there is an edge at
the texel or not, as depicted in figure 3.5.

Modern GPUs contain a dedicated hardware that can interpolate up to 8 vector
variables between vertices. These vectors are usually used for interpolated colors
(when using Gouraud shading), texturing coordinates or normals. The edge detec-
tors use this feature to simplify fragment programs — the texturing coordinates
for all 5 samples in the cross-shaped pattern are computed by a vertex program at
each corner of the processed texture, and the hardware automatically interpolates
the coordinates for each processed texel. This is illustrated in figure 3.6. Basi-
cally, this is equivalent to passing the same texture into the fragment program five
times — once at its original position, and four times shifted by one texel upwards,
downwards, to the left and to the right.

3.3.1 Detecting edges as discontinuities in surface normals

The first edge detector analyzes the surface world-space normals at each pixel of
the rendered scene. The normal-based edge detector was first introduced by De-

27

Passes Textures

Pass 1

render per—pixel information screenspace scene
information

about the scene

Pass 2

Screenspace scene

detect scene edges
edges

additional Passes

post—processing of
scene edges

Figure 3.4: Generic edge rendering.

Cross-shaped neighboorhood
sampled by the fragment program

T Iy

L C|R

Currently processed texel

Figure 3.5: Sampling pattern used by edge detector fragment programs.

28

interpolated texturing coordinates
used to sample the cross—shaped
neighborhood of current texel

/

processed texture rectangle

Figure 3.6: The cross-shaped texturing coordinates are computed per-vertex, and
the dedicated hardware interpolators are used to determine the per-fragment uv
coordinates.

caudin [4, 5]. The first real-time implementation using GeForce 3 class hardware
register combiners was proposed by Dominé et al. [7]. Mitchell [25] combined this
approach with depth-based and region id-based edge detector implemented in Di-
rectX Pixel Shaders 1.4. This approach was refined by Nienhaus and Doéllner [27].

The method detects discontinuities in image containing per-pixel world-space
normals and is able to find most silhouette edges, border edges and creases. In
NPRView, the edge detector is implemented as two passes, illustrated in figure 3.7.

In the first pass, a fragment program is used to render the scene’s world-space
normals into a RGB (nZworid, "Yworids "2wortd) texture. Since NPRView does not
use floating-point color buffers', the z, y and z components of the normals must
be transformed into (0,1) range before storing them in the color buffer. The
background pixels are filled with a color corresponding to the normal pointing
into the screen.

In the second pass, the generated texture is processed using a discontinuity
filter implemented as a fragment program. First, normals at each texel in the
cross-shaped pattern are determined by expanding the texel RGB colors back to

'Floating-point color buffers were first introduced with the GeForce 6 videocard series, but
their implementation lacked some necessary features, such as texture filtering and blending. The
GeForce 7 series remedy these deficiencies, but the floating-point buffers require higher memory
bandwidth, and therefore are slower to process. The precision of eight bits per component is
good enough for normal-based edge detector.

29

"normals"”

v

render_target

<generated>:normals_depth

3 render_normals

VLT

current scene P 1: normals
L ass) 'f
»
e N -

ﬁ <generated>:normals_color

edge_color /'/A\

texture threshold /

nonedge_color 7 /‘

\ A

Ve I\
e \
. N\

|

o
%\i) =
o~
e

™~

Pass 2: edge detect ’
- 9e J framebuffer

edge_detect_normals —);ﬁ\

\

Figure 3.7: Detecting edges in world-space normals image.

(—1,1) range. Next, a minimum of dot products between the center texel and its
neighbors is determined by:

d =min{n¢c -nz,nc-ng,ne-ng,ne -0y} (3.7)

where nx denotes expanded world-space normal at texel X.

The dot products correspond to cosines of the angles between the center and
neighbor normals. The minimum dot product corresponds to the largest disconti-
nuity. If d is lower than the specified threshold, the texel is classified as an edge.
Figure 3.8 illustrates the two passes in more detail.

Alternatively, the thresholding can be turned off by setting the component
variable apply_threshold of the second pass to false. In that case, the detector
outputs color obtained by linearly interpolating between non-edge and colors using
factor f computed as:

f=t-(4=(n¢-np+nc-ng+ne-ng+nc-ng)) (3-8)

where t is the value of the threshold component variable, which is used as an edge
intensity multiplication factor when the thresholding is turned off. This equation
yields a zero interpolation factor (which corresponds to the non-edge color) when
all surfaces in the cross-shaped neighborhood are coplanar.

This method detects the following edge types:

30

-;/

0
V)
g{I

|
‘z‘n

b
I

i
‘i g’r
i

N
A
““

acij!
Ay
Y,
|

i

Pass 1

174 SV

W ‘E’M
{\ > N 7’ j
s /4
I
\
7 s

A

render normals

7

%
Vo A:\

/ ' Pass 2a
Current scene Screenspace normals
compute dot products

in cross-shaped neighborhood

4 \
,r//’ \\\
(7
\\) > 745\
) e /\\ Pass 2b
K/ ‘a] 4 /\ | apply threshold

{
J

‘/
\i A

gy
/

Dot products between neighbors

Detected edges

Figure 3.8: Normal-based edge detector.

31

—depth

mesh surface

>

1 2 3 X

Figure 3.9: Situation where a silhouette edge can’t be detected from world-space
normals.

e Creases with intensities corresponding to specified threshold.

e Contour edges. This is ensured by filling the background with color corre-
sponding to back-facing a normal. Because all rendered pixels belonging to
an object have front-facing normals, the dot product between such pixels
and the background pixels always passes the threshold test.

e Most silhouette and border edges.

3.3.2 Detecting edges in depth image

Not all silhouette and border edges correspond to discontinuities in normals, as
illustrated in figure 3.9. While the normals ny and ns3 are nearly parallel, there is
an obvious silhouette edge between the corresponding samples.

Takahashi and Saito [29] use the depth buffer to detect edges in image-space.
Decaudin [4] combines this approach with normal-based edge detector. First real-
time implementation of this method was proposed by Mitchell.[25]

Since the normals generated in the first pass are stored only in RGB channels
of the generated texture, Mitchell [25] uses the alpha channel of the texture to
store per-pixel depths. This approach has several drawback. First, the 8-bits
of the alpha channel usually do not provide enough precision for generic scenes,
even when the near and far clipping planes are chosen very carefully. There are
two basic options how the proposed method can be improved to obtain a better
precision: we could either use the depth buffer (modern graphics hardware can

32

"phong”

v

render_target

<generated>:phong_color

render_phong

RN
current scene Pass 1: phong_and_depth

N /
-
ﬁ <generated>:phong_depth
edge_color /,//A\ .
texture threshold / N
nonedge_color P,)
\ ¢
)
/ \
edge_detect_depth \> N
ge L. pth_ ———— \% ! /
2nd_derivative N\
— \%\//
Pass 2: edge_detect -
- 9o J framebuffer

Figure 3.10: Detecting edges in depth buffer.

render the depth buffer into 16-bit or 24-bit textures), or we could render per-pixel
depths into a high-precision texture. Neither option is flawless — the hardware
depth buffer does not store linear depths (its precision decreases with distance),
and hardware support for high-precision textures is limited in OpenGL.?

Two depth-based edge detectors are implemented in NPRView, both use the
former option — the hardware depth buffer. The first method detects discontinu-
ities in the depth buffer, the second one detects discontinuities in the depth buffer
derivative. Figure 3.10 illustrates the second method. The depth buffer is gener-
ated whenever a scene is rendered, regardless of the applied fragment program, so
any scene-rendering pass can be used as the first one. The figure uses the Phong
shader as an example, but the output from render normals could be also used.

As mentioned, the values stored in the depth buffer are not linear distances,
and therefore must be transformed before the edge detector processes them. The
transformation from the eye-space (where the eye-space linear distance is still
available) to the window coordinates (the depth values stored in the depth buffer)
is described in section “Coordinate Transformations” of the OpenGL 2.0 specifi-
cation [30]. First, the projection from the eye-space to clip coordinates is applied

2While floating-point texture formats are supported, they are very limited on GeForce 6
videocard series, and there is no support for single-channel floating-point textures in OpenGL
2.0 at all.

33

using the glFrustum matrix. The eye-space distance z, is transformed as follows:

P ze}f_+nn) B f27zfn (3.9)

We = — Ze

where z. is the linear eye-space distance, n is the distance of the near clipping
plane, f is the distance of the far clipping plane, and z. and w. are the clip
coordinates that are used to compute the window-space depth.

