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Abstrakt

Bakalářská práce se zabývá chováńım funkce kontinua na singulárńıch kardinálech

v teorii ZFC. Práce je rozdělena na dvě části. Prvńı část se soustřed́ı na Silverovu

větu a rozeb́ırá dva r̊uzné d̊ukazy této věty, p̊uvodńı Silver̊uv a čistě kombinato-

rický d̊ukaz dle Baumgartnera a Přikrého. Druhá část je věnována hypotéze sin-

gulárńıch kardinál̊u, která ovlivňuje chováńı funkce kontinua. V práce je ukázáno,

za předpokladu velkých kardinál̊u, že hypotéza singulárńıch kardinál̊u je nedokaza-

telná nad teoríı ZFC. Pomoćı Eastonova a Přikrého forcingu je nalezen model ZFC

ve kterém hypotéza singulárńıch kardinál̊u neplat́ı.

Kĺıčová slova

Singulárńı kardinál, SCH, Funkce kontinua.

Abstract

Bachelor thesis studies the behaviour of the continuum function on singular cardi-

nals in theory ZFC. The work is divided into two part. The focus of the first part

is on the Silver’s Theorem and it analyzes two different proofs of this Theorem,

Silver’s original proof and the second, purely combinatorial, proof by Baumgartner

and Prikry. The second part is devoted to the Singular Cardinal Hypothesis, which

influences the behaviour of the continuum function. In the thesis it is shown that,

in the presence of large cardinals, Singular Cardinal Hypothesis is not provable in

ZFC. Using Easton and Prikry forcing a model is found where the Singular Cardinal

Hypothesis does not hold.
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1 Introduction

In 1871, Cantor proved that for any set X the set of all subsets of X has strictly

greater size than X. A natural question is how many subsets there are? In modern set

theory we can rephrase this question using continuum function, which each cardinal

κ assigns 2κ. This means that for any set X of cardinality κ, we can say how many

subsets it has if we know the value of continuum function on κ. Now the question

is what are we able to prove about the continuum function in ZFC or at least what

behaviour of continuum function is consistent with ZFC.

In 1970, Easton showed that if GCH holds in V and F : REG → CARD is a

class function from the class of regular cardinals to the class of all cardinals such

that

∀κ ∈ REG F (κ) > κ,

∀κ, λ ∈ REG κ < λ⇒ F (κ) ≤ F (λ),

∀κ ∈ REG cf(F (κ)) > κ,

then there exists a cofinality preserving generic extension V [G] of V such that

V [G] |= ∀κ ∈ REG 2κ = F (κ).

This theorem says that values of continuum function on regular cardinals are

quite independent of other values and that we can define continuum function al-

most arbitrarily. During the next years, it was generally believed that the domain

of Easton function can be extended to singular cardinals. But the case of singular

cardinals is more complicated. In 1974, Silver proved that if GCH holds at a statio-

nary subset of singular strong limit cardinal κ of uncountable cofinality, then GCH

holds also at κ. The original proof of Silver’s theorem used forcing and the method

of ultrapowers. Two years later, it was reworked by Baumgartner and Prikry to the

proof which used only the knowledge of infinite combinatorics.

After this, a natural question rises. Could anything stronger be proved about the

continuum function on singular cardinals? In the 70’s Singular Cardinal Hypothesis

(SCH) was formulated. It says that if κ is singular, then κcf(κ) = max(2cf(κ), κ+).

And so if κ is strong limit singular cardinal, then 2κ = κ+. If SCH holds, then

cardinal arithmetic is determined by the continuum function on the regular cardinals.
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By Silver’s theorem, SCH can not fail for the first time at singular cardinal with

uncountable cofinality, but it is known that SCH can fail for the first time at singular

cardinal with countable cofinality. We will show how to find a model of ZFC in which

SCH fails. The role of large cardinals is important in this context. Jensen showed that

if 0] does not exist, then SCH holds (see for instance [Kan03] or [Jec03]). This means

that if we want to find a model in which SCH fails, we need a stronger theory than

ZFC (i.e. ZFC with some large cardinals). Work of Gitik ([Git89] and [Git91]) shows

that the consistency strength of failure of SCH is exactly a measurable cardinal κ

with o(κ) = κ++ (see for instance [Kan03] or [Jec03]).
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2 Preliminaries

In this section we present some definitions and lemmas important in proofs in

chapters three and four. For details and proofs see [Jec03] or [Kan03].

2.1 Stationary Sets and Closed Unbounded Filter

Stationary sets play a fundamental role in modern set theory. The idea of statio-

nary sets first appeared in 1950’s and it is ascribed to G. Bloch. Basic theorems

about stationary sets were proved by Fodor. In this chapter we present some basic

definitions and claims that are important for understanding both proofs of Silver’s

theorem.

Definition 2.1 Let A be a set. A system F ⊆ P (A) is called a filter if:

(i) A ∈ F ,

(ii) if X ∈ F and X ⊆ Y then Y ∈ F ,

(iii) if X ∈ F and Y ∈ F then X ∩ Y ∈ F .

A filter F is called proper iff ∅ /∈ F .

Definition 2.2 Let A be a set. A proper filter F ⊆ P (A) is called an ultrafilter if

for all X ⊆ A, either X ∈ F or A\X ∈ F .

Definition 2.3 Let A be a set. If κ is a regular uncountable cardinal and F is a

filter on A, then F is called κ-complete if F is closed under intersection of less than

κ sets, i.e. if {Xα|α < γ} is a family of elements of F for γ < κ, then⋂
α<γ

Xα ∈ F.

Definition 2.4 Let 〈Xα : α < κ〉 be a sequence of subsets of κ. The diagonal inter-

section of Xα, where α < κ, is defined as follows:

∆α<κXα =

{
β < κ : β ∈

⋂
α<β

Xα

}
.

Definition 2.5 Let F be a filter on a cardinal κ. F is normal if it is closed under

diagonal intersections:

8



if Xα ∈ F for all α < κ, then ∆α<κXα ∈ F .

Definition 2.6 Let κ be a limit ordinal. A set C ⊆ κ is closed unbounded if:

(i) sup C = κ,

(ii) all limit ordinals α < κ,

sup(C ∩ α) = α→ α ∈ C.

Definition 2.7 If cf(κ) > ω, then

Club(κ) = {X ⊆ κ : (∃C ⊆ X)(C is closed unbounded in κ)}

is closed unbounded filter on κ.

The dual of the closed unbounded filter is the ideal of nonstationary sets, the

nonstationary ideal INS.

Definition 2.8 Let κ be a cardinal such that cf(κ) > ω. A set S ⊆ κ is stationary

if S /∈ INS.

In previous definitions we considered just cardinals with uncountable cofinality.

It is beacause when cf(κ) = ω, then every cofinal subset of κ of order type ω is

closed unbounded set. It is easy to find two such sets which are also disjoint and

so we cannot consider filter generated by closed unbounded sets at cardinals with

countable cofinality.

We can show that Club(κ) is not an ultrafilter and so the property to be a

stationary set is not the same as to be an element of Club(κ).

It is obvious that a set X ⊆ κ is stationary if and only if for every closed

unbounded subset of κ, its intersection with X is nonempty. This characterization

is very useful when we want to show that some set is stationary.

