CHARLES UNIVERSITY

Faculty of Science
Department of Organic and Nuclear Chemistry
Organic chemistry

Diastereoselektivní syntéza helikálně chirálních látek pro enantioselektivní katalýzu

Diastereoselective synthesis of helically chiral compounds for enantioselective catalysis

Mgr. Angelina Andronova

Ph.D. Thesis

Supervisor: RNDr. Irena G. Stará, CSc.

Institute of Organic Chemistry and Biochemistry
Academy of Sciences of the Czech Republic

Prohlášení:

Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část nebyla předložena k získání jiného nebo stejného akademického titulu.

V Praze dne 28.3.2012
Angelina Andronova

ACKNOWLEDGEMENT

I am deeply grateful to my supervisors Dr. Irena G. Stará and Dr. Ivo Starý for their patience, support and inspiration throughout my work. I would like to thank my colleagues in the lab, especially Dr. Jiří Rybáček and Bc. Jiří Klívar, for their support, collaboration and friendly atmosphere. I am also grateful to Dr. Nathan C. Clemence and Dr. Zuzana Krausová for their initial experiments with dihydrooxepine-type compounds.

I would like to thank Dr. David Šaman and Dr. Radek Pohl for measuring NMR spectra, Dr. Pavel Fiedler for measuring IR spectra, Dr. Lucie Bernárová for measuring CD spectra, Eva Mikolášová, Květa Kertisová and Anna Březinová for measuring mass spectra, Ing. Lucie Holasová for measuring optical rotations. I would like to thank Dr. Lubomír Pospíšil for electrochemical studies and Ing. Václav Dekoj for measuring UV-vis absorption spectrum of thia[9]helicene. My special thanks belong to Dr. Jana Vacek Chocholoušová and Dr. Jaroslav Vacek for teaching me the basics of DFT calculations. I am also grateful to Dr. Ivana Císařová and Dr. Blanka Klepetářová for performing single-crystal X-ray diffraction analyses.

Last but not least I am grateful to Prof. Hisashi Yamamoto (University of Chicago, USA) and Prof. Patrick C. Guiry (University College Dublin, Ireland) for providing chiral ligands, which were tested in the enantioselective cyclotrimerisation reactions. I would like to thank Prof. Valentine G. Nenajdenko (Moscow State University, Russia) for providing the starting compounds for the synthesis of thia[9]helicene.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENT 3
TABLE OF CONTENTS 4
ABBREVIATIONS 5
1 INTRODUCTION 7
1.1 Helicenes and helicene-like molecules 8
1.2 Synthesis of helicenes 10
1.2.1 Synthesis of racemic helicenes 10
1.2.2 Asymmetric synthesis of helicenes 17
1.3 Applications of helicenes in asymmetric catalysis 22
2 GOALS 25
3 RESUTS AND DISCUSSION 29
3.1 Diastereoselective synthesis of helicene-like compounds 30
3.1.1 Oxepine-type helicene-like compounds 30
3.1.1.1 Synthesis of phosphines 31
3.1.1.2 Synthesis of phosphites 54
3.1.1.3 Influence of triyne substituents on [2+2+2] cyclotrimerisation 58
3.1.2 Pyran-type helicene-like compounds 62
3.1.3 Helicity assignment of helicene-like compounds 70
3.2 Enantioselective catalysis in the synthesis of helicenes 80
3.3 Synthesis of thia[9]helicene 85
4 CONCLUSION 89
5 EXPERIMENTAL SECTION 92
APPENDIX A: Single-crystal X-ray diffraction 225
APPENDIX B: Quantum mechanical calculations 226
REFERENCES AND NOTES 234

ABBREVIATIONS AND SIGNS

Ac	acetyl
AIBN	azobisisobutyronitrile
Ar	aryl
BDMIM	1-butyl-2,3-dimethylimidazolium
Bu	butyl
cat.	catalytic amount
CD	circular dichroism
cod	1,5-cyclooctadiene
Cp	cyclopentadienyl
m-CPBA	meta-chloroperoxybenzoic acid
Cy	cyclohexyl
dba	dibenzylideneacetone
DCE	1,2-dichloroethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
de	diastereomeric excess
DFT	density functional theory
DIAD	diisopropyl azodicarboxylate
DIPA	diisopropylamine
DIPEA	N, N-diisopropylethylamine
DMAP	4-(dimethylamino)pyridine
DMF	N, N-dimethylformamide
DMSO	dimethyl sulfoxide
$d r$	diastereomeric ratio
ECD	electronic circular dichroism
ee	enantiomeric excess
equiv.	equivalent
Et	ethyl

fum	dimethyl fumarate
hv	irradiation by a halogen lamp
HMPA	hexamethylphosphoramide
HPLC	high-performance liquid chromatography
HR	high resolution
$i-\mathrm{Pr}$	isopropyl
IR	infrared spectroscopy
IUPAC	International Union of Pure and Applied Chemistry
LDA	lithium diisopropylamide
LiHMDS	lithium bis(trimethylsilyl)amide
Me	methyl
Mes	mesityl
MW	microwave irradiation
M.p.	melting point
MS	mass spectroscopy
NBS	N-bromosuccinimide
NMR	nuclear magnetic resonace
NOE	nuclear Overhauser effect
Ph	phenyl
ROESY	rotational frame nuclear Overhauser effect spectroscopy
r.t.	room temperature
TAPA	α-(2,4,5,7-tetranitro-9-fluorenylideneaminooxy)propionic acid
TBAF	tetra-n-butylammonium fluoride
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TMS	trimethylsilyl
TMSA	ethynyl(trimethyl)silane
p-Tol	para-tolyl
VAZO	2,2'-azobis(2-methylbutyronitrile)

Introduction

1.1 Helicenes and helicene-like molecules

Helicenes are polycyclic aromatic compounds comprised of ortho-fused benzene rings. The chemistry of helicenes has attracted persistent attention due to their unique structural, spectral and optical features. Steric repulsion of the terminal benzene rings forces the molecule to adopt a helical non-planar shape. Thus helicenes are inherently chiral, while lacking chiral centres. The non-superimposable clockwise and counterclockwise helices represent an example of helical chirality. Apart from being aesthetic molecules, helicenes possess a rigid framework, which is very stable towards acids, bases and relatively high temperature. Their twisted shape offers applications in nanoscale molecular machinery as 'springs' or 'pawls'. ${ }^{1}$ The large chiral π-electron system makes them an attractive target in search for new organic materials with useful optical and electronic properties. In particular, the nonracemic functionalised helicenes and their analogues are promising candidates for chiral ligands and auxiliaries in asymmetric synthesis.

With respect to their structure, helicenes can be divided into three main categories (Scheme 1.1). Carbohelicenes consist solely of ortho-fused benzene rings. Heterohelicenes have one or more heteroatoms incorporated in their structure. Finally, the helicene-like compounds are not fully aromatic compounds but possess the helical twisted shape.

Scheme 1.1

1
carbo[6]helicene

2
aza[6]helicene

3
[5]helicene-like

For simplification of the systematic names the IUPAC introduced a specific nomenclature for helicenes, where prefixes penta, hexa and hepta etc., are used for five, six and seven, etc. ring compounds. ${ }^{2}$ The prefix could be written in brackets
before the helicene's name: e.g. [6]helicene. The stereochemical descriptors P (or plus) and M (or minus) can be assigned to the right-handed and left-handed helices, respectively. ${ }^{3}$

Although, the scientific community has a continuing interest in chemistry of helicenes, a general synthetic approach to the functionalised optically pure fully aromatic helicenes has not yet been discovered. Modification of the helical backbone, for instance, introduction of heteroatoms and substituents, might greatly simplify its synthesis. Besides, it provides new properties of these compounds, such as increased flexibility ${ }^{4}$ and chiroptical properties ${ }^{5-7}$. In areas, where chirality is more important than the fully aromatic backbone, helicene-like compounds might represent an interesting option. ${ }^{8}$ Therefore, it is not surprising that synthesis of the helicene-like structures started to attract considerable attention in recent years.

1.2 Synthesis of helicenes

1.2.1 Synthesis of racemic helicenes

Interest in helicenes commenced in the early twentieth century., ${ }^{9,10}$ The first practical synthesis of helicenes was reported by Newman et al. in 1956 (Scheme 1.2). ${ }^{11}$ The key annulation reaction was Friedel-Crafts acylation of the acyl chloride 4.

Scheme 1.2

A decade later, Mallory et al. made an important breakthrough, when he used the stilbene photochemical dehydrocyclisation for the synthesis of helicenes. ${ }^{12-14}$ Under UV-light irradiation cis/trans isomerisation of stilbene and its derivatives occurred and the intramolecular electrocyclisation of the cis isomer 7 produced the dihydroaromatic product 8. In the presence of an oxidant, commonly a catalytic amount of iodine and atmospheric oxygen, the fully aromatic system 9 resulted (Scheme 1.3). ${ }^{15,{ }^{16}}$ As this oxidising system generated hydroiodic acid, which could cause side reactions, a very useful method was developed by Katz et al., in which an excess of iodine in the presence of propylene oxide - acting as HI scavenger - was employed. ${ }^{17,18}$

Scheme 1.3

At the present time, 50 years after its discovery, the photochemical dehydrocyclisation still remains the most frequently used method to prepare helicenes. Recently it has proved to be useful in the syntheses of functionalised
carbo[5]- and [6]helicenes ${ }^{19}$ as well as some aza[6]helicenes. ${ }^{20}$ Diederich et al. adopted this method for the synthesis of new helicopodand receptors. ${ }^{21,22}$ The photochemical syntheses provided the longest helicenes existing up to date: namely, [14]helicene and thia[15]helicene with alternating benzene and thiophene rings. ${ }^{15,23-}$ ${ }^{26}$ Nevertheless, the profound limitations, such as the high dilution (typically millimolar concentrations to prevent photodimerisation $)^{27}$ and incompatibility with some functional groups (typically iodo, amino, acetyl and nitro groups), ${ }^{28-31}$ stimulated exploration of the non-photochemical methods of helicene synthesis.

Larsen et al. used non-photochemical cyclisation of stilbene precursors in the synthesis of thiahelicenes. ${ }^{32}$ For example, the racemic thia[9]helicene 11 was obtained from the stilbene analogue 10 by oxidation with FeCl_{3} (Scheme 1.4).

Scheme 1.4

In search for non-photochemical methods, Katz et al. developed an efficient and practical method for the multi-gram scale synthesis of helicene bisquinones based on Diels-Alder cyclisation. The moderate yields (usually 20-50\%) of the key annulation reaction were compensated by simplicity of the synthesis and low cost of the starting materials. ${ }^{33}$ Depending on the nature of the substrate, the cycloaddition was sometimes accompanied by the formation of the S-shaped by-product. The method was successfully applied to the preparation of functionalised [5]-, [6]- and [8]helicenes ${ }^{34,35}$ and hetero[7]helicenes 15-18 (Scheme 1.5). ${ }^{36}$

Later on, Minuti et al. applied Diels-Alder reaction in the two-step practical synthesis leading to the variety of substituted [5]- and [6]helicenes, including [5]helicene bisquinone and helicenes containing a cyclopentane ring. ${ }^{37-40}$ Other nonphotochemical methodologies include Hewett cyclisation in melted $\mathrm{KOH},{ }^{41}$ oxidation of double phosphonium salts, ${ }^{42}$ Wurtz-type coupling/Pd aromatisation ${ }^{43}$ and coupling of aromatic bis-bromomethyl moieties with potassium amide in liquid ammonia. ${ }^{44}$

Scheme 1.5

Dubois and Gingas developed one of the shortest gram-scale syntheses of unsubstituted [5]helicene 24 using either the carbenoid-type coupling methodology ${ }^{45}$ or McMurry reaction (Scheme 1.6). ${ }^{46}$

Scheme 1.6

The carbenoid coupling methodology was extended to a short and efficient synthesis of [7]helicene 27 (Scheme 1.7). ${ }^{47}$ In 2000 Rajca et al. used a related method for the construction of the annelated [7]thiophene helix 29 (Scheme 1.8). ${ }^{48}$

Scheme 1.7

Scheme 1.8

Harrowven et al. reported a novel route to functionalised [5]helicenes based on the regioselective tin hydride-mediated non-reducing tandem radical cyclisation of (Z,Z)-1,4-bis(2-iodostyryl)benzene derivatives. ${ }^{49}$ The drawback of this method was formation of the S-shaped aromatic by-products, such as 32 , in some cases in a substantial amount (Scheme 1.9). This methodology was extended to the substituted aza[5]helicene 34 and [7]helicene 36 (Scheme 1.10). ${ }^{50}$

Scheme 1.9

Scheme 1.10

Recently, Ichikawa et al. developed a novel approach to substituted [5]- and [6]helicenes based on the electrophilic cyclisation of 1,1-difluoro-1-alkenes (Scheme 1.11). The authors exploited unique properties of the fluorine substituents, such as α carbocation stabilizing effect and high electronegativity, in domino Friedel-Crafts-type cyclisation. The presence of methyl groups on the naphthalene units of 37 was necessary to control regioselectivity of the ring closure. ${ }^{51}$

Scheme 1.11

Takenaka et al. reported an original synthesis of the functionalised aza[5]- and [6]helicenes based on the highly Z-selective Wittig reaction and subsequent StilleKelly reaction as the key steps (Scheme 1.12). ${ }^{52-55}$

Scheme 1.12

Numerous strategies utilising transition metal-catalysed reactions have emerged in recent years. Collins et al. developed a short and efficient method for the synthesis of carbo- and hetero[5]-, [6]- and [7]helicenes based on olefin metathesis using Grubbs $2^{\text {nd }}$ generation catalyst and microwave irradiation (Scheme 1.13). ${ }^{56,57}$

Scheme 1.13

In 1998 Starý and Stará and co-workers used intramolecular [2+2+2] cyclotrimerisation of aromatic alkynes as a straightforward route to helicenes. ${ }^{58}$ The intramolecular triyne cyclisation proceeded with high regio- and chemoselectivity and tolerated presence of many functional groups. ${ }^{59-65}$ Our group developed a modular synthetic approach, which allowed the preparation of an extensive library of functionalised helically chiral compounds. ${ }^{66-68}$ For example, three aromatic rings were formed in a single step under mild reaction conditions in the $\mathrm{Ni}(0)$-catalysed cyclotrimerisation of (Z,Z)-dienetriyne 43 to provide the fully aromatic [6]helicene derivative 44 (Scheme 1.14). ${ }^{69}$

Scheme 1.14

This work inspired other groups to use the intramolecular cyclotrimerisation of triynes in the construction of helical scaffolds. Recently, Tanaka et.al., ${ }^{70-74}$ Carbery et al. ${ }^{75}$ and Teplý et al. ${ }^{76,77}$ used the intramolecular triyne cyclotrimerisation for the syntheses of helically chiral compounds.

In 2002 Vollhardt et al. used intramolecular [2+2+2] cyclotrimerisation for the synthesis of helical phenylenes, called by the authors heliphenes. ${ }^{78}$ The synthesis of 48 took advantage of the unprecedented triple cobalt-mediated cyclotrimerisation of the nonayne 47, which enabled one-step formation of nine new cycles (Scheme 1.16). ${ }^{79}$

Scheme 1.16

Later on, Guitián et al. reported palladium-catalysed intermolecular cyclotrimerisation of polycyclic arynes, which afforded the double-helicene structure 46 (Scheme 1.15)..$^{80-82}$ By varying the reaction conditions, many different helical polycyclic aromatic structures were prepared. ${ }^{79}$

Scheme 1.15

46, 26\%

1.2.2 Asymmetric synthesis of helicenes

For many applications, for instance as ligands in enantioselective catalysis, helically chiral molecules have to be obtained in an optically pure form. ${ }^{83}$ Therefore, several asymmetric protocols have emerged during the past few decades. ${ }^{84}$

There are three major approaches to non-racemic helicenes. Historically, the first attempt to obtain optically pure helicenes was based on the synthesis of racemic helicenes followed by chiral resolution. In 1956 Newman et al. reported preparation of the nonracemic [6]helicene, which was based on the repetitive co-crystallisation of the optically pure (-)-TAPA with the racemic [6]helicene. ${ }^{85}$ Later on, more practical methods, based on resolution of diastereomeric derivatives, were developed. For example, Katz et al. transformed racemic helical bisquinones to diastereomeric camphanates, which were separable by column chromatography. The subsequent oxidative removal of the camphanoyl groups led to helical bisquinones in $>98 \%$ optical purity. ${ }^{86}$ Katz's method was recently employed in the resolution of thia[7]helicene ${ }^{87}$ and triarylamine helicenes. ${ }^{88}$ Resolutions of racemates based on chemical, ${ }^{57,}{ }^{89-91}$ enzymatic ${ }^{26,92}$ and chromatographic (using chiral stationary phases $)^{67,93-95}$ protocols were reported as well.

The second approach includes a group of methods, which transform optically pure starting materials into nonracemic helicenes through a stereoselective transformation. Recently Ogawa et al. published an example of the central-to-helical chirality transfer based on the asymmetric aromatic oxy-Cope rearrangement (Scheme 1.17). ${ }^{96-98}$

Scheme 1.17

Recently Starý and Stará and co-workers devised a diastereoselective synthesis of the nonracemic helicene-like structures based on helicity induction by the asymmetric centre present in the helical molecules (Scheme 1.18). ${ }^{99}$ The presence of the methyl group causes the helical diastereomers to differ in energy. At high reaction temperatures, the stereochemical outcome of the [2+2+2] cycloisomerisation was controlled by the thermodynamic factors and, accordingly, the helicene-like compound with the lower free energy was formed predominantly. Thus, the chiral triyne 53 with the unsubstituted terminal alkyne moieties produced the (M, S)-54 diastereomer with 92:8 dr. On the other hand, the triyne 55 substituted with p-tolyl groups at the triple bonds furnished the (P, S)-56 diastereomer with 100% $d e .^{100}$

Scheme 1.18

Several approaches to nonracemic helicenes starting from axially chiral binaphthyls were reported. Stará et al. described Stevens rearrangement of the nonracemic binaphthyl dihydrodiazepinium salts to helical amines, which afforded (P)-[5]helicene as a single enantiomer upon treatment with a strong base via the base-induced 1,2-elimination (Scheme 1.19). ${ }^{101}$ Other approaches utilised McMurry reaction of the enantiopure binaphthyl-2,2'-dicarbaldehyde ${ }^{46}$ or oxidative cyclisation of the enantiopure $2,2^{\prime}$-bisphosphonium periodate to afford [5]helicene. ${ }^{42}$

Scheme 1.19

The axial-to-helical chirality transfer was recently employed in the synthesis of thia[7]helicenes. ${ }^{102,103}$ In the synthesis of thiahelicene (P)-62, the axially chiral precursor $\left(S_{\mathrm{a}}\right)-60$ was obtained in 49% de by Stille cross-coupling of the benzodithiophenes 58 and 59 with chiral oxazoline auxiliaries. After chromatographic separation of the diastereomers of 60 and several synthetic transformations, the intramolecular McMurry reaction of the optically pure dicarbaldehyde $\left(S_{\mathrm{a}}\right)$-61 gave thia[7]helicene 62 in $>99 \%$ ee (Scheme 1.20). ${ }^{103}$

Scheme 1.20

The third approach to nonracemic helicenes employs an asymmetric synthesis. Carreño et al. reported the asymmetric synthesis of the [7]helicene bisquinone 66. ${ }^{104,} 105$ The key step was the one-pot domino Diels-Alder reaction between the vinyl dihydrophenanthrene 63 and the enantiopure (S, S)-benzoquinone derivative 64 followed by a spontaneous sulfoxide elimination (Scheme 1.21). The versatility of this method was amplified by the enantio-divergent access to either the P or M helicene quinones 69 or 70 from the common intermediate $(R)-68$ by simply selecting the aromatising agent - DDQ or CAN (Scheme 1.22). ${ }^{106}$

Scheme 1.21

Scheme 1.22

(M)-70, 60\%, 92\% ee

Starý and Stará et al. have developed the enantioselective [2+2+2] cyclotrimerisation reaction of triynes 71 and 73 to the corresponding tetrahydro[6]helicenes 72 and 74 in the presence of $\mathrm{Ni}(0)$ catalyst and the chiral ligand (S)-BOP (Scheme 1.23). ${ }^{64}$

Scheme 1.23

71 R=H
$73 \mathrm{R}=\mathrm{CH}_{3} \mathrm{O}$

(S)-BOP

(P)-72 R=H $81 \%(54 \% \mathrm{ee})$
(P)-74 R=CH3O 74% (42% ee)

Later on, the enantioselective intramolecular [2+2+2] cyclisation was also studied by Tanaka et al..74,107 The cationic rhodium(I) complex and electron-rich diphosphine ligand (R, R)-Me-Duphos furnished the helicene-like molecule (M)-76 in 77\% ee (Scheme 1.24).

Scheme 1.24

The oligothiophene helix (M)-29 was synthesised in 20-37\% isolated yields and $19-47 \%$ ee by Rajca et al. using (-)-sparteine additive in the lithiation of the bis(dithienothiophene) 77 (Scheme 1.25). ${ }^{48}$

Scheme 1.25

1.2 Applications of helicenes in asymmetric catalysis

The configurational stability of helicenes increases with an increasing number of the annelated rings. While, [5]helicene racemises readily at room temperature unless substituted in the position 1, higher analogues with 6 rings and more are considered to be configurationally stable. This opens a possibility of using helicenes as chiral ligands or auxiliaries in the asymmetric synthesis.

In 1986 Martin et al. described the first successful application of an enantiopure helicene derivative, 2-cyano[7]helicene, as a catalyst in the asymmetric epoxidation of alkenes. ${ }^{108}$ The group also reported the use of 2-hydroxy[7]helicene as a chiral auxiliary in the reduction of α-keto esters ${ }^{109}$ and ene reaction. ${ }^{110}$ Since the pioneering work by Martin et al., several other contributions appeared. Nevertheless, this field still remains largely unexplored, mainly due to the absence of the general asymmetric synthesis of functionalised helicenes.

Katz et al. prepared the dimeric bis[5]helicenediol ([5]HELOL) ${ }^{111}$ in a nonracemic form and demonstrated its catalytic activity in the asymmetric addition of diethylzinc to aldehydes achieving up to $81 \% e e .{ }^{112}$ This finding inspired Yamaguchi in designing the bishelicenol phosphite ligands, which combined axial, central and helical chiralities. ${ }^{113}$ For example, the ligand ($M, M, 1 R, 2 S, 5 R$)-79 was successfully applied in the Rh-catalysed hydrogenation of dimethyl itaconate 78 (Scheme 1.26). ${ }^{114}$

Scheme 1.26

Reetz at al. tested [6]helicene diphosphine ligand (P)-82 in the Rh-catalysed hydrogenation of dimethyl itaconate 78, but only moderate enantioselectivity and reactivity was observed $(54 \%, 39 \% e e) .{ }^{115}$ The same $(P)-82$ ligand was used in the Pd-catalysed kinetic resolution of the racemic allylic acetate 81 obtaining up to 99% ee for the starting material $(R)-81$ and up to 86% ee for the substituted product $(R)-83$ (Scheme 1.27). ${ }^{116}$

Scheme 1.27

rac-81

$(P)-82$

(R)-83
86\% ee

(R)-81
99\% ee

Recently, Starý and Stará et al. achieved high enantioselectivity up to 94% ee in the Ir-catalysed allylic amination of the allyl carbonates using helically chiral phosphites (Scheme 1.28). ${ }^{117}$ The enantioselectivity varied with the substitution on the phosphite, while the 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-yl derivative $(P, S)-85$ was the most effective ligand. The same authors also explored asymmetric hydroformylation of the terminal alkenes catalysed by $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ complexes. In this reaction the helical phosphites induced only moderate enantiomeric excesses (up to $32 \% e e$).

Scheme 1.28

In addition, helically chiral compounds began to appear as promising organocatalysts. Recently, Starý and Stará et al. have demonstrated the organocatalytic activity of 2-aza[6]helicene $\mathbf{2}$ in the asymmetric acyl transfer reaction with a moderate selectivity factor of up to $10 .{ }^{91}$

Takenaka et al. used the azahelicene N-oxides as organocatalysts in desymmetrisation of meso-epoxides ${ }^{54,118}$ and in enantioselective propargylation of aldehydes with allenyltrichlorosilane (Scheme 1.29). ${ }^{119}$ The catalyst $(P)-88$ was found to be more efficient in the ring-opening reaction of the cis-stilbene oxide 87 by SiCl_{4} than aza[5]helicene and aza[6]helicene N-oxides. In the propargylation reaction the authors described the bidendate Lewis base catalyst $(P)-90$ with the additional pyridine moiety, which exhibited greater selectivity and reactivity compared to the N oxide (P)-88.

Scheme 1.29

(S)-91
$93 \%, 96 \%$ ee

Moreover, Takenaka et al. devised the helical 2-aminopyridinium ions as hydrogen-bond donor catalysts in the acid-catalysed asymmetric Friedel-Crafts reaction exhibiting high enantioselectivities of up to $96 \% e e .{ }^{55}$

Recently, Carbery et al. developed the helically chiral Lewis base catalyst (P) 93, analogue of DMAP, which exhibited an excellent reactivity as well as selectivity in the kinetic resolution of chiral secondary alcohols with the selectivity factor of up to 116 (Scheme 1.30). ${ }^{75}$

Scheme 1.30

2

Goals

The main goals of the thesis were:

- to develop a synthetic approach to the optically pure helicene-like compounds.

The main goal was to prepare the novel helicene-like compounds containing either two (2S)-2-methyl-2,7-dihydrooxepine rings, oxepine-type compounds, (Scheme 2.1) or two (2R)-2-methyl-2H-pyran rings, pyran-type compounds, (Scheme 2.2) using the diastereoselective synthesis. It was also necessary to investigate the role of various parameters in diastereoselectivity and efficiency of the synthesis. For example, the importance of aryl substituents at the terminal triple bonds of the triyne and the reaction conditions of the $[2+2+2]$ cyclotrimerisation reaction had to be explored.

- to functionalise the enantiopure helicene-like structures with specific functional groups for coordination to transition metals.

It was desirable to functionalise the helicene-like compounds with phosphine and phosphite groups because they could be tested as ligands in enantioselective transition-metal catalysis. The synthetic strategy aimed at the preparation of a common helical precursor, which could be transformed into various helical phosphines or phosphites. It was interesting to examine the relationship between the position of the phosphine group on the helical scaffold and the catalytic activity of the ligand.

- to test the optically pure functionalised helicene-like compounds as ligands in the transition-metal enantioselective catalysis.

The activity of the synthesised ligands in the enantioselective $\mathrm{Ni}(0)$ catalysed [2+2+2] cyclotrimerisation of triynes had to be explored because this reaction opens route to nonracemic fully aromatic helicenes. It was also desirable to check the efficiency of the novel helical ligands in other transitionmetal catalysed reactions, in which high enantioselectivities had not been achieved yet, e.g., the gold(I)-catalysed cyclisation of enynes.

- to extend the scope of the diastereoselective synthesis of the helicene-like compounds.

An additional goal was to develop the synthesis of the helically chiral DMAP analogue 106, which could be tested in as organocatalyst (Scheme 2.2).

- to extend the scope of the intramolecular [2+2+2] cyclotrimerisation of alkynes to sufur-containing helicenes.

Another goal was to apply the double intramolecular [2+2+2] cyclotrimerisation in the synthesis of thia[9]helicene 107 (Scheme 2.3).

Scheme 2.1 Synthesis of the optically pure oxepine-type helicene-like compounds.

PHOSPHINES

$$
\mathrm{R}=\mathrm{Ph}, \mathrm{Cy}, i-\mathrm{Pr}, t-\mathrm{Bu}, o-\text { Tol etc. }
$$

PHOSPHITES

Scheme 2.2 Synthesis of the optically pure pyran-type helicene-like compounds

ESTER

105

DMAP analogue

Scheme 2.3 Synthesis of thia[9]helicene

107

3

Results and discussion

3.1 Diastereoselective synthesis of functionalised helicene-like compounds

3.1.1 Oxepine-type helicene-like compounds

As previously mentioned (Chapter 1.2.2), we have recently developed the diastereoselective synthesis of the helicene-like compounds possessing one (S)-methyl-2,7-dihydrooxepine ring. ${ }^{99}$ It was found that the diastereoselectivity of the [2+2+2] cyclotrimerisation was governed by thermodynamic factors and was directly proportional to the difference in energy of the diastereomeric helical scaffolds formed (Figure 3.1). The steric interactions between the methyl and the tolyl substituents resulted in a predominant formation of the (P, S)-108 configuration.

This approach to the optically pure helicenes was further elaborated by putting in the second (S)-methyl-2,7-dihydrooxepine ring into the [5]helicene scaffold. It was predicted by the DFT calculations (B3LYP/TZV+P) that this structural change would further increase the energy difference between the P and M helices. ${ }^{120}$ The energy difference between (P, S, S)-109 and (M, S, S)-109 was calculated to be $4.6 \mathrm{kcal} / \mathrm{mol}$, which would result in $d r>99.96: 0.04$. The interconversion barrier between the two diastereomers was expected to be lower than the racemisation barrier of the configurationally unstable [5]helicene due to the flexibility given by the presence of two 7-membered rings.

Figure 3.1

3.1.1.1 Synthesis of phosphines

As mentioned in the Introduction chapter helical ligands seem to be very promising in enantioselective catalysis applications. Phosphines are ubiquitous in transition metal chemistry and upon coordination to a transition-metal afford very efficient and versatile homogeneous catalysts. Therefore, we decided to develop the synthesis of phosphines based on the novel helical scaffold (P, S, S)-3 and explore their potential in enantioselective catalysis. From the synthetic point of view the easiest approach was to place the phosphine substituent on the terminal or central aromatic rings, since the functionalisation of the flexible 7-membered rings was a more difficult task. This chapter describes the diastereoselective syntheses of the functionalised helical scaffolds derived from $(P, S, S)-3$ with the phosphine substituents in different positions on the aromatic rings.

The position 1 of the helical scaffold (P, S, S)-3 is the closest to the inner part of the helix and thus could be advantageous in a catalyst design (for numbering see IUPAC recommendation P-25.1.2.6). But the preliminary studies in our laboratory revealed that the synthetic access to the helical scaffolds functionalised in the position 1 was unviable. On the other hand, the substituents in the position 4 pointed away from the chiral scaffold. Therefore, the functionalised helicene-like compounds with substituents in the positions 2,3 and 8 were my initial targets.

Figure 3.2

(P, S, S)-3

Helicene-like compounds with a phosphine group in the position 2

The strategy was to access the phosphines from the 2-bromo[5]helicene-like precursor (P, S, S)-124. The synthesis of the oxepine-type helicene-like scaffold evolved from the modular synthesis of helicene-like compounds with one methyldihydrooxepine ring published earlier. ${ }^{8,60}$ The modular synthesis involved the preparation of the triyne structures by connecting two aryl building blocks and then intramolecular $[2+2+2]$ cyclotrimerisation of the triynes, which regioselectively afforded the helical compounds.

The alkyne (S)-112 was prepared by Williamson ether synthesis from the commercially available optically pure alcohol (S)-111 and 2-iodobenzyl bromide 110 (Scheme 3.3). Then it was orthogonally protected with a bulky triisopopylsilyl group by treatment with LDA and triisopropylsilyl chloride. The subsequent Sonogashira cross-coupling of aryl iodide (S)-113 with ethynyl(trimethyl)silane afforded (S)-114, which was then selectively deprotected to provide the TIPS-diyne (S)-115 in good yield.

Scheme 3.3

(a) KH (1.6 equiv.), (S)-111 (1.7 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight, 91%.
(b) 1). LDA (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 45 \mathrm{~min} ; 2$). $\mathrm{TIPSCI}\left(1.1\right.$ equiv.), $-78^{\circ} \mathrm{C} \rightarrow r . t$., overnight, 84%.
(c) TMSA (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{~mol} \%)$, $\mathrm{Cul}(2 \mathrm{~mol} \%)$, DIPA, r.t., $20 \mathrm{~min}, 99 \%$.
(d) NaOCH_{3} (1.0 equiv.), methanol, r.t., $30 \mathrm{~min}, 99 \%$.

The synthesis of the second building block, bromoalkyne (S)-120 started from the conversion of commercially available amine 116 to the benzyl bromide 118 by using literature procedures (Scheme 3.4). ${ }^{121,122}$ The nucleophilic substitution of 118 with the chiral alkoxide, derived from the optically pure (S)-111 provided the alkyne $(S)-119$, which was then protected with the triisopropylsilyl group. Unfortunately, the compounds 118, (S)-119 and (S)-120 were contaminated by the inseparable impurity
(the iodine-bromine exchange product), formed in minor amount during the radical bromination step $\mathbf{1 1 7} \boldsymbol{\rightarrow} \mathbf{1 1 8}$. It was chromatographically separated from the main compound only after the key Sonogashira cross-coupling of the two building blocks (S)-115 and (S)-120 at low temperature, which provided the protected triyne (S, S)121 in excellent yield. The cross-coupling reaction was performed at $-2^{\circ} \mathrm{C}$ in order to avoid the concurrent reaction taking place on the $\mathrm{C}-\mathrm{Br}$ bond. The reaction with tetrabutylammonium fluoride afforded the triyne (S, S)-122 in good yield after chromatography. Then the two phenyl substituents were introduced into the (S, S)122 in order not only to control the stereochemical outcome of the cyclisation but also to increase the yield of the cyclisation by increasing the stability of the triyne against degradation. ${ }^{123}$

Scheme 3.4

$\begin{array}{ll}(S, S)-121 & \mathrm{R}=\mathrm{TIPS} \square \mathrm{f} \\ (S, S)-122 & \mathrm{R}=\mathrm{H} \quad \square \mathrm{f} \\ (S, S)-123 & \mathrm{R}=\mathrm{Ph} \quad \llbracket \mathrm{g}\end{array}$
(a) 1) NaNO_{2} (1.0 equiv.), $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq., 5.2 equiv.), $0^{\circ} \mathrm{C}, 10 \mathrm{~min} ; 2$) KI (2.1 equiv.), $110^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$.
(b) NBS (2.0 equiv.), AIBN (cat.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), CCl_{4}, IR lamp, reflux, $5 \mathrm{~h} ; 77 \%$.
(c) $\mathrm{KH}\left(1.5\right.$ equiv.), (S)-111 (1.5 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow$ r.t., $1.5 \mathrm{~h}, 95 \%$.
(d) 1) LDA (1.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) $\mathrm{TIPSCI}\left(1.3\right.$ equiv.), $-78^{\circ} \mathrm{C} \rightarrow r . t$., overnight, 61%.
(e) (S)-115 (1.0 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.7 \mathrm{~mol} \%)$, $\mathrm{Cul}(5.5 \mathrm{~mol} \%)$, DIPA, $-2^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 94\%.
(f) TBAF (0.9 equiv.), THF, r.t., $1 \mathrm{~h}, 88 \%$.
(g) $\mathrm{Phl}\left(3.0\right.$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, Cul ($10 \mathrm{~mol} \%$), DIPA (8.0 equiv.), toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight, 89%.

The $[2+2+2]$ cyclotrimerisation of the triyne $(S, S)-123$ proceeded in good yield and with $>99 \%$ diastereoselectivity providing only (P, S, S)-124 diastereomer. The other diastereomer (M, S, S)-124 was not detected by NMR experiments. In addition, the helical bromide (P, S, S)-124 was a sufficiently stable compound and thus could
serve as the suitable precursor in the synthesis of phosphines. The conditions for the cyclotrimerisation reaction are summarised in Table 3.1.

Table 3.1

Entry	Transition metal complex (equiv.)	Solvent	Temperature, time	Heating mode	Isolated yield
1	$\mathrm{CoCp}(\mathrm{CO})_{2}(1), \mathrm{PPh}_{3}(2)$	decane	$140^{\circ} \mathrm{C}, 2 \mathrm{~h}$	hv	80%
2	$\mathrm{CoCp}(\mathrm{CO})_{2}(1), \mathrm{PPh}_{3}(2)$	THF	$180^{\circ} \mathrm{C}, 1 \mathrm{~h}$	MW	77%
3	$\mathrm{RhCp}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}(1)$	decane	$140^{\circ} \mathrm{C}, 1 \mathrm{~h}$	hv	46%

The best conditions for a gram scale synthesis employed the microwaveassisted synthesis at $180{ }^{\circ} \mathrm{C}$ and $\mathrm{CoCp}(\mathrm{CO})_{2}$ complex (Entry 2). The classical Vollhartd's conditions using a halogen lamp irradiation and decane as the solvent (Entry 1) worked well on a small scale ($40 \mathrm{mg}, 80 \%$ yield), but scale-up to 250 mg batch decreased the yield to 60%. Utilising the rhodium(I) complex in decane and the halogen lamp irradiation gave the product in the lower yield probably due to higher by-products formation or decomposition of the starting material/product (Entry 3). In all cases stoichiometric amount of the transition-metal complex had to be used because of the low reactivity of the triyne (S, S)-123.

The optically pure helical bromide (P, S, S)-124 was used to prepare phosphines by lithium-halogen exchange reaction. Recently, Aloui et al. described a successful conversion of the (\pm)-3-bromo-14-methoxy[6]helicene into (\pm)-3-diphenylphosphino-14-methoxy[6]helicene using n-BuLi in THF at $-78{ }^{\circ} \mathrm{C}$ for $1.5 \mathrm{~h} .{ }^{124}$ However, when these conditions were applied to (P, S, S)-124, no phosphine was formed and the reduced helicene-like compound (P, S, S)-126 was obtained as the only product in 84% isolated yield.

The lithiation step was explored by varying the reaction conditions (Table 3.2). In order to simplify the ${ }^{1} \mathrm{H}$ NMR spectra analysis of the crude reaction mixture, iodine was used as an electrophile. The NMR analysis of the mixture of products was the most suitable method since the compounds (P, S, S)-124, (P, S, S)-125a and (P, S, S)126 had nearly the same R_{f} factors and hence could not be separated chromatographically. The presence of the compounds was also confirmed using the ESI-MS analysis of the crude mixture.

Since the lithium-halogen exchange reaction was known to be extremely fast even at low temperatures, the reaction time was reduced to 1 min . ${ }^{125,126}$ As shown in Table 3.2, using n-BuLi and s-BuLi in THF at $-78{ }^{\circ} \mathrm{C}$ (Entries 1-2) did not drive the reaction to full conversion and the iodinated product (P, S, S)-125a was not detected either.

Table 3.2

Entry	RLi (equiv.)	Solvent	Temp.	Electrophile ${ }^{\text {[a] }}$	125:126: 124 ${ }^{[\mathrm{b]}}$
1	n-BuLi (1.0)	THF	$-78{ }^{\circ} \mathrm{C}$	I_{2}	0:1:5
2	s-BuLi (1.0)	THF	$-78{ }^{\circ} \mathrm{C}$	I_{2}	0:2:3
3	n-BuLi (1.0)	$\mathrm{Et}_{2} \mathrm{O}$	$-78{ }^{\circ} \mathrm{C}$	I_{2}	0:0:1
4	t-BuLi (2.0)	$\mathrm{Et}_{2} \mathrm{O}$	$-78{ }^{\circ} \mathrm{C}$	I_{2}	0:1:0
5	t-BuLi (2.0)	$\mathrm{Et}_{2} \mathrm{O}$	$-95{ }^{\circ} \mathrm{C}$	I_{2}	2:1:0
6	t-BuLi (2.0)	$\mathrm{Et}_{2} \mathrm{O}$	$-95^{\circ} \mathrm{C}$	TMSCI	9:1:0 $0^{[c]}$
7	t-BuLi (2.0)	$\mathrm{Et}_{2} \mathrm{O}$	$-110{ }^{\circ} \mathrm{C}$	$\mathrm{Ph}_{2} \mathrm{PCl}$	1:0:0

${ }^{[a]}$ 1.2-1.6 equiv.
${ }^{[b]}$ The ratio of products determined from ${ }^{1} \mathrm{H}$ NMR.
${ }^{[c]}$ Isolated.
Then diethyl ether was used instead of tetrahydrofuran because it could slow down the concurrent protonation of the lithiated species. ${ }^{127,}{ }^{128}$ However, this hindered the bromine-lithium exchange step too (Entry 3). Therefore, a more potent
reagent t-BuLi ${ }^{129,130}$ was used in order to achieve the complete conversion in diethyl ether. However, this again led to the exclusive formation of the reduced product (P, S, S)-126 (Entry 4).The iodinated product (P, S, S)-125a appeared only when the reaction was carried out at temperatures lower than $-78{ }^{\circ} \mathrm{C}$ (Entries 5-7). The possible rationale to this observation could be the stabilisation of the lithiated intermediate at low temperatures, which permitted its further reaction with the electrophile. ${ }^{131,132}$

The reaction also took place with other electrophilic reagents. The helicenelike silane (P, S, S)-125b was obtained in 65\% yield (Entry 6) along with only ca 10\% of the hydrogen transfer product $(P, S, S)-126$. Finally, the reaction with chlorodiphenylphosphine provided the desired helically chiral phosphine (P, S, S)125c as a single product in 84% isolated yield (Entry 7). It was observed that generally the reaction temperatures below $-105^{\circ} \mathrm{C}$ were sufficient for the formation of the phosphine in good yields.

Phosphine (P, S, S)-125c was prone to oxidation and was protected with borane for practical reasons (Scheme 3.5). ${ }^{133-135}$ The resultant phosphine-borane complex (P, S, S)-127 was a stable compound, which allowed chromatographic purification. The borane moiety could be easily removed by heating with an excess of diethylamine. ${ }^{134,136,137}$

In order to tune the electronic and steric parameters of the phosphorous ligands, the substituents on the phosphorus were varied. Dicyclohexylphosphine (P, S, S)-128 and diisopropylphosphine (P, S, S)-129 were prepared in acceptable yields using the corresponding dialkylchlorophosphines under the optimised conditions (Scheme 3.5). However, when using di(t-butyl)chlorophosphine or di(otolyl)chlorophosphine, the desired derivatives (P, S, S)-130 and (P, S, S)-131 were not obtained probably due to larger steric requirements of these substituents and only the hydrogen-transfer product (P, S, S)-126 was obtained instead.

Scheme 3.5

(a) 1) t-BuLi (2.0-2.1 equiv.), $\mathrm{Et}_{2} \mathrm{O},-110^{\circ} \mathrm{C}, 1-2 \mathrm{~min}$; 2) $\mathrm{R}_{2} \mathrm{PCl}(1.5-1.9$ equiv.), $-110^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; 3) $\mathrm{BH}_{3}-\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$ (5.0 equiv.), $0^{\circ} \mathrm{C}$, 1 h .

The alternative methods for phosphine (P, S, S)-127 preparation were also tested. The procedure by Liese et al. using tetrakis(triphenylphosphine)palladium and diphenylphosphine for phosphination of arylbromides ${ }^{138}$ was performed but bromide (P, S, S)-124 was unreactive under these conditions. Furthermore, no brominemagnesium exchange reaction occurred with (P, S, S)-124 when magnesium turnings or isopropylmagnesium halide were used in the reaction. ${ }^{139,140}$

As it was advantageous to use bromide (P, S, S)-124 as a common precursor of the phosphites as well, the transformation of (P, S, S) - $\mathbf{1 2 4}$ to the hydroxy substituted helicene (P, S, S)-132 was explored (Scheme 3.6). However, the palladium-catalysed reaction employing potassium hydroxide as a nucleophile provided the desired helicenol (P, S, S)-132 in the negligible 9% isolated yield. ${ }^{141}$ The copper-catalysed hydroxylation using tetrabutylammonium hydroxide was also unsuccessful leaving the bromide unreacted. ${ }^{142}$ The bromine-magnesium exchange reaction of the helical bromide (P, S, S)-124 with dibutylisopropylmagnesium ate complex $\left(i-\mathrm{PrBu}_{2} \mathrm{MgLi}\right)^{143}$ at $0{ }^{\circ} \mathrm{C}$ and the subsequent reaction with gaseous oxygen at $-78^{\circ} \mathrm{C}$ furnished helicenol (P, S, S)-132 in 37% isolated yield together with 42% yield of the hydrogen-transfer product (P, S, S)-126. In this case, the decrease of the bromine-magnesium exchange reaction temperature left bromide (P, S, S)-124 unreacted. The halogen-lithium exchange reaction of bromide (P, S, S)-124 with two equivalents of t-butyllithium at $105{ }^{\circ} \mathrm{C}$, followed by the reaction with gaseous oxygen at the same temperature, provided helicenol (P, S, S)-132 and the reduced product (P, S, S)-126 in 32\% and 43\% isolated yields, respectively.

Scheme 3.6

(a) KOH (5.1 equiv.), $\mathrm{Pd}(\mathrm{dba})_{2}$ ($7 \mathrm{~mol} \%$), XPhos ($16 \mathrm{~mol} \%$), water/1,4-dioxane (1:1), $100{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 9 \%$ for 132.
(b) 1) $i-\mathrm{PrBu}_{2} \mathrm{MgLi}\left(1.25\right.$ equiv.), THF, $\left.\left.0{ }^{\circ} \mathrm{C}, 15 \mathrm{~min} ; 2\right) \mathrm{O}_{2}(\mathrm{~g}),-7{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ; 3\right)$ $\mathrm{HCl},-78^{\circ} \mathrm{C} \rightarrow$ r.t., 37% for $132,42 \%$ for 126.
(c) 1) t-BuLi (2.1 equiv.), $\mathrm{Et}_{2} \mathrm{O},-105^{\circ} \mathrm{C}, 1 \mathrm{~min} . ; 2$) $\left.\mathrm{O}_{2}(\mathrm{~g}),-105^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 3\right) \mathrm{HCl},-$ $105^{\circ} \mathrm{C} \rightarrow$ r.t., 32\% for 132, 43\% for 126.

These initial results demonstrated that the diastereoselective synthesis of helically chiral molecules, which took advantage of the thermodynamic energy difference between the two possible diastereomers, was viable and indeed provided exclusively the lower energy (P, S, S)-diastereomer in $>99 \%$ de as predicted by the theoretical calculations. In addition, the synthesis allowed preparation of the functionalised helical compound (P, S, S)-124, which could serve as the precursor of phosphines and phosphites (see Chapter 3.1.1.2 for information on the synthesis of the phosphites from the respective helicenols). Because of the low yields obtained in the transformation of the helical bromide (P, S, S)-124 to helicenol (P, S, S)-132, an alternative synthesis of methoxy substituted helicene scaffolds was pursued (Chapter 3.1.1.2). The successful transformation of the bromide (P, S, S)-124 to the phosphines (P, S, S)-127-129 encouraged us in pursuit of the synthesis of regioisomeric 3-bromo[5]helicene-like compound (P, S, S)-142 and its transformation to the phosphines.

Helicene-like compounds with phosphine group in position 3

The preparation of 3-bromo[5]helicene-like compound (P, S, S)-142 followed the same synthetic protocol which was elaborated for the 2-bromo[5]helicene-like compound (P, S, S)-124. However, due to the different reactivity of the regioisomer 133 (Scheme 3.7) towards the radical bromination, commercially available bromoiodide 133 afforded dibromoiodide 134a ${ }^{121,144}$ contaminated with 30% of the inseparable tribromide $\mathbf{1 3 4 b}^{226}$ resulting from the iodine-bromine exchange reaction. This impurity could not be removed until the polarity of the product of one of the subsequent reactions had changed significantly later in the synthesis. The following nucleophilic substitution of 134 with the chiral alkoxide, derived from the enantiopure alcohol (S)-111, afforded alkynes (S)-135a and (S)-135b, which were subsequently protected with triisopropylsilyl group to provide silanes (S)-136a and (S)-136b. Sonogashira cross-coupling of iodide (S)-136a with ethynyl(trimethyl)silane was carried out at $0{ }^{\circ} \mathrm{C}$ providing diyne $(S)-137$. Bromide $(S)-136 b$ remained unreacted as an impurity in this and the following reaction as well. The subsequent selective deprotection of the TMS group in diyne (S)-137 afforded the monosilylated diyne (S)138. The increased polarity of alkyne (S)-138 permitted an efficient chromatographic purification and removal of the impurity 136b. Nevertheless, the bromo substituted diynes $(S)-137$ and (S)-138 were unstable and had to be used in the next reactions soon after preparation.

Sonogashira cross-coupling of the two building blocks - diyne (S)-138 and aryl iodide (S)-113 - was carried out at $0^{\circ} \mathrm{C}$ in order to avoid the concurrent reaction on the $\mathrm{C}-\mathrm{Br}$ bond. The resulting triyne $(S, S)-139$ was deprotected using tetrabutylammonium fluoride to give triyne $(S, S)-140$ in good yield. The yield of the desilylation reaction was strongly temperature dependent: adding the fluoride solution at $-78{ }^{\circ} \mathrm{C}$ and leaving the reaction mixture to warm-up slowly to room temperature instead of performing the whole reaction at room temperature, increased the yield from 62\% to 95\%.

Two phenyl substituents were introduced into triyne (S, S)-140 in good yield by the double Sonogashira cross-coupling with iodobenzene (Scheme 3.8). ${ }^{118}$ The bisarylated triyne (S, S)-141 was then subjected to [2+2+2] cyclotrimerisation under microwave irradiation in the presence of cyclopentadienylcobalt(I) complexes -
$\mathrm{CoCp}(\mathrm{CO})_{2}$ and $\mathrm{CoCp}(\mathrm{CO})($ fum $)$. Both complexes provided the helicene-like (P, S, S)142 in high yield as a single diastereomer. The optical purity was established from the fact that no racemisation took place on the chiral centre during the synthesis and the other diastereomers of the final helicene-like compounds were not detected by the NMR analysis.

Scheme 3.7

(a) NBS (1.2 equiv.), AIBN (cat.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), CCl_{4}, IR lamp, reflux, $10 \mathrm{~h}, 45 \%$ for 134a and 134b (2:1).
(b) KH (1.1 equiv.), (S)-111 (1.1 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow$ r.t., $1.5 \mathrm{~h}, 95 \%$ for 135 a and 135b (2:1).
(c) 1) LDA (1.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) TIPSCI (1.0 equiv.), $-78^{\circ} \mathrm{C} \rightarrow$ r.t., overnight, 63% for 136a and 136b (2:1).
(d) TMSA (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.6 \mathrm{~mol} \%)$, $\mathrm{Cul}(2 \mathrm{~mol} \%), \mathrm{DIPA}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 98\% for 137 and 136b (3:1).
(e) $\mathrm{NaOCH}_{3}(1.0$ equiv.), methanol-THF (2:1), r.t., $30 \mathrm{~min}, 61 \%$.
(f) (S)-113 (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($1 \mathrm{~mol} \%$), Cul ($2 \mathrm{~mol} \%$), DIPA, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 80\%.
(g) TBAF (1.0 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., overnight, 95%.

Scheme 3.8

(a) $\mathrm{Phl}(4.0$ equiv. $), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(1 \mathrm{~mol} \%)$, $\mathrm{Cul}(2 \mathrm{~mol} \%), \mathrm{DIPA}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., overnight, 92\%.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.3 equiv.), PPh_{3} (2.0 equiv.), THF, ionic liquid, $\mathrm{MW}, 180^{\circ} \mathrm{C}, 30$ min, 92\%.
(c) $\operatorname{CoCp}(\mathrm{CO})($ fum $)\left(1.1\right.$ equiv.), THF, $\mathrm{SiC}, \mathrm{MW}, 180^{\circ} \mathrm{C}, 10 \mathrm{~min}, 94 \%$.

The helical diphenyl- and dicyclohexylphosphino borane complexes (P, S, S)143 and (P, S, S)-144 were prepared under the optimised conditions of brominelithium exchange reaction using two equivalents of t-butyllithium at the temperature carefully kept below $-110{ }^{\circ} \mathrm{C}$ in good yields (Scheme 3.9). Without protection with borane, even diphenylphosphino derivative (P, S, S)-143 easily oxidised while being exposed to air in solution as was observed in ${ }^{31} \mathrm{P}$ NMR spectra.

Scheme 3.9

(P,S,S)-142

(P, S, S) $\mathbf{- 1 4 3} \mathrm{R}=\mathrm{Ph}, 96 \%$ (P,S,S)-144 R = Cy, 85\%
(a) 1) t - BuLi (2.0 equiv.), $\mathrm{Et}_{2} \mathrm{O},<-110^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 2$) CIPR_{2} (2.3-2.9 equiv.), $-110^{\circ} \mathrm{C}$ $\rightarrow-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$ (for 143) or $-110^{\circ} \mathrm{C}, 15 \mathrm{~min}$ (for 144), then $0^{\circ} \mathrm{C}$, 15 min ; 3) $\mathrm{BH}_{3}-$ $\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}\left(10-26\right.$ equiv.), $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight.

Helicene-like compound with phosphine group in position 8

The diastereoselective synthetic methodology developed for the functionalised helicene-like compounds with substituents on the terminal aromatic ring was then extended to the synthesis of optically pure helicene-like compound with the phosphine group on the central aromatic ring. The synthesis of the helicene-like compound (P, S, S)-153 with the diphenylphosphine group directly attached to the helical scaffold in position 8 started with the preparation of the chiral alcohol (S)-145 from the commercial alcohol $(S)-111$ by Sonogashira cross-coupling with p iodotoluene (Scheme 3.10). ${ }^{66}$

Scheme 3.10

(a) p-iodotoluene (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($4 \mathrm{~mol} \%$), $\mathrm{Cul}(8 \mathrm{~mol} \%)$, DIPA (5.0 equiv.), toluene, r.t., overnight, 99\%.

The synthesis of the unsubstituted building block (S)-149 (Scheme 3.11) started from the benzyl bromide 110, which could be easily prepared from benzyl alcohol $146 .{ }^{145}$ The reaction of the bromide 110 with the alkoxide derived from (S)145 afforded the aryl iodide (S)-147 in good yield. It was then converted into diyne $(S)-149$ by Sonogashira cross-coupling with ethynyl(trimethyl)silane and the subsequent desilylation with potassium carbonate in a mixture of dichloromethanemethanol afforded (S)-149 in an excellent isolated yield.

Sonogashira cross-coupling of the building blocks (S)-113 and (S)-149 provided the triyne (S,S)-150 in good yield (Scheme 3.12). The following removal of the triisopropylsilyl group with tetrabutylammonium fluoride provided the triyne (S, S) 151 in excellent yield.

Scheme 3.11

(a) PBr_{3} (1.5 equiv.), THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 95 \%$.
(b) (S)-145 (1.0 equiv.), KH (1.5 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight, 76%.
(c) TMSA (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \mathrm{~mol} \%)$, $\mathrm{Cul}(4 \mathrm{~mol} \%)$, DIPA, r.t., $15 \mathrm{~h}, 94 \%$.
(d) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.), $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:5), r.t., $30 \mathrm{~min}, 94 \%$.

Scheme 3.12

(a) (S)-113 (1.0 equiv.), (S)-149 (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Cul}(10 \mathrm{~mol} \%)$, DIPA (6.3 equiv.), toluene, r.t., overnight, 77%.
(b) TBAF (1.05 equiv.), THF, $0^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then r.t., $30 \mathrm{~min}, 93 \%$.

Introduction of the diphenylphosphino group into the triyne $(S, S)-151$ was accomplished using n-butyllithium at $-78{ }^{\circ} \mathrm{C}$ followed by the addition of chlorodiphenylphosphine $(S, S)-151 \rightarrow(S, S)$-152 (Scheme 3.13). Reaction with LDA was also examined but the results were not reproducible. The resulting phosphine $(S, S)-152$ was surprisingly stable towards the oxidation in air but decomposed on silica gel (even on silica gel deactivated with 2% of triethylamine). Thus, (S,S)-152 was purified using the reversed phase chromatography in order to obtain acceptable yields.

Scheme 3.13

(a) 1) n-BuLi (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 2 \mathrm{~min} ; 2$) $\mathrm{Ph}_{2} \mathrm{PCl}$ (1.3 equiv.), $-78^{\circ} \mathrm{C}, 10$ min , then \rightarrow r.t., $30 \mathrm{~min}, 59 \%$.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}\left(0.6\right.$ equiv.), THF, $250^{\circ} \mathrm{C}, 70$ bar, continuous flow reactor, 42%.

Attempts to cyclotrimerise triyne (S,S)-152 with methods previously used, i.e. $\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$ combined with a halogen lamp or with microwave irradiation, failed due to decomposition of the starting compound $(S, S)-152$.

However, we have recently successfully applied a continuous flow reactor (Figure 3.2) to various problematic cyclotrimerisation reactions. When the pressurised mixture of $(S, S)-152$ and a substoichiometric amount of $\mathrm{CoCp}(\mathrm{CO})_{2}$ in tetrahydrofuran passed through a heated steel capillary at $250^{\circ} \mathrm{C}$ and 70 bar, the helical phosphine (P, S, S)-153 was readily obtained in 42% yield and $>99 \%$ de. The main by-product was cyclobutadienylcobalt complex ${ }^{146-151}$ as determined from LC-MS analysis.

Figure 3.2 Schematic representation of the continuous flow reactor.

Legend: 1 - Schlenk flask with a reaction mixture connected to an argon line; 2 HPLC pump; 3 - heated stainless steel capillary; 4 - backpressure valve.

The NMR spectrum of phosphine $(P, S, S)-153$ deserves special attention. The signal of one methyl group was shifted unusually upfield to the value of -0.08 ppm
(doublet A in Figure 3.3). In addition, ${ }^{31} \mathrm{P}-\mathrm{NMR}$ showed a magnetic shielding of the phosphorus as compared to the previously prepared helical phosphines. The singlecrystal X-ray diffraction analysis (Figure 3.4, Appendix A) revealed that the shielding originated from the close proximity of the phosphorus atom to the tolyl substituent (the distance is approximately $3 \AA$). The anisotropic shielding of the methyl protons, on the other hand, resulted from the proximity of one methyl group to the phenyl ring of the diphenylphosphino substituent.

Figure 3.3 A fragment of the HSQC NMR spectrum of $(P, S, S)-153$. The two doublets (A and B) correspond to the methyl groups on the dihydrooxepine rings and the singlet C belongs to the methyl of the tolyl substituent.

Figure 3.4 X-ray structure of phosphine (P, S, S)-153 with thermal ellipsoids at 50% probability level.

Atropisomeric helicene-like phosphines

Inspired by the success in highly diastereoselective synthesis of the functionalised helicenes with phosphine groups in positions 2, 3 and 8, we decided to synthesise a more complex structure, which would have the phosphine group positioned just above or below the helical cavity, depending on the configuration of the chiral axis, which arises from ortho-substitution on the phenyl ring. The models of the gold (I) complex with phosphine (P, S_{a}, S, S)-158 and the already synthesised phosphine (P, S, S)-125c show the advantageous orientation of the transition metal in the first compound (Figure 3.5). It is known that the linear geometry of gold(I) complexes makes the enantioselective gold(I)-catalysed reactions particularly challenging because of the increased distance between the substrate and the chiral phosphine ligand. ${ }^{152-154}$

Figure 3.5 Molecular models of gold (1) chloride complexes of phosphines $\left(P, S_{a}, S, S\right)-158$ and (P, S, S)-125c.

(P, S, S)-125c.AuCl

The first attempt to synthesise $\left(P, S_{a}, S, S\right)$-158 was based upon the preparation of the helical bromide $\left(P, S_{\mathrm{a}}, S, S\right)-157$ and its subsequent conversion to the phosphine-borane complex (P, S_{a}, S, S)-158 using bromine-lithium exchange reaction.

The synthesis of the bromide $\left(P, S_{a}, S, S\right)$-157 started with the preparation of the chiral bromo alcohol (S)-154, which was readily obtained from the commercial
optically pure alcohol (S)-111 by Sonogashira cross-coupling reaction (Scheme 3.14). The cross-coupling was carried out at $0^{\circ} \mathrm{C}$ to suppress the concurrent reaction on the $\mathrm{C}-\mathrm{Br}$ bond. The following deprotonation of (S)-154 and the reaction with benzyl bromide 110 provided the building block (S)-155 in good yield.

Scheme 3.14

(a) (S)-111 (1.06 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2 \mathrm{~mol} \%)$, Cul (4 mol\%), DIPA, $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight, 99\%.
(b) 1) KH (1.8 equiv.), THF, $0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; 2) 110 (1.36 equiv.), THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 85\%.

The aryl iodide (S)-155 then reacted with the diyne building block (S)-149 under the Sonogashira cross-coupling conditions again at $0^{\circ} \mathrm{C}$ to provide $(S, S)-156$ in good yield (Scheme 3.15).

Scheme 3.15

(a) $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), \mathrm{Cul}(10 \mathrm{~mol} \%)$, DIPA, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\rightarrow \mathrm{r} . \mathrm{t} ., 2 \mathrm{~h}, 75 \%$.
(b) $\operatorname{CoCp}(\mathrm{CO})_{2}$ (1.3 equiv.), PPh_{3} (2.0 equiv.), $\mathrm{THF}, \mathrm{MW}, 200^{\circ} \mathrm{C}, 10 \mathrm{~min}, 60 \%$.

As expected, the cyclotrimerisation of triyne (S, S) - $\mathbf{1 5 6}$ provided the helical bromide (P, S, S)-157 as a 56:44 mixture of atropisomers (P, S_{a}, S, S)-157 and (P, R_{a}, S, S)-157, which were formed as the result of the ortho-substitution on the phenyl ring (Scheme 3.16). No change of the atropisomer ratio was observed after heating the mixture in DMF at $250^{\circ} \mathrm{C}$ for 1 hour. The high interconversion barrier
allowed separation of the atropisomers by HPLC chromatography using a chiral stationary phase (Figure 3.6). The chiral HPLC column was necessary for the effective separation because the atropisomers were inseparable on a normal and reversed phase. The elucidation of the structure was done on the basis of the singlecrystal X-ray diffraction analysis of atropisomer (P, S_{a}, S, S)-157 (Figure 3.7, Appendix A). The other atropisomer $\left(P, R_{\mathrm{a}}, S, S\right)-157$ did not provide single crystals but the spectroscopic data (NMR, IR, MS) confirmed that this compound differed from (P, S_{a}, S, S)-157 only in the conformation.

Scheme 3.16

Figure 3.6 Chromatogram of the preparative HPLC separation of the two atropisomers on Chirallica PST-4 column and the demonstration of their purity on the analytical Chiralpak IA column.

The barrier of interconversion of the two atropisomers was not established experimentally as it required temperatures higher than $250{ }^{\circ} \mathrm{C}$. The value of the interconversion barrier between (P, S_{a}, S, S)-157 and (P, R_{a}, S, S)-157 was calculated to be $45.65 \mathrm{kcal} / \mathrm{mol}$ (B3LYP/cc-pVDZ level, Appendix B). The difference in the free energies between (P, S_{a}, S, S)-157 and (P, R_{a}, S, S)-157 was found to be insignificant $(0.34 \mathrm{kcal} / \mathrm{mol}) .{ }^{155}$

Figure 3.7 X-ray structure of bromide (P, S_{a}, S, S)-157 with thermal ellipsoids at the 50% probability level.

The influence of the reaction conditions on the ratio of atropisomers was examined (Table 3.3). The cyclotrimerisation reaction was investigated using $\operatorname{CoCp}(\mathrm{CO})_{2}, \mathrm{CoCp}(\mathrm{CO})$ (fum) and $\mathrm{RhCp}{ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complexes, since the iridium ${ }^{156}$ and the cationic rhodium ${ }^{107}$ complexes were unreactive. Initially, the microwave-assisted synthesis using $\mathrm{CoCp}(\mathrm{CO})_{2}$ and PPh_{3} in a ratio of $1: 2$ was carried out at 140 and 200 ${ }^{\circ} \mathrm{C}$ (Entries 1-2). Higher yield was obtained at $140{ }^{\circ} \mathrm{C}$ and the atropisomer ratio was nearly the same in both reactions. Carrying out the reaction under halogen lamp irradiation and with a prolonged reaction period decreased the isolated yield to 34\% without affecting the atropisomer ratio (Entry 3). Furthermore, the use of $\operatorname{CoCp}(\mathrm{CO})(f u m)$ complex, which was more air and temperature stable ${ }^{157,}{ }^{211}$ compared to $\mathrm{CoCp}(\mathrm{CO})_{2}$, was also investigated. Heating at $180^{\circ} \mathrm{C}$ was required for the cyclotrimerisation to proceed and the mixture of atropisomers was obtained in excellent yield and unchanged ratio (Entry 4).