This transformation is followed by a transformation to normalized device co-
ordinates and then to window coordinates:

Zc
=< 3.10
= (3.10)
zqg+1
Z. =
v 2

The depth buffer stores the z,, values. The depth-based edge detectors apply
the inverse transformation to determine z. (linear eye-space distance) from zy,:

2nf
(220 = 1) (f =n) = (f +n)

This transformation must be applied to each sampled depth value, which makes
the depth-based edge detector slower compared to the normal-based one. The edge
detector could be sped up by using the second mentioned option — rendering the
linear eye-space distances into a single-channel floating-point texture — when
OpenGL support for single-channel floating-point textures matures.

The first implemented edge detector uses a straightforward method to detect
discontinuities in the depth buffer. It determines a maximum depth difference
between each processed texel and its four neighbors:

(3.11)

Ze = —

d = max{|dc — d|, |dc — dg|, |dc — dg|, |dc — dr|} (3.12)

where dx denotes the linear eye-space distance at texel X. If d is greater than
the specified threshold, the texel is classified as an edge. It is implemented as
component edge_detect_depth_deltas.

This detector unfortunately requires precise fine-tuning of the threshold. When
set too high, smaller discontinuities might not be detected. When set too low,
polygons with high gradient might be falsely detected as edges. Both cases are
shown in figure 3.11.

The second edge method detects discontinuities in the first derivative of depths,
therefore it does not falsely classify polygons with a high gradient as edges. More-
over, it is also able to detect creases in the depth buffer. The component that
implements this method is called edge_detect_depth_2nd derivative.

34

(a) threshold = 0.3 (b) threshold = 0.05

Figure 3.11: Polygons with high gradient are falsely reported as edges when the
threshold is too low.

The edge detector computes convolution of the depth image with a cross-
shaped kernel that approximates the second derivatives, which produces the Lapla-
cian of the depth image. Zero crossings in the Laplacian correspond to discontinu-
ities in the first derivative of the depth image. Figure 3.12 shows the convolution
kernel and the typical response of the applied Laplacian filter to a step edge. In
this example, there is a discontinuity between pixels A and B. The implemented
method classifies both pixels as an edge® by applying a threshold to the absolute
value of the Laplacian. The absolute value at pixel C' is computed as:

d=|dr +dgr+dp+dr —4dc| (3.13)

where dx denotes the linear eye-space distance at pixel X, d is the absolute value
of the Laplacian at the center pixel. If d is greater than the specified threshold,
the pixel is classified as an edge. Figure 3.13 shows the method in more detail.

As with the normal-based edge detector, the thresholding can be optionally
turned off. In that case the edge_detect_depth_2nd derivative component dis-
plays the absolute value of the Laplacian multiplied by threshold.

It might seem the normal-based edge detector is not required — after all,
silhouettes, border edges and creases can be detected in the Laplacian of the depth
buffer. Unfortunately the depth-based edge detector has two major drawbacks:

1. Some creases have a small discontinuity in depth but a large discontinuity
in normals. Pixels at such creases are correctly classified as edges by the
normal-based edge detector. These creases can be missed in the Laplacian of
depths because of the discrete sampling of the image, as shown in figure 3.14
on page 38.

3All implemented edge detectors search for edges at pixel boundaries, and classify pixels at
the both sides of the edge as edge pixels. Therefore all detected edges are exactly two pixels
wide. This usually produces more eye-pleasing results than single pixel wide edges.

35

Adepth A filter response
1 11
o|1]0 0 0 -
1 (-4 1
of1]o0 -1 -1
A B x I A B X
(a) Convolution kernel (b) Response of 1-D filter to a step edge

Figure 3.12: Cross-shaped Laplacian convolution kernel, and response of its 1-D
variant to a step edge.

2. Each polygonal mesh has a lot of creases — every edge shared by two poly-
gons that are not coplanar could be classified as a crease. Several rendering
methods exist to make a polygonal mesh look smooth. A common approach
is to compute “smoothed” normals at polygon vertices, usually by averag-
ing normals of all polygons sharing the vertex. Gouraud shading computes
lighting at each polygon vertex using the smoothed normals, and then inter-
polates the computed vertex colors over the polygons. More precise methods,
such as the Phong shading implemented by the render_phong, interpolate
the vertex normals, and then compute illumination at each rasterized pixel
in a fragment program.

The input of the normal-based edge detector is rendered by the
render normals component, which draws interpolated normals, so the
smoothing information is not lost. However, there is no such smoothing
applied to the values stored in the depth buffer, therefore the depth-based
edge detector has no way to distinguish “soft” and “hard” edges.
Figure 3.15 on page 38 illustrates this problem.

This means that to detect silhouettes, border edges and creases correctly,
both normal-based and depth-based edge detectors must be used. Figure 3.16
on page 39 shows an example where both detectors are necessary. Edges detected
from normals are drawn as blue, edges detected from depth are drawn red, edges
detected by both methods are black. The figure also demonstrates that “smooth”
polygonal edges are falsely classified as creases when the depth threshold is set
too low.

Surprisingly, the depth-based edge detector precision is good enough to detect
polygon edges between nearly all polygons that are not coplanar, while not re-
porting false edges inside polygons, even when they are nearly perpendicular to
the projection plane. Actually, all wireframe images in this thesis were generated
by the depth-based edge detector.

36

A =
ANy ‘
ST

Vg
\
\

A
< I
gl
ﬂw i o
) gl
b7 i

v
7 s

¢

vft““

%
X

Pass 1

render depth

Pass 2a

Depth texture

compute Laplacian of depth image

Second derivatives in depth

\‘ \

"/;(\ WS Pass 2b
»\>>,/ — A/ \\\ apply threshold
Z i

j/"\&/v*v v /

W/
<3

Detected edges

Figure 3.13: Depth-based edge detector.

37

mesh surface

>

1: 2 3 X
Figure 3.14: Ineffectiveness of the depth-based edge detector due to discrete
sampling. The crease on the mesh surface is not detected by the depth-based edge

detector, because there is no depth sample inside the valley. Normal-based edge
detector is more effective in such cases.

—depth

smoothed mesh
surface

real mesh
surface I’LT

Figure 3.15: Smooth polygon edges incorrectly detected as creases. Because
polygon smoothing is not reflected in per-pixel depths, edges that are treated as
“smooth” by the normal-based edge detector may be classified as creases by the
depth-based edge detector.

38

(c) Blue — edges detected from normals. Red (d) The same image with lower depth-based
— edges detected from depth. edge detector threshold.

Figure 3.16: Comparison of normal-based and depth-based edge detectors. The
bottom-left image shows that both detectors must be combined to detect all sil-
houette and crease edges. The bottom-right image illustrates that the depth-based
edge detector can not detect all creases. The hair creases are not detected even
when the threshold is set low, because of the discrete sampling, while polygon
edges that should be smooth start to show.

39

4 N\
"ids"
render_target
) <generated>:ids_depth
render_ids
current scene L Pass 1: region_ids) (
(N\
F <generated>:ids_color
edge_color RN
texture nonedge_color N
\ N\ ///
. AN
edge_detect_ids ——p{ 1 0
e
Pass 2: edge detect .
- ge_ J framebuffer

Figure 3.17: Detecting edges in region id texture.

3.3.3 Detecting edges in region identifier image

The only edge types that are not detected by the combination of the normal-based
and depth-based method are boundaries between materials and artistic edges.
FEdges of this kind are detected by searching for discontinuities in a region id
image. This approach is similar to that of Mitchell [25]. The region id image is
constructed by component render_ids. It assigns a unique color to each mesh
in the scene, and renders polygons of each mesh using this color. Component
edge detect_id then detects discontinuities in the region id image, as shown in
figure 3.17. This approach heavily depends on proper separation of the scene into
meshes.

3.3.4 Combined edge detector

Each of the three described edge detectors renders a different set of edges. The
combined edge detector component edge_detect performs all three methods at
the same time in a single pass. It requires three input textures — world-space
normals, per-pixel depths and region identifiers — which can be generated in two
passes. Therefore the complete edge detector technique consists of three passes,
illustrated in figure 3.18. All other NPR techniques described in the following
chapters use this three-pass edge detector.