Fact 2.9 Club(κ) is a normal and κ-complete filter.

Definition 2.10 An ordinal function on a set S is regressive if f(α) < α for every

α ∈ S.

The following frequently used lemma describes stationary sets using regressive

functions. Every regressive function at stationary set is constant at stationary many

points.
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Lemma 2.11 (Fodor) If f is regressive function on a stationary set S ⊆ κ, then

there is a stationary set S ′ ⊆ S and some α < κ such that f(ξ) = α for all ξ ∈ S ′.

Proof: Assume for contradiction that for each α < κ, the set {ξ ∈ S : f(ξ) = α} is

not stationary and so Cα = κ\ {ξ ∈ S : f(ξ) = α} is in Club(κ). Note that for each

ξ ∈ S ∩ Cα, f(ξ) 6= α. Since Club(κ) is normal, C = ∆α<κCα is in Club(κ) and so

S ∩C is stationary. If ξ ∈ S ∩C, then f(ξ) 6= β for each β < ξ. Hence f(ξ) ≥ ξ and

this is a contradiction. �

Fodor’s Lemma uses the normality of Club(κ). Next lemma shows that using

regressive functions, we can define normal filter.

Lemma 2.12 For a κ-complete ultrafilter U over κ > ω the following are equivalent:

(i) U is normal.

(ii) Whenever f : κ → κ and {ξ < κ : f(ξ) < ξ} ∈ U , there is some α < κ such

that {ξ < κ : f(ξ) = α} ∈ U .

Proof: (i)⇒(ii) Let f : κ → κ be such that {ξ < κ : f(ξ) < ξ} ∈ U and for every

α < κ, {ξ < κ : f(ξ) = α} /∈ U . Since U is an ultrafilter,

Xα = {β < κ : f(β) 6= α} ∈ U

for every α < κ. Since U is normal,

∆α<κXα =

{
ξ < κ : ξ ∈

⋂
α<ξ

{β < κ : f(β) 6= α}

}
∈ U ⇔

{ξ < κ : ∀α < ξ(f(ξ) 6= α)} ∈ U ⇔ {ξ < κ : f(ξ) ≥ ξ} ∈ U.

So we have {ξ < κ : f(ξ) ≥ ξ} ∈ U and {ξ < κ : f(ξ) < ξ} ∈ U , which is a

contradiction.

(ii)⇒(i) Suppose 〈Xα : α ∈ κ〉 is a sequence in U such that the diagonal inter-

section ∆α<κXα /∈ U . Since U is ultrafilter, κ\∆α<κXα ∈ U. Let f : κ\∆α<κXα → κ

be such that f(α) = min {β < α : α ∈ (κ\Xβ)}. Since f is regressive, there is β < κ

such that {ξ < κ : f(ξ) = β} ∈ U but {ξ < κ : f(ξ) = β} ⊆ κ\Xβ, which contradicts

the assumption that Xβ ∈ U . �
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The following lemma shows that it is enough to consider just the stationary sets

at regular cardinals strictly greater than ω.

Lemma 2.13 Let κ be a singular cardinal such that ξ = cf(κ) > ω. If f : ξ → κ is

a normal function converging to κ, then for any A ⊆ κ the following holds:

(i) A ∈ Club(κ)↔ {α < ξ : f(α) ∈ A} ∈ Club(ξ),

(ii) A is stationary in κ↔ {α < ξ : f(α) ∈ A} is stationary in ξ.

Proof: Ad (i). Let A ∈ Club(κ) be given. Since Rng(f) is closed unbounded in κ,

then Rng(f) ∩ A is also closed unbounded in κ, and so

{α < κ : f(α) ∈ A} = f−1[Rng(f) ∩ A] ∈ Club(ξ).

Conversely, it is obvious that image of closed unbounded set is closed unbounded.

Ad (ii). Let A be stationary in κ and let C be closed unbounded in ξ. We want to

show that {α < κ : f(α) ∈ A}∩C 6= ∅ and so {α < κ : f(α) ∈ A} is stationary. If C

is closed unbounded in ξ, then f [C] is closed unbounded in κ. Since A is stationary

in κ, A ∩ f [C] 6= ∅ and so A ∩Rng(f) ∩ f [C] 6= ∅. It follows that

f−1[Rng(f) ∩ A] ∩ C 6= ∅ ⇔ {α < κ : f(α) ∈ A} ∩ C 6= ∅.

Converse direction is analogous. �

2.2 Ultrapowers and Elementary Embedding

Definition 2.14 Let {Ai : i ∈ I} be a family of non-empty sets, we define the pro-

duct
∏

i∈I Ai as follows:

∏
i∈I

Ai =

{
f : I →

⋃
i∈I

Ai : (∀i ∈ I)f(i) ∈ Ai

}
.

Definition 2.15 Let f, g ∈
∏

i∈I Ai. Let U be an ultrafilter on I. We say that f, g

are U-equivalent, in symbols g ≡U f , if

{i ∈ I : f(i) = g(i)} ∈ U.
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Definition 2.16 We say that
∏

U Ai for a language L is an ultraproduct of

{Ai : i ∈ I} by U if:

(i) The domain of
∏

U Ai is the set
∏

U Ai =
{

[f ]U : f ∈
∏

i∈I Ai
}

.

(ii) If ċ is a constant, then the realization c∏
U Ai of ċ is the equivalence class [c],

where c is the function such that c(i) = cAi for each i in I.

(iii) If ḟ is an n-ary function symbol, then the realization f∏
U Ai of ḟ is defined as

follows. For [f1]U , ..., [fn]U ∈
∏

U Ai, we define

f∏
U Ai([f0]U , ..., [fn]U) = [F ],

where F (i) = fAi(f1(i), ..., fn(i)) for every i ∈ I.

(iv) If Ṗ is an n-ary relation symbol, then the interpretation P∏
U Ai of Ṗ is defined

as follows. For every [f1]U , ..., [fn]U ∈
∏

U Ai, we define

P ([f1]U , ..., [fn]U)⇔ {i ∈ I : PAi(f1(i), ..., fn(i))} ∈ U.

Definition 2.17 Let A be a structure. If in previous definition for each i ∈ I,

Ai = A, then we call this special ultraproduct an ultrapower.

Definition 2.18 Let A and B be two structures for a language L. We say that a

1-1 function f : A→ B is an elementary embedding if for every formula ϕ(x1, ..., xn)

and elements a1, ..., an in A (evaluating all free variables in ϕ(x1, ..., xn))

A |= ϕ(a1, ..., an)⇔ B |= ϕ(f(a1), ..., f(an)).

Theorem 2.19 ( Los) Let U be an ultrafilter over I and let A be the ultraproduct of

{Ai : i ∈ I} by U . If ϕ is a fomula, then for every f1, ..., fn ∈
∏

i∈I Ai,

A |= ϕ([f1], ..., [fn]) iff {i ∈ I : Ai |= ϕ(f1(i), ..., fn(i))} ∈ U.

Proof: See [Jec03], Theorem 12.3, page 159.