Table 3.3

Entr y	$\mathrm{ML}_{n}{ }^{[\text {a] }}$	Solvent	Heating mode	Temperature, Time	Isolated yield	Atropisomer ratio $S_{\mathrm{a}}: R_{\mathrm{a}}{ }^{[\mathrm{cb]}}$
1	$\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$	THF	MW	$140^{\circ} \mathrm{C}, 20 \mathrm{~min}$	83%	$59: 41$
2	$\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$	THF	MW	$200^{\circ} \mathrm{C}, 10 \mathrm{~min}$	60%	$56: 44$
3	$\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$	decane	$\mathrm{h} v$	$140^{\circ} \mathrm{C}, 2 \mathrm{~h}$	34%	$60: 40$
4	$\mathrm{CoCp}(\mathrm{CO})($ fum $)$	THF	MW	$180^{\circ} \mathrm{C}, 10 \mathrm{~min}$	96%	$60: 40$
5	$\mathrm{RhCp}^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$	THF	MW	$140^{\circ} \mathrm{C}, 15 \mathrm{~min}$	42%	$72: 28$
6	$\mathrm{RhCp}^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$	THF	MW	$200^{\circ} \mathrm{C}, 10 \mathrm{~min}$	88%	$1: 1^{[d]}$
7	$\mathrm{RhCp}^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$	decane	hv	$140^{\circ} \mathrm{C}, 1 \mathrm{~h}$	50%	$60: 40$

${ }^{[a]}$ Stoichiometric amount of the transition-metal complex and 2 equiv. of PPh_{3} was used in all cases due to the low reactivity of the triyne. Use of substoichiometric amounts resulted only in partial conversion of the substrate.
${ }^{[b]}$ The reaction proceeded until all the triyne was consumed according to the TLC analysis.
${ }^{[c]}$ The ratio of the products was determined using HPLC and NMR techniques.
${ }^{[d]}$ Isolated product contained 33% of $(P, S, S)-\mathbf{1 6 0}$.
Reactivity of $R h C p *\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex was also examined at different temperatures (Entries 5-7). The microwave-assisted reaction at $140^{\circ} \mathrm{C}$ provided the helicene-like compound in moderate yield. In contrast to the cobalt-mediated reactions, the atropisomer ratio shifted in favour of the S_{a} isomer (Entry 5). Raising the temperature to $200{ }^{\circ} \mathrm{C}$ provided the atropisomers in a $1: 1$ ratio, but they were contaminated with the product of the reductive dehalogenation (P, S, S)-160 (Entry 6). The yield of cyclotrimerisation with $\operatorname{RhCp}{ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex under halogen lamp irradiation at $140^{\circ} \mathrm{C}$ was comparable to the microwave-assisted reaction at the same temperature (cf. Entries 5 and 7). However, the atropisomer ratio was closer to that obtained from the cobalt-mediated cyclotrimerisations (cf. Entries 1-4 and 7).

On the whole, the cobalt complexes were the most suitable for the cyclotrimerisation of triyne (S, S)-156. Compared to the rhodium complex, cobalt complexes afforded reaction mixtures with fewer by-products. In addition, the reductive dehalogenation by-product (P, S, S)-160 was never observed in the case of cobalt-mediated reactions. Generally, the atropisomer ratio $S_{\mathrm{a}}: R_{\mathrm{a}}$ was roughly $2: 1$ except for the case, when the $\operatorname{RhCp}{ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex and microwave irradiation were used. Counterintuitively, the ratio was mostly shifted in favour of the atropisomer $\left(P, S_{\mathrm{a}}, S, S\right)-157$, which had the higher calculated free energy (Appendix B).

The separated atropisomers of $(P, S, S)-157$ exhibited the different reactivity with respect to the lithium-halogen exchange reaction. At $-110{ }^{\circ} \mathrm{C}$ the atropisomer $\left(P, S_{\mathrm{a}}, S, S\right)-157$ provided the phosphine-borane complex $\left(P, S_{\mathrm{a}}, S, S\right)$-158 in acceptable yield. The other atropisomer $\left(P, R_{\mathrm{a}}, S, S\right)-157$ under the same reaction conditions provided only the reduced product (P, S, S)-160 (Scheme 3.17).

Scheme 3.17

(P, R_{2}, S, S)-157
(P,S,S)-160
(a) 1) t - BuLi (2.0 equiv.), $\mathrm{Et}_{2} \mathrm{O},-110{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} ; 2$) $\mathrm{Ph}_{2} \mathrm{PCl}\left(2.8\right.$ equiv.), $-110{ }^{\circ} \mathrm{C} \rightarrow 0$ ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; 3) $\mathrm{BH}_{3} \cdot \mathrm{THF}\left(66\right.$ equiv.), $0^{\circ} \mathrm{C} \rightarrow$ r.t., $30 \mathrm{~min}, 55 \%$.
(b) 1) t - BuLi (2.0 equiv.), $\mathrm{Et}_{2} \mathrm{O},-110^{\circ} \mathrm{C}, 1 \mathrm{~min}$; 2) $\mathrm{Ph}_{2} \mathrm{PCl}\left(2.8\right.$ equiv.), $-110 \rightarrow 0^{\circ} \mathrm{C}$, $2 \mathrm{~h} ; 3$) $\mathrm{BH}_{3} \cdot \mathrm{THF}$ (66 equiv.), $0^{\circ} \mathrm{C} \rightarrow$ r.t., $30 \mathrm{~min}, 82 \%$.

This result is counterintuitive since the lithiated intermediate resulting from the bromine-lithium exchange with $\left(P, R_{a}, S, S\right)-157$ atropisomer could be stabilised by coordination to the proximate oxygen atom of the 7 -membered ring.

Furthermore, it was surprising that the phosphine-borane complex $\left(P, S_{\mathrm{a}}, S, S\right)$ 158 was very air-sensitive. In contrast to the previously prepared phosphine-borane
complexes, the borane protected phosphine (P, S_{a}, S, S)-158 readily oxidised in a solution and upon the contact with silica gel to the phosphine oxide (P, S_{a}, S, S)-159. In addition, the decomposition was observed during chromatography on silica gel. Due to these complications it was not prepared on a larger scale and accordingly was not tested in asymmetric catalysis. The single-crystal X-ray diffraction analysis of (P, S_{a}, S, S)-159 was unfortunately flawed by the crystal structure disorders (Figure 3.8, Appendix A). Nevertheless, this structure combined with the evidence from the NMR analysis demonstrated that there was no epimerisation during the brominelithium exchange reaction (Figure 3.8).

Figure 3.8 X-ray structure of $\left(P, S_{a}, S, S\right)$-159 with thermal ellipsoids at the 50% probability level.

An alternative synthetic route leading to both atropisomers of the phosphine (P, S, S)-158 was also pursued. In this approach (Scheme 3.18), the phosphine group was introduced into the triyne (S, S)-156 by the bromine-lithium exchange reaction to provide phosphine (S, S)-161 in acceptable yield. Unfortunately, the triyne (S, S)-161 was unstable and was prone to decomposition during purification both by silica gel and reversed phase chromatography. Therefore, only a small amount of pure (S,S)161 was obtained. This result could be rationalised by a recent report by Fukazawa et al., in which he described the spontaneous cyclisation of similar phosphines with alkynyl substituents in ortho position. ${ }^{158}$ The cyclotrimerisation experiments using $\mathrm{CoCp}(\mathrm{CO})_{2}$ complex were performed under microwave irradiation conditions and in
the continuous flow reactor. In neither case the helical phosphine oxide (P, S, S)-159 was obtained, as the triyne decomposed to a complex mixture of unidentified products.

Scheme 3.18

(a) 1) n - BuLi (1.0 equiv.), THF, $-85^{\circ} \mathrm{C}, 1 \mathrm{~min} . ; 2$) Ph 2 PCl (1.6 equiv.), $-85^{\circ} \mathrm{C}, 5 \mathrm{~min}$, 45\%.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), THF, $180^{\circ} \mathrm{C}, 15 \mathrm{~min}, \mathrm{MW}$, decomposition.
(c) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), $\mathrm{THF}, 250^{\circ} \mathrm{C}, 80 \mathrm{bar}$, continuous flow reactor, decomposition.

3.1.1.2 Synthesis of phosphites

Helical phosphites have recently proved to be promising ligands in enantioselective transition metal-catalysed reactions. For example, they were recently successfully applied to Rh-catalysed hydroformylation and Ir-catalysed allylic amination reactions. ${ }^{117}$

2-Hydroxyhelicene-like compound as a precursor of phosphites

Phosphites are usually prepared from the corresponding alcohols. Since the access to the hydroxy helicenes from the helical bromides was not viable (cf. Scheme 3.6), an alternative synthetic approach via the methoxy substituted helicenelike compounds was pursued. The synthesis started with the preparation of the building block (S)-164 (Scheme 3.19) from aryl iodide $162 .{ }^{65}$ The radical bromination of this compound with NBS provided 163, ${ }^{65}$ which was not contaminated by the iodine-bromine exchange product (cf. the preparation of the compound 134, Scheme 3.7). The following reaction with alkoxide, prepared from (S)-145, provided the building block (S)-164 in moderate yield.

Scheme 3.19

(a) NBS (1.2 equiv.), AIBN (cat.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), CCl_{4}, IR lamp, reflux, $2 \mathrm{~h}, 98 \%$.
(b) (S)-145 (1.0 equiv.), KH (1.5 equiv.), THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., overnight, 52%.

The synthesis continued with Sonogashira cross-coupling of the building blocks (S)-149 and (S)-164, which furnished triyne (S, S)-165 in good yield (Scheme 3.20). Finally, the cyclotrimerisation reaction of the methoxy substituted triyne (S, S) 165 was performed by the microwave-assisted synthesis in the presence of a cobalt complex and provided the helicene-like compound (P, S, S)-166, which was obtained as a single diastereomer.

Scheme 3.20

(a) (S)-164 (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, $\mathrm{Cul}(11 \mathrm{~mol} \%)$, DIPA, $80^{\circ} \mathrm{C}, 30 \mathrm{~min}$, 73\%.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), ionic liquid, THF, MW, $200{ }^{\circ} \mathrm{C}, 15$ min, 70\%.

The methoxy substituted helicene-like compound (P, S, S)-166 was then demethylated using a large excess of sodium ethanethiolate to give the hydroxy derivative (P, S, S)-167 in almost quantitative yield (Scheme 3.21). Then it was converted into phosphite (P, S, S)-168 in the presence of triethylamine and 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane. The dioxaphospholanyl derivative (P, S, S)-168 was prepared for an initial testing in enantioselective catalysis because it was found to be successful in the catalytic reactions explored before in our lab. ${ }^{117}$

Scheme 3.21

(P, S, S)-166

(P, S, S)-167

(P,S,S)-168
(a) $\operatorname{NaSEt}\left(19.2\right.$ equiv.), DMF, $130^{\circ} \mathrm{C}, 18 \mathrm{~h}, 98 \%$.
(b) $\mathrm{Et}_{3} \mathrm{~N}$ (40 equiv.), 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane equiv.), $\mathrm{Et}_{2} \mathrm{O}$, r.t., 1 h, 74%.

2,15-Dihydroxy helicene-like compound as a precursor of helical phosphites/phosphonites

The MeO-substituted aryl iodide (S)-164 was used for the synthesis of diyne (S)-170 (Scheme 3.22). Sonogashira cross-coupling with ethynyl(trimethyl)silane afforded silane (S)-169, and the subsequent deprotection of the trimethylsilyl group with potassium carbonate in methanol provided diyne (S) - $\mathbf{1 7 0}$ in good yield.

Scheme 3.22

(a) TMSA (1.2 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(6 \mathrm{~mol} \%)$, $\mathrm{Cul}(12 \mathrm{~mol} \%)$, DIPA, $80^{\circ} \mathrm{C}, 45 \mathrm{~min}$., 85\%.
(b) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.5 equiv.), methanol, r.t., $2 \mathrm{~h}, 60 \%$.

Finally, the building blocks (S)-164 and (S)-170 were connected under Sonogashira cross-coupling conditions to give triyne (S, S)-171 in high yield (Scheme 3.23). Triyne (S, S)-171 was not obtained by a double Sonogashira cross-coupling of aryl iodide (S)-164 with gaseous acetylene since the complex mixture of products including the dimeric by-product (tetrayne) was formed instead.

Scheme 3.23

(b) $\mathrm{CoCp}(\mathrm{CO})_{2}\left(1.4\right.$ equiv.), PPh_{3} (2.0 equiv.), ionic liquid, THF, $\mathrm{MW}, 200^{\circ} \mathrm{C}, 20$ min, 88%.

The triyne was then cyclotrimerised in the presence of $\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$ and microwave irradiation to give the helicene-like compound (P, S, S)-172 as a single diastereomer. When the same reaction was carried out in decane under halogenlamp irradiation, the yield dropped to 53% due to the decomposition of the starting material/product.

Demethylation of $(P, S, S)-\mathbf{1 7 2}$ with an excess of sodium ethanethiolate provided the dihydroxy helicene-like compound (P, S, S)-173 in excellent yield (Scheme 3.24). Nevertheless, the cyclic phosphonite or bisphosphite compounds were not obtained. Reaction of (P, S, S) - 173 with phenylphosphonous dichloride in the presence of a base resulted in a complex mixture of compounds. The fact that the cyclic product was not formed could be explained by the large distance between the oxygen atoms of the hydroxyl groups, which was $5.2 \AA$ as determined from the X-ray structure of (P, S, S)-172 (Figure 3.13 in Chapter 3.1.3 (p. 72), Appendix A). According to the Cambridge Structural Database ${ }^{159}$ the length of the P-O bond of aromatic cyclic phosphites varied between 1.5-1.7 \AA and accordingly the distance between the oxygen atoms corresponded to 2.4-2.7 \AA. This is half the distance separating the hydroxy groups in (P, S, S)-172. Although one can argue that the conformation of the molecule (P, S, S)-172 could be determined by crystal packing, the oxepine-type structures appear to be fairly rigid on the NMR time scale probably due to the fixation of the conformation by the methyl group on the 7-membered rings. Nevertheless, helicenol (P, S, S)-173 is being currently explored as a precursor of helical phosphoramidites by the group of Prof. A. Alexakis (University of Geneva, Switzerland) as a part of the collaboration between our teams.

Scheme 3.24

(a) NaSEt (40 equiv.), DMF, $140^{\circ} \mathrm{C}, 6 \mathrm{~h}, 90 \%$.
(b) NaH (4 equiv.), PhPCl_{2} (0.5 equiv.), THF, r.t., 30 min .

3.1.1.3 Influence of triyne substituents on [2+2+2] cyclotrimerisation reaction

The initially designed triyne structures were substituted with aryl groups at the terminal triple bonds, because their presence ensured high diastereoselectivity of the cyclisation, increased the triyne's stability along with the yield of the cyclotrimerisation reaction. In this work the effect of the electronic nature of the aryl substituents on the yield and diastereoselectivity of the cyclotrimerisation reaction was further explored. Thus, a library of triynes bearing aryl substituents with electron-donating as well as electron-withdrawing groups was prepared and screened.

Triyne (S, S)-180 was prepared from the toluene derivative 162 (Scheme 3.25). The bromination of 162 and subsequent nucleophilic substitution with the alkoxide, derived from (S)-111 provided alkyne (S)-175, which was then orthogonally protected to give silane (S)-176 in good yield. Transformation to diyne (S)-178 by Sonogashira cross-coupling and the following desilylation with a weak base provided diyne (S)178. Finally, Sonogashira cross-coupling of iodide (S)-176 and diyne (S)-178 followed by desilylation with TBAF provided the triyne (S, S) - $\mathbf{1 8 0}$ in high isolated yield.

Scheme 3.25

(a) 1) NBS (1.2 equiv.), AIBN (cat.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (cat.), CCl_{4}, IR lamp, reflux, 2.5 h ; 2) KH (1.5 equiv.), (S)-111 (1.0 equiv.), THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t. overnight, 28%.
(b) 1) LDA (1.8 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2) $\mathrm{TIPSCI}\left(1.8\right.$ equiv.), $-78^{\circ} \mathrm{C} \rightarrow r . t$, overnight, 84\%.
(c) TMSA (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($6 \mathrm{~mol} \%$), Cul ($12 \mathrm{~mol} \%$), DIPA, r.t., $1.5 \mathrm{~h}, 99 \%$.
(d) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (3.5 equiv.), methanol, r.t., $45 \mathrm{~min}, 93 \%$.
(e) (S)-176 (0.9 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), Cul ($11 \mathrm{~mol} \%$), DIPA, r.t., $1 \mathrm{~h}, 83 \%$.
(f) TBAF (2.0 equiv.), THF, r.t., $30 \mathrm{~min}, 94 \%$.

Sonogashira cross-coupling of triyne (S,S)-180 with a series of aryl iodides proceeded smoothly with moderate to high yields. As was expected, aryl iodides possessing electron-withdrawing groups were more reactive (Scheme 3.26). The subsequent cyclotrimerisation reaction provided in all cases exclusively (P, S, S)diastereomers of the helicene-like compounds (P, S, S)-172 and (P, S, S)-188-193. It was found that some functional groups were not suitable for the reaction rendering the cyclic product unstable, e.g. cyano and nitro derivatives, while the other, e.g. 3,5bis(trifluoromethyl), made the reaction to proceed in quantitative yield. A clear correlation between the electronic nature of the aryl substituents and efficiency of the cyclotrimerisation reaction was not observed.

Scheme 3.26

(a) $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ (10-16 mol\%), PPh_{3} (20-26 mol\%), Cul (15-23 mol\%), aryl iodide (2.5-6.4 equiv.), DIPA (2.5 equiv.), toluene, $80^{\circ} \mathrm{C}, 5 \mathrm{~min}$.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0-1.1 equiv.), PPh_{3} (2.0 equiv.), decane, halogen lamp, $140^{\circ} \mathrm{C}$, 45 min-2 h.

A similar study was carried out on the bromo substituted triyne $(S, S)-122$ (Scheme 3.27). Due to the presence of the bromo substituent, the reaction temperature was decreased to $0{ }^{\circ} \mathrm{C}$ and a more reactive $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ complex was employed (cf. a catalytic system of $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{Cl}_{2} / \mathrm{PPh}_{3}$, Scheme 3.26). Nitro and cyano derivatives were not studied due to their failure in the previous experiments. Sonogashira coupling of triyne (S, S)-122 with a series of aryl iodides afforded (S, S) -

123 and (S,S)-195-199 with good yields. Surprisingly, when the previously favourable 4-trifluoromethylphenyl and 3,5-bis(trifluoromethyl)phenyl substituents were introduced in the triyne (S, S)-122 structure, it led to decomposition of the reaction mixture $(\mathbf{1 9 5} \boldsymbol{\rightarrow} \mathbf{2 0 3})$ and the low isolated yield of the helicene-like compound (P, S, S) 204 were observed. The most efficacious substituent was phenyl. All helicene-like compounds 124, 200-202 and $\mathbf{2 0 4}$ were obtained as single (P, S, S) diastereomers.

Scheme 3.27

(a) $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$, Cul (20-22 mol\%), aryl iodide (2.5-5.2 equiv.), DIPA (9-12 equiv.), toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., overnight.
(b) $\mathrm{CoCp}(\mathrm{CO})_{2}\left(1.0\right.$ equiv.), PPh_{3} (2.0 equiv.), halogen lamp, decane, $140{ }^{\circ} \mathrm{C}, 30$ min-2.5 h.

These results demonstrate that it was generally difficult to draw any conclusion about the electronic nature of the alkyne substituents to support the cyclotrimerisation reactions. But it is evident that the yield of the cyclotrimerisation strongly depended on the triyne structure and a simple correlation could not be found.

In contrast, cyclotrimerisation of the unsubstituted triynes $(S, S)-\mathbf{1 2 2},(S, S)-140$ and (S,S)-180 provided exclusively (M,S,S)-205, (M,S,S)-206, (M,S,S)-207 diastereomers (Scheme 3.28). It was also observed that the helicene scaffolds without aryl substituents on the central benzene ring were formed in lower yields and were generally less stable than the substituted ones.

In addition, several other catalytic systems were examined in cyclotrimerisation of triyne (S, S)-122. Under catalyst-free conditions reported by Ley et al. ${ }^{160}$ triyne
(S,S)-122 was completely unreactive. Other complexes used in cyclotrimerisation reaction were also tested: Wilkinson catalyst, ${ }^{161} 1^{\text {st }}$ gen. Grubbs catalyst, ${ }^{162}$ $\operatorname{RuCp}{ }^{*} \mathrm{Cl}(\mathrm{cod}),{ }^{163}\left[\mathrm{Ir}(\mathrm{dppe}) \mathrm{Cl}_{2},{ }^{161} \mathrm{NiCl}_{2}(\mathrm{dppe}) / \mathrm{Zn}^{161}\right.$ and $\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Br} .{ }^{161}$ However, none of them provided the desired helicene-like compound (M, S, S)-205. The most suitable was $\mathrm{CoCp}(\mathrm{CO})_{2} / \mathrm{PPh}_{3}$ catalytic system, which provided the helical compound (M, S, S)-205 in 35\% yield.

Scheme 3.28

(a) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0-1.1 equiv.), PPh_{3} (2.0 equiv.), THF, MW, $190^{\circ} \mathrm{C}, 5-10 \mathrm{~min}$.

3.2 Pyran-type helicene-like compounds

The scope and limitations of the asymmetric synthesis of the helically chiral compounds employing the diastereoselective $[2+2+2]$ cyclotrimerisation were further investigated on triynes, which cyclised to a novel type of helical scaffold with two 6membered (R)-methyl-2H-pyran rings. These molecules were an attractive target because of their resemblance to the fully aromatic helicenes. The DFT calculations predicted the energy difference between these pyran-type diastereomers to be twice as much as in the oxepine-type series ($9.2 \mathrm{vs} .4 .6 \mathrm{kcal} / \mathrm{mol}$). ${ }^{164,165}$

Helicene-like compound with phosphine substituent in position 2

The synthetic route to the pyran-type derivatives was shorter than the route to the oxepine-type compounds because it used Mitsunobu reaction for the ether bond formation instead of the two-step preparation of the benzyl ether derivatives (cf. Chapter 3.1.1). Thus, the enantiopure commercial alcohol (S)-111 reacted smoothly with 2-iodophenol to provide the ether (R)-208 in excellent yield (Scheme 3.29). ${ }^{166}$ After orthogonal protection with triisopropylsilyl group, Sonogashira cross-coupling of $(R)-209$ with ethynyl(trimethyl)silane gave the optically pure diyne (R)-210. The sterically bulky triisopopylsilyl group was necessary to suppress the competing carbopalladation. In the case of the p-tolyl substituted alkyne, after the formation of an arylpalladium intermediate, intramolecular Heck-type coupling could be faster than the reaction with ethynyl(trimethyl)silane. Desilylation with sodium methanolate provided diyne (R)-211 in good yield.

Scheme 3.29

(a) (S)-111 (1.0 equiv.), PPh_{3} (1.0 equiv.), DIAD (1.0 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow r . t$., overnight, 93%.
(b) 1) LDA (1.2 equiv.), THF, $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$; 2) $\mathrm{TIPSCI}\left(2.2\right.$ equiv.), $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., 1 h, 89%.
(c) TMSA (1.2 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, Cul ($10 \mathrm{~mol} \%$), DIPA, r.t., $2 \mathrm{~h}, 99 \%$.
(d) NaOCH_{3} (1.0 equiv.), methanol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2), r.t., $30 \mathrm{~min}, 86 \%$.

The bromo substituted building block $(R)-214$ was synthesised from the phenol derivative 212, readily prepared from commercial 4-bromophenol by the published procedure. ${ }^{167}$ Then Mitsunobu reaction of 212 with the commercial alcohol (S)-111 afforded alkyne (R)-213 in excellent yield, which was then protected with triisopropylsilyl group (Scheme 3.30).

Scheme 3.30

(a) (S)-111 (1.0 equiv.), $\mathrm{PPh}_{3}\left(1.2\right.$ equiv.), DIAD (1.0 equiv.), THF, $0^{\circ} \mathrm{C} \rightarrow r . t ., 1 \mathrm{~h}$, 96\%.
(b) 1) LDA (1.1 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) $\mathrm{TIPSCI}\left(1.0\right.$ equiv.), $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then r.t., 1 h, 86%.

Sonogashira cross-coupling of diyne (R)-211 and aryl iodide (R)-214 provided the bromo substituted triyne (R, R) - 215 (Scheme 3.31), which was then transformed to the p-tolyl-substituted triyne $(R, R)-217$. Cyclotrimerisation in the presence of cyclopentadienylcobalt(I) or nickel(0) complexes proceeded with $>99 \%$ de while only (M, R, R)-103 diastereomer was obtained (Table 3.4). Unfortunately, the triyne (R, R) -

217 was rather unreactive and many by-products were formed during the cyclotrimerisation reaction.

Scheme 3.31

(a) (R)-214 (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, $\mathrm{Cul}(10 \mathrm{~mol} \%), \mathrm{DIPA}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} \rightarrow \mathrm{r} . \mathrm{t}$., overnight, 98\%.
(b) TBAF (2.0 equiv.), THF, r.t., $30 \mathrm{~min}, 98 \%$.
(c) p-iodotoluene (2.4 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), $\mathrm{Cul}(20 \mathrm{~mol} \%), \mathrm{DIPA}, 0^{\circ} \mathrm{C}, 30$ min , then r.t., $30 \mathrm{~min}, 90 \%$.
(d) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), decane, $\mathrm{hv}, 140^{\circ} \mathrm{C}, 50 \mathrm{~min}, 53 \%$.

Table 3.4 Cyclotrimerisation of the triyne $(R, R)-217$.

Entry	Metal complex	Solvent	Temperature, time	Heating mode	Isolated yield
1	$\mathrm{CoCp}(\mathrm{CO})_{2}(1.0), \mathrm{PPh}_{3}(2.0)$	decane	$140^{\circ} \mathrm{C}, 50 \mathrm{~min}$	hv	53%
2	$\mathrm{CoCp}(\mathrm{CO})(f u m)(1.0)$, $\mathrm{PPh}_{3}(2.0)$	THF	$180^{\circ} \mathrm{C}, 20 \mathrm{~min}$	MW	66%
3	$\mathrm{Ni}(\operatorname{cod})_{2}(0.2), \mathrm{PPh}_{3}(0.4)$	THF	r.t., overnight	-	$18 \%{ }^{[\mathrm{ab]}}$

${ }^{[a]} 77 \%$ conversion.

Finally, the helicene-like bromide (M, R, R)-103 was converted into the phosphine-borane complex (M, R, R)-218 using the halogen-lithium exchange reaction
(Scheme 3.32). The reaction proceeded in high yield but required temperatures below $-110^{\circ} \mathrm{C}$, the same as in the case of the oxepine-type helicenes.

Scheme 3.32

(a) 1). t-BuLi (2.1 equiv.), $\mathrm{Et}_{2} \mathrm{O},-115{ }^{\circ} \mathrm{C}, 1 \mathrm{~min} . ; 2$). $\mathrm{Ph}_{2} \mathrm{PCl}\left(5.2\right.$ equiv.), $-110{ }^{\circ} \mathrm{C} \rightarrow$ $-80^{\circ} \mathrm{C} ; 3$). $\mathrm{BH}_{3}-\mathrm{THF}$ (9.6 equiv.), r.t., $30 \mathrm{~min}, 98 \%$.

Helicene-like compound with an ester group in the position 2

The synthesis of helical ester (M, R, R)-105 followed the same synthetic route developed for bromide (M, R, R)-103 providing comparable yields (cf. Scheme 3.30 and 3.33). The commercially available compound 219 was transformed into ether $(R)-220$ by Mitsunobu reaction with the optically pure alcohol (S)-111. The protection of alkyne (R) - 220 with the triisopropylsilyl group afforded the building block $(R)-221$ in good yield (Scheme 3.33). Sonogashira cross-coupling of aryl iodide (R)-221 with alkyne (R)-211 produced the silylated triyne (R, R)-222 in excellent yield (Scheme 3.34). After desilylation, the p-tolyl groups were introduced into the triyne providing the triyne (R, R) - 224 in almost quantitative yield.

Scheme 3.33

(a) (S)-111 (1.0 equiv.), PPh_{3} (1.0 equiv.), DIAD (1.0 equiv.), THF, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, then r.t., overnight, 86%.
(b) 1) LDA (1.2 equiv.), THF, $-80^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 2$) TIPSCI (1.2 equiv.), $-80^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then \rightarrow r.t., $1 \mathrm{~h}, 61 \%$.

The ester substituted triyne $(R, R)-224$ was more reactive in the cyclotrimerisation reaction than bromide $(R, R)-217$. Thus a catalytic amount of cobalt or nickel complexes was sufficient to drive the reaction to completion (Table 3.5). The helical ester (M, R, R)-105 was obtained in good yield and $>99 \%$ de. The utilisation of the commercial $\operatorname{CoCp}(\mathrm{CO})_{2}$ was more effective than the zero-valent nickel complex (Entries 1-3 vs. Entry 4).

Scheme 3.34

(a) (R)-211 (1.0 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, $\mathrm{Cul}(10 \mathrm{~mol} \%)$, DIPA, r.t., $1 \mathrm{~h}, 95 \%$.
(b) TBAF (2.0 equiv.), THF, r.t., $30 \mathrm{~min}, 91 \%$.
(c) p-iodotoluene (2.2 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($10 \mathrm{~mol} \%$), Cul ($26 \mathrm{~mol} \%$), DIPA, r.t., 1 h , 95\%.
(d) $\mathrm{CoCp}(\mathrm{CO})_{2}(22 \mathrm{~mol} \%), \mathrm{PPh}_{3}(44 \mathrm{~mol} \%), \mathrm{THF}, \mathrm{MW}, 140^{\circ} \mathrm{C}, 30 \mathrm{~min}, 81 \%$.

Table 3.5 Cyclotrimerisation of the triyne $(R, R)-224$.

Entry	Catalytic system (equiv.)	Solvent	Temperature, time	Heating mode	solated yield
1	$\mathrm{CoCp}(\mathrm{CO})_{2}(0.1), \mathrm{PPh}_{3}(0.2)$	decane	$140^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\mathrm{~h} v$	72%
2	$\mathrm{CoCp}(\mathrm{CO})_{2}(1), \mathrm{PPh}_{3}(2)$	decane	$140^{\circ} \mathrm{C}, 1 \mathrm{~h}$	$\mathrm{~h} v$	68%
3	$\mathrm{CoCp}(\mathrm{CO})_{2}(0.2), \mathrm{PPh}_{3}(0.4)$	THF	$140^{\circ} \mathrm{C}, 30 \mathrm{~min}$	MW	81%
4	$\mathrm{Ni}(\mathrm{cod})_{2}(0.2), \mathrm{PPh}_{3}(0.4)$	THF	r.t., 16 h	-	$59 \%{ }^{[a]}$

[^0]
Helical DMAP-analogue

The optically pure helical DMAP-analogue was prepared from 4(dimethylamino)pyridine using diastereoselective synthetic methodology developed earlier. Dimethylaminopyridine was iodinated according to the literature procedure ${ }^{168}$ to provide iodide 225 (Scheme 3.35). The following Sonogashira cross-coupling with the optically pure (S)-111 provided the DMAP substituted alkyne (S)-226 in high yield.

Scheme 3.35

(a) 1) $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ (1.1 equiv.), THF, $0{ }^{\circ} \mathrm{C}, 40 \mathrm{~min} ; 2$) LiTMP (1.2 equiv.), THF, $-78^{\circ} \mathrm{C}$, $45 \mathrm{~min} ; 3$) I_{2} (1.5 equiv.), THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} \rightarrow$ r.t., $1 \mathrm{~h}, 78 \%$.
(b) (S)-111 (1.1 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), Cul ($10 \mathrm{~mol} \%$), DIPA, r.t., $1 \mathrm{~h}, 89 \%$.

The second building block (R)-229 was prepared from commercial 2iodophenol. Sonogashira cross-coupling with ethynyl(trimethyl)silane had to precede Mitsunobu reaction with the optically pure alcohol (S) - 145 due to the possible concurrent Heck-type carbopalladation on the tolyl substituted alkyne moiety (Scheme 3.36).

Scheme 3.36

(a) TMSA (1.5 equiv.), $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ (4 mol\%), Cul ($9 \mathrm{~mol} \%$), DIPA (1.5 equiv.), benzene, r.t., $3 \mathrm{~h}, 98 \%$.
(b) (S)-145 (1.2 equiv.), PPh_{3} (1.1 equiv.), DIAD (1.2 equiv.), benzene, r.t., 3 h , 75\%.
(c) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 equiv.), r.t., 1.5 h , methanol, 83%.

Sonogashira cross-coupling of the desilylated diyne (R)-229 and 2-iodophenol afforded the phenol derivative (R)-230 in quantitative yield (Scheme 3.37). Mitsunobu reaction of (R)-230 and (S)-226 was slow and required prolonged heating. Finally, cyclotrimerisation of triyne (R, R) - 231 provided the helical DMAP-analogue (M, R, R)106 with good yield and $>99 \%$ de. The structure was confirmed by a single-crystal Xray analysis (Figure 3.9, Appendix A). The rotation barrier of the DMAP substituent was estimated to be $18.7 \mathrm{kcal} / \mathrm{mol}$ (AM1, Gaussian). According to the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, (M, R, R)-106 existed as a mixture of two atropisomers at room temperature. However, when heated at $100{ }^{\circ} \mathrm{C}$ in DMSO, it appeared as one compound on the NMR time scale.

This enantiopure helicene-like DMAP-analogue (M, R, R)-106 was further studied in the group of Prof. P. R. Schreiner (Justus-Liebig University, Giessen, Germany) as a possible organocatalyst in the enantioselective acyl transfer reaction.

Scheme 3.37

(a) 2-iodophenol (1.3 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($5 \mathrm{~mol} \%$), Cul ($10 \mathrm{~mol} \%$), DIPA (15 equiv.), toluene, r.t., 1h, 99\%.
(b) (S)-226 (1.0 equiv.), PPh_{3} (1.0 equiv.), DIAD (1.0 equiv.), THF, $50^{\circ} \mathrm{C}, 2 \mathrm{~d}, 88 \%$.
(c) $\mathrm{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), ionic liquid, THF, MW, $180^{\circ} \mathrm{C}, 25$ min, 89\%.

Figure 3.9 X-ray structure of (M, R, R)-106 with thermal ellipsoids at the 50% probability level.

3.1.3 Helicity assignment

A combination of methods was used to assign the relative configuration of the synthesised helicene-like compounds.

NMR techniques

The NMR spectroscopy was a primary tool in analysis of the synthesised diastereomeric helicene-like compounds. With the exception of the atropisomeric bromide (P, S, S)-157 and DMAP-analogue (M, R, R)-106, only one set of signals corresponding to a single compound was observed in ${ }^{1} \mathrm{H}$ NMR spectra in different solvents. This indicated the presence of only one diastereomer, assuming that the NMR spectra of the (P, S, S) and (M, S, S) diastereomers were not identical.

As mentioned in Chapter 3.1.1, the steric interaction between the methyl groups on the dihydrooxepine rings and the adjacent aromatic rings (Figure 3.1) was crucial for the induction of diastereoselectivity. The chemical shift of these methyl protons was indicative of the helicity due to its position relative to the aromatic parts of the molecule. ${ }^{8,99,169}$ It fell within an interval of $0.54-0.62 \mathrm{ppm}$ for the (P)-helices and within an interval of $1.58-1.67 \mathrm{ppm}$ for the (M)-helices. ${ }^{99}$ Similarly, the methyl protons ($\delta=0.67 \mathrm{ppm}$) of the compound (P, S, S)-172 (Figure 3.10) were shielded by the ring current of the proximate aromatic ring. Such shielding could not arise in the case of the (M, S, S)-172 structure, in which the methyl hydrogens were located outside of the shielding cone of the aromatic rings.

Figure 3.10 Molecular models of the two possible diastereomers of 172.

Helicity of the compounds without aryl substituents was assigned by measuring NOE interactions (Figure 3.11). For instance, in the compound (M, S, S)-207, a strong coupling in the ROESY spectrum arose from the spatial proximity of the methyl group $\left(\mathrm{CH}_{3}\right)$ and the H 2 hydrogen, whereas the interaction between H 1 and H 2 hydrogens was weak. If the helicene had the (P, S, S)-207 configuration, a strong $\mathrm{H} 1-\mathrm{H} 2$ interaction and a weak $\mathrm{CH}_{3}-\mathrm{H} 2$ would be observed. The same method was applied in the assignment of the relative configurations of the compounds (M, S, S)-205 and (M,S,S)-206.

Figure 3.11 Comparison of the experimentally observed ROESY NMR spectrum of (M, S, S)-207 and molecular models of the two possible diastereomers (M, S, S)-207 and (P, S, S)-207.

The helicity assignment in the pyran-type series was done by measuring the NOE interactions in the model unsubstituted pyran-type compound (M, R, R)-232 synthesised in our group by Mgr. J. Žádný (Figure 3.12). ROESY spectrum of $(M, R, R)-232$ showed strong coupling of the hydrogens $\mathrm{H} 1-\mathrm{H} 2$, whereas the NOE between the H 2 and the methyl group $\left(\mathrm{CH}_{3}\right)$ was negligible. This method, however, could not be used in the case of the p-tolyl substituted compounds $(M, R, R)-103$,
$(M, R, R)-105$ and $(M, R, R)-106$, since both NOE interactions $\mathrm{H} 1-\mathrm{H} 4$ and $\mathrm{CH}_{3}-\mathrm{H} 3$ were observed in the ROESY spectrum. These results will be presented in our collective paper. ${ }^{165}$

Figure 3.12 Molecular models of the helicene-like compounds containing (R)-methyl$2 H$-pyran rings. The arrows indicate the observed NOE interactions.

(M, R, R)-232

Single-crystal X-ray diffraction

In some cases the single-crystal X-ray diffraction analysis was used to determine helicity of the synthesised compounds. The oxepine-type helicenes crystallised more readily than the pyran-type compounds. The layer diffusion technique and using the combination of dichloromethane-heptane solvents proved to be the most successful in obtaining monocrystals of the oxepine-type helicenes. For polar compounds, such as (P, S, S)-167 and (M, R, R)-106, slow evaporation from a concentrated acetonitrile solution was used. In addition to the structures already presented in the text, three other helicene-like compound (P, S, S)-167, (P, S, S)-172 and (M,S,S)-207 were analysed (Figure 3.13).

Figure 3.13 X-ray structures of (P, S, S)-172, $(M, S, S)-207$ and (P, S, S)-167 with thermal ellipsoids at the 50% probability level.

(P, S, S)-172

(M,S,S)-207

(P,S,S)-167

Circular dichroism

Circular dichroism (CD) spectroscopy is an established technique for studying molecular chirality. ${ }^{99,169}$ The absolute configuration of helicenes and heterohelicenes was determined using CD spectroscopy either in UV-vis (ECD) or in infrared spectral regions (VCD). ${ }^{170-173,173,174}$ For assigning the absolute configuration, experimental CD spectra are often compared with the in silico calculated CD spectra. ${ }^{174-178}$ However, in spite of large strides in computational methods in the last decades, ${ }^{179,180}$ the cost of such calculations is prohibitive in the case of large molecules. Therefore, in this work the structure characterisation by the experimental ECD spectroscopy was compared with that obtained by the NMR and X-ray experiments. It is well known that the sign of the Cotton effect of simple helicenes is related to the sense of the helix. ${ }^{172,181}$ Therefore, a qualitative comparison of the CD spectrum of a compound in question with the spectrum of the compound of known configuration can be used to ascertain the helicity. For small helicenes the sense of optical rotation is indicative of the helicity: $[\alpha]^{22}{ }_{\mathrm{D}}>0$ for (P)-helicity and $[\alpha]^{22}{ }_{\mathrm{D}}<0$ for (M)-helicity. ${ }^{182}$ However, it was observed that the sign of the optical rotation of the helicene-like molecules, which possessed more than one element of chirality, was not related to their helicity. For example, the compounds $(M, R, R)-205,(M, R, R)-206$ and $(M, R, R)-207$ had $[\alpha]^{22}{ }_{D}$ values $-8^{\circ},+124^{\circ}$ and -62°, respectively.

The CD spectrum of the helicene-like alcohol of the oxepine-type (P, S, S)-167 possessed an intensive couplet of positive (235 nm) and negative (252 nm) spectral bands accompanied with a shoulder at 246 nm (Figure 3.14). Additional negative bands at 222 nm together with a broad negative spectral band around 270 nm were observed. According to the X-ray diffraction analysis, the alcohol (P, S, S)-167 had (P)-helicity (Figure 3.13). The CD spectrum of the structurally related bromide (P, S, S)-124 was similar with respect to the positions and signs of the principal spectral bands (couplet of positive (225 nm) and negative (254 nm) bands with a shoulder at 247 nm). Therefore, (P)-helicity was assigned to bromide (P, S, S)-124.

Bromide (P, S, S)-124 was then compared to the structurally similar bromide (P, S, S)-142 and also to their corresponding phosphine-borane complexes (P, S, S)127 and (P, S, S)-143 (Figure 3.15). The CD spectra of all four compounds possessed characteristic couplets of positive and negative spectral bands at (+)225 nm and
$(-) 254 \mathrm{~nm}$ for bromide (P, S, S)-124; (+)220 nm and (-)256 nm for bromide (P, S, S)142; (+)227nm and (-)247nm for phosphine-borane complex (P,S,S)-127; (+)224nm and (-)261 nm for phosphine-borane complex (P, S, S)-143 accompanied by broad negative low intensity bands around 290 nm . Consequently, helicity of all these compounds was expected to be the same. (P)-Helicity was assigned on a basis of the spectral similarity to bromide $(P, S, S)-124$.

Figure 3.14 CD spectra of (P, S, S)-124 and (P, S, S)-167.

Figure 3.15 CD spectra of $(P, S, S)-124,(P, S, S)-127,(P, S, S)-142$ and $(P, S, S)-143$.

Figure 3.16 shows the ECD spectra of the synthesised phosphine derivatives (P, S, S)-127, (P, S, S)-143, (P, S, S)-153 and (P, S, S)-159. As in the previous case, the CD spectra were characterised by positive and negative couplet bands at (+)227 nm and (-)261 nm for ($(P, S, S)-127,(+) 224 \mathrm{~nm}$ and (-)247 nm for ($(P, S, S)-143,(+) 229 \mathrm{~nm}$
and (-)257 nm for (P, S, S)-153 and (+)217 nm and (-)255 nm and an additional low intensity negative band at 290 nm for (P, S, S)-159. The helicity of $(P, S, S)-153$ and (P, S, S)-159 was determined by X-ray diffraction analysis. The spectral similarity between the phosphines of known helicity and $(P, S, S)-127$ and (P, S, S)-143 led to a conclusion that all these compounds had the same helicity.

Figure 3.16 CD spectra of $(P, S, S)-127,(P, S, S)-143,(P, S, S)-153$ and $(P, S, S)-159$.

The helicity of (P, S, S)-172 and (M, S, S)-207 was determined by X-ray analysis. The ECD spectra of these compounds were almost in a mirror image relationship (Figure 3.17). Both compounds had opposite maxima at 219 nm (negative in the case (P, S, S)-172, positive in the case of (M, S, S)-207) and at 237 nm (positive for (P, S, S)172 and negative slightly blue-shifted at 233 nm with a shoulder at 247 nm for (M, S, S)-207). The additional spectral bands, negative at 265 nm for (P, S, S)-172 and positive slightly red-shifted at 266 nm for (M, S, S)-207, were also observed. The opposite signs of the Cotton effects indicated the opposite helicity of these compounds. The experimental CD spectra showed a number of subtle differences but the additional negative band at 250 nm for the compound (P, S, S)-207 was a distinctive one, which probably originated from the structural difference between these compounds.

The opposite sense of helicity of bromides (P, S, S)-124, (P, S, S)-142 and $(M, S, S)-\mathbf{2 0 5},(M, S, S)-206$ is demonstrated in Figure 3.18. These compounds have opposite sign of their Cotton effects in range of 270-300 nm (negative for compounds (P, S, S)-124, (P, S, S)-142 and positive for (M, S, S)-205, (M, S, S)-206). The presence of
the additional negative maxima at $254 \mathrm{~nm}((P, S, S)-124)$ and $256 \mathrm{~nm}((P, S, S)-142)$ and the positive maxima at $230 \mathrm{~nm}((P, S, S)-124)$ and $220 \mathrm{~nm}((P, S, S)-142)$ could be caused by the presence of phenyl substituents. Intensity of the CD signals of (M, S, S)-205, (M,S,S)-206 is comparable to the intensity of the spectrum of the similar compound (M, S, S)-207 ($\Delta \varepsilon$ in range of $10-20 \mathrm{~cm}^{-1} \mathrm{M}^{-1}$, cf. Figure 3.17).

Figure 3.17 CD spectra of (P, S, S)-172 and (P, S, S)-207.

$-(P, S, S)-172$

Figure 3.18 CD spectra of $(P, S, S)-124,(P, S, S)-142,(P, S, S)-205$ and (P, S, S)-206.

The CD and UV-vis absorption spectra of the atropisomeric helical bromides (P, S_{a}, S, S)-157 and (P, R_{a}, S, S)-157 are shown in Figure 3.19. Both compounds possessed the characteristic couplets at 219 nm (positive and more intensive for the R_{a} isomer) and 254 nm (negative, the same for both compounds) spectral bands
accompanied with a shoulder at 283 nm (more distinct for the S_{a} compound). The UV-visible absorption spectra of both compounds possessed the absorption maximum at 254 nm , which in the case of the (P, S_{a}, S, S)-157 atropisomer had a more distinctive vibronic structure compared to the other R_{a}-isomer.

Figure 3.19 CD and UV-vis spectra of $\left(P, S_{a}, S, S\right)-157$ and $\left(P, R_{a}, S, S\right)-157$.

The helicity of the pyran-type helicene-like compound (M, R, R)-106 was determined by the X-ray analysis. Its CD spectrum was in an excellent agreement with the spectrum of $(M, S, S)-232$, whose helicity was determined using the NMR methods (Figure 3.20). ${ }^{165}$ The spectrum of the DMAP-analogue (M, R, R)-106 contained a positive maximum at 225 nm and two negative minima at 252 nm and 298 nm , while the spectrum of (M,S,S)-232 was slightly blue-shifted. The CD spectrum of bromide (M, R, R)-103, which was characterised by a positive band at 231 nm and two negative bands at 252 nm and 302 nm , respectively, resembled the
spectrum of the DMAP-analogue (M, R, R)-106. The CD spectrum of ester (M, R, R) 105 showed positive maxima at 225 nm and 241 nm and negative minima at 263 nm and 277 nm . The observed spectral shifts of these couplets probably arose from the difference in substitution on these helicene-like skeletons. Nevertheless, the similarity of the general sense of the Cotton effects of these four compounds implied that it was highly probable that they possessed the same (M)-helicity.

Figure 3.20 CD spectra of $(M, R, R)-103,(M, R, R)-106,(M, R, R)-105$ and $(M, R, R)-232$.

3.2 Enantioselective catalysis

Enantioselective Ni-catalysed cyclotrimerisation of alkynes

The enantioselective $[2+2+2]$ cyclotrimerisation of aromatic alkynes would provide an efficient and atom-economic access to the nonracemic helicenes. Therefore, the synthesised phosphines and phosphites were tested as ligands in the $\mathrm{Ni}(0)$-catalysed cyclotrimerisation of triyne $233{ }^{183}$ under mild reaction conditions using $20 \mathrm{~mol} \%$ of $\mathrm{Ni}(\operatorname{cod})_{2}$ and $40 \mathrm{~mol} \%$ of P-ligand in tetrahydrofuran at room temperature (Tab. 3.7 and Figure 3.21). The phosphines were easily obtained from the respective phosphine-borane complexes by treatment with an excess of diethylamine.

Table 3.7

(a) $\mathrm{Ni}(\mathrm{cod})_{2}(20 \mathrm{~mol} \%)$, ligand ($40 \mathrm{~mol} \%$), THF, r.t., 15 min .

Entry	Ligand	Isolated yield $^{[\text {a] }}$	ee (configuration)
1	$(P, S, S)-\mathbf{1 2 7}$	17%	$30 \%(-)$
2	$(P, S, S)-\mathbf{1 2 8}$	99%	0%
3	$(P, S, S)-143$	67%	$28 \%(+)$
4	$(P, S, S)-144$	99%	0%
5	$(P, S, S)-153$	94%	$7 \%(+)$
6	$(M, R, R)-\mathbf{2 1 8}$	75%	$10 \%(+)$
7	$(P, S, S)-168$	92%	0%
8	$(P, S, S)-\mathbf{2 3 5}{ }^{184}$	62%	0%
9	$(S)-236^{185-187}$	$<5 \%$	n / a
10	$(S)-$ Quinazolinap ${ }^{188}$	75%	$40 \%(+)$
11	$(R, R)-O-P I N A P$	33%	$9 \%(+)$
12	$(R, R)-N-$ PINAP	26%	$22 \%(+)$
13	$(R)-S I T C P$	35%	$5 \%(+)$

${ }^{[a]}$ the isolated yield was equivalent to conversion of the triyne 233.

Figure 3.21

(P,S,S)-127

(P,S,S)-128

(P, S, S)-143

(P, S, S)-144

(P, S, S)-153

(P, S, S)-168

(R)-SITCP

Apart from the helically chiral ligands (Entries 1-8), binaphthyl-type phosphite (S)-236 ${ }^{185-187}$ (Entry 9, provided by Prof. H. Yamamoto (University of Chicago, USA)), (S)-Quinazolinap ${ }^{188}$ (Entry 10, provided by Prof. P. C. Guiry (University College Dublin, Ireland)), commercially available (R, R)-O-PINAP (Entry 11), (R, R)-N-PINAP (Entry 12) and spiro ligand (R)-SITCP (Entry 13) were tested.

Moderate yields and enantioselectivities were observed when helical diphenylphosphine ligands were used in the cyclotrimerisation reaction (Entries 1, 3, 5-6). Initially, phosphine (P, S, S)-127 from the dihydrooxepine series afforded 4 H [6]helicene 234 in 30% ee but the conversion was low (Entry 1). Using electrondonating cyclohexyl substituents increased reactivity but decreased enantioselectivity of the reaction with $(P, S, S)-128$ (Entry 2). When the diphenylphosphino substituent was shifted further from the helical cavity to the position 3, the yield increased dramatically and the enantioselectivity dropped slightly (Entry 3). Surprisingly, a change in the position of the phosphine substituent inverted the helicity of the product 234 (Entries 1 and 3). Similarly, the exchange of the phenyl substituents on the phosphorus to the cyclohexyl groups provided the racemic $4 H$-[6]helicene 234 in
quantitative yield (Entry 4). Therefore, further study was conducted on the diphenylphosphino helicene-like ligands. Almost quantitative conversion of the triyne 233 was observed when the diphenylphosphino group was placed on the central benzene ring of the scaffold (Entry 5). This position was however less favourable for the enantioselectivity of the reaction. The pyran-type $(M, R, R)-218$ ligand was moderately reactive affording 4 H -[6]helicene 234 in 75% yield and 10% ee (Entry 6). The more electrophilic phosphites (P, S, S)-168 and (P, S, S)-235 ${ }^{184}$ increased reactivity of the catalyst, but the racemic product 234 was obtained (Entries 7-8).

Binaphthyl-type ligands were even less reactive (Entries 9, 11-12). The phosphite (S)-236 dramatically retarded the reactivity of the nickel catalyst, so only $<5 \%$ of 234 were produced (Entry 9). The most successful was (S)-quinazolinap ${ }^{189}$ (Entry 10) with 40% ee (75% yield). However, the structurally similar $(R, R$)-O-PINAP and (R, R)-N-PINAP ligands provided $4 H$-[6]helicene 234 in 9% ee (33% yield) and 22% ee (26\% yield), respectively (Entries 11-12). The spiro-ligand (R)-SITCP (Entry 13) exhibited very low reactivity and enantioselectivity.

The enantioselective $[2+2+2]$ cyclotrimerisation was also examined on a more reactive substrate 237^{190} available in our laboratory (Table 3.8). In the case of (P, S, S)-127 and (P, S, S)-143, the fully aromatic dibenzo[6]helicene 238 was formed in higher yields compared to 4 H -[6]helicene 234 and enantioselectivity up to 25% ee was observed (Entry 2).

Table 3.8

(a) $\mathrm{Ni}(\mathrm{cod})_{2}(20 \mathrm{~mol} \%)$, ligand ($40 \mathrm{~mol} \%$), THF, r.t., 15 min .

Entry	Ligand	Isolated yield	ee (configuration)
1	$(P, S, S)-127$	98%	$16 \%(-)$
2	$(P, S, S)-143$	73%	$25 \%(-)$

Gold(I)-catalysed cyclisation of enynes

Gold-catalysed cyclisation of enynes is a great challenge in asymmetric catalysis due to the linear geometry of gold(I) complexes, which increases the distance between the ligand and a prochiral substrate. ${ }^{152,191}$ Recently, Echavarren and co-workers reported on the cationic gold(I) complexes, which were exceedingly effective in promoting alkoxycarbocyclisations of a wide range of 1,6-enynes. ${ }^{192,193}$ The active catalytic species in these reactions was the cationic gold(I) complex $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}\right]^{+}$, generated in situ from $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCH}_{3}\right]$ after treatment with a strong acid. ${ }^{194,195}$ This method of generation of cationic gold(I) species was not suitable for our elaborate helical phosphines since heating in acidic media was required. Therefore, another well-known procedure was used - the corresponding chlorophosphinegold(I) complexes were treated in situ with a silver salt, thus precipitating silver chloride and forming the desired cationic complex. ${ }^{196}$ The chlorophosphinegold (I) complexes (P, S, S)-239 and (P, S, S)-240 were prepared from the corresponding phosphine-borane complexes $(P, S, S)-127$ and (P, S, S)-143 (Scheme 3.38). ${ }^{197-199}$ Sodium tetrachloroaurate was initially reduced by 2,2'thiodiethanol and then mixed with the deprotected phosphine.

Scheme 3.38

(P, S, S)-127

(P, S, S)-143

(P,S,S)-240, 42\%
(a) 1) $\mathrm{Et}_{2} \mathrm{NH}, 50{ }^{\circ} \mathrm{C}, 15 \mathrm{~h} ; 2$) NaAuCl_{4} (2.0-2.5 equiv.), 2,2'-thiodiethanol (5.9-6.7 equiv.), $\mathrm{H}_{2} \mathrm{O}$; 3) phosphine (1.0 equiv.), THF, r.t., 30 min .

The complexes with phosphites $(P, S, S)-168$ and (P, S)-85 were generated in situ from the thioether complex $\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right]$, in which dimethylsulfide was easily displaced by the phosphite ligand. ${ }^{200}$

The prepared helical gold(I) complexes (P, S, S)-239 and (P, S, S)-240 were efficient catalysts for methoxycarbocyclisation of 1,6-enynes 241-244 (Scheme 3.39). The cyclised products were obtained in quantitative (95-99\%) yields but no enantioselectivity was observed in these reactions. The more reactive bis(phenylsulfonyl) derivatives 241 and 242 were reactive at room temperature whereas the malonates 243 and 244 required heating to $80^{\circ} \mathrm{C}$. The gold(I) complex of the phosphite (P, S, S)-168 provided (\pm)-245 in 95% yield while the gold(I) complex of the [7]helicene-like (P, S)-85 afforded (-)-245 in 92\% yield and 15% ee. The reaction did not proceed in THF, dichloromethane or toluene employing only 10% of methanol.

Scheme 3.39

$$
\begin{array}{ll}
241 \mathrm{R}_{1}=\mathrm{PhSO}_{2}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3} & 245 \mathrm{R}_{1}=\mathrm{PhSO}_{2}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3} \\
242 \mathrm{R}_{1}=\mathrm{PhSO}_{2}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ph} & 246 \mathrm{R}_{1}=\mathrm{PhSO}_{2}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ph} \\
243 \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH} & 247 \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH} \\
3 \\
244 \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ph} & 248 \mathrm{R}_{1}=\mathrm{CH}_{3} \mathrm{O}_{2} \mathrm{C}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{Ph}
\end{array}
$$

(a) $\mathrm{AuCl}\left(\mathrm{L}^{*}\right)(2 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(2 \mathrm{~mol} \%)$, methanol, r.t. or $80^{\circ} \mathrm{C}, 95-99 \%{ }^{199}$

The methoxycarbocyclisation of 1,6-enynes could be also catalysed by a less reactive platinum dichloride. ${ }^{199,} 201$ Azahelicenes prepared in our group were tested as N -donor ligands in this reaction. The best result was obtained with (-)-2aza[6]helicene ${ }^{202}$ (Scheme 3.40). The cycloaddition product (-)-245 was formed with an excellent regioselectivity in 97\% yield and 9\%ee.

Scheme 3.40

3.3 Synthesis of thia[9]helicene

Electron-rich aromatic compounds are strong candidates for applications in molecular electronics as organic semiconductors. ${ }^{203}$ Helical aromatic molecules, different from the widely used acene and coronene molecules, could be particularly interesting because of their twisted π-conjugated system. ${ }^{204}$ In order to extend the application of $[2+2+2]$ cyclotrimerisation to the synthesis of sulfur-containing heterohelicenes, the synthesis of 107 was pursued.

The compound 249 was provided by Prof. V. G. Nenajdenko (Moscow State University, Russia) as a part of the collaboration. The double Sonogashira crosscoupling reaction of the thiophene 249, activated by the presence of the aldehydic groups, readily reacted with ethynyl(trimethyl)silane to provide the diyne $\mathbf{2 5 0}$ in high yield (Scheme 3.41). The reaction proceeded only in toluene, whereas in amines, DMF or THF decomposition took place. Silane 250 was then deprotected with potassium carbonate in methanol. Unfortunately, diyne 251 was very unstable and decomposed during the reaction with aryl iodide $\mathbf{2 5 2}$. 60 Therefore, some in situ TMSdeprotection procedures were examined, ${ }^{205}$ for instance a recent procedure by Pale et.al., ${ }^{206}$ but no desired product 253 was observed either.

Scheme 3.41

(a) TMSA (2.6 equiv.), $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(10 \mathrm{~mol} \%), \mathrm{PPh}_{3}$ (20 mol\%), Cul ($10 \mathrm{~mol} \%$), DIPEA (2.0 equiv.), toluene, r.t., $2 \mathrm{~h}, 90 \%$.
(b) $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5 equiv.), methanol (10 equiv.), CHCl_{3}, r.t., 30 min., decomposition.
(c) 252 (1.1 equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%), \mathrm{K}_{2} \mathrm{CO}_{3}$ (8.0 equiv.), $\mathrm{CH}_{3} \mathrm{OH}$ (8.0 equiv.), DMF, $50^{\circ} \mathrm{C}$, decomposition.

Therefore, an alternative synthetic route was explored where bromide 249 reacted with diyne $\mathbf{2 5 4}{ }^{69}$ under Sonogashira cross-coupling conditions to provide tetrayne 253 in acceptable yield together with diyne 255 (Table 3.9). In order to
decrease the amount of $\mathbf{2 5 5}$ formed, different conditions of the cross-coupling were examined. When the reaction was carried out at higher temperature (Entries 1 vs. 2), the less stable bromide 255 decomposed. Then, several electron-rich phosphines were examined as ligands in the cross-coupling reaction. Indeed, they decreased the amount of bromide 255 in the reaction mixture, but the yield of the desired tetrayne 253 also dropped (Entries 3-5). Finally, the initial conditions with triphenylphosphine as a ligand at room temperature were found to be the best.

Table 3.9

a) 254 (2.4 equiv.), $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}$ (10-11 mol\%), Ligand (20-26 mol\%), Cul (11 mol\%), DIPEA (4.0-4.3 equiv.), toluene, overnight.

Entry	Ligand	Temperature	Isolated yields, \%	
			$\mathbf{2 5 3}$	$\mathbf{2 5 5}$
1	$\mathrm{PPh}_{3 f}$	r.t.	48	$20-6$
2	PPh_{3}	reflux	47	8
3	XPhos	$80^{\circ} \mathrm{C}$	27	1
4	$\mathrm{P}(t-\mathrm{Bu})_{3}$	$80^{\circ} \mathrm{C}$	20	0
5	$\mathrm{P}(o-\mathrm{Tol})_{3}$	$80^{\circ} \mathrm{C}$	13	1

The following step in the synthesis was the regioselective propargylation of dicarbaldehyde 253 in the presence of gallium and indium (Scheme 3.42). ${ }^{207}$ In this reaction no product with an allenyl structure was detected. The instability of the resultant diol 256 was circumvented by its in situ conversion into the more stable acetate 257. In the next step, the silyl groups were removed using tetrabutylammonium fluoride to provide hexayne 258 in a good yield. The intramolecular $[2+2+2]$ cyclotrimerisation of hexayne 258 in the presence of a stoichiometric amount of cobalt complex was accompanied by elimination of acetic acid and afforded tetrahydrothia[9]helicene 259 in 30% yield. Due to the small amount of the compound 259 available, the last aromatisation step was carried out
on a micromolar scale. In the presence of an excess of tritylium tetrafluoroborate the fully aromatic 107 was obtained, as confirmed by the high-resolution mass spectroscopy analysis.

Scheme 3.42

(a) Propargyl bromide (8.2 equiv.), Ga (4.1 equiv.), In ($20 \mathrm{~mol} \%$), THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h} \rightarrow$ r.t., 20 min sonification, then $0^{\circ} \mathrm{C}, 30 \mathrm{~min}$.
(b) DMAP (1.2 equiv.), $\mathrm{Ac}_{2} \mathrm{O}$ (4.8 equiv.), THF, r.t., $30 \mathrm{~min}, 60 \%$ after two steps
(c) TBAF (1.5 equiv.), THF, r.t., overnight, 63\%.
(d) $\operatorname{CoCp}(\mathrm{CO})_{2}$ (1.0 equiv.), PPh_{3} (2.0 equiv.), decane, halogen lamp, $160^{\circ} \mathrm{C}, 30$ min, 30%.
(e) $\mathrm{Ph}_{3} \mathrm{CBF}_{4}$ (10 equiv.), $\mathrm{DCE}, 80^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

The absorption spectrum of tetrahydrothia[9]helicene 259 in UV-vis spectral region is shown in Figure 3.22. The extremely high molar extinction coefficient ($\varepsilon=$ $93 \cdot 10^{3} \mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}$) is a result of the large twisted π-conjugated system. The UV spectrum contains strong absorption bands at 233 nm and 271 nm (overlapping bands at 285 nm and 302 nm). The weaker bands at $331 \mathrm{~nm}, 343 \mathrm{~nm}$ and a wide band at 375-390 nm were also observed.

Figure 3.22 UV-Vis absorption spectrum of tetrahydrothia[9]helicene 259 in THF (analyte concentration $7 \cdot 10^{-5} \mathrm{M}$).

In addition, tetrahydrothia[9]helicene 259 was analysed by electrochemical methods. Figure 3.23 shows AC polarogram of $\mathbf{2 5 9}$ solution in acetonitrile. The same size of the real and imaginary admittance components indicated a fast reversible electron transfer at the formal redox potentials $-2.11 \mathrm{~V} v s . \mathrm{Ag} / \mathrm{AgCl}$ (calibrated using $\mathrm{Fc} / \mathrm{Fc}^{+}=0.484 \mathrm{~V}$ vs. $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$. On the contrary, the following reduction at -2.3 V was irreversible and afforded only a small but distinctive maximum on both admittance vectors. No oxidation wave was detected at positive potentials using DC polarography. AC polarography in region -0.7 to +0.5 V showed distinctive minima, which corresponded to absorption-desorption processes or a change in the structure of the adsorbed film.