At run-time, the component allows a user to tweak individual thresholds (or

40

switch thresholding off), to change output image colors, or to turn off the region id
edge detector, in case the rendered scene is not properly partitioned into meshes
as required by the detector.

Figures 3.19 and 3.20 show results generated by the combined edge detector.
Edges drawn by the depth-based edge detector are shown as red, blue edges are
detected from the normals and material boundaries are rendered as pale green.
Edges detected by multiple methods are black.

3.4 Discussion and future work

The implemented algorithms are able outline the most important edges in polyg-
onal meshes: silhouettes, border edges, creases and material boundaries. The
edge detectors do not require any mesh preprocessing or run-time processing at
all, they run completely on the GPU. To apply all three presented methods to
a scene, only three rendering passes are required — the scene must be rendered
twice to obtain all inputs for the combined edge detector, the detector itself con-
sists of a single pass. The output is a single texture containing either a binary edge
image with configurable colors (when thresholding is applied) or an image with
edge intensities. Both outputs can be further processed, either to improve the
edge look or to combine the results with other rendering techniques, as shown in
the following chapters. However, no information about edge geometry is obtained,
therefore the methods are not suitable for rendering artistic or suggestive edges,
where object-space edge detectors are more suitable.

Compared to previously implemented methods, the use of 24-bit hardware
depth buffer greatly improves the quality of the depth-based edge detector at a
slight speed expense, especially when applied to more complex scenes, where 8-
bit distances do not provide enough precision. The ability to tweak component
variables (switching thresholding on and off, changing edge colors, modifying in-
dividual thresholds) at run-time also allows a user to obtain the best results for
each scene and viewing angle.

The implementation could be improved to better utilize the most recent graph-
ics hardware:

e Instead of using the depth buffer, another pass that would render linear eye-
space distances to a single-channel floating-point textures could be used.
This would eliminate the need to transform non-linear distances stored in
the depth buffer in the edge detector fragment program at the expense of
one extra pass, which could improve the processing speed.

e Utilizing the ARB_draw_buffers extension, which allows a fragment program
to render to multiple color textures, the normal and region id images could
be rendered in a single pass, further speeding up the technique.

41

"normals"

render_target

render_normals

current scene

Pass 1: normals

<generated>:normals_color

"ids"

render_target

\L\

<generated>:ids_depth

render_ids

Pass 2: ids_and_depth

J ‘

<generated>:ids color

edge_color
nonedge_color

depth_threshold
dot_threshold

texture_3 texture_2 texture

edge_detect

Pass 3: edge_detect

framebuffer

Figure 3.18: Combined edge detector.

42

Figure 3.19: Images rendered by the combined edge detector.

43

Figure 3.20: More images rendered by the combined edge detector.

44

Chapter 4

Cartoon-style rendering

Cartoon rendering, also known as cel-shading, combines two rendering methods:
drawing object outlines (inking) and coloring cartoon objects (painting). Inking of
3-D models can be achieved by edge rendering methods discussed in the previous
chapter.

When painting a cartoon character, the artist does not aim for three-
dimensional appearance. Rather than trying to mimic realistic object shading,
the artist uses low amount of solid colors to represent each object material. Some
cartoons use only a single solid color, but usually two colors with the same hue
and saturation are used to distinguish well-lit and shadowed areas of the object.
Sometimes a third brightest area is used to for specular highlights. Boundaries
between shadowed and illuminated colors are hard edges, therefore this painting
style is sometimes referred to as “hard shading” or “stepped shading”.

4.1 Previous work

Gooch et al. [10] proposed various rendering styles for technical illustrations. Al-
though they do not implement the stepped shading, the presented variations of the
standard lighting equations that achieve a warm-to-cool look suitable for technical
illustrations are in many ways similar to the variations used in cartoon shaders.

Lake et al. [21] implemented the cartoon shading by computing a modified
lighting equation at each vertex, and using the results as texturing coordinates to
apply a one-dimensional texture called toon map to the object. When the texture
contains only two colors and is rendered without filtering, a stepped cartoon look
is achieved. Lake’s method produces jagged artifacts when a transition between
two color steps is observed at a close range at large polygons. Lake proposes to
use a bilinear filtering when fetching the stepped intensity from the toon map,
but then the transition would become smooth and could be too wide on large
polygons.

This method was improved by Ishaya [16], who interpolates normals instead of
intensities, and computes the lighting equation at each pixel using DirectX Pixel

45

toon map

1.0
light source 0.9 0.6
71 N

mesh surface

0.375

0.0

Figure 4.1: A toon map is used to transform smooth pixel intensities to stepped
intensities.

Shaders 1.1. This approach also eliminates the artifacts.

Both Lake and Ishaya use only diffuse lighting model, therefore their algorithms
do not display specular highlights.

A different approach that runs well on a non-programmable graphics hardware
without any extra CPU processing was proposed by Dietrich [6]. First, the object
is rendered flat-shaded using the bright color. In the next pass, the object is
rendered with lighting turned on and an alpha test is used to discard all lit pixels,
thus only the shadowed pixels are overlaid over the flat-shaded bright image. Claes
et al.[2] process the geometry on the CPU to determine which triangles can be
rendered simply as flat-shaded and subdivide the remaining ones in real-time.

4.2 Cartoon shader

The two cartoon shaders implemented in NPRView are based on techniques pro-
posed by Lake et al. [21] and Ishaya [16]. It improves them by using a modified
Phong shading model, thus adding realistic specular highlights to the rendered
images.

The algorithms share the same basic idea. First, the lighting intensity is com-
puted for the rendered pixel. The lighting intensity is a single scalar value that is
used as a texturing coordinate into a toon map, which is a one-dimensional tex-
ture that usually contains only one to three colors. The texture lookup transforms
smooth lighting intensities to stepped shading, as illustrated in figure 4.1.

Before describing the implementation details and comparing the differences
between the two methods, let’s examine the way the lighting intensity is computed.
Each NPRView scene consists of one or more meshes and each mesh has a set of

46

light source

N2 .
N h camera

mesh surface

Figure 4.2: Phong illumination model. n: surface normal; e: pixel-to-eye vector;
L: pixel-to-light vector; h: half-vector.

material properties. Since the scene is read from standard file formats (either OBJ
or VRML), the material properties are suitable for the Phong illumination model,
and must be somehow mapped to cartoon shader parameters.

A material has the following attributes: ambient color, diffuse color, specular
color and shininess. When a mesh is lit by a single point light with no distance
falloff, the following equations are used to compute the color at each lit pixel when
the Phong illumination model is used:

C=am+c(fadm + fssm) (4.1)

Here C is the resulting color, a,,, d,, and s, are the ambient, diffuse and
specular material colors, respectively, ¢; is the light color, f; and f, are the diffuse
and specular lighting factors computed as follows:

fa=max{n-1,0} (4.2)
0 ifn-1<0orn-h<0
fs = { (n-h)° otherwise (43)

where s is the material shininess, n is the surface normal at the rendered pixel,
l is the unit vector pointing from the lit pixel to the light source and h is the
half-vector, computed as the normalized average of the pixel-to-light unit vector 1
and the pixel-to-eye unit vector e, as illustrated in figure 4.2.

The equation that computes the lighting intensity that is used to apply the
cartoon shader in NPRView tries to retain all features of the Phong lighting model,
namely the diffuse and specular components:

I = fqg+ fs - intensity (sn,) (4.4)

47

where [is the lighting intensity, f; and fs are the diffuse and specular lighting
factors computed as specified in equations 4.2 and 4.3 and intensity (s,,) is the
intensity of the specular material color, computed as:

intensity (¢) = 0.3¢req + 0.6¢green + 0.1chue (4.5)

Methods proposed by Lake [21] and Ishaya [16] use only the diffuse component
fa, therefore they do not display specular highlights.

After the value of pixel’s I is determined, it is used as an index into a the
toon map, which encodes the stepped cartoon intensity function, as illustrated in
figure 4.1. The toon map is implemented as a one-dimensional texture, and I is
used as a texturing coordinate to lookup the stepped lighting value, I;. Then the
following equation is used to determine the final color:

Cs = apy, + lsdy, (4.6)

where Cj is the final pixel color, a,, is the ambient material color, ¢; is the light
color and d,, is the diffuse material color.