We will now extend the ultrapower construction to the proper class. This method

was introduced by Dana Scott when he proved in [Sco61] that if there is a measurable

cardinal, then V 6= L, where L is class of all constructible sets.
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Let U be an ultrafilter over a set I and let f and g be functions from I to V .

We define

f =∗ g iff {i ∈ I : f(i) = g(i)} ∈ U,

f ∈∗ g iff {i ∈ I : f(i) ∈ g(i)} ∈ U.

Let UltU(V ) be the class off all [f ], where f is a function on I, and consider

the model (UltU(V ),∈∗). The problem is that [f ] is a proper class but we can use

the axiom of foundation and reduce the class to a set. By the Theorem of  Los,

(UltU(V ),∈∗) is elementary equivalent to the universe (V,∈) and we can define

elementary embedding j : V → (UltU(V ),∈∗) this way: j(a) = [ca], where ca is a

constant function defined for every set a. Another problem is that (UltU(V ),∈∗)
may not be well-founded but at least the following fact holds.

Fact 2.20 If U is σ-complete ultrafilter, then (UltU(V ),∈∗) is well-founded.

So (UltU(V ),∈∗) is a model of ZFC which may not be transitive but since ∈∗ is

well-founded, set-like and extensional, we can use Mostowski’s Collapsing Theorem

(See [Jec03], Theorem 6.15, page 69.) to obtain a transitive model ZFC which is

isomorphic with (UltU(V ),∈∗).

Definition 2.21 We say that d is a diagonal function on κ if for every α < κ,

d(α) = α.

Lemma 2.22 Let U be a κ-complete normal ultrafilter over κ and let d be a diagonal

function on κ. Let j : V →M ∼= UltU(V ) be an elementary embedding derived from

U . Then:

(i) for every α < κ, j(α) = α,

(ii) j(κ) 6= κ,

(iii) κ = [d].

Proof: Ad (i). Assume for contradiction that α < κ is the least ordinal such that

α < j(α). Let [f ] = α. Then

[f ] = α < j(α) = [cα]⇔ {ξ < κ : f(ξ) < cα(ξ)} ∈ U ⇔ {ξ < κ : f(ξ) < α} ∈ U
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and so by κ-completness there is β < α such that {ξ < κ : f(ξ) = β} ∈ U . But then

α = [f ] = β is a contradiction.

Ad (ii). If U is κ-complete, then for every α < κ, α /∈ U . Thus we have α < d(β)

for almost all β and so j(α) = α < [d] for every α < κ. It follows that κ ≤ [d]. Since

α = d(α) < κ for all α < κ and so, by definition of j,[d] < j(κ). So we have

κ ≤ [d] < j(κ).

Ad (iii). Since we have proved that κ ≤ [d], it suffices to show that [d] ≤ κ. Let

[f ] < [d] be given. Hence

{ξ < κ : f(ξ) < d(ξ)} ∈ U ⇔ {ξ < κ : f(ξ) < ξ} ∈ U.

Since U is normal, there is β < κ such that the set {ξ < κ : f(ξ) = β} ∈ U . Thus

we have [f ] = β < κ, and so κ = [d]. �

2.3 Forcing

Forcing was invented by Paul Cohen. It was first used, in 1963, to prove independence

of the Continuum Hypothesis (see [Coh63]). The main idea of forcing is to extend a

transitive model of ZFC by adjoining a new set. The new set is approximated by a

forcing notion which is a partially ordered set in the ground model.

Definition 2.23 Let P be a set and let ≤P be a binary relation on P . We say that

≤P is a preorder if it is reflexive and transitive.

Definition 2.24 Let P be preordered by≤P . We say that E(P ) is a quotient version

of P if the domain E(P ) is the set of equivalence classes under p↔ q iff p ≤P q and

q ≤P p. The partial ordering ≤E(P ) on E(P ), we define [p] ≤E(P ) [q] iff p ≤P q.

Note that E(P ) is always a partial order.

Definition 2.25 Let P , Q be two preorders. We say that i : P → Q is a dense

embedding if:
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(i) ∀p, p′ ∈ P (p ≤P p′ → i(p) ≤Q i(p′)),
(ii) ∀p, p′ ∈ P (p⊥p′ ↔ i(p)⊥i(p′)),

(iii) i′′P is dense in Q.

In the Definition 2.25 and in the definition of forcing notion it is more common

to consider ordered sets. However, we frequently use preorders as sets of forcing

condition.

Definition 2.26 Let P , Q be two forcing notions. P and Q are forcing equivalent

if they have the same generic extensions.

Fact 2.27 Let i : P → Q be a dense embedding. Then:

(i) If G is P -generic, then H = {q ∈ Q : ∃p ∈ G(i(p) ≤Q q)} is Q-generic.

(ii) If H is Q-generic, then i−1′′H is P -generic.

(iii) In (i) and (ii), M [G] = M [H].

Proof: See [Kun80], Theorem 7.11, page 221.

Lemma 2.28 If P is preorder and E(P ) is a quotient version of P, then P and

E(P ) are forcing equivalent.

Proof: By Fact 2.27, it suffices to show that there is dense embedding i : P → E(P ).

Define i so that it assigns to p ∈ P an equivalence class [p]. We need to check the

following:

(i) ∀p, q ∈ P (p ≤P q → i(p) ≤E(P ) i(q)),

(ii) ∀p, q ∈ P (p ⊥ q ↔ i(p) ⊥ i(q)),

(iii) i′′P is dense in E(P ).

Ad (i). Let p ≤P q ∈ P . Then by definition of ≤E(P ), [p] ≤E(P ) [q] and so

i(p) ≤E(P ) i(q).

Ad (ii). (⇐) Let p and q be compatible, then there is r ∈ P such that r ≤P p

and r ≤P q and so [r] ≤E(P ) [p] and [r] ≤E(P ) [q].

(⇒) Let [p] and [q] be compatible, then there is [r] ∈ E(P ) such that [r] ≤E(P ) [p]

and [r] ≤E(P ) [q] and so by the definition ≤E(P ), r ≤P q and r ≤P p. Hence p and q

are compatible.
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Ad (iii). Let [p] be an element of E(P ), we want to show that there is [q] ∈ i′′P =

{[p] ∈ E(P ) : ∃r ∈ P (i(r) = [p])} such that [q] ≤E(P ) [p]. Since i is onto, [p] ∈ i′′P
and we can take [q] = [p]. �
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3 Silver’s Theorem

The original proof of Silver’s Theorem, published in [Sil75], used the forcing and

the ultrapower constructions. Two years later, it was reworked by Baumgartner and

Prikry ([BP76] and [BP77]) to the proof which uses only the knowledge of infinite

combinatorics. Both proofs can be found in [Jec03].

3.1 The Original Proof

In this proof, a generic elementary embedding was used for the first time. Let M be

a ground model and let κ be a regular uncountable cardinal. Let I be an ideal on κ

and let us consider generic extension of M given by the completion of the Boolean

algebra P (κ)/I. Let G be generic filter on P (κ)/I and let us consider in M [G] the

ultrapower UltG(M). Then we call the canonical embedding j : M → UltG(M)

generic elementary embedding.

Definition 3.1 Let M be a transitive model of ZFC and let κ be a cardinal in M .