Figure 3.23 AC polarograms of 259 in $\mathrm{CH}_{3} \mathrm{CN}$ (analyte concentration 0.35 mM) with $0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ vs. Ag/AgCl. Frequency of AC sinusoidal signal 160 Hz , amplitude 10 mV p-p. Admittance parts: real (empty dots), imaginary (full dots).

4

Conclusion

A general diastereoselective synthetic approach to functionalised nonracemic helicene-like compounds was developed. This methodology was successfully applied to the synthesis of two types of helical scaffolds: one contained two (S)methyldihydrooxepine rings and the other two (R)-methyl- 2 H -pyran rings.

The study also confirmed that the aryl substituents at the triyne indeed played a crucial role in the formation of the helical scaffold. They allowed „switching" the stereoselectivity of the $[2+2+2]$ cyclotrimerisation providing either (P) or (M) helicenelike structures. Generally, the aryl substituents were beneficial in both increasing yield of cyclotrimerisation and stability of the final helicene-like products. However, it was difficult to predict which type of an aryl substituent would provide the best yields in the cyclotrimerisation reaction for a specific triyne.

The synthesis of the nonracemic oxepine-type bromo substituted helicene-like compounds (P, S, S)-124 and (P, S, S)-142 as efficient precursors of various phosphines and phosphites was developed. The synthetic methodology for the transformation of the helical bromides to phosphines was worked out and the phoshine-borane complexes (P, S, S)-127, $(P, S, S)-128,(P, S, S)-129,(P, S, S)-143$ and (P, S, S) - 144 were obtained in good yields. In addition, the oxepine-type helical compound (P, S, S)-153 with the diphenylphosphino group in the position 8 was synthesised. The atropisomeric phosphine oxide (P, S_{a}, S, S) - 159 was obtained by the synthesis and chromatographic separation of the atropisomeric bromides (P, R_{a}, S, S)157 and (P, S_{a}, S, S)-157.

The hydroxy derivatives, which were precursors of phosphites, could be obtained either from the corresponding bromides or by the alternative synthetic pathway via the methoxy substituted helicene-like scaffolds. It was found that the synthesis of hydroxy substituted helicene-like compound through the corresponding methoxy derivatives brought less problems and higher yields. The hydroxy substituted helicenes (P, S, S)-132, (P, S, S)-167 and (P, S, S)-173 were prepared and some of them were successfully transformed to the corresponding phosphites.

The functionalised pyran-type helical scaffolds bearing the bromo, methoxycarbonyl and 4-dimethylaminopyridyl substituents were successfully prepared. The bromo derivative $(M, R, R)-103$ was transformed to the phosphine borane complex (M, R, R)-218.

The synthesised phosphines and phosphites were tested as ligands in the enantioselective Ni-catalysed [2+2+2] cyclotrimerisation reaction. In addition, other binaphthyl-type ligands were also tested. Moderate enantioselectivities up to 40% ee were obtained. The prepared ligands were also used in the Au-catalysed enyne cyclisation, where low enantioselectivities up to 15% ee were obtained.

The synthetic route to thia[9]helicene 107 was explored. Tetrahydrothia[9]helicene 259 was successfully prepared and characterised by polarography, NMR, IR, MS and UV-Vis spectroscopy. Thia[9]helicene 107 was prepared from 259 but its identity was confirmed only by mass spectroscopy.

To conclude, the results demonstrate that the diastereoselective synthesis of helically chiral compounds based on $[2+2+2]$ cyclotrimerisation is a general, flexible and practical method, which provides access to nonracemic helically chiral phosphines and phosphites. Although the observed enantioselectivities in the Ni- and Au-catalysed cyclisations were moderate, it is hoped that this study will stimulate further investigations in this field.

5

Experimental section

> Melting points were determined on Mikro-Heiztisch Polytherm A (Hund, Wetzlar) apparatus and are uncorrected.
$>$ The NMR spectra were measured in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, d_{6}$-acetone, d_{6}-DMSO on Bruker Avance: ${ }^{1} \mathrm{H}$ NMR spectra at $400.1 \mathrm{MHz}, 500.1 \mathrm{MHz}$ and $600.1 \mathrm{MHz} ;{ }^{13} \mathrm{C}$ NMR spectra at 100.6 MHz , 125.8 MHz and 150.9 MHz ; ${ }^{31} \mathrm{P}$ NMR spectra at 162.0 MHz and 202.3 MHz ; ${ }^{11} \mathrm{~B}$ NMR spectra at $160.4 \mathrm{MHz} ;{ }^{19} \mathrm{~F}$ NMR spectra at 470.6 MHz. ${ }^{1} \mathrm{H}$ Chemical shifts in CDCl_{3} (in ppm, δ scale) were referenced to tetramethylsilane. In ${ }^{31} \mathrm{P}$ NMR spectra phosphoric acid was used as an external standard. In ${ }^{11} \mathrm{~B}$ NMR spectra $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ was used as an external standard. In ${ }^{19} \mathrm{~F}$ NMR spectra hexafluorobenzene was used as an external standard. The coupling constants (J) are given in Hz . The HMBC experiments were set up for $J_{C-H}=5 \mathrm{~Hz}$. Assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the key compounds was performed using COSY, HMQC and HMBC experiments.
$>$ The IR spectra were measured in CHCl_{3} or KBr on $\mathrm{FT}-\mathrm{IR}$ spectrometer Bruker Equinox 55.
> FAB mass spectra (ionisation by Xe , thioglycerol, 2-hydroxyethyl disulfide and 3nitrobenzyl alcohol matrices) were measured on ZAB-EQ (VG Analytical) spectrometer. The El mass spectra were determined on GCT Premier (Waters) at an ionising voltage of 70 eV , the m / z values are given along with their relative intensities (\%). For exact mass measurement, the spectra were internally calibrated using perfluorotri-n-butylamine (Heptacosa). ESI and APCI mass spectra were measured on LCQ Fleet (Thermo Fisher Scientific) with a 3D ion trap mass spectrometer and Q-Tof micro (Waters) mass spectrometer. High resolution spectra were obtained from LTQ Orbitrap XL (Thermo Fisher Scientific).
> Optical rotations were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or acetone on Autopol IV (Rudolph Research Analytical) instrument.
> UV-Vis spectra were recorded on Cary 50 (Varian Inc.) with pure solvent (distilled THF) as a baseline.
> Circular dichroism spectra were recorded on a J-815 CD spectrometer (Jasco Analytical Instruments, Inc.) in freshly distilled THF using a 10 mm quartz sample cell.
> Cyclic voltametry was performed on a fast rise-time potentiostat, a lock-in amplifier (Stanford Research, model SRS830). The instruments were interfaced to a personal computer via an IEEE-interface card (PC-Lab, AdvanTech Model PCL-848) and a data acquisition card (PCL-818) using 12-bit precision for both A/D and D/A conversion. A three-electrode electrochemical cell was used. The reference electrode, $\mathrm{Ag}|\mathrm{AgCl}| 1 \mathrm{M} \mathrm{LiCl}$, was separated from the test solution by a non-aqueous salt bridge. The potential of the ferrocene/ferrocenium redox couple $\left(\mathrm{Fc} / \mathrm{Fc}^{+}\right)$was 0.484 V . The working electrode was a computer controlled valveoperated mercury drop (model SMDE2, Laboratorní přístroje, Prague). The auxiliary electrode was a platinum wire. Oxygen was removed from the solvent (anhydrous acetonitrile) by passing a stream of argon.
$>$ Single-crystal X-ray analyses of compounds (P, S, S)-132, $\quad\left(P, S_{a}, S, S\right)-137$, (P, S_{a}, S, S-138, (P, S, S)-146, (M, S, S) - 166 were performed on Bruker Apex II diffractometer by monochromatised MoK $_{\alpha}$ radiation $(\lambda=0.71073 \AA$) at 150 K. Data collection: Apex II (Bruker); cell refinement: SAINT (Bruker); data reduction: SAINT (Bruker); program used to solve structure: SHELXS97 (Sheldrick, 2008); program used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2. ${ }^{208}$
$>$ Single-crystal X-ray analyses of compounds (P, S, S)-151, (M, R, R)-192 were performed on Xcalibur X-ray diffractometer with CuK_{α} radiation ($\lambda=1.54180 \AA$) at 170 K. Data collection: Xcalibur (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED (Oxford Diffraction, 2002); program used to solve structure: Superflip (Palatinus \& Chapuis, 2007); program used to refine structure: CRYSTALS (Betteridge et al., ${ }^{209}$ 2003); molecular graphics: OLEX2. ${ }^{208}$
> Reaction progress was monitored by thin-layer chromatography (TLC) on Silica gel $60 \mathrm{~F}_{254}$-coated aluminium sheets (Merck) and Silica gel 60 RP-18 $\mathrm{F}_{254} \mathrm{~S}$ aluminium sheets (Merck). Spots were detected either using UV light or the following solutions: (1) $\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (1\%) and $\mathrm{H}_{3} \mathrm{P}\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}(2 \%)$ in sulfuric acid (10\%); (2) p-anisaldehyde (2\%), acetic acid (2\%) and sulfuric acid (7\%) in 99% ethanol; (3) 2,4-dinitrophenylhydrazine (2\%) and sulfuric acid (4\%) in 60\% ethanol.
> Column chromatography was carried out on Silica gel 60 ($0.040-0.063 \mathrm{~mm}$), Fluka). Flash chromatography was carried out on Isolera One HPFC system (Biotage, Inc.) using Biotage $\mathrm{KP}-\mathrm{Sil}^{\circledR}$ Silica cartridges ($0.040-0.063 \mathrm{~mm}$), Silica gel 60 ($0.040-0.063 \mathrm{~mm}$) or Silica gel 60 ($0.015-0.040 \mathrm{~mm}$). Aluminium oxide 90 active neutral (activity stage I, 0.063-0.200 mm, Merck) was used for filtration. Reversed phase flash chromatography was performed on Isolera One HPFC system (Biotage, Inc.) using Biotage KP-C18-HS ${ }^{\circledR}$ Silica cartridges.
> Analytical HPLC was carried out using an isocratic HPLC pump (Knauer), UV-Vis detector (Knauer) and polarimetric detector Chiralyser (IBZ Messtechnik). Preparative HPLC was carried out on Agilent 1100 using UV detector.
> Continuous-flow reactor was composed of an HPLC pump, backpressure regulator and a heated capillary (length 10 m , ID 1.0 mm , OD $1 / 16$ ", stainless steel).
> Microwave-assisted reactions were carried out in Biotage Initiator EXP EU (300 W) in Biotage Microwave Vials. Silicon carbide (400 mesh particle size) or ionic liquid (1-butyl-2,3-dimethylimidazolium tetrafluoroborate, $[B D M I M]\left[B F_{4}\right]$) were used to increase absorption of the microwave irradiation.
> IR lamp (250 W , Polam) was used in bromination reactions. Two 250 W halogen lamps were used in cyclotrimerisation reactions.
$>$ All reactions were carried out under argon. Air and moisture sensitive compounds $\left(\mathrm{Ni}(\mathrm{cod})_{2}\right)$ were manipulated in glove-box MBraun Unilab.
$>$ The bath with temperature below $-95^{\circ} \mathrm{C}$ was prepared by adding dry ice (crushed to powder) to n-propanol (p.a.) in a bowl-shaped Dewar flask until a thick suspension was formed. Then liquid nitrogen was added in small portions to the thoroughly stirred suspension until its temperature, measured using digital thermometer, reached the required value.
> The commercially available catalysts and reagent grade materials were purchased and used as received. Solvents (diisopropylamine, toluene) were degassed by three freeze-pump-thaw cycles before use. Diisopropylamine, diethylamine and N, N-diisopropylethylamine were distilled from calcium hydride under argon. Tetrahydrofuran and diethyl ether were freshly distilled from sodium/benzophenone under argon. n-BuLi, sec-BuLi, t - $\mathrm{BuLi}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$,
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \quad \mathrm{Pd}(\mathrm{dba})_{2}, \quad \mathrm{Ni}(\mathrm{cod})_{2}, \quad$ and $\mathrm{CoCp}(\mathrm{CO})_{2}$ were purchased. $R h C p *\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}{ }^{210}$ and $\mathrm{CoCp}(\mathrm{CO})(f u m)^{157}$ were prepared in our lab by Mgr. J. Žádný using literature procedures. NBS was recrystallised from water. 2iodobenzyl bromide was used as received (Sigma-Aldrich, 97\%) or recrystallised from methanol (Alfa Aesar, 96\%). Sodium hydride was used as $60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil (Sigma-Aldrich). Potassium hydride was used as $30 \mathrm{wt} \%$ dispersion in mineral oil (Sigma-Aldrich). Optically pure (-)-(S)-3-butyn-2-ol 111 was purchased (Sigma-Aldrich, 97\%). Boron trifluoride diethyl etherate was distilled under vacuum before use. Borane dimethyl sulfide complex and borane tetrahydrofuran complex solution were purchased from Sigma Aldrich.
> Sodium methoxide solution was freshly prepared by dissolving the weighted amount of sodium metal in absolute methanol at $0^{\circ} \mathrm{C}$. Lithium diisopropylamide solution was always freshly prepared by mixing equimolar amounts of distilled diisopropylamine $\left(\mathrm{CaH}_{2}\right)$ and n-butyllithium in THF at $0^{\circ} \mathrm{C}$ for 30 min .

Data for the molecular models presented in the figures were either taken from Xray analysis or optimised by AM1 calculations in Gaussian 03. ${ }^{212}$ The figures were prepared using Molekel ${ }^{213}$ and Mercury ${ }^{214}$ software.

2-lodobenzyl bromide 110

2-lodobenzyl alcohol ($5.51 \mathrm{~g}, 23.5 \mathrm{mmol}$) was dissolved in THF (35 ml) and cooled to $0{ }^{\circ} \mathrm{C}$. Phosphorus tribromide ($3.35 \mathrm{ml}, 35.25 \mathrm{mmol}, 1.5$ equiv.) was slowly added over a period of 30 min and the reaction mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then a saturated aqueous solution of $\mathrm{NaHCO}_{3}(50 \mathrm{ml})$ was added and THF removed in vacuo. Then diethyl ether (100 ml) was added and washed with water ($3 \times 100 \mathrm{ml}$) and then dried over anhydrous MgSO_{4}. The product was purified by flash chromatography on silica gel (hexane) to provide 110 (6.66 g, 95\%) as a white solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{215}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.60(2 \mathrm{H}, \mathrm{s}), 6.98(1 \mathrm{H}, \mathrm{td}, J=7.7,7.7,1.5), 7.34(1 \mathrm{H}, \mathrm{td}$, $J=7.5,0.9), 7.47(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.5), 7.86(1 \mathrm{H}, \mathrm{d}, J=7.8)$.

2-lodobenzyl (1S)-1-methylprop-2-yn-1-yl ether (S)-112

Potassium hydride (dispersion in mineral oil, $1.22 \mathrm{~g}, 30.4 \mathrm{mmol}, 1.6$ equiv.) was washed with hexane under argon and dried under vacuum. Then it was suspended in THF (20 ml) and cooled to $0^{\circ} \mathrm{C}$. Then (S)-111 was added slowly ($2.5 \mathrm{ml}, 31.9 \mathrm{mmol}, 1.7$ equiv.) and the solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Then a solution of $110(5.72 \mathrm{~g}, 19.3 \mathrm{mmol}, 1.0$ equiv.) in THF (20 ml) was added and the reaction was stirred at room temperature overnight. After filtration through a sintered glass (hexane), the volatiles were removed in vacuo. The residue was dissolved in dichloromethane (100 ml) and washed with water (3 x 100 ml) and then dried over anhydrous MgSO_{4}. Column chromatography on silica gel (hexane) afforded product (S)-112 (5.1 g, 91\%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.53(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.48(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.30(1 \mathrm{H}, \mathrm{dq}$, $J=6.6,6.6,6.6,2.0), 4.49$ (1H, d, $J=12.5$), 4.76 (1H, d, $J=12.5$), 6.98 (1H, dddt, J $=7.9,7.3,1.8,0.6,0.6), 7.34(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3), 7.45$ (1H, ddt, $J=7.7,1.8$, $0.7,0.7), 7.82(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.3)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 22.01 (q), 65.05 (d), 73.41 (d), 74.42 (t), 83.45 (s), 97.97 (s), 128.17 (d), 129.03 (d), 129.22 (d), 139.20 (d), 140.20 (s).

IR (CHCl_{3}): $3306 \mathrm{~s}, 3061 \mathrm{w}, 2992 \mathrm{~m}, 2938 \mathrm{w}, 2870 \mathrm{~m}, 2112 \mathrm{w}, 1583 \mathrm{~m}, 1566 \mathrm{~m}$, 1466 m, 1440 m, 1374 m, 1326 m, 1273 m, 1161 w, 1116 s, 1098 vs, 1067 s, 1045 m, 1015 vs, 983 w, 946 w, 694 w, 649 m, 638 s, 531 w, 511 vw, 429 w cm ${ }^{-1}$.

ESI MS: $309\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OINa} 308.9747$, found 308.9747.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-55^{\circ}\left(\mathrm{c} 1.357, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{(3S)-3-[(2-lodobenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)-113

To a solution of diisopropylamine ($5.0 \mathrm{ml}, 0.035 \mathrm{~mol}, 2.0$ equiv.) in THF (5 ml) cooled to $-78{ }^{\circ} \mathrm{C}$ a solution of n-BuLi $(1.6 \mathrm{M}$ in hexanes, $12.1 \mathrm{ml}, 0.019 \mathrm{~mol}, 1.1$ equiv.) was added and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then this solution was added to a solution of alkyne (S)-112 ($5.05 \mathrm{~g}, 0.018 \mathrm{~mol}$) in THF (10 ml) at $-78^{\circ} \mathrm{C}$ via a cannula (over a period of 15 min). After stirring for 45 min at $-78{ }^{\circ} \mathrm{C}$ triisopropylsilyl chloride $(4.2 \mathrm{ml}$, $0.019 \mathrm{~mol}, 1.1$ equiv.) was added dropwise. The reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 10 min and then allowed to warm up to room temperature and stirred overnight. The solvents were removed in vacuo and the residue dissolved in dichloromethane (100 ml) and washed with water ($3 \times 100 \mathrm{ml}$) and then dried over anhydrous MgSO_{4}. Column chromatography on silica gel (hexane-diethyl ether 100:0 to $95: 5$) afforded product (S) - 113 ($6.34 \mathrm{~g}, 84 \%$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.04-1.13 (21H, m), $1.52(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 4.33(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ 6.6), 4.51 (1H, d, $J=12.7$), 4.79 (1H, d, $J=12.7$), 6.97 (1H, ddd, $J=7.9,7.4,1.8$), $7.33(1 \mathrm{H}, \mathrm{td}, J=7.5,7.5,1.3), 7.45(1 \mathrm{H}, \mathrm{ddt}, J=7.6,1.8,0.8,0.8), 7.81(1 \mathrm{H}, \mathrm{dd}, J=$ 7.9, 1.3).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.18 (d), 18.64 (q), 22.30 (q), 65.69 (d), 74.27 (t), 86.22 (s), 97.88 (s), 107.25 (s$), 128.12$ (d), 128.96 (d), 129.09 (d), 139.16 (d), 140.55 (s).

IR (CHCl_{3}): $3060 \mathrm{vw}, 2959 \mathrm{~s}, 2945 \mathrm{vs}, 2892 \mathrm{~m}, 2867$ vs, $2165 \mathrm{w}, 2149 \mathrm{w}, 1583 \mathrm{w}$, 1566 w, 1464 s, 1439 m, 1384 w, 1371 w, 1325 w, 1273 vw, 1163 vw, 1116 m, 1097
s, 1071 m, 1044 m, 1015 s, 997 m, 980 w, 945 w, 883 s, 696 w, 680 m, 662 m, 650 $\mathrm{w}, 527 \mathrm{vw}, 507 \mathrm{vw} \mathrm{cm}^{-1}$.

ESI MS: $465\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{OINaSi} 465.1081$, found 465.1078.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-36^{\circ}\left(\mathrm{c} 1.262, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Trimethyl(\{2-[(\{(1S)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1yl\}oxy)methyl]phenyl\}ethynyl)silane (S)-114

Tetrakis(triphenylphosphine)palladium(0) (157 mg, 0.136 mmol , $1 \mathrm{~mol} \%$), copper iodide ($52 \mathrm{mg}, 0.273 \mathrm{mmol}, 2 \mathrm{~mol} \%$), aryl iodide $(S)-113(6.0 \mathrm{~g}, 13.56 \mathrm{mmol})$ were suspended in diisopropylamine (50 ml) and ethynyl(trimethyl)silylane (2.0 ml , $14.15 \mathrm{mmol}, 1.0$ equiv.) was added at room temperature. After stirring for 20 min at room temperature, the reaction mixture was filtered through a sintered glass (hexane) and solvents were removed in vacuo. Column chromatography on silica gel (hexanediethyl ether 100:0 to 95:5) afforded product (S)-114 (5.54 g, 99\%) as an oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.25(9 \mathrm{H}, \mathrm{s}), 1.05-1.10(21 \mathrm{H}, \mathrm{m}), 1.52(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6)$, $4.34(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.71(1 \mathrm{H}, \mathrm{dq}, J=12.7,0.5,0.5,0.5), 4.89(1 \mathrm{H}, \mathrm{bd}, J=12.7)$, 7.20 (1H, dtt, $J=7.6,7.6,1.5,0.6,0.6), 7.30(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.45$ (1H, ddd, $J=7.6,1.4,0.5), 7.46(1 \mathrm{H}, \mathrm{ddq}, J=7.6,1.5,0.7,0.7,0.7)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -0.01 (q), 11.17 (d), 18.62 (q), 22.41 (q), 65.95 (d), 68.70 (t), 85.69 (s), 98.94 (s), 102.66 (s), 107.75 (s), 121.59 (s), 127.01 (d), 127.37 (d), 128.59 (d), 132.36 (d), 140.63 (s).

IR (CHCl_{3}): 3097 vw, 3071 w, 2960 vs, 2945 vs, 2892 s, 2866 vs, 2156 s, 1599 vw, 1570 vw, 1483 m, 1463 s, $1450 \mathrm{~s}, 1408$ w, $1388 \mathrm{~m}, 1384 \mathrm{~m}, 1371 \mathrm{~m}, 1324 \mathrm{~s}, 1288$ vw, 1262 m, 1251 vs, 1159 vw, 1118 s, 1110 s, 1095 s, 1070 s, 1019 m, 997 s, 883 vs, 869 vs, 845 vs, $695 \mathrm{~m}, 679 \mathrm{~s}, 663 \mathrm{~s}, 595 \mathrm{~m}, 519 \mathrm{w}, 495 \mathrm{vw}, 452 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.

ESI MS: $435\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

HR ESI MS: calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{ONaSi}_{2} 435.2510$, found 435.2509 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-86^{\circ}\left(\mathrm{c} 0.981, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{(3S)-3-[(2-Ethynylbenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)-115

Sodium methoxide was prepared by dissolving sodium (310 mg , $13.5 \mathrm{mmol}, 1.0$ equiv.) in methanol $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. Then it was added to a solution of silane (S)-114 ($5.8 \mathrm{~g}, 13.5 \mathrm{mmol}$) in methanol (50 ml) and stirred at room temperature for 30 min . The solvent was removed in vacuo and the residue dissolved in diethyl ether (100 ml) and washed with water ($3 \times 100 \mathrm{ml}$) and then dried over anhydrous MgSO_{4}. The product (S)-115 $(4.57 \mathrm{~g}, 99 \%)$ was a colourless oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.03-1.12(21 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.25(1 \mathrm{H}, \mathrm{s})$, $4.32(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.74(1 \mathrm{H}, \mathrm{dd}, J=12.9,0.8), 4.96(1 \mathrm{H}, \mathrm{dd}, J=12.9,0.8), 7.23$ (1H, dtt, $J=7.6,7.6,1.4,0.6,0.6), 7.34(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.5), 7.48(1 \mathrm{H}, \mathrm{bdd}, J=$ $7.6,1.5), 7.49$ (1H, ddq, $J=7.6,1.4,0.7,0.7,0.7$).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.17 (d), 18.61 (q), 22.32 (q), 65.65 (d), 68.39 (t), 81.20 (s), 81.59 (d), 85.86 (s), 107.56 (s), 120.66 (s), 127.13 (d), 127.62 (d), 128.89 (d), 132.65 (d), 140.81 (s).

IR (CHCl_{3}): 3306 s, 3099 vw, 3072 w, 2959 vs, 2945 vs, 2925 s, 2892 s, 2866 vs, 2165 w, 2106 w, 1601 w, 1572 vw, 1482 s, 1463 s, 1451 m, 1388 m, 1384 m, 1371 m, 1325 s, 1288 w, 1255 w, 1157 w, 1113 s, 1108 s, 1094 s, 1069 s, 1019 m, 997 m, 950 w, 883 s, 867 w, $679 \mathrm{~s}, 663 \mathrm{~s}, 655 \mathrm{~s}, 615 \mathrm{~s}, 519 \mathrm{w}, 495 \mathrm{vw}, 454 \mathrm{w} \mathrm{cm}{ }^{-1}$.

ESI MS: $363\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{ONaSi} 363.2115$, found 363.2114 .
Optical rotation: $[\alpha]^{22}{ }_{D}-79^{\circ}\left(\mathrm{c} 0.819, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-iodo-1-methylbenzene 117

To an aqueous solution of sulfuric acid ($1.25 \mathrm{M}, 50 \mathrm{ml}, 0.062 \mathrm{~mol}, 5.2$ equiv.) in a 250 ml round-bottom flask 4-bromo-2-iodo-1-methylbenzene ($1.5 \mathrm{ml}, 12.0 \mathrm{mmol}, 1.0$ equiv.) was added and a white suspension was formed. The suspension was cooled to $-2{ }^{\circ} \mathrm{C}$ and $\mathrm{NaNO}_{2}(0.84 \mathrm{~g}, 12.2 \mathrm{mmol}, 1.0$ equiv.) was carefully added in small portions. The resulting yellow suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and then potassium iodide ($4.1 \mathrm{~g}, 24.7 \mathrm{mmol}, 2.1$ equiv.) was added. The reaction mixture was then heated at $110{ }^{\circ} \mathrm{C}$ for 2 h and then at r.t. overnight. Then it was extracted with dichloromethane ($2 \times 100 \mathrm{ml}$) and the combined organic phases were washed with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \times 100$ ml), saturated aqueous solution of $\mathrm{KHCO}_{3}(1 \times 100 \mathrm{ml})$, water ($3 \times 100 \mathrm{ml}$) and then dried over anhydrous MgSO_{4}. Flash chromatography on silica gel (hexane) afforded product ($2.28 \mathrm{~g}, 65 \%$) as a yellow liquid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{216}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $2.38(3 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2), 7.36$ (1H, dd, $J=8.1$, 2.1), 7.94 (1H, d, J = 2.1).

4-Bromo-1-(bromomethyl)-2-iodobenzene 118

In a 250 ml round-bottom flask 117 ($4.41 \mathrm{~g}, 14.85 \mathrm{mmol}, 1.0$ equiv.), NBS ($3.97 \mathrm{~g}, 22.28 \mathrm{mmol}, 1.5$ equiv.), $\mathrm{CCl}_{4}(100 \mathrm{ml})$ and a catalytic amount of AIBN and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were flushed with nitrogen and the suspension was refluxed using IR lamp for 3 h . Then an additional amount of NBS ($1.32 \mathrm{~g}, 7.42 \mathrm{mmol}$, 0.05 equiv.) and AINB (cat.) were added and the reaction mixture was heated for another 2 h . Then the reaction mixture was washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \times 50 \mathrm{ml})$, water ($3 \times 50 \mathrm{ml}$) and dried over anhydrous MgSO_{4}. The solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (hexane). The product 118 ($4.28 \mathrm{~g}, 77 \%$, with $<10 \% \mathrm{I}-\mathrm{Br}$ exchange impurity) was obtained as a white solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{121}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.54(2 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2), 7.47(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2$, $2.0), 8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0)$.

4-Bromo-2-iodobenzyl (1S)-1-methylprop-2-yn-1-yl ether (S)-119

In a flame-dried Schlenk flask potassium hydride (dispersion in mineral oil, $1.01 \mathrm{~g}, 0.025 \mathrm{~mol}, 1.5$ equiv.) was washed with hexane under argon, then dried under vacuum and flushed with argon. After that THF (20 ml) was added to hydride and the suspension was cooled to $0^{\circ} \mathrm{C}$, $(S)-111$ ($1.98 \mathrm{ml}, 0.025 \mathrm{~mol}, 1.5$ equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then a solution of the benzyl bromide 118 ($6.32 \mathrm{~g}, 0.017 \mathrm{~mol}$) in THF (20 ml) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm up to room temperature and stirred for 1.5 h . The reaction was quenched by an addition of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ and an aqueous phase was washed with diethyl ether ($4 \times 100 \mathrm{ml}$), the combined organic phases were washed with water ($2 \times 50 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed in vacuo and the residue was purified by chromatography on silica gel (hexane-diethyl ether $100: 0$ to $95: 5$) to provide product (S)-119 (5.8 g, 95\%, with $<10 \% \mathrm{I}-\mathrm{Br}$ exchange impurity) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{217}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.52(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.49(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.29(1 \mathrm{H}, \mathrm{dq}$, $J=6.6,6.6,6.6,2.0), 4.43(1 \mathrm{H}, \mathrm{d}, J=12.7), 4.70(1 \mathrm{H}, \mathrm{dd}, J=12.7,0.8), 7.31(1 \mathrm{H}, \mathrm{dt}$, $J=8.2,0.8,0.8), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0), 7.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0)$.

\{(3S)-3-[(4-Bromo-2-iodobenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)] silane (S)-120

A solution of lithium diisopropylamide was freshly prepared: In a flame-dried Schlenk flask diisopropylamine $(5.0 \mathrm{ml}, 35.5$ mmol, 2.2 equiv.) in THF (10 ml) was cooled to $0^{\circ} \mathrm{C}$ under argon and a solution of n-BuLi (1.6 M in hexanes, $10.0 \mathrm{ml}, 16.0 \mathrm{mmol}, 1.0$ equiv) was added. The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h . A flame-dried Schlenk flask was filled with a solution of alkyne (S)-119 ($5.80 \mathrm{~g}, 15.9 \mathrm{mmol}$) in THF (20 ml) under argon and cooled to $-78^{\circ} \mathrm{C}$. A solution of lithium diisopropylamide ($25 \mathrm{ml}, 16.0 \mathrm{mmol}, 1.0$ equiv) in THF was slowly added and the reaction mixture stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then triisopropylsilyl chloride ($4.4 \mathrm{ml}, 20.7 \mathrm{mmol}, 1.3$ equiv.) was added and the solution
was stirred at $-78^{\circ} \mathrm{C}$ for 30 min , then allowed to warm up to room temperature and stirred overnight. The volatiles were removed in vacuo, the residue was dissolved in dichloromethane (100 ml) and washed with water ($3 \times 50 \mathrm{ml}$). The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether $100: 0$ to $95: 5$) to provide product $(S)-120(5.06 \mathrm{~g}, 61 \%$, with $<10 \% \mathrm{I}-\mathrm{Br}$ exchange impurity) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{217}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.03-1.11(21 \mathrm{H}, \mathrm{m}), 1.51(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 4.32(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $6.6), 4.44(1 \mathrm{H}, \mathrm{bd}, J=13.0), 4.72(1 \mathrm{H}, \mathrm{dd}, J=13.0,0.8), 7.31(1 \mathrm{H}, \mathrm{dt}, J=8.2,0.8$, $0.8), 7.46(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0), 7.96(1 \mathrm{H}, \mathrm{d}, J=2.0)$.

[(3S)-3-\{[2-(\{5-Bromo-2-[(\{(1S)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy)methyl]phenyl\}ethynyl)benzyl]oxy\}but-1-yn-1-yl][tris(1-methylethyl)]

 silane $(S, S)-121$

A flame-dried 500 ml three-neck flask with thermometer was filled with tetrakis(triphenylphosphine)palladium(0) (303 mg, $0.262 \mathrm{mmol}, 2.7 \mathrm{~mol} \%$) and copper iodide ($100 \mathrm{mg}, 0.525$ $\mathrm{mmol}, 5.5 \mathrm{~mol} \%)$, flushed with argon and a degassed solution of aryl iodide (S)-120 ($4.94 \mathrm{~g}, 9.47 \mathrm{mmol}$) in diisopropylamine $(60 \mathrm{ml})$ was added. The solution was cooled to $-2^{\circ} \mathrm{C}$ and a degassed solution of alkyne (S) - 115 ($3.23 \mathrm{~g}, 9.47 \mathrm{mmol}, 1.0$ equiv.) in diisopropylamine (20 ml) was added dropwise over a period of 2 h using a syringe pump. Then the reaction mixture was allowed to warm up to room temperature, filtered through a sintered glass (hexane) and the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane) to provide the product (S, S)-121 (6.41 g, 94\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.52(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 0.98-1.06(42 \mathrm{H}, \mathrm{m}), 4.34(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $6.6), 4.74(1 \mathrm{H}, \mathrm{bd}, J=13.0), 4.79(1 \mathrm{H}, \mathrm{bd}, J=12.8), 4.96(1 \mathrm{H}, \mathrm{dd}, J=13.0,0.8), 5.02$ (1H, bd, $J=12.8), 7.26(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.36(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.40$
(1H, dt, $J=8.3,0.9,0.9), 7.46$ (1H, dd, $J=8.3,2.0), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.4,0.4)$, $7.53(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7), 7.63(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.07 (d), 11.09 (d), 18.51 (q), 18.54 (q), 22.41 (q), 22.42 (q), 65.65 (d), 65.86 (d), 68.16 (t), 68.59 (t), 86.01 (s), 86.15 (s), 89.84 (s), 92.71 (s), 107.31 (s), 107.45 (s), 120.54 (s), 121.08 (s), 123.45 (s), 127.13 (d), 127.48 (d), 128.83 (d), 128.90 (d), 131.45 (d), 132.15 (d), 134.26 (d), 139.19 (s), 140.18 (s).

IR (CHCl_{3}): 2945 vs, 2866 vs, $2216 \mathrm{w}, 2165 \mathrm{~m}, 1602 \mathrm{w}, 1589 \mathrm{~s}, 1556 \mathrm{~m}, 1490 \mathrm{~s}$, 1463 vs, 1450 s, 1384 s, 1371 s, 1325 s, 1310 m, 1244 m, 1154 m, 1118 vs, 1096 vs, 1071 vs, $1019 \mathrm{~s}, 997 \mathrm{~s}, 949 \mathrm{~m}, 884 \mathrm{vs}, 830 \mathrm{~m}, 679 \mathrm{vs}, 664 \mathrm{vs}, 575 \mathrm{~m}, 454 \mathrm{~m} \mathrm{~cm}^{-}$ 1

ESI MS: $796\left(\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 794\left(\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{OH}\right]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right), 752$ $\left(\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 750\left(\left[\mathrm{M}+\mathrm{H}_{2} \mathrm{O}\right]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right), 735\left([\mathrm{M}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 733\left([\mathrm{M}]^{+}\right.$, with ${ }^{79} \mathrm{Br}$).

HR ESI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{2}{ }^{79} \mathrm{BrSi}_{2} 733.3472$, found 733.3462 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-120^{\circ}\left(\mathrm{c} 0.067, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S,S)-122

In a 250 ml round-bottom flask flushed with argon silane (S, S)-121 ($6.31 \mathrm{~g}, 8.59 \mathrm{mmol}$) was dissolved in THF (80 ml) and a solution of tetrabutylammonium fluoride trihydrate $(0.964 \mathrm{M}$ in $\mathrm{THF}, 8.0 \mathrm{ml}$, $7.71 \mathrm{mmol}, 0.9$ equiv.) was added at room temperature and stirred for 1 h . The volatiles were evaporated in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 85:15) to provide product (S, S)-122 (3.20 g, 88\%) as an oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.52(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0), 2.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=2.0), 4.32(1 \mathrm{H}, \mathrm{dq}, J=6.6,6.6,6.6,2.0), 4.33(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.74(1 \mathrm{H}, \mathrm{d}, J=$ 12.8), 4.78 (1H, bd, $J=12.8$), 4.96 (1 H , dd, $J=0.8,12.8$), 5.02 (1H, bd, $J=12.8$), 7.29 (1H, dt, J = 7.7, 7.7, 1.3), 7.38 (1H, dt, J = 7.7, 7.7, 1.4), 7.40 (1H, dddt, J = 7.6,
$1.4,0.8,0.8,0.4), 7.47(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0), 7.53(1 \mathrm{H}, \mathrm{ddq}, J=7.6,1.3,0.7,0.7$, $0.7), 7.53(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.69(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13}$ C NMR (151 MHz, CDCl_{3}): 22.06 (q), 22.11 (q), 64.97 (d), 65.11 (d), 68.24 (t), 68.77 (t), 73.38 (d), 73.48 (d), 83.54 (s), 83.75 (s), 89.90 (s), 92.75 (s), 120.75 (s), 121.32 (s), 123.61 (s), 127.43 (d), 127.85 (d), 128.95 (d), 129.11 (d), 131.55 (d), 132.18 (d), 134.48 (d), 138.68 (s), 139.76 (s).

IR (CHCl_{3}): $3306 \mathrm{~s}, 3072 \mathrm{w}, 2215 \mathrm{w}, 2112 \mathrm{w}, 1600 \mathrm{w}, 1589 \mathrm{~m}, 1556 \mathrm{w}, 1491 \mathrm{~m}, 1477$ m, 1469 m, 1453 m, 1392 m, 1374 m, 1327 s, 1314 m, 1247 w, 1153 w, 1135 s, 1118 s, 1098 vs, $1080 \mathrm{~s}, 1066 \mathrm{~s}, 1020 \mathrm{~m}, 951 \mathrm{w}, 702 \mathrm{w}, 639 \mathrm{~s}, 574 \mathrm{w}, 454 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $445\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 443\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{Na}^{79} \mathrm{Br} 443.0623$, found 443.0620 .
Optical rotation: $[\alpha]^{22}{ }_{D}-79^{\circ}\left(\mathrm{c} 0.832, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S, S)-123

A flame-dried Schlenk flask was filled with tetrakis(triphenylphosphine)palladium(0) ($290 \mathrm{mg}, 0.25 \mathrm{mmol}, 5$ mol\%), copper iodide ($96 \mathrm{mg}, 0.50 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and flushed with argon. Then toluene (35 ml), diisopropylamine ($5.7 \mathrm{ml}, 4.08$ $\mathrm{g}, 0.04 \mathrm{~mol}, 8.0$ equiv.) and iodobenzene ($1.68 \mathrm{ml}, 0.015 \mathrm{~mol}$, 3.0 equiv.) were added. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and a degassed solution of alkyne (S, S)-122 ($2.12 \mathrm{~g}, 5.04 \mathrm{mmol}$) in toluene (20 ml) was added dropwise over a period of 1.5 h . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h and then at room temperature overnight. The reaction mixture was filtered through a sintered glass (hexane) and the volatiles were evaporated under reduced pressure. The residue was purified by flash chromatography (hexane-diethyl ether 100:0 to $85: 15$) to provide product $(S, S)-123(2.58 \mathrm{~g}, 89 \%)$ as an oil.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.56(6 \mathrm{H}, \mathrm{d}, J=6.6), 4.50(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.51(1 \mathrm{H}, \mathrm{q}, J$ $=7.1), 4.80(1 \mathrm{H}, \mathrm{d}, J=12.8), 4.85(1 \mathrm{H}, \mathrm{d}, J=12.5), 4.99(1 \mathrm{H}, \mathrm{d}, J=12.8), 5.04(1 \mathrm{H}$, $\mathrm{d}, J=12.5), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.23-7.29(6 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{dt}, J=7.6$,
$7.6,1.4), 7.37(4 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.45(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0), 7.49(1 \mathrm{H}, \mathrm{dd}$, $J=7.7,1.4), 7.54(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7), 7.65(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.22 (q), 22.24 (q), 65.56 (d), 65.75 (d), 68.29 (t), 68.77 (t), 85.40 (s), 85.47 (s), 88.84 (s), 88.96 (s), 89.95 (s), 92.81 (s), 120.75 (s), 121.37 (s), 122.55 (s), 122.58 (s), 123.71 (s), 127.37 (d), 127.92 (d), 128.21 (d), 128.25 (d), 128.29 (d), 128.89 (d), 129.26 (d), 131.54 (d), 131.66 (s), 131.70 (d), 132.24 (d), 134.33 (d), 138.98 (s), 139.97 (s).

IR (CHCl_{3}): $2868 \mathrm{~m}, 2226 \mathrm{w}, 1599 \mathrm{w}, 1589 \mathrm{~m}, 1574 \mathrm{w}, 1556 \mathrm{w}, 1490 \mathrm{~s}, 1477 \mathrm{w}, 1452$ m, 1444 m, 1392 w, 1373 m, 1330 s, 1313 m, 1277 w, 1255 w, 1177 w, 1154 w, 1129 m, 1094 vs, 1064 vs, 1029 m, 1020 w, 999 w, 951 w, 833 w, 819 m, 691 s, 576 w, $446 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $597\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 595\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{79} \mathrm{BrNa} 595.1249$, found 595.1241.
Optical rotation: $[\alpha]^{22}{ }_{D}-122^{\circ}\left(c 0.263, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($P, 3 S, 6 S$)-11-Bromo-3,6-dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e'] benzo[1,2-c:4,3-c $]$ bisoxepine (P, S, S)-124

Preparation using halogen lamp irradiation and $\operatorname{CoCp}(\mathrm{CO})_{2}$ complex:

A flame-dried Schlenk flask was filled with triyne (S,S)-123 (36.3
 $\mathrm{mg}, 0.0633 \mathrm{mmol})$, triphenylphosphine ($33.2 \mathrm{mg}, 0.127 \mathrm{mmol}, 2.0$ equiv.) and flushed with argon. Then dicarbonyl(η^{5} cyclopentadienyl)cobalt(I) ($8.5 \mu \mathrm{l}, 0.063 \mathrm{mmol}, 1.0$ equiv.) and decane (4 ml) were added and the reaction mixture was heated under halogen lamp irradiation at $140{ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 85:15) and then it was further purified by washing (hexane) to provide the product (P, S, S)-124 $(28.8 \mathrm{mg}$, 80%) as a white solid.

Microwave-assisted preparation with $\operatorname{CoCp}(\mathrm{CO})_{2}$ complex:

In a 20 ml Biotage microwave vial triyne (S,S)-123 (1.12 g, 1.95 mmol$), \mathrm{CoCp}(\mathrm{CO})_{2}$ ($0.26 \mathrm{ml}, 1.95 \mathrm{mmol}, 1.0$ equiv.), triphenylphosphine ($1.03 \mathrm{~g}, 3.91 \mathrm{mmol}, 2.0$ equiv.), silicon carbide (200 mg) and THF (40 ml) were heated at $180^{\circ} \mathrm{C}$ in a microwave reactor for 1 h . The reaction mixture was filtered through a sintered glass (THF) and the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to provide the product (P, S, S)-124 (860 mg, 77\%) as a yellowish solid.

Preparation using halogen lamp irradiation and $\mathrm{RhCp}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex:

In a Schlenk flask triyne (S, S)-123 ($16.8 \mathrm{mg}, 0.029 \mathrm{mmol}$), (η^{5}-cyclopentadienyl)(di-η^{2}-ethene)rhodium(I) ($6.6 \mathrm{mg}, 0.029 \mathrm{mmol}, 1.0$ equiv.) and decane (5 ml) were heated under halogen lamp irradiation at $140^{\circ} \mathrm{C}$ for 1 h . Then the reaction mixture was allowed to cool down to room temperature and subjected to column chromatography on silica gel (hexane-diethyl ether 100:0 to 80:20) to provide product (P, S, S)-124 ($7.6 \mathrm{mg}, 46 \%$) as a yellowish solid.
M.p.: $137-140^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.64(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.68(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.56(1 \mathrm{H}, \mathrm{d}, J$ $=11.5), 4.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5), 4.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5), 4.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5), 4.94(2 \mathrm{H}$, q, $J=7.1$), $6.56(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.1), 6.70(1 \mathrm{H}, \mathrm{d}, J=2.0), 6.84(2 \mathrm{H}, \mathrm{m}), 7.16(2 \mathrm{H}$, $\mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.2), 7.04-7.10(4 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{dt}, J=$ $7.6,7.6,1.1), 7.28(1 \mathrm{H}, \mathrm{d}, J=8.0), 7.34(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0), 7.44(1 \mathrm{H}, \mathrm{dd}, J=7.5$, 1.2).
${ }^{13}{ }^{3}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.22 (q), 22.55 (q), 66.83 (t$), 67.57$ (t$), 72.78$ (d), 72.82 (d), 121.36 (s), 126.51 (d), 126.83 (d), 127.47 (d), 127.51 (d), 127.56 (d), 127.80 (d), 127.82 (d), 128.15 (d), 128.44 (d), 129.71 (d), 129.72 (d), 130.02 (d), 130.09 (d), 130.13 (d), 130.65 (d), 131.90 (d), 134.90 (d), 135.71 (s), 136.80 (s), 137.42 (s), 137.46 (s), 137.64 (s), 137.82 (s), 139.39 (s), 139.80 (s), 139.83 (s), 142.21 (s), 142.26 (s), 142.64 (s).

IR (CHCl_{3}): $2928 \mathrm{~s}, 1600 \mathrm{w}, 1593 \mathrm{w}, 1570 \mathrm{w}, 1555 \mathrm{w}, 1496 \mathrm{w}, 1485 \mathrm{w}, 1443 \mathrm{~m}, 1393$ w, 1371 m, 1177 w, 1128 w, 1113 m, 1080 vs, 1070 s, 1028 w, 1001 w, 949 w, 914 $\mathrm{w}, 819 \mathrm{w}, 705 \mathrm{vs} \mathrm{cm}^{-1}$.

El MS: $574\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{81} \mathrm{Br}, 31\right), 572\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{79} \mathrm{Br}, 30\right), 559(55), 557$ (53), 541 (9), 539 (9), 529 (16), 527 (18), 511 (20), 509 (17), 448 (30), 432 (20), 417 (16), 405 (18), 403 (7), 387 (5), 341 (20), 327 (27), 326 (28), 313 (17), 289 (8), 252 (10), 215 (7), 178 (5), 149 (87), 105 (13), 91 (14), 77 (40), 57 (42), 43 (100).

HR EI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 572.1351$, found 572.1359.
Optical rotation: $[\alpha]^{22}{ }_{D}-97^{\circ}\left(\mathrm{c} 0.144, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for iodination of (P, S, S)-124:

In a flame-dried Schlenk flask helicene (P, S, S)-124 (1.0 equiv.) was dissolved in THF or diethyl ether $(0.1 \mathrm{mmol} / \mathrm{ml})$ and cooled down to $-78{ }^{\circ} \mathrm{C}$. A solution of BuLi (1.0 equiv.) was added at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 min . Then a solution of iodine (1.2 equiv.) in THF or diethyl ether ($0.05 \mathrm{mmol} / \mathrm{ml}$) was added. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min and at room temperature for 15 min , the volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 75:25) to provide a mixture of $(P, S, S)-124,(P, S, S)$-125 and (P, S, S)-126 as an amorphous solid.

[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepin-11-yl](trimethyl)silane (P, S, S)-125b

In a flame-dried Schlenk flask starting bromide (P, S, S)-124 (43.2 $\mathrm{mg}, 0.0753 \mathrm{mmol}$) was flushed with argon and dissolved in diethyl ether (7 ml). Then the solution was cooled to $-95^{\circ} \mathrm{C}$ and a solution of t-BuLi $(1.7 \mathrm{M}$ in pentane, $90 \mu \mathrm{l}, 0.153 \mathrm{mmol}, 2.0$ equiv.) was added so that its drops run down the cooled walls of the Schlenk flask. After 1 min chlorotrimethylsilane ($15 \mu \mathrm{l}, 0.12 \mathrm{mmol}, 1.6$ equiv.) was added and after stirring at $-95{ }^{\circ} \mathrm{C}$ for 30 min the reaction mixture was allowed to warm up to room temperature. The volatiles were removed in vacuo and the residue was purified by
flash chromatography (hexane-acetone 100:0 to 80:20) to provide product (P, S, S)125b (27.4 mg, 65\%) as an oil together with the reduced product (P, S, S)-126 (1.7 $\mathrm{mg}, 5 \%$) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right):-0.06(9 \mathrm{H}, \mathrm{s}), 0.64(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.1)$, $4.58(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.88(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.91(1 \mathrm{H}, \mathrm{d}, J=$ 11.4), $4.95(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.53(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3), 6.73(1 \mathrm{H}, \mathrm{d}, J=1.2), 6.85(2 \mathrm{H}$, $\mathrm{m}), 6.94(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.05(2 \mathrm{H}, \mathrm{m}), 7.05(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.08$ $(2 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 7.21(2 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,1.2), 7.37(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3)$, 7.41 (1H, dd, J = 7.5, 1.3).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -1.47 (q), 22.17 (q), 22.30 (q), 67.37 (t$), 67.43$ (t$), 72.71$ (d), 72.80 (d), 126.27 (d, 2C), 127.32 (d, 2C), 127.58 (d), 127.64 (d, 2C), 128.36 (d), 130.01 (d), 130.04 (d), 132.06 (d), 132.15 (d), 137.25 (s), 137.33 (s), 137.35 (s), 137.42 (s), 137.52 (d), 137.76 (s), 138.09 (s), 138.87 (s), 139.36 (s), 140.00 (s), 140.02 (s), 140.21 (s), 141.79 (s), 141.90 (s).

IR (CHCl_{3}): $2928 \mathrm{~s}, 2858 \mathrm{~s}, 1601 \mathrm{w}, 1577 \mathrm{w}, 1554 \mathrm{vw}, 1496 \mathrm{w}, 1443 \mathrm{~m}, 1394 \mathrm{w}$, 1249 w, 1186 w, 1080 vs, 1072 s, 1028 w, 948 w, $835 \mathrm{~m}, 704$ vs, $693 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $589\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 567\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ES MS: calculated for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si} 567.2719$, found 567.2735.
Optical rotation: $[\alpha]^{22}{ }_{D}-102^{\circ}\left(\mathrm{c} 0.352, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 S, 6 S$)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c $]$ bisoxepine (P, S, S)-126

In a flame-dried Schlenk flask helicene (P, S, S)-124 (81 mg, 0.14 mmol) was dissolved in THF (5 ml) and cooled down to $-78^{\circ} \mathrm{C}$. A solution of $n-B u L i(1.6 \mathrm{M}$ in hexanes, $0.10 \mathrm{ml}, 0.16 \mathrm{mmol}, 1.1$ equiv.) in THF (2 ml) was cooled down to $-78{ }^{\circ} \mathrm{C}$ and added to the solution of bromide via cannula (over a period of 1 min). The reaction mixture was stirred at $78{ }^{\circ} \mathrm{C}$ for 1.5 h and then chlorodiphenylphosphine ($30 \mu \mathrm{l}, 0.16 \mathrm{mmol}, 1.1$ equiv.) was added. After stirring at $-78^{\circ} \mathrm{C}$ for 15 min and at room temperature for 15 min , the volatiles were removed in vacuo and the residue purified by flash chromatography on
silica gel (hexane-diethyl ether 100:0 to 85:15) to provide product (P, S, S)-106 (58.6 $\mathrm{mg}, 84 \%$) as a white solid.
M.p.: $>340^{\circ} \mathrm{C}$ (chloroform)
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CDCl}_{3}\right): 0.62(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 4.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.4), 4.89(2 \mathrm{H}, \mathrm{d}$, $J=11.4), 4.94(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.60(2 \mathrm{H}, \mathrm{dd}, J=7.8,1.3), 6.85(2 \mathrm{H}, \mathrm{m}), 6.98(2 \mathrm{H}, \mathrm{dt}$, $J=7.6,7.6,1.3), 7.04-7.09(4 \mathrm{H}, \mathrm{m}), 7.18(2 \mathrm{H}, \mathrm{m}), 7.20(2 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3)$, $7.21(2 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{dd}, J=7.5,1.3)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.14 (q), 67.45 (d), 72.71 (t), 126.30 (d), 127.33 (d), 127.55 (d), 127.57 (d), 127.66 (d), 128.51 (d), 129.68 (d), 130.02 (d), 132.04 (d), 137.12 (s), 137.32 (s), 137.72 (s), 139.97 (s), 140.07 (s), 141.92 (s).

IR (CHCl_{3}): $2964 \mathrm{vs}, 2863 \mathrm{~s}, 1729 \mathrm{~m}, 1624 \mathrm{w}, 1602 \mathrm{w}, 1578 \mathrm{w}, 1496 \mathrm{w}, 1443 \mathrm{~m}$, 1306 w, 1109 s, 1080 vs, 1070 vs, 1027 s, 1017 s, 704 vs cm$^{-1}$.

ESI MS: $495\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ES MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{O}_{2} 495.2324$, found 495.2341 .
Optical rotation: $[\alpha]^{22}{ }_{D}-105^{\circ}\left(c \quad 0.060, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-

 c:4,3-c ${ }^{\prime}$ bbisoxepin-11-yl](diphenyl)phosphane-borane complex (P, S, S)-127

In a flame-dried Schlenk flask starting bromide (P, S, S)-124 (30.3 $\mathrm{mg}, 0.0528 \mathrm{mmol}$) was flushed with argon and dissolved in diethyl ether (5 ml). Then the solution was cooled to $-110{ }^{\circ} \mathrm{C}$ and solution of t-BuLi $(1.7 \mathrm{M}$ in pentane, $62 \mu \mathrm{l}, 0.105 \mathrm{mmol}, 2.0$ equiv.) was added so that drops run down the cooled walls of the Schlenk flask. After 1 min chlorodiphenylphosphine ($15 \mu \mathrm{l}, 0.08 \mathrm{mmol}, 1.5$ equiv.) was added and after stirring at $-110^{\circ} \mathrm{C}$ for 30 min the reaction mixture was allowed to warm up to $0^{\circ} \mathrm{C}$. Then a solution of borane-dimethylsulfide complex (2.0 M in THF, $130 \mu \mathrm{l}, 0.26 \mathrm{mmol}$, 5.0 equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The volatiles were removed in vacuo and the residue was purified by flash
chromatography (hexane-acetone 100:0 to 80:20) to provide product (P, S, S)-127 ($31.8 \mathrm{mg}, 87 \%$) as a white solid.
M.p.: $130-133^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.55(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.63(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.40(1 \mathrm{H}, \mathrm{d}, J$ $=11.5), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.64(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.87(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.92(1 \mathrm{H}$, $\mathrm{d}, J=11.4), 4.94(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.58(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.68(1 \mathrm{H}, \mathrm{m}), 6.80-6.84$ $(2 \mathrm{H}, \mathrm{m}), 7.02-7.14(6 \mathrm{H}, \mathrm{m}), 7.07(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.14(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5$, 1.3), 7.17-7.26 (2H, m), 7.18-7.26 (6H, m), 7.31 ($1 \mathrm{H}, \mathrm{dd}, J=7.5,1.3$), $7.37(4 \mathrm{H}, \mathrm{dt}, J$ $=7.7,7.7,2.3), 7.52-7.54(2 \mathrm{H}, \mathrm{m})$. The BH_{3} signal was not determined because it was broad.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 21.99 (q), 22.42 (q), 67.22 (t), 66.90 (t), 72.56 (d), 72.83 (d), 126.41 (d), 126.44 (d), 127.36 (d), 127.51 (d), 127.51 (d), 127.66 (s, JPC $=47.8$), $127.70(\mathrm{~d}, 2 \mathrm{C}), 127.74(\mathrm{~d}), 128.61\left(\mathrm{~d}, J_{\mathrm{PC}}=10.0\right), 128.74\left(\mathrm{~s}, \mathrm{~J}_{\mathrm{PC}}=82.9\right), 129.08(\mathrm{~d})$, $129.28\left(\mathrm{~d}, J_{\mathrm{PC}}=11.2\right), 129.50(\mathrm{~d}), 129.52(\mathrm{~d}), 129.84(\mathrm{~d}), 129.93(\mathrm{~d}), 131.04\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=\right.$ 2.0), $131.12\left(\mathrm{~d}, J_{\mathrm{PC}}=2.3\right), 131.95(\mathrm{~d}), 132.10\left(\mathrm{~d}, J_{\mathrm{PC}}=12.0\right), 133.19\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=17.5\right)$, $133.30\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=17.5\right), 135.89(\mathrm{~s}), 136.46\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=7.8\right), 137.12(\mathrm{~s}), 137.32(\mathrm{~s})$, 137.49 (s), 137.67 (s), 139.55 (s), 139.61 (s), 139.65 (s), 140.59 (s, JPC $=2.2$), 140.69 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=11.0$), 142.03 (s$), 142.39$ (s$)$.
${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 20.85 (s).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -2.16 (bs).
IR (CHCl_{3}): 2965 vs, 2929 vs, 2866 s, $2388 \mathrm{~s}, 2348 \mathrm{~m}, 1601 \mathrm{~m}, 1589 \mathrm{w}, 1577 \mathrm{w}$, 1557 w, 1495 m, 1488 m, 1438 s, 1179 m, 1079 vs, 1072 vs, 1060 s, 1029 s, 1000 $\mathrm{m}, 827 \mathrm{~m}, 704 \mathrm{vs}, 694 \mathrm{~s}, 496 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $715\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 693\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{BNaP} 715.2913$, found 715.2936.
Optical rotation: $[\alpha]^{22}{ }_{D}-136^{\circ}\left(c \quad 0.350, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepin-11-yl](dicyclohexyl)phosphane-borane complex (P, S, S)-128

In a flame-dried Schlenk flask bromide (P, S, S)-124 (39.8 mg , 0.0694 mmol) was flushed with argon and dissolved in diethyl ether (7 ml). Then the solution was cooled to $-110{ }^{\circ} \mathrm{C}$ and a solution of t-BuLi (1.7 M in pentane, $82 \mu \mathrm{l}, 0.139 \mathrm{mmol}, 2.0$ equiv.) was added so that drops run down the cooled walls of the Schlenk flask. After 2 min chlorodicyclohexylphosphine ($30 \mu \mathrm{l}, 0.136 \mathrm{mmol}, 1.9$ equiv.) was added. After stirring at $-110^{\circ} \mathrm{C}$ for 30 min the reaction mixture was allowed to warm up to $0^{\circ} \mathrm{C}$. Then a solution of borane dimethylsulfide complex (2.0 M in THF, $173 \mu \mathrm{l}, 0.347$ mmol, 5.0 equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The volatiles were removed in vacuo and the residue was purified by flash chromatography (hexane-diethyl ether 100:0 to 85:15) to provide product (P, S, S)-128 ($31.2 \mathrm{mg}, 64 \%$) as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.57(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 0.80-1.79(20 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 11.4), $4.66(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.94(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.94(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.95(1 \mathrm{H}, \mathrm{d}$, $J=11.4), 4.97(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.58(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3), 6.83(1 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}, \mathrm{m})$, $6.97(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.03-7.10(6 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=10.3,1.5), 7.14-$ $7.23(2 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3), 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.3), 7.48(1 \mathrm{H}, \mathrm{dt}$, $J=7.8,7.8,1.5), 7.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6,2.2)$. The BH_{3} signal was not determined because it was broad and/or obscured by the aliphatic signals.

[^1]${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 27.00 (s).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -2.40 (bs).
IR (CHCl_{3}): 2934 vs, 2856 vs, $2380 \mathrm{~m}, 2347 \mathrm{~m}, 1601 \mathrm{w}, 1577 \mathrm{w}, 1557 \mathrm{w}, 1497 \mathrm{w}$, 1491 w, 1450 s, 1443 m, 1395 w, 1181 w, 1079 s, 1072 s, 1029 m, 1004 w, 948 w, $824 \mathrm{~m}, 705 \mathrm{~s} \mathrm{~cm}^{-1}$.

ESI MS: $743\left([\mathrm{M}+\mathrm{K}]^{+}\right), 727\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{BNaP} 727.3852$, found 727.3859.
Optical rotation: $[\alpha]^{22} \mathrm{D}-103^{\circ}\left(\mathrm{c} 0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c]bisoxepin-11-yl][bis(1-methylethyl)]phosphane-borane complex (P, S, S)129

In a flame-dried Schlenk flask starting bromide (P, S, S)-124 (28.2 $\mathrm{mg}, 0.0492 \mathrm{mmol}$) was flushed with argon and dissolved in diethyl ether (6 ml). Then the solution was cooled to $-110^{\circ} \mathrm{C}$ and solution of t-BuLi (1.7 M in pentane, $60 \mu \mathrm{l}, 0.102 \mathrm{mmol}, 2.1$ equiv.) was added so that drops run down the cooled walls of the Schlenk flask. After 1 min chlorodiisopropylphosphine ($15 \mu \mathrm{l}, 0.094 \mathrm{mmol}, 1.9$ equiv.) was added and after stirring at $-110^{\circ} \mathrm{C}$ for 30 min the reaction mixture was allowed to warm up to 0 ${ }^{\circ} \mathrm{C}$. Then a solution of borane dimethylsulfide complex (2.0 M in THF, $125 \mu \mathrm{l}, 0.25$ mmol, 5.0 equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The volatiles were removed in vacuo and the residue was purified by flash chromatography (hexane-acetone 100:0 to 85:15) to provide product (P, S, S)-129 ($15.2 \mathrm{mg}, 50 \%$) as a white amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.57 ($3 \mathrm{H}, \mathrm{d}, J=7.1$), 0.58 ($3 \mathrm{H}, \mathrm{d}, J=7.1$), 0.67 ($3 \mathrm{H}, \mathrm{dd}$, $\left.J_{H H}=7.0, J_{P H}=14.3\right), 0.87\left(3 \mathrm{H}, \mathrm{dd}, J_{H H}=7.0, J_{P H}=13.8\right), 0.89\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}}=7.0\right.$, $\left.J_{\mathrm{PH}}=15.5\right), 1.00\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\mathrm{HH}}=7.0, J_{\mathrm{PH}}=15.5\right), 1.95-2.03(1 \mathrm{H}, \mathrm{m}), 2.04-2.10(1 \mathrm{H}$, m), $4.64(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.66(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.93(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.94(1 \mathrm{H}, \mathrm{q}, J$ $=7.1), 4.95$ ($1 \mathrm{H}, \mathrm{d}, J=11.4$), 4.95 ($1 \mathrm{H}, \mathrm{q}, J=7.1$), 6.58 ($1 \mathrm{H}, \mathrm{dd}, J=7.7,1.2$), 6.83$6.87(2 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.04-7.10(6 \mathrm{H}, \mathrm{m}), 7.07-7.09(1 \mathrm{H}, \mathrm{m})$, $7.15-7.23(2 \mathrm{H}, \mathrm{m}), 7.18(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.2), 7.44(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.3), 7.52$
(1H, dd, $J=7.7,2.1$), 7.58 (1H, ddd, $J=9.0,7.7,1.5$). The BH_{3} signal was not determined because it was broad and/or obscured by the aliphatic signals.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): $16.64\left(\mathrm{dq}, J_{\mathrm{PC}}=1.5\right), 16.70\left(\mathrm{dq}, J_{\mathrm{PC}}=1.2\right), 16.80(\mathrm{dq}$, $\left.J_{P C}=1.4\right), 16.83\left(d q, J_{P C}=1.5\right), 21.31\left(d, J_{P C}=34.2\right), 21.65\left(d, J_{P C}=34.4\right), 22.03$ (q), 22.05 (q), 66.96 (t), 67.30 (t), 72.63 (d), 72.78 (d), 125.36 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=47.4$), 126.40 (d), 126.42 (d), 127.35 (d), 127.43 (d), 127.61 (d), 127.68 (d), 128.73 (d), 128.00 (d), 128.70 (d, $J_{P C}=9.4$), 129.14 (d), 129.58 (d), 129.60 (d), 129.91 (d), 129.98 (d), 131.90 (d), 132.51 (d, JPC $=7.4$), 136.05 (s), 137.13 ($d, J_{P C}=8.0$), 137.19 (()$, 137.27$ (s), 137.70 (s), 138.15 (s), 139.65 (s), 139.73 (s), 139.74 (s), 140.68 (s, $J_{P C}=2.3$), 140.73 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=9.6$), $142.02(\mathrm{~s}), 142.45(\mathrm{~s})$.
${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 34.76 (s).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -3.03 (bs).
IR (CHCl_{3}): 2967 vs, $2874 \mathrm{~s}, 2381 \mathrm{~s}, 2349 \mathrm{~m}, 1601 \mathrm{~m}, 1577 \mathrm{w}, 1556 \mathrm{w}, 1496 \mathrm{~m}$, 1443 m, 1387 m, 1371 s, $1179 \mathrm{w}, 1080$ vs, 1072 vs, $1029 \mathrm{~m}, 999 \mathrm{w}, 947 \mathrm{w}, 827 \mathrm{~m}$, $705 \mathrm{vs}, 690 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $647\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 625\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{BP}$ 625.3407, found 625.3395 .
Optical rotation: $[\alpha]^{22}{ }_{D}-94^{\circ}\left(c 0.046, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepin-11-ol ((P, S, S)-132

Palladium-catalysed hydroxylation:

In a Carius flask bromide (P, S, S)-124 ($30.1 \mathrm{mg}, 0.052 \mathrm{mmol}$), bis(dibenzylideneacetone)palladium(0) ($2.0 \mathrm{mg}, 3.5 \mu \mathrm{~mol}, 7 \mathrm{~mol} \%$), 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl ($3.9 \mathrm{mg}, 8.2$ $\mu \mathrm{mol}, 16 \mathrm{~mol} \%$), potassium hydroxide ($15.0 \mathrm{mg}, 0.27 \mathrm{mmol}, 5.1$ equiv.) were suspended in mixture of water-1,4-dioxane ($1: 1,1 \mathrm{ml}$) and stirred at $100^{\circ} \mathrm{C}$ for 16 h . Then an aqueous solution of HCl was added $(1 \mathrm{M}, 5 \mathrm{ml})$ and the reaction was washed with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic phases were dried over
anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 50:50) to provide product (P, S, S)-132 ($2.4 \mathrm{mg}, 9 \%$) as a white solid.