The difference between the two implemented methods is how the
value of I is determined for a pixel. The first one, implemented by the
render_toon _per_vertex component, computes the intensity values at
each vertex, and interpolates them over the polygon. Unlike in the Lake’s
implementation, no artifacts at the step shading edges were observed, possibly
due to the higher precision of the interpolators on the modern GPUs.

The second method, implemented by the render_toon component, interpolates
the vertex normals over the polygons, and then computes the value of I at each
rendered pixel in a fragment program.

The cartoon shading techniques that use these components further combine
the images with output from the combined edge detector described in the previous
chapter.

The first method has drawbacks similar to the Gouraud shading. On large
polygons, the differences between interpolated colors (Gouraud shading) and col-
ors determined by computing the illumination equation at each pixel (Phong shad-
ing) may become large, especially when the light is near the surface or when the
material has a high specularity. Similar artifacts appear when the stepped shad-
ing model is used, as illustrated in figure 4.3. The quality of specular highlights
is much better when the texturing coordinates into the toon map are computed
per-pixel. In picture 4.3(c), the highlights even completely disappear.

To generate pictures 4.3(e) and 4.3(f), a special toon map containing the color
spectrum was used. The toon map can be treated as a generic 1D function that
maps intensities computed by the traditional illumination model to intensities of
the rendered pixels. By using different toon maps, various appearances can be
achieved as illustrated in figures 4.4 and 4.5. For example, one of the helmet
pictures uses a gradient toon map that simulates a metallic look.

48

4.3 Discussion and future work

The implemented cartoon shader builds on works done by Lake et al. [21] and
Ishaya [16] and further improves them. By using more modern GPU programming
models with better precision, artifacts at boundaries between step colors were
eliminated. Moreover, the shader supports specular highlights. When non-stepped
toon maps are used, the scene can be rendered in different non-cartoony styles.
As a future work, the cartoon rendering technique could be extended to draw
more stylized specular highlights, while still achieving real-time performance.

49

(a) Per-vertex, stepped toon map. (b) Per-pixel, stepped toon map.

(c) Per-vertex, stepped toon map. (d) Per-pixel, stepped toon map.

(e) Per-vertex, spectrum map. (f) Per-pixel, spectrum map.

Figure 4.3: Comparison of render_toon and render_toon_per_vertex. On the
left, output from method that computes toon texturing coordinates for each vertex
and then interpolates them over the polygon is shown. On the right, vertex nor-
mals are interpolated over polygons and toon texturing coordinates are computed
per-pixel.

50

Figure 4.4: Images rendered by the cartoon shader.

o1

Figure 4.5: More images rendered by the cartoon shader.

52

Chapter 5

Mosaics

Mosaic is the art of decoration with small pieces of colored glass, stone or other
material. Small tiles or fragments of pottery (known as tesserae) or of colored glass
or clear glass backed with metal foils, are used to create a pattern or a picture.
Figure 5.1 shows two mosaic examples.

(a) ‘Cave Canem’. Pompeii. (b) Mosaic at St. Monica Catholic Church
in Mobile, Alabama, USA.

Figure 5.1: Mosaic examples.
Several rendering methods that replicate the look of classical mosaics were
presented in the past. The non-photorealistic rendering proposed in this chapter

tries to achieve similar results while rendering a generic three-dimensional scene
at interactive framerates.

93

5.1 Previous work

After several years of mosaic rendering research, these observations regarding eye-
pleasing packing of mosaic tiles were made:

1. Tiles should be evenly distributed; the amount of gaps and overlapping tiles
should be minimal.

2. The orientation of tiles should emphasize edges in the source image. Tiles
should not cross the edges.

3. Tile colors should approximate colors in the equivalent area in the same
image. Both sampling the source color at the tile’s centroid and computing
the average of the colors in the tile’s area give reasonable results.

Several works that try to effectively and efficiently solve the problem of packing
tiles of arbitrary shapes and sizes into a given shape exist. Kim and Pellacini [20]
proposed an algorithm that efficiently selects tiles from a large library in order to
pack a 2-D container. For each tile configuration, energy F is defined as the sum of
terms that penalize various negative aspects of the packing, such as mismatching
color, large gaps between tiles or big tile overlap. The described algorithm searches
for a tile configuration with minimal energy F.

Recently, Dalal et al. [3] presented a similar technique that uses a metric that
penalizes an overlap and gaps between tiles. The proposed algorithm uses the
FFT in a novel way to simultaneously evaluate the metric for all possible pixel
shifts of a tile.

Those methods achieve impressive results, but unfortunately they are compu-
tationally expensive, and not suitable for our primary goal — utilizing modern
GPUs to their maximum to implement non-photorealistic rendering styles at in-
teractive framerates.

To achieve a uniform spacing between mosaic tiles, Hausner [13]) and Smith
et al. [31] use centroidal Voronoi diagrams (CVDs) and centroidal area Voronoi
diagrams (CAVDs), respectively. These methods can fail to create even mosaic
packing in some cases, but they’re simpler and computationally faster.

A two-dimensional Voronoi diagram is defined by N points, called sites. The
diagram partitions the plane into N regions, such that all points within a region
are closest to its associated site. CVDs have one additional property — each site
is located at the centroid of its region. Figure 5.2 shows an example of a Voronoi
diagram and a CVD. CAVDs are similar to CVDs, but the sites can have any
shape, therefore they are more suitable for packing generic (non-square) tiles into
a mosaic.

As can be seen in image 5.2(b), CVDs produce hexagonal regions. To pack
square tiles, a CVD that produces square Voronoi regions is required. Hausner
achieves this by replacing the standard Euclidean distance by the Manhattan
distance to determine which points are the closest ones to each site.

54

524

[T A o
(a) Voronoi diagram with generators (large (b) C
dots) and centroids (small dots).

entroidal Voronoi diagram.

Figure 5.2: Voronoi diagram.

To generate a Voronoi diagram, Hausner uses a method presented by Hoff
et al. [19], first proposed by Haeberli [11]. The method takes advantage of the
hardware depth-buffer. For each site point, an “infinite” pyramid with a unique
color is rendered in orthogonal projection. Each pyramid’s apex is positioned at
the site point, all apices have the same depth-coordinate. The difference between
a pyramid’s apex depth and the depth of any point on the pyramid’s surface
equals to the Manhattan distance between the corresponding pixels in the image.
Therefore if the pyramids are rendered with enabled depth testing, the rendered
image is the Voronoi diagram for the Manhattan metric.'

Rong and Tan [28] presented a different algorithm to produce a Voronoi dia-
gram, which is more suitable for implementation on GPUs. Hausner’s approach
requires drawing of a primitive of sufficient size (pyramid) for each site. On the
other hand, the method by Rong and Tan generates a Voronoi diagram approxi-
mation in a constant time using a jump flooding algorithm. The technique requires
only O(logn) passes over image of size n*n, independently on the number of used
sites. The method is expected to produce good results with little errors event
when applied to Voronoi diagrams with generalized site shapes — line segments,
curves or areas.

CVDs can be easily produced using Lloyd’s iterative algorithm [22]. At each
iteration, each site is moved to its region’s centroid, and the Voronoi diagram is
recomputed. It’s assumed this method converges in two dimensions, although the
proof exists only for one dimension.

'"Haeberli [11] draws cones instead of pyramids to compute Voronoi diagram for the Euclidean
metric.

95

To compute tile orientations, Hausner uses a direction field, which specifies the
orientation of the nearest edge for each pixel. This image can be constructed on the
GPU. The algorithm requires edges defined manually by the user. First, an image
which contains the distance to the nearest edge for each pixel is rendered utilizing
the depth buffer in a way similar to Voronoi diagram construction presented above.
The direction field is then computed as the gradient at each pixel of the distance
image.

To ensure that the tiles do not cross the image edges, Hausner extends the
Lloyd’s CVD construction algorithm. When the edges are drawn as thick lines
with a unique color over the Voronoi image, and several iterations of the algorithm
are run, the centroids will be automatically displaced away from the edges. Then
the lines are removed from the Voronoi image, and a few more iterations of the
algorithm are run to fill the gaps.

The Hausner’s approach has several drawbacks that limit its real-time imple-
mentation, as each iteration of the algorithm requires the CPU to read the contents
of the framebuffer and process them in a non-trivial way. Also, to achieve proper
orientation and edge avoidance, the user must manually define the edges.