We say that U is M-Ultrafilter on κ if:

(i) κ ∈ U and ∅ /∈ U ,

(ii) if X ∈ U and Y ∈ U , then X ∩ Y ∈ U ,

(iii) if X ∈ U and Y ∈M is such that X ⊆ Y , then Y ∈ U ,

(iv) for every X ⊆ κ such that X ∈M , either X or κ\X is in U .

We say that U is M -κ-complete if whenever α < κ and {Xξ : ξ < α} ∈ M is such

that Xξ ∈ U for all ξ < α, then
⋂
ξ<αXξ ∈ U .

We say that U is M -normal if whenever f ∈ M is a regressive function on X ∈ U ,

then f is constant on some Y ∈ U .

Definition 3.2 Let κ be a regular cardinal. Two functions, f and g, on κ are almost

disjoint if | {α : f(α) = g(α)} | < κ.

Theorem 3.3 (Silver) Let κ be a singular cardinal such that cf(κ) > ω. If 2α = α+

for all cardinals α < κ, then 2κ = κ+.
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Proof: To simplify notation we shall consider the special case when cf(κ) = ω1. The

general case is proved in a similar way. Let κ be a singular cardinal of cofinality ω1

and assume that 2α = α+ for all α < κ. We want to prove that 2κ = κ+. Let INS

be the ideal of nonstationary subsets of ω1. Let us consider a forcing notion (P,≤),

where P = {S ⊆ ω1 : S /∈ INS} and S ≤ S ′ iff S\S ′ ∈ INS.

Note that P (ω1)/INS = E(P ) for the notion of forcing (P,≤), where P (ω1)/INS

is ω1-complete boolean algebra.

Let G be a P -generic filter over M . Let us work in M [G]. The filter G is:

(i) M -Ultrafilter on ω1 extending the (Club(ω1))
M ,

(ii) M -ω1-complete M -Ultrafilter,

(iii) M -normal.

Ad (i). We first show that G is an M -Ultrafilter. It suffices to show that if X ∈M
and X ⊆ ω1, then

{Y ∈ P : Y ≤ X or Y ≤ ω1\X}

is dense. Let S be given, we want to show that S ∩ X or S ∩ ω1\X is stationary.

Assume for contradiction that S ∩X ∈ INS and S ∩ ω1\X ∈ INS. Then (S ∩X) ∪
(S ∩ ω1\X) ∈ INS and so S ∈ INS. This is a contradiction.

Now we show that G extends (Club(ω1))
M . Let C ∈ (Club(ω1))

M , then the set

{S ∈ P : S ⊆ C} is dense. Let S ′ ∈ P be given. Then S ′ ∩ C ∈ P and clearly

S ′ ∩ C ≤ S.

Ad (ii). If {Xn : n ∈ ω} ∈M is a partition of ω1, then

{Y ∈ P : ∃n ∈ ω(Y ≤ Xn)} is dense in P . Let S ∈ P be given. Assume for contra-

diction that for each n, it holds that Xn ∩ S ∈ INS. Then by ω1-completeness of

INS,
⋃
n<ω(S ∩Xn) ∈ INS. Hence S ∈ INS, which is a contradiction.

Ad (iii). If X ∈ G and if f ∈M is a regressive function on X, then

{Y ≤ X : f is constant on Y } is dense below X by Fodor’s Lemma. Since f is con-

stant on some Y ∈ G, G is normal.

Let us consider in M [G] the ultrapower N = UltG(M). Let j : M → N be the
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canonical elementary embedding.

Let 〈κα : α < ω1〉 be in M an increasing continuous sequence of cardinals con-

verging to κ. Let e be the cardinal number in N represented by function e(α) = κα.

For each X ⊆ κ in M , let fX be the function on ωM1 defined by fX(α) = X ∩κα.

Each fX represents in N a subset of e and if X 6= Y , then there is β < ω1 such

that fX(α) 6= fY (α) for all α > β. It follows that fX and fY represent in N distinct

subsets of e and hence M [G] |= |PM(κ)| ≤ |PN(e)|. Since M |= 2κα = κ+α for all α,{
α ∈ ω1 : 2κα = κ+α

}
∈ G⇔

{
α ∈ ω1 : 2e(α) = e(α)+

}
∈ G⇔ N |= 2e = e+.

The ordinal numbers of the model N make a linearly ordered class, which is

not necessarily well-founded, but since N |= 2e = e+ and N satisfies ZFC, there

is F in M [G] which is a bijection between PN(e) = {x ∈ N : N |= x ⊆ e} and{
x ∈ N : x <N e+

}
.

And so

|PM(κ)| ≤M [G] |PN(e)| =M [G] |
{
x ∈ N : x <N e+

}
|. (3.1)

Next, we observe that e = sup
{
j(κγ) : γ < ωM1

}
. By definition of supremum, it

suffices to show two things:

(i) That e is the upper bound of
{
j(κγ) : γ < ωM1

}
.

(ii) That e is the least upper bound.

Ad (i). We want to show that for all j(κα), j(κα) <N e. Let j(κα) be given. Let

cκα be a function such that cκα(β) = κα for all β, then by definition of j:

j(κα) = [cκα ]

and so for all β > α, it holds that e(β) = κβ > κα = cκα(β). It follows that

{α ∈ ω1 : cκα(α) < e(α)} ∈ G, i.e. j(κα) < e.

Ad (ii). Let [f ] < e, we want to show that [f ] < j(κγ) for some γ.

[f ] < e⇔ {α < ω1 : f(α) < κα} ∈ G

Since the set of all limit ordinals α less than ω1 is closed unbounded set in ω1, there

is a set of limit ordinals X ∈ G such that f(α) < κα for all α ∈ X. Hence we can
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choose g : ω1 → ω1 such that f(α) < κg(α) where g(α) < α and by normality of G,

there is a set Y ⊆ X in G such that g is constant on Y , i.e. there is γ such that:

{α < ω1 : f(α) < κγ} ∈ G⇔ [f ] < j(κγ).

Since for each α < ωM1 , | {x ∈ N : x ∈N j(κα)} | ≤ |(κℵ1α )M | < κ,

M [G] |= |
{
x ∈ N : x <N e

}
| ≤ κ.

If x <N e+, then there is in N a one-to-one mapping of x into e, and therefore

|
{
y ∈ N : y <N x

}
| ≤ |

{
y ∈ N : y <N e

}
| ≤ κ. Thus

{
x ∈ N : x <N e+

}
is a li-

nearly ordered set whose each initial segment has size at most κ and so

|
{
x ∈ N : x <N e+

}
| ≤ κ+.

By (3.1) we have

M [G] |= |PM(κ)| ≤ κ+.

We have proved that |PM(κ)|M [G] ≤ (κ+)M [G]. But since |P | = 2ℵ1 < κ (in M), all

cardinals greater than κ and especially κ+ remain cardinals in M [G]. This is because

P satisfies the 2ℵ1-chain condition. Hence M [G] |= |PM(κ)|M ≤ (κ+)M and since M

is model of ZFC and M ⊆M [G], we have M |= 2κ = κ+. �

Corollary 3.4 Let κ be a singular cardinal such that cf(κ) > ω. If the set

A = {α < κ : 2α = α+} is stationary, then 2κ = κ+.