Halogen-magnesium exchange using organomagnesium ate complex:

In a flame-dried Schlenk flask dibutylisopropylmagnesium ate complex was prepared by mixing an isopropylmagnesium chloride lithium chloride complex (1.3 M in THF, $50 \mu \mathrm{l}, 0.065 \mathrm{mmol}, 1.25$ equiv.), a solution of n-BuLi (1.6 M in hexanes, $81 \mu \mathrm{l}, 0.130$ mmol, 2.5 equiv.) in THF (1 ml) at $0{ }^{\circ} \mathrm{C}$ and stirring the solution for 15 min . To this solution a solution of bromide (P, S, S)-124 ($30.0 \mathrm{mg}, 0.052 \mathrm{mmol}$) in THF (1 ml) was added and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . Then the reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and oxygen gas (99.9991\%) was bubbled through the solution for 30 min . After that the reaction mixture was allowed to warm up to room temperature and an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 5 \mathrm{ml})$ was added. Then THF was removed in vacuo, the aqueous phase was washed with ethyl acetate ($3 \times 5 \mathrm{ml}$). The combined organic phases were dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to $50: 50)$ to provide product $(P, S, S)-132(9.7 \mathrm{mg}, 37 \%)$ as a white solid and (P, S, S)-126 ($10.7 \mathrm{mg}, 42 \%$) as a white solid.

Bromine-lithium exchange using t-butyllithium:

In a flame-dried Schlenk flask starting bromide (P, S, S)-124 ($23.5 \mathrm{mg}, 0.041 \mathrm{mmol}$) was flushed with argon and dissolved in diethyl ether (1 ml). Then the solution was cooled to $-105^{\circ} \mathrm{C}$ and solution of $t-\mathrm{BuLi}(1.7 \mathrm{M}$ in pentane, $50 \mu \mathrm{l}, 0.085 \mathrm{mmol}, 2.1$ equiv.) was added so that drops run down the cooled walls of the Schlenk flask. After 1 min , gaseous oxygen (99.9991\%) was bubbled through the reaction mixture at -105 ${ }^{\circ} \mathrm{C}$ for 1.5 h . Then the cooling bath was removed and the solution was allowed to warm up to room temperature. An aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 1 \mathrm{ml})$ was added and then extracted with ethyl acetate ($3 \times 3 \mathrm{ml}$). The combined organic phases were concentrated in vacuo and the residue purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 50:50) to provide product (P, S, S) $-132(6.7 \mathrm{mg}, 32 \%)$ as a white solid and (P, S, S)-126 ($8.6 \mathrm{mg}, 43 \%$) as a white solid.
M.p.: 273-276 ${ }^{\circ} \mathrm{C}$ (hexane)
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, d_{6}$-acetone, ref=2.09): $0.59(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.67(3 \mathrm{H}, \mathrm{d}, J=7.1)$, $4.52(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.59(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.75(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.80(1 \mathrm{H}, \mathrm{d}, J=$ 11.3), $4.88(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.89(1 \mathrm{H}, \mathrm{q}, 7.1), 6.21(1 \mathrm{H}, \mathrm{d}, J=2.5), 6.76(1 \mathrm{H}, \mathrm{dd}, J=$ $7.8,1.3), 6.76(1 \mathrm{H}, \mathrm{dd}, J=8.1,2.5), 7.02-7.05(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6$, 1.4), 7.11-7.17 (4H, m), 7.19-7.23 (2H, m), 7.23-7.27 (2H, m), $7.30(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.1)$, $7.30(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4,1.3), 7.48(1 \mathrm{H}, \mathrm{ddd}, J=7.5,1.4,0.4)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, d_{6}-acetone, ref=29.8): 22.48 (q), 22.50 (q), 67.13 (t), 67.68 (t), 72.77 (d), 73.04 (d), 115.58 (d), 119.41 (d), 127.17 (d), 127.18 (d), 128.16 (d), 128.19 (d), 128.20 (d), 128.32 (d), 128.33 (d), 128.55 (d), 129.23 (d), 130.42 (s), 130.48 (d), 130.50 (d), 130.52 (d), 131.04 (d), 131.06 (d), 132.58 (d), 137.77 (s), 137.80 (s), 138.07 (s), 138.19 (s), 138.23 (s), 141.04 (s), 141.14 (s), 141.16 (s), 142.19 (s), 142.65 (s), 142.72 (s), 157.61 (s).

IR (CHCl_{3}): $3594 \mathrm{w}, 3387 \mathrm{vw}, 3080 \mathrm{w}, 3061 \mathrm{w}, 2966 \mathrm{~m}, 2928 \mathrm{~m}, 2863 \mathrm{w}, 1603 \mathrm{~m}$, 1585 w, 1554 vw, 1499 w, 1461 w, 1451 vw, 1444 w, 1371 m, 1304 vw, 1288 w, 1250 m, 1179 m, 1151 m, 1109 w, 1079 s, 1072 s, 1045 w, 1028 w, 1000 vw, 949 vw, 939 w, 916 vw, 857 w, $846 \mathrm{w}, 705 \mathrm{vs}, 616 \mathrm{w}, 560 \mathrm{w}, 533 \mathrm{w}, 480 \mathrm{vw}, 462 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

ESI MS: $533\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Na} 533.2087$, found 533.2087.
Optical rotation: $[\alpha]^{22}{ }_{D}-192^{\circ}\left(\mathrm{c} 0.088, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-(bromomethyl)-1-iodobenzene 134a

In a 500 ml round-bottom flask NBS ($22.4 \mathrm{~g}, 0.125 \mathrm{~mol}, 1.2$ equiv.), 5-bromo-2-iodotoluene ($15 \mathrm{ml}, 0.105 \mathrm{~mol}$) and catalytic amount of AIBN and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were suspended in $\mathrm{CCl}_{4}(200 \mathrm{ml})$, flushed with nitrogen and refluxed for 10 h using IR lamp irradiation. The solvent was evaporated in vacuo and the residue was purified by column chromatography (hexane) to provide product as a 2:1 mixture of 134 a and 134 ($17 \mathrm{~g}, 45 \%$) as a solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{121,217}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 4.52(2 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.4), 7.60(1 \mathrm{H}, \mathrm{d}, J=$ 2.4), $7.69(1 \mathrm{H}, \mathrm{d}, J=8.4)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 37.47 (t), 97.86 (s), 122.79 (s), 133.11 (d), 133.22 (d), 141.26 (d), 142.14 (s).

1,4-Dibromo-2-(bromomethyl)benzene 134b

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $4.53(2 \mathrm{H}, \mathrm{s}), 7.29(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,2.4), 7.44$
($1 \mathrm{H}, \mathrm{d}, J=8.5$), $7.59(1 \mathrm{H}, \mathrm{d}, J=2.4)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 32.15 (t), 121.44 (s), 123.03 (s), 133.10 (d), 133.95 (d), 134.65 (d), 138.93 (s).
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{217,226}$

5-Bromo-2-iodobenzyl (1S)-1-methylprop-2-yn-1-yl ether (S)-135a

In a flame-dried Schlenk flask potassium hydride (dispersion in mineral oil, $1.92 \mathrm{~g}, 0.048 \mathrm{~mol}, 1.1$ equiv.) was washed (hexane) under argon, dried under vacuum and flushed with argon. THF (20 ml) was added to the hydride and the flask was cooled to $0^{\circ} \mathrm{C}$, alcohol (S)-111 (3.8 $\mathrm{ml}, 0.048 \mathrm{~mol}, 1.1$ equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then a solution of benzyl bromide $134(17.0 \mathrm{~g}, 0.047 \mathrm{~mol})$ in THF (20 ml) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm up to room temperature and stirred for 1.5 h . The reaction was quenched by addition of a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{ml})$ and the aqueous phase was extracted with diethyl ether ($4 \times 200 \mathrm{ml}$), the combined organic phases were washed with water ($2 \times 150 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed in vacuo and the residue was purified by chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to provide product as a 2:1 mixture of (S) - 135a and (S)-135b ($12.7 \mathrm{~g}, 95 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{217}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.50(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.31(1 \mathrm{H}, \mathrm{dq}$, $J=6.6,6.6,6.6,2.0), 4.42$ (1H, dt, $J=12.9,1.7,1.7), 4.71$ (1H, dt, $J=12.9,0.8,0.8$), 7.12 (1H, ddt, $J=8.3,2.5,0.7,0.7), 7.59(1 \mathrm{H}, \mathrm{dt}, J=2.5,0.8,0.8), 7.65(1 \mathrm{H}, \mathrm{d}, J=$ 8.3).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 22.00 (q), 65.38 (d), 73.73 (d), 73.81 (t), 83.11 (s), 95.15 (s), 122.74 (s), 131.66 (d), 132.14 (d), 140.26 (d), 142.39 (s).

IR (CHCl_{3}, mixture of 135a and 135b): $3307 \mathrm{~s}, 3090 \mathrm{vw}, 3066 \mathrm{vw}, 2992 \mathrm{~m}, 2962 \mathrm{w}$, 2938 m, 2870 m, 2113 vw, 1584 w, 1551 w, 1461 m, 1451 s, 1438 m, 1376 m, 1327 s, 1282 w, 1262 m, $1199 \mathrm{~m}, 1101 \mathrm{vs}, 1090 \mathrm{vs}, 1023 \mathrm{~s}, 1011 \mathrm{vs}, 949 \mathrm{vw}, 883 \mathrm{~m}, 872$ m, $811 \mathrm{~s}, 639 \mathrm{~s}, 570 \mathrm{w}, 525 \mathrm{w}, 432 \mathrm{w} \mathrm{cm}{ }^{-1}$.

El MS: $366\left(\mathrm{M}^{+\cdot}\right.$, 135a with $\left.{ }^{81} \mathrm{Br}, 22\right), 364\left(\mathrm{M}^{+\cdot}\right.$, 135a with $\left.{ }^{79} \mathrm{Br}, 23\right), 320\left(\mathrm{M}^{+\cdot}, 135\right.$ b with ${ }^{81} \mathrm{Br}^{81} \mathrm{Br}, 3$), $318\left(\mathrm{M}^{+\cdot}, \mathbf{1 3 5 b}\right.$ with $\left.{ }^{81} \mathrm{Br}^{79} \mathrm{Br}, 5\right), 316\left(\mathrm{M}^{+\cdot}, \mathbf{1 3 5 b}\right.$ with $\left.{ }^{79} \mathrm{Br}^{79} \mathrm{Br}, 3\right)$, 311 (8), 293 (25), 295 (28), 265 (5), 263 (6), 249 (22), 217 (18), 195 (10), 169 (38), 156 (23), 149 (10), 128 (13), 89 (51), 75 (37), 53 (100), 43 (49).

HR EI MS: calculated for $\mathbf{1 3 5 a}^{\mathrm{C}_{11}} \mathrm{H}_{10} \mathrm{O}^{79} \mathrm{Brl} 363.8959$, found 363.8956.
Optical rotation: $[\alpha]^{22}{ }_{D}-48^{\circ}\left(c 0.124, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, mixture of $135 \mathrm{a}: 135 \mathbf{b}=2: 1$).

1,4-Dibromo-2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)benzene (S)-135b

${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 2.0), 4.31 ($1 \mathrm{H}, \mathrm{dq}, J=6.5,6.5,6.5,2.0$), $4.52(1 \mathrm{H}, \mathrm{dt}, J=13.2,0.7$, $0.7), 4.78(1 \mathrm{H}, \mathrm{dt}, J=13.2,0.8,0.8), 7.27(1 \mathrm{H}, \mathrm{ddt}, J=8.4,2.5,0.7$, 0.7), 7.39 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.4$), $7.64(1 \mathrm{H}, \mathrm{dt}, J=2.5,0.8,0.8)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.00 (q), 65.41 (s), 73.67 (d), 73.73 (t), 120.89 (s), 121.45 (s), 131.78 (d), 131.80 (s), 133.74 (d), 139.54 (s).
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{217}$
\{(3S)-3-[(5-Bromo-2-iodobenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)136a

A flame-dried Schlenk flask was filled with a solution of alkyne (S)-135 (12.5 g, 0.036 mol) in THF (50 ml) under argon and cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of lithium diisopropylamide, prepared from a solution of $n-B u L i(1.6 \mathrm{M}$ in hexanes, 22.5 ml , $0.036 \mathrm{mmol}, 1.0$ equiv.) and diisopropylamine ($7.0 \mathrm{ml}, 0.050 \mathrm{~mol}, 1.4$ equiv.) in THF
(10 ml), was cooled to $-78^{\circ} \mathrm{C}$ and then slowly added (over a period of 30 min) to the solution of alkyne $(S)-136$ via a cannula. The reaction mixture was then stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h . Triisopropylsilyl chloride ($7.6 \mathrm{ml}, 0.036 \mathrm{~mol}, 1.0$ equiv.) was added and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 15 min , then allowed to warm up to room temperature and stirred overnight. The volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 99:1) to provide product as a 2:1 mixture of (S)-136a and (S)-136b (11.5 g, 63%) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 1.04-1.12(21 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=$ $6.6), 4.45(1 \mathrm{H}, \mathrm{dt}, J=13.2,0.7,0.7) 4.74(1 \mathrm{H}, \mathrm{dt}, J=13.2,0.7,0.7), 7.11(1 \mathrm{H}, \mathrm{ddt}, J$ $=8.3,2.5,0.7,0.7), 7.59(1 \mathrm{H}, \mathrm{dt}, J=2.5,0.9,0.9), 7.64(1 \mathrm{H}, \mathrm{d}, J=8.3)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 11.12 (d), 18.63 (q), 22.26 (q), 65.98 (d), 73.62 (t), 86.64 (s), 95.02 (s), 106.77 (s), 122.72 (s), 131.61 (d), 132.00 (d), 140.20 (d), 142.73 (s).

IR (CHCl_{3}, mixture of 136a and 136b,): $3088 \mathrm{vw}, 3065 \mathrm{vw}, 2989 \mathrm{~m}, 2960 \mathrm{vs}, 2866 \mathrm{vs}$, 2164 w, 1582 w, 1575 w, 1558 vw, 1551 w, 1463 s, 1452 s, 1438 m, 1384 m, 1373 m, 1325 s, 1289 w, 1262 s, 1198 w, 1098 vs, 1086 vs, 1076 s, 1023 s, 1011 s, 997 s, $883 \mathrm{vs}, 810 \mathrm{~s}, 700 \mathrm{w}, 679 \mathrm{~s}, 665 \mathrm{~s}, 638 \mathrm{~m}, 575 \mathrm{~m}, 525 \mathrm{w}, 433 \mathrm{w} \mathrm{cm}{ }^{-1}$.

ESI MS: $545\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathbf{1 3 6 a}\right.$ with $\left.{ }^{81} \mathrm{Br}\right), 543\left([\mathrm{M}+\mathrm{Na}]^{+}, \mathbf{1 3 6} \mathbf{a}\right.$ with $\left.{ }^{79} \mathrm{Br}\right), 495\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, 136b with $\left.{ }^{81} \mathrm{Br}^{79} \mathrm{Br}\right)$.

HR ESI MS: calculated for $136 \mathrm{a}_{20} \mathrm{H}_{29} \mathrm{O}^{79} \mathrm{BrINaSi} 543.0186$, found 543.0183.
Optical rotation: $[\alpha]^{22}{ }_{D}-103^{\circ}\left(c 0.352, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, mixture of $136 \mathbf{a}: 136 \mathbf{b}=2: 1$).

\{(3S)-3-[(2,5-Dibromobenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)-

 136b
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 1.04-1.12 $(21 \mathrm{H}, \mathrm{m}), 1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.6), 4.34(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.55(1 \mathrm{H}, \mathrm{dt}, J=13.4,0.8,0.8), 4.82$ ($1 \mathrm{H}, \mathrm{dt}, J=13.4,0.8,0.8$), 7.26 ($1 \mathrm{H}, \mathrm{ddt}, J=8.4,2.5,0.7,0.7$), $7.38(1 \mathrm{H}, \mathrm{d}, J=8.4), 7.64(1 \mathrm{H}, \mathrm{dt}, J=2.5,0.9,0.9)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.11 (d), 18.59 (q), 22.26 (q), 66.00 (d), 69.15 (t), 86.61 (s), 106.80 (s), 120.89 (s), 121.42 (s), 131.66 (d), 131.85 (d), 133.69 (d), 139.88 (s).

(\{4-Bromo-2-[(\{(1S)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy) methyl]phenyl\}ethynyl)(trimethyl)silane (S)-137

A flame-dried Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) (108 mg, 0.093 mmol , $0.6 \mathrm{~mol} \%$), copper iodide ($59 \mathrm{mg}, 0.309 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and diisopropylamine (30 ml) under argon. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and a degassed solution of $(S)-136(8.02 \mathrm{~g}, 0.015 \mathrm{~mol})$ in diisopropylamine (30 ml) was added. Then ethynyl(trimethyl)silane ($2.3 \mathrm{ml}, 0.016$ mmol, 1.1 equiv.) was slowly added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was filtered through a short pad of silica gel (hexane) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane) to provide the silane (S)-137 (7.80 g, 98\%) contaminated with 25% of (S)-136b inseparable unreacted impurity as an amorphous material.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.24(9 \mathrm{H}, \mathrm{s}), 1.04-1.10(21 \mathrm{H}, \mathrm{m}), 1.54(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6)$, $4.34(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.65(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.7,0.7), 4.86(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.7,0.7)$, 7.29 (1H, d, $J=8.2$), 7.34 (1H, ddt, $J=8.2,2.1,0.7,0.7$), 7.63 (1H, ddd, $J=2.1,1.1$, $0.8)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.09 (d), 18.60 (q), 22.38 (q), 66.17 (d), 67.93 (t), 86.06 (s), 100.49 (s), 101.36 (s), 107.24 (s), 120.02 (s), 122.98 (s), 130.03 (d), 130.08 (d), 133.49 (d), 142.74 (s).

IR (CHCl_{3}): 2945 vs, 2866 vs, $2157 \mathrm{~m}, 1586 \mathrm{w}, 1555 \mathrm{w}, 1472 \mathrm{~s}, 1464 \mathrm{~s}, 1401 \mathrm{~m}$, 1384 m, 1371 m, 1325 m, 1252 s, 1119 s, 1097 s, 1083 s, 1070 s, 997 m, 883 s, 847 vs, $823 \mathrm{~m}, 679 \mathrm{~s}, 661 \mathrm{~s} \mathrm{~cm}{ }^{-1}$.

ESI LC-MS: $493\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 491\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}^{79} \mathrm{BrSi}_{2}$ 491.1796, found 491.1781.

Optical rotation: $[\alpha]^{22}{ }_{D}-29^{\circ}\left(\mathrm{c} 0.035, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
\{(3S)-3-[(5-Bromo-2-ethynylbenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)-138

In a 250 ml round-bottom flask sodium ($354 \mathrm{mg}, 15.4 \mathrm{mmol}, 1.0$ equiv.) was dissolved in methanol (200 ml) under cooling to 0 ${ }^{\circ} \mathrm{C}$. After stirring for 15 min at $0^{\circ} \mathrm{C}$ the silane (S)-137 (7.80 g, 15.8 mmol) in THF (100 ml) was added and the reaction mixture was stirred at room temperature for 30 min . The solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (heptane) to provide alkyne (S)-138 (3.63 g, 61\%) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.05-1.15(21 \mathrm{H}, \mathrm{m}), 1.54(3 \mathrm{H}, \mathrm{d}, J=6.6), 3.33(1 \mathrm{H}, \mathrm{s})$, $4.35(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.70(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.7,0.7), 4.95(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.8,0.8)$, $7.34(1 \mathrm{H}, \mathrm{d}, J=8.2), 7.38(1 \mathrm{H}, \mathrm{ddt}, J=8.2,2.0,0.6,0.6), 7.68(1 \mathrm{H}, \mathrm{ddd}, J=2.0,1.2$, $0.8)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 11.10 (d), 18.60 (q), 22.28 (q), 65.93 (d), 67.69 (t), 80.14 (s), 82.85 (d), 86.28 (s), 107.03 (s), 119.11 (s), 123.38 (s), 130.21 (d), 130.38 (d), 133.79 (d), 142.95 (s).

IR (CHCl_{3}): 3305 vs, 2866 vs, $2165 \mathrm{w}, 2107 \mathrm{w}, 1697 \mathrm{w}, 1588 \mathrm{~s}, 1557 \mathrm{w}, 1472 \mathrm{~s}$, 1464 vs, 1401 m, 1385 s, 1371 s, 1325 s, 1259 m, 1197 vs, 1138 s, 1116 vs, 1081 vs, 1068 vs, $997 \mathrm{~s}, 883 \mathrm{vs}, 823 \mathrm{~s}, 679 \mathrm{vs}, 663 \mathrm{vs}, 620 \mathrm{~s} \mathrm{~cm}^{-1}$.

APCI MS: $421\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 419\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}^{79} \mathrm{BrSi} 419.1400$, found 419.1400.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-31^{\circ}\left(\mathrm{c} 0.101, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(3S)-3-\{[2-(\{4-Bromo-2-[(\{(1S)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy)methyl]phenyl\}ethynyl)benzyl]oxy\}but-1-yn-1-yl][tris(1-methylethyl)] silane (S, S)-139

A flame-dried Schlenk flask was charged with bis(triphenylphosphine)palladium(II) dichloride ($60 \mathrm{mg}, 0.0854$ mmol, $1 \mathrm{~mol} \%$), copper iodide ($33 \mathrm{mg}, 0.171 \mathrm{mmol}, 2 \mathrm{~mol} \%$) and flushed with argon. Then diisopropylamine (20 ml) and a degassed solution of aryl iodide (S)-113 (3.85 g, 8.72 mmol , 1.01 equiv.) in diisopropylamine (20 ml) were added and the mixture was stirred at room temperature for 10 min . Then it was cooled to $0^{\circ} \mathrm{C}$, a degassed solution of alkyne (S)-138 (3.63 g, 8.65 mmol) in diisopropylamine (25 ml) was added dropwise (over a period of 1 h) and the reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 2 h . Then it was filtered through a short pad of silica gel (hexane) and the solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane) to obtain product (S,S)-139 (5.06 g, 80\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.98-1.07 (42H, m), 1.51 (3H, d, J=6.6), $1.54(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.6), 4.34(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.36(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.76(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.7,0.7), 4.77$ (1H, d, $J=12.7$), $5.00(1 \mathrm{H}, \mathrm{dt}, J=13.3,0.7,0.7) 5.01(1 \mathrm{H}, \mathrm{d}, J=12.7), 7.26(1 \mathrm{H}, \mathrm{dt}$, $J=7.6,7.6,1.4), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.2), 7.37(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.38(1 \mathrm{H}, \mathrm{bdd}$, $J=8.2,2.0), 7.50(1 \mathrm{H}, \mathrm{bdd}, J=7.6,1.4), 7.52(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.6,0.6,0.6)$, 7.69 (1H, ddd, $J=2.0,1.1,0.7$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.06 (d), 11.09 (d), 18.52 (q), 22.39 (q), 22.42 (q), 65.68 (d), 66.01 (d), 68.04 (t), 68.69 (t), 85.98 (s), 86.30 (s), 90.29 (s), 92.69 (s), 107.17 (s), 107.48 (s), 120.20 (s), 121.33 (s), 122.79 (s), 127.16 (d), 127.57 (d), 128.70 (d), 130.12 (d), 130.21 (d), 132.03 (d), 133.13 (d), 140.03 (s), 142.22 (s).

IR (CHCl_{3}): $3071 \mathrm{w}, 2866 \mathrm{vs}, 2215 \mathrm{vw}, 2164 \mathrm{w}, 1599 \mathrm{vw}$, 1586 w , $1572 \mathrm{vw}, 1555 \mathrm{vw}$, 1493 m, 1471 s, 1463 s, 1452 m, 1401 w, 1384 m, 1371 m, 1325 m, 1255 w, 1118 s, 1138 m, 1096 s, 1080 s, 1069 s, 1019 m, 997 m, 949 w, 883 s, 822 m, 679 s, 661 m cm^{-1}.

APCI MS: $735\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 733\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{62} \mathrm{O}_{2}{ }^{79} \mathrm{BrSi}_{2} 733.3466$, found 733.3482 .

Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-60^{\circ}\left(\mathrm{c} 0.176, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)-1-\{[2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S,S)-140

A flame-dried Schlenk flask was charged with silane (S,S)-139 (2.75 $\mathrm{g}, 3.74 \mathrm{mmol})$, flushed with argon and THF (30 ml) was added. The solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of tetrabutylammonium fluoride trihydrate (0.914 M in THF, $4.0 \mathrm{ml}, 3.74 \mathrm{mmol}, 1.0$ equiv.) was added. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then it was left to warm up to room temperature and stirred overnight. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to obtain product (S, S)-140 (1.49 g, 95\%) as a yellow solid.
M.p.: $71-73^{\circ} \mathrm{C}$ (heptane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.52(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.54(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.45(1 \mathrm{H}, \mathrm{d}, J$ $=2.0), 2.47(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.32(1 \mathrm{H}, \mathrm{dq}, J=6.6,6.6,6.6,2.0), 4.34(1 \mathrm{H}, \mathrm{dq}, J=6.6$, $6.6,6.6,2.0), 4.78(1 \mathrm{H}, \mathrm{bd}, J=12.5), 4.76(1 \mathrm{H}, \mathrm{dt}, J=12.0,0.6,0.6), 5.00(1 \mathrm{H}, \mathrm{dt}, J$ $=12.0,0.6,0.6), 5.01(1 \mathrm{H}, \mathrm{bd}, J=12.5), 7.29(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.4), 7.37(1 \mathrm{H}, \mathrm{dt}$, $J=7.7,7.7,1.4), 7.39(1 \mathrm{H}, \mathrm{dd}, J=8.2,0.6), 7.41$ (1H, bdd, $J=8.2,2.0), 7.53(1 \mathrm{H}$, ddt, $J=7.4,1.4,0.7,0.7$), 7.54 (1 H , ddd, $J=7.6,1.4,0.5$), 7.69 ($1 \mathrm{H}, \mathrm{dq}, J=2.0,0.8$, $0.8,0.8)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 22.08 (q), 22.11 (q), 64.31 (d), 64.95 (d), 65.31 (d), 68.18 (t), 68.79 (t), 73.60 (d), 83.46 (s), 83.75 (s), 90.37 (s), 92.70 (s), 120.31 (s), 121.48 (s), 122.89 (s), 127.42 (d), 127.79 (d), 128.83 (d), 130.37 (d), 130.67 (d), 132.12 (d), 133.24 (d), 139.63 (s), 141.77 (s).

IR (CHCl_{3}): $3306 \mathrm{~s}, 3071 \mathrm{w}, 2214 \mathrm{vw}, 2112 \mathrm{vw}, 1600 \mathrm{vw}, 1586 \mathrm{w}, 1571 \mathrm{vw}, 1555 \mathrm{vw}$, 1493 m, 1472 m, $1453 \mathrm{~m}, 1401 \mathrm{~m}, 1390 \mathrm{~m}, 1374 \mathrm{~m}, 1327 \mathrm{~s}, 1153 \mathrm{w}, 1137 \mathrm{~s}, 1117$ vs, 1100 vs, $1081 \mathrm{~s}, 1066 \mathrm{~s}, 1020 \mathrm{~m}, 950 \mathrm{w}, 822 \mathrm{~m}, 639 \mathrm{~s} \mathrm{~cm}^{-1}$.

APCI MS: $423\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 421\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 421.0798$, found 421.0793.

Optical rotation: $[\alpha]^{22}{ }_{D}-101^{\circ}\left(c 0.043, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)-1-\{[2-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S, S)-141

A flame-dried Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) ($36 \mathrm{mg}, 0.0308 \mathrm{mmol}, 1$ mol\%), copper iodide ($12 \mathrm{mg}, 0.0616 \mathrm{mmol}, 2 \mathrm{~mol} \%$), flushed with argon and diisopropylamine (20 ml) and iodobenzene $(1.2 \mathrm{ml}$, 0.011 mol, 4.0 equiv.) were added at room temperature. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a degassed solution of alkyne $(S, S)-140(1.30 \mathrm{~g}, 3.08 \mathrm{mmol})$ in diisopropylamine (25 ml) was slowly added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and then allowed to warm up to room temperature and stirred overnight. The reaction mixture was filtered through a sintered glass (hexane) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 99:1) to provide product (S, S)-141 (1.58 g, 92\%) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.58(3 \mathrm{H}, \mathrm{d}, J=6.6), 4.50(1 \mathrm{H}, \mathrm{q}, J$ $=6.6), 4.52(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.81(1 \mathrm{H}, \mathrm{dt}, J=12.6,0.7,0.7), 4.83(1 \mathrm{H}, \mathrm{bd}, J=12.5)$, $5.02(1 \mathrm{H}, \mathrm{dt}, J=12.6,0.7,0.7), 5.04(1 \mathrm{H}, \mathrm{bd}, J=12.5), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5$, 1.3), 7.23-7.29 (6H, m), $7.27(1 \mathrm{H}, \mathrm{dd}, J=8.2,2.0), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.2), 7.34-7.36$ $(2 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{dt}, J=7.7,7.7,1.4), 7.37-7.39(2 \mathrm{H}, \mathrm{m}), 7.48(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.4$, $0.5), 7.53(1 \mathrm{H}, \mathrm{ddt}, J=7.8,1.4,0.7,0.7), 7.68(1 \mathrm{H}, \mathrm{dq}, J=2.0,0.7,0.7,0.7)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 22.21 (q), 22.23 (q), 65.53 (d), 65.95 (d), 68.22 (t), 68.79 (t), 85.33 (s), 85.57 (s), 88.73 (s), 89.02 (s), 90.39 (s), 92.74 (s), 120.38 (s), 121.64 (s), 122.51 (s), 122.56 (s), 122.79 (s), 127.40 (d), 128.05 (d), 128.21 (d), 128.28 (d), 128.30 (d), 128.77 (d), 130.29 (d), 130.51 (d), 131.69 (d), 131.72 (d), 132.09 (d), 133.21 (d), 139.79 (s), 141.96 (s).

IR $\left(\mathrm{CHCl}_{3}\right): 3083 \mathrm{w}, 3066 \mathrm{w}, 3036 \mathrm{w}, 2227 \mathrm{w}, 1599 \mathrm{w}, 1586 \mathrm{w}, 1573 \mathrm{w}, 1555 \mathrm{vw}$, 1497 m, 1490 s, 1472 w, 1451 m, 1444 m, 1401 w, 1389 w, 1373 m, 1329 s, 1255 w, 1152 w, 1131 m, 1116 s, 1097 vs, 1063 s, 1029 m, 1019 w, 950 w, 822 m, 692 s cm ${ }^{-}$ 1

APCI MS: $575\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 573\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 573.1424$, found 573.1408.
Optical rotation: $[\alpha]^{22}{ }_{D}-90^{\circ}\left(c \quad 0.138, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($P, 3 S, 6 S$)-10-Bromo-3,6-dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']

 benzo[1,2-c:4,3-c $]$ bisoxepine (P, S, S)-142
Procedure using $\operatorname{CoCp}(\mathrm{CO})_{2}$ complex:

A 20 ml microwave vial was charged with ionic liquid $\left[\mathrm{BDMIM}^{2}\right]\left[\mathrm{BF}_{4}\right]$ $(\sim 100 \mathrm{mg})$, dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) (108 $\mu \mathrm{l}, 0.815$ mmol, 1.3 equiv.), triyne (S, S)-141 (344 mg, 0.599 mmol$)$, triphenylphosphine ($315 \mathrm{mg}, 1.199 \mathrm{mmol}, 2.0$ equiv.) and THF (20 ml) and the solution was heated in a microwave reactor at $180^{\circ} \mathrm{C}$ for 30 min. Then the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 90:10) to provide product (P, S, S)-142 (317 mg, 92\%) as an off-white solid.

Procedure using $\operatorname{CoCp}(C O)(f u m)$ complex:

A 20 ml microwave vial was charged with silicon carbide (100 mg), carbonyl $\left(\eta^{5}-\right.$ cyclopentadienyl)(η^{2}-dimethylfumarate)cobalt(I) complex ($434 \mathrm{mg}, 1.44 \mathrm{mmol}, 1.1$ equiv), triyne $(S, S)-141(750 \mathrm{mg}, 1.31 \mathrm{mmol})$ and THF (20 ml) and the solution was heated in a microwave reactor at $180^{\circ} \mathrm{C}$ for 10 min . Then solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexanediethyl ether 100:0 to 90:10) and the obtained solid was washed (hexane) to provide product $(P, S, S)-142(1.34 \mathrm{~g}, 94 \%)$ as a white solid.
M.p.: $273-277^{\circ} \mathrm{C}$ (heptane).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.61(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.67(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.54(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.3), 4.59(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.83(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.86(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.94(1 \mathrm{H}$, $\mathrm{q}, J=7.1), 4.95(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.47(1 \mathrm{H}, \mathrm{d}, J=8.4), 6.59(1 \mathrm{H}, \mathrm{bd}, J=7.7), 6.84$ $(2 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{bt}, J=7.6), 7.04-7.09(4 \mathrm{H}, \mathrm{m}), 7.11(1 \mathrm{H}, \mathrm{dd}, J=8.4,2.0), 7.16$
(2H, m), 7.19-7.21 (2H, m), $7.24(1 \mathrm{H}, \mathrm{bt}, J=7.4), 7.41(1 \mathrm{H}, \mathrm{bt}, J=7.3), 7.58(1 \mathrm{H}, \mathrm{bd}$, $J=2.0$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.10 (q), 22.39 (q), 66.91 (t$), 67.44$ (t), 72.70 (d), 72.85 (d), 121.26 (s), 126.42 (d), 127.39 (d), 127.41 (d), 127.64 (d), 127.70 (d), 127.71 (d), 127.86 (d), 128.70 (d), 129.67 (d, 2C), 130.00 (d), 130.05 (d), 130.45 (d), 131.53 (d), 132.01 (d), 133.58 (d), 135.94 (s), 137.20 (s), 137.36 (s), 137.63 (s), 137.86 (s), 139.18 (s), 139.68 (s, 2C), 139.80 (s), 139.83 (s), 142.19 (s), 142.39 (s).

IR (CHCl_{3}): $3082 \mathrm{w}, 3062 \mathrm{w}, 3034 \mathrm{w}, 2967 \mathrm{~m}, 2928 \mathrm{~m}, 1602 \mathrm{w}, 1592 \mathrm{w}, 1577 \mathrm{vw}$, 1496 w, 1483 w, 1443 w, 1410 w, 1371 m, 1114 m, 1081 s, 1072 s, 1046 w, 1028 w, 1000 vw, 949 w, 914 w, 705 vs, 626 w, 563 w, 416 vw cm ${ }^{-1}$.

ESI MS: $597\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 595\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right), 575\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right)$, $573\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$,.

HR ESI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 573.1424$, found 573.1416; calculated for $\mathrm{C}_{36} \mathrm{H}_{29}{ }^{79} \mathrm{BrO}_{2} \mathrm{Na} 595.1243$, found 595.1239 .

Optical rotation: $[\alpha]^{22}{ }_{D}-164^{\circ}\left(c \quad 0.059, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c $]$ bisoxepin-10-yl]diphenylphosphane-borane complex (P, S, S)-143

A flame-dried Schlenk flask was filled with a solution of bromide $(P, S, S)-142(54.0 \mathrm{mg}, 0.094 \mathrm{mmol})$ in diethyl ether (4 ml) under argon. Then it was cooled to $-110{ }^{\circ} \mathrm{C}$ and a solution of t-BuLi $(1.7$ M in pentane, $114 \mu \mathrm{l}, 0.188 \mathrm{mmol}, 2.0$ equiv) was added so that drops fell down on the wall of the Schlenk flask. After stirring at $110^{\circ} \mathrm{C}$ for 1 min chlorodiphenylphosphine ($40 \mu \mathrm{l}, 0.223 \mathrm{mmol}, 2.3$ equiv.) was added and the reaction mixture was stirred at $-110^{\circ} \mathrm{C}$ to $-80^{\circ} \mathrm{C}$ for 1 h . Then the Schlenk flask was removed from a dry-ice bath and immersed into an ice-water bath and allowed to warm up to $0^{\circ} \mathrm{C}$ over a period of 15 min . Then a solution of borane dimethylsulfide complex (2.0 M in $\mathrm{THF}, 50 \mu \mathrm{l}, 0.1 \mathrm{mmol}, 10.0$ equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature overnight. The volatiles were removed in vacuo and the residue was purified by flash
chromatography (hexane-ethyl acetate 100:0 to $90: 10$) to provide product (P, S, S)143 ($62.4 \mathrm{mg}, 96 \%$) as a white solid.
M.p.:143-147 ${ }^{\circ} \mathrm{C}$ (chloroform).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.63(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.68(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.58(2 \mathrm{H}, \mathrm{d}, J$ $=11.5), 4.86(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.88(1 \mathrm{H}, \mathrm{dd}, J=11.5,0.9), 4.94(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.96$ (1H, q, J = 7.1), $6.54(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.68(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.2), 6.84-6.86(2 \mathrm{H}$, $\mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.04-7.11(4 \mathrm{H}, \mathrm{m}), 7.14-7.17(2 \mathrm{H}, \mathrm{m}), 7.17(1 \mathrm{H}$, ddd, $J=10.4,8.0,1.7), 7.19-7.22(2 \mathrm{H}, \mathrm{m}), 7.25(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3), 7.40(1 \mathrm{H}$, ddd, $J=7.4,1.4,0.5), 7.41-7.46(5 \mathrm{H}, \mathrm{m}), 7.49-7.54(5 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{ddd}, J=10.8$, 1.7, 0.5).
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.14 (q), 22.53 (q), 67.10 (t), 67.36 (t), 72.70 (d), 72.76 (d), 126.45 (d), 126.48 (d), 127.26 (d), 127.39 (d), 127.43 (d), 127.72 (d), 127.74 (d), $127.98(\mathrm{~d}), 128.02\left(\mathrm{~s}, J_{\mathrm{PC}}=57.5\right), 128.70\left(\mathrm{~s}, J_{\mathrm{PC}}=58.0\right), 128.74(\mathrm{~d}), 128.78\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ $5.5), 128.85\left(\mathrm{~d}, J_{\mathrm{PC}}=5.6\right), 129.21\left(\mathrm{~s}, J_{\mathrm{PC}}=58.1\right), 129.56(\mathrm{~d}), 129.64(\mathrm{~d}), 129.92(\mathrm{~d})$, 129.97 (d), 131.24 ($\mathrm{d}, J_{\mathrm{PC}}=2.4$), $131.31\left(\mathrm{~d}, J_{\mathrm{PC}}=2.4\right), 131.91\left(\mathrm{~d}, J_{\mathrm{PC}}=9.1\right), 132.03$ (d), $132.30\left(d, J_{P C}=10.1\right), 133.04\left(d, J_{P C}=9.7,2 C\right), 133.21\left(d, J_{P C}=9.7\right), 135.92$ (s), 137.42 (s), 137.45 (s), 137.61 (s), 137.86 (s), 138.30 (s, $J_{\mathrm{PC}}=10.2$), 139.58 (s, 2C), 139.67 (s), 142.11 (s), 142.69 (s), 143.72 ($s, J_{\mathrm{PC}}=2.5$).
${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 20.73 (s).
${ }^{11}$ B NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -2.90 (bs).
IR (CHCl_{3}): 3080 w, 3062 w, 3037 w, 2968 m, 2928 w, $2389 \mathrm{~m}, 2348 \mathrm{w}, 1600 \mathrm{w}$, 1577 vw, 1494 w, 1488 w, 1438 m, 1370 m, 1238 w, 1188 w, 1119 w, 1105 s, 1077 s, 1060 m, 1046 w, 1028 w, 999 w, 949 w, 704 vs, 694 m, 628 w, 623 w, 610 w, 572 w, $512 \mathrm{w}, 497 \mathrm{w}, 429 \mathrm{vw}, 415 \mathrm{vw} \mathrm{cm}^{-1}$.

ESI MS: $715\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{BNaP} 715.2908$, found 715.2917.
Optical rotation: $[\alpha]^{22}{ }_{D}-218^{\circ}\left(\mathrm{c} 0.051, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(P,3S,6S)-3,6-Dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepin-10-yl]dicyclohexylphosphane-borane complex (P, S, S)-144

A flame-dried Schlenk flask was filled with a solution of bromide $(P, S, S)-142(44.7 \mathrm{mg}, 0.078 \mathrm{mmol})$ in diethyl ether (5 ml) under argon. Then it was cooled to $-116{ }^{\circ} \mathrm{C}$ and a solution of t-BuLi (1.7 M in pentane, $95 \mu \mathrm{l}, 0.157 \mathrm{mmol}, 2.0$ equiv.) was added so that drops fell down on the wall of the Schlenk flask. After stirring at $110{ }^{\circ} \mathrm{C}$ for 1 min chlorodicyclohexylphosphine ($50 \mu \mathrm{l}, 0.226 \mathrm{mmol}, 2.9$ equiv.) was added and the reaction mixture was stirred at $-110^{\circ} \mathrm{C}$ for 15 min . The Schlenk flask was removed from a dry-ice bath and immersed into an ice-water bath and allowed to warm up to $0^{\circ} \mathrm{C}$. Then a solution of borane-THF complex (2 M in THF, $1 \mathrm{ml}, 2 \mathrm{mmol}$, 26 equiv.) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature overnight. The volatiles were removed in vacuo and the residue was purified by flash chromatography (hexane-diethyl ether 100:0 to 85:15) to provide product (P, S, S)-144 ($47.2 \mathrm{mg}, 85 \%$) as a white amorphous material.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.64(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2)$, 1.10-2.10 $(20 \mathrm{H}, \mathrm{m}), 4.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $11.4), 4.67(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.87(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.89(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.96(2 \mathrm{H}$, $\mathrm{q}, J=7.2), 6.49(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.66(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.8), 6.83-6.86(2 \mathrm{H}, \mathrm{m})$, 7.03-7.06 (2H, m), 7.06-7.09 (2H, m), 7.07 (1H, dt, $J=7.6,7.6,1.3), 7.15-7.18(2 \mathrm{H}$, m), 7.18 ($1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3$), 7.18-7.21 (2H, m), 7.25 ($1 \mathrm{H}, \mathrm{ddd}, J=8.6,8.0$, 1.5), 7.40 (1H, dd, $J=7.5,1.3$), 7.73 (1H, dd, $J=9.4,1.5$).

[^2]${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 26.43 (s).
${ }^{11}$ B NMR (160 MHz, CDCl_{3}): -2.38 (bs).

IR (CHCl_{3}): $3082 \mathrm{vw}, 3063 \mathrm{w}, 3036 \mathrm{vw}, 2934 \mathrm{vs}, 2857 \mathrm{~s}, 2381 \mathrm{~m}, 2348 \mathrm{w}, 1601 \mathrm{w}$, 1577 vw, 1553 vw, 1496 w, 1462 w, 1450 m, 1445 m, 1370 m, 1299 w, 1238 w, 1120 w, 1112 w, 1104 m, 1077 s, 1028 w, 1004 w, 948 vw, 833 vw, 705 s, 695 w, 574 w, $511 \mathrm{w}, 421 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

ESI MS: $728\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{BNaP} 727.3850$, found 727.3847 .
Optical rotation: $[\alpha]^{22}{ }_{D}-214^{\circ}\left(\mathrm{c} 0.035, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(2S)-4-(4-Methylphenyl)but-3-yn-2-ol (S)-145

$\overbrace{\text { TOI }}^{\text {OHOL }}$The Schlenk flask was charged with bis(triphenylphosphine)palladium(II) dichloride ($80 \mathrm{mg}, 0.114 \mathrm{mmol}, 4 \mathrm{~mol} \%$), copper iodide ($44 \mathrm{mg}, 0.231$ $\mathrm{mmol}, 8 \mathrm{~mol} \%$) and purged with argon. Then 4 -iodotoluene ($603 \mathrm{mg}, 2.76 \mathrm{mmol}$), toluene (30 ml) and diisopropylamine ($2 \mathrm{ml}, 1.43 \mathrm{~g}, 14.2 \mathrm{mmol}, 5.0$ equiv.) were added and the mixture was stirred at room temperature for 5 min . Then alcohol (S)111 ($215 \mu \mathrm{l}, 2.76 \mathrm{mmol}$.) was added dropwise over a period of 30 min and the reaction mixture was allowed to stir overnight. The reaction mixture was then filtered through a short pad of silica gel (hexane-ethyl acetate 1:1) and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography (hexaneethyl acetate $95: 5$ to $90: 10$) to obtain product (S)-145 ($441.9 \mathrm{mg}, 99 \%$) as a yellow solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{66}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.34(3 \mathrm{H}, \mathrm{bs}), 4.75(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, 7.11 (m, 2H), 7.32 (m, 2H).

2-lodobenzyl (1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl ether (S)-147

Potassium hydride (dispersion in mineral oil, $490 \mathrm{mg}, 12.2 \mathrm{~mol}$, 1.5 equiv.) in THF (10 ml) was cooled to $0^{\circ} \mathrm{C}$. Then tolyl alcohol (S)-145 ($1.30 \mathrm{~g}, 8.14 \mathrm{mmol}, 1.0$ equiv.) in THF (5 ml) was slowly added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then benzyl bromide 110
($2.39 \mathrm{~g}, 8.14 \mathrm{mmol}$) in THF (6 ml) was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm up to room temperature and stirred overnight. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{ml})$ was added to quench the excess of potassium hydride and the product was extracted with diethyl ether ($3 \times 80 \mathrm{ml}$), the combined organic layers washed with water ($3 \times 40 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo to give a yellow oil, which was purified by chromatography on silica gel (hexane-diethyl ether 95:5) to give the product (S)-147 (2.32 g, 76\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.59 ($3 \mathrm{H}, \mathrm{d}, J=6.6$), $2.34(3 \mathrm{H}, \mathrm{bs}), 4.52(1 \mathrm{H}, \mathrm{q}, J=6.6)$, 4.57 (1H, d, $J=12.5$), 4.83 (1H, d, $J=12.5$), 6.98 ($1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.4,1.8$), 7.12 $(2 \mathrm{H}, \mathrm{m}), 7.34(1 \mathrm{H}, \mathrm{ddd}, J=7.7,7.4,1.3), 7.35(2 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{ddt}, J=7.7,1.8$, $0.8,0.8), 7.82(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.45 (q), 22.21 (q), 65.75 (d), 74.44 (t$), 85.60$ (s), 88.05 (s), 98.13 (s), 119.61 (s), 128.17 (d), 129.01 (d), 129.13 (d), 129.18 (d), 131.63 (d), 138.42 (s), 139.18 (d), 140.44 (s).

IR (CHCl_{3}): $3059 \mathrm{v}, 3033 \mathrm{w}, 2226 \mathrm{w}, 1609 \mathrm{w}, 1588 \mathrm{w}, 1566 \mathrm{~m}, 1510 \mathrm{vs}, 1466 \mathrm{~m}$, 1452 m, 1407 w, 1373 m, 1329 s, 1313 m, 1273 w, 1259 m, 1181 w, 1160 w, 1114 s, 1095 vs, $1045 \mathrm{~m}, 1014 \mathrm{~s}, 819 \mathrm{vs}, 649 \mathrm{w} \mathrm{cm}^{-1}$.

EI MS: 376 (M ${ }^{+\bullet}, 2$), 361 (5), 346 (2), 256 (2), 217 (25), 205 (100), 143 (50), 129 (90), 115 (23), 90 (22), 43 (44).

HR EI MS: calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Ol} 376.0324$; found 376.0314.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-95^{\circ}$ (c $0.20, \mathrm{CH}_{2} \mathrm{Cl}_{2}$).

Trimethyl\{[2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl) phenyl]ethynyl\}silane (S)-148

A flame-dried Schlenk flask was charged with iodide (S)-147 ($2.56 \mathrm{~g}, 6.80 \mathrm{mmol}$), tetrakis(triphenylphosphine)palladium(0) ($149 \mathrm{mg}, 0.129 \mathrm{mmol}, 2 \mathrm{~mol} \%$), copper iodide ($49 \mathrm{mg}, 0.257$ $\mathrm{mmol}, 4 \mathrm{~mol} \%)$ and diisopropylamine (25 ml) was added.
Ethynyl(trimethyl)silane ($1.0 \mathrm{ml}, 7.22 \mathrm{mmol}, 1.1$ equiv.) was added and the reaction mixture was stirred at room temperature for 15 h . The inorganic material was filtered
off through a sintered glass (hexane) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane) to give product (S)-148 (2.2 g, 94\%) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.23(9 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.34(3 \mathrm{H}, \mathrm{s}), 4.53(1 \mathrm{H}$, $\mathrm{q}, J=6.6), 4.78(1 \mathrm{H}, \mathrm{d}, J=12.7), 4.96(1 \mathrm{H}, \mathrm{d}, J=12.7), 7.10(1 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dt}, J$ $=7.6,7.6,1.4), 7.32(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.5), 7.33(1 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{dd}, J=7.5$, $1.5), 7.50(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.6,0.6,0.6)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): - 0.06 (q), 21.43 (q), 22.22 (q), 65.86 (d), 68.76 (t), 85.27 (s), 88.30 (s), 99.03 (s), 102.67 (s), 119.69 (s), 121.67 (s), 127.08 (d), 127.47 (d), 128.63 (d), 128.94 (d), 131.64 (d), 132.24 (d), 138.32 (s), 140.54 (s).

IR (CHCl_{3}): $3071 \mathrm{w}, 3033 \mathrm{w}, 2901 \mathrm{~m}, 2226 \mathrm{w}, 2156 \mathrm{~s}, 1607 \mathrm{w}, 1602 \mathrm{w}, 1570 \mathrm{w}, 1510$ s, 1484 m, 1450 s, 1408 w, 1372 m, 1328 s, 1312 m, $1289 \mathrm{w}, 1261 \mathrm{~s}, 1251$ vs, 1178 w, $1159 \mathrm{w}, 1130 \mathrm{~m}, 1108 \mathrm{~s}, 1094 \mathrm{vs}, 1041 \mathrm{~m}, 1029 \mathrm{~m}, 1022 \mathrm{~m}, 869 \mathrm{vs}, 845 \mathrm{vs}, 819$ vs, $699 \mathrm{~m}, 595 \mathrm{w} \mathrm{cm}^{-1}$.

EI MS: 346 (${ }^{+\bullet}, 3$), 331 (6), 273 (9), 203 (12), 188 (32), 179 (38), 173 (42), 143 (15), 128 (14), 115 (9), 86 (11), 73 (100), 59 (11), 43 (10).

HR EI MS: calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{OSi} 346.1753$; found 346.1756.
Optical rotation: $[\alpha]^{22}{ }_{D}-127^{\circ}\left(c \quad 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-Ethynylbenzyl (1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl ether (S)-149

To a solution of silane (S)-148 (2.2 g, 6.41 mmol$)$ in dichloromethane (125 ml) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.77 \mathrm{~g}, 12.8$ mmol, 2.0 equiv.) in methanol (25 ml) was added. After stirring at room temperature for 30 min , the reaction mixture was washed with water (2×150 ml) and the combined organic phases were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to $90: 10$) to give product (S)-149 (1.65 g, 94\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.58(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.35(3 \mathrm{H}, \mathrm{s}), 3.27(1 \mathrm{H}, \mathrm{s}), 4.51(1 \mathrm{H}$, $\mathrm{q}, J=6.6), 4.80(1 \mathrm{H}, \mathrm{d}, J=12.5), 4.99(1 \mathrm{H}, \mathrm{d}, J=12.5), 7.12(2 \mathrm{H}, \mathrm{m}), 7.24(1 \mathrm{H}, \mathrm{dt}, J$
$=7.6,7.6,1.4), 7.34(2 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.5), 7.50(1 \mathrm{H}, \mathrm{dd}, J=7.7$, 1.5), 7.53 (1H, ddq, $J=7.7,1.4,0.7,0.7,0.7$).
${ }^{13}{ }^{3}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.45 (q), 22.21 (q), 65.68 (d), 68.58 (t), 81.29 (s), 81.65 (d), 85.33 (s), 88.34 (s), 119.72 (s), 120.82 (s), 127.25 (d), 127.86 (d), 128.93 (d), 128.99 (d), 131.61 (d), 132.68 (d), 138.36 (s), 140.66 (s).

IR (CHCl_{3}): 3305 vs, $3072 \mathrm{~m}, 3032 \mathrm{~m}, 2226 \mathrm{w}, 2106 \mathrm{w}, 1602 \mathrm{w}, 1571 \mathrm{w}, 1510 \mathrm{vs}$, 1483 m, 1449 s, 1406 w, 1372 s, 1328 vs, 1312 m, 1288 w, 1258 m, 1180 m, 1160 w, 1130 s, 1108 vs, 1093 vs, 1041 s, 1028 m, 1022 s, 819 vs, 699 w, 655 s, 618 s cm^{-1}.

El MS: 274 (${ }^{+\bullet}, 2$), 273 (8), 259 (37), 231 (31), 215 (17), 158 (17), 143 (100), 129 (71), 115 (94), 91 (83), 43 (56).

HR EI MS: calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}$ 274.1358; found 274.1359.
Optical rotation: $[\alpha]^{22}{ }_{D}-151^{\circ}\left(\mathrm{c} 0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Tris(1-methylethyl)\{(3S)-3-[(2-\{[2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzyl)oxy]but-1-yn-1-yl\}silane (S,S)-150

A flame-dried Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) (131 mg, 0.113 mmol , $5 \mathrm{~mol} \%$), copper iodide ($43 \mathrm{mg}, 0.226 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and toluene (10 ml) was added. Then diisopropylamine ($2 \mathrm{ml}, 14.2$ mmol, 6.3 equiv.) and a degassed solution of aryl iodide (S)-113 ($1.086 \mathrm{~g}, 2.26 \mathrm{mmol}, 1.0$ equiv.) in toluene (20 ml) were added and the reaction mixture was stirred at room temperature for 5 min . Then a degassed solution of the alkyne (S)-149 ($674 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.1$ equiv.) in toluene (10 ml) was added dropwise and the reaction mixture was stirred at room temperature overnight. The reaction mixture was filtered through a short pad of silica gel (hexane-diethyl ether $9: 1)$ and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane) to provide product (S,S)-150 (1.03 g, 77\%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.04(21 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 1.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6)$, $2.33(3 \mathrm{H}, \mathrm{bs}), 4.34(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.55(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.81(1 \mathrm{H}, \mathrm{dd}, J=12.6,0.6)$,
4.87 (1H, d, $J=12.5), 5.01$ (1H, dd, $J=12.6,0.6), 5.07(1 \mathrm{H}, \mathrm{d}, J=12.5), 7.03-7.06$ (2H, m), 7.17 (1H, bdt, $J=7.5,7.5,1.4), 7.26-7.28(2 H, m), 7.27(1 H, d t, J=7.5,7.5$, 1.4), $7.32(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.36(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.48(1 \mathrm{H}, \mathrm{ddd}, J=$ $7.6,1.4,0.5), 7.50(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7), 7.52(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.4$, 0.5), 7.57 ($1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7$).
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): 11.09 (s), 18.54 (q), 21.44 (q), 22.31 (q), 22.41 (q), 65.68 (d), 65.69 (d), 68.73 (t), 68.82 (t$), 85.42$ (s), 85.81 (s), 88.35 (s$), 91.44$ (s$)$, 91.52 (s), 107.62 (s), 119.58 (s), 121.69 (s), 121.88 (s), 127.13 (d), 127.20 (d), 127.52 (d), 127.72 (d), 128.39 (d), 128.51 (d), 128.93 (d), 131.61 (d), 132.04 (d), 132.11 (d), 138.26 (s), 139.94 (s), 139.98 (s).

IR (CHCl_{3}) 3071 w, $2989 \mathrm{~m}, 2959 \mathrm{~s}, 2944$ vs, 2892 s, 2866 vs, $2226 \mathrm{w}, 2165 \mathrm{w}$, $1571 \mathrm{vw}, 1510 \mathrm{~s}, 1492 \mathrm{~m}, 1463 \mathrm{~m}, 1454 \mathrm{~m}, 1407 \mathrm{vw}, 1384 \mathrm{w}, 1372 \mathrm{~m}, 1327 \mathrm{~s}, 1112$ s, $1095 \mathrm{vs}, 1066 \mathrm{~s}, 1062 \mathrm{w}, 1040 \mathrm{~m}, 1021 \mathrm{~m}, 997 \mathrm{~m}, 945 \mathrm{w}, 884 \mathrm{~m}, 819 \mathrm{~s}, 679 \mathrm{~m}$, $650 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $627\left([\mathrm{M}+\mathrm{K}]^{+}\right), 611\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{NaSi}$ 611.3316, found 611.3314 .
Optical rotation: $[\alpha]^{22}{ }_{D}-220^{\circ}\left(\mathrm{c} 0.139, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1-(\{[(1S)-1-Methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S,S)-151

In a Schlenk flask tetrabutylammonium fluoride trihydrate (711 $\mathrm{mg}, 2.25 \mathrm{mmol}, 1.05$ equiv.) was dissolved in THF (10 ml) under argon, cooled to $0^{\circ} \mathrm{C}$ and a solution of silane $(S, S)-150(1.26 \mathrm{~g}$, 2.14 mmol) in THF (15 ml) was added dropwise. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 30 min . The solution was filtered through a short pad of silica gel (ethyl acetate) and the solvents were removed in vacuo. The residue was dried on a membrane pump at room temperature overnight. After that it was purified by flash chromatography on silica gel (hexane) to provide product (S,S)-151 (856 mg, 93\%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.49(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.59(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.32(3 \mathrm{H}, \mathrm{bs})$, $2.44(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.30(1 \mathrm{H}, \mathrm{dq}, J=6.6,6.6,6.6,2.0), 4.56(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.79$ ($1 \mathrm{H}, \mathrm{dd}, J=12.6,0.5$), $4.90(1 \mathrm{H}, \mathrm{d}, J=12.5), 5.00(1 \mathrm{H}, \mathrm{dd}, J=12.6,0.5), 5.08(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=12.5), 7.03-7.06(2 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{bdt}, J=7.5,7.5,1.4), 7.26-7.28(2 \mathrm{H}, \mathrm{m})$, $7.28(1 \mathrm{H}, \mathrm{bdt}, J=7.5,7.5,1.4), 7.33(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.36(1 \mathrm{H}, \mathrm{dt}, J=7.6$, $7.6,1.4), 7.50(1 \mathrm{H}$, ddd, $J=7.6,1.4,0.6), 7.50(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7)$, $7.55(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.4,0.5), 7.60(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): 21.44 (q), 22.07 (q), 22.32 (q), 64.93 (d), 65.71 (d), 68.81 (t), 68.84 (t), 73.22 (d), 83.78 (s), 85.45 (s), 88.37 (s), 91.46 (s), 91.55 (s), 119.56 (s), 121.81 (s), 121.84 (s), 127.26 (d), 127.29 (d), 127.64 (d), 127.76 (d), 128.47 (d), 128.56 (d), 128.94 (d), 131.60 (d), 132.06 (d), 132.13 (d), 138.30 (s), 139.61 (s), 139.95 (s).

IR (CHCl_{3}): $3306 \mathrm{~s}, 3071 \mathrm{w}, 2991 \mathrm{~s}, 2868 \mathrm{~m}, 2225 \mathrm{w}, 2112 \mathrm{vw}, 1602 \mathrm{w}, 1571 \mathrm{w}$, 1510 s, 1493 m, 1452 m, 1406 vw, 1373 m, 1328 s, 1180 vw, 1113 vs, 1098 vs, 1042 $\mathrm{m}, 1022 \mathrm{~m}, 945 \mathrm{w}, 819 \mathrm{~s}, 638 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $471\left([\mathrm{M}+\mathrm{K}]^{+}\right), 455\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Na} 455.1982$, found 455.1986.
Optical rotation: $[\alpha]^{22}{ }_{D}-223^{\circ}\left(\mathrm{c} 0.244, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
\{(3S)-3-[(2-\{[2-(\{[(1S)-1-Methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl) phenyl]ethynyl\}benzyl)oxy]but-1-yn-1-yl\}(diphenyl)phosphane (S, S)-152

In a flame-dried Schlenk flask alkyne (S,S)-151 (85 mg, 0.197 mmol) was dissolved in THF (6 ml) under argon and was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution a solution of $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $135 \mu \mathrm{l}, 0.216 \mathrm{mmol}, 1.1$ equiv.) was added dropwise and after 2 min chlorodiphenylphosphine ($46 \mu \mathrm{l}, 0.25 \mathrm{mmol}, 1.3$ equiv.) was added and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . Then it was allowed to warm up to room temperature and was stirred for additional 30 min . The reaction was quenched with a few drops of ethanol and solvents were removed
in vacuo. The residue was purified by flash chromatography on reversed phase silica gel (methanol) to provide product (S, S)-152 (73 mg, 59\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.56 ($6 \mathrm{H}, \mathrm{d}, J=6.6$), $2.31(3 \mathrm{H}, \mathrm{bs}), 4.51(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, $4.81(1 \mathrm{H}, \mathrm{d}, J=12.6), 4.85(1 \mathrm{H}, \mathrm{d}, J=12.5), 5.02(1 \mathrm{H}, \mathrm{d}, J=12.6), 5.05(1 \mathrm{H}, \mathrm{d}, J=$ 12.5), 7.02-7.05 (2H, m), 7.17 (1H, dt, $J=7.5,7.5,1.4), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5$, 1.4), 7.25-7.28 (2H, m), 7.25-7.29 (6H, m), $7.30(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.33(1 \mathrm{H}$, $\mathrm{dt}, J=7.6,7.6,1.4), 7.46$ (1H, bdd, $J=7.6,1.4), 7.48(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7$, $0.7), 7.49(1 \mathrm{H}, \mathrm{bdd}, J=7.7,1.4), 7.53(1 \mathrm{H}, \mathrm{ddq}, J=7.8,1.4,0.7,0.7,0.7), 7.54-7.29$ (4H, m).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.43 (q), 22.05 (q), 22.30 (q), 65.66 (d), 66.02 (d), 68.81 (t), 69.12 (t), 81.99 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=9.0$), 85.42 (s$), 85.42$ (s$), 88.41$ (s$), 91.42$ (s), 108.65 (s, JPC=1.3), 119.56 (s), 121.73 (s), 121.79 (s), 127.26 (d), 127.28 (d), 127.65 (d), 127.72 (d), 128.44 (d, $J_{P C}=11.9$), 128.51 (d), 128.53 (d, $J_{P C}=7.7$), 128.56 (d), 128.94 (d), 128.95 (d, $J_{\mathrm{PC}}=7.4$), 131.59 (d), 132.06 (d), 132.15 (d), 132.36 (d, $J_{\mathrm{PC}}=10.3$), $132.50\left(\mathrm{~d}, J_{\mathrm{PC}}=10.5\right), 136.00\left(\mathrm{~s}, J_{\mathrm{PC}}=4.3\right), 136.03\left(\mathrm{~s}, J_{\mathrm{PC}}=4.3\right), 138.27(\mathrm{~s})$, 139.63 (s), 139.90 (s).
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -34.39 (s).
IR (CHCl_{3}): 3061 w, $2991 \mathrm{~m}, 2936 \mathrm{w}, 2868 \mathrm{~m}, 2225 \mathrm{w}, 2187 \mathrm{vw}, 1602 \mathrm{w}, 1586 \mathrm{vw}$, 1572 w, 1510 m, 1492 m, 1480 m, 1452 m, 1436 m, 1406 vw, 1389 w, 1372 m, 1327 s, 1287 vw, 1181 w, 1112 s, 1096 vs, 1041 m, 1026 m, 1000 w, 949 w, 819 m, 696 s cm^{-1}.