In the following sections, more optimal implementation of the Lloyd’s algo-
rithm that runs completely on the GPU is presented and it is shown that even
such implementation is still not fast enough to achieve interactive performance.
A completely different approach to tile positioning, based on physical simulation
of a spring system, is then presented. Finally, the image-space edge detectors are
used to achieve proper tile orientation and edge avoidance.

5.2 Mosaic renderer overview

The mosaic rendering technique implemented in NPRView shares many core ideas
with the algorithms based on Voronoi diagrams, but the process, while achieving
similar visual results, is in many ways different. It tries to position a user-specified
number of evenly-sized square tiles on the screen according to the “eye-pleasing
mosaic” guidelines outlined above. Figure 5.3 shows a simplified overview of the
individual technique passes.

The passes shown in the figure can split into three major groups:

Tile positioning These passes compute uniformly spaced positions of the ren-
dered tiles. The initial positions are independent of the rendered scene.

Tile orientation and edge avoidance Information about the edges in the im-
age is used to determine how individual tiles should be oriented and moved
to emphasize the edge directions. The results of tile movement caused by
the edge avoidance algorithm are reflected in the tile positioning data struc-
tures. Tile positioning then readjusts all the tiles again to retain the uniform
spacing.

o6

render_normals

current scene

random_offsets

<generated>:tile_offsets

spring_constraints

Tile orientation and

A 4

<generated>:normals_color

<generated>:normals_depth

render_ids

Pass 4

edge_detect

<generated>:ids_color

render_phong

<generated>:phong_color

<generated>:tile_offsets

"Tile positioning‘.

edge avoidance

edge_normals

render_tiles

Pass 11

framebuffer

T
<generated>:edges_color

Pass 7-10

<generated>:edge_normals_grown_color
.. I

draw_edges

Pass 12 (optional, turned off by default)

! Tile rendering

Figure 5.3: Mosaic rendering technique overview.

o7

Tile rendering The data generated by the algorithms outlined above, along with
a scene color rendering (using standard Phong shading, for example), are
used to draw the tiles.

The following sections describe the individual pass groups in more detail.

5.3 Tile positioning

To position mosaic tiles, centroidal Voronoi diagrams are usually used. In this sec-
tion, a GPU implementation of the Lloyd’s algorithm is proposed. Unfortunately
the implementation is not fast enough for visualization in real-time. The second
part of this section presents alternative approach to the uniform tile spacing, based
on the simulation of the system of infinitely stiff springs.

5.3.1 Constructing CVDs on GPU

Many fast algorithms that construct very precise approximation of a Voronoi dia-
gram in two dimensions exist. However, no fast GPU implementation of the second
step of the Lloyd’s algorithm — computing the centroids of all Voronoi regions —
was proposed yet. Hausner [13] reads the generated Voronoi image back from the
framebuffer to compute the centroid positions on the CPU. While reading data
from the video memory of a modern PCI Express graphics card is not as slow as it
used to be a few years ago with AGP cards, the Lloyd’s algorithm requires several
iterations per frame. This is not an acceptable approach if we want to achieve
interactive framerates.

The reason why such algorithm is hard to implement on a GPU is the gather
nature of the fragment processing, as described by Harris in GPU Gems 2 [12].
To simplify a bit, a fragment program can easily read (gather) information from
other parts of the processed texture, other textures available to the program and
constant values uploaded into the GPU, but it’s not capable of scatter — random-
access writes. For example, there is no such feature as writable global variables
available on GPUs. A fragment program can output one or more colors for the
processed fragment and the fragment’s depth, which gives us up to 17 floating-
point scalar values, associated with the processed fragment.

Several methods of using the gather capability of fragment programs were
researched during the implementation of the mosaic renderer. The most promising
one was based on the idea of a parallel reduction. Reduction is an iterative process
that shrinks the processed texture by some fraction in each step. For example, to
compute a maximum value in a texture, each iteration computes a local maximum
in a square region of four texels and writes a new texture of half size with the local
maxima; each texel in the new texture is computed by gathering four values. After
O(logn) iterations, a 1 * 1 texture with the global maximum is obtained.

The reduction idea can be used to compute the centroid of a single Voronoi
region. Let’s assume we have a square area of width and height both equal to 2"

o8

for some n, and the Voronoi region is fully contained inside the area. Moreover,
this area is available as a single texture. In the first step, the texture is processed
and the following information about each texel is gathered:

count Number of texels in the area that belong to the Voronoi region. In the first
step, this value is 1 if the texel belongs to the Voronoi region, 0 otherwise.

position_sum The sum of positions of all texels in the area that belong to the
Voronoi region. In the first step, each texel is a single area by itself, so the
position_sum is either the texel’s position in the texture (if it belongs to the
Voronoi region) or zero.

Then, logn reduction steps are applied to the texture, each halving its size.
In each step a region of two-by-two texels is processed and the information about
the region is computed:

count Number of texels in the 2 % 2 area that belong to the Voronoi region.
Computed as the sum of count of all four processed texels.

position_sum The sum of the positions of all texels in the area that belong to the
Voronoi region. Computed as the sum of position_sum of all four processed
texels.

This process is illustrated in figure 5.4. The result of the reduction is the
number of texels belonging to the Voronoi region, and the sum of their positions.
This allows us to compute the position of the centroid as:

D ects

Cr = C] (5.1)
o _2tecty
e

where and C' is the set of all texels belonging to the same Voronoi region and
(cz;¢y) is the position of the centroid of the Voronoi region.

This algorithm has many performance and implementation issues. As de-
scribed here, the algorithm requires several rendering passes to compute the cen-
troid of a single Voronoi region. If it was applied to each region separately, it would
not be possible to achieve interactive framerates — O(mlogn) passes would be
needed to perform a single iteration of the Lloyd’s algorithm, where m is the num-
ber of tiles and n is the size of the largest bounding area of a tile. The algorithm
could be optimized to perform reduction for multiple Voronoi regions at the same
time, as long as their bounding areas do not intersect. Another option would be to
extract the bounding areas of all m tiles and pack them into a single texture. This
can be done in a single rendering pass by drawing m screenspace-aligned quads.
Then the centroids of all m tiles can be computed in parallel in logn reductions,
albeit on a very large texture.

99

1 3 9
0;3
1 1 (]
1;7
0;2 1;2
1 1 4 2
o
0;1 151 8;9
°
1 1 1 1 252
o ° ° ° °
0;0 1;0 2;0 3;0 5i0

(a) Image before the reduction. (b) After the first reduction (c) The result after the second
step. step.

Figure 5.4: Computing centroid of a Voronoi region. The dark pixels belong to
the Voronoi region. For each square area, the values of count and position_sum
are displayed, along with dots that denote centroid positions of the area.

Still, logn reductions per one Lloyd’s iteration is too many. As Hausner [13]
observed, approximately 20 iterations are required to compute satisfactory CVD,
with additional iterations needed to apply the edge-avoidance technique. There-
fore the proposed GPU implementation would require hundredths of passes. In
the end, the reduction algorithm was not used in NPRView because of these issues.

5.3.2 Our approach

Instead a completely different approach to compute evenly-spaced tile positioning
is used. When each tile is represented by a particle on a plane that is connected
by a spring to its neighbors, the spring system ensures that the distances between
the neighbor particles (tiles) are uniform. When the springs are infinitely stiff, the
system can be efficiently solved on the GPU.

The algorithm is based on the cloth physics solver developed by Jakobsen [17].
He represents a cloth patch as a set of particles connected by infinitely stiff springs
in a regular grid pattern. Such system can be easily solved by a constraint solver
using relaxation. This method works by consecutively satisfying various local
constraints and then repeating the process until the configuration converges to a
global configuration that satisfies all the constraints at the same time.

First we examine how an infinitely spring constraint between two particles X
and Y can be solved. The particles are connected by a stick (infinitely stiff spring)
of length [. Assuming the current distance between the particles is d, the following
equations determine the new positions of the particles (X’ and Y’) that satisfy

60

the distance constraint:

x=Y-X (5.2)
d = |x]
d—1
u:de
X' =X +cu
Y' =Y —cu

where c is the relazation coefficient. When c is equal to 1, the result satisfies the
constraint after one iteration. Using under-relaxation (¢ < 1) or over-relaxation
(¢ > 1) might lead to more stable results or a faster convergence when the system
of such constraints is solved. Figure 5.5 illustrates this set of equations for ¢ = 1.

v \
> '

Figure 5.5: Solution of a simple system with two particles connected by an in-
finitely stiff spring.