Proof: By Lemma 2.13, it suffices (in proof of Silver’s Theorem) to guarantee that

for the set {α < cf(κ) : e(α) ∈ A} there is some generic G such that

{α < cf(κ) : e(α) ∈ A} is in G. But this follows from Rasiowa-Sikorski’s Lemma,

which says that if M is a transitive countable model of ZF and P ∈M is a forcing

notion, then there exist a generic filter G over M below every p ∈ P . �

3.2 The Combinatorial Proof

This proof originated from the first proof by replacing the forcing technique by a

purely combinatorial argument.
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Lemma 3.5 Let 〈κα : α < ω1〉 be an increasing continuous sequence of cardinals

converging to κ. Assume that κℵ1α < κ for all α < ω1. Let Aα be some set and let F

be an almost disjoint family of functions

F ⊆
∏
α<ω1

Aα

such that the set

{α < ω1 : |Aα| ≤ κα}

is stationary. Then |F | ≤ κ.

Proof: We can assume that each Aα is a set of ordinals and that Aα ⊆ κα for all α

in some stationary subset of ℵ1. Let

S ′ = {α < ω1 : α is limit ordinal and Aα ⊆ κα} .

Let f ∈ F and α ∈ S ′. By definition of S ′, Aα ⊆ κα and so f(α) < κα. Since α is

limit, there is β < α such that f(α) < κβ. Now we define a function g, so that it

assigns to α ∈ S ′ this β. The function g is regressive on S ′ and by Fodor’s Lemma

there is a stationary set S = {α ∈ S ′ : g(α) = γ}. Hence f(α) < κγ for all α ∈ S.

So we can assign to each f a pair (S, f � S) where S ⊆ S ′ is a stationary set and

f � S is bounded function. For any S, if f � S = g � S, then f = g since any two

distinct functions in F are almost disjoint. So we have one to one correspondence

between f and (S, f � S).

For a given S, the number of bounded function on S is at most∑
α<ω1

κ|S|α = supα<ω1
κℵ1α = κ.

Since |P (ω1)| = 2ℵ1 < κ, the number of pairs (S, f � S) is at most κ and so |F | ≤ κ.

�

Lemma 3.6 Let 〈κα : α < ω1〉 be an increasing continuous sequence of cardinals

converging to κ. Assume that κℵ1α < κ for all α < ω1. Let Aα be some set and let H

be an almost disjoint family of functions

H ⊆
∏
α<ω1

Aα
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such that the set {
α < ω1 : |Aα| ≤ κ+α

}
is stationary. Then |H| ≤ κ+.

Proof: Let U be an ultrafilter on ω1 such that it extends the closed unbounded filter

on ω1.

We may assume that each Aα is subset of κα+1. We can define

f < g iff {α < ω1 : f(α) < g(α)} ∈ U.

We claim that the relation f < g is a linear ordering of H. We need to check that

the relation is:

(i) antireflexive and transitive,

(ii) linear.

Ad (i). For antireflexivity, the set {α ∈ ω1 : f(α) ≮ f(α)} is in U . For transitivity,

let f < g and g < h. This is equivalent to A = {α ∈ ω1 : f(α) < g(α)} ∈ U and

B = {α ∈ ω1 : g(α) < h(α)} ∈ U and since A ∩B ∈ U , we have f < h.

Ad (ii). Let f, g ∈ H. If f, g are distinct, then since f and g are almost disjoint,

{α ∈ ω1 : f(α) = g(α)} /∈ U . If {α ∈ ω1 : f(α) < g(α)} /∈ U , then since U is ultra-

filter, the set ω1\ {α ∈ ω1 : f(α) = g(α)} ∪ {α ∈ ω1 : f(α) < g(α)} ∈ U.

Let Hf = {g ∈ H : ∃T (T is stationary and g(α) < f(α) for all α ∈ T )}. The Hf

satisfies the assumption of Lemma 3.5, and so |Hf | ≤ κ. If g < f , then g ∈ Hf and

so | {g ∈ H : g < f} | ≤ κ. It follows that |H| ≤ κ+. �

Proof: Proof of Silver’s Theorem: By Lemma 2.13, the assumption of the Theorem

is equivalent to {α < ω1 : 2κα = κ+α} = S is stationary in ω1. It follows that for all

α < ω1, κ
ω1
α < κ. For every α < κ, we denote ϕα the bijection between P (κα) and

κ+α . To every subset X ⊆ κ, we assign a function fX ∈
∏

α<ω1
κ+α such that

fX(α) =

{
ϕα(X ∩ κα) if α ∈ S,
0 otherwise.
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If X 6= Y , then there is β < ω1 such that X ∩ κα 6= Y ∩ κα for all α > β and

since ϕα is one to one function, it follows that fX and fY are almost disjoint. So we

have a 1-1 function from P (κ) to the system

{fX : X ⊆ κ} ⊆
∏
α<ω1

κ+α ,

which satisfies the assumption of Lemma 3.6 and so |P (κ)| = 2κ = κ+. �

Note the similarity between the original proof and the combinatorial proof of

Silver’s Theorem. Elements of N are equivalence classes of functions determined by

ultrafilter and so if [f ], [g] ∈ N and [f ] 6= [g], then f and g are almost disjoint. So we

can understand
{
x ∈ N : x <N e

}
as an almost disjoint family of function and note

that it satisfies the assumptions of Lemma 3.5. | {x ∈ N : x < e+} | ≤ κ+ follows

from |
{
x ∈ N : x <N e

}
| ≤ κ and this proof is analogous to the proof of Lemma

3.6 from Lemma 3.5. Both proofs are completed by the observation that there is

1-1 function from P (κ) to the almost disjoint family of functions. In the first case{
x ∈ N : x <N e+

}
, in the second case H.
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4 The Singular Cardinal Hypothesis

The Singular Cardinal Hypothesis (SCH) says that if κ is singular, then κcf(κ) =

max(2cf(κ), κ+). Hence if κ is strong limit singular cardinal, then 2κ = κ+. In this

section we show that there is model of ZFC in which the Singular Cardinal Hy-

pothesis fails. First we construct a generic extension in which κ is measurable and

2κ = κ++. Then we extend the model further to make κ a singular cardinal. We

show that the new model satisfies 2κ ≥ κ++ and κ is a strong limit cardinal.

4.1 Violating GCH at a Measurable Cardinal

Now we construct a model such that there is measurable cardinal κ and 2κ = κ++.

The consistency strength of this is more than measurability. In Theorem 4.11 we

assume κ++-supercompact cardinal, but the argument we have given is not quite

optimal. Work of Gitik ([Git89] and [Git91]) shows that the consistency strength is

exactly a measurable cardinal κ with o(κ) = κ++.

Definition 4.1 An uncountable cardinal κ is measurable if there is a κ-complete

ultrafilter U on κ.

Definition 4.2 Let κ be a measurable cardinal. If U0, U1 are measures on κ, then

U0 < U1 iff U0 ∈ Ult(V, U1).

The relation U0 < U1 is called the Mitchell order.