ESI MS: $655\left([\mathrm{M}+\mathrm{K}]^{+}\right), 639\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 617\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}$ 617.2604, found 617.2604.
Optical rotation: $[\alpha]^{22}{ }_{D}-208^{\circ}\left(\mathrm{c} 0.550, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(P,3S,6S)-3,6-Dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo [1,2-c:4,3-c']bisoxepin-4-yl](diphenyl)phosphane (P, S, S)-153

A solution of triyne $(S, S)-152(40 \mathrm{mg}, 0.064 \mathrm{mmol})$ and dicarbonyl(η^{5}-cyclopentadienyl)cobalt $(\mathrm{I})(5 \mu \mathrm{l}, 0.038 \mathrm{mmol}, 0.6$ equiv.) in THF (18 ml) was passing through a continuous-flow
reactor at temperature of $250^{\circ} \mathrm{C}$, pressure 70 bar with a flow rate of $0.5 \mathrm{ml} / \mathrm{min}$. Then volatiles were removed in vacuo and the product was purified by flash chromatography on reversed phase silica gel (methanol) to provide product (P, S, S)153 (17 mg, 42\%) as yellow crystals. Single crystal was grown by layer-diffusion technique and slow evaporation form a saturated dichlorometane solution layered by heptane.
M.p.: $144{ }^{\circ} \mathrm{C}$ (decomposition, heptane).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -0.09 (3H, d, $J=7.1$), $0.62(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 2.37(3 \mathrm{H}, \mathrm{bs})$, $4.37(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.78(2 \mathrm{H}, \mathrm{d}, J=11.5), 4.84(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.97(1 \mathrm{H}, \mathrm{q}, J=$ 7.1), 5.29 (1H, dq, $J=7.1,7.1,7.1,1.6$), $6.48(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.50(1 \mathrm{H}, \mathrm{dd}, J=$ $7.7,1.3$), 6.89 (1H, dt, $J=7.6,7.6,1.3$), 6.91 (1H, dd, $J=7.7,1.8$), $6.95(1 \mathrm{H}, \mathrm{dt}, J=$ 7.6, 7.6, 1.3), 7.07 (1H, bdd, $J=7.7,1.8$), 7.18-7.23 (2H, m), 7.19-7.24 (6H, m), 7.20$7.22(2 \mathrm{H}, \mathrm{m}), 7.24-7.33(2 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.6,7.6,1.3), 7.38-7.40(1 \mathrm{H}, \mathrm{m})$, 7.42-7.45 (2H, m).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.36 (q), 21.39 (q), 22.02 (q), 67.07 (t), 67.37 (t$), 72.75$ (d, $\left.J_{P C}=4.4\right), 73.65$ (d), 127.12 (d), 127.26 (d), 127.34 (d), 127.68 (d), 127.81 (d), 128.10 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=5.2$), 128.17 (d), $128.22\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5.0\right), 128.48$ (d), 128.50 (d), 128.66 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=4.5$), $129.14(\mathrm{~d}, 2 \mathrm{C}), 129.56\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5.2\right), 131.12\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=18.9\right), 131.81(\mathrm{~d})$, 131.86 (d), 131.90 (d, JPC $=18.4$), 135.46 (s, $J_{P C}=6.5$), $136.10\left(\mathrm{~s}, J_{\mathrm{PC}}=21.9\right), 136.77$ $(\mathrm{s}), 137.56\left(\mathrm{~s}, J_{\mathrm{PC}}=13.6\right), 137.96\left(\mathrm{~s}, \mathrm{~J}_{\mathrm{PC}}=8.1\right), 138.37\left(\mathrm{~s}, J_{\mathrm{PC}}=21.1\right), 138.85(\mathrm{~s})$, 139.52 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=13.0$), 139.53 (s), 139.88 (s$), 140.30$ (s$), 143.93$ ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=3.9$), 151.56 ($s, J_{P C}=41.2$).
${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -11.76 (s).
IR (CHCl_{3}): 3073 w, $3058 \mathrm{w}, 2969 \mathrm{~m}, 2927 \mathrm{~m}, 2863 \mathrm{w}, 1711 \mathrm{w}, 1603 \mathrm{vw}, 1585 \mathrm{w}$, 1512 w, 1487 w, 1480 w, 1462 w, 1453 w, 1435 m, 1407 w, 1385 w, 1370 m, 1304 w, 1182 w, 1120 w, 1111 m, 1089 s, 1078 vs, 1046 m, 1028 w, 1020 w, 994 w, 948 w, $836 \mathrm{~m}, 697 \mathrm{~s}, 495 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $655\left([\mathrm{M}+\mathrm{K}]^{+}\right), 639\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 617\left([\mathrm{M}+\mathrm{H}]^{+}\right)$-
HR ESI MS: calculated for $\mathrm{C}_{43} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{P}$ 617.26039, found 617.26044.
Optical rotation: $[\alpha]^{22}{ }_{D}-144^{\circ}\left(c 0.152, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
O A flame-dried Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) (152 mg, $0.132 \mathrm{mmol}, 2$ mol\%), copper iodide ($56 \mathrm{mg}, 0.294,4 \mathrm{~mol} \%$), 1-bromo-2iodobenzene ($1.0 \mathrm{ml}, 7.79 \mathrm{mmol}$) and diisopropylamine (15 ml) was added under argon, then the reaction mixture as was cooled to $0^{\circ} \mathrm{C}$. (S)-Butyn-2-ol (S)-111 (650 $\mu \mathrm{l}, 8.29 \mathrm{mmol}, 1.06$ equiv.) was added dropwise and the reaction mixture was stirred at room temperature overnight. Then it was filtered through a sintered glass (hexane), concentrated in vacuo and dried at a membrane pump. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 95:5 to 90:10) to provide product (S)-154 (1.75 g, 99\%) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.59 (3H, d, $J=6.6$), $4.81(1 \mathrm{H}, \mathrm{q}, J=6.6), 7.17$ (1 H , ddd, $J=8.1,7.4,1.7$), 7.26 (1H, ddd, $J=7.6,7.6,1.2$), 7.46 (1H, ddd, $J=7.7,1.7,0.4$), 7.58 (1 H , ddd, $J=8.1,1.2,0.4$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 24.22 (q), 58.93 (d), 82.61 (s), 95.53 (s), 124.64 (s), 125.55 (s), 126.98 (d), 129.57 (d), 132.37 (d), 133.37 (d).

IR (CHCl_{3}): $3602 \mathrm{~m}, 3442 \mathrm{w}, 3072 \mathrm{w}, 3058 \mathrm{w}, 2988 \mathrm{~m}, 2234 \mathrm{vw}, 1587 \mathrm{w}, 1559 \mathrm{w}$, 1470 vs, 1449 w, 1435 m, 1376 m, 1359 m, 1331 m, 1280 w, 1255 m, 1161 vw, 1122 m, $1077 \mathrm{~m}, 1051 \mathrm{~m}, 1027 \mathrm{~s}, 935 \mathrm{~m}, 854 \mathrm{~m}, 732 \mathrm{vs}, 655 \mathrm{~m}, 586 \mathrm{w}, 507 \mathrm{w}, 445 \mathrm{~m} \mathrm{~cm}{ }^{-}$ 1.

El MS: $226\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{81} \mathrm{Br}, 17\right), 224\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 18\right), 211$ (26), 209 (32), 183 (17), 181 (25), 145 (100), 128 (11), 115 (16), 102 (56), 75 (18), 63 (10), 51 (7), 43 (15).

HR EI MS: calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}^{79} \mathrm{Br} 223.9837$, found 223.9843.
Optical rotation: $[\alpha]^{22}{ }_{D}-28^{\circ}\left(c 0.081, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(1S)-3-(2-Bromophenyl)-1-methylprop-2-yn-1-yl 2-iodobenzyl ether (S)-155

In a flame-dried Schlenk flask potassium hydride (dispersion in mineral oil, $227 \mathrm{mg}, 5.67 \mathrm{mmol}, 1.8$ equiv.) was washed with hexane under argon and then dried under vacuum. THF (10 ml) was added and the suspension was cooled to $0^{\circ} \mathrm{C}$. A solution of alcohol (S)-154
($712 \mathrm{mg}, 3.16 \mathrm{mmol}$) in THF (8 ml) was slowly added and the mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 20 min . Then a solution of 2-iodobenzyl bromide $110(1.28 \mathrm{mg}, 4.32 \mathrm{mmol}$, 1.36 equiv.) in THF (5 ml) was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . After the reaction completion the solvent was removed in vacuo, the residue was dissolved in dichloromethane (100 ml), washed with water ($2 \times 100 \mathrm{ml}$) and brine (50 ml). The combined organic layers were dried over anhydrous MgSO_{4}. The solvent was evaporated in vacuo and the compound was purified by flash chromatography on silica gel (hexane:acetone 100:0 to 95:5) to provide product (S)155 ($1.18 \mathrm{~g}, 85 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.63(3 \mathrm{H}, \mathrm{d}, J=6.6), 4.58(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6), 4.62(1 \mathrm{H}, \mathrm{bd}$, $J=12.5), 4.91(1 \mathrm{H}, \mathrm{bd}, J=12.5), 6.99(1 \mathrm{H}, \mathrm{dtt}, J=7.6,7.6,1.7,0.6,0.6), 7.17(1 \mathrm{H}$, ddd, $J=7.9,7.5,1.7), 7.25(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.2), 7.35(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.2)$, $7.48(1 \mathrm{H}$, ddd, $J=7.7,1.7,0.4), 7.51(1 \mathrm{H}$, dddd, $J=7.6,1.7,0.9,0.7), 7.59(1 \mathrm{H}$, ddd, $J=7.9,1.2,0.4), 7.83(1 \mathrm{H}, \mathrm{dd}, J=7.9,1.2)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.00 (q), 65.70 (d), 74.56 (t), 84.00 (s), 93.55 (s), 98.11 (s), 124.83 (s), 125.68 (s), 126.96 (d), 128.18 (d), 129.12 (d), 129.22 (d), 129.52 (d), 132.37 (d), 133.44 (d), 139.20 (d), 140.36 (s).

IR (CHCl_{3}): $3069 \mathrm{w}, 3060 \mathrm{w}, 2230 \mathrm{vw}, 1587 \mathrm{w}, 1566 \mathrm{w}, 1560 \mathrm{w}, 1470 \mathrm{vs}, 1453 \mathrm{~m}$, 1436 s, 1373 m, 1328 s, 1314 m, 1273 w, 1161 w, 1121 s, 1114 s, 1096 vs, 1048 m, 1044 s, 1027 s, 1014 s, 946 w, 921 w, 863 w, 656 m, 650 w, 581 w, 527 w, 445 w, $429 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $465\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 463\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}^{79} \mathrm{BrINa} 462.9165$, found 462.9163 .
Optical rotation: $[\alpha]^{22}{ }_{D}-90^{\circ}\left(c 0.202, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1-Bromo-2-\{(3S)-3-[(2-\{[2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)phenyl] ethynyl\}benzyl)oxy]but-1-yn-1-yl\}benzene (S, S)-156

In a Schenk flask tetrakis(triphenylphosphine)palladium(0)
($105 \mathrm{mg}, 0.091 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and copper iodide ($35 \mathrm{mg}, 0.184 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were flushed with argon and a solution of aryl iodide $(S)-155(800 \mathrm{mg}, 1.81 \mathrm{mmol})$ in diisopropylamine $(20 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ was added. After stirring for 10 min at $0^{\circ} \mathrm{C}$ alkyne (S)-149 ($507 \mathrm{mg}, 1.85 \mathrm{mmol}, 1.02$ equiv.) in diisopropylamine (20 ml) was added and left stirring at $0^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was allowed to warm up to room temperature and stirred for additional 2 h . Then it was filtered through a sintered glass (hexane) and the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to afford product (S,S)-156 (804 mg, 75\%) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.56(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.60(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.32(3 \mathrm{H}, \mathrm{bs})$, $4.53(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.58(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.88(1 \mathrm{H}, \mathrm{d}, J=12.6), 4.91(1 \mathrm{H}, \mathrm{d}, J=$ 12.5), $5.07(1 \mathrm{H}, \mathrm{d}, J=12.6), 5.13(1 \mathrm{H}, \mathrm{d}, J=12.5), 7.04(2 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.0,7.4,1.8), 7.17(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.27(2 \mathrm{H}$, $\mathrm{m}), 7.29(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.32(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.34(1 \mathrm{H}, \mathrm{dt}, J=$ $7.6,7.6,1.4), 7.39(1 \mathrm{H}, \mathrm{bdd}, J=7.7,1.8), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=7.7,1.4,0.5), 7.51(1 \mathrm{H}$, ddd, $J=7.7,1.4,0.5), 7.53(1 \mathrm{H}$, ddd, $J=8.0,1.3,0.5), 7.53(1 \mathrm{H}, \operatorname{ddq}, J=7.6,1.4$, $0.7,0.7,0.7), 7.55(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.44 (q), 22.07 (q), 22.29 (q), 65.61 (d), 65.67 (d), 68.83 (t), 69.00 (t), 83.80 (s), 85.41 (s), 88.38 (s), 91.54 (s), 91.55 (s), 93.92 (s), 119.58 (s), 121.83 (s), 121.92 (s), 124.82 (s), 125.58 (s), 126.87 (d), 127.21 (d), 127.28 (d), 127.73 (d), 127.83 (d), 128.46 (d), 128.49 (d), 128.93 (d), 129.37 (d), 131.61 (d), 132.10 (d), 132.13 (d), 132.28 (d), 133.44 (d), 138.26 (s), 139.78 (s), 139.91 (s).

IR (CHCl_{3}): $3306 \mathrm{w}, 3071 \mathrm{w}, 2226 \mathrm{w}, 1602 \mathrm{w}, 1588 \mathrm{vw}, 1571 \mathrm{vw}, 1559 \mathrm{vw}, 1510 \mathrm{~m}$, 1493 m, 1470 s, 1452 m, 1435 m, 1407 vw, 1372 m, $1329 \mathrm{~s}, 1259 \mathrm{w}, 1180 \mathrm{vw}, 1160$ w, 1130 m, 1113 s, 1095 vs, 1064 s, 1027 m, 948 w, 865 w, $819 \mathrm{~s} \mathrm{~cm}^{-1}$.

ESI MS: $611\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 609\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{2}{ }^{79} \mathrm{BrNa} 609.1400$, found 609.1393.
Optical rotation: $[\alpha]^{22} \mathrm{D}-201^{\circ}$ (c 0.065, acetone).
($P, S_{a}, 3 S, 6 S$)-4-(2-Bromophenyl)-3,6-dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S_{a}, S, S)-157

Procedure using $\operatorname{CoCp}(\mathrm{CO})_{2}$ complex and microwave irradiation

In a microwave vial triyne $(S, S)-156(51.9 \mathrm{mg}, 0.088 \mathrm{mmol})$ and triphenylphosphine ($47 \mathrm{mg}, 0.18 \mathrm{mmol}, 2.0$ equiv.) were dissolved in THF (5 ml) and dicarbonyl $\left(\eta^{5}-\right.$ cyclopentadienyl)cobalt(I) ($15 \mu \mathrm{l}, 0.11 \mathrm{mmol}, 1.3$ equiv.) was added under argon. The reaction was heated in a microwave reactor at $200^{\circ} \mathrm{C}$ for 10 min and then the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-acetone 100:0 to $95: 5$) to provide product $(P, S, S)-157\left(30.5 \mathrm{mg}, 60 \%, R_{\mathrm{a}}: S_{\mathrm{a}}=44: 56\right)$ as a solid. The atropisomers were separated on the preparative HPLC column Chirallica PST-4 ($5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}$, chiral stationary phase: cellulose tris(phenylcarbamate, heptane-2-propanol 9:1, flow rate: $5 \mathrm{ml} / \mathrm{min},\left(S_{\mathrm{a}}\right)$-atropisomer $t_{R}=11.2 \mathrm{~min},\left(R_{\mathrm{a}}\right)$-atropisomer $\left.t_{R}=18.5 \mathrm{~min}\right)$. The single crystal of $\left(P, S_{\mathrm{a}}, S, S\right)-157$ was grown by slow evaporation from a saturated acetonitrile solution.
M.p.: $230-233^{\circ} \mathrm{C}$ (heptane).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~T}=280 \mathrm{~K}$): $0.51(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.65(3 \mathrm{H}, \mathrm{d}, J=7.1)$, $2.16(3 \mathrm{H}, \mathrm{bs}), 4.51(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.68(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.75$ (1H, d, $J=11.5$), $4.82(1 \mathrm{H}, \mathrm{q}, ~ J=7.1), 4.82(1 \mathrm{H}, \mathrm{d}, J=11.4), 6.50(1 \mathrm{H}, \mathrm{dd}, J=7.7$, 1.3), 6.56 (1H, dd, $J=7.8,1.3$), 6.65 (1H, dd, $J=7.7,1.9$), 6.78 (1H, ddq, $J=7.7$, $1.9,0.7,0.7,0.7$), 6.91 (1H, dt, $J=7.6,7.6,1.3$), 6.92 ($1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.2$), 6.93 $(1 \mathrm{H}, \mathrm{dt}, J=7.7,7.7,1.4), 6.96(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.9,0.7,0.7,0.7), 7.13(1 \mathrm{H}, \mathrm{ddd}, J=$ $8.0,7.4,1.8), 7.14(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3), 7.16(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.17(1 \mathrm{H}$, dd, $J=7.6,1.8), 7.27(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.2), 7.32(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.9), 7.34(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,1.3), 7.35(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.4)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.18 (q), 21.99 (q), 22.26 (q), 67.33 (t), 67.37 (t$), 72.44$ (d), 72.80 (d), 124.17 (s), 126.73 (d), 127.07 (d), 127.23 (d), 127.29 (d), 127.60 (d), 127.62 (d), 127.67 (d), 128.31 (d), 128.50 (d), 128.54 (d, 2C), 129.74 (d), 131.57 (d), 131.91 (d), 132.04 (d), 132.09 (d), 135.99 (s), 136.86 (s), 136.86 (s), 136.91 (s),
137.47 (s), 137.55 (s), 137.57 (s), 137.67 (s), 139.77 (s), 139.83 (s), 140.63 (s), 140.86 (s), 141.69 (s).

IR (CHCl_{3}): $3067 \mathrm{w}, 2966 \mathrm{~s}, 2927 \mathrm{vs}, 2861 \mathrm{~s}, 1615 \mathrm{vw}, 1604 \mathrm{w}, 1591 \mathrm{vw}, 1581 \mathrm{vw}$, 1562 w, 1514 m, 1489 vw, 1473 m, 1462 m, 1436 w, 1405 vw, 1371 s, 1308 w, 1299 w, 1254 m, 1183 w, 1164 w, 1149 m, 1121 m, 1078 vs, 1027 m, 1020 w, 948 w, 838 m, $804 \mathrm{w}, 696 \mathrm{w}, 685 \mathrm{w}, 572 \mathrm{vw}, 453 \mathrm{w}, 422 \mathrm{w} \mathrm{cm}^{-1}$. Compared to atropisomer (P, R_{a}, S, S)-157: weaker band 1615 vw , band 1254 m instead of 1261 m , additional band 685 w .

El MS: $588\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 46\right), 586\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 45\right), 573$ (98), 571 (100), 555 (12), 543 (27), 541 (34), 525 (37), 507 (13), 492 (7), 474 (13), 462 (27), 446 (45), 434 (49), 419 (31), 403 (15), 400 (12), 387 (8), 376 (5), 339 (20), 326 (23), 313 (12), 302 (6), 289 (5), 252 (3), 215 (5), 207 (5), 200 (4), 155 (5), 145 (13), 113 (10), 85 (17), 71 (22), 57 (22), 55 (6).

HR EI MS: calculated for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 586.1507$, found 586.1502 .
Optical rotation: $[\alpha]^{22}{ }_{D}-217^{\circ}\left(\mathrm{c} 0.248, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, S_{\mathrm{a}}, 3 S, 6 S$)-4-(2-Bromophenyl)-3,6-dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S_{a}, S, S)-157

Procedure using $\operatorname{CoCp}(\mathrm{CO})_{2}$ complex and halogen lamp irradiation

In a Schlenk flask triyne $(S, S)-156(29 \mathrm{mg}, 0.049 \mathrm{mmol})$, dicarbonyl $\left(\mathrm{n}^{5}\right.$ cyclopentadienyl)cobalt(I) ($6.5 \mu \mathrm{l}, 0.050 \mathrm{mmol}, 1.0$ equiv.) and triphenylphosphine (26 $\mathrm{mg}, 0.099 \mathrm{mmol}, 2.0$ equiv.) were suspended in decane (4 ml) and heated at $140^{\circ} \mathrm{C}$ for 2 h . Then the reaction mixture was purified by chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to provide a yellow solid, which was further recrystallised (hexane) to give product ($10 \mathrm{mg}, 35 \%$) as a 3:2 mixture of (P, S_{a}, S, S)157 and (P, R_{a}, S, S)-157.

Procedure using $\mathrm{CoCp}(\mathrm{CO})(f \mathrm{fum})$ complex and microwave irradiation

In a 5 ml Biotage microwave vial triyne $(S, S)-156(156 \mathrm{mg}, 0.197 \mathrm{mmol})$, carbonyl(n^{5} cyclopentadienyl)(η^{2}-dimethylfumarate)cobalt(I) ($60 \mathrm{mg}, 0.201 \mathrm{mmol}, 1.0$ equiv.) and
silicon carbide (50 mg) were suspended in THF (5 ml) and heated in a microwave reactor at $180^{\circ} \mathrm{C}$ for 10 min . The volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to $85: 5$) to provide product ($111 \mathrm{mg}, 96 \%$) as a $3: 2$ mixture of $\left(P, S_{a}, S, S\right)-157$ and (P, R_{a}, S, S)-157.

Procedure using $\operatorname{RhCp}{ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex and halogen lamp irradiation

In a Schlenk flask triyne $(S, S)-156(21 \mathrm{mg}, 0.035 \mathrm{mmol})$, (pentamethyl- η^{5} -cyclopentadienyl)(di- η^{2}-ethene)rhodium(I) ($10.5 \mathrm{mg}, 0.035 \mathrm{mmol}, 1.0$ equiv.) were suspended in decane (4 ml) and heated by halogen lamp irradiation at $140^{\circ} \mathrm{C}$ for 1 h . Then the reaction mixture was purified by chromatography on silica gel (hexane-ethyl acetate 100:0 to $90: 10$) to provide a yellow solid ($10 \mathrm{mg}, 50 \%$) as a $3: 2$ mixture of $(P, S \mathrm{a}, S, S)-157$ and (P, R_{a}, S, S)-157.

Procedure using $\mathrm{RhCp}^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex and microwave irradiation at $140^{\circ} \mathrm{C}$

In a 5 ml Biotage microwave vial triyne (S, S) - 156 ($70 \mathrm{mg}, 0.119 \mathrm{mmol}$), (pentamethyl-η^{5}-cyclopentadienyl)(di- η^{2}-ethene)rhodium(I) ($33 \mathrm{mg}, 0.112 \mathrm{mmol}, 0.9$ equiv.) were dissolved in THF (5 ml) and heated in a microwave reactor at $140^{\circ} \mathrm{C}$ for 15 min . Then the volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 85:15) to provide product $(27 \mathrm{mg}, 42 \%)$ as a $7: 3$ mixture of $\left(P, S_{\mathrm{a}}, S, S\right)-157$ and $\left(P, R_{\mathrm{a}}, S, S\right)-157$.

Procedure using $\operatorname{RhCp}{ }^{*}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$ complex and microwave irradiation at $200^{\circ} \mathrm{C}$

In a 5 ml Biotage microwave vial triyne (S, S)-156 (19 mg, 0.032 mmol), (pentamethyl-η^{5}-cyclopentadienyl)(di- η^{2}-ethene)rhodium(I) $(9.5 \mathrm{mg}, 0.032 \mathrm{mmol}, 1.0$ equiv.) were dissolved in THF (5 ml) and heated in a microwave reactor at $200^{\circ} \mathrm{C}$ for 10 min . Then the volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 90:10) to provide product ($19.4 \mathrm{mg}, 88 \%$) as a 1:1:1 mixture of $(P, S \mathrm{a}, S, S)-157$ and $\left(P, R_{\mathrm{a}}, S, S\right)-157$ and (P, S, S)-160.
($P, R_{\mathrm{a}}, 3 S, 6 S$)-4-(2-Bromophenyl)-3,6-dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, R_{a}, S, S)-157
M.p.: $295-300^{\circ} \mathrm{C}$ (heptane).

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{~T}=280 \mathrm{~K}$): $0.54(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.16$ (3H, bs), 4.49 ($1 \mathrm{H}, \mathrm{d}, J=11.5$), $4.53(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.68(1 \mathrm{H}$, q, $J=6.6$), 4.81 (1H, d, $J=11.4$), 4.84 (1H, q, $J=6.6$), 4.85 (1 H , d, $J=11.5$), 6.51 (1H, dd, $J=7.8,1.4$), 6.54 (1H, dd, $J=7.8,1.4$), 6.81 (1H, ddt, $J=$ $7.7,1.9,0.7,0.7), 6.86(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.8), 6.90(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 6.91(1 \mathrm{H}$, $\mathrm{dt}, J=7.4,7.4,1.2), 6.91$ (1H, dt, $J=7.6,7.6,1.3$), 6.93 (1H, dd, $J=7.7,1.9), 6.95$ (1H, ddt, $J=7.7,1.9,0.7,0.7$), $6.98(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.9), 6.98$ (1H, ddd, $J=8.0,7.3$, $1.8), 7.14(2 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.4), 7.34(2 \mathrm{H}, \mathrm{dd}, J=7.5,1.3), 7.40(1 \mathrm{H}, \mathrm{dd}, J=8.0$, 1.2).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.17 (q), 22.07 (q), 22.19 (q), 66.93 (t$), 67.40$ (t$), 72.62$ (d), 73.06 (d), 124.24 (s), 126.55 (d), 127.18 (d), 127.24 (d), 127.57 (d), 127.57 (d), 128.16 (d), 128.27 (d), 128.31 (d, 2C), 128.48 (d), 128.52 (d), 129.04 (d), 131.72 (d), 131.91 (d), 132.01 (d), 132.17 (d), 136.10 (s), 136.47 (s), 136.83 (s), 136.98 (s), 137.56 (s), 137.57 (s), 137.79 (s), 137.90 (s), 139.54 (s), 139.90 (s), 140.70 (s), 140.79 (s), 141.33 (s).

IR (CHCl_{3}): $3067 \mathrm{w}, 2965 \mathrm{~s}, 2927 \mathrm{vs}, 2858 \mathrm{~s}, 1616 \mathrm{vw}, 1604 \mathrm{w}, 1604 \mathrm{w}, 1590 \mathrm{vw}$, 1581 vw, 1562 w, 1514 m, 1489 w, 1471 m, 1462 m, 1452 m, 1437 w, 1404 vw, 1371 m, 1308 w, 1299 w, 1261 m, 1183 w, 1164 w, 1149 m, 1120 m, 1112 s, 1079 vs, $1027 \mathrm{~m}, 1020 \mathrm{~m}, 948 \mathrm{w}, 837 \mathrm{~m}, 804 \mathrm{w}, 695 \mathrm{w}, 572 \mathrm{vw}, 455 \mathrm{w}, 421 \mathrm{vw} \mathrm{cm}^{-1}$. Compared to isomer (P, S_{a}, S, S)-157: stronger band 1616 vw , band 1261 m instead of 1254 m, band 685 w missing.

El MS: $588\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 38\right), 586\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 37\right), 573$ (98), 571 (100), 555 (8), 543 (31), 541 (30), 525 (35), 507 (49), 492 (7), 477 (17), 462 (35), 446 (39), 434 (57), 419 (39), 403 (15), 401 (13), 387 (8), 357 (5), 355 (10), 343 (15), 339 (19), 326 (26), 313 (12), 302 (6), 289 (5), 265 (3), 252 (6), 222 (5), 219 (11), 200 (4), 193 (5), 150 (3), 131 (6), 119 (3), 100 (2), 69 (15), 43 (6).

HR EI MS: calculated for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 586.1507$, found 586.1515 .

Optical rotation: $[\alpha]^{22}{ }_{D}-173^{\circ}\left(\mathrm{c} 0.258, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
\{2-[(P,Sa,3S,6S)-3,6-Dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo [e,e']benzo[1,2-c:4,3-c']bisoxepin-4-yl]phenyl\}(diphenyl)phosphane-borane complex (P, S_{a}, S, S)-158

In flame-dried Schlenk flask a solution of bromide (P, S_{a}, S, S)-157 $(18 \mathrm{mg}, 0.030 \mathrm{mmol})$ in diethyl ether (1.5 ml) was cooled to -110 ${ }^{\circ} \mathrm{C}$ and a solution of t-BuLi (1.7 M in pentane, $38 \mu \mathrm{l}, 0.060 \mathrm{mmol}$, 2.0 equiv.) was added dropwise. The solution was stirred at -110 ${ }^{\circ} \mathrm{C}$ for 1 min and then chlorodiphenylphosphine ($15 \mu \mathrm{l}, 0.084$ mmol, 2.8 equiv.) was added dropwise. The reaction mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ over a period of 2 h . Then a solution of borane-THF complex (2 M in THF, 2.0 $\mathrm{ml}, 2.0 \mathrm{mmol}, 66$ equiv.) was added and the reaction was stirred at room temperature for 30 min . Then the reaction mixture was filtered through a short pad of alumina (diethyl ether) and the volatiles were evaporated in vacuo. The column chromatography on silica gel (hexane-diethyl ether 95:5) afforded product (P, S_{a}, S, S)158 (11.5 mg, 55\%) as a solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.35(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.47(3 \mathrm{H}, \mathrm{d}, J=7.1), 2.15(3 \mathrm{H}, \mathrm{bs})$, $4.56(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.56(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.68(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.78(1 \mathrm{H}, \mathrm{d}, J=$ 11.3), $4.88(1 \mathrm{H}, \mathrm{q}, ~ J=7.1), 4.98(1 \mathrm{H}, \mathrm{d}, J=11.4), 6.48(1 \mathrm{H}, \mathrm{bdd}, J=7.8,2.0), 6.55$ (1H, dd, $J=7.7,1.3$), 6.65 (1H, bdd, $J=7.8,2.0$), 6.65 (1H, dd, $J=7.7,1.4$), 6.74 (1H, bdd, $J=7.8,2.0$), 6.93 (1H, dt, $J=7.6,7.6,1.4$), 6.96 (1H, dt, $J=7.6,7.6,1.4$), $7.14(1 \mathrm{H}, \mathrm{bdt}, J=7.9,7.9,1.4), 7.17-7.25(4 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3)$, $7.19(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.4), 7.20-7.22(1 \mathrm{H}, \mathrm{m}), 7.29-7.33(4 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{dd}, J=$ $7.5,1.4), 7.39(1 \mathrm{H}, \mathrm{dd}, J=7.4,1.4), 7.43-7.48(2 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{tt}, J=7.3,1.5)$, $7.53(1 \mathrm{H}$, ddd, $J=7.8,4.4,1.2), 7.54(1 \mathrm{H}$, bdd, $J=7.8,2.0)$. The BH_{3} signal was not determined because it was broad.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 20.99 (q), 21.09 (q), 21.92 (q), 67.30 (t$), 67.53$ (t), 72.11 (d), 72.61 (d), 125.78 ($s, J_{P C}=50.9$), 126.45 (d, $J_{P C}=6.4$), 126.76 (d), 127.27 (d), 127.46 (d), 127.53 (d), 127.91 (d), 128.26 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=60.6,2 \mathrm{C}$), 128.33 (d, $\mathrm{J}_{\mathrm{PC}}=9.9$, 2C), 128.36 (d), 128.46 ($d, J_{P C}=9.8,2 C$), 128.63 (d), $130.30\left(d, J_{P C}=2.1\right), 130.37$
(d, $J_{P C}=2.1$), 130.41 (d, $J_{P C}=7.7$), 130.85 (d), 131.14 (d), 131.88 (d), 132.29 (d), 132.53 ($d, J_{P C}=9.0,2 C$), 132.71 ($d, J_{P C}=9.3,2 C$), $134.17\left(d, J_{P C}=9.7\right), 135.44$ (s), 135.79 (s), 136.76 (s), 137.09 (d), 137.09 (s), 137.35 (s), 137.45 (s), 137.57 (s),
 5.7).
${ }^{31}$ P NMR (202 MHz): 21.45 (s).
IR (CHCl_{3}): $3062 \mathrm{vw}, 2958 \mathrm{~s}, 2442 \mathrm{vw}, 2412 \mathrm{vw}, 2356 \mathrm{vw}, 2344 \mathrm{vw}, 1603 \mathrm{vw}, 1588$ vw, 1514 w, 1486 w, 1464 m, 1437 w, 1379 w, 1370 w, 1186 vw, 1146 vw, 1127 vw, 1111 vw, 1098 vw, 1073 m, 1028 vw, 1021 vw, 1002 vw, 947 w, 838 w, 698 w, 494 w cm^{-1}.

ESI MS: $1436\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right), 729\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{49} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{BNaP} 729.3064$, found 729.3064 .
Optical rotation: $[\alpha]^{22}{ }_{D}-124^{\circ}\left(\mathrm{c} 0.160, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(2-((P, $\left.S_{\mathrm{a}}, 3 S, 6 R\right)$-3,6-dimethyl-5-(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepin-4$\mathbf{y l}$)phenyl)(diphenyl)phosphane oxide (P, S_{a}, S, S)-159
${ }^{31}$ P NMR (202 MHz): -14.70 (s).
ESI MS: $731\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{49} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{NaP} 731.2686$, found 731.2680 .
Single crystal was grown from a saturated solution of isopropanol and dichloromethane.

(P,3S,6S)-3,6-Dimethyl-4-(4-methylphenyl)-5-phenyl-1,3,6,8tetrahydrodibenzo [e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)160

Prepared following the same procedure as for $\left(P, S_{\mathrm{a}}, S, S\right)$-158. Bromide (P, R_{a}, S, S)-157 (18 mg, 0.030 mmol$), t$-BuLi ($38 \mu \mathrm{l}, 0.060 \mathrm{mmol}, 2.0$ equiv.),
chlorodiphenylphosphine ($15 \mu \mathrm{l}, 0.084 \mathrm{mmol}, 2.8$ equiv.), diethyl ether (1.5 ml), solution of borane-THF complex (2 M in THF, $2.0 \mathrm{ml}, 2.0 \mathrm{mmol}, 66$ equiv.). Chromatography: hexane- diethyl ether (1:0 to 95:5). Yield: $12.5 \mathrm{mg}, 82 \%$, as a solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.61(6 \mathrm{H}, \mathrm{d}, J=7.1), 2.23(3 \mathrm{H}, \mathrm{bs}), 4.59(2 \mathrm{H}, \mathrm{d}, J=$ $11.4), 4.88(2 \mathrm{H}, \mathrm{d}, J=11.4), 4.93(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.94(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.58(2 \mathrm{H}, \mathrm{dd}$, $J=7.7,1.2), 6.72(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.9), 6.84-6.86(2 \mathrm{H}, \mathrm{m}), 6.96(2 \mathrm{H}, \mathrm{dt}, J=7.6,7.6$, 1.3), 6.99-7.01 ($2 \mathrm{H}, \mathrm{m}$), 7.04-7.10 (2H, m), 7.16-7.18 (1H, m), 7.20 (2H, dt, J = 7.6, $7.6,1.2), 7.20-7.22(1 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.3)$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.10 (q), 22.17 ($\mathrm{q}, 2 \mathrm{C}$), 67.48 (t, 2C), 72.70 (d), 72.74 (d), 126.24 (d), 127.29 (d), 127.30 (d), 127.34 (d), 127.54 (d, 2C), 127.64 (d), 128.04 (d), 128.36 (d), 128.50 (d, 2C), 129.55 (d), 129.73 (d), 129.89 (d), 130.07 (d), 132.07 (d, 2C), 135.73 (s), 136.93 (s), 136.96 (s), 137.10 (s), 137.35 (s), 137.63 (s), 137.81 (s), 137.84 (s), 140.19 (s, 3C), 142.01 (s), 142.05 (s).

IR (CHCl_{3}): $3063 \mathrm{w}, 3063 \mathrm{w}, 2963 \mathrm{~m}, 2927 \mathrm{~s}, 2858 \mathrm{~m}, 1603 \mathrm{w}, 1603 \mathrm{w}, 1603 \mathrm{w}, 1579$ vw, 1557 vw, 1515 w, 1493 w, 1493 w, 1461 m, 1455 w, 1443 w, 1405 vw, 1371 m, 1298 vw, 1183 vw, 1162 vw, 1121 w, 1112 m, 1079 vs, 1071 s, 1046 m, 1026 w, 1026 w, $948 \mathrm{w}, 838 \mathrm{w}, 703 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $531\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na} 531.2295$, found 531.2301 .
Optical rotation: $[\alpha]^{22}{ }_{D}-179^{\circ}\left(\mathrm{c} 0.183, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(2-\{(3S)-3-[(2-\{[2-(\{[(1S)-1-Methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl) phenyl]ethynyl\}benzyl)oxy]but-1-yn-1-yl\}phenyl)(diphenyl)phosphane (S,S)-161

In a flame-dried Schlenk flask bromide (S,S)-156 (28 mg, 0.048 mmol) was dissolved in THF (1.5 ml) and cooled to -85 ${ }^{\circ} \mathrm{C}$. Then a solution of n-BuLi $(1.6 \mathrm{M}$ in hexanes, $30 \mu \mathrm{l}, 0.048$ mmol, 1.0 equiv.) was added and the solution was stirred at $85^{\circ} \mathrm{C}$ for 1 min . After that chlorodiphenylphosphine ($20 \mu \mathrm{l}$, $0.076 \mathrm{mmol}, 1.6$ equiv.) was added and the reaction mixture was stirred at $-85^{\circ} \mathrm{C}$ for

5 min . Then a cooling bath was removed and the solution was allowed to warm up to room temperature. The solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 95:5) to provide the product $(S, S)-161(15 \mathrm{mg}, 45 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.31(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.32$ $(3 \mathrm{H}, \mathrm{s}), 4.36(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 4.53(1 \mathrm{H}, \mathrm{q}, J=6.6 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz})$, $4.79(1 \mathrm{H}, \mathrm{d}, J=12.3 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}, J=12.6 \mathrm{~Hz}), 5.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}), 6.76-$ $6.71(1 \mathrm{H}, \mathrm{m}), 7.04(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.21-7.13(5 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{d}, J=1.6 \mathrm{~Hz})$, $7.29-7.22(8 \mathrm{H}, \mathrm{m}), 7.31(1 \mathrm{H}, \mathrm{s}), 7.33(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.3 \mathrm{~Hz}), 7.40(1 \mathrm{H}, \mathrm{d}, J=7.7$ $\mathrm{Hz}), 7.45-7.42(2 \mathrm{H}, \mathrm{m}), 7.49(3 \mathrm{H}, \mathrm{td}, J=7.6,1.0 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$.
${ }^{31}$ P NMR (162 MHz): -8.72 (s).

1-(Bromomethyl)-2-iodo-4-methoxybenzene 163

In a 500 ml round-bottom flask 2-iodo-4-bromo-methylbenzene 162 ($2.74 \mathrm{~g}, 11.0 \mathrm{mmol}$), NBS ($2.28 \mathrm{~g}, 12.8 \mathrm{mmol}, 1.16$ equiv.), catalytic amount of AIBN and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were suspended in $\mathrm{CCl}_{4}(30 \mathrm{ml})$ and heated to reflux for 2 h using an IR lamp. The reaction mixture was filtered through a short pad of silica gel (hexane-diethyl ether 9:1) and the solvents were removed in vacuo to afford product 163 ($3.6 \mathrm{~g}, 98 \%$) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{65}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $3.80(3 \mathrm{H}, \mathrm{s}), 4.60(2 \mathrm{H}, \mathrm{s}), 6.87(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.5,2.6)$, $7.36(1 \mathrm{H}, \mathrm{d}, J=6.4), 7.38(1 \mathrm{H}, \mathrm{s})$.

2-lodo-4-methoxy-1-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\} methyl)benzene (S)-164

Potassium hydride (dispersion in mineral oil, $1.37 \mathrm{~g}, 34.0$ mmol, 1.5 equiv.) was suspended in THF (20 ml) and cooled to $0^{\circ} \mathrm{C}$. Then tolyl alcohol $(\mathrm{S})-145(3.63 \mathrm{~g}, 22.67 \mathrm{mmol}, 1.0$ equiv.) in THF (10 ml) was added slowly and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$
for 1 h . Then 163 ($6.84 \mathrm{~g}, 20.85 \mathrm{mmol}, 0.9$ equiv.) in THF (20 ml) was added and the reaction mixture allowed to warm up to room temperature and stirred overnight. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ was added to quench the excess of potassium hydride, then the product was extracted with ether ($3 \times 150 \mathrm{ml}$), the combined organic layers washed with water ($3 \times 150 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 92:8) to give the product (S)-164 $(4.81 \mathrm{~g}, 52 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.57(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.35(3 \mathrm{H}, \mathrm{s}), 3.77(3 \mathrm{H}, \mathrm{s}), 4.53(1 \mathrm{H}$, $\mathrm{d}, J=11.8), 4.79(1 \mathrm{H}, \mathrm{d}, J=11.8), 4.89(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.89(1 \mathrm{H}, \mathrm{dd}, J=8.5,2.6)$, $7.12(2 \mathrm{H}, \mathrm{m}), 7.36(2 \mathrm{H}, \mathrm{m}), 7.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5), 7.38(1 \mathrm{H}, \mathrm{d}, J=2.6)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.46 (q), 22.22 (q), 55.50 (q), 65.39 (d), 73.89 (t), 85.47 (s), 88.23 (s), 98.89 (s), 114.08 (d), 119.69 (s), 124.51 (d), 129.00 (d), 130.06 (d), 131.63 (d), 132.56 (s), 138.38 (s), 159.32 (s).

IR (CHCl_{3}): $3084 \mathrm{w}, 3052 \mathrm{w}, 3032 \mathrm{~m}, 2839 \mathrm{~m}, 2226 \mathrm{w}, 1599 \mathrm{vs}, 1566 \mathrm{~s}, 1510$ vs, 1491 vs, 1465 s, 1440 s, $1401 \mathrm{~m}, 1372 \mathrm{~m}, 1328 \mathrm{~s}, 1313 \mathrm{~s}, 1284 \mathrm{~s}, 1250 \mathrm{~s}, 1182 \mathrm{~m}$, 1153 w, 1128 s, 1119 s, 1106 vs, 1094 vs, 1037 vs, 1021 vs, 863 m, 819 vs, 647 w cm^{-1}.

EI MS: 406 (${ }^{+\bullet}, 16$), 292 (24), 262 (16), 247 (53), 236 (32), 206 (18), 191 (86), 158 (29), 143 (100), 129 (47), 115 (29), 89 (25), 77 (23), 57 (28), 41 (24).

HR EI MS: calculated for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{O}_{2}$ I 406.0430; found 406.0439.
Optical rotation: $[\alpha]^{22}{ }_{D}-80^{\circ}\left(c 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Methoxy-1-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-
 yl]oxy\}methyl)phenyl] ethynyl\}benzene (S,S)-165

A Schlenk flask was charged with aryl iodide (S)-164 (3.07 g, 7.55 mmol), tetrakis(triphenylphosphine)palladium(0) (470 $\mathrm{mg}, 0.407 \mathrm{mmol}, 5 \mathrm{~mol} \%$), copper iodide ($162 \mathrm{mg}, 0.85 \mathrm{mmol}$,
$11 \mathrm{~mol} \%$) and diisopropylamine (35 ml) was added and the reaction mixture was heated at $80^{\circ} \mathrm{C}$ under argon. A solution of alkyne (S)-149 (2.17 g, $7.87 \mathrm{mmol}, 1.04$ equiv.) in diisopropylamine (20 ml) was added and the reaction mixture stirred at 80 ${ }^{\circ} \mathrm{C}$ for 30 min . The reaction mixture was filtered through a sintered glass (hexane) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 95:5) to give product (S, S)-144 ($3.00 \mathrm{~g}, 73 \%$) as an orange oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.53(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 1.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.30(3 \mathrm{H}, \mathrm{s})$, $2.31(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 4.49(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.52(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.79(1 \mathrm{H}, \mathrm{d}, J=$ $11.8), 4.87(1 \mathrm{H}, \mathrm{d}, J=12.6), 4.97(1 \mathrm{H}, \mathrm{d}, J=11.8), 5.04(1 \mathrm{H}, \mathrm{d}, J=12.6), 6.89(1 \mathrm{H}$, $\mathrm{dd}, J=8.5,2.7), 7.03(4 \mathrm{H}, \mathrm{m}), 7.03(1 \mathrm{H}, \mathrm{d}, J=2.7), 7.18(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.4)$, $7.25(4 \mathrm{H}, \mathrm{m}), 7.33(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.42(1 \mathrm{H}, \mathrm{d}, J=8.5), 7.50(1 \mathrm{H}, \mathrm{bdd}, J=$ $7.7,1.4), 7.53$ (1H, ddq, $J=7.7,1.4,0.6,0.6,0.6)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.41 (q, 2C), 22.27 (q), 22.30 (q), 55.28 (q), 65.30 (d),
 116.51 (d), 119.58 (s), 119.66 (s), 121.78 (s), 123.33 (s), 127.21 (d), 127.73 (d), 128.48 (d), 128.90 (d, 2C), 129.74 (d), 131.57 (d), 131.60 (d), 132.16 (d), 132.18 (s), 138.18 (s), 138.22 (s), 139.98 (s), 158.64 (s).

IR (CHCl_{3}): $2989 \mathrm{~s}, 2935 \mathrm{~s}, 2840 \mathrm{~m}, 2225 \mathrm{w}, 1604 \mathrm{~s}, 1571 \mathrm{~s}, 1510 \mathrm{vs}, 1502 \mathrm{~s}, 1485$ m, $1452 \mathrm{~s}, 1444 \mathrm{~s}, 1420 \mathrm{~m}, 1389 \mathrm{~m}, 1372 \mathrm{~s}, 1328 \mathrm{vs}, 1277 \mathrm{~m}, 1258 \mathrm{~s}, 1160 \mathrm{w}, 1130$ s, 1115 vs, 1108 vs, 1095 vs, 1060 vs, 1022 s, 947 m, 856 m, 819 vs, $708 \mathrm{~m}, 647$ w, $545 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $591\left([\mathrm{M}+\mathrm{K}]^{+}\right), 575\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Na} 575.2557$; found 575.2555 .
Optical rotation: $[\alpha]^{22}{ }_{D}-198^{\circ}\left(c \quad 0.58, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 S, 6 S$)-11-Methoxy-3,6-dimethyl-4,5-bis(4-methylphenyl)-1,3,6,8-tetrahydro dibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-166

A flame-dried 20 ml microwave vial was charged with triyne (S, S) $165(236.8 \mathrm{mg}, 0.428 \mathrm{mmol})$ dicarbonyl $\left(\eta^{5}-\right.$ cyclopentadienyl)cobalt(I) ($57 \mu \mathrm{I}, 77.5 \mathrm{mg}, 0.429 \mathrm{mmol}, 1.0$ equiv), triphenylphosphine ($225.0 \mathrm{mg}, 0.858 \mathrm{mmol}, 2.0$ equiv), ionic liquid $[B D M I M]\left[\mathrm{BF}_{4}\right](\sim 100 \mathrm{mg})$ and THF (20 ml) and the resultant solution was heated in a microwave reactor at $200^{\circ} \mathrm{C}$ for 15 min . The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexanediethyl ether 100:0 to 85:15) to give product (P, S, S) - $\mathbf{1 6 6}$ (163.6 $\mathrm{mg}, 70 \%$) as a solid.

Mp: $122-124{ }^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.62(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.65(3 \mathrm{H}, \mathrm{d}, J=7.1), 2.24(6 \mathrm{H}, \mathrm{s})$, $3.32(3 \mathrm{H}, \mathrm{s}), 4.54(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.4), 4.80(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.87$ ($1 \mathrm{H}, \mathrm{d}, J=11.4$), $4.91(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.93(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.09(1 \mathrm{H}, \mathrm{d}, J=2.6)$, $6.62(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.72(2 \mathrm{H}, \mathrm{m}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.6), 6.86(2 \mathrm{H}, \mathrm{m})$, $7.01(2 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.4), 7.05(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4$, 1.3), $7.28(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.40(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.4)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 21.14 ($\mathrm{q}, 2 \mathrm{C}$), 22.22 (q), 22.27 (q$), 55.02$ (q$), 66.79$ (t$)$, 67.40 (t), 72.50 (d), 72.71 (d), 114.40 (d), 116.59 (d), 127.49 (d), 127.53 (d), 128.05 (d), 128.08 (d), 128.33 (d), 128.35 (d, 2C), 129.47 (d), 129.49 (d), 129.57 (d), 129.80 (d), 129.82 (d), 130.65 (s), 131.99 (d), 135.63 (s, 2C), 136.84 (s), 137.02 (s, 2C), 137.04 (s), 137.50 (s), 137.60 (s, 2C), 140.25 (s), 141.24 (s), 142.14 (s), 142.17 (s), 158.64 (s).

IR (CHCl_{3}): $2961 \mathrm{~m}, 2926 \mathrm{~m}, 2859 \mathrm{~m}, 2838 \mathrm{~m}, 1615 \mathrm{~m}, 1607 \mathrm{~s}, 1588 \mathrm{~m}, 1580 \mathrm{~m}, 1516$ s, 1501 s, 1491 m, 1466 s, $1461 \mathrm{~s}, 1445 \mathrm{~m}, 1430 \mathrm{~m}, 1404 \mathrm{w}, 1370 \mathrm{~s}, 1317 \mathrm{~m}, 1283$ m, 1183 m, 1146 s, 1130 m, 1123 m, 1111 s, 1077 vs, 1043 s, 1038 s, 1022 m, 859 s, $818 \mathrm{~m}, 698 \mathrm{w}$.

El MS: 552 (M ${ }^{+\bullet}, 5$), 537 (3), 519 (1), 149 (10), 111 (12), 97 (22), 85 (35), 71 (62), 57 (96), 43 (100).

HR EI MS: calculated for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{O}_{3} 552.2664$; found 552.2678 .

Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-127^{\circ}\left(\mathrm{c} 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 S, 6 S$)-3,6-Dimethyl-4,5-bis(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo [e,e']benzo[1,2-c:4,3-c']bisoxepin-11-ol (P, S, S)-167

In a flame-dried Schlenk flask sodium hydride (dispersion in mineral oil, $921 \mathrm{mg}, 23.0 \mathrm{mmol}, 19.2$ equiv.) was washed with hexane, dried under vacuum and then suspended in DMF (20 ml). It was cooled to $0^{\circ} \mathrm{C}$, then ethanethiol $(2.5 \mathrm{ml}, 2.1 \mathrm{~g}, 33.8 \mathrm{mmol}$, 28.2 equiv.) was added and the mixture was stirred at room temperature for 30 min until all hydride was dissolved. Then the sodium ethanethiolate solution was cooled to $0^{\circ} \mathrm{C}$ and a solution of methoxy derivative (P, S, S)-166 ($636.3 \mathrm{mg}, 1.2 \mathrm{mmol}$) in DMF (15 ml) was added and the reaction mixture was heated at $130^{\circ} \mathrm{C}$ for 18 h . The reaction mixture was diluted with an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 100 \mathrm{ml})$ and extracted with dichloromethane ($3 \times 200 \mathrm{ml}$). The combined organic phases were washed with water ($2 \times 100 \mathrm{ml}$), brine (100 ml) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo, the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 1:1) to obtain product (P, S, S)-167 ($607 \mathrm{mg}, 98 \%$) as a white solid. Single crystal was grown by slow evaporation from a saturated acetonitrile solution.

Mp: $307-309^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.59(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.1), 2.24(6 \mathrm{H}, \mathrm{s})$, $4.53(2 \mathrm{H}, \mathrm{d}, J=11.5), 4.79(2 \mathrm{H}, \mathrm{d}, J=11.5), 4.81(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.91(1 \mathrm{H}, \mathrm{q}, J=$ 7.1), $4.92(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.05(1 \mathrm{H}, \mathrm{d}, J=2.6), 6.65(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3), 6.67(1 \mathrm{H}$, $\mathrm{dd}, J=8.1,2.6), 6.72(2 \mathrm{H}, \mathrm{m}), 6.86(2 \mathrm{H}, \mathrm{m}), 7.01(1 \mathrm{H}, \mathrm{dt}, J=7.7,1.3), 7.01(2 \mathrm{H}, \mathrm{m})$, $7.03(2 \mathrm{H}, \mathrm{m}), 7.21(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4,1.3), 7.25(1 \mathrm{H}, \mathrm{d}, J=8.1), 7.37(1 \mathrm{H}, \mathrm{dd}, J=$ $7.5,1.3)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.14 ($\mathrm{q}, 2 \mathrm{C}$), 22.13 (q), 22.21 (q), 66.73 (t), 67.39 (t), 72.49 (d), 72.73 (d), 114.63 (d), 118.65 (d), 127.47 (d), 127.67 (d), 128.08 (d, 2C), 128.34 (d), 128.36 (d), 128.54 (d), 129.41 (d), 129.44 (d), 129.78 (d), 129.88 (d), 130.47 (s), 131.92 (d), 135.66 (s, 2C), 136.75 (s), 136.95 (s, 3C), 137.42 (s), 137.46 (s), 137.50 (s), 140.05 (s), 141.70 (s), 142.17 (s), 142.22 (s), 154.96 (s).

IR (CHCl_{3}): $3593 \mathrm{w}, 3535 \mathrm{w}, 3212 \mathrm{w}, 1617 \mathrm{w}, 1607 \mathrm{~m}, 1597 \mathrm{w}, 1587 \mathrm{w}, 1516 \mathrm{~m}$, 1500 w, 1490 w, 1461 m, 1424 w, 1405 w, 1371 m, 1182 m, 1146 m, 1124 w, 1111 m, 1077 vs, $1022 \mathrm{~m}, 861 \mathrm{~m}, 698 \mathrm{w} \mathrm{cm}{ }^{-1}$.

El MS: 538 ($\mathrm{M}^{+\cdot}, 2$), 523 (1), 434 (5), 248 (4), 206 (3), 151 (37), 97 (27), 83 (38), 69 (50), 55 (84), 41 (100).

HR EI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{3} 538.2508$; found 538.2501 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-120^{\circ}\left(\mathrm{c} 0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(P,3S,6S)-3,6-Dimethyl-4,5-bis(4-methylphenyl)-11-[(4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-yl)oxy]-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3c']bisoxepine (P, S, S)-168

A flame-dried Schlenk flask was charged with the alcohol (P, S, S)-167 ($29.2 \mathrm{mg}, 0.054 \mathrm{mmol}$), flushed with argon and triethylamine ($300 \mu \mathrm{l}, 2.15 \mathrm{mmol}, 40$ equiv.) and diethyl ether (5 ml) were added while stirred. Then 2 -chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane ($10 \mu \mathrm{l}, 11.5 \mathrm{mg}, 0.063$ mmol, 1.2 equiv.) was added at room temperature. After stirring for 1 h the reaction mixture was filtered through a short pad of alumina (diethyl ether) and the volatiles were removed in vacuo. The product (P, S, S)-168 (27.4 $\mathrm{mg}, 74 \%$) was obtained as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $0.57(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.61(3 \mathrm{H}, \mathrm{d}, J=7.1), 1.23(6 \mathrm{H}, \mathrm{bs})$, $1.27(3 \mathrm{H}, \mathrm{d}, J=0.7), 1.32(3 \mathrm{H}, \mathrm{d}, J=0.7), 2.26(6 \mathrm{H}, \mathrm{bs}), 4.52(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.55$ (1H, d, J = 11.4), 4.76 (1H, d, J = 11.5), 4.79 (2H, q, J = 7.1), 4.82 (1H, d, J = 11.4), $6.28(1 \mathrm{H}, \mathrm{dd}, J=2.5,0.8), 6.62(1 \mathrm{H}, \mathrm{dd}, J=7.8,1.3), 6.79-6.81(2 \mathrm{H}, \mathrm{m}), 6.86(1 \mathrm{H}$, ddd, $J=8.1,2.5,0.9), 6.91-6.94(2 \mathrm{H}, \mathrm{m}), 7.00(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.02-7.06$ $(4 \mathrm{H}, \mathrm{m}), 7.23(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4,1.3), 7.31(1 \mathrm{H}, \mathrm{d}, J=8.1), 7.40(1 \mathrm{H}, \mathrm{ddd}, J=7.5$, $1.4,0.6$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): 21.20 ($\mathrm{q}, 2 \mathrm{C}$), 22.27 (q$), 22.39$ (q), 24.92 (q), 25.02 (q$)$, $25.46\left(q, J_{P C}=3.4\right), 25.57\left(q, J_{P C}=3.2\right), 66.91(t), 67.61(t), 72.68(d), 72.78(d)$, $85.69\left(\mathrm{~s}, J_{\mathrm{PC}}=7.4\right), 85.82\left(\mathrm{~s}, \mathrm{~J}_{\mathrm{PC}}=7.6\right), 120.27\left(\mathrm{~d}, J_{\mathrm{PC}}=7.4\right), 124.64\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=8.7\right)$,
127.66 (d), 128.11 (d), 128.40 (d), 128.41 (d), 128.59 (d), 128.82 (d), 129.74 (d), 129.75 (d), 129.92 (d), 130.29 (d), 130.33 (d), 132.18 (d), 133.96 (s), 136.25 (s, 2C), 136.78 (s), 137.38 (s), 137.68 (s), 137.70 (s), 137.94 (s), 137.97 (s), 138.31 (s), 140.30 (s), 142.09 (s), 142.22 (s), 142.39 (s), 151.25 (d, $J_{P C}=7.1$).
${ }^{31}$ P NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): 138.30 (s).
IR (CHCl_{3}): $2983 \mathrm{~s}, 1604 \mathrm{~m}, 1581 \mathrm{w}, 1559 \mathrm{w}, 1515 \mathrm{~m}, 1500 \mathrm{~m}, 1490 \mathrm{~m}, 1480 \mathrm{w}$, 1461 m, 1448 m, 1434 m, 1405 w, 1393 m, 1373 s, 1300 w, 1241 m, 1233 m, 1165 m, 1151 m, 1137 s, 1125 w, 1110 m, 1077 s, 1023 w, 961 s, 944 m, 899 s, 862 m, $845 \mathrm{~s}, 836 \mathrm{~s}, 819 \mathrm{~m}, 697 \mathrm{vw}, 689 \mathrm{vw}, 647 \mathrm{w}, 594 \mathrm{w}, 495 \mathrm{w} \mathrm{cm}{ }^{-1}$.

ESI MS: $707\left([\mathrm{M}+\mathrm{Na}]^{+}\right), 685\left([\mathrm{M}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{44} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{NaP} 707.2897$; found 707.2896 .
Optical rotation: $[\alpha]^{22}{ }_{D}-127^{\circ}\left(\mathrm{c} 0.340, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{[5-Methoxy-2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl) phenyl]ethynyl\}(trimethyl)silane (S)-169

A flame-dried Schlenk flask was charged with iodide (S)-164 ($3.76 \mathrm{~g}, 9.26 \mathrm{mmol}$), tetrakis(triphenylphosphine)-palladium(0) ($642 \mathrm{mg}, 0.555 \mathrm{mmol}, 6 \mathrm{~mol} \%$), copper iodide ($211 \mathrm{mg}, 1.11$ $\mathrm{mmol}, 12 \mathrm{~mol} \%$) and then diisopropylamine (100 ml) was added under argon. Ethynyl(trimethyl)silane ($1.6 \mathrm{ml}, 11.1 \mathrm{mmol}, 1.2$ equiv) was added and the reaction mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 45 min . The inorganic material was filtered off on a sintered glass (hexane) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexanediethyl ether 99:1) to give product (S)-169 ($2.96 \mathrm{~g}, 85 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.23(9 \mathrm{H}, \mathrm{s}), 1.56(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.34(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}$, s), $4.50(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.70(1 \mathrm{H}, \mathrm{d}, J=11.8), 4.88(1 \mathrm{H}, \mathrm{dd}, J=11.8,0.6), 6.85(1 \mathrm{H}$, $\mathrm{dd}, J=8.5,2.7), 6.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.7), 7.10(2 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{m}), 7.38(1 \mathrm{H}, \mathrm{bd}, \mathrm{J}=$ 8.5).
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): -0.07 (q), 21.43 (q), 22.23 (q), 55.36 (q), 65.60 (d), 68.51 (t), 85.13 (s), 88.47 (s), 98.54 (s), 102.75 (s), 115.40 (d), 116.67 (d), 119.74 (s), 123.08 (s), 128.94 (d), 129.46 (d), 131.63 (d), 132.77 (s), 138.28 (s), 158.53 (s).

IR (CHCl_{3}): $2962 \mathrm{~s}, 2902 \mathrm{~m}, 2839 \mathrm{~m}, 2225 \mathrm{w}, 2154 \mathrm{~m}, 1605 \mathrm{~s}, 1571 \mathrm{~m}, 1510 \mathrm{~s}, 1503$ s, 1443 m, 1409 w, 1389 w, 1372 m, 1327 s, 1285 s, 1263 s, 1251 vs, 1163 s, 1131 m, 1120 s, 1096 s, 1058 s, 1037 s, 1022 m, 856 vs, 846 vs, 819 s, 701 w, 550 w cm ${ }^{-}$ 1

El MS: 376 (${ }^{+\cdot}, 24$), 361 (52), 303 (42), 245 (52), 217 (43), 203 (23), 143 (66), 129 (100), 115 (27), 73 (83).