X X

Y

In NPRView each tile is represented by a single particle. The particles are ar-
ranged in a regular grid, each is connected to its four neighbors by an infinitely stiff
spring. When such spring constraint system is solved with under-relaxation, the
particles will be nearly evenly spaced, while not positioned completely regularly,
in a way similar to positions of centroids when a CVD is generated.

The particle positions are stored in a texture, each particle is represented by
a single texel. Red and green channels of the texels contain particle offsets rel-
ative to the regular grid positions. First, the generate_texture component is
used to generate the offset texture by assigning a random offset to each parti-
cle. The number of rendered tiles can be changed by modifying the resolution of
the texture. Component process_texture_spring constraint then applies the
specified number of constraint solver iterations to the texture. These two passes
are shown as pass 1 and pass 2 in figure 5.3 on page 57.

The initial random texture is generated only once when the technique is ini-
tialized, or when the parameters of the component (resolution, for example) are
changed. The texture then remains persistent — in each frame, it is updated by
the constraint solver and the tile renderer, as described in section 5.5.1 on page 67,
but it is never randomized again. The persistence of the tile offset texture ensures

61

) Initial random offsets. b) Corresponding tile positions.

) Offsets after one iteration.) Positions after one iteration.
) Offsets after five iterations.) Positions after five iterations.

Figure 5.6: Tile positions computed by the spring system method.

62

that the tiles do not change their positions randomly or abruptly from frame to
frame.

The constraint solver component computes new positions (X’ in equation 5.2)
of all particles at the same time in a single pass. It runs completely on the GPU:
for each texel, offsets of its four neighbors are read from the offset texture, and the
new offset of the particle corresponding to the texel is computed as specified in
equation 5.2. The number of applied iterations is configurable by the pass_count
component variable. The relaxation coefficient ¢ and the spring rest length ! are
also exposed as component variables, and can be tweaked at run-time to produce
the most eye-pleasing tile configuration.

Experiments show that approximately five iterations with relaxation coefficient
0.9 and rest length 1.005 generate a nice tight tile packing with little gaps or
overlapping, while not packing the tiles in a regular grid, as shown in figure 5.6.
This is a huge improvement over the hundredths of passes required to compute
the CVD on the GPU.

5.4 Edge direction image

So far we managed to evenly distribute the tiles in a non-regular pattern, com-
pletely ignoring the scene that should be rendered. The main trait that makes
mosaics visually appealing is the placement and orientation of the tiles that em-
phasizes edges in the source image. This section describes how an edge direction
image is constructed. The image contains approximate information about orien-
tation and distance of the nearest edge for all pixels within configurable distance
of the image’s edges, stored in the red, green and blue channels as follows:

e A unit vector pointing away from the nearest edge is encoded in the red
and green channels. The orientation of tiles should be perpendicular to this
vector. For simplicity, these vectors are referred to as edge normals.

e The influence of the nearest edge is stored in the blue channel. The influence
decreases with the increasing distance of the pixel from the edge by a user-
specified amount.

The edge direction image is used to orient tiles and to ensure they do not
cross the image edges. The tiles are rotated according to the orientation of the
nearest edge. The amount of rotation is controlled by the influence of the nearest
edge — tiles adjacent to edges are oriented parallel to the edges, edges further
away are axis-aligned. This tile orientation technique is used in mosaic shown in
image 5.1(a) on page 53.

Tiles crossing the image edges are pushed away from the edges. This position
change is reflected in the spring system structures, therefore the surrounding tiles
will be automatically moved to retain uniform spacing by the spring system solver.

In NPRView no explicit edge definition is available to generate the edge direc-
tion image. The edge combined detector described in chapter 3 is applied to the

63

init_edge_normals

image edges

downscale_edge_normals

20

v

0.04

v

pass
_count

edge_strength
_falloff

grow_edge_normals

pass
_count

smooth_edge_normals

initial image

smoothed image

Figure 5.7: Generating edge direction image.

64

110 | -1 1| 2| -1

+2 0 -2 0 0 0
+1 0 -1 +1 +2 | +1
(a) G (b) Gy

Figure 5.8: Sobel operator convolution kernels.

<« |<«|[>|>

«|<|>|>

<« |« |x|A|A]|A

R EAEREIE

SRR ARARAR

AR ARARAR

(a) Binary edge image. (b) Initial edge normals.

-« | > < Vol

- | A

A

« | 7| A
'SR 'SR 2R

AN 2NN’

(c) Downscaled edge normals. (d) Edge normals after one grow
iteration.

Figure 5.9: First steps to generate edge normals.

65

scene to generate a binary image that classifies all image pixels as either edges or
non-edges, as illustrated in figure 5.3 on page 57 in passes 3, 4 and 6. The edge
image is then processed in four passes (labeled as 7-10 in the figure) to generate
the edge direction image, as illustrated in figure 5.7. The four passes are:

Initialize edge direction image The binary edge image is first processed to
generate initial edge normals at pixels adjacent to the edges. The Sobel
operator is used to compute gradients G, and G in the x and y axes, re-
spectively. The operator is implemented as the convolution with two kernels
(one for each axis) shown in figure 5.8. At pixels where the gradient is non-
zero, the normal is computed by normalizing the vector (G.;Gy), a zero
normal is assigned to the remaining pixels.

This pass is implemented by the init_edge normals component. It reads
the specified edge image and generates image with initial edge directions.

Downscale the image The edges generated by the algorithm described in chap-
ter 3 are always two pixels wide and the output from the Sobel operator is
non-zero at both the edge pixels and pixels directly adjacent to edges, as
shown in figures 5.9(a) and 5.9(b). Therefore the regions with non-zero
normals in the initial edge direction image are four pixels wide, with two
pixels at each edge side, and the image can be downscaled to half resolu-
tion without any significant loss of information. This speeds up consequent
edge direction image processing. An example of a downscaled edge direction
image is shown in figure 5.9(c).

This pass is implemented by the downscale_edge normals component. It
reads the specified edge direction image and generates texture with half
width and height containing the downscaled image.

Grow edge direction image In this pass, the information the about edge di-
rections is distributed among other pixels in the image. Interpolating the
normals across the whole image is not a simple task. Johnston [18] uses a
system of dampened springs to compute the directions, but such system is
very large compared to the tile positioning spring system used in NPRView
and requires too many iterations to be properly solved.

Instead, we opt to determine the directions only within a certain vicinity of
the edges. This is a reasonable limitation, since many real world mosaics
are constructed by using only one or two rows of tiles to emphasize the
edges, with the remaining space filled in a more regular pattern, as shown
in image 5.1(a).

A form of dilatation is applied to the edge direction image to cover suffi-
ciently large areas surrounding all edges. For each pixel with unassigned
edge normal, the sum of the eight adjacent edge normals is computed. If
the sum is non-zero, the result is normalized and the edge direction image is

66

updated for the processed pixel. Thus the covered area grows by one pixel
in each iteration.

This pass is implemented by the grow_edge normals component. It
processes the specified edge direction image inplace. Component
variable pass_count specifies the number of grow iterations, variable
edge_strength falloff controls the falloff of edge influence with distance
from the edge. When set to 1/pass_count, the influence will drop exactly
to zero at the most distance pixels. As the influence directly affects how
much a tile’s orientation should follow the edge direction, it is sometimes
useful to set the variable to a lower number to rotate even the most distant
tiles. When set to zero, all tiles in the area affected by edge direction image
will be oriented parallel to the nearest edge.

Smooth edge direction image Because the input to this process is a discrete
binary edge image, the edge normals determined in the first pass may contain
abrupt changes from pixel to pixel. Some of these artifacts remain when the
image is grown. To prevent irregular tile orientation, the resulting edge
direction image is smoothed by averaging edge normals in a cross-shaped
neighborhood of each smoothed pixel. Special care must be taken when
smoothing the image; pixels adjacent to edges are not smoothed to prevent
edge normal “bleeding” across edge boundaries.

This pass is implemented by the smooth_edge normals component. It
processes the specified edge direction image inplace. Component variable
pass_count controls the number of smoothing iterations applied to the
image.