The Mitchell order is transitive and irreflexive. Moreover, it is well-founded.

Definition 4.3 Let U be a normal measure on κ. Let o(U), the order of U , denote

the rank of U in <. Let o(κ) denote the height of <.

Definition 4.4 A cardinal κ is λ-supercompact iff there is an elementary embedding

j : V →M such that crit(j)=κ, λ < j(κ) and λM ⊆M .

Lemma 4.5 Let j : M → N be an elementary embedding between transitive models

of ZFC. Let P be a notion of forcing, let G be P -generic over M and let H be

j(P)-generic over N . Let j′′G ⊆ H. Then there exists an elementary embedding

j∗ : M [G]→ N [H] such that j = j∗ �M and j∗(G) = H.
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Proof: Let j′′G ⊆ H. We can define j∗ : M [G]→ N [H] as follows:

j∗(iG(τ̇)) = iH(j(τ̇))

We need to check that j∗ is function and elementary. Let iG(σ̇) = iG(τ̇) and fix

p ∈ G such that p M
P σ̇ = τ̇ . By elementarity of j, j(p) N

j(P ) j(σ̇) = j(τ̇) and since

j(p) ∈ H, we have iH(j(σ̇)) = iH(j(τ̇)). A similar proof shows that j∗ is elementary.

Let M [G] |= ϕ(a1...an) and let ȧ1...ȧn be P -names for a1...an. So there is p ∈ G such

that p M
P ϕ(ȧ1...ȧn). By elementarity of j, j(p) N

j(P ) ϕ(j(ȧ1)...j(ȧn)) and since

j(p) ∈ H, we have N [H] |= ϕ(j(a1)...j(an)).

It is easy to check that j = j∗ � M . If x ∈ M and x̌ is the P -name for x, then

j(x̌) is j(P )-name for j(x) and so

j∗(x) = j∗(iG(x̌)) = iH(j(x̌)) = j(x).

Lastly, we need to check that j∗(G) = H. If Ġ is P -name for the P -generic filter,

then j(Ġ) is j(P )-name for the j(P )-generic filter, and so j∗(G) = H. �

Definition 4.6 We denote by Add(κ, κ++) the Cohen forcing. Add(κ, κ++) is the

collection of all functions p : dom(p)→ 2, where dom(p)⊆ κ×κ++ and |dom(p)| < κ.

The ordering is by reverse inclusion: p ≤ q ↔ p ⊇ q, the greatest element is ∅.

Definition 4.7 A notion of forcing (P,<) is λ-directed closed if whenever D ⊆ P

is such that |D| < λ and for any d1, d2 ∈ D there is some e ∈ D with e ≤ d1 and

e ≤ d2, then there exists a p ∈ P such that p ≤ d for all d ∈ D.

Definition 4.8 Let α ≥ 1 and let Pα be an iterated forcing of length α. Pα is an

iteration with Easton support if for every limit ordinal γ ≤ α, Pγ is a direct limit if

γ is regular, and inverse limit otherwise.

For more details about iterated forcing see [Kun80] or [Bau83].

Let Pα be an iteration of length α and let β < α, then forcing with Pα is the

same as forcing with Pβ followed by an (α-β)-iteration in V [Gβ]. We denote this

forcing Rβ,α. Now we present some facts about Rβ,α. For definition of Rβ,α and the

proof of the following facts see [Bau83], Section 5.
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Fact 4.9 Pα is isomorphic to a dense subset of Pβ ∗ Ṙβ,α.

Fact 4.10 β Rβ,α is isomorphic to an (α-β)-iteration.

The following proof is based on [Jec03] and [Bau83].

Theorem 4.11 (Silver) If there exists a κ++-supercompact κ, then there is a generic

extension in which κ is a measurable cardinal and 2κ = κ++.

Proof: Let A be the set of inaccessible cardinals less then κ. Let P = Pκ+1 be the

iteration of length κ + 1 with Easton support in which Q̇α names Add(α, α++)V Pα

if α ∈ A ∪ {κ} and names the trivial forcing otherwise. Let Gκ be Pκ-generic over

V , let gκ be Qκ-generic over V [Gκ] and let G = Gκ ∗ gκ. We shall prove that κ is a

measurable cardinal in V [G] and that V [G] |= 2κ = κ++. We need several lemmas:

Fact 4.12 Pκ is κ-c.c. with size κ.

Fact 4.13 P is κ+-c.c. with size κ++.

Since Pκ is κ-c.c., κ is a regular cardinal in V [Gκ]. In V [Gκ], Qκ is a notion of

forcing that adjoins κ++ subsets of κ and preserves all cardinals and so

V [G] |= 2κ = κ++.

Lemma 4.14 Let P be a notion of forcing in V. If κ++
M ∩ V ⊆ M , P ∈ M , P is

κ+++-c.c. and G is P -generic, then κ++
M [G] ∩ V [G] ⊆M [G].

Proof: It suffices to show that if f ∈ V [G] is a function from κ++ into ordinals,

then f ∈ M [G]. Let ḟ ∈ V be the name for f and let p0 ∈ G be the condition that

forces ḟ is function from κ++ into ordinals. We need to find name σ ∈M such that

V [G] |= f = iG(σ). By the κ+++-c.c., there is a set D in V such that |D| ≤ κ++ and

p0  Rng(ḟ) ⊆ Ď. For each α ≤ κ++ and β ∈ D consider the set

Xα,β =
{
p ≤ p0 : p 

〈
α̌, β̌

〉
∈ ḟ
}
.

Let Aα,β be a maximal incompatible subset of Xα,β. This is an application of Zorn’s

Lemma in V and so Aα,β ∈ V . Since |Aα,β| ≤ κ++, Aα,β ∈M .
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Let σ =
⋃{{〈

α̌, β̌
〉}
× Aα,β : α ≤ κ++ and β ∈ D

}
. Note that σ ∈M and 〈α, β〉 ∈

iG(σ)↔ ∃a ∈ Aα,β a ∈ G.

We will argue that V [G] |= f = iG(σ). Let V [G] |= 〈α, β〉 ∈ f . There is q ∈ G
such that q 

〈
α̌, β̌

〉
∈ ḟ . Since G is a filter, there is r ≤ p0, q and r 

〈
α̌, β̌

〉
∈ ḟ .

Since Aα,β is a maximal antichain below r, G ∩ Aα,β 6= ∅ and so 〈α, β〉 ∈ iG(σ).

Conversely, let V [G] |= 〈α, β〉 ∈ iG(σ). By definition of σ, there is some a ∈
Aα,β ∩G and a 

〈
α̌, β̌

〉
∈ ḟ . Since a ∈ G, V [G] |= 〈α, β〉 ∈ f .

Since σ ∈M , we have iG(σ) ∈M [G] and so f ∈M [G]. �

Since |Pκ| = κ and κ is κ++-supercompact, Pκ ∈ M and so we can consider the

model M [Gκ].

Corollary 4.15 κ++
M [Gκ] ∩ V [Gκ] ⊆M [Gκ]

Proof: It follows from Fact 4.12 and Lemma 4.14. �

Since |P | = κ++ and κ is κ++-supercompact, P ∈M and so we can consider the

model M [G].