HR EI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si} 376.1859$; found 376.1842.
Optical rotation: $[\alpha]^{22}{ }_{D}-93^{\circ}\left(c 0.70, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-Ethynyl-4-methoxy-1-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\} methyl)benzene (S)-170

To a solution of silane (S)-169 (4.16 g, 9.26 mmol$)$ anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(4.48 \mathrm{~g}, 32.41 \mathrm{mmol}, 3.5$ equiv.) in methanol (30 ml) was added and the reaction mixture was stirred at room temperature for 2 h . The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 92:8) to give product (S)170 ($1.68 \mathrm{~g}, 60 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.35(3 \mathrm{H}, \mathrm{s}), 3.24(1 \mathrm{H}, \mathrm{s}), 3.79(3 \mathrm{H}$, s), $4.47(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.71(1 \mathrm{H}, \mathrm{d}, J=11.8), 4.91(1 \mathrm{H}, \mathrm{d}, J=11.8), 6.90(1 \mathrm{H}, \mathrm{dd}, J$ $=8.5,2.7), 7.02(1 \mathrm{H}, \mathrm{d}, J=2.7), 7.11(2 \mathrm{H}, \mathrm{m}), 7.34(2 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{d}, J=8.5)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 21.44 (q), 22.20 (q), 55.36 (q), 65.31 (d), 68.25 (t), 81.18 (d), 81.37 (s), 85.19 (s), 88.50 (s), 115.47 (d), 117.30 (d), 119.77 (s), 122.29 (s), 128.98 (d), 129.86 (d), 131.59 (d), 132.80 (s), 138.31 (s), 158.62 (s).

IR (CHCl_{3}): 3305 vs, $2839 \mathrm{~s}, 2225 \mathrm{w}, 2106 \mathrm{w}, 1605 \mathrm{vs}, 1572 \mathrm{~s}, 1510$ vs, 1503 vs, 1444 s, 1415 m, 1389 m, 1372 s, 1327 vs, 1285 vs, 1257 vs, 1248 vs, 1181 w, 1159
s, 1130 s, 1111 vs, 1095 vs, 1057 vs, 1037 vs, 1022 s, 945 w, 858 s, 819 vs, 655 s, $628 \mathrm{~s}, 545 \mathrm{w} \mathrm{cm}^{-1}$.

EI MS: 304 (${ }^{+\bullet}, 11$), 303 (10), 289 (55), 276 (12), 261 (66), 245 (12), 145 (89), 143 (70), 129 (100), 128 (65), 115 (34), 102 (27), 83 (41), 57 (22), 43 (20).

HR EI MS: calculated for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{O}_{2}$ 304.1463; found 304.1454.
Optical rotation: $[\alpha]^{22}{ }_{D}-104^{\circ}\left(\mathrm{c} 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)benzene] (S,S)-171

A flame-dried Schlenk flask was charged with the iodide (S)164 (2.25 g, 5.53 mmol), tetrakis(triphenylphosphine)palladium(0) ($147 \mathrm{mg}, 0.127 \mathrm{mmol}, 2 \mathrm{~mol} \%$), copper iodide ($57 \mathrm{mg}, 0.290 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and diisopropylamine (20 ml) was added under argon. Then a degassed solution of alkyne (S)-170 ($1.68 \mathrm{~g}, 5.53 \mathrm{mmol}, 1.0$ equiv.) in diisopropylamine (20 ml) was added and the reaction mixture was stirred at room temperature for 1.5 h . The precipitate was filtered off (diisopropylamine) and the solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 85:15) to give product (S,S)-171 (2.62 g, 82\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.54(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.31(6 \mathrm{H}, \mathrm{s}), 3.74(6 \mathrm{H}, \mathrm{s}), 4.49(2 \mathrm{H}$, q, $J=6.6), 4.80(2 \mathrm{H}, \mathrm{d}, J=11.8), 4.96(2 \mathrm{H}, \mathrm{d}, J=11.8), 6.89(2 \mathrm{H}, \mathrm{dd}, J=8.6,2.7)$, $7.02(4 \mathrm{H}, \mathrm{m}), 7.04(2 \mathrm{H}, \mathrm{d}, J=2.7), 7.24(4 \mathrm{H}, \mathrm{m}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.6)$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}): 21.41 (q), 22.29 (q), 55.28 (q), 65.28 (d), 68.50 (t), 85.27 (s), 88.49 (s), 91.12 (s), 115.15 (d), 116.54 (d), 119.60 (s), 123.24 (s), 128.87 (d), 129.72 (s), 129.72 (d), 132.20 (s), 138.66 (d), 158.62 (s).

IR (CHCl_{3}): $2935 \mathrm{~s}, 2839 \mathrm{~m}, 2225 \mathrm{w}, 1604 \mathrm{vs}, 1571 \mathrm{~s}, 1510 \mathrm{vs}, 1503 \mathrm{~s}, 1446 \mathrm{~m}$, 1427 m, 1406 w, 1388 m, 1372 m, 1328 vs, 1281 m, 1130 s, 1117 s, 1107 s, 1094 vs, 1037 vs, $1022 \mathrm{~s}, 856 \mathrm{~m}, 819 \mathrm{vs}, 647 \mathrm{vw}, 544 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $621\left([\mathrm{M}+\mathrm{K}]^{+}\right), 605\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

HR ESI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{Na} 605.2662$; found 605.2661.
Optical rotation: $[\alpha]^{22}{ }_{D}-178^{\circ}\left(c \quad 0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($P, 3 S, 6 S$)-11,14-Dimethoxy-3,6-dimethyl-4,5-bis(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-172

A flame-dried 20 ml microwave vial was charged with triyne (S,S)-171 (321 mg, $0.551 \quad \mathrm{mmol})$, dicarbonyl $\left(\eta^{5}-\right.$ cyclopentadienyl)cobalt(I) ($100 \mu \mathrm{l}, 0.753 \mathrm{mmol}, 1.37$ equiv.), triphenylphosphine ($289 \mathrm{mg}, 1.10 \mathrm{mmol}, 2.0$ equiv.), ionic liquid [BDMIM][BF ${ }_{4}$] (ca 100 mg) and THF (20 ml) and the solution was heated in a microwave reactor at $200^{\circ} \mathrm{C}$ for 20 min . The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 85:15) to give product (P, S, S)-172 ($282.5 \mathrm{mg}, 88 \%$) as a yellow solid. Single crystal was grown by layer-diffusion technique from a saturated dichloromethane solution layered with heptane.

Mp: 221-223 ${ }^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.67(6 \mathrm{H}, \mathrm{d}, J=7.1), 2.24(6 \mathrm{H}, \mathrm{s}), 3.35(6 \mathrm{H}, \mathrm{s}), 4.54(2 \mathrm{H}$, d, $J=11.6), 4.80(2 \mathrm{H}, \mathrm{d}, J=11.6), 4.91(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.14(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.71$ (2H, dd, $J=7.7,1.9$), 6.76 (2H, dd, $J=8.2,2.6), 6.86$ (2H, ddq, $J=7.7,1.9,0.9,0.9$, 0.9), 7.01 (2H, ddq, $J=7.8,1.9,0.8,0.8,0.8$), 7.04 (2H, dd, $J=7.8,1.9$), 7.29 (2H, d, $J=8.2$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.14 (q), 22.33 (q), 55.08 (q), 66.74 (t), 72.52 (d), 114.51 (d), 116.38 (d), 128.07 (d), 128.35 (d), 129.46 (2 x d), 129.78 (d), 130.44 (s), 135.65 (s), 136.97 (s), 136.99 (s), 137.60 (s), 141.33 (s), 142.21 (s), 158.80 (s).

IR (CHCl_{3}): $2961 \mathrm{~s}, 2927$ vs, $2856 \mathrm{~s}, 2838 \mathrm{~m}, 1607 \mathrm{vs}, 1578 \mathrm{~m}, 1516 \mathrm{~s}, 1501 \mathrm{~s}, 1431$ m, $1369 \mathrm{~s}, 1283 \mathrm{~s}, 1183 \mathrm{~m}, 1146 \mathrm{~s}, 1125 \mathrm{~m}, 1108 \mathrm{~s}, 1077 \mathrm{vs}, 1040 \mathrm{~s}, 858 \mathrm{~s}, 821 \mathrm{~m}$, $695 \mathrm{vw} \mathrm{cm}^{-1}$.

El MS: $582\left(\mathrm{M}^{+\bullet}, 35\right), 567$ (13), 537 (16), 509 (9), 149 (7), 119 (7), 97 (11), 84 (80), 71 (20), 57 (36), 43 (100).

HR EI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{4} 582.2770$; found 582.2786.
Optical rotation: $[\alpha]^{22}{ }_{D}-66^{\circ}\left(c \quad 0.64, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($P, 3 S, 6 S$)-3,6-Dimethyl-4,5-bis(4-methylphenyl)-1,3,6,8-tetrahydrodibenzo [e,e']benzo[1,2-c:4,3-c']bisoxepine-11,14-diol (P, S, S)-173

Sodium hydride (dispersion in mineral oil, $285 \mathrm{mg}, 7.3 \mathrm{mmol}, 40.0$ equiv.) was suspended in DMF (5 ml) and cooled to $0^{\circ} \mathrm{C}$. Ethanethiol ($0.54 \mathrm{ml}, 0.45 \mathrm{~g}, 7.3 \mathrm{mmol}, 40$ equiv.) was added and the mixture was stirred at room temperature for 30 min until all hydride was dissolved. Then dimethoxy derivative (P, S, S)-172 ($104 \mathrm{mg}, 0.179 \mathrm{mmol}$) in DMF (5 ml) was added and the reaction mixture was heated at $140^{\circ} \mathrm{C}$ for 6 h . Then the reaction mixture was diluted with an aqueous solution of $\mathrm{HCl}(1 \mathrm{M}, 100 \mathrm{ml})$ and extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic phases were washed with water ($2 \times 100 \mathrm{ml}$), brine (100 ml) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the volatiles were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate $1: 1$) to obtain product (P, S, S)173 ($89.5 \mathrm{mg}, 90 \%$) as a white solid.

Mp: $189-190^{\circ} \mathrm{C}$ (acetone).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=2.09 \mathrm{ppm}$): $0.65(6 \mathrm{H}, \mathrm{d}, J=7.1), 2.26(6 \mathrm{H}, \mathrm{s})$, $4.49(2 \mathrm{H}, \mathrm{d}, J=11.4), 4.71(2 \mathrm{H}, \mathrm{d}, J=11.4), 4.87(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.30(2 \mathrm{H}, \mathrm{d}, J=$ 2.5), $6.77(2 \mathrm{H}, \mathrm{dd}, J=8.1,2.5), 6.89-6.91(2 \mathrm{H}, \mathrm{m}), 6.96-6.98(2 \mathrm{H}, \mathrm{m}), 7.05-7.09(4 \mathrm{H}$, m), $7.28(2 \mathrm{H}, \mathrm{d}, J=8.1)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=29.8 \mathrm{ppm}$): 21.09 (q), 22.57 (q), 67.25 (t$), 72.82$ (d), 115.71 (d), 119.36 (d), 128.87 (d), 129.00 (d), 130.40 (d), 130.43 (s), 130.50 (d), 131.01 (d), 136.48 (s), 137.93 (s), 138.45 (s), 138.48 (s), 142.52 (s), 142.73 (s), 157.70 (s).

IR (CHCl_{3}): $3598 \mathrm{~m}, 3399 \mathrm{~m}, 2961 \mathrm{~s}, 1604 \mathrm{vs}, 1586 \mathrm{~m}, 1562 \mathrm{w}, 1543 \mathrm{vw}, 1515 \mathrm{~m}$, $1498 \mathrm{~m}, 1459 \mathrm{~m}, 1449 \mathrm{~m}, 1400 \mathrm{vw}, 1370 \mathrm{~m}, 1287 \mathrm{~m}, 1256 \mathrm{~m}, 1184 \mathrm{~s}, 1148 \mathrm{~s}, 1117$ $\mathrm{m}, 1107 \mathrm{~s}, 1077 \mathrm{~s}, 1022 \mathrm{~m}, 858 \mathrm{~m}, 848 \mathrm{~m}, 818 \mathrm{~m}, 697 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.

ESI MS: $577\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na} 577.23493$; found 577.23506 .
Optical rotation: $[\alpha]^{22} \mathrm{D}-128^{\circ}$ (c 0.553, acetone).

2-lodo-4-methoxy-1-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl)benzene (S)-175

 mmol, 1.2 equiv.), catalytic amount of AIBN and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in CCl_{4} (100 ml) were refluxed using an IR lamp for 2.5 h . Then the reaction mixture was filtered through a short pad of alumina (diethyl ether), concentrated in vacuo and the crude 1-(bromomethyl)-2-iodo-4-methoxybenzene 163 was used in the next reaction without purification. To potassium hydride (20% dispersion in mineral oil, $1.14 \mathrm{~g}, 28.4$ mol, 1.5 equiv.) distilled THF (20 ml) was added at $0^{\circ} \mathrm{C}$ under argon. Then (S)-but-3-yn-2-ol (S)-111 ($1.5 \mathrm{ml}, 18.9 \mathrm{mmol}, 1.0$ equiv.) was added dropwise and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Then the solution of the crude benzyl bromide in THF (10 ml) was added and the reaction mixture was allowed to warm up to room temperature and stirred overnight. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{ml})$ was added to quench the excess of potassium hydride, then the product was extracted with ether ($3 \times 200 \mathrm{ml}$), the combined organic layers were washed with water (3×200 ml) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo the residue was purified by chromatography on silica gel (hexane-diethyl ether 95:5) to give product (S)-175 (1.67 g, 28\%) as an oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.50(3 \mathrm{H}, \mathrm{d}, J=6.8), 2.48(1 \mathrm{H}, \mathrm{d}, J=2.0), 3.78(3 \mathrm{H}, \mathrm{s})$, $4.26(1 \mathrm{H}, \mathrm{qd}, J=6.8,6.8,6.8,2.0), 4.45(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.73(1 \mathrm{H}, \mathrm{d}, J=12.0), 6.88$ (1H, dd, $J=8.4,2.8), 7.32(1 \mathrm{H}, \mathrm{d}, J=8.8), 7.38(1 \mathrm{H}, \mathrm{d}, J=2.8)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 22.03 (q), 55.51 (q), 64.70 (d), 73.29 (d), 73.89 (t), 83.59 (s), 98.76 (s), 114.06 (d), 124.57 (d), 129.99 (d), 132.32 (s), 159.38 (s).

IR (KBr): 3293 m, 3247 w, 2838 w, 1598 vs, 1566 m, 1490 s, 1467 w, 1457 m, 1440 m, 1400 w, 1373 w, 1326 w, 1285 m, 1235 s, 1183 w, 1135 w, 1100 s, 1063 m, 1035 m, 1021 s, 911 w, 859 w, 811 w, 760 w, 667 w, 639 w, 608 w, 444 w cm ${ }^{-1}$.

El MS: 316 (${ }^{+\bullet}$, 60), 286 (39), 271 (7), 261 (59), 247 (100), 215 (5), 174 (5), 159 (34), 145 (15), 134 (24), 121 (46), 108 (72), 91 (24), 77 (51), 63 (44), 53 (52).

HR EI MS: calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{I} 315.9960$; found 315.9953.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-42^{\circ}\left(\mathrm{c} 0.050, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{(3S)-3-[(2-lodo-4-methoxybenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]silane (S)-176

In a flame-dried Schlenk flask an LDA solution was prepared from diisopropylamine ($1.3 \mathrm{ml}, 9.54 \mathrm{mmol}, 1.8$ equiv.) and a solution of $n-B u L i(1.6 \mathrm{M}$ in hexanes, $5.95 \mathrm{ml}, 9.54 \mathrm{mmol}, 1.8$ equiv.) in THF (6 ml) by stirring at $0^{\circ} \mathrm{C}$ for 30 min . In a flame-dried Schlenk flask alkyne $(S)-175(1.67 \mathrm{~g}, 5.3 \mathrm{mmol})$ was dissolved in THF (10 ml) and cooled down to $78{ }^{\circ} \mathrm{C}$ under argon. The freshly prepared lithium diisopropylamide solution (9.54 mmol, 1.8 equiv.) was added dropwise and the solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then triisopropylsilyl chloride ($2.0 \mathrm{ml}, 9.44 \mathrm{mmol}, 1.8$ equiv.) was added and the reaction mixture was allowed to warm up to room temperature and stirred overnight. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{ml})$ was added to quench the excess of the base, the product was extracted with ether ($3 \times 200 \mathrm{ml}$), the combined organic layers washed with water ($3 \times 200 \mathrm{ml}$) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were removed in vacuo, the residue was purified by chromatography on silica gel (hexane-diethyl ether 99:1) to give product (S)-176 (2.10 g, 84\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.09(21 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8), 3.78(3 \mathrm{H}, \mathrm{s}), 4.28$ (1H, q, $J=6.8), 4.47(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.76(1 \mathrm{H}, \mathrm{d}, J=11.6), 6.88(1 \mathrm{H}, \mathrm{dd}, J=8.5$, 2.6), $7.31(1 \mathrm{H}, \mathrm{d}, J=8.6), 7.37(1 \mathrm{H}, \mathrm{d}, J=2.5)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 11.18 (d), 18.65 (q), 22.34 (q), 55.52 (q), 65.33 (d), 73.72 (t), 86.02 (s), 98.65 (s$), 107.39$ (s$), 114.04$ (d), 124.51 (d), 129.91 (d), 132.64 (s), 159.29 (s).

IR (KBr): 2958 s, 2943 vs, 2865 vs, 2865 vs, 2838 w, 2165 w, 1598 s, 1566 w, 1490 s, 1464 s, 1440 m, 1400 w, 1382 w, 1368 w, 1324 m, 1285 m, 1234 s, 1181 w, 1137
w, 1099 s, 1069 m, 1038 m, 1020 m, 997 w, 922 m, 883 m, 807 w, 761 w, 679 s, 667 m, $636 \mathrm{w}, 599 \mathrm{w}, 444 \mathrm{w} \mathrm{cm}^{-1}$.

El MS: 472 (M ${ }^{+\bullet}, 3$), 429 (50), 399 (5), 259 (6), 247 (100), 236 (56), 215 (5), 188 (8), 167 (8), 121 (16), 83 (5), 59 (6), 43 (5).

HR EI MS: calculated for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{O}_{2}$ ISi 472.1295; found 472.1307.

Optical rotation: $[\alpha]^{22}{ }_{D}-44^{\circ}\left(\mathrm{c} 0.088, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(\{5-Methoxy-2-[(\{(1S)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-

 yl\}oxy)methyl]phenyl\}ethynyl)(trimethyl)silane (S)-177

A Schlenk flask was charged with aryl iodide (S)-176 (1.13 g, 2.4 mmol), tetrakis(triphenylphosphine)palladium(0) (166 $\mathrm{mg}, 0.143 \mathrm{mmol}, 6 \mathrm{~mol} \%$), copper iodide ($55 \mathrm{mg}, 0.280$ mmol, $12 \mathrm{~mol} \%$) and diisopropylamine (20 ml) was added under argon. Ethynyl(trimethyl)silane ($370 \mu \mathrm{l}, 2.64 \mathrm{mmol}, 1.1$ equiv.) was added dropwise at room temperature and the reaction mixture was stirred for 1.5 h . The reaction mixture was filtered through a sintered glass (hexane) and solvents were removed in vacuo, the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 95:5) to afford product (S)-177 (1.05 g, 99\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.25(9 \mathrm{H}, \mathrm{m}), 1.09(21 \mathrm{H}, \mathrm{m}), 1.49(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8), 3.79$ (3H, s), $4.31(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.63(1 \mathrm{H}, \mathrm{d}, J=11.9), 4.81(1 \mathrm{H}, \mathrm{d}, J=11.8), 6.86(1 \mathrm{H}$, dd, $J=8.5,2.7$), $6.98(1 \mathrm{H}, \mathrm{d}, J=2.8), 7.34(1 \mathrm{H}, \mathrm{d}, J=8.6)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): - 0.02 (q), 11.16 (d), 18.62 (q), 22.41 (q), 55.40 (q), 65.72 (d), 68.46 (t), 85.52 (s), 98.46 (s), 102.75 (s), 107.87 (s), 115.32 (d), 116.84 (d), 123.01 (s), 129.39 (d), 132.85 (s), 158.52 (s).

IR (CHCl_{3}): $2959 \mathrm{~s}, 2944 \mathrm{~s}, 2866$ vs, $2837 \mathrm{w}, 2156 \mathrm{~m}, 1605 \mathrm{~m}, 1572 \mathrm{w}, 1500 \mathrm{~m}$, 1464 m, 1443 m, 1417 w, 1410 w, 1383 w, 1368 w, 1323 m, 1285 m, 1262 m, 1250 s, 1162 m, 1139 w, 1119 s, 1100 s, 1071 m, 1038 m, 1021 m, 997 w, 883 m, 855 vs, $845 \mathrm{vs}, 760 \mathrm{w}, 699 \mathrm{w}, 679 \mathrm{~m}, 668 \mathrm{~m}, 652 \mathrm{~m} \mathrm{~cm}^{-1}$.

El MS: 442 (${ }^{+\bullet}, 7$), 399 (10), 369 (8), 313 (6), 270 (10), 255 (8), 236 (84), 218 (42), 203 (24), 187 (14), 167 (18), 133 (18), 97 (20), 73 (100), 59 (62), 43 (27).

HR EI MS: calculated for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Si}_{2} 442.2723$; found 442.2712 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-45^{\circ}\left(\mathrm{c} 0.078, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{(3S)-3-[(2-Ethynyl-4-methoxybenzyl)oxy]but-1-yn-1-yl\}[tris(1-methylethyl)]

 silane (S)-178

In a 250 ml round-bottom flask silane (S)-177 (1.05 g, 2.37 mmol) and $\mathrm{K}_{2} \mathrm{CO}_{4}$ ($1.14 \mathrm{~g}, 8.28 \mathrm{mmol}, 3.5$ equiv.) were suspended in methanol (30 ml) and the reaction mixture was stirred at room temperature for 45 min . The reaction mixture was filtered through a sintered glass (diethyl ether) and the volatiles were removed in vacuo. The residue was dissolved in diethyl ether (100 ml) and washed with water ($3 \times 150 \mathrm{ml}$) and brine (100 ml). The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 96:4) to afford the product (S)-178 (816 mg, 93\%) as an orange oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): 1.06(21 \mathrm{H}, \mathrm{m}), 1.48(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7), 3.23(1 \mathrm{H}, \mathrm{s}), 3.79$ $(3 \mathrm{H}, \mathrm{s}), 4.29(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.66(1 \mathrm{H}, \mathrm{d}, J=12.0), 4.89(1 \mathrm{H}, \mathrm{d}, J=12.0), 6.90(1 \mathrm{H}$, dd, $J=8.5,2.7$), $7.02(1 \mathrm{H}, \mathrm{d}, J=2.7), 7.37(1 \mathrm{H}, \mathrm{d}, J=8.5)$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 11.18 (d), 18.63 (q), 22.37 (q), 55.40 (q), 65.33 (d), 68.10 (t), 81.14 (d), 81.31 (s), 85.67 (s), 107.71 (s), 115.46 (d), 117.31 (d), 122.10 (s), 129.65 (d), 132.95 (s), 158.58 (s).

IR (CHCl_{3}): $3306 \mathrm{~m}, 2961 \mathrm{~s}, 2945 \mathrm{vs}, 2866 \mathrm{vs}, 2840 \mathrm{~m}, 2165 \mathrm{w}, 2106 \mathrm{vw}, 1605 \mathrm{~m}$, 1572 m, 1501 m, 1464 s, 1444 m, 1417 w, 1383 w, 1371 w, 1324 m, 1284 m, 1256 m, 1158 w, 1138 m, 1111 s, 1098 s, 1037 m, 1020 m, 997 m, 883 m, 858 w, 826 w, $679 \mathrm{~s}, 650 \mathrm{~m} \mathrm{~cm}^{-1}$.

El MS: 370 (${ }^{+\bullet}, 3$), 368 (5), 327 (38), 283 (22), 255 (10), 236 (8), 236 (52), 213 (16), 197 (67), 178 (2), 167 (18), 145 (100), 136 (10), 121 (15), 102 (13), 83 (15), 75 (18), 59 (20), 43 (10).

HR EI MS: calculated for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} 370.2328$; found 370.2341 .
Optical rotation: $[\alpha]^{22}{ }_{D}-70^{\circ}\left(\mathrm{c} 0.064, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

\{Ethyne-1,2-diylbis[(4-methoxybenzene-2,1-diyl)methanediyloxy(3S)but-1-yne-3,1-diyl]\}bis[tris(1-methylethyl)silane] (S,S)-179

To tetrakis(triphenylphosphine)palladium(0) (127 mg, 0.110 $\mathrm{mmol}, 5 \mathrm{~mol} \%$) and copper iodide ($42 \mathrm{mg}, 0.220 \mathrm{mmol}, 11$ mol\%) in a Schlenk flask a solution of aryl iodide (S)-176 $(931 \mathrm{mg}, 1.97 \mathrm{mmol})$ in diisopropylamine (10 ml) was added under argon. After stirring at room temperature for 5 min a solution of alkyne (S)-178 ($810 \mathrm{mg}, 2.18 \mathrm{mmol}, 1.1$ equiv.) in diisopropylamine (10 ml) was added dropwise at room temperature and the reaction mixture was stirred for 1 h . The reaction mixture was filtered through a sintered glass (hexane) and solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 95:5) to afford product (S,S)-179 (1.13 g, 83\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.04(42 \mathrm{H}, \mathrm{m}), 1.49(6 \mathrm{H}, \mathrm{d}, J=6.6), 3.81(6 \mathrm{H}, \mathrm{s}), 4.31$ (2H, q, J = 6.6), 4.73 ($2 \mathrm{H}, \mathrm{d}, J=11.8$), $4.92(2 \mathrm{H}, \mathrm{d}, J=11.9), 6.89(2 \mathrm{H}, \mathrm{dd}, J=8.5$, 2.7), 7.05 ($2 \mathrm{H}, \mathrm{d}, J=2.7$), $7.40(2 \mathrm{H}, \mathrm{d}, J=8.6)$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 11.14 (d), 18.56 (q), 22.46 (q), 55.39 (q), 65.39 (d), 68.48 (t), 85.71 (s), 91.04 (s), 107.80 (s), 114.87 (d), 116.88 (d), 123.21 (s), 129.63 (d), 132.33 (s), 158.64 (s).

IR (CHCl_{3}): $2960 \mathrm{~s}, 2944$ vs, 2866 vs, $2837 \mathrm{w}, 2165 \mathrm{w}, 1604 \mathrm{~s}, 1571 \mathrm{~m}, 1504 \mathrm{~m}$, 1465 s, 1446 w, 1427 w, 1384 w, 1371 w, 1324 m, 1282 w, 1245 m, 1173 m, 1137 w, 1121 m, 1096 s, 1037 m, $1019 \mathrm{~m}, 997 \mathrm{w}, 883 \mathrm{~m}, 856 \mathrm{w}, 825 \mathrm{w}, 679 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $737\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{4} \mathrm{NaSi}_{2} 737.4392$; found 737.4391.

Optical rotation: $[\alpha]^{22}{ }_{D}-159^{\circ}\left(c 0.022, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-1-methylprop-2-yn-1-yl]oxy\}methyl) benzene] (S, S)-180

In a 250 ml flask silane (S, S)-179 ($1.13 \mathrm{~g}, 1.58 \mathrm{mmol}$) was dissolved in THF (20 ml) under argon. A solution of tetrabutylammonium fluoride trihydrate $(0.964 \mathrm{M}$ in THF, 3.30 $\mathrm{ml}, 3.18 \mathrm{mmol}, 2.0$ equiv.) was added dropwise and the reaction mixture was stirred at room temperature for 30 min . Then solvent was evaporated in vacuo and the residue was purified by chromatography on silica gel (hexane-diethyl ether 100:0 to 90:10) to provide product (S,S)-180 (602 mg, 94\%) as an oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.49 ($6 \mathrm{H}, \mathrm{d}, J=6.6$), $2.43(2 \mathrm{H}, \mathrm{d}, J=2.0), 3.82(6 \mathrm{H}, \mathrm{s})$, $4.30(2 \mathrm{H}, \mathrm{dq}, J=6.6,6.6,6.6,2.0), 4.73(2 \mathrm{H}, \mathrm{d}, J=11.8), 4.94(2 \mathrm{H}, \mathrm{bd}, J=11.8)$, $6.91(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.7), 7.08(2 \mathrm{H}, \mathrm{d}, J=2.7), 7.41(2 \mathrm{H}, \mathrm{dq}, J=8.5,0.4,0.4,0.4)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.13 (q), 55.42 (q), 64.66 (d), 68.55 (t), 73.13 (d), 83.96 (s), 91.10 (s), 115.06 (d), 116.85 (d), 123.25 (s), 129.68 (d), 131.93 (s), 158.73 (s).

IR (CHCl_{3}): $3306 \mathrm{~s}, 2839 \mathrm{~m}, 2210 \mathrm{vw}, 2112 \mathrm{w}, 1604 \mathrm{vs}, 1571 \mathrm{~s}, 1504 \mathrm{vs}, 1466 \mathrm{~s}$, 1447 s, 1427 m, 1374 s, 1327 s, 1282 s, 1247 s, 1173 s, $1139 \mathrm{~s}, 1098$ vs, 1060 s, 1038 vs, $1018 \mathrm{~s}, 856 \mathrm{~m}, 825 \mathrm{~m}, 638 \mathrm{~s} \mathrm{~cm}^{-1}$.

EI MS: 402 ($\left.{ }^{+\bullet}, 2\right), 319$ (10), 301 (10), 279 (100), 264 (17), 237 (5), 208 (10), 189 (5), 178 (10), 165 (22), 152 (12), 121 (6), 69 (8), 53 (35), 43 (18).

HR EI MS: calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}$ 402.1831; found 402.1839.
Optical rotation: $[\alpha]^{22}{ }_{D}-106^{\circ}\left(c \operatorname{co.303}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for Sonogashira coupling of triyne (S, S)-180 to prepare substituted triynes (S, S)-171, $(S, S)-181-(S, S)-187$:

Triyne (S, S)-180 (0.14-0.33 mmol), bis(acetonitrile)palladium(II) dichloride (10-15 mol\%), triphenylphosphine (20-26 mol\%), copper iodide (15-21 mol\%) and aryl iodide (2.5-6.4 equiv.) were dissolved in toluene ($5-10 \mathrm{ml}, \mathrm{c} \sim 22 \mu \mathrm{~mol} / \mathrm{ml}$) and diisopropylamine (2.5 equiv.) was added. After the reaction mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 5 min , it was filtered through a sintered glass (diethyl ether) and solvents were removed in vacuo. The flash chromatography on silica gel (hexane-diethyl ether 100:0 to 85:15) provided products $(S, S)-171,(S, S)-181-(S, S)-187$ as amorphous solids.

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)benzene] (S,S)-171

Triyne (S,S)-180 (74.2 mg, 0.18 mmol), bis(acetonitrile)-palladium(II) dichloride (4.7 $\mathrm{mg}, 0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine ($9.4 \mathrm{mg}, 0.036 \mathrm{mmol}, 20 \mathrm{~mol} \%$), copper iodide ($6.9 \mathrm{mg}, 0.036 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($98.1 \mathrm{mg}, 0.45 \mathrm{mmol}, 2.5$ equiv.), diisopropylamine ($63 \mu \mathrm{l}, 0.45 \mathrm{mmol}, 2.5$ equiv.), toluene (8 ml). Yield: 76.6 $\mathrm{mg}, 73 \%$. (For spectra, see above).

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-3-(4-methoxyphenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)benzene] (S,S)-181

Triyne $(S, S)-180 \quad(93.1 \mathrm{mg}, \quad 0.23 \mathrm{mmol})$, bis(acetonitrile)-palladium(II) dichloride $(6.0 \mathrm{mg}, 0.023$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine ($12.6 \mathrm{mg}, 0.048$ $\mathrm{mmol}, 20 \mathrm{~mol} \%$), copper iodide ($9.0 \mathrm{mg}, 0.047 \mathrm{mmol}$, $20 \mathrm{~mol} \%$), aryl iodide ($135.0 \mathrm{mg}, 0.575 \mathrm{mmol}, 2.5$ equiv.), diisopropylamine ($80 \mu \mathrm{l}, 0.575 \mathrm{mmol}, 2.5$ equiv.), toluene (10 ml). Yield: $66.0 \mathrm{mg}, 47 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.53(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.76(6 \mathrm{H}, \mathrm{s}), 3.78(6 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}$, $\mathrm{q}, J=6.6), 4.80(2 \mathrm{H}, \mathrm{d}, J=11.9), 4.96(2 \mathrm{H}, \mathrm{dd}, J=11.9,0.5), 6.74(4 \mathrm{H}, \mathrm{m}), 6.89(2 \mathrm{H}$, $\mathrm{dd}, J=8.5,2.7), 7.04(2 \mathrm{H}, \mathrm{d}, J=2.7), 7.29(4 \mathrm{H}, \mathrm{m}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.5)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.37 (q), 55.24 (q), 55.35 (q), 65.33 (d), 68.49 (t), 85.10 (s), 87.81 (s), 91.16 (s), 113.76 (d), 114.85 (s), 115.19 (d), 116.61 (d), 123.29 (s), 129.75 (d), 132.29 (s), 133.16 (d), 158.66 (s), 159.45 (s).

IR (CHCl_{3}): $3076 \mathrm{w}, 3026 \mathrm{~m}, 2840 \mathrm{~m}, 2224 \mathrm{w}, 2200 \mathrm{w}, 1606 \mathrm{vs}, 1572 \mathrm{~s}, 1572 \mathrm{~s}, 1510$ vs, $1443 \mathrm{~s}, 1425 \mathrm{~m}, 1413 \mathrm{~m}, 1372 \mathrm{~m}, 1328 \mathrm{~s}, 1303 \mathrm{~s}, 1291 \mathrm{vs}, 1250 \mathrm{vs}, 1173 \mathrm{~s}$, 1130 s, 1119 s, 1107 s, $1094 \mathrm{~s}, 1057 \mathrm{~s}, 1034 \mathrm{vs}, 1020 \mathrm{~s}, 856 \mathrm{~m}, 834 \mathrm{~s}, 695 \mathrm{vw} \mathrm{cm}^{-1}$.

APCI MS: $615\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{39} \mathrm{O}_{6} 615.2747$, found 615.2726.
Optical rotation: $[\alpha]^{22}{ }_{D}-150^{\circ}\left(c 0.163, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1yl]oxy\}methyl)benzene] (S,S)-182

Triyne (S, S)-180 (56.4 mg, 0.14 mmol), bis(acetonitrile)palladium(II) dichloride ($4.0 \mathrm{mg}, 0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine ($8.2 \mathrm{mg}, 0.030 \mathrm{mmol}, 20 \mathrm{~mol} \%$), copper iodide ($6.1 \mathrm{mg}, 0.32 \mathrm{mmol}, 23 \mathrm{~mol} \%$), aryl iodide (183 mg , $0.897 \mathrm{mmol}, 6.4$ equiv.), diisopropylamine ($50 \mu \mathrm{l}, 0.35 \mathrm{mmol}$, 2.5 equiv.), toluene (6 ml). Yield: $39.1 \mathrm{mg}, 50 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.54(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.75(6 \mathrm{H}, \mathrm{s}), 4.49(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, $4.80(2 \mathrm{H}, \mathrm{d}, J=11.8), 4.97(2 \mathrm{H}, \mathrm{d}, J=11.8), 6.89(2 \mathrm{H}, \mathrm{dd}, J=8.6,2.7), 7.05(2 \mathrm{H}, \mathrm{d}$, $J=2.7), 7.19-7.28(6 \mathrm{H}, \mathrm{m}), 7.34-7.36(4 \mathrm{H}, \mathrm{m}), 7.41(2 \mathrm{H}, \mathrm{d}, J=8.6)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.28 (q), 55.33 (q), 65.27 (d), 68.58 (t), 85.16 (s), 89.26 (s), 91.15 (s$), 115.20$ (d), 116.63 (d), 122.73 (s$), 123.29$ (s), 128.14 (d, 2C), 129.78 (d), 131.69 (d), 132.19 (s), 158.69 (s).

IR (CHCl_{3}): $3083 \mathrm{w}, 3058 \mathrm{w}, 2839 \mathrm{~m}, 2226 \mathrm{w}, 1604 \mathrm{~s}, 1572 \mathrm{~m}, 1503 \mathrm{~s}, 1490 \mathrm{~s}, 1444$ m, 1427 w, 1382 s, 1373 m, 1328 s, 1280 vs, 1174 s, 1143 s, 1108 s, 1095 vs, 1070 s, 1036 s, $1029 \mathrm{~s}, 1000$ w, 917 m, 856 m, 700 w, 692 s, 524 w, 426 w cm${ }^{-1}$.

FAB MS: $577\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Na} 577.2355$, found 577.2354.
Optical rotation: $[\alpha]^{22}{ }_{D}-172^{\circ}\left(c 0.236, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4,4'-\{Ethyne-1,2-diylbis[(4-methoxybenzene-2,1-diyl)methanediyloxy(3S)but-1-yne-3,1-diyl]\}dibenzonitrile (S, S)-183
 toluene (14 ml). Yield: $153 \mathrm{mg}, 75 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.53(6 \mathrm{H}, \mathrm{d}, J=6.6), 3.77(6 \mathrm{H}, \mathrm{s}), 4.47(2 \mathrm{H}, \mathrm{q}, J=6.6)$, 4.77 (2H, d, $J=11.7), 4.92(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.89(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.7), 6.99(2 \mathrm{H}, \mathrm{d}$, $J=2.7), 7.36(4 \mathrm{H}, \mathrm{m}), 7.37(2 \mathrm{H}, \mathrm{d}, J=8.5), 7.46(4 \mathrm{H}, \mathrm{m})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.99 (q), 55.37 (q), 64.94 (d), 68.66 (t), 83.67 (s), 93.77 (s), 111.46 (s), 114.80 (d), 117.07 (d), 118.44 (s), 123.39 (s), 127.48 (s), 129.94 (d), 131.62 (s), 131.81 (d), 132.12 (d), 158.80 (s).

IR $\left(\mathrm{CHCl}_{3}\right): 2840 \mathrm{~m}, 2230 \mathrm{~s}, 1605 \mathrm{vs}, 1571 \mathrm{~m}, 1501 \mathrm{~s}, 1445 \mathrm{~m}, 1427 \mathrm{w}, 1406 \mathrm{~m}$, 1373 m, 1327 s, 1281 m, 1241 s, 1174 s, $1131 \mathrm{~m}, 1118 \mathrm{~s}, 1095 \mathrm{vs}, 1057 \mathrm{~s}, 1037 \mathrm{~s}$, $1020 \mathrm{~m}, 856 \mathrm{~m}, 840 \mathrm{vs}, 817 \mathrm{~m}, 642 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: $627\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{4} 627.2260$, found 627.2237.
Optical rotation: $[\alpha]^{22}{ }_{D}-166^{\circ}\left(c 0.102, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis[2-(\{[(1S)-3-(4-chlorophenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)-5-methoxybenzene] (S,S)-184

Triyne (S,S)-180 (87.6 mg, 0.22 mmol), bis(acetonitrile)palladium(II) dichloride ($6.0 \mathrm{mg}, 0.023 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine ($12.5 \mathrm{mg}, 0.046 \mathrm{mmol}, 20 \mathrm{~mol} \%$), copper iodide ($9.0 \mathrm{mg}, 0.047 \mathrm{mmol}, 21 \mathrm{~mol} \%$), aryl iodide (131.2 mg, $0.55 \mathrm{mmol}, 2.5$ equiv.), diisopropylamine ($80 \mu \mathrm{l}, 0.55 \mathrm{mmol}, 2.5$ equiv.), toluene (10 ml). Yield: $69.7 \mathrm{mg}, 51 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.53(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.76(6 \mathrm{H}, \mathrm{s}), 4.46(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, 4.77 (2H, d, $J=11.8), 4.93$ (2H, d, $J=11.8), 6.89(2 H, d d, J=8.5,2.7), 7.02(2 H, d$, $J=2.7), 7.16(4 \mathrm{H}, \mathrm{m}), 7.24(4 \mathrm{H}, \mathrm{m}), 7.39(2 \mathrm{H}, \mathrm{d}, J=8.5)$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}): 21.17 (q), 55.33 (q), 65.10 (d), 68.56 (t), 84.09 (s), 91.05 (s), 114.96 (d), 116.85 (d), 121.15 (s), 123.32 (s), 128.45 (d), 129.83 (d), 131.97 (s), 132.88 (d), 134.13 (s), 158.73 (s).

IR (CHCl_{3}): 3078 w, $3058 \mathrm{w}, 2839 \mathrm{~m}, 2229 \mathrm{w}, 2208 \mathrm{w}, 1604$ vs, $1571 \mathrm{~s}, 1490$ vs, 1446 m, 1427 m, 1398 m, 1372 m, 1327 vs, 1281 s, 1256 s, 1243 s, 1173 s, 1119 s, 1098 vs, 1058 s, 1037 vs, 1016 vs, 856 m, 829 vs, 707 vw, 694 w, 617 w, 542 m, 525 $\mathrm{m} \mathrm{cm}^{-1}$.

FAB MS: $645\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Cl}_{2} \mathrm{Na} 645.1575$, found 645.1601 .
Optical rotation: $[\alpha]^{22}{ }_{D}-128^{\circ}\left(\mathrm{c} 0.165, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis\{5-methoxy-2-[(\{(1S)-1-methyl-3-[4-(trifluoromethyl) phenyl]prop-2-yn-1-yl\}oxy)methyl]benzene\} (S,S)-185

 toluene (7 ml). Yield: $101.0 \mathrm{mg}, 89 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.54 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6$), 3.75 ($6 \mathrm{H}, \mathrm{s}$), 4.47 ($2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6$), $4.79(2 \mathrm{H}, \mathrm{d}, J=11.7), 4.94(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.88(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.7), 7.02(2 \mathrm{H}, \mathrm{d}$, $J=2.7), 7.39(4 \mathrm{H}, \mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5), 7.44(4 \mathrm{H}, \mathrm{m})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.07 (q), 55.27 (q), 64.99 (d), 68.62 (t), 83.89 (s), 91.00 (s), 91.74 (s), 114.90 (d), 116.93 (d), 123.37 (s), 123.85 ($\mathrm{s}, J_{\text {CF }}=272.1$), 125.02 (d, $J_{\mathrm{CF}}=3.8$), 126.42 (s , 129.76 ($\mathrm{s}, \mathrm{J}_{\mathrm{CF}}=32.5$), 129.89 (d), 131.78 (s), 131.85 (d), 158.76 (s).
${ }^{19}$ F NMR (471 MHz, CDCl_{3}): -59.02 (s).
IR (CHCl_{3}): $2840 \mathrm{~m}, 2210 \mathrm{vw}, 1615 \mathrm{~s}, 1605 \mathrm{~s}, 1572 \mathrm{~s}, 1503 \mathrm{~s}, 1446 \mathrm{~m}, 1427 \mathrm{w}, 1405$ m, 1373 m, 1322 vs, 1300 s, 1283 s, 1252 s, 1241 s, 1172 vs, 1131 vs, 1106 vs, 1097 vs, 1068 vs, 1057 s, 1037 s, 1017 s, 943 w, 855 m, 844 vs, 827 m, 817 m, 725 $\mathrm{s}, 651 \mathrm{~m}, 598 \mathrm{~m}, 520 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: $713\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~F}_{6} \mathrm{Na} 713.2102$, found 713.2075.
Optical rotation: $[\alpha]^{22}{ }_{D}-197^{\circ}\left(\mathrm{c} 0.066, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis\{2-[(\{(1S)-3-[3,5-bis(trifluoromethyl)phenyl]-1-methylprop-2-yn-1-yl\}oxy)methyl]-5-methoxybenzene\} (S,S)-186

Triyne $(S, S)-180 \quad(63.5 \mathrm{mg}, \quad 0.16 \mathrm{mmol})$, bis(acetonitrile)-palladium(II) dichloride $(4.1 \mathrm{mg}, 0.016$ $\mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine $(8.0 \mathrm{mg}, 0.032$ $\mathrm{mmol}, 20 \mathrm{~mol} \%)$, copper iodide $(6.0 \mathrm{mg}, 0.032 \mathrm{mmol}$, $20 \mathrm{~mol} \%$), aryl iodide ($161 \mathrm{mg}, 0.47 \mathrm{mmol}, 2.9$ equiv.), diisopropylamine ($56 \mu \mathrm{l}, 0.40 \mathrm{mmol}, 2.5$ equiv.), toluene (7 ml). Yield: $78.3 \mathrm{mg}, 60 \%$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.55 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6$), $3.74(6 \mathrm{H}, \mathrm{s}), 4.49(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, $4.79(2 \mathrm{H}, \mathrm{d}, J=11.7), 4.93(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.83(2 \mathrm{H}, \mathrm{dd}, J=8.6,2.7), 7.00(2 \mathrm{H}, \mathrm{d}$, $J=2.7), 7.34(2 \mathrm{H}, \mathrm{d}, J=8.6), 7.75(6 \mathrm{H}, \mathrm{bs})$.
${ }^{13}{ }^{3}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.03 (q), 55.22 (q), 64.95 (d), 68.99 (t), 82.19 (s), 91.04 (s), 93.12 (s), 114.77 (d), 116.95 (d), 122.85 (s, $J_{\text {CF }}=272.8$), 123.44 (s), 124.99 (s), 130.08 (d), 131.51 (s), 131.51 (d, $J_{C F}=3.7$), 131.73 (,$J_{C F}=33.6$), 158.84 (s).
${ }^{19}$ F NMR (471 MHz, CDCl_{3}): -59.31 (s).
IR (CHCl_{3}): $2840 \mathrm{w}, 2230 \mathrm{vw}, 1610 \mathrm{w}, 1604 \mathrm{~m}, 1571 \mathrm{w}, 1503 \mathrm{w}, 1464 \mathrm{w}, 1428 \mathrm{w}$, 1400 w, 1382 s, 1327 m, 1280 vs, 1235 w, 1183 s, 1144 vs, 1107 m, 1095 m, 1037 m, $899 \mathrm{~m}, 857 \mathrm{w}, 848 \mathrm{w}, 700 \mathrm{~m}, 684 \mathrm{~m}, 426 \mathrm{w} \mathrm{cm}{ }^{-1}$.

ESI MS: $849\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{~F}_{12} \mathrm{Na} 849.1845$, found 849.1845.
Optical rotation: $[\alpha]^{22}{ }_{D}-130^{\circ}\left(c 0.087, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1,1'-Ethyne-1,2-diylbis[5-methoxy-2-(\{[(1S)-1-methyl-3-(4-nitrophenyl)prop-2-yn-1-yl]oxy\}methyl)benzene] (S,S)-187

Triyne $(S, S)-180 \quad(86.4 \mathrm{mg}, \quad 0.22 \mathrm{mmol})$,
 bis(acetonitrile)-palladium(II) dichloride ($9.0 \mathrm{mg}, 0.034$ mmol, $16 \mathrm{~mol} \%$), triphenylphosphine ($15.1 \mathrm{mg}, 0.057$ $\mathrm{mmol}, 26 \mathrm{~mol} \%)$, copper iodide $(6.3 \mathrm{mg}, 0.033 \mathrm{mmol}$, $15 \mathrm{~mol} \%$), aryl iodide ($150 \mathrm{mg}, 0.60 \mathrm{mmol}, 2.7$ equiv.), diisopropylamine ($80 \mu \mathrm{l}, 0.55 \mathrm{mmol}, 2.5$ equiv.), toluene $(10 \mathrm{ml})$. Yield: $73.5 \mathrm{mg}, 52 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.76(6 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, $4.78(2 \mathrm{H}, \mathrm{d}, J=11.7), 4.94(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.87(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.7), 6.98(2 \mathrm{H}, \mathrm{d}$, $J=2.7), 7.37(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5), 7.42(4 \mathrm{H}, \mathrm{m}), 8.03(4 \mathrm{H}, \mathrm{m})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.94 (q), 55.32 (q), 64.90 (d), 68.66 (t), 83.52 (s), 90.91 (s), 94.66 (s), 114.64 (d), 117.18 (d), 123.42 (s), 123.35 (d), 129.43 (s), 129.98 (d), 132.33 (d), 146.90 (s), 158.81 (s).

IR (CHCl_{3}): 3107 w, 3082 w, 3029 w, $2839 \mathrm{w}, 2230 \mathrm{vw}, 2215 \mathrm{vw}, 1602 \mathrm{~s}, 1596 \mathrm{~s}$, 1574 m, 1571 m, 1521 s, 1506 m, 1493 m, 1447 w, 1428 w, 1404 w, 1374 w, 1346 vs, $1326 \mathrm{~s}, 1308 \mathrm{~m}, 1286 \mathrm{~m}, 1256 \mathrm{~m}, 1174 \mathrm{~m}, 1130 \mathrm{~m}, 1120 \mathrm{~m}, 1108 \mathrm{~m}, 1096 \mathrm{~s}$, $1037 \mathrm{~m}, 1015 \mathrm{~m}, 855 \mathrm{~s}, 689 \mathrm{w}, 543 \mathrm{vw} \mathrm{cm}^{-1}$.

ESI MS: $667\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.

HR FAB MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{~N}_{2} \mathrm{Na} 667.2056$, found 667.2053 .
Optical rotation: $[\alpha]^{22}{ }_{D}-150^{\circ}\left(c 0.458, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for cyclotrimerisation of triynes (S, S)-171 and (S, S)-181 (S, S)-187 to helicene-like products (P, S, S)-172 and $(P, S, S)-188-(P, S, S)-194:$

Triyne (S, S)-181-(S, S)-187 (0.04-0.07 mmol), triphenylphosphine (2.0 equiv.) and dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) (1.0 equiv.) were flushed with argon in a Schlenk flask and decane (4 ml) was added. The reaction mixture was heated at 140 ${ }^{\circ} \mathrm{C}$ using a halogen lamp until the starting material disappeared (according to TLC).

Then the reaction mixture was purified by chromatography on silica gel (hexaneacetone 100:0 to $95: 5$ or $70: 30$, depending on the substrate) to provide products (P, S, S)-188 - $(P, S, S)-194$ as amorphous material.
($P, 3 R, 6 S$)-11,14-Dimethoxy-4,5-bis(4-methoxyphenyl)-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-188

Triyne $(S, S)-181 \quad(33.0 \mathrm{mg}, \quad 0.054 \mathrm{mmol})$, triphenylphosphine ($29.1 \mathrm{mg}, 0.111 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)cobalt $(1) \quad(7.2 \mu \mathrm{l}, \quad 0.054$ mmol, 1.0 equiv.), reaction period: 2 h . Chromatography: hexane \rightarrow hexane-acetone 1:1. Yield: $20.0 \mathrm{mg}, 61 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.61(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 3.29(6 \mathrm{H}, \mathrm{s}), 3.67(6 \mathrm{H}, \mathrm{s}), 4.48(2 \mathrm{H}$, $\mathrm{d}, J=11.6), 4.74(2 \mathrm{H}, \mathrm{d}, J=11.6), 4.88(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.07(2 \mathrm{H}, \mathrm{d}, J=2.7), 6.54$ (2H, dd, $J=8.4,2.7), 6.66(2 \mathrm{H}, \mathrm{dd}, J=8.3,2.2), 6.69(2 \mathrm{H}, \mathrm{dd}, J=8.3,2.7), 6.70(2 \mathrm{H}$, dd, $J=8.4,2.7$), 7.01 (2H, dd, $J=8.3,2.2$), 7.23 (2H, d, $J=8.3$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.32 (q), 55.07 (q), 66.75 (t), 72.57 (d), 113.00 (d), 113.07 (d), 114.52 (d), 116.38 (d), 129.49 (d), 130.41 (s), 130.64 (d), 130.97 (d), 132.41 (s), 137.02 (s), 137.81 (s), 141.29 (s), 142.14 (s), 157.79 (s), 158.81 (s).

IR (CHCl_{3}): $3026 \mathrm{~m}, 2961 \mathrm{~s}, 2839 \mathrm{~m}, 1608 \mathrm{~s}, 1578 \mathrm{~m}, 1515 \mathrm{vs}, 1502 \mathrm{~m}, 1466 \mathrm{~s}, 1443$ $\mathrm{m}, 1431 \mathrm{~m}, 1370 \mathrm{~m}, 1306 \mathrm{~m}, 1285 \mathrm{~s}, 1245 \mathrm{vs}, 1177 \mathrm{~s}, 1148 \mathrm{~m}, 1126 \mathrm{~m}, 1108 \mathrm{~m}$, $1077 \mathrm{~s}, 1043 \mathrm{~s}, 1034 \mathrm{~s}, 858 \mathrm{~m}, 848 \mathrm{~m}, 821 \mathrm{~m}, 696 \mathrm{w}, 635 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: 614 ([M] $]^{+}$).
HR FAB MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{6} 614.2659$, found 614.2668.
Optical rotation: $[\alpha]^{22}{ }_{D}-77^{\circ}\left(c \quad 0.313, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 R, 6 S$)-11,14-Dimethoxy-3,6-dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo [e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-189

Triyne (S, S)-182 ($22.5 \mathrm{mg}, 0.041 \mathrm{mmol}$), triphenylphosphine
 $\left(21.3 \mathrm{mg}, \quad 0.081 \mathrm{mmol}, \quad 2.0\right.$ equiv.), dicarbonyl($\mathrm{\eta}^{5}$ cyclopentadienyl)cobalt(I) ($5.4 \mu \mathrm{l}, 0.041 \mathrm{mmol}, 1.0$ equiv.), reaction period: 1.5 h . Chromatography: hexane \rightarrow hexaneacetone 9:1. Yield: $19.5 \mathrm{mg}, 87 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.69 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1$), 3.37 ($6 \mathrm{H}, \mathrm{s}$), 4.56 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.6$), $4.83(2 \mathrm{H}, \mathrm{d}, J=12.6), 4.93(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.16(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.78(2 \mathrm{H}, \mathrm{dd}, J=$ $8.2,2.6), 6.84(2 \mathrm{H}, \mathrm{dt}, J=7.5,1.7,1.7), 7.05(2 \mathrm{H}, \mathrm{dt}, J=7.5,1.7,1.7), 7.08(2 \mathrm{H}, \mathrm{tt}, J$ $=7.4,1.5), 7.17(2 \mathrm{H}, \mathrm{dt}, J=7.5,1.7,1.7), 7.21(2 \mathrm{H}, \mathrm{dt}, J=7.5,1.7,1.7), 7.31(2 \mathrm{H}, \mathrm{d}$, $J=8.2$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.32 (q), 55.09 (q), 66.76 (t), 72.57 (d), 114.59 (d), 126.33 (d), 127.34 (d), 127.67 (d), 129.52 (d), 129.68 (d), 130.00 (d), 130.40 (s), 137.21 (s), 137.43 (s), 139.92 (s), 141.20 (s), 142.08 (s), 158.84 (s).

IR (CHCl_{3}): 3082 w, 3060 w, 2963 m, $2928 \mathrm{~m}, 2859 \mathrm{~m}, 2837 \mathrm{w}, 1606 \mathrm{vs}, 1578 \mathrm{~m}$, $1502 \mathrm{~s}, 1467 \mathrm{~m}, 1443 \mathrm{~m}, 1431 \mathrm{~m}, 1370 \mathrm{~m}, 1283 \mathrm{~m}, 1256 \mathrm{~s}, 1238 \mathrm{~s}, 1175 \mathrm{~m}, 1078$ vs, 1071 vs, $1037 \mathrm{~m}, 1000 \mathrm{w}, 821 \mathrm{w}, 705 \mathrm{vs}, 694 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: 554 ([M] $]^{+}$).

HR FAB MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{4} 554.2457$, found 554.2462 .
Optical rotation: $[\alpha]^{22}{ }_{D}-69^{\circ}\left(c 0.079, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4,4'-[(3R,6S)-11,14-Dimethoxy-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']

 benzo[1,2-c:4,3-c']bisoxepine-4,5-diyl]dibenzonitrile (P, S, S)-190

Triyne $(S, S)-183 \quad(42.8 \mathrm{mg}, \quad 0.071 \mathrm{mmol})$, triphenylphosphine ($37.2 \mathrm{mg}, 0.142 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)-cobalt(I) $\quad(9.4 \quad \mu \mathrm{I}, \quad 0.071$ mmol, 1.0 equiv.), reaction period: 45 min. Chromatography: hexane \rightarrow hexane-acetone 9:1. Yield: $19.8 \mathrm{mg}, 45 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.60(6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 3.32(6 \mathrm{H}, \mathrm{s}), 4.50(2 \mathrm{H}, \mathrm{d}, J=11.7)$, $4.65(2 \mathrm{H}, \mathrm{q}, J=7.1), 4.71(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.07(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.74(2 \mathrm{H}, \mathrm{dd}, J=$ $8.2,2.6), 6.88(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.6), 7.26$ (2H, dd, $J=7.9,1.6), 7.26(2 \mathrm{H}, \mathrm{d}, J=8.2)$, $7.33(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.6), 7.50(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.6)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.10 (q), 55.12 (q), 66.75 (t), 72.35 (d), 111.13 (s), 114.92 (d), 116.40 (d), 118.31 (s), 129.81 (d), 130.06 (s), 130.49 (d), 130.58 (d), 131.60 (d), 131.89 (d), 137.37 (s), 138.55 (s), 139.49 (s), 140.36 (s), 144.39 (s), 159.00 (s).

IR (CHCl_{3}): $2964 \mathrm{~s}, 2929 \mathrm{~s}, 2857 \mathrm{~m}, 2839 \mathrm{~m}, 1607 \mathrm{vs}, 1578 \mathrm{~m}, 1502 \mathrm{~s}, 1432 \mathrm{~m}, 1409$ $\mathrm{m}, 1301 \mathrm{~m}, 1284 \mathrm{~s}, 1257 \mathrm{~s}, 1250 \mathrm{~m}, 1238 \mathrm{vs}, 1180 \mathrm{~m}, 1174 \mathrm{~s}, 1136 \mathrm{~m}, 1126 \mathrm{~m}$, $1037 \mathrm{~s}, 1020 \mathrm{~m}, 979 \mathrm{~m}, 822 \mathrm{~m}, 822 \mathrm{~m}, 695 \mathrm{w}, 636 \mathrm{~m}, 544 \mathrm{~m} \mathrm{~cm}^{-1}$.

FAB MS: 604 ([M] ${ }^{+}$).
HR FAB MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~N}_{2}$ 604.2362, found 604.2386.
Optical rotation: $[\alpha]^{22}{ }_{D}-64^{\circ}\left(c \quad 0.139, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 R, 6 S$)-4,5-Bis(4-chlorophenyl)-11,14-dimethoxy-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-191

Triyne (S, S)-184 ($44.0 \mathrm{mg}, 0.071 \mathrm{mmol}$), triphenylphosphine ($37.1 \mathrm{mg}, \quad 0.141 \mathrm{mmol}, \quad 2.0$ equiv.), dicarbonyl($\mathrm{\eta}^{5}$ -cyclopentadienyl)-cobalt(I) ($9.4 \mu \mathrm{l}, 0.071 \mathrm{mmol}, 1.0$ equiv.), reaction period: 1 h 40 min . Chromatography: hexane \rightarrow hexane-acetone 7:3. Yield: $33.2 \mathrm{mg}, 76 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.67(6 \mathrm{H}, \mathrm{d}, J=7.1), 3.37(6 \mathrm{H}, \mathrm{s}), 4.55(2 \mathrm{H}, \mathrm{d}, J=11.7)$, $4.78(2 \mathrm{H}, \mathrm{d}, J=11.7), 4.84(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.14(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.77(2 \mathrm{H}, \mathrm{dd}, J=$ 8.2, 2.2), 6.78 (2H, dd, $J=8.3,2.6), 7.08(2 H, d d, J=8.2,2.2), 7.11(2 H, d d, J=8.2$, 2.2), 7.23 ($2 \mathrm{H}, \mathrm{dd}, J=8.2,2.2$), 7.31 ($2 \mathrm{H}, \mathrm{d}, J=8.3$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.20 (q), 55.19 (q), 66.74 (t), 72.42 (d), 114.71 (d), 116.39 (d), 127.93 (d), 128.18 (d), 129.63 (d), 130.26 (s), 130.93 (d), 131.17 (d), 132.67 (s), 137.62 (s), 137.73 (s), 138.16 (s), 140.86 (s), 140.65 (s), 158.90 (s).

IR (CHCl_{3}): $3030 \mathrm{w}, 2836 \mathrm{~m}, 1606 \mathrm{~s}, 1595 \mathrm{~m}, 1579 \mathrm{~m}, 1499 \mathrm{vs}, 1432 \mathrm{~m}, 1396 \mathrm{vs}$, 1370 s, 1283 m, 1256 vs, 1199 m, 1175 m, 1146 m, 1125 m, 1107 s, 1090 s, 1077 vs, $1036 \mathrm{~s}, 1017 \mathrm{~s}, 859 \mathrm{~m}, 831 \mathrm{~m}, 693 \mathrm{w}, 570 \mathrm{w} \mathrm{cm}^{-1}$.

El MS: 622 (${ }^{+\bullet}, 100$), 607 (83), 591 (24), 577 (84), 561 (32), 549 (48), 526 (8), 514 (25), 499 (12), 316 (23), 277 (52), 262 (17), 191 (27), 175 (24), 149 (12), 139 (11), 121 (7), 77 (5), 57 (5).

HR EI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Cl}_{2}$ 622.1678, found 622.1673.
Optical rotation: $[\alpha]^{22}{ }_{D}-53^{\circ}\left(c 0.289, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

($P, 3 R, 6 S$)-11,14-Dimethoxy-3,6-dimethyl-4,5-bis[4-(trifluoromethyl)phenyl]-

 1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-192

Triyne $(S, S)-185 \quad(27.0 \mathrm{mg}, \quad 0.039 \mathrm{mmol})$, triphenylphosphine ($21.1 \mathrm{mg}, 0.080 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)-cobalt(I) $\quad(5.2 \mu \mathrm{l}, \quad 0.039$ mmol, 1.0 equiv.), reaction period: 1 h 15 min . Chromatography: hexane \rightarrow hexane-acetone 9:1. Yield: $18.6 \mathrm{mg}, 74 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.69 ($6 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1$), $3.39(6 \mathrm{H}, \mathrm{s}), 4.57(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.7$), $4.79(2 \mathrm{H}, \mathrm{q}, ~ J=7.1), 4.80(2 \mathrm{H}, \mathrm{d}, J=11.7), 6.16(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.80(2 \mathrm{H}, \mathrm{dd}, J=$ 8.3, 2.6), $6.96(2 \mathrm{H}, \mathrm{m}), 7.32(2 \mathrm{H}, \mathrm{m}), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3), 7.34(2 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}$, $\mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.20 (q), 55.12 (q), 66.76 (d), 72.42 (t$), 114.81$ (d), 116.41 (d), 123.88 ($s, J_{C F}=272.1$), 124.61 (d), 124.96 (d), 129.04 (,$J_{C F}=32.6$), 129.73 (d), 130.05 (d), 130.10 (s), 130.21 (d), 137.47 (s), 138.11 (s), 140.28 (s), 140.66 (s), 143.33 (s), 158.96 (s).
${ }^{19}$ F NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):-58.88\left(\mathrm{~J}_{\mathrm{CF}}=3.6\right)(\mathrm{s})$.
IR (CHCl_{3}): $3435 \mathrm{~s}, 1638 \mathrm{~m}, 1614 \mathrm{~m}, 1579 \mathrm{w}, 1501 \mathrm{w}, 1433 \mathrm{w}, 1406 \mathrm{w}, 1369 \mathrm{w}, 1327$ vs, 1301 w, 1284 w, 1256 w, 1169 m, 1148 m, 1126 m, 1109 m, 1071 m, 1038 w, 1021 w, $935 \mathrm{vw}, 866 \mathrm{w}, 849 \mathrm{w}, 735 \mathrm{w}, 696 \mathrm{w}, 639 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: $690\left([\mathrm{M}]^{+}\right), 675\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right), 659\left([\mathrm{M}-\mathrm{O}]^{+}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~F}_{6} 690.2205$, found 690.2192 .
Optical rotation: $[\alpha]^{22}{ }_{D}-72^{\circ}\left(c \quad 0.517, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($P, 3 R, 6 S$)-4,5-Bis[3,5-bis(trifluoromethyl)phenyl]-11,14-dimethoxy-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-193

Triyne (S,S)-186 (51.5 mg, 0.062 mmol$)$, triphenylphosphine ($34.2 \mathrm{mg}, 0.130 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)-cobalt(I) $\quad\left(\begin{array}{lll}9.0 & \mu l & 0.067\end{array}\right.$ mmol, 1.1 equiv.), reaction period: 1 h 15 min . Chromatography: hexane \rightarrow hexane-acetone 95:5. Yield: $50.8 \mathrm{mg}, 99 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.75(6 \mathrm{H}, \mathrm{d}, J=7.1), 3.41(6 \mathrm{H}, \mathrm{s}), 4.59(2 \mathrm{H}, \mathrm{d}, J=11.8)$, 4.78 (2H, d, $J=11.8), 4.83(2 \mathrm{H}, \mathrm{q}, J=7.1), 6.15(2 \mathrm{H}, \mathrm{d}, J=2.6), 6.83(2 \mathrm{H}, \mathrm{dd}, J=$ $8.3,2.6), 7.33(2 \mathrm{H}, \mathrm{bs}), 7.34(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3), 7.60(2 \mathrm{H}, \mathrm{bs}), 7.65(2 \mathrm{H}, \mathrm{bs})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.13 (q), 55.16 (q), 66.75 (t), 72.58 (d), 115.02 (d), 116.44 (d), 120.93 ($s, J_{C F}=3.8$), 122.75 ($s, J_{C F}=273.1$), 129.73 (d), 129.93 (d), 129.87 (d), 130.08 (s), 131.76 ($s, J_{C F}=33.6$), 131.49 (,$J_{\mathrm{CF}}=33.8$), 137.74 (s), 138.94 (s), 139.12 ($s, J_{\mathrm{CF}}=3.8$), 140.12 (s), 141.47 (s$), 159.13$ (s$)$.
${ }^{19}$ F NMR (471 MHz, CDCl_{3}): -59.37 (s), -59.57 (s).
IR $\left(\mathrm{CHCl}_{3}\right): 3087 \mathrm{vw}, 2840 \mathrm{w}, 1618 \mathrm{w}, 1606 \mathrm{~m}, 1594 \mathrm{~m}, 1580 \mathrm{w}, 1501 \mathrm{w}, 1466 \mathrm{~m}$, 1434 w, 1382 m, 1371 m, 1281 vs, 1239 m, 1185 s, 1139 vs, 1107 m, 1086 m, 1035 m, 893 w, 857 w, 848 w, $705 \mathrm{w}, 683 \mathrm{~m}, 429 \mathrm{vw} \mathrm{cm}^{-1}$.