5.5 Tile rendering

After both images that define the tile positioning (tile offsets and edge directions)
are generated, the only other input required before the tiles can be drawn is a
texture specifying the tile colors. In the implemented technique, the scene is
rendered using the standard Phong shading, combined with a background image
which greatly increases the visual appeal of the generated mosaic. However, a
cartoon shaded image could be also used to generate a more “flat”-looking mosaic.

To draw the tiles, the tile offset and edge direction images are read from
the video memory and processed on the CPU by the component draw_tiles to
generate the tile geometry, as illustrated in figure 5.10. The following subsections
describe the process.

5.5.1 Edge avoidance

The tile positions are read from the tile offset texture. However, these positions
do not reflect the positions of the image edges and might cross them. To prevent

67

edge_pushout:
factor
bias

count scale
feedback

draw_tiles

tile positions

colors

edge directions
it
| framebuffer

Figure 5.10: Component draw_tiles.

this, the tiles are moved according to information obtained from the edge direction
image.

For each tile, the component draw_tiles applies edge_pushout_count itera-
tions of “edge pushout”. In each iteration, the tile is moved along the edge normal
sampled from the edge direction image at the tile’s position by a certain distance:

x' =x +dn (5.3)
d = max{ f(i — b), 0} (5.4)

In this equation, x denotes the tile’s position before the edge pushout is applied
and x’ the new tile position. The tile is moved along the edge normal n by d units,
where one unit corresponds to the distance between two neighbor tiles if they were
arranged in a regular grid. Value of d is computed as specified by equation 5.4,
where ¢ is the edge influence sampled from the edge direction image, b is the value
of the component variable edge_pushout_bias and f is the value of the component
variable edge_pushout_factor. The bias b specifies the lowest influence that still
affects the tile’s position and the factor f determines how large are the individual
pushout steps. When the factor f is low, the tile position’s converge slowly, when
it is set too large, the pushout may become unstable.

After all tiles are moved, the position offset image is updated to reflect the
new positions. The edge_pushout_feedback can be used to control the amount of
feedback. The position offset of a tile is set t0 Prew = fPpushed + (1 — f)Dotd, Where
Ppushed i the tile position after the pushout and pgq is the original tile position.

When configured properly, the pushout positions all tiles in the vicinity of an
edge nicely along the edges. Because the pushout variables can be changed at
run-time, the settings can be tweaked to produce the best results for given scene,
viewing angle and configuration of the grow_edge normals component.

68

(a) Original tile positions. (b) Positions after edge pushout.

Figure 5.11: Tile positions computed by the edge avoidance algorithm.

Figure 5.11 shows how the tile positions change when the edge pushout is
applied.

5.5.2 Tile orientation

After the tiles are moved to positions that do not cross the image edges, they
are rotated to further emphasize the edge directions. Information from the edge
direction image is used again to achieve this. The edge normal specifies the tile
orientation, the influence determines whether the tiles should be oriented parallel
to the edge or whether the neutral axis-aligned orientation should be used. The
orientation angle 0 is computed as:

0 =i+ (1 —i)¢o (5.5)

where ¢ is the orientation perpendicular to the edge normal, ¢y the nearest axis-
aligned orientation to ¢ and ¢ is the edge influence.

Figure 5.12 illustrates the differences between the edge-independent tile posi-
tions, the positions after the edge avoidance and the final tile placement after tile
orientation is changed to emphasize the image edges.

5.5.3 Drawing the tiles

Finally, each tile is rendered in orthogonal projection as a pyramid. By rendering
pyramids instead of squares, the depth buffer can be used to produce a better
looking results when two tiles overlap. All vertices of the pyramid have the same
texturing coordinates that are used to sample the color image at the tile’s center.
Optionally, the edge image may be overlaid over the mosaic.

Figures 5.13 and 5.14 show mosaics generated by the proposed rendering tech-
nique.

69

SRR
(a) Original tile positions. (b) Positions after edge avoid- (c) Rotated tiles.
ance.

Figure 5.12: Orientation and positioning of tiles emphasizes the image edges.

5.6 Discussion and future work

The presented rendering technique uses a novel approach to draw a generic 3-
D scene in a mosaic style at interactive framerates. This was not achieved in
any previous works. Table 5.1 summarizes framerates for several scenes at var-
ious technique settings on Athlon™ 64 32004 with NVIDIA® GeForce® 7800
GT. Various aspects of the algorithm are exposed via component variables of the
individual components, which allows a user to tweak the behavior of the tile posi-
tioning, edge avoidance and tile orientation algorithms at run-time to experiment
with the technique and to produce the most visually pleasing mosaic.

Screen resolution | Tile count S;;; ° Sli; 4(;;1ang11e98(;1$8t)
00" 50 o0 500 | 415 | 503
O T0 oy [s
900 * 900 o000 | 21| BT B

Table 5.1: Comparison of mosaic renderer framerates.

Instead of using centroidal Voronoi diagrams to determine tile positions, which
are hard to compute efficiently, a system of infinitely stiff springs is used. The
real-time performance of the spring system comes at the price of a slightly inferior
mosaic appeal when compared to the methods using Voronoi diagrams to position
the tiles. The spring system has the following limitations:

e It tends to position the tiles in a regular grid pattern, because the individual
tiles can not be moved away from their neutral positions on the regular grid

70

by a considerable distance; such movement would not satisfy the spring
constraints.

By using under-relaxation when solving the spring system, the springs stiff-
ness is reduced, which allows the tiles to be positioned in an irregular pattern.
However, these irregularities are then allowed both near edges, where they
are required, and inside large areas with no edges in their vicinity, where
artists usually place the tiles in a more regular pattern.

e The spring system does not respect the tile orientations at all. Therefore the
fact that only tiles near the edges are rotated to follow the edge directions
is beneficial to the visual appearance of the mosaic. The spring system as
proposed would not be able to place tiles in a regular but not axis-aligned
pattern properly.

e Tiles of varying shapes and sizes are not supported — all tiles are required
to be uniformly sized squares.

e The method is not suitable for animated mosaics. When panning the camera
over the scene, the “shower door” effect described by Meier [24] becomes
visible. Most of the tiles remain stationary, with the tiles in the vicinity of
edges popping from one edge side to another.

The future work should more thoroughly examine the traits of the spring
system and determine whether it is possible to eliminate the above mentioned
deficiencies by introducing a new set of constraints to the system. For example, a
non-constant relaxation coefficient depending on the influence of the nearest edge
could be used to make the springs in the vicinity of edges less stiff. Another set of
constraints could be used to enforce the relative position of a tile and its neighbors
to follow the direction of the nearest edge. The edge pushout algorithm could be
also implemented as another set of constraints.

By using a separate spring system for each object in the scene that would track
the global screen-space position and orientation of the object, the “shower door”
effect visible when panning over the scene or when the objects move could be
partially eliminated. However the spring system seems approach to be unsuitable
to achieve the quality of the animosaics [31].

Since the edge direction image is generated from automatically computed edge
image which is discrete, it can not be as precise as the Hausner’s direction field
generated from a precise user-defined set of edges. A more work on the algorithm
that generates the edge direction image could lead to tile orientations that follow
the edges more precisely.

While the mosaic rendering technique is capable of achieving interactive fram-
erates, there is still a room for speed improvements, especially in the draw_tiles
component which generates the tile geometry. It reads the tile offset and edge
direction images and processes them on the CPU. By utilizing the most advanced
features, such as accessing textures from vertex programs, described in NVIDIA

71

whitepaper by Gerasimov et al. [9], the tile geometry could be constructed by
a vertex program. Unfortunately, this feature is available only on the NVIDIA
GPUs.

Finally, the proposed reduction algorithm that is capable of generating cen-
troidal Voronoi diagrams on the GPU should be further examined. Even though
it might be useless for real-time rendering, it would dramatically speed up any
algorithm that currently implements the Lloyd’s Voronoi diagram centralization
on the CPU.

72

o

21

Yo

Ll

el

st

By By g AN | L]
inEgEEEEEE

:.%..#.ur i

Figure 5.13: Images drawn by the mosaic renderer.

73

Figure 5.14: More images drawn by the mosaic renderer.

74

Chapter 6

Conclusions

In this thesis, we presented an application framework suitable for development and
testing of real-time rendering techniques implemented on modern programmable
GPUs. The framework was used to implement several non-photorealistic rendering
methods.