Corollary 4.16 κ++
M [G] ∩ V [G] ⊆M [G]

Proof: It follows from Fact 4.13 and Lemma 4.14. �

Lemma 4.17 j(P )κ+1 = Pκ+1.

Proof: If α < κ then Pα ∈ Vκ and so j(P )α = j(P )j(α) = j(Pα) = Pα. κ is inaccessi-

ble in M and so a direct limit is taken at stage κ in the construction of j(P ). The

direct limit construction is absolute so j(P )κ = Pκ.

Since each condition in Qκ in V [Gκ] is a function p : dom(p)→ 2, where dom(p)⊆
κ × κ++ and |dom(p)|< κ and so, by Corollary 4.15, Qκ is the same in V [Gκ] and

M [Gκ]. Hence j(P )κ+1 = Pκ+1.

�

Now consider j(P ). In M , j(P ) is an iteration of length j(κ + 1) = j(κ) + 1.

By Lemma 4.17, we have j(P )κ+1 = Pκ+1. The first nontrivial step above κ + 1 in

the iteration occurs at the least inaccessible cardinal in M above κ, thus the first
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nontrivial direct limit is taken far above κ++. By the Fact 4.9, j(P ) is isomorphic

to the two-step iteration in M :

j(P )κ+1 ∗ Ṙκ+1,j(κ+1),

where Rκ+1,j(κ+1) is an iteration of length j(κ+ 1) inside MJ(P )κ+1 .

By the Fact 4.10 is definable in M [G], hence in V [G].

Fact 4.18 Let Rκ+1,j(κ+1) = iG(Ṙκ+1,j(κ+1)). Then

V [G] |= R is κ+++-directed closed.

Let p ∈ P . Then j(p) is represented by a pair (s, q̇), where s ∈ P and q̇ ∈M [Gκ]

is in Ṙκ+1,j(κ+1). By the definition of P , p = 〈pξ : ξ < κ+ 1〉 and there is ξ0 < κ

such that pξ = 1 for all ξ, ξ0 ≤ ξ < κ. Thus j(p) =
〈
p′ξ : ξ < j(κ) + 1

〉
and p′ξ = 1

for all ξ, ξ0 ≤ ξ < j(κ). In particular p′κ = 1 and since p′ξ = pξ for all ξ < κ

and s = j(p) � (κ + 1), we have s = (p � κ)_1. This implies that if p ∈ G and

j(p) = (s, q̇), then s ∈ G. Let

D =
{
q ∈ Rκ+1,j(κ+1) : ∃p ∈ G(j(p) = (s, q̇) and q = iG(q̇))

}
.

Lemma 4.19 D is directed, i.e. if q1, q2 ∈ D then there is q ∈ D such that q ≤ q1

and q ≤ q2.

Proof: Suppose p1, p2 ∈ G and j(p1) = (s1, q̇1) and j(p2) = (s2, q̇2). Since G is filter,

there is p ∈ G such that p ≤ p1 and p ≤ p2. Let j(p) = (s, q̇). Since p ∈ P , we

have (p, q̇) ∈ j(P ). Since p � κ = j(p) � κ and j(p)(κ) = 1, we have (p, q̇) ≤ (s, q̇).

But by elementarity of j, j(p) ≤ j(p1) and j(p) ≤ j(p2) and so (p, q̇) ≤ (p, q̇1) and

(p, q̇) ≤ (p, q̇2). And by definition of Rκ+1,j(κ+1), this means that q ≤ q1 and q ≤ q2.

�

It follows from Fact 4.18 that D has a lower bound q0 ∈ Rκ+1,j(κ+1). Let H

be a V [G]-generic filter on Rκ+1,j(κ+1) such that q0 ∈ H (we call q0 a master

condition). Since H is also M [G]-generic and j(P ) = P ∗ Rκ+1,j(κ+1), there is
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an M -generic filter G′ on j(P ) such that M [G′] = M [G][H]. Formally we define

G′ = {(s, q̇) : s ∈ G and iG(q̇) ∈ H}.

Now we work in V [G][H] and extend the elementary embedding j : V → M to

an embedding j∗ : V [G]→M [G′]. If p ∈ G and j(p) = (s, q̇), then p ≤ j(p) � κ+ 1,

and q ∈ H since q0 ∈ H and q0 ≤ q. Therefore j(p) ∈ G′ and this means that

j′′G ⊆ G′. And so we can use Lemma 4.5 and extend j.

Thus we have in V [G][H] an elementary embedding j∗ : V [G] → M [G′] and we

can define V [G]-ultrafilter on κ:

U = {X ⊆ κ : κ ∈ j∗(X)} .

U is nonprincipal and κ-complete. It suffices to show that U is in V [G].

By Fact 4.18, every subset of κ in V [G][H] is already in V [G] and since V [G] |=
2κ = κ++, V [G][H] |= |U | ≤ κ++ and by Fact 4.18, U ∈ V [G]. Therefore V [G] |=
2κ = κ++ and κ is measurable. �

Remark 4.20 In this proof we showed that κ is a measurable cardinal in generic

extension V [G] and for the proof of failure of SCH, it suffices. But it can be shown

that κ is κ++-supercompact in V [G]. For the proof, see [Cum10].

4.2 Prikry Forcing

Now we construct a generic extension in which all cardinals are preserved, but the

cofinality of former measurable cardinal is countable. The folowing definition of

Prikry Forcing is taken from [Git10].

Definition 4.21 Let f : [κ]<ω → γ for γ < κ be a function. The set A ⊆ κ is

homogeneous for f if for every n < ω and every s, t ∈ [A]n, f(s) = f(t).

Definition 4.22 An uncountable cardinal κ is Ramsey iff κ −→ (κ)<ω2 .

The notation κ −→ (α)<ωµ means that for each map f : [κ]<ω → µ there is a set

A ⊆ κ such that the order-type of A is α and A is homogeneous for f .

Let κ be measurable cardinal and let U be a normal ultrafilter on κ.
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Definition 4.23 We denote by PU(κ) the following forcing notion. A forcing con-

dition is a pair (p,A) where

(i) p is a finite subset of κ,

(ii) A ∈ U ,

(iii) min(A) > max(p).

Let (p,A) and (q, B) be conditions. We say that (p,A) is stronger than (q, B)

and denote this by (p,A) ≤ (q, B) iff

(i) p is an end extension of q, i.e. p ∩ (max(q) + 1) = q

(ii) A ⊆ B,

(iii) p\q ⊆ B.

The forcing satisfying the previous definition is called Prikry forcing.

Lemma 4.24 Let (P,≤) be the forcing PU(κ) and let G be a generic filter. Then

the set
⋃
{p : ∃A ∈ U(p,A) ∈ G} is an ω-sequence cofinal in κ.

Proof: It suffices to show that for every α < κ, the set

Dα = {(p,A) ∈ P : max(p) > α}

is dense in (P,≤). Let (s, C) ∈ PU(κ). If max(s) > α, then (s, C) ∈ Dα and the

proof is finished.

If max(s) ≤ α then either min(C) > α + 1 or min(C) ≤ α + 1. In the first case

consider the pair (s_min(C), {β : β > min(C)} ∩ C). In the second case consider

the pair (s_(α + 1), {β : β > α + 1} ∩ C). �

Lemma 4.25 PU(κ) satisfies the κ+-c.c.