APCI MS: $827\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{31} \mathrm{O}_{4} \mathrm{~F}_{12} 827.2031$, found 827.2060.
Optical rotation: $[\alpha]^{22}{ }_{D}-168^{\circ}\left(\mathrm{c} 0.121, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for Sonogashira coupling of triyne (S)-122 to prepare substituted triynes (S, S)-123 and (S, S)-195-(S, S)-199:

Triyne (S)-122 (0.13-0.24 mmol), tetrakis(triphenylphosphine)palladium(0) (10 mol \%), copper iodide ($20 \mathrm{~mol} \%$), aryl iodide (2.2-5.2 equiv.) were dissolved in toluene and diisopropylamine ($9-12$ equiv.) was added. After the reaction mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ and then at room temperature overnight, it was filtered through a sintered glass (diethyl ether) and solvents were removed in vacuo. The flash chromatography on silica gel (hexane-diethyl ether 100:0 to $95: 5$ or $85: 15$, depending on compound) provided products (S, S)-123 and (S, S)-195 - (S, S)-199 as amorphous solids.

4-Bromo-1-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methyl-3-phenylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\}benzene (S, S)-123

Triyne (S)-122 (84.9 mg, $0.20 \quad \mathrm{mmol})$, tetrakis(triphenylphosphine)palladium(0) $(23.0 \mathrm{mg}, 0.020 \mathrm{mmol}$, $10 \mathrm{~mol} \%$), copper iodide ($8.0 \mathrm{mg}, 0.040 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($165 \mathrm{mg}, 0.807 \mathrm{mmol}, 4.0$ equiv.), diisopropylamine (300 $\mu \mathrm{l}, 2.14 \mathrm{mmol}, 11$ equiv.), toluene (5 ml). Chromatography: hexane \rightarrow hexane-diethyl ether $85: 15$. Yield: $86.1 \mathrm{mg}, 75 \%$.

4-Bromo-1-(\{[(1S)-3-(4-methoxyphenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-3-(4-methoxyphenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)phenyl] ethynyl\}benzene (S,S)-195

Triyne (S)-122 (81.0 mg, 0.192 mmol$)$, tetrakis(triphenylphosphine) palladium(0) $(22.0 \mathrm{mg}, 0.019 \mathrm{mmol}, 10$ mol\%), copper iodide ($7.3 \mathrm{mg}, 0.038 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($100 \mathrm{mg}, 0.427 \mathrm{mmol}, 2.2$ equiv.), diisopropylamine ($300 \mu \mathrm{l}, 2.14 \mathrm{mmol}, 11$ equiv.), toluene (5 ml). Chromatography: hexane \rightarrow hexane-diethyl ether
95:5. Yield: $78.5 \mathrm{mg}, 65 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.55(6 \mathrm{H}, \mathrm{d}, J=6.6), 3.78(6 \mathrm{H}, \mathrm{s}), 4.50(2 \mathrm{H}, \mathrm{q}, J=6.6)$, $4.80(1 \mathrm{H}, \mathrm{d}, J=12.9), 4.85(1 \mathrm{H}, \mathrm{d}, J=12.5), 4.98(1 \mathrm{H}, \mathrm{d}, J=12.9), 5.03(1 \mathrm{H}, \mathrm{d}, J=$ 12.5), $6.75(4 \mathrm{H}, \mathrm{m}), 7.20(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.30(4 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{dt}, J=7.6$, $7.6,1.4), 7.40(1 \mathrm{H}, \mathrm{bd}, J=8.3), 7.44(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0), 7.49(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.4)$, $7.54(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7), 7.63(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.31 ($\mathrm{q}, 2 \mathrm{C}$), 55.24 ($\mathrm{q}, 2 \mathrm{C}$), 65.58 (d), 65.81 (d), 68.19 (t), 68.64 (t), 85.34 (s), 85.40 (s), 87.41 (s), 87.51 (s), 89.95 (s), 92.81 (s), 113.80 (d, 2C), 114.65 (s), 114.67 (s), 121.38 (s), 120.68 (s), 123.70 (s), 127.31 (d), 127.89 (d), 128.86 (d), 129.24 (d), 131.48 (d), 132.23 (d), 133.11 (d), 133.16 (d), 134.30 (d), 139.11 (s), 140.08 (s), 159.49 (s), 159.53 (s).

IR (CHCl_{3}): $2936 \mathrm{~s}, 2840 \mathrm{~m}, 2225 \mathrm{w}, 1607 \mathrm{~s}, 1589 \mathrm{~m}, 1573 \mathrm{~m}, 1556 \mathrm{w}, 1510 \mathrm{vs}$, 1491 m, 1477 m, 1466 m, 1457 m, 1443 m, 1414 w, 1393 w, 1372 m, $1329 \mathrm{~s}, 1304$ m, 1291 s, 1250 vs, 1173 s, 1154 w, 1129 m, 1117 s, 1106 s, 1093 s, 1063 s, 1034 s, $951 \mathrm{w}, 834 \mathrm{~s}, 820 \mathrm{~m}, 612 \mathrm{w}, 573 \mathrm{w} \mathrm{cm}{ }^{-1}$.

FAB MS: $657\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 655\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{O}_{4}{ }^{79} \mathrm{BrNa} 655.1460$, found 655.1465.
Optical rotation: $[\alpha]^{22}{ }_{D}-171^{\circ}\left(\mathrm{c} 0.191, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\} benzene (S, S)-196

Triyne (S)-122 (100.0 mg, 0.237 mmol), tetrakis(triphenylphosphine)palladium(0) ($28.3 \mathrm{mg}, 0.024 \mathrm{mmol}, 10 \mathrm{~mol} \%$), copper iodide ($10.1 \mathrm{mg}, 0.053 \mathrm{mmol}, 22 \mathrm{~mol} \%$), aryl iodide ($140.2 \mathrm{mg}, 0.643 \mathrm{mmol}, 2.7$ equiv.), diisopropylamine ($300 \mu \mathrm{l}$, $2.14 \mathrm{mmol}, 9$ equiv.), toluene (5 ml). Chromatography: hexane \rightarrow hexane-diethyl ether 9:1. Yield: $114.2 \mathrm{mg}, 80 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 1.55 ($6 \mathrm{H}, \mathrm{d}, J=6.6$), $2.32(6 \mathrm{H}, \mathrm{bs}), 4.50(2 \mathrm{H}, \mathrm{q}, J=6.6)$, $4.79(1 \mathrm{H}, \mathrm{d}, J=12.9), 4.85(1 \mathrm{H}, \mathrm{d}, J=12.6), 4.98(1 \mathrm{H}, \mathrm{dd}, J=12.8,0.8), 5.03(1 \mathrm{H}, \mathrm{d}$,
$J=12.6), 7.04(4 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.26(4 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{dt}, J=$ $7.6,7.6,1.4), 7.40(1 \mathrm{H}, \mathrm{ddt}, \mathrm{J}=8.3,0.8,0.8,0.5), 7.44$ (1H, dd, J = 8.3, 2.0), 7.49 (1H, ddd, $J=7.7,1.4,0.3$), $7.54(1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7), 7.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ 2.0).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.44 (q, 2C), 22.27 (q, 2C), 65.59 (d), 65.81 (d), 68.24 (t$)$, 68.70 (t$), 85.56$ (s$), 85.61$ (s$), 88.14$ (s$), 88.25$ (s$), 89.97$ (s$), 92.83$ (s$), 119.49$ (s$)$, 119.51 (s), 120.70 (s), 121.39 (s), 123.70 (s), 127.31 (d), 127.90 (d), 128.84 (d), 128.96 (d, 2C), 129.23 (d), 131.47 (d), 131.56 (d), 131.60 (d), 132.24 (d), 134.32 (d), 138.30 (s), 138.36 (s), 139.09 (s), 140.06 (s).

IR (CHCl_{3}): $2936 \mathrm{~m}, 2868 \mathrm{~m}, 2225 \mathrm{w}, 1607 \mathrm{w}, 1600 \mathrm{w}, 1589 \mathrm{w}, 1556 \mathrm{w}, 1510 \mathrm{~s}, 1491$ m, 1477 w, 1451 w, 1408 w, 1392 w, 1373 m, 1329 s, 1314 w, 1274 w, 1258 w, 1180 w, 1154 w, 1130 m, 1117 s, 1105 s, 1093 vs, 1022 m, 950 w, 819 vs, 574 w, 445 w cm^{-1}.

ESI MS: $603\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 601\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 601.1742$, found 601.1758.
Optical rotation: $[\alpha]^{22}{ }_{D}-175^{\circ}\left(\mathrm{c} 0.077, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-(\{[(1S)-3-(4-chlorophenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)-2-\{[2-(\{[(1S)-3-(4-chlorophenyl)-1-methylprop-2-yn-1-yl]oxy\}methyl)phenyl]ethynyl\} benzene (S, S)-197

Triyne (S)-122 (77.2 mg, 0.183 mmol$)$, tetrakis(triphenylphosphine)palladium(0) ($21.0 \mathrm{mg}, 0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%$), copper iodide ($7.0 \mathrm{mg}, 0.037 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($131 \mathrm{mg}, 0.55 \mathrm{mmol}, 3.0$ equiv.), diisopropylamine ($300 \mu \mathrm{l}$, $2.14 \mathrm{mmol}, 12$ equiv.), toluene (5 ml). Chromatography: hexane \rightarrow hexane-diethyl ether 85:15. Yield: $99 \mathrm{mg}, 85 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.55(6 \mathrm{H}, \mathrm{d}, J=6.6), 4.47(2 \mathrm{H}, \mathrm{q}, J=6.6), 4.78(1 \mathrm{H}, \mathrm{d}, J$ $=12.8), 4.83(1 \mathrm{H}, \mathrm{d}, J=12.5), 4.95(1 \mathrm{H}, \mathrm{d}, J=12.8), 5.00(1 \mathrm{H}, \mathrm{d}, J=12.5), 7.19$ (4H, m), 7.21 (1H, dt, $J=7.6,7.6,1.4), 7.26(4 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.38$
(1H, d, $J=8.3$), 7.46 (1H, dd, $J=8.3,2.1$), $7.47(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 7.52(1 \mathrm{H}, \mathrm{ddq}$, $J=7.7,1.4,0.7,0.7,0.7), 7.62(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.12 (q), 22.14 (q), 65.41 (d), 65.61 (d), 68.28 (t), 68.76 (t), 84.32 (s), 84.40 (s), 89.79 (s), 89.89 (s), 89.92 (s), 92.73 (s), 120.86 (s), 120.96 (s), 120.99 (s), 121.41 (s), 123.71 (s), 127.45 (d), 128.01 (d), 128.53 (d), 128.54 (d), 128.97 (d), 129.32 (d), 131.59 (d), 132.18 (d), 132.85 (d), 132.90 (d), 134.28 (s), 134.32 (s), 134.34 (d), 138.78 (s), 139.81 (s).

IR (CHCl_{3}): $2990 \mathrm{~m}, 2867 \mathrm{~m}, 2226 \mathrm{w}, 1601 \mathrm{w}, 1589 \mathrm{~m}, 1556 \mathrm{w}, 1490 \mathrm{vs}, 1453 \mathrm{~m}$, 1397 m, 1373 m, 1328 s, 1310 m, 1257 m, 1176 w, 1154 w, 1129 m, 1120 s, 1098 vs, $1015 \mathrm{~s}, 951 \mathrm{w}, 830 \mathrm{vs}, 576 \mathrm{w}, 451 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: $665\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 663\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{79} \mathrm{BrNaCl}_{2}$ 663.0469, found 663.0462 .
Optical rotation: $[\alpha]^{22}{ }_{D}-196^{\circ}\left(c 0.217, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-[(\{(1S)-1-methyl-3-[4-(trifluoromethyl)phenyl]prop-2-yn-1-yl\}oxy) methyl]-2-(\{2-[(\{(1S)-1-methyl-3-[4-(trifluoromethyl)phenyl]prop-2-yn-1-yl\}oxy) methyl]phenyl\}ethynyl)benzene (S, S)-198

Triyne (S)-122 ($54.5 \mathrm{mg}, 0.129 \mathrm{mmol}$), tetrakis(triphenylphosphine)palladium(0) ($15.0 \mathrm{mg}, 0.013 \mathrm{mmol}, 10 \mathrm{~mol} \%$), copper iodide ($4.9 \mathrm{mg}, 0.026 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($185 \mathrm{mg}, 0.680 \mathrm{mmol}, 5.2$ equiv.), diisopropylamine (180 $\mu \mathrm{l}, 1.29 \mathrm{mmol}, 10$ equiv.), toluene (4 ml). Chromatography: hexane \rightarrow hexane-diethyl ether 9:1.
Yield: $64.3 \mathrm{mg}, 70 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.56(6 \mathrm{H}, \mathrm{d}, J=6.6), 4.49(2 \mathrm{H}, \mathrm{q}, J=6.6), 4.79(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=12.7), 4.84(1 \mathrm{H}, \mathrm{d}, J=12.4), 4.96(1 \mathrm{H}, \mathrm{d}, J=12.7), 5.01(1 \mathrm{H}, \mathrm{d}, J=12.4), 7.20(1 \mathrm{H}$, $\mathrm{dt}, J=7.5,7.5,1.4), 7.36(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.36(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.42(4 \mathrm{H}$, $\mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0), 7.46(4 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{ddt}, J=7.5,1.4,0.7,0.7), 7.51$ ($1 \mathrm{H}, \mathrm{ddq}, J=7.7,1.4,0.7,0.7,0.7$), $7.62(1 \mathrm{H}, \mathrm{d}, J=2.0)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}): 22.02 (q), 22.05 (q), 65.30 (d), 65.47 (d), 68.33 (t), 68.83 (t), 84.07 (s), 84.18 (s), 89.83 (s), 91.24 (s), 91.39 (s), 92.65 (s), 120.92 (s), 121.43 (s$), 123.74$ (s$), 123.80\left(\mathrm{~s}, J_{\mathrm{FC}}=272.1\right.$), 125.11 ($\mathrm{d}, J_{\mathrm{FC}}=3.8$), 126.22 (s$)$, 126.22 (s), 127.51 (d), 128.08 (d), 129.04 (d), 129.36 (d), 129.90 (s, $J_{F C}=32.6$), 131.66 (d), 131.82 (d), 131.87 (d), 132.15 (d), 134.35 (d), 138.55 (s), 139.60 (s).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -59.02 (s), -59.04 (s).
IR (CHCl_{3}): $2990 \mathrm{~m}, 2936 \mathrm{~m}, 2868 \mathrm{~m}, 2216 \mathrm{w}, 1616 \mathrm{~s}, 1601 \mathrm{w}, 1589 \mathrm{~m}, 1575 \mathrm{w}$, 1556 w, 1515 w, 1491 m, 1478 w, 1451 m, 1404 m, 1394 m, 1373 m, 1321 vs, 1287 m, 1253 m, 1171 vs, 1132 vs, 1095 vs, 1068 vs, 844 vs, $708 \mathrm{~m}, 623$ w, $598 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $733\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 731\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{79} \mathrm{BrF}_{6} \mathrm{Na} 731.0991$, found 731.0990.
Optical rotation: $[\alpha]^{22}{ }_{D}-177^{\circ}\left(c \quad 0.171, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1-[(\{(1S)-3-[3,5-Bis(trifluoromethyl)phenyl]-1-methylprop-2-yn-1-yl\}oxy)methyl]-2-(\{2-[(\{(1S)-3-[3,5-bis(trifluoromethyl)phenyl]-1-methylprop-2-yn-1-yl\}oxy) methyl]phenyl\}ethynyl)-4-bromobenzene (S,S)-199

Triyne (S)-122 ($63.7 \mathrm{mg}, 0.151 \mathrm{mmol}$), tetrakis(triphenylphosphine)palladium(0) ($17.0 \mathrm{mg}, 0.015 \mathrm{mmol}, 10 \mathrm{~mol} \%$), copper iodide ($5.9 \mathrm{mg}, 0.031 \mathrm{mmol}, 20 \mathrm{~mol} \%$), aryl iodide ($205.6 \mathrm{mg}, 0.603 \mathrm{mmol}, 4.0$ equiv.), diisopropylamine (210 $\mu \mathrm{l}, 1.51 \mathrm{mmol}, 10$ equiv.), toluene (5 ml). Chromatography: hexane \rightarrow hexane-diethyl ether 9:1. Yield: 116.2 mg, 91\%.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.57(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.58(3 \mathrm{H}, \mathrm{d}, J=6.6), 4.50(1 \mathrm{H}, \mathrm{q}, J$ $=6.6), 4.51(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.80(1 \mathrm{H}, \mathrm{d}, J=12.6), 4.84(1 \mathrm{H}, \mathrm{d}, J=12.3), 4.96(1 \mathrm{H}, \mathrm{d}$, $J=12.6), 5.00(1 \mathrm{H}, \mathrm{d}, J=12.3), 7.20(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.33(1 \mathrm{H}, \mathrm{dt}, J=7.6$, $7.6,1.4), 7.36(1 \mathrm{H}, \mathrm{bd}, J=8.3), 7.42(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.0), 7.47(1 \mathrm{H}, \mathrm{bdd}, J=7.5$, 1.4), 7.49 (1H, ddq, $J=7.7,1.4,0.7,0.7,0.7$), 7.61 ($1 \mathrm{H}, \mathrm{d}, J=2.0$), $7.75-7.77$ (6 H , $\mathrm{m})$.
${ }^{13}$ C NMR (151 MHz, CDCl_{3}): 21.96 (q), 22.01 (q), 65.36 (d), 65.45 (d), 68.65 (t), 69.26 (t), 82.39 (s), 82.45 (s), 89.87 (s), 92.57 (s), 92.74 (s), 92.78 (s), 121.05 (s), 121.48 (s$), 121.76$ ($\mathrm{d}, \mathrm{J}_{\mathrm{FC}}=3.7$), 122.81 ($\mathrm{s}, J_{\mathrm{FC}}=272.8$), 123.77 (s$), 124.79$ (s$)$, 124.81 (s), 127.64 (d), 128.28 (d), 129.04 (d), 129.46 (d), 131.52 (d, JFC $=3.7$), 131.68 (d), 131.80 ($\mathrm{s}, \mathrm{J}_{\mathrm{FC}}=33.8$), 132.07 (d), 134.39 (d), 138.33 (s$), 139.44$ (s).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -59.31 (s), -59.32 (s).
IR (CHCl_{3}): $3086 \mathrm{vw}, 2230 \mathrm{vw}, 1615 \mathrm{w}, 1600 \mathrm{vw}, 1589 \mathrm{w}, 1556 \mathrm{w}, 1491 \mathrm{w}, 1462 \mathrm{w}$, 1400 w, 1382 s, 1327 w, 1280 vs, 1233 w, 1183 s, 1144 vs, 1107 m, 1095 m, 1025 w, 953 w, $899 \mathrm{~m}, 848 \mathrm{w}, 820 \mathrm{w}, 700 \mathrm{~m}, 684 \mathrm{~m}, 426 \mathrm{w} \mathrm{cm}{ }^{-1}$.

ESI MS: $847\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 845\left([\mathrm{M}+\mathrm{H}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{O}_{2}{ }^{79} \mathrm{BrF}_{12} 845.0925$, found 845.0904.
Optical rotation: $[\alpha]^{22}{ }_{D}-154^{\circ}\left(c \quad 0.374, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for cyclotrimerisation of triynes $(S, S)-195-(S, S)-197$ and (S, S)-123 to helicene-like products $(P, S, S)-\mathbf{2 0 0}-(P, S, S)$-204 and $(P, S, S)-124:$

Triyne (S, S)-195 - (S, S)-197 and (S, S)-199 (0.07 mmol), triphenylphosphine (2.0 equiv.) and dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) (1.0 equiv.) were flushed with argon in a Schlenk flask and decane (4 ml) was added. The reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ using a halogen lamp until the starting material disappeared (according to TLC analysis). Then the reaction mixture was purified by chromatography on silica gel (hexane-diethyl ether 100:0 to 9:1 or 75:25, depending on the substrate) to provide products $(P, S, S)-\mathbf{2 0 0}-(P, S, S)-202$ and $(P, S, S)-\mathbf{2 0 4}$ as amorphous material.

Cyclotrimerisation $(S, S)-123 \rightarrow(P, S, S)$-124 is on page 106.

(P,3S,6S)-11-Bromo-4,5-bis(4-methoxyphenyl)-3,6-dimethyl-1,3,6,8-tetrahydro dibenzo[e,e']benzo[1,2-c:4,3\boldsymbol{c}^{\prime}]bisoxepine (P, S, S)-200

Triyne (S,S)-195 ($69.2 \mathrm{mg}, 0.109 \mathrm{mmol}$), triphenylphosphine ($57.3 \mathrm{mg}, 0.219 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(n^{5}-cyclopentadienyl)cobalt(I) (14.5 $\mu \mathrm{l}$, $0.109 \mathrm{mmol}, 1.0$ equiv.), reaction period: 2 h 40 min . Chromatography: hexane \rightarrow hexane-diethyl ether 75:25. Yield: $50.1 \mathrm{mg}, 72 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.62(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.67(3 \mathrm{H}, \mathrm{d}, J=7.1), 3.74(6 \mathrm{H}, \mathrm{s})$, $4.96(2 \mathrm{H}, \mathrm{q}, ~ J=7.1), 4.55(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.78(1 \mathrm{H}, \mathrm{d}, J=$ 11.5), $5.84(1 \mathrm{H}, \mathrm{d}, J=11.5), 6.54(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.2), 6.62(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.2)$, $6.68(1 \mathrm{H}, \mathrm{d}, J=2.0), 6.73(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.2), 6.77(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.2), 7.03(1 \mathrm{H}$, $\mathrm{dt}, J=7.6,7.6,1.2$), $7.07(2 \mathrm{H}, \mathrm{dd}, J=8.5,2.2), 7.26(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4,1.2), 7.27$ (1H, d, $J=8.0$), 7.33 (1H, dd, $J=8.0,2.0$), 7.44 (1H, dd, $J=7.5,1.2$).
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.12 (q), 22.45 (q), 55.08 ($\mathrm{q}, 2 \mathrm{C}$), 66.72 (t$), 67.45$ (t$)$, 72.68 (d), 72.72 (d), 113.03 (d), 113.05 (d), 113.10 (d, 2C), 121.21 (s), 127.42 (d), 127.97 (d), 128.70 (d), 129.99 (d), 130.46 (d), 130.57 (d), 130.59 (d), 130.89 (d), 130.96 (d), 131.79 (d), 132.17 (s), 132.21 (s), 134.79 (d), 135.41 (s), 136.70 (s), 137.11 (s), 137.72 (s), 137.75 (s), 137.92 (s), 139.38 (s), 142.17 (s), 142.25 (s), 142.61 (s), 157.84 (s), 157.85 (s).

IR (CHCl_{3}): $2929 \mathrm{vs}, 2857 \mathrm{~m}, 2840 \mathrm{~m}, 1611 \mathrm{~s}, 1594 \mathrm{~m}, 1576 \mathrm{~m}, 1570 \mathrm{~m}, 1554 \mathrm{w}$, 1514 vs, 1494 m, 1484 m, 1484 m, 1443 m, 1410 m, 1393 m, 1304 m, 1286 s, 1246 vs, $1178 \mathrm{~s}, 1128 \mathrm{~m}, 1110 \mathrm{~s}, 1079 \mathrm{vs}, 1033 \mathrm{~s}, 1014 \mathrm{~m}, 949 \mathrm{~m}, 840 \mathrm{~m}, 817 \mathrm{~m} \mathrm{~cm}^{-1}$.

EI MS: $634\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{81} \mathrm{Br}, 96\right), 632\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{79} \mathrm{Br}, 100\right), 619$ (49), 617 (55), 601 (14), 599 (15), 587 (19), 571 (31), 569 (18), 557 (13), 520 (8), 508 (37), 492 (26), 477 (15), 466 (27), 435 (3), 401 (6), 359 (8), 326 (7), 316 (9), 252 (6), 245 (8), 200 (4), 193 (5), 187 (4), 149 (42), 135 (9), 101 (10), 97 (16), 71 (17), 59 (18), 57 (26), 43 (37).

HR EI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{33} \mathrm{O}_{4}{ }^{79} \mathrm{Br} 632.1562$, found 632.1550.
Optical rotation: $[\alpha]^{22}{ }_{D}-86^{\circ}\left(\mathrm{c} 0.295, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Triyne (S,S)-196 (37.8 mg, 0.063 mmol$)$, triphenylphosphine (32.5 $\mathrm{mg}, \quad 0.124 \mathrm{mmol}, \quad 2.0 \quad$ equiv. $)$ dicarbonyl(η^{5} cyclopentadienyl)cobalt(I) ($8.3 \mu \mathrm{l}, 0.063 \mathrm{mmol}, 1.0$ equiv.), reaction period: 1 h . Chromatography: hexane \rightarrow hexane-diethyl ether 8:2. Yield: $18.7 \mathrm{mg}, 49 \%$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.62(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.1), 2.24(6 \mathrm{H}, \mathrm{bs})$, $4.92(2 \mathrm{H}, \mathrm{q}, J=7.1), 4.55(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.61(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.79(1 \mathrm{H}, \mathrm{d}, J=$ $11.5), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=11.5), 6.54(2 \mathrm{H}, \mathrm{m}), 6.86-6.87(2 \mathrm{H}, \mathrm{m}), 7.01-7.05(4 \mathrm{H}, \mathrm{m}), 6.54$ (1H, dd, $J=7.7,1.2$), $6.68(1 \mathrm{H}, \mathrm{d}, J=2.0), 7.03(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.2), 7.25(1 \mathrm{H}$, $\mathrm{dt}, J=7.5,7.5,1.2), 7.26(1 \mathrm{H}, \mathrm{d}, J=8.0), 7.32(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0), 7.43(1 \mathrm{H}, \mathrm{dd}, J$ $=7.5,1.2$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.14 (q, 2C), 22.12 (q), 22.45 (q), 66.70 (t$), 67.43$ (t), 72.64 (d), 72.68 (d), 121.20 (s), 127.41 (d), 127.94 (d), 128.09 (d), 128.13 (d), 128.39 (d), 128.69 (d), 129.37 (d), 129.38 (d), 129.69 (d), 129.77 (d), 129.99 (d), 130.44 (d), 131.79 (d), 134.79 (d), 135.36 (s), 135.75 (s), 135.77 (s), 136.70 (s), 136.74 (s), 136.78 (s), 137.06 (s), 137.52 (s), 137.69 (s), 137.71 (s), 139.40 (s), 142.24 (s), 142.27 (s), 142.68 (s).

IR (CHCl_{3}): $2968 \mathrm{~s}, 2927 \mathrm{vs}, 2867 \mathrm{~m}, 1606 \mathrm{~m}, 1606 \mathrm{~m}, 1593 \mathrm{~m}, 1584 \mathrm{~m}, 1559 \mathrm{~m}$, 1515 s, 1484 m, 1415 m, 1307 m, 1285 m, 1183 m, 1128 m, 1113 s, 1079 vs, 1022 $\mathrm{s}, 818 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $625\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 623\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{4}{ }^{79} \mathrm{Br} 623.1556$, found 623.1553.
Optical rotation: $[\alpha]^{22}{ }_{D}-96^{\circ}\left(c \quad 0.216, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Triyne (S,S)-183 ($28.5 \mathrm{mg}, 0.044 \mathrm{mmol}$), triphenylphosphine $\left(24.0 \mathrm{mg}, \quad 0.088 \mathrm{mmol}, \quad 2.0\right.$ equiv.), dicarbonyl($\mathrm{n}^{5}-$ cyclopentadienyl)cobalt(I) ($5.9 \mu \mathrm{l}, 0.044 \mathrm{mmol}, 1.0$ equiv.), reaction period: 30 min . Chromatography: hexane \rightarrow hexanediethyl ether $\mathbf{7 5 : 1 5}$. Yield: $20.4 \mathrm{mg}, \mathbf{7 2 \%}$. Note: the product is prone to decomposition on silica gel and in solution.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.59(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 0.64(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 4.83(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $=7.1), 4.53(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.59(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.73(1 \mathrm{H}, \mathrm{d}, J=11.6), 5.79(1 \mathrm{H}$, $\mathrm{d}, J=11.6), 6.51(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.65(1 \mathrm{H}, \mathrm{d}, J=2.0), 6.74(2 \mathrm{H}, \mathrm{dd}, J=8.2$, 2.2), $7.01(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.07(4 \mathrm{H}, \mathrm{dd}, J=8.2,2.2), 7.21(2 \mathrm{H}, \mathrm{dd}, J=8.2$, 2.2), 7.25 ($1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3$), $7.25(1 \mathrm{H}, \mathrm{d}, J=8.0), 7.32(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0)$, 7.42 (1H, dd, $J=7.5,1.3$).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.01 (q), 22.35 (q), 66.72 (t$), 67.45$ (t$), 72.53$ (d), 72.56 (d), 121.36 (s), 127.58 (d), 127.97 (d), 128.00 (d), 128.23 (d), 128.29 (d), 128.83 (d), 130.12 (d), 130.79 (d), 130.85 (d), 130.87 (d), 131.08 (d), 131.16 (d), 131.71 (d), 132.77 (s), 132.79 (s), 134.72 (d), 136.14 (s), 136.57 (s), 137.57 (s), 137.60 (s), 137.75 (s), 137.86 (s), 137.93 (s), 137.97 (s), 138.96 (s), 140.69 (s), 141.11 (s), 141.79 (s).

IR (CHCl_{3}): $2966 \mathrm{~s}, 2928 \mathrm{~s}, 2857 \mathrm{~m}, 1603 \mathrm{w}, 1594 \mathrm{~m}, 1570 \mathrm{w}, 1557 \mathrm{w}, 1495 \mathrm{~s}, 1485$ m, 1472 w, 1396 m, 1127 w, 1113 m, 1090 s, 1079 vs, 1016 s, 949 w, 832 m, 816 m cm^{-1}.

FAB MS: $665\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}\right), 663\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}\right)$.
HR FAB MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{79} \mathrm{BrCl}_{2} \mathrm{Na} 663.0469$, found 663.0480 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}-101^{\circ}\left(\mathrm{c} 0.099, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(P,3S,6S)-4,5-Bis[3,5-bis(trifluoromethyl)phenyl]-11-bromo-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-c:4,3-c']bisoxepine (P, S, S)-204

Triyne (S, S)-183 ($44.0 \mathrm{mg}, 0.052 \mathrm{mmol}$), triphenylphosphine $\left(27.3 \mathrm{mg}, \quad 0.104 \mathrm{mmol}, 2.0\right.$ equiv.), dicarbonyl($\mathrm{\eta}^{5}$ cyclopentadienyl)cobalt(I) ($7.0 \mu \mathrm{l}, 0.052 \mathrm{mmol}, 1.0$ equiv.), reaction period: 2 h . Chromatography: hexane \rightarrow hexanediethyl ether $9: 1$. Yield: $8.8 \mathrm{mg}, 20 \%$. Note: the compound was unstable in solution.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.69(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 0.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 4.84(2 \mathrm{H}, \mathrm{q}, \mathrm{J}$ $=7.1), 4.60(1 \mathrm{H}, \mathrm{d}, J=11.7), 4.66(1 \mathrm{H}, \mathrm{d}, J=11.7), 4.77(1 \mathrm{H}, \mathrm{d}, J=11.7), 5.82(1 \mathrm{H}$, $\mathrm{d}, J=11.7), 6.55(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.2), 6.69(1 \mathrm{H}, \mathrm{d}, J=2.0), 7.09(1 \mathrm{H}, \mathrm{dt}, J=7.6$, $7.6,1.3$), 7.31 ($1 \mathrm{H}, \mathrm{d}, J=8.0$), $7.32(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.2), 7.33(2 \mathrm{H}, \mathrm{m}), 7.40(1 \mathrm{H}$, dd, $J=8.0,2.0$), $7.48(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.3), 7.59(2 \mathrm{H}, \mathrm{m}), 7.65(2 \mathrm{H}, \mathrm{bs})$.
${ }^{13}{ }^{3}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.95 (q), 22.30 (q), 66.73 (t$), 67.45$ (t$), 72.68$ (d), 72.79 (d), 121.04 (d), 121.67 (s), 122.72 ($s, J_{F C}=273.0$), 127.90 (d), 128.85 (d), 129.03 (d), 129.67 (d), 129.87 (d), 131.39 (d), 131.49 ($s, J_{F C}=35.0$), 131.56 (d), 134.54 (d), 136.42 (s), 137.43 (s), 137.51 (s), 137.69 (s), 137.86 (s), 138.21 (s), 139.00 (s), 139.29 (s), 139.38 (s), 141.22 (s), 141.25 (s).
${ }^{19}$ F NMR (471 MHz, CDCl_{3}): -59.35 (s), -59.56 (s).
IR (CHCl_{3}): $2967 \mathrm{~s}, 2928 \mathrm{~s}, 2857 \mathrm{~s}, 2967 \mathrm{~s}, 2928 \mathrm{~s}, 1618 \mathrm{~m}, 1593 \mathrm{~m}, 1593 \mathrm{~m}, 1571$ w, 1560 w, 1495 w, 1495 w, 1484 m, 1484 m, 1464 m, 1396 s, 1382 vs, 1316 s, 1278 vs, 1238 s, 1187 vs, 1140 vs, 1108 s, 1088 vs, 1077 vs, 950 m, 905 vs, 889 m, 683 s, $432 \mathrm{w} \mathrm{cm}^{-1}$.

FAB MS: due to decomposition molecular peak was not observed.
Optical rotation: $[\alpha]^{22}{ }_{D}-68^{\circ}\left(c \quad 0.259, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for cyclotrimerisation of triynes (S, S)-122, (S, S)-140 and (S, S)-180 to helicene-like products $(P, S, S)-\mathbf{2 0 5}-(P, S, S)-\mathbf{2 0 7}$:

Triyne (S, S)-122, (S, S)-140 and (S, S)-180 (0.031-0.174 mmol), triphenylphosphine (2.0 equiv.) and dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) (1.0 equiv.) were dissolved in THF (3-5 ml) in a 5 ml microwave reactor under argon and heated at $190^{\circ} \mathrm{C}$ for 5 10 min . Then the volatiles were removed in vacuo and the residue purified by flash chromatography on silica gel (hexane-ethyl acetate 10:0 to 9:1) to provide product (M,S,S)-205-(M,S,S)-207 as a colourless oil or white crystals.

(M,3S,6S)-11-Bromo-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-

 c:4,3-c']bisoxepine (M,S,S)-205

Triyne (S, S)-122 (20 mg, 0.047 mmol), triphenylphosphine (25 mg , $0.095 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) (7 $\mu \mathrm{l}, 0.052 \mathrm{mmol}, 1.1$ equiv.), THF (3 ml), reaction period: 5 min . Yield: $6.6 \mathrm{mg}, 35 \%$, a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.64(6 \mathrm{H}, \mathrm{d}, J=6.4), 4.22(1 \mathrm{H}, \mathrm{q}, J=6.4), 4.24(1 \mathrm{H}, \mathrm{q}, J$ $=6.4), 4.34(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.39(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.58(1 \mathrm{H}, \mathrm{d}, J=11.3), 4.63(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=11.3$), $6.50(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.61(1 \mathrm{H}, \mathrm{d}, J=2.0), 7.07(1 \mathrm{H}, \mathrm{dt}, J=7.5$, $7.5,1.3), 7.29(1 \mathrm{H}, \mathrm{d}, J=8.0), 7.32(1 \mathrm{H}, \mathrm{dt}, J=7.4,7.4,1.3), 7.39(1 \mathrm{H}, \mathrm{dd}, J=8.0$, 2.0), $7.45(1 \mathrm{H}, \mathrm{bdd}, J=7.5,1.7), 7.60(1 \mathrm{H}, \mathrm{d}, J=8.1), 7.63(1 \mathrm{H}, \mathrm{d}, J=8.1)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 17.82 (q), 17.83 (q), 67.28 (t$), 68.01$ (t$), 68.65$ (d), 68.73 (d), 121.31 (s), 125.19 (d), 125.61 (d), 127.50 (d), 128.28 (d), 129.08 (d), 130.39 (d), 130.59 (d), 130.81 (d), 133.65 (d), 134.41 (s), 135.62 (s), 136.46 (s), 137.78 (s), 138.00 (s), 138.04 (s), 138.65 (s), 141.49 (s).

IR (CHCl_{3}): 3072 w, $2982 \mathrm{~m}, 2963 \mathrm{~m}, 2928 \mathrm{~s}, 2860 \mathrm{~m}, 1604 \mathrm{vw}, 1591 \mathrm{w}, 1577 \mathrm{vw}$, 1558 vw, 1495 w, 1482 m, 1463 m, 1450 w, 1424 m, 1403 vw, 1377 m, 1364 m, 1308 vw, 1157 w, 1130 w, 1109 w, 1087 vs, 1047 m, 949 w, 830 m, 822 w, 418 w cm^{-1}.

El MS: $422\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 32\right), 420\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 31\right), 407(30), 405(32), 377$ (13), 361 (6), 347 (5), 308 (7), 296 (18), 280 (20), 268 (22), 253 (52), 239 (18), 226 (7),

202 (4), 189 (5), 178 (6), 164 (10), 149 (53), 126 (7), 111 (9), 97 (35), 95 (37), 85 (16), 83 (17), 69 (100), 67 (39), 57 (36), 41 (30).

HR EI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 420.0725$, found 420.0735.
Optical rotation: $[\alpha]^{22}{ }_{D}-8^{\circ}\left(c 0.063, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(M,3S,6S)-10-Bromo-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo[1,2-

c:4,3-c']bisoxepine (M, S, S)-206

Br Triyne $(S, S)-140(13 \mathrm{mg}, 0.031 \mathrm{mmol})$, triphenylphosphine (16 mg , $0.062 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(n^{5}-cyclopentadienyl)cobalt(I) ($4 \mathrm{\mu l}$, $0.031 \mathrm{mmol}, 1.0$ equiv.), THF (3 ml), reaction period: 5 min . Yield: 4 $\mathrm{mg}, 31 \%$, a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.63(3 \mathrm{H}, \mathrm{d}, J=6.5), 1.64(3 \mathrm{H}, \mathrm{d}, J=6.5), 4.21(2 \mathrm{H}, \mathrm{q}, J$ $=6.5), 4.37$ (1H, d, $J=11.2$), 4.39 (1H, d, $J=11.2$), 4.56 (1H, d, $J=11.2$), 4.61 (1H, $\mathrm{d}, J=11.2), 6.39(1 \mathrm{H}, \mathrm{d}, J=8.3), 6.53(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 7.05(1 \mathrm{H}, \mathrm{dt}, J=7.6$, $7.6,1.3), 7.12(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.1), 7.29(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.3), 7.43(1 \mathrm{H}, \mathrm{dd}, J=$ $7.7,1.3), 7.58(1 \mathrm{H}, \mathrm{d}, J=2.1), 7.60(1 \mathrm{H}, \mathrm{d}, J=8.2), 7.62(1 \mathrm{H}, \mathrm{d}, J=8.2)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 17.84 (q, 2C), 67.39 (t$), 67.93$ (t$), 68.64$ (d), 68.86 (d), 121.50 (s), 125.24 (d), 125.42 (d), 127.66 (d), 128.06 (d), 129.00 (d), 130.47 (d), 130.73 (d), 131.82 (d), 132.35 (d), 135.61 (s), 136.78 (s), 137.52 (s), 137.68 (s), 137.92 (s), 138.03 (s), 138.46 (s), 138.99 (s).

IR (CHCl_{3}): $3100 \mathrm{vw}, 3071 \mathrm{w}, 2982 \mathrm{~m}, 1604 \mathrm{vw}, 1593 \mathrm{w}, 1590 \mathrm{w}, 1575 \mathrm{w}, 1560 \mathrm{w}$, $1482 \mathrm{~m}, 1463 \mathrm{~m}, 1449 \mathrm{w}, 1424 \mathrm{~m}, 1403 \mathrm{vw}, 1377 \mathrm{~m}, 1364 \mathrm{~m}, 1308 \mathrm{vw}, 1157 \mathrm{w}$, 1130 w, 1109 w, 1087 vs, 1047 m, 949 w, 830 m, 822 w, 694 w, 493 vw, $418 \mathrm{w} \mathrm{cm}^{-1}$.

El MS: $422\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 50\right), 420\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 52\right), 407(54), 405$ (58), 391 (10), 389 (10), 377 (28), 375 (22), 361 (14), 347 (10), 308 (14), 296 (57), 280 (39), 268 (48), 253 (100), 239 (38), 226 (14), 202 (8), 189 (10), 178 (7), 165 (9), 141 (10), 126 (18), 86 (63), 84 (97), 43 (35).

HR EI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 420.0725$, found 420.0727 .

Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}+124\left(\mathrm{c} 0.102, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
($M, 3 S, 6 S$)-11,14-Dimethoxy-3,6-dimethyl-1,3,6,8-tetrahydrodibenzo[e,e']benzo [1,2-c:4,3-c']bisoxepine (M, S, S)-207

Triyne (S,S)-180 (70 mg, 0.174 mmol$)$, triphenylphosphine (91 mg , $0.347 \mathrm{mmol}, 2.0$ equiv.), dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) ($23 \mu \mathrm{l}, 0.174 \mathrm{mmol}, 1.0$ equiv.), THF (5 ml), reaction period: 10 min . Yield: $20 \mathrm{mg}, 29 \%$, white crystals. The single crystal was grown by solvent diffusion and evaporation from heptane-dichloromethane.
M.p.: $179-181^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.64(6 \mathrm{H}, \mathrm{d}, J=6.5), 3.36(6 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{q}, J=6.5)$, $4.36(2 \mathrm{H}, \mathrm{d}, J=11.4), 4.57(2 \mathrm{H}, \mathrm{d}, J=11.4), 6.08(2 \mathrm{H}, \mathrm{d}, J=2.7), 6.81(2 \mathrm{H}, \mathrm{dd}, J=$ $8.2,2.7), 7.32(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2), 7.60(2 \mathrm{H}, \mathrm{s})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 17.84 (q), 55.07 (q), 67.27 (t), 68.54 (d), 114.55 (d), 115.43 (d), 125.15 (d), 128.26 (s), 129.88 (d), 137.90 (s), 137.93 (s), 140.55 (s), 158.71 (s).

IR (CHCl_{3}): $3077 \mathrm{w}, 3028 \mathrm{w}, 2984 \mathrm{~s}, 2962 \mathrm{~m}, 2837 \mathrm{~m}, 1609 \mathrm{vs}, 1591 \mathrm{~m}, 1573 \mathrm{~m}$, 1559 w, 1498 s, 1466 s, 1455 m, 1431 m, 1376 m, 1319 s, 1289 vs, 1264 m, 1253 m, 1231 s, 1190 w, 1178 s, 1152 m, 1124 m, 1082 s, 1034 vs, 934 w, 863 m, 855 m, $689 \mathrm{vw} \mathrm{cm}^{-1}$.

ESI MS: $425\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na} 425.1723$, found 425.1721.
Optical rotation: $[\alpha]^{22}{ }_{D}-62^{\circ}\left(\mathrm{c} 0.215, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

1-lodo-2-\{[(1R)-1-methylprop-2-yn-1-yl]oxy\}benzene (R)-208

A solution of 2-iodophenol ($562 \mathrm{mg}, 2.55 \mathrm{mmol}$), triphenylphosphine ($669 \mathrm{mg}, 2.55 \mathrm{mmol}, 1.0$ equiv.), and (S)-111 ($200 \mu \mathrm{l}, 2.55 \mathrm{mmol}, 1.0$
equiv.) in THF (10 ml) in a Schlenk flask was cooled to $0{ }^{\circ} \mathrm{C}$ under argon and diisopropyl azodicarboxylate ($502 \mu \mathrm{l}, 2.55 \mathrm{mmol}, 1.0$ equiv.) was slowly added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , then left to warm up to room temperature and stirred overnight. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (hexane) to provide the product $(S)-208(646 \mathrm{mg}, 93 \%)$ as white crystals, which melt at room temperature.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.75(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0), 4.86(1 \mathrm{H}, \mathrm{dq}$, $J=6.6,6.6,6.6,2.0), 6.75(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.07(1 \mathrm{H}, \mathrm{dd}, J=8.2,1.3), 7.30$ (1H, ddd, J = 8.2, 7.3, 1.6), 7.78 (1H, dd, J = 7.8, 1.6).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 22.21 (q), 65.34 (d), 74.41 (d), 82.48 (s), 87.64 (s), 114.92 (d), 123.48 (d), 129.20 (d), 139.55 (d), 156.37 (s).

IR (CHCl_{3}): 3307 vs, $3086 \mathrm{vw}, 3067 \mathrm{w}, 2119 \mathrm{w}, 1582 \mathrm{~s}, 1571 \mathrm{~s}, 1470 \mathrm{vs}, 1453 \mathrm{~m}$, 1439 vs, 1377 s, 1328 s, 1286 s, 1277 vs, 1259 m, 1241 vs, 1164 m, $1129 \mathrm{~s}, 1091$ vs, $1047 \mathrm{~s}, 1036 \mathrm{~s}, 1019 \mathrm{vs}, 944 \mathrm{~s}, 923 \mathrm{~m}, 836 \mathrm{w}, 707 \mathrm{w}, 652 \mathrm{~s}, 643 \mathrm{~s}, 586 \mathrm{w}, 434 \mathrm{w}$ cm^{-1}.

El MS: 272 (${ }^{+\bullet}, 47$), 221 (9), 220 (100), 190 (10), 145 (10), 115 (12), 91 (14), 92 (14), 65 (16), 64 (16), 63 (16), 53 (5).

HR EI MS: calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{Ol} 271.9698$, found 271.9694.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}+60^{\circ}\left(\mathrm{c} 0.316, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[(3R)-3-(2-lodophenoxy)but-1-yn-1-yl][tris(1-methylethyl)]silane (R)-209

Lithium diisopropylamide was freshly prepared before the reaction: to a solution of diisopropylamine ($0.4 \mathrm{ml}, 2.84 \mathrm{mmol}$, 1.3 equiv.) in THF (5 ml) cooled to $0^{\circ} \mathrm{C}$ under argon a solution of n-BuLi (1.6 M in hexanes, $1.65 \mathrm{ml}, 2.64 \mathrm{mmol}, 1.2$ equiv.) was slowly added and stirred at $0^{\circ} \mathrm{C}$ for 1 h . A Schlenk flask filled with a solution of alkyne (R)-208 (590 $\mathrm{mg}, 2.16 \mathrm{mmol}$) and THF (5 ml) was cooled to $-82{ }^{\circ} \mathrm{C}$ under argon. The prepared LDA solution ($2.64 \mathrm{mmol}, 1.2$ equiv.) was slowly added to the alkyne and the reaction
mixture was stirred at $-80{ }^{\circ} \mathrm{C}$ for 1 h . Then triisopropylsilyl chloride ($460 \mu \mathrm{l}, 2.17$ mmol) was added dropwise and the reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . Then it was left to warm up to room temperature and stirred for another 1 h . The reaction was carefully quenched by adding ethanol (0.5 ml) and solvents were removed under reduced pressure. The residue was purified by chromatography on silica gel (hexane) to afford the desired product (R)-209 (823 mg, 89\%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.01(21 \mathrm{H}, \mathrm{s}), 1.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 4.88(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, 6.72 (1H, dt, $J=7.7,7.7,1.4$), 7.14 (1H, dd, $J=8.3,1.5$), 7.25 (1 H , ddd, $J=8.2,7.3$, 1.5), 7.76 ($1 \mathrm{H}, \mathrm{dd}, J=7.8,1.6$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.11 (d), 18.49 (q), 22.46 (q), 66.23 (d), 87.69 (s), 87.94 (), 106.09 (s), 115.75 (d), 123.32 (d), 129.00 (d), 139.31 (d), 156.62 (s).

IR (CHCl_{3}): 3066 w, $2959 \mathrm{~s}, 2945$ vs, $2892 \mathrm{~s}, 2867$ vs, $2169 \mathrm{w}, 1582 \mathrm{~m}, 1571 \mathrm{~m}$, 1470 vs, 1462 s, $1439 \mathrm{~s}, 1384 \mathrm{w}, 1375 \mathrm{~m}, 1327 \mathrm{~m}, 1285 \mathrm{~m}, 1277 \mathrm{~m}, 1258 \mathrm{w}, 1241 \mathrm{~s}$, 1163 w, 1132 s, $1091 \mathrm{~s}, 1075 \mathrm{~m}, 1046 \mathrm{~s}, 1019 \mathrm{~s}, 997 \mathrm{~m}, 950 \mathrm{~s}, 921 \mathrm{~m}, 884 \mathrm{~s}, 842$ $\mathrm{vw}, 679 \mathrm{~s}, 659 \mathrm{~s}, 583 \mathrm{~m}, 433 \mathrm{w} \mathrm{cm}{ }^{-1}$.

EI MS: 428 (M ${ }^{+\bullet}, 10$), 385 (23), 333 (20), 329 (10), 305 (10), 277 (15), 263 (12), 220 (14), 216 (30), 208 (55), 187 (15), 167 (25), 165 (100), 125 (30), 111 (30), 109 (25), 83 (20), 59 (20).

HR EI MS: calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}$ ISi 428.1032, found 428.1042.

Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}+43^{\circ}\left(\mathrm{c} 0.299, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Trimethyl\{[2-(\{(1R)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy) phenyl]ethynyl\}silane (R)-210

A Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) ($66.0 \mathrm{mg}, 0.094 \mathrm{mmol}, 5$ $\mathrm{mol} \%$) and copper iodide ($36.0 \mathrm{mg}, 0.187 \mathrm{mmol}, 10 \mathrm{~mol} \%$). The degassed solution of aryl iodide (R)-209 ($802 \mathrm{mg}, 1.87 \mathrm{mmol}$) in diisopropylamine (20 ml) and ethynyl(trimethyl)silane ($300 \mu \mathrm{l}, 2.20 \mathrm{mmol}, 1.2$ equiv.)
were added at room temperature under argon. After stirring at room temperature for 2 h, the reaction mixture was filtered through a sintered glass (hexane) and the solvents were removed in vacuo. The residue was purified by chromatography on silica gel (hexane) to obtain the product (R)-210 ($736 \mathrm{mg}, 99 \%$) as an off-white oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): 0.25(9 \mathrm{H}, \mathrm{s}), 1.01(21 \mathrm{H}, \mathrm{s}), 1.70(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 4.94$ ($1 \mathrm{H}, \mathrm{q}, J=6.6$), $6.92(1 \mathrm{H}, \mathrm{td}, J=7.5,7.5,1.2), 7.16(1 \mathrm{H}, \mathrm{dd}, J=8.3,1.0), 7.23(1 \mathrm{H}$, m), 7.41 (1H, dd, $J=7.6,1.6$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 0.01 (q), 11.13 (d), 18.50 (q), 22.41 (q), 66.17 (d), 87.21 (s), 98.49 (s), 101.42 (s), 106.57 (s), 114.39 (s), 116.75 (d), 121.60 (d), 129.44 (d), 133.50 (d), 158.89 (s).

IR (CHCl_{3}): $3076 \mathrm{vw}, 2961 \mathrm{~s}, 2945 \mathrm{~s}, 2867 \mathrm{~s}, 2157 \mathrm{~m}, 2110 \mathrm{vw}, 2067 \mathrm{w}, 1596 \mathrm{w}$, 1573 w, 1463 m, 1446 m, $1409 \mathrm{vw}, 1384$ w, 1374 w, 1328 w, 1289 w, 1261 m, 1250 s, 1163 w, 1131 m, 1075 w, 1042 m, 1018 w, 997 w, 951 m, 935 w, 884 s, 862 vs, 846 vs, 700 w, 679 m, 661 m, 594 w, $455 \mathrm{w} \mathrm{cm}^{-1}$.

EI MS: 398 (${ }^{+\bullet}, 6$), 355 (8), 313 (8), 271 (9), 190 (60), 175 (100), 159 (32), 125 (18), 111 (16), 109 (13), 95 (10), 83 (15), 73 (38), 59 (21).

HR EI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{OSi}_{2} 398.2461$, found 398.2466 .
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}+21^{\circ}\left(\mathrm{c} 0.267, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[(3R)-3-(2-Ethynylphenoxy)but-1-yn-1-yl][tris(1-methylethyl)]silane (R)-211

To a solution of silane (R)-210 ($710 \mathrm{mg}, 1.78 \mathrm{mmol}$) in dichloromethane (20 ml) at room temperature a freshly prepared solution of sodium methoxide ($1.84 \mathrm{mmol}, 1.0$ equiv.) in methanol (10 ml) was added and left stirring at room temperature for 30 min . The reaction mixture was filtered through a short pad of silica gel (dichloromethane) and solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to provide the alkyne product $(R)-211(502 \mathrm{mg}, 86 \%)$ as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.01(21 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.25(1 \mathrm{H}, \mathrm{s}), 4.93$ (1H, q, J = 6.6), $6.92(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.1), 7.18(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.1), 7.23-7.29$ (1H, m), $7.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.6,1.7)$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 11.10 (d), 18.47 (q), 22.37 (q), 65.76 (d), 80.08 (s) 81.00 (s), 87.45 (s), 106.31 (s), 112.85 (d), 115.66 (s), 121.29 (d), 129.67 (d), 133.94 (d), 158.89 (s).

IR (CHCl_{3}): $3307 \mathrm{~s}, 3078 \mathrm{w}, 3062 \mathrm{vw}, 2959 \mathrm{~s}, 2945 \mathrm{vs}, 2892 \mathrm{~s}, 2867 \mathrm{vs}, 2169 \mathrm{w}$, 2108 w, 1596 m, 1575 w, 1487 vs, 1463 s, 1446 s, 1384 w, 1375 w, 1326 m, 1288 m, 1268 w, 1246 vs, 1164 w, 1131 s, 1109 m, 1091 s, 1074 m, 1043 s, 1018 w, 997 m, $951 \mathrm{~s}, 937 \mathrm{~m}, 884 \mathrm{~s}, 650 \mathrm{~s}, 679 \mathrm{~s}, 660 \mathrm{~s}, 614 \mathrm{~m}, 592 \mathrm{~m}, 452 \mathrm{w} \mathrm{cm}^{-1}$.

EI MS: 326 (${ }^{+\bullet}, 3$), 311 (18), 283 (18), 241 (42), 225 (16), 213 (26), 199 (30), 165 (100), 137 (14), 125 (17), 109 (16), 95 (13), 83 (11), 59 (8).

HR EI MS: calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{OSi} 326.2066$, found 326.2061 .
Optical rotation: $[\alpha]^{22}{ }_{D}+39^{\circ}\left(\mathrm{c} 0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-iodo-1-\{[(1R)-1-methylprop-2-yn-1-yl]oxy\}benzene (R)-213

A solution of 4-bromo-2-iodophenol 212 ($522 \mathrm{mg}, 1.75 \mathrm{mmol}$), triphenylphosphine ($544 \mathrm{mg}, 2.07 \mathrm{mmol}, 1.2$ equiv.) and alcohol (S)-111 ($140 \mu \mathrm{l}, 1.78 \mathrm{mmol}, 1.0$ equiv.) in tetrahydrofuran (15 ml) was cooled to $0^{\circ} \mathrm{C}$ under argon in a Schlenk flask and diisopropyl azodicarboxylate ($350 \mu \mathrm{l}, 1.78 \mathrm{mmol}, 1.0$ equiv.) was slowly added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then left to warm up to room temperature while stirring continued for 1 h . The reaction was quenched with an excess of methyl iodide (3 ml) and the volatiles were evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (hexane) to provide product (R)-213 (592 mg, 96\%) as white crystals.
M.p.: $75-77^{\circ} \mathrm{C}$ (chloroform).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.74(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.51(1 \mathrm{H}, \mathrm{d}, J=2.0), 4.81(1 \mathrm{H}, \mathrm{qd}$, $J=6.6,6.6,6.6,2.0), 6.93(1 \mathrm{H}, \mathrm{d}, J=8.7), 7.40(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.4), 7.89(1 \mathrm{H}, \mathrm{d}, J$ $=2.4)$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 22.11 (q), 65.62 (d), 74.84 (d), 81.95 (s), 88.34 (s), 114.63 (s), 115.87 (d), 131.97 (d), 141.29 (d), 155.69 (s).

IR (CHCl_{3}): $3307 \mathrm{~s}, 3089 \mathrm{vw}, 3068 \mathrm{vw}, 2118 \mathrm{w}, 1572 \mathrm{~m}, 1561 \mathrm{~m}, 1464 \mathrm{vs}, 1412 \mathrm{w}$, 1377 s, 1328 m, 1277 vs, 1265 s, 1240 vs, 1151 m, 1127 m, 1090 vs, 1034 vs, 943 m, $875 \mathrm{~m}, 837 \mathrm{w}, 805 \mathrm{~m}, 702 \mathrm{w}, 642 \mathrm{~s}, 596 \mathrm{w}, 538 \mathrm{w}, 430 \mathrm{w} \mathrm{cm}{ }^{-1}$.

El MS: $352\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 20\right), 350\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 19\right), 300(98)$, 298 (100), 271 (10), 269 (10), 219 (22), 172 (10), 144 (15), 131 (18), 115 (16), 100 (5), 91 (5), 74 (5), 69 (28), 63 (25), 53 (16), 44 (7).

HR EI MS: calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}^{79} \mathrm{Brl} 349.8803$, found 349.8807.
Optical rotation: $[\alpha]^{22}{ }_{D}+72^{\circ}\left(\mathrm{c} 0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-2-iodo-1-\{[(1R)-1-methylprop-2-yn-1-yl]oxy\}benzene (R)-214

 Lithium diisopropylamide was freshly prepared before the reaction: To a solution of diisopropylamine ($300 \mu \mathrm{l}, 2.13 \mathrm{mmol}$, 1.3 equiv.) in tetrahydrofuran (5 ml) cooled to $0^{\circ} \mathrm{C}$ under argon a solution of n-BuLi (1.6 M in hexanes, $1.10 \mathrm{ml}, 1.76 \mathrm{mmol}, 1.1$ equiv.) was slowly added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . A Schlenk flask filled with a solution of alkyne (R)-213 ($561 \mathrm{mg}, 1.60 \mathrm{mmol}$) in THF (5 ml) was cooled to $78{ }^{\circ} \mathrm{C}$ under argon and the prepared LDA solution was slowly added. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . Then triisopropylsilyl chloride was added dropwise ($345 \mu \mathrm{l}, 1.61 \mathrm{mmol}, 1.0$ equiv.) and the reaction mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 1 h . It was left to warm up to room temperature and stirred at the same temperature for another 1 h . The reaction mixture was diluted with diethyl ether (100 ml) and extracted with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{ml})$, water (100 $\mathrm{ml})$ and brine (100 ml). The combined organic phases were dried over anhydrous MgSO_{4}. The solvents were removed under reduced pressure and the residue was
purified by chromatography on silica gel (hexane) to give product (R)-214 (698 mg , 86%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.01(21 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{d}, J=6.6), 4.83(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=6.6)$, $7.00(1 \mathrm{H}, \mathrm{d}, J=8.8), 7.36(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.4), 7.87(1 \mathrm{H}, \mathrm{d}, J=2.4)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): 11.08 (d), 18.48 (q), 22.39 (q), 66.56 (d), 88.35 (s), 88.65 (s), 105.49 (s), 114.44 (s), 116.61 (d), 131.72 (d), 141.08 (d), 155.98 (s).

IR (CHCl_{3}): $2959 \mathrm{~s}, 2945 \mathrm{~s}, 2867 \mathrm{~s}, 2169 \mathrm{w}, 1571 \mathrm{w}, 1561 \mathrm{w}, 1464 \mathrm{vs}, 1411 \mathrm{vw}$, 1388 w, 1377 m, 1327 m, 1278 m, 1265 w, 1240 s, 1150 w, 1133 m, 1090 m, 1076 w, 1043 m, $1032 \mathrm{~s}, 1019 \mathrm{w}, 997 \mathrm{w}, 950 \mathrm{~m}, 933 \mathrm{w}, 884 \mathrm{~m}, 875 \mathrm{~m}, 836 \mathrm{vw}, 809 \mathrm{w}, 704$ vw, $679 \mathrm{~s}, 664 \mathrm{~m}, 591 \mathrm{w}, 539 \mathrm{w}, 432 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

El MS: $508\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{81} \mathrm{Br}, 6\right), 506\left(\mathrm{M}^{+\cdot}\right.$, with $\left.{ }^{79} \mathrm{Br}, 6\right), 463$ (6), 461 (3), 434 (3), 431 (3), 413 (5), 411 (5), 385 (3), 383 (3), 357 (4), 355 (4), 342 (94), 298 (18), 265 (8), 253 (6), 208 (50), 165 (100), 153 (10), 139 (14), 125 (24), 111 (21), 96 (18), 83 (17), 73 (19), 59 (16).