Three image-space edge rendering techniques that can be used to draw silhou-
ettes, contours, border edges, creases and material boundaries of generic three-
dimensional polygonal models were implemented and thoroughly examined. Com-
pared to previous implementations, the precision of the depth-based edge detector
was improved by using the high-precision depth buffer. By detecting discontinu-
ities in the Laplacian of the depth image instead of discontinuities in the gradient,
artifacts at polygons nearly perpendicular to the projection plane were eliminated.
We also presented that the combination of all three implemented edge detectors
is needed to successfully detect all important edges in the image.

The implemented cartoon shading technique builds on previous works and
further improves them. By using more modern GPU programming models with
better precision, artifacts at boundaries between step colors were eliminated. Ad-
ditionally, the implemented cartoon shader supports specular highlights.

We also presented a novel approach to drawing three-dimensional scenes in
a mosaic style. The implemented mosaic technique is able to render complex
scenes at interactive framerates, which was never achieved before. A GPU-based
algorithm to construct centroidal Voronoi diagrams was proposed. The algorithm
is much faster than the previously presented solutions, but it is not fast enough for
real-time mosaic rendering. To achieve real-time performance, a simulation of a
system of infinitely stiff springs was used instead of Voronoi diagrams to position
the mosaic tiles.

The future work should focus on the mosaic renderer. The implemented tech-
nique still runs partially on the CPU and could be optimized. The tile positioning
computed by the spring system simulation gives satisfactory results, but is not
as visually appealing as the images produced by methods based on Voronoi dia-
grams. We analyzed the limitations of the positioning based on the spring system

75

and suggested several changes to further improve the appearance of the generated
mosaics.

The mosaic technique is also not suitable for rendering of animated mosaics,
as it exhibits the “shower door” effect. This problem could be partially solved by
using separate spring systems for different objects, but more work is needed to
achieve reasonable results.

Finally, while the proposed algorithm to compute centroidal Voronoi diagrams
was not used in the mosaic renderer, it improves the previously presented methods
by performing all steps of the Lloyd’s centralization algorithm on the GPU, with-
out the need to copy the generated Voronoi diagrams to CPU in each iteration.
The approach presented in this thesis can be used to speed up all methods that
use the Lloyd’s algorithm.

76

Bibliography

[1]

John W. Buchanan and Mario C. Sousa. The edge buffer: a data structure for
easy silhouette rendering. In Proceedings of the 1st International Symposium
on Non-photorealistic Animation and Rendering (NPAR’00), pages 39-42,
2000.

Johan Claes, Fabian Di Fiore, Gert Vansichem, and Frank Van Reeth. Fast 3D
cartoon rendering with improved quality by exploiting graphics hardware. In
Proceedings of Image and Vision Computing New Zealand (IVCNZ’01), pages
13-18, 2001.

Ketan Dalal, Allison W. Klein, Yunjun Liu, and Kaleigh Smith. A spectral
approach to NPR packing. In Proceedings of the 4th International Symposium
on Non-photorealistic Animation and Rendering (NPAR’06), 2006.

Philippe Decaudin. Cartoon looking rendering of 3D scenes. Research Report
2919, INRIA, June 1996.

Philippe Decaudin. Modélisation par Fusion de Formes 3D pour la Synthese
d’Images — Rendu de Scénes 3D imitant le Style 'Dessin Animé. These de
doctorat, Université de Technologie de Compiegne, France, December 1996.

Sim Dietrich. GPU toon shading. Game Developer’s Conference 2000.

Sébastien Dominé, Ashu Rege, and Cem Cebenoyan. Real-time hatching
(tribulations in). Game Developer’s Conference 2002, March 2002.

Bert Freudenberg, Maic Masuch, and Thomas Strothotte. Walk-through il-
lustrations: Frame-coherent pen-and-ink style in a game engine. Computer
Graphics Forum, 20(3):184-91, 2001.

Philipp Gerasimov, Randima Fernando, and Simon Green. Shader model 3.0:
Using vertex textures, 2004.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A non-
photorealistic lighting model for automatic technical illustration. In Proceed-
ings of the 25th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’98), pages 447-452, 1998.

77

[11]

22]

Paul Haeberli. Paint by numbers: Abstract image representations. In Proceed-
ings of the 17th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH’90), pages 207-214, 1990.

Mark Harris. GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation, chapter 31: Mapping Compu-
tational Concepts to GPUs. Addison-Wesley, 2005.

Alejo Hausner. Simulating decorative mosaics. In Proceedings of the 28th
Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH’01), pages 573-580, 2001.

Mike D. Heath, Sudeep Sarkar, Thomas Sanocki, and Kevin W. Bowyer.
Comparison of edge detectors: A methodology and initial study. In Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR’96), pages 143-148, 1996.

Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg, and
Thomas Strothotte. A developer’s guide to silhouette algorithms for polygonal
models. IEEE Computer Graphics and Applications, 23(4):29-37, 2003.

Vishvananda Ishaya. Real-time cartoon rendering with DirectX 8.0 hardware.
GameDev.net, 2003.

Thomas Jakobsen. Advanced character physics, 2001.

Scott F. Johnston. Lumo: illumination for cel animation. In Proceedings
of the 2nd International Symposium on Non-photorealistic Animation and
Rendering (NPAR’02), pages 45-52, 2002.

III Kenneth E. Hoff, John Keyser, Ming Lin, Dinesh Manocha, and Tim Cul-
ver. Fast computation of generalized voronoi diagrams using graphics hard-
ware. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’99), pages 277-286, 1999.

Junhwan Kim and Fabio Pellacini. Jigsaw image mosaics. In Proceedings
of the 28th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH’02), pages 657664, 2002.

Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein. Stylized ren-
dering techniques for scalable real-time 3D animation. In Proceedings of the

1st International Symposium on Non-photorealistic Animation and Rendering
(NPAR’00), pages 13-20, 2000.

Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129-137, 1982.

78

23]

[30]

[31]

Lee Markosian, Michael A. Kowalski, Daniel Goldstein, Samuel J. Trychin,
John F. Hughes, and Lubomir D. Bourdev. Real-time nonphotorealistic ren-

dering. In Proceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’97), pages 415-420, 1997.

Barbara J. Meier. Painterly rendering for animation. In Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques
(SIGGRAPH ’96), pages 477-484, 1996.

Jason L. Mitchell, Chris Brennan, and Drew Card. Real-time image-space
outlining for non-photorealistic rendering. SIGGRAPH 2002 Sketch, San
Antionio, July 2002.

Masahiro Mori. The uncanny valley. Energy, 7(4):33-35, 1970.

Marc Nienhaus and Jiirgen Déllner. Edge-enhancement — an algorithm for
real-time non-photorealistic rendering. Journal of WSCG, 11(2):346-353,
2003.

Guodong Rong and Tiow-Seng Tan. Jump flooding in GPU with applica-
tions to voronoi diagram and distance transform. In Proceedings of ACM
Symposium on Interactive 3D Graphics and Games (13D’°06), pages 109-116,
2006.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible rendering of 3-d
shapes. In Proceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH’90), pages 197206, 1990.

Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 2.0 - October 22, 2004). Silicon Graphics, Inc., 2004.

Kaleigh Smith, Yunjun Liu, and Allison Klein. Animosaics. In Proceedings
of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation
(SCA’05), pages 201-208, 2005.

Mario Costa Sousa and Przemyslaw Prusinkiewicz. A few good lines: Sug-
gestive drawing of 3D models. Computer Graphics Forum, 22(3):381-390,
2003.

Djemel Ziou and Salvatore Tabbone. Edge detection techniques — An
overview. International Journal of Pattern Recognition and Image Analy-
sis, 8(4):537-559, 1998.

79

	Introduction
	NPRView framework
	Framework overview
	Components
	Component descriptors
	Component variables
	Component descriptor inheritance

	Implementing new core component
	Component interface
	Component implementation
	Component descriptor
	Component registration

	Drawing image edges
	Previous work
	Image-space edge detectors
	Implemented edge rendering methods
	Detecting edges as discontinuities in surface normals
	Detecting edges in depth image
	Detecting edges in region identifier image
	Combined edge detector

	Discussion and future work

	Cartoon-style rendering
	Previous work
	Cartoon shader
	Discussion and future work

	Mosaics
	Previous work
	Mosaic renderer overview
	Tile positioning
	Constructing CVDs on GPU
	Our approach

	Edge direction image
	Tile rendering
	Edge avoidance
	Tile orientation
	Drawing the tiles

	Discussion and future work

	Conclusions