Proof: Note that if (p,A), (p,B) ∈ PU(κ), then (p,A ∩ B) is a condition such that

(p,A∩B) ≤ (p,B) and (p,A∩B) ≤ (p,B). It follows that (p,A), (p,B) are compati-

ble. Thus in the antichain A there are just conditions with different first coordinate

and so |A| ≤ κ. �

Definition 4.26 Let (P,≤) = PU(κ) and let (p,A), (q, B) ∈ P be forcing conditi-

ons. We say that (p,A) is a direct (or Prikry) extension of (q, B) and denote this

by (p,A) ≤∗ (q, B) iff
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(i) p = q,

(ii) A ⊆ B.

This order is important for showing that no new bounded subsets are added to

κ after forcing with PU(κ).

Lemma 4.27 ≤∗⊆≤.

Proof: This is obvious from the definitions. If p = q then p is end extension of q and

p\q = ∅. �

Lemma 4.28 PU(κ) with the ordered ≤∗ is κ-closed.

Proof: Let 〈(p,Aα) : α < λ〉 be a ≤∗-decreasing sequence of length λ for some λ < κ.

Since U is κ-complete (p,
⋂
α<κAα) is condition in PU(κ) and it is stronger than each

(p,Aα) in ≤∗. �

Theorem 4.29 (Rowbottom) Let κ be a measurable cardinal and let U be a normal

ultrafilter over κ. Then if f : [κ]<ω → γ where γ < κ, then there is a set H ∈ U that

is homogeneous for f .

Proof: Let U be a normal ultrafilter over κ and let f : [κ]<ω → γ where γ < κ. If

for each n ∈ ω there are sets Hn ∈ U such that f is constant on [Hn]n, then since U

is κ-complete,
⋂
n∈ωHn ∈ U would be as required.

By induction on n, we prove that for any g : [κ]n → γ, g is constant on [Hn]n for

some Hn ∈ U .

If n = 1, it follows from the κ-completeness of U . For contradiction assume that

for each α < γ,
⋃
g−1′′α /∈ U . But since U is ultrafilter,

⋃
g−1′′α ∈ I, where I is

dual ideal to U . And since U is κ-complete, κ ∈ I and this is a contradiction.

So assume that the assertion holds for n and we prove that it holds for n + 1.

Let g : [κ]n+1 → γ where γ < κ. For each α < κ define gα : [κ\ {α}]n → γ by

gα(s) = g({α} ∪ s). By the induction hypothesis, there exists for each α < κ a

set Xα ∈ U such that gα is constant on [Xα]n, i.e. there is δα < γ such that for

each s ∈ [Xα]n, gα(s) = δα. Since U is normal, the diagonal intersection X ={
α < κ : α ∈

⋂
β<αXβ

}
is in U and if β < α1 < α2 < ... < αn are in X, then

31



{α1, ..., αn} ∈ [Xβ]n and so g({β, α1, ..., αn} = gβ({α1, ..., αn}) = δβ. But since the

number of the possible values is less than γ, by the κ-completeness of U , there exist

δ < γ and H ⊆ X in U such that δβ = δ for all β ∈ H. It follows that g(s) = δ for

all s ∈ [H]n+1. �

Remark 4.30 Note that Theorem 4.29 says that each measurable cardinal is Ram-

sey. Rowbottom also proved that the least Ramsey cardinal is not measurable. For

more details see [Kan03].

Lemma 4.31 (The Prikry condition) Let (P,≤) be a Prikry forcing. Let (q, B) ∈ P
and ϕ be a statement of the forcing language of (P,≤). Then there is a (p,A) ≤∗

(q, B) which decides ϕ, i.e. (p,A)  ϕ or (p,A)  ¬ϕ.

Proof: We define a partition h : [B]<ω → 2 as follows:

h(s) =

{
1 if there is a C such that (q ∪ s, C)  ϕ,

0 otherwise.

Since U is normal ultrafilter, by Rowbottom’s Theorem, there is an A ⊆ B

such that A ∈ U an A is homogeneous for h. It follows that (q, A) decides ϕ.

Otherwise, there would be a (q ∪ s0, B0) ≤ (q, A) and (q ∪ s1, B1) ≤ (q, A) such that

(q ∪ s0, B0)  ϕ and (q ∪ s1, B1)  ¬ϕ. We can assume that |s0| = |s1| but then

h(s0) = 1 and h(s1) = 0, which contradicts the homogenity of A. �

Lemma 4.32 PU(κ) does not add new bounded subsets of κ.

Proof: Let p be a condition, ȧ be a name, λ < κ and

p  ȧ ⊆ λ̌.

For every α < λ denote by ϕα the statement “α̌ ∈ ȧ”. We define by recursion a

≤∗-decreasing sequence of conditions 〈pα : α < λ〉 such that pα||ϕα (i.e. pα  ϕα or

pα  ¬ϕα) for each α < λ. By Lemma 4.31, there is p0 ≤∗ p such that p0 decides ϕ0.

Suppose that 〈pβ : β < α〉 is defined. We define pα. First, by Lemma 4.28, there is p′α

such that p′α ≤∗ pβ for all β < α. Then, by Lemma 4.31, choose a direct extension pα
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of p′α deciding ϕα. So we have defined 〈pα : α < λ〉. Now we use Lemma 4.28 again.

Let p∗ be direct lower bound of 〈pα : α < λ〉. Then p∗ ≤ p and p∗  ȧ = b̌, where

b = {α < λ : p∗  α ∈ ȧ}. �

Theorem 4.33 Let κ be a measurable cardinal. There is a generic extension in

which cf(κ) = ω and all the cardinals are preserved.

Proof: Let G be a generic filter on PU(κ), then by Lemma 4.24, V [G] |= cf(κ) = ω

and since PU(κ) is κ+-c.c. and ≤∗ is κ-closed, all the cardinals are preserved. �

Corollary 4.34 It is consistent, relative to the existence of a κ++-supercompact

cardinal, that there is a strong limit singular cardinal κ such that 2κ ≥ κ++.

Proof: Suppose that there is κ++-supercompact cardinal. By Theorem 4.11, there is

a model in which κ is a measurable and 2κ = κ++, and by Theorem 4.33, there is a

generic extension in which κ is a strong limit and 2κ ≥ κ++. �
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5 Conclusion

In this bachelor thesis we showed the basic properties of the continuum function on

singular cardinals.

In the part concering Silver’s Theorem, we showed and compared two different

proofs of this Theorem. Original Silver’s proof and purely combinatorial proof by

Baumgartner and Prikry. We showed that these proofs have a similar structure but

each uses different technique.

In the next section we focused on Singular Cardinal Hypothesis. We found a

model such that there is a measurable cardinal κ and 2κ = κ++. For this we used the

iteration of Cohen forcing with Easton support, with the assumption of an existence

of κ++-supercompact cardinal. To show the failure of the SCH, it was enough to

define Prikry forcing, which adds new cofinal ω-sesequence to a measurable cardinal

κ, and it preserves cardinals.
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