HR EI MS: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}^{79} \mathrm{BrISi} 506.0138$, found 506.0133 .
Optical rotation: $[\alpha]^{22}{ }_{D}+68^{\circ}\left(\mathrm{c} 0.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
[(3R)-3-(2-\{[5-Bromo-2-(\{(1R)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1$\mathrm{yl}\} \mathrm{oxy}$)phenyl]ethynyl\} phenoxy)but-1-yn-1-yl][tris(1-methylethyl)]silane (R, R) 215

A Schlenk flask filled with tetrakis(triphenylphosphine)palladium(0) ($40.0 \mathrm{mg}, 0.035 \mathrm{mmol}, 5 \mathrm{~mol} \%$), copper iodide ($13.1 \mathrm{mg}, 0.069 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and diisopropylamine (3 ml) was cooled to $0{ }^{\circ} \mathrm{C}$ and a degassed solution of aryl iodide (R)214 ($357 \mathrm{mg}, 0.704 \mathrm{mmol}, 1.0$ equiv.) in diisopropylamine (10 ml) was added. To this mixture a degassed solution of alkyne $(R)-211(229 \mathrm{mg}, 0.702 \mathrm{mmol})$ in diisopropylamine (10 ml) was added dropwise and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and then at room temperature overnight. The reaction mixture was filtered through a short pad of silica gel (diethyl
ether), the solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane) to give product (R, R)-215 (483 mg, 98\%) as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.99-1.02 (42H, m), $1.73(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 1.74(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.6), 4.97(1 \mathrm{H}, \mathrm{q}, J=6.6), 4.99(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.96(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.1), 7.07$ (1H, d, $J=8.8$), 7.19 (1H, dd, $J=8.3,1.1$), 7.26 ($1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.4,1.7$), 7.33 (1H, $\mathrm{dd}, J=8.8,2.5), 7.47(1 \mathrm{H}, \mathrm{ddd}, J=7.5,1.7,0.4), 7.59(1 \mathrm{H}, \mathrm{d}, J=2.5)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.03 (d), 11.04 (d), 18.47 (q), 18.47 (q), 22.49 (q), 22.53 (q), 65.76 (d), 66.19 (d), 87.33 (s), 87.80 (s), 88.38 (s), 91.31 (s), 105.93 (s), 106.32 (s), 113.52 (s), 113.94 (s), 115.91 (d), 116.79 (s), 117.81 (d), 121.42 (d), 129.44 (d), 131.63 (d), 133.42 (d), 135.49 (d), 157.20 (s), 158.15 (s).

IR (CHCl_{3}): 3076 vw, 3010 w, 2960 s, 2945 vs, 2867 vs, 2219 vw, 2168 w, 1597 w, 1586 w, 1575 w, 1560 w, 1494 s, 1478 s, 1464 s, 1448 m, 1393 w, 1388 w, 1374 w, 1326 m, 1279 m, 1261 m, 1238 s, 1163 w, 1131 s, 1091 s, 1075 m, 1042 m, 1018 w, 997 m, 950 s, 937 m, 883 s, 863 w, 831 w, 805 w, $679 \mathrm{~s}, 661 \mathrm{~m}, 591 \mathrm{w}, 569 \mathrm{w} \mathrm{cm}{ }^{-1}$.

EI MS: $706\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 2\right), 704\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 1\right), 691$ (5), 689 (4), 663 (12), 661 (12), 619 (15), 582 (12), 539 (50), 497 (97), 495 (99), 455 (29), 453 (31), 411 (39), 373 (32), 331 (38), 290 (91), 288 (100), 259 (12), 208 (10), 181 (7), 167 (55), 157 (62), 139 (33), 125 (91), 111 (96), 97 (41), 83 (48), 73 (75), 59 (65).

HR EI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{O}_{2}{ }^{79} \mathrm{BrSi}_{2} 704.3080$, found 704.3087 .
Optical rotation: $[\alpha]^{22}{ }_{D}-64^{\circ}\left(\mathrm{c} 0.061, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

4-Bromo-1-\{[(1R)-1-methylprop-2-yn-1-yl]oxy\}-2-[(2-\{[(1R)-1-methylprop-2-yn-1yl]oxy\}phenyl)ethynyl]benzene (R, R)-216

To a solution of silane (R, R) - $215(465 \mathrm{mg}, 0.658 \mathrm{mmol})$ in THF (10 ml) in a Schlenk flask under argon a solution of tetrabutylammonium fluoride trihydrate ($423 \mathrm{mg}, 1.34 \mathrm{mmol}, 2.0$ equiv.) in THF (10 ml) was added and the reaction mixture was stirred at room temperature for 30 min . Then it was filtered through
a short pad of silica gel (diethyl ether) and the solvents were removed under reduced pressure. The residue was purified by flash chromatography on silica gel (hexaneethyl acetate 90:10) to afford product (R, R)-216 ($255 \mathrm{mg}, 98 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.74(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.75(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.49(2 \mathrm{H}, \mathrm{d}, J$ $=2.0$), 4.96 (1H, dq, $J=6.6,6.6,6.6,2.0$), 4.98 (1H, dq, $J=6.6,6.6,6.6,2.0), 7.00$ (1H, d, $J=8.8$), $7.00(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.1), 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.3,1.1), 7.31(1 \mathrm{H}$, ddd, $J=8.3,7.5,1.7$), 7.37 (1H, dd, $J=8.8,2.5$), $7.50(1 \mathrm{H}, \mathrm{dd}, J=7.6,1.7$), 7.62 (1H, d, J = 2.5).
${ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}): 22.18 (q), 22.24 (q), 64.93 (d), 65.32 (d), 74.19 (d), 74.51 (d), 82.36 (s), 82.72 (s), 88.37 (s), 91.22 (s), 113.80 (s), 113.92 (s), 115.32 (d), 116.71 (s), 117.28 (d), 121.71 (d), 129.66 (d), 131.92 (d), 133.61 (d), 135.71 (d), 156.85 (s), 157.86 (s).

IR (CHCl_{3}): $3307 \mathrm{~s}, 3076 \mathrm{vw}, 3064 \mathrm{vw}, 2219 \mathrm{w}, 2118 \mathrm{w}, 1598 \mathrm{w}, 1586 \mathrm{w}, 1575 \mathrm{w}$, 1561 w, 1494 vs, $1479 \mathrm{~s}, 1448 \mathrm{~m}, 1393 \mathrm{~m}, 1377 \mathrm{~m}, 1327 \mathrm{~m}, 1279 \mathrm{~s}, 1261 \mathrm{~m}, 1239$ vs, 1163 w, 1152 vw, 1130 s, 1113 m, 1100 m, 1091 vs, $1039 \mathrm{~s}, 944 \mathrm{~m}, 924 \mathrm{w}, 830$ w, $806 \mathrm{w}, 644 \mathrm{~s}, 572 \mathrm{vw} \mathrm{cm}^{-1}$.

El MS: $394\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 17\right), 392\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 17\right), 379(47), 377(51), 364$ (28), 362 (30), 341 (43), 339 (45), 325 (17), 297 (35), 287 (42), 260 (64), 245 (36), 231 (75), 218 (14), 208 (30), 202 (40), 189 (29), 180 (47), 163 (24), 152 (100), 133 (7), 126 (10), 99 (13), 71 (22), 57 (48), 53 (46), 51 (30).

HR EI MS: calculated for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 392.0412$, found 392.0408.
Optical rotation: $[\alpha]^{22}{ }_{D}-24^{\circ}\left(\mathrm{c} 0.184, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}phenyl)
ethynyl]benzene (R, R)-217 palladium(0) ($72.0 \mathrm{mg}, 0.062 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and copper iodide
($23.0 \mathrm{mg}, 0.125 \mathrm{mmol}, 20 \mathrm{~mol} \%$) under argon and diisopropylamine (5 ml) was added. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and stirred for 10 min , then a degassed solution of alkyne $(R, R)-216(245 \mathrm{mg}, 0.623 \mathrm{mmol})$ in diisopropylamine (20 ml) was slowly added over a period of 10 min . After stirring for 30 min at $0^{\circ} \mathrm{C}$, the solution was allowed to warm up to room temperature and left stirring for additional 30 min . Then the reaction mixture was filtered through a short pad of silica gel (diethyl ether) and the solvents were removed in vacuo. Flash chromatography on silica gel (hexane-diethyl ether 95:5) provided product (R, R)-217 (320 mg, 90\%) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.80(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.81(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.30(3 \mathrm{H}, \mathrm{bs})$, $2.31(3 \mathrm{H}, \mathrm{bs}), 5.15(1 \mathrm{H}, \mathrm{q}, J=6.6), 5.18(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.97(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5$, 1.1), 7.05-7.09 (2H, m), 7.05-7.09 (2H, m), $7.07(1 \mathrm{H}, \mathrm{d}, J=8.8), 7.20(1 \mathrm{H}, \mathrm{dd}, J=$ 8.3, 1.1), 7.24-7.26 (2H, m), 7.26 (1H, d, J=2.5), 7.26-7.27 (2H, m), 7.29 (1H, ddd, J $=8.3,7.4,1.7), 7.36(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.5), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.7,0.7)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 21.45 (q), 21.46 (q), 22.40 (q), 22.48 (q), 65.94 (d), 66.29 (d), 86.15 (s), 86.47 (s), 87.05 (s), 87.45 (s), 88.51 (s), 91.36 (s), 113.58 (s), 114.04 (s), 115.63 (d), 116.80 (s), 117.47 (d), 119.17 (s), 119.31 (s), 121.52 (d), 128.96 (d), 128.99 (d), 129.64 (d), 131.58 (d), 131.88 (d), 133.58 (d), 135.65 (d), 138.56 (s), 138.69 (s), 157.19 (s), 158.20 (s).

IR (CHCl_{3}): $3081 \mathrm{w}, 3057 \mathrm{vw}, 2236 \mathrm{w}, 2220 \mathrm{w}, 1609 \mathrm{w}, 1597 \mathrm{w}, 1585 \mathrm{~m}, 1574 \mathrm{w}$, 1563 w, 1510 vs, 1494 vs, 1478 vs, 1447 s, $1409 \mathrm{vw}, 1394 \mathrm{~m}, 1375 \mathrm{~m}, 1330 \mathrm{~s}, 1280$ s, $1259 \mathrm{~s}, 1237 \mathrm{vs}, 1180 \mathrm{vw}, 1163 \mathrm{w}, 1152 \mathrm{vw}, 1124 \mathrm{~s}, 1099 \mathrm{~m}, 1086 \mathrm{vs}, 1036 \mathrm{~s}$, 1020 m, 946 s, 928 w, 832 w, $819 \mathrm{vs}, 805 \mathrm{~m}, 708 \mathrm{vw}, 645 \mathrm{w}, 571 \mathrm{w}, 539 \mathrm{w}, 411 \mathrm{w}$ cm^{-1}.

EI MS: $574\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{81} \mathrm{Br}, 15\right), 572\left(\mathrm{M}^{+\bullet}\right.$, with $\left.{ }^{79} \mathrm{Br}, 14\right), 559$ (49), 557 (51), 544 (10), 542 (9), 428 (17), 430 (19), 417 (41), 415 (48), 401 (13), 399 (14), 290 (19), 288 (20), 143 (100), 128 (48), 115 (25), 89 (2).

HR EI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{O}_{2}{ }^{79} \mathrm{Br} 572.1351$, found 572.1360.
Optical rotation: $[\alpha]^{22}{ }_{D}-294^{\circ}\left(\mathrm{c} 0.327, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(M,2R,5R)-9-Bromo-2,5-dimethyl-3,4-bis(4-methylphenyl)-2,5-dihydrobenzo[1,2-

 c:4,3-c']dichromene (M, R, R)-103

By $\operatorname{CoCp}(C O)_{2}$, stoichiometric method: The Schlenk flask charged with triyne (R, R)-217 ($53.0 \mathrm{mg}, 0.092 \mathrm{mmol}$) and triphenylphosphine ($48.5 \mathrm{mg}, 0.185 \mathrm{mmol}, 2.0$ equiv.) was purged with argon. Decane (3.5 ml) was added and then a solution of dicarbonyl(η^{5}-cyclopentadienyl)cobalt($(1)(12.2 \mu \mathrm{l}, 0.092 \mathrm{mmol}, 1.0$ equiv.) in decane (0.5 ml). The reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ under simultaneous irradiation with a 500 W halogen lamp for 50 min . Then the mixture was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 90:10) to afford the desired product (M, R, R)-103 ($28.0 \mathrm{mg}, 53 \%$) as an oil.

By $\operatorname{CoCp}(C O)(f u m)$, stoichiometric method: A flame-dried microwave vial was charged with triyne $(R, R)-217 \quad(34.0 \mathrm{mg}, 0.059 \mathrm{mmol})$, carbonyl $\left(\eta^{5}-\right.$ cyclopentadienyl)(η^{2}-dimethylfumarate)cobalt(I) ($17.6 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.0$ equiv.) and triphenylphosphine ($31.1 \mathrm{mg}, 0.119 \mathrm{mmol}, 2.0$ equiv.) and dissolved in THF (3 $\mathrm{ml})$. The reaction mixture was heated at $180^{\circ} \mathrm{C}$ in a microwave reactor for 20 min . Then the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 99:1) to furnish the desired cyclic product (M, R, R)-103 ($22.5 \mathrm{mg}, 66 \%$) as a yellow oil.

By $\mathrm{Ni}(\mathbf{c o d})_{2}$, catalytic method: In a flame-dried Schlenk flask bis(cyclooctadiene)nickel(0) ($5.1 \mathrm{mg}, 0.019 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and triphenylphosphine $(9.8 \mathrm{mg}, 0.037 \mathrm{mmol}, 40 \mathrm{~mol} \%$) were dissolved in THF (1 ml). Then a solution of triyne (R, R) - 217 ($53 \mathrm{mg}, 0.093 \mathrm{mmol}$) in THF (1 ml) was added at room temperature and the reaction mixture was stirred overnight. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel ($0.015-0.040 \mathrm{~mm}$, hexane-diethyl ether 100:0 to $90: 10$) to provide product (M, R, R)-103 ($9.6 \mathrm{mg}, 18 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.88(3 \mathrm{H}, \mathrm{d}, J=6.7), 0.91(3 \mathrm{H}, \mathrm{d}, J=6.7), 2.22(6 \mathrm{H}, \mathrm{s})$, $5.15(1 \mathrm{H}, \mathrm{q}, J=6.7), 5.17(1 \mathrm{H}, \mathrm{q}, J=6.7), 6.78-6.82(2 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}, \mathrm{ddd}, J=7.9$, 7.3, 1.2), 6.92-6.95 (2H, m), 6.97 ($1 \mathrm{H}, \mathrm{d}, J=8.5$), 7.01 ($1 \mathrm{H}, \mathrm{ddd}, J=8.0,1.2,0.5$), 7.13-7.16 (2H, m), 7.17-7.20 (2H, m), $7.25(1 \mathrm{H}, \mathrm{ddd}, J=8.0,7.3,1.6), 7.34(1 \mathrm{H}, \mathrm{dd}, J$ $=8.5,2.4), 7.38(1 \mathrm{H}, \mathrm{ddt}, J=7.9,1.6,0.5,0.5), 7.48(1 \mathrm{H}, \mathrm{dd}, J=2.4,0.7)$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.48 (q), 18.57 (q), 21.10 (q), 21.11 (q), 73.33 (d), 73.73 (d), 113.60 (s), 120.23 (d), 121.78 (d), 121.99 (d), 123.51 (s), 124.42 (s), 126.13 (s), 126.24 (s), 129.38 (d), 129.39 (d), 129.54 (d), 129.87 (d), 130.52 (d), 131.61 (d), 131.69 (d), 132.11 (d), 132.61 (d), 135.56 (s), 135.59 (s), 137.12 (s), 137.13 (s), 138.32 (s), 138.95 (s), 139.86 (s), 140.18 (s), 153.56 (s), 154.52 (s).

IR (CHCl_{3}): $3082 \mathrm{w}, 3047 \mathrm{~m}, 3029 \mathrm{~m}, 2985 \mathrm{~s}, 2928 \mathrm{~s}, 2868 \mathrm{~m}, 1605 \mathrm{w}, 1584 \mathrm{w}, 1569$ vw, 1517 m, $1486 \mathrm{~m}, 1480 \mathrm{~s}, 1446 \mathrm{~m}, 1428 \mathrm{vs}, 1407 \mathrm{w}, 1379 \mathrm{w}, 1368 \mathrm{~m}, 1294 \mathrm{vw}$, $1183 \mathrm{w}, 1160 \mathrm{w}, 1122 \mathrm{w}, 1110 \mathrm{~m}, 1063 \mathrm{~s}, 1023 \mathrm{~m}, 1011 \mathrm{~m}, 838 \mathrm{~m}, 827 \mathrm{~m}, 813 \mathrm{w}$, $695 \mathrm{vw}, 572 \mathrm{vw} \mathrm{cm}^{-1}$.

El MS: $574\left(\mathrm{M}^{+}\right.$, with $\left.{ }^{81} \mathrm{Br}, 43\right), 572\left(\mathrm{M}^{+}\right.$, with $\left.{ }^{79} \mathrm{Br}, 43\right), 559$ (94), 557 (100), 544 (20), 542 (20), 513 (6), 479 (5), 463 (5), 419 (4), 239 (6).

HR EI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{2} \mathrm{O}_{29}{ }^{79} \mathrm{Br} 572.1351$, found 572.1355.
Optical rotation: $[\alpha]^{22}{ }_{D}-552^{\circ}\left(c 0.086, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

[(M,2R,5R)-2,5-dimethyl-3,4-bis(4-methylphenyl)-2,5-dihydrobenzo[1,2-c:4,3-c'] dichromen-9-yl](diphenyl)phosphane borane complex (M, R, R)-218

In a flame-dried Schlenk flask helicene (M, R, R)-103 (30.0 mg , 0.0523 mmol) was dissolved in diethyl ether (2 ml) and cooled to $-115{ }^{\circ} \mathrm{C}$ under argon. Then a solution of t-BuLi $(1.7 \mathrm{M}$ in pentane, $70 \mu \mathrm{l}, 0.112 \mathrm{mmol}, 2.1$ equiv.) was added so that the drops fell down on the glass wall of the Schlenk flask. The reaction mixture was stirred for 1 min at $-115{ }^{\circ} \mathrm{C}$ and then chlorodiphenylphosphine ($50 \mu \mathrm{l}, 0.27 \mathrm{mmol}, 5.2$ equiv.) was added dropwise. The reaction was left in a cooling bath to warm up slowly to $-80^{\circ} \mathrm{C}$ (over a period of 40 min) and then the Schenk was removed from the bath to warm up the reaction to room temperature. Then a solution of borane-THF complex (1 M in THF, $0.5 \mathrm{ml}, 0.5 \mathrm{mmol}, 9.6$ equiv.) was added and the reaction stirred at room temperature for 30 min . The reaction mixture was purified by filtration through a short pad of silica gel (hexane-diethyl ether 1:1) and the solvents were removed in vacuo. The residue was further purified by flash chromatography on silica
gel (0.015-0.040 mm, hexane-diethyl ether 98:2 to 90:10) to give product (M, R, R)218 ($35.6 \mathrm{mg}, 98 \%$) as an amorphous white material.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.86(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 0.93(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.25(3 \mathrm{H}, \mathrm{bs})$, $2.26(3 \mathrm{H}, \mathrm{bs}), 5.18(1 \mathrm{H}, \mathrm{q}, J=6.6), 5.30(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.41(1 \mathrm{H}, \mathrm{ddd}, J=7.8,7.3$, 1.2), 6.59-6.63 (2H, m), 6.83-6.87 (2H, m), 6.94 (1H, dd, $J=8.1,1.2$), 7.03 (1H, ddd, $J=8.1,7.3,1.6), 7.06-7.09(2 \mathrm{H}, \mathrm{m}), 7.10-7.12(2 \mathrm{H}, \mathrm{m}), 7.13(1 \mathrm{H}, \mathrm{dd}, J=8.3,2.3)$, $7.28(1 \mathrm{H}$, bdd, $J=7.8,1.6), 7.36-7.48(10 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{dd}, J=11.0,2.0), 7.57$ (1 H , ddd, $J=10.4,8.3,2.0$). The BH_{3} signal was very broad and thus was not measured.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 18.20 (q), 18.61 (q), 21.16 (q, 2C), 72.77 (d), 73.55 (d), 119.37 (d), 119.98 ($s, J_{P C}=61.1$), 120.24 (d, $J_{P C}=12.1$), 121.53 (d), 123.07 (s), 123.92 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=10.7$), 124.12 (s$), 125.55$ (s), 128.41 (d), 128.45 (d), 128.48 (d), 128.51 (d), 128.59 (d, 2C), 128.62 (d), 128.66 (d, $J_{P C}=3.5$), $128.84\left(d, J_{P C}=2.5\right)$, 129.12 (d), 130.18 ($s, J_{P C}=58.3$), 130.53 (d), 130.64 (d), 130.70 (d, $J_{\mathrm{PC}}=13.3$), $130.85\left(\mathrm{~d}, J_{\mathrm{PC}}=2.3\right), 131.13\left(\mathrm{~d}, J_{\mathrm{PC}}=2.3\right), 132.83\left(\mathrm{~d}, J_{\mathrm{PC}}=9.7\right), 133.46\left(\mathrm{~d}, J_{\mathrm{PC}}=\right.$ 9.7), 133.77 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=8.4$), 134.42 (s$), 134.46$ (s$), 136.18$ (s$), 136.22$ (s), 137.13 (s), 137.70 (s), 138.86 (s), 139.37 (), 153.33 (s), 156.16 ($s, J_{\mathrm{PC}}=2.5$).
${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 20.56 (s).
IR (CHCl_{3}): $3061 \mathrm{w}, 3061 \mathrm{w}, 2985 \mathrm{~m}, 2387 \mathrm{~m}, 2349 \mathrm{w}, 1603 \mathrm{w}, 1603 \mathrm{w}, 1595 \mathrm{~m}$, 1584 w, 1573 w, 1518 m, 1492 w, 1492 w, 1486 m, 1486 m, 1483s, 1446 m, 1438 s, 1430 m, $1405 \mathrm{vw}, 1377$ w, $1368 \mathrm{~m}, 1237 \mathrm{~m}, 1183 \mathrm{w}, 1162 \mathrm{w}, 1148 \mathrm{~s}, 1148 \mathrm{~s}, 1126$ m, 1107 s, 1107 s, 1107 s, 1086 s, 1073 m, 1062 vs, 1029 w, 1022 m, 1012 w, 1001 m, $947 \mathrm{w}, 840 \mathrm{~m}, 821 \mathrm{w}, 808 \mathrm{~m}, 703 \mathrm{~s}, 694 \mathrm{~s}, 694 \mathrm{~s}, 583 \mathrm{w}, 498 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.

El MS: $1408\left([2 \mathrm{M}+\mathrm{Na}]^{+}\right), 715\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR EI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{BNaP} 715.2908$, found 715.2909 .
Optical rotation: $[\alpha]^{22}{ }_{D}-43^{\circ}\left(c \quad 0.024, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

A mixture of phenol 219 ($426 \mathrm{mg}, 1.53 \mathrm{mmol}$), triphenylphosphine ($402 \mathrm{mg}, 1.53 \mathrm{mmol}, 1.0$ equiv.) and (S)111 ($120 \mu \mathrm{l}, 1.53 \mathrm{mmol}, 1.0$ equiv.) in THF (10 ml) was cooled to $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($300 \mu \mathrm{l}, 1.53 \mathrm{mmol}, 1.0$ equiv.) was slowly added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then left to warm up to room temperature while stirred overnight. The solvent was evaporated under the reduced pressure and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to $95: 5$) to provide product (R) - $\mathbf{2 2 0}$ ($433 \mathrm{mg}, 86 \%$) as white crystals.
M.p.: $104-107^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.78(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.53(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0), 3.89(3 \mathrm{H}, \mathrm{s})$, $4.93(1 \mathrm{H}, \mathrm{qd}, J=6.6,6.6,6.6,2.0), 7.05(1 \mathrm{H}, \mathrm{d}, J=8.7), 8.01(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.1)$, 8.47 (1H, d, J=2.2).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.04 (q), 52.11 (q), 65.21 (d), 75.05 (d), 81.61 (s), 86.38 (s), 112.88 (d), 124.96 (s), 131.22 (d), 141.09 (d), 159.74 (s), 165.45 (s).

IR (CHCl_{3}): $3307 \mathrm{~m}, 3073 \mathrm{vw}, 3029 \mathrm{w}, 2120 \mathrm{vw}, 1718 \mathrm{vs}, 1594 \mathrm{~s}, 1564 \mathrm{w}, 1485 \mathrm{~s}$, 1453 w, 1437 s, 1395 m, 1379 w, 1326 m, 1303 s, 1292 s, 1260 vs, 1235 m, 1152 m, $1120 \mathrm{~s}, 1090 \mathrm{~s}, 1040 \mathrm{~s}, 1030 \mathrm{~m}, 973 \mathrm{w}, 943 \mathrm{~m}, 911 \mathrm{w}, 854 \mathrm{vw}, 825 \mathrm{w}, 706 \mathrm{vw}, 683$ $\mathrm{m}, 645 \mathrm{~m}, 537 \mathrm{vw}, 434 \mathrm{w} \mathrm{cm}^{-1}$.

El MS: 330 ($\mathrm{M}^{+\bullet}, 34$), 315 (100), 278 (17), 247 (20), 189 (11), 188 (10), 128 (6), 115 (13), 63 (5).

HR EI MS: calculated for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3} \mathrm{I} 329.9753$, found 329.9763.
Optical rotation: $[\alpha]^{22}{ }_{\mathrm{D}}+95^{\circ}\left(\mathrm{c} 0.122, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 3-iodo-4-(\{(1R)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy) benzoate (R)-221

Lithium diisopropylamide was freshly prepared before the reaction: To a solution of diisopropylamine ($0.400 \mathrm{ml}, 2.84$ mmol, 2.2 equiv.) in THF (5 ml) cooled to $0^{\circ} \mathrm{C}$ under argon a solution of n-BuLi (1.6 M in hexanes, $0.950 \mathrm{ml}, 1.52 \mathrm{mmol}, 1.2$ equiv.) was slowly added and stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The prepared LDA solution was slowly added to a solution of the alkyne (R)-220 ($420 \mathrm{mg}, 1.27 \mathrm{mmol}$) in THF (5 ml), which was cooled to $-82{ }^{\circ} \mathrm{C}$ under argon in a Schlenk flask, and the reaction mixture was stirred at -80 ${ }^{\circ} \mathrm{C}$ for 1 h . Then triisopropylsilyl chloride ($275 \mu \mathrm{l}, 1.29 \mathrm{mmol}, 1.2$ equiv.) was added dropwise and the reaction mixture was stirred at $-80^{\circ} \mathrm{C}$ for 1 h . It was left to warm up to room temperature and stirred at this temperature for another 1 h . The reaction was carefully quenched by adding ethanol (1 ml) and the solvents were removed under the reduced pressure. The residue was purified by chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to give the desired product (R) - 221 (379 mg , 61%) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.00(21 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 3.89(3 \mathrm{H}, \mathrm{s}), 4.94$ (1H, q, $J=6.6$), 7.13 ($1 \mathrm{H}, \mathrm{d}, J=8.6$), 7.97 ($1 \mathrm{H}, \mathrm{dd}, J=8.6,2.2$), 8.45 ($1 \mathrm{H}, \mathrm{d}, J=2.2$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.05 (d), 18.47 (q), 22.29 (q), 52.07 (q), 66.08 (d), 86.54 (s), 88.65 (s), 105.12 (s), 113.49 (d), 124.73 (s), 130.99 (d), 140.94 (d), 160.04 (s), 165.56 (s).

IR (CHCl_{3}): $3307 \mathrm{vw}, 3073 \mathrm{vw}, 3031 \mathrm{w}, 2946$ vs, $2892 \mathrm{~s}, 2867$ vs, 2170 w , 1717 vs, 1593 vs, 1563 vs, 1485 s, 1463 s, 1437 vs, 1395 m, 1385 m, 1377 m, 1324 s, 1302 vs, 1292 vs, 1261 vs, 1151 m, 1119 vs, 1091 vs, 1075 m, 1040 vs, 997 m, 973 m, $949 \mathrm{vs}, 910 \mathrm{~m}, 884 \mathrm{~s}, 824 \mathrm{~m}, 681 \mathrm{~s}, 435 \mathrm{~m} \mathrm{~cm}^{-1}$.

EI MS: 486 (${ }^{+\bullet}, 6$), 443 (74), 391 (40), 363 (12), 335 (12), 278 (20), 273 (15), 247 (100), 209 (23), 208 (32), 167 (30), 165 (85), 125 (20), 111 (18), 96 (15), 83 (15), 73 (15), 59 (16).

HR EI MS: calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{3} \operatorname{ISi} 486.1087$, found 486.1094 .
Optical rotation: $[\alpha]^{22}{ }_{D}+63^{\circ}\left(\mathrm{c} 0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 4-(\{(1R)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy)-3-\{[2-(\{(1R)-1-methyl-3-[tris(1-methylethyl)silyl]prop-2-yn-1-yl\}oxy)phenyl]ethynyl\}benzoate (R, R)-222

A Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) ($45.7 \mathrm{mg}, 0.040 \mathrm{mmol}, 5$ mol\%), copper iodide ($14.7 \mathrm{mg}, 0.077 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and diisopropylamine (5 ml) and a degassed solution of aryl iodide (R)-221 ($359 \mathrm{mg}, 0.737 \mathrm{mmol}$) in diisopropylamine (5 ml) was added at room temperature under argon. To this mixture a degassed solution of alkyne (R)-211 ($244.1 \mathrm{mg}, 0.747 \mathrm{mmol}, 1.01$ equiv.) in diisopropylamine (5 ml) was added dropwise and the reaction mixture was stirred at room temperature for 1 h . Then the reaction mixture was filtered through a short pad of silica gel (hexaneethyl acetate $8: 2$), the solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 90:10) to give product (R, R)-222 ($480 \mathrm{mg}, 95 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.99-1.02 (42H, m), 1.76 (3H, d, $J=6.6$), 1.78 (3H, d, J = $6.6), 3.90(3 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{q}, J=6.6), 5.02(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.97(1 \mathrm{H}, \mathrm{dt}, J=7.5$, $7.5,1.2), 7.20(1 \mathrm{H}, \mathrm{bdd}, J=8.3,1.2), 7.22(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7), 7.26(1 \mathrm{H}, \mathrm{ddd}, J=8.3$, $7.3,1.7$), 7.5 (1H, ddd, $J=7.6,1.7,0.4$), 7.94 (1H, dd, $J=8.7,2.2$), 8.19 (1H, d, J = 2.2).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.01 (d), 11.05 (d), 18.47 (2 x q), 22.39 (d), 22.57 (q), 52.02 (q), 65.74 (d), 65.85 (d), 87.30 (s), 88.20 (s), 88.85 (s), 90.64 (s), 105.47 (s), 106.40 (s), 114.05 (d), 114.10 (s), 114.17 (s), 116.09 (d), 121.47 (d), 122.93 (s), 129.31 (d), 130.74 (d), 133.46 (d), 135.02 (d), 158.15 (s), 161.38 (s), 166.40 (s).

IR (CHCl_{3}): $3077 \mathrm{vw}, 3030 \mathrm{w}, 2960 \mathrm{~s}, 2945 \mathrm{~s}, 2867 \mathrm{~s}, 2214 \mathrm{vw}, 2169 \mathrm{w}, 1716 \mathrm{~s}$, 1602 m, 1595 m, 1577 w, 1498 m, 1487 m, 1463 m, 1448 m, 1438 s, 1410 w, 1384 w, 1375 w, 1321 s, 1290 m, 1277 m, 1253 vs, 1235 s, 1163 w, 1131 s, 1112 m, 1091 s, 1075 s, 1043 m, 1019 w, 997 m, 950 s, 935 m, 919 m, 883 s, 827 w, 679 s, 666 m, $591 \mathrm{vw} \mathrm{cm}^{-1}$.

El MS: 684 (M${ }^{+\bullet}, 3$), 669 (20), 641 (24), 597 (28), 555 (3), 527 (5), 495 (7), 475 (100), 453 (10), 433 (52), 417 (5), 401 (11), 391 (28), 389 (25), 373 (8), 359 (12), 347 (17),

337 (14), 309 (41), 287 (37), 268 (70), 237 (30), 208 (12), 167 (33), 139 (22), 125 (68), 111 (73), 97 (43), 83 (48), 73 (58), 59 (60).

HR EI MS: calculated for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{Si}_{2} 684.4030$, found 684.4031.
Optical rotation: $[\alpha]^{22}{ }_{D}-69^{\circ}\left(\mathrm{c} 0.89, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 4-\{[(1R)-1-methylprop-2-yn-1-yl]oxy\}-3-[(2-\{[(1R)-1-methylprop-2-yn-1yl]oxy\}phenyl)ethynyl]benzoate (R, R)-223

In a Schlenk flask a solution of tetrabutylammonium fluoride trihydrate ($191 \mathrm{mg}, 0.604 \mathrm{mmol}, 2.0$ equiv.) in THF (2 ml) a solution of silane $(R, R)-222(207 \mathrm{mg}, 0.302 \mathrm{mmol})$ in THF (5 ml) was added under argon. The reaction mixture was stirred at room temperature for 30 min . Then it was filtered through a short pad of silica gel (ethyl acetate) and the solvents were removed under the reduced pressure. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate $90: 10$) to give product (R, R) - 223 (102 mg, 91\%) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.76(3 \mathrm{H}, \mathrm{d}, J=6.6), 1.78(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.50(1 \mathrm{H}, \mathrm{d}, J$ $=2.0), 2.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0), 3.90(3 \mathrm{H}, \mathrm{s}), 5.01(1 \mathrm{H}, \mathrm{dq}, J=6.6,6.6,6.6,2.0), 5.03$ (1H, dq, $J=6.6,6.6,6.6,2.0), 7.01$ (1H, dt, $J=7.7,7.7,1.1$), 7.14 (1H, dd, $J=8.3$, 1.1), 7.14 (1H, d, $J=8.7$), 7.31 (1H, ddd, $J=8.3,7.6,1.7$), 7.52 (1 H, bdd, $J=7.8$, $1.7), 7.98(1 \mathrm{H}, \mathrm{dd}, J=8.7,2.2), 8.21(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.2)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.12 (q), 22.28 (q), 52.06 (q), 64.64 (d), 65.05 (d), 74.75 (2x d), 81.98 (s), 82.81 (s), 88.86 (s), 90.56 (s), 113.64 (d), 114.14 (s), 114.21 (s), 115.55 (d), 121.77 (d), 123.27 (s), 129.53 (d), 130.98 (d), 133.67 (d), 135.21 (d), 157.86 (s), 161.02 (s), 166.26 (s).

IR (CHCl_{3}): $3307 \mathrm{~s}, 3077 \mathrm{vw}, 3028 \mathrm{w}, 2954 \mathrm{w}, 2213 \mathrm{vw}, 2119 \mathrm{vw}, 1717 \mathrm{~s}, 1602 \mathrm{~m}$, 1595 m, 1577 w, 1498 m, 1488 m, 1447 m, 1439 s, 1410 w, 1377 w, 1321 s, 1290 m, 1277 s, 1253 vs, 1235 s, 1163 w, 1130 s, 1112 m, 1091 s, 1038 s, 944 m, 924 w, 828 $\mathrm{w}, 644 \mathrm{~m} \mathrm{~cm}^{-1}$.

EI MS: 372 (${ }^{+\bullet}, 22$), 357 (100), 342 (48), 329 (8), 319 (74), 313 (13), 305 (30), 298 (7), 287 (14), 268 (14), 260 (31), 259 (30), 245 (15), 231 (39), 218 (13), 208 (23), 202 (20), 181 (20), 180 (33), 179 (33), 168 (16), 165 (11), 152 (48), 149 (37), 139 (10), 126 (6), 97 (4), 71 (3), 69 (3), 57 (9), 53 (20).

HR EI MS: calculated for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{O}_{4} 372.1362$, found 372.1355 .
Optical rotation: $[\alpha]^{22}{ }_{D}-31^{\circ}\left(\mathrm{c} 0.082, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl 4-\{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}-3-[(2-\{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}phenyl)ethynyl]benzoate $\quad(R, R)$ 224

A flame-dried Schlenk flask was charged with p-iodotoluene ($118 \mathrm{mg}, \quad 0.541 \mathrm{mmol}, 2.2$ equiv.), tetrakis(triphenylphosphine)palladium(0) ($30.0 \mathrm{mg}, 0.025 \mathrm{mmol}, 10$ mol\%), copper iodide ($12.2 \mathrm{mg}, 0.064 \mathrm{mmol}, 26 \mathrm{~mol} \%$) and diisopropylamine (5 ml) at room temperature under argon. The reaction mixture was stirred for 5 min and then a degassed solution of alkyne (R, R)-223 ($92 \mathrm{mg}, 0.247 \mathrm{mmol}$) in diisopropylamine (5 ml) was slowly added over a period of 10 min . After stirring at room temperature for 1 h, the reaction mixture was filtered through a short pad of silica gel (diethyl ether) and the solvents were removed in vacuo. Flash chromatography on silica gel (hexaneethyl acetate 95:5) provided product (R, R)-224 ($125 \mathrm{mg}, 95 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.85(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 1.86(3 \mathrm{H}, \mathrm{d}, J=6.6), 2.31(3 \mathrm{H}, \mathrm{bs})$, $2.32(3 \mathrm{H}, \mathrm{bs}), 3.89(3 \mathrm{H}, \mathrm{s}), 5.21(1 \mathrm{H}, \mathrm{q}, J=6.6), 5.23(1 \mathrm{H}, \mathrm{q}, J=6.6), 6.99(1 \mathrm{H}, \mathrm{dt}, J$ $=7.5,7.5,1.2), 7.06-7.08(2 \mathrm{H}, \mathrm{m}), 7.08-7.10(2 \mathrm{H}, \mathrm{m}), 7.22(1 \mathrm{H}, \mathrm{bdd}, J=8.4,1.2)$, $7.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8), 7.26-7.27(2 \mathrm{H}, \mathrm{m}), 7.27-7.29(2 \mathrm{H}, \mathrm{m}), 7.30(1 \mathrm{H}, \mathrm{ddd}, J=8.4$, $7.4,1.7$), 7.54 (1H, ddd, $J=7.6,1.7,0.3$), $7.99(1 \mathrm{H}, \mathrm{dd}, J=8.8,2.2), 8.22(1 \mathrm{H}, \mathrm{d}, J=$ 2.2).
${ }^{13}$ C NMR (151 MHz, CDCl_{3}): 21.45 (q), 21.46 (q), 22.33 (q), 22.50 (q), 52.01 (q), 65.57 (d), 65.99 (d), 86.12 (s), 86.63 (s), 86.68 (s), 87.53 (s), 88.98 (s), 90.69 (s), 113.78 (d), 114.14 (s), 114.27 (s), 115.78 (d), 119.36 (s), 121.56 (d), 123.00 (s),
128.94 (d), 129.00 (d), 129.51 (d), 130.97 (d), 131.57 (d), 131.60 (d), 133.63 (d), 135.16 (d), 138.53 (s), 138.79 (s), 158.17 (s), 161.38 (s), 166.36 (s), 199.00 (s).

IR (CHCl_{3}): $3081 \mathrm{vw}, 3060 \mathrm{vw}, 3031 \mathrm{w}, 2955 \mathrm{~m}, 2235 \mathrm{w}, 2212 \mathrm{vw}, 1716 \mathrm{~s}, 1602 \mathrm{~m}$, 1595 m, 1576 w, 1510 m, 1497 m, 1487 m, 1448 m, 1439 m, 1409 w, 1376 w, 1321 m, 1290 m, 1278 m, 1252 vs, 1235 s, 1181 w, 1163 w, 1110 m, 1085 s, 1036 m, 1024 m, 1020 w, 983 vw, 946 m, 919 w, 819 m, 707 w, $542 \mathrm{~m} \mathrm{~cm}^{-1}$.

EI MS: 552 (M$\left.{ }^{+\bullet}, 60\right), 537$ (100), 522 (13), 493 (10), 461 (7), 431 (5), 410 (17), 395 (52), 379 (10), 363 (8), 350 (5), 335 (8), 319 (6), 277 (11), 268 (15), 237 (28), 209 (5), 181 (8), 142 (3), 114 (2), 59 (5).

HR EI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{4} 552.2301$, found 552.2298 .
Optical rotation: $[\alpha]^{22}{ }_{D}-217^{\circ}\left(\mathrm{c} 0.211, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Methyl (2R,5R)-2,5-dimethyl-3,4-bis(4-methylphenyl)-2,5-dihydrobenzo[1,2-

 c:4,3-c']dichromene-9-carboxylate (M, R, R)-105

By $\operatorname{CoCp}(C O)_{2}$, catalytic method using halogen lamp:
A Schlenk flask charged with triyne (R, R) - $224(69 \mathrm{mg}, 0.125$ mmol) and triphenylphosphine ($6.6 \mathrm{mg}, 0.025 \mathrm{mmol}, 0.2$ equiv.) was purged with argon. Decane (3.5 ml) was added and then a solution of dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) ($1.7 \mu \mathrm{l}, 0.012 \mathrm{mmol}, 0.1$ equiv.) in decane (1.5 ml). The reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ under simultaneous irradiation with a 500 W halogen lamp for 1 h . Then the mixture was subjected to column chromatography on silica gel (hexane-diethyl ether 100:0 to $95: 5)$ to afford the desired product $(M, R, R)-105(50 \mathrm{mg}, 72 \%)$ as a yellow solid.

By $\operatorname{CoCp}(C O)_{2}$, stoichiometric method using halogen lamp: A Schlenk flask charged with triyne $(R, R)-224(57.0 \mathrm{mg}, 0.103 \mathrm{mmol})$ and triphenylphosphine (54.0 $\mathrm{mg}, 0.206 \mathrm{mmol}, 2.0$ equiv.) was purged with argon. Decane (3.5 ml) was added and then a solution of dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) $(13.7 \mu \mathrm{l}, 0.103 \mathrm{mmol}, 1.0$ equiv.) in decane (1.5 ml). The reaction mixture was heated at $140{ }^{\circ} \mathrm{C}$ under simultaneous irradiation with a 500 W halogen lamp for 1 h . Then the mixture was
purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 90:1) to afford the desired product (M, R, R)-105 ($39.0 \mathrm{mg}, 68 \%$) as a yellow solid.

By $\operatorname{CoCp}(\mathrm{CO})_{2}$, catalytic method with microwave irradiation: A flame-dried microwave vial charged with triyne (R, R)-224 ($50.0 \mathrm{mg}, 0.091 \mathrm{mmol}$) and triphenylphosphine ($10.5 \mathrm{mg}, 0.04 \mathrm{mmol}, 44 \mathrm{~mol} \%$) was purged with argon. THF (3 ml) and dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) ($3 \mu \mathrm{l}, 0.02 \mathrm{mmol}, 22 \mathrm{~mol} \%$) were added. The reaction mixture was heated in a microwave reactor at $140^{\circ} \mathrm{C}$ for 30 min . Then the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to afford the desired product (M, R, R)-105 ($43.0 \mathrm{mg}, 81 \%$) as a yellow solid.

By $\mathrm{Ni}(\mathrm{cod})_{2}$, catalytic method: In a flame-dried Schlenk flask bis(cyclooctadiene)nickel(0) ($6.1 \mathrm{mg}, 0.022 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and triphenylphosphine ($11.4 \mathrm{mg}, 0.043 \mathrm{mmol}, 40 \mathrm{~mol} \%$) were dissolved in THF (1 ml). Then a solution of triyne $(R, R)-224$ ($60 \mathrm{mg}, 0.109 \mathrm{mmol}$) in THF (1.5 ml) was added at room temperature and the reaction mixture was stirred overnight. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 80:20) to provide product (M, R, R)-105 ($35.4 \mathrm{mg}, 59 \%$) as a yellow oil.
M.p.: $111-113^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR (600 MHz , d6-acetone, $\mathrm{rfp}=2.09 \mathrm{ppm}$): $0.95(3 \mathrm{H}, \mathrm{d}, J=6.7), 0.98(3 \mathrm{H}, \mathrm{d}, J=$ $6.7), 2.29(6 \mathrm{H}, \mathrm{bs}), 3.77(3 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{q}, J=6.7), 5.30(1 \mathrm{H}, \mathrm{q}, J=6.7), 6.83(1 \mathrm{H}$, ddd, $J=7.9,7.3,1.3), 6.85-6.89(2 H, m), 6.99-7.02(2 H, m), 7.08(1 H, d d d, J=8.0$, $1.3,0.3), 7.15(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.4,0.3), 7.21-7.23(2 \mathrm{H}, \mathrm{m}), 7.25-7.28(2 \mathrm{H}, \mathrm{m}), 7.28(1 \mathrm{H}$, ddd, $J=8.0,7.3,1.6$), $7.37(1 \mathrm{H}, \mathrm{ddt}, J=7.9,1.6,0.5,0.5), 7.91$ ($1 \mathrm{H}, \mathrm{dd}, J=8.4,2.1$), $8.18(1 \mathrm{H}, \mathrm{dt}, J=2.1,0.5,0.5)$.

[^3]IR (CHCl_{3}): $3081 \mathrm{w}, 1714 \mathrm{vs}, 1605 \mathrm{~m}, 1585 \mathrm{~m}, 1518 \mathrm{~m}, 1486 \mathrm{~m}, 1443 \mathrm{~m}, 1433 \mathrm{~s}$, 1423 m, 1406 vw, 1380 w, 1368 m, 1333 m, 1258 vs, 1184 w, 1160 w, 1125 m, 1115 $\mathrm{s}, 1062 \mathrm{~s}, 1022 \mathrm{~m}, 836 \mathrm{~m} \mathrm{~cm}^{-1}$.

El MS: 552 ($\mathrm{M}^{+\bullet}, 41$), 537 (100), 522 (14), 493 (16), 479 (8), 463 (5), 435 (4), 419 (4), 395 (3), 371 (2), 343 (2), 313 (2), 261 (2), 253 (2), 245 (2), 191 (1).

HR EI MS: calculated for $\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{O}_{4} 552.2301$, found 552.2305 .
Optical rotation: $[\alpha]^{22}{ }_{D}-601^{\circ}\left(\mathrm{c} 0.211, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-lodo-N,N-dimethylpyridin-4-amine 225

In a flame-dried Schlenk flask 4-(dimethylamino)pyridine (203 mg, 1.66 mmol) was dissolved in THF (4 ml) and cooled to $0^{\circ} \mathrm{C}$. Boron trifluoride diethyl etherate ($220 \mu \mathrm{l}, 1.78 \mathrm{mmol}, 1.1$ equiv.) was added and the solution was stirred at $0^{\circ} \mathrm{C}$ for 40 min . In another flame-dried Schlenk flask a solution of 2,2,6,6-tetramethylpiperidine ($330 \mu \mathrm{l}, 1.96 \mathrm{mmol}$, 1.2 equiv.) in THF (3 ml) at $-78{ }^{\circ} \mathrm{C}$ was treated with a solution of $n-B u L i(1.6 \mathrm{M}$ in hexanes, $1.2 \mathrm{ml}, 1.92 \mathrm{mmol}, 1.15$ equiv.) and then warmed to room temperature over ca 20 min . The DMAP-BF ${ }_{3}$ adduct solution in the first flask was cooled down to $-78^{\circ} \mathrm{C}$ and the solution of TMP-Li from the second flask was added to it via a cannula over a period of 5 min with a vigorous stirring. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 45 min . A solution of iodine ($623 \mathrm{mg}, 2.45 \mathrm{mmol}, 1.47$ equiv.) in THF (1 ml) was added to the reaction mixture and it was stirred at $-78^{\circ} \mathrm{C}$ for 1 h . Then it was allowed to warm up to room temperature. The reaction mixture was diluted with diethyl ether (100 ml) and was washed with a saturated aqueous solution of $\mathrm{Na}_{\mathrm{a}} \mathrm{S}_{2} \mathrm{O}_{3}(1 \times 100 \mathrm{ml})$ and then water (2 $x 100 \mathrm{ml})$. The combined organic phases were dried over anhydrous MgSO_{4}. The volatiles were removed in vacuo, the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate gradient 90:10 to 70:30) to provide product 225 ($320 \mathrm{mg}, 78 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{218}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.98(6 \mathrm{H}, \mathrm{s}), 6.45(1 \mathrm{H}, \mathrm{dd}, J=2.5,6.0), 6.90(1 \mathrm{H}, \mathrm{d}, J=$ 2.5), 7.91 (1H, d, J = 6.0).

ESI: $249\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
(2S)-4-[4-(Dimethylamino)pyridin-2-yl]but-3-yn-2-ol (S)-226

A flame-dried Schlenk flask was charged with tetrakis(triphenylphosphine)palladium(0) (75.1 mg, $0.065 \mathrm{mmol}, 5$ mol\%), copper iodide ($24.7 \mathrm{mg}, 0.13 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and diisopropylamine (5 ml) was added under argon. Then a degassed solution of 225 ($320 \mathrm{mg}, 1.29 \mathrm{mmol}$) in diisopropylamine (5 ml) was added dropwise at room temperature. After stirring for $2 \mathrm{~min}(S)-111(110 \mu \mathrm{l}, 98.3 \mathrm{mg}, 1.40 \mathrm{mmol}$, 1.08 equiv.) was added to the reaction mixture and it was stirred at room temperature for 1 h . Then solvents were removed in vacuo and the residue was purified by chromatography on silica gel (hexane-ethyl acetate-ethanol 45:45:10). It was further purified by recrystallisation (acetone) to provide the product (S)-226 (219 mg, 89\%) as white crystals.
M.p.: $130-132{ }^{\circ} \mathrm{C}$ (acetone).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=2.09$): 1.49 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6$), $3.05(6 \mathrm{H}, \mathrm{s}), 4.71$ (1H, q, $J=6.6$), $4.60(1 \mathrm{H}, \mathrm{bs}), 6.59(1 \mathrm{H}, \mathrm{dd}, J=6.0,2.7), 6.71(1 \mathrm{H}, \mathrm{dd}, J=2.7,0.6)$, 8.12 ($1 \mathrm{H}, \mathrm{dd}, J=6.0,0.6$).
${ }^{13}$ C NMR (151 MHz, d_{6}-acetone, $\mathrm{rfp}=29.8$): 24.79 (q), 39.10 (q), 58.21 (d), 84.32 (s), 90.44 (s), 106.80 (d), 110.45 (d), 143.99 (s), 150.42 (d), 155.13 (s).

IR (CHCl_{3}): $3601 \mathrm{w}, 3100 \mathrm{w}, 3094 \mathrm{w}, 2987 \mathrm{~m}, 2821 \mathrm{w}, 2237 \mathrm{vw}, 1597 \mathrm{vs}, 1540 \mathrm{~s}$, $1505 \mathrm{~m}, 1450 \mathrm{~m}, 1428 \mathrm{~m}, 1415 \mathrm{w}, 1376 \mathrm{~s}, 1329 \mathrm{~m}, 1295 \mathrm{~m}, 1167 \mathrm{~m}, 1128 \mathrm{w}, 1106$ m, $1075 \mathrm{~m}, 1066 \mathrm{~m}, 1048 \mathrm{~m}, 997 \mathrm{~s}, 936 \mathrm{w}, 811 \mathrm{~m} \mathrm{~cm}^{-1}$.

ESI MS: $402\left([2 \mathrm{M}-\mathrm{H}+\mathrm{Na}]^{+}\right), 191\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ON}_{2}$ 191.1179, found 191.1180.
Optical rotation: $[\alpha]^{22}{ }_{D}-30^{\circ}\left(c 0.240, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-[(Trimethylsilyl)ethynyl]phenol 227

A Schlenk flask was charged with 2-iodophenol ($150 \mathrm{mg}, 0.680 \mathrm{mmol}$), tetrakis(triphenylphosphine)palladium(0) ($31 \mathrm{mg}, 0.027 \mathrm{mmol}, 4 \mathrm{~mol} \%$) and copper iodide ($11.7 \mathrm{mg}, 0.061 \mathrm{mmol}, 9 \mathrm{~mol} \%$) and then it was flushed with argon. Benzene (3.5 ml) and diisopropylamine ($144 \mu \mathrm{l}, 1.02 \mathrm{mmol}, 1.5$ equiv.) were added and the reaction mixture was degassed 3 times. The mixture was then stirred for 10 min, ethynyl(trimethyl)silane ($142 \mu \mathrm{l}, 1.02 \mathrm{mmol}, 1.5$ equiv.) was added and the mixture was stirred at room temperature for 3 h . The organic solvents were evaporated in vacuo. The residue was purified by chromatography on silica gel (hexane-ethyl acetate 10:1) to afford the desired product 227 ($127 \mathrm{mg}, 98 \%$) as an oil.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were in agreement with the published data. ${ }^{219,} 220$

Trimethyl[(2-\{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}phenyl)ethynyl]silane (R)-228

A dry Schlenk flask was charged with 2[(trimethylsilyl)ethynyl]phenol $227 \quad(87.0 \quad \mathrm{mg}, \quad 0.460 \mathrm{mmol})$, triphenylphosphine ($131 \mathrm{mg}, 0.500 \mathrm{mmol}, 1.1$ equiv.), alcohol (S)145 ($88 \mathrm{mg}, 0.550 \mathrm{mmol}, 1.2$ equiv.), and dry benzene (4.5 ml) was added under argon. Diethyl azodicarboxylate ($86 \mu \mathrm{l}, 0.550 \mathrm{mmol}, 1.2$ equiv.) was added dropwise over a period of 5 min . The reaction mixture was stirred at room temperature for 3 h . The precipitated diethyl 1,2-hydrazinedicarboxylate was filtered off through a paper filter and the organic solvent was evaporated in vacuo. The residue was purified by chromatography on silica gel (hexane-ethyl acetate 50:1) to afford the desired product (R)-228 (114 $\mathrm{mg}, 75 \%)$ as oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.26(9 \mathrm{H}, \mathrm{s}), 1.77(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.33(3 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}$, q, $J=6.5), 6.94(1 \mathrm{H}, \mathrm{td}, J=7.5,7.5,1.1), 7.09(2 \mathrm{H}, \mathrm{d}, J=7.9), 7.18(1 \mathrm{H}, \mathrm{dd}, J=7.9$, 0.9), 7.24-7.23 (3H, m), 7.43 ($1 \mathrm{H}, \mathrm{dd}, J=7.6,1.6$).

[^4]IR (CHCl_{3}): 3077 w, $3057 \mathrm{vw}, 2962 \mathrm{~m}, 2900 \mathrm{w}, 2236 \mathrm{w}, 2157 \mathrm{~m}, 1609 \mathrm{vw}, 1596 \mathrm{w}$, 1574 w, 1510 s, 1486 s, 1446 s, 1409 w, 1375 w, 1332 m, 1290 m, 1281 w, 1260 m, 1250 vs, 1181 vw, 1164 w, 1121 m, 1110 m, 1086 s, 1036 m, 1020 w, 947 m, 929 w, 863 vs, 845 vs, $819 \mathrm{~s}, 720 \mathrm{vw}, 700 \mathrm{w}, 645 \mathrm{w}, 536 \mathrm{w}, 416 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

El MS: 332 (${ }^{+\bullet}, 7$), 317 (18), 259 (6), 190 (12), 175 (48), 159 (30), 143 (100), 128 (50), 115 (42), 73 (12).

HR EI MS: calculated for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{OSi} 332.1596$, found 332.1594.
Optical rotation: $[\alpha]^{22}{ }_{D}-25^{\circ}\left(\mathrm{c} 0.21, \mathrm{CHCl}_{3}\right)$.

1-Ethynyl-2-\{[(1R)-1-methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}benzene (R)229

To a solution of trimethylsilyl derivative (R)-228 (110 mg, 0.330 mmol) in methanol (3 ml) anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(91 \mathrm{mg}, 0.660 \mathrm{mmol}$, 2.0 equiv.) was added in one portion. The reaction mixture was stirred at room temperature for 1.5 h . Then it was diluted with water (20 ml), extracted with diethyl ether ($3 \times 15 \mathrm{ml}$) and the combined organic portions were dried over anhydrous MgSO_{4}. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel (hexane-ethyl acetate $50: 1$) to give the product (R)229 ($71 \mathrm{mg}, 83 \%$) as a colourless oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.79(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.6), 2.32(3 \mathrm{H}, \mathrm{s}), 3.27(1 \mathrm{H}, \mathrm{s}), 5.12(1 \mathrm{H}$, q, $J=6.6$), $6.94(1 \mathrm{H}, \mathrm{td}, J=7.5,7.5,1.0), 7.08(2 \mathrm{H}, \mathrm{d}, J=7.9), 7.19(1 \mathrm{H}, \mathrm{dd}, J=7.8$, 0.9), 7.24-7.34 (3H, m), 7.47 (1H, dd, $J=6.6,1.7$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}): 21.66 (q), 22.58 (q), 66.08 (d), 80.28 (s$), 81.38$ (d), 86.48 (s), 87.57 (s), 113.07 (s), 115.45 (d), 119.58 (s), 121.55 (d), 129.19 (d), 130.12 (d), 131.81 (d), 134.29 (d), 138.63 (s), 159.17 (s).

IR (CHCl_{3}): $3307 \mathrm{~s}, 3079 \mathrm{w}, 3057 \mathrm{vw}, 2236 \mathrm{w}, 2108 \mathrm{w}, 1609 \mathrm{w}, 1597 \mathrm{~m}, 1576 \mathrm{w}$, 1510 s, 1486 vs, 1446 s, 1409 vw, 1332 m, 1288 m, 1268 m, 1260 w, 1245 vs, 1186 w, 1164 w, 1122 m, 1107 m, 1086 s, 1036 s, 1020 m, 946 m, 819 s, 655 m, 613 m, $541 \mathrm{w}, 410 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $283\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{ONa}$ 283.1093, found 283.1093.
Optical rotation: $[\alpha]^{22}{ }_{D}+1.0^{\circ}\left(\mathrm{c} 0.45, \mathrm{CHCl}_{3}\right)$.

2-[(2-\{[(1R)-1-Methyl-3-(4-methylphenyl)prop-2-yn-1-yl]oxy\}phenyl)ethynyl] phenol (R)-230

In a flame-dried Schlenk flask filled with 2-iodophenol ($381 \mathrm{mg}, 1.73$ mmol, 1.28 equiv.), tetrakis(triphenylphosphine)palladium(0) (77.6 $\mathrm{mg}, 0.067 \mathrm{mmol}, 5 \mathrm{~mol} \%$) and copper iodide ($25.6 \mathrm{mg}, 0.134$ $\mathrm{mmol}, 10 \mathrm{~mol} \%)$, toluene (10 ml) and diisopropylamine (2.8 ml , $19.8 \mathrm{mmol}, 15$ equiv.) were added under argon. Then a degassed solution of the alkyne $(R)-229(350 \mathrm{mg}, 1.344 \mathrm{mmol})$ in toluene $(15 \mathrm{ml})$ was added at room temperature and allowed to stir for 1 h . Then the reaction mixture was filtered through a sintered glass (hexane) and the filtrate was concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane-ethyl acetate 100:0 to 90:10) to obtain the product (R)-230 ($468.1 \mathrm{mg}, 99 \%$) as white crystals.
M.p.: $122-123^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=2.09$): $1.82(3 \mathrm{H}, \mathrm{d}, J=6.5), 2.35(3 \mathrm{H}, \mathrm{bs}), 5.44$ (1H, q, $J=6.5$), $6.94(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.1), 7.02(1 \mathrm{H}, \mathrm{ddd}, J=8.3,1.1,0.5), 7.08$ (1H, dt, $J=7.5,7.5,1.1$), 7.19-7.21 (2H, m), 7.31 ($1 \mathrm{H}, \mathrm{ddd}, J=8.3,7.4,1.7$), 7.32$7.35(2 \mathrm{H}, \mathrm{m}), 7.37(1 \mathrm{H}, \mathrm{ddt}, J=8.4,1.1,0.5,0.5), 7.44(1 \mathrm{H}, \mathrm{ddd}, J=8.4,7.4,1.7)$, $7.47(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.7,0.5), 7.56(1 \mathrm{H}, \mathrm{ddd}, J=7.6,1.7,0.5)$.
${ }^{13}$ C NMR (151 MHz, d_{6}-acetone, rfp=29.8): 21.33 (q), 22.65 (q), 66.15 (d), 86.65 (s), 88.31 (s), 90.00 (s), 91.91 (s), 111.24 (s), 114.53 (s), 115.93 (d), 115.98 (d), 120.09 (s), 120.63 (d), 122.32 (d), 129.98 (d), 130.52 (d), 130.95 (d), 132.32 (d), 132.72 (d), 133.41 (d), 139.72 (s), 158.63 (s), 158.86 (s).

IR (CHCl_{3}): $3516 \mathrm{w}, 3457 \mathrm{~m}, 3085 \mathrm{w}, 3064 \mathrm{vw}, 3063 \mathrm{vw}, 2995 \mathrm{w}, 2871 \mathrm{w}, 2237 \mathrm{w}$, 2220 vw, 2202 vw, 1615 w, 1596 m, 1576 m, 1510 s, 1494 s, 1480 vs, 1448 m, 1409
vw, 1377 w, 1331 m, $1279 \mathrm{~m}, 1246 \mathrm{vs}, 1180 \mathrm{vw}, 1164 \mathrm{w}, 1148 \mathrm{~m}, 1122 \mathrm{~m}, 1109 \mathrm{~m}$, $1086 \mathrm{~s}, 1034 \mathrm{~m}, 1020 \mathrm{w}, 944 \mathrm{~m}, 819 \mathrm{~s} \mathrm{~cm}^{-1}$.

ESI MS: 351 ([M-H] ${ }^{-}$).
HR ESI MS: calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{O}_{2}$ 351.1391, found 351.1389.
Optical rotation: $[\alpha]^{22}{ }_{D}-440^{\circ}\left(c 0.104, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$N, N-D i m e t h y l-2-[(3 R)-3-\{2-[(2-\{[(1 R)-1-m e t h y l-3-(4-m e t h y l p h e n y l) p r o p-2-y n-1-$ yl]oxy\}phenyl)ethynyl]phenoxy\}but-1-yn-1-yl]pyridin-4-amine (R, R)-231

In a flame-dried Schlenk flask diyne (R)-230 (205 mg, 0.582 mmol), alcohol (S)-226 (112.2 mg, $0.589 \mathrm{mmol}, 1.0$ equiv.) and triphenylphosphine ($155 \mathrm{mg}, 0.591 \mathrm{mmol}, 1.0$ equiv.) were flushed with argon and dissolved in THF (45 ml). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and diisopropyl azodicarboxylate ($116 \mu \mathrm{l}, 0.589 \mathrm{mmol}, 1.0$ equiv.) was added dropwise. The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 2 d under positive pressure of argon. The solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate $90: 10$ to 20:80) to provide product $(R, R)-231(268 \mathrm{mg}, 88 \%)$ as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=2.09$): 1.83 ($3 \mathrm{H}, \mathrm{d}, J=6.5$), 1.84 ($3 \mathrm{H}, \mathrm{d}, J=6.5$), $2.34(3 \mathrm{H}, \mathrm{bs}), 2.99(6 \mathrm{H}, \mathrm{s}), 5.42(2 \mathrm{H}, \mathrm{q}, J=6.5), 6.58(1 \mathrm{H}, \mathrm{dd}, J=6.0,2.7), 6.70(1 \mathrm{H}$, $\mathrm{dd}, J=2.7,0.5), 7.08(2 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.2), 7.18-7.20(2 \mathrm{H}, \mathrm{m}), 7.31-7.33(2 \mathrm{H}, \mathrm{m})$, $7.34(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.2), 7.35(1 \mathrm{H}, \mathrm{dd}, J=8.4,1.2), 7.41(1 \mathrm{H}, \mathrm{dt}, J=7.4,1.6,1.6)$, $7.42(1 \mathrm{H}, \mathrm{dt}, J=7.4,1.6,1.6), 7.58(2 \mathrm{H}, \mathrm{ddd}, J=8.4,7.6,1.6), 8.10(1 \mathrm{H}, \mathrm{dd}, J=6.0$, $0.5)$.
${ }^{13} \mathrm{C}$ NMR (151 MHz, d_{6}-acetone, $\mathrm{rfp}=29.8$): 21.32 (q), 22.64 (q), 22.79 (q), 39.06 (q), 66.05 (d), 66.13 (d), 86.18 (s), 86.49 (s), 87.40 (s), 88.50 (s), 90.74 (s), 90.80 (s), 107.09 (d), 110.82 (d), 115.16 (s), 115.22 (s), 116.38 (d), 116.44 (d), 120.15 (s), 122.37 (d), 122.46 (d), 129.95 (d), 130.36 (d), 130.41 (d), 132.28 (d), 134.09 (d), 134.13 (d), 139.61 (s), 143.25 (s), 150.47 (d), 155.04 (s), 158.85 (s), 158.88 (s).

IR (CHCl_{3}): $3076 \mathrm{vw}, 3060 \mathrm{vw}, 2994 \mathrm{~m}, 2821 \mathrm{w}, 2234 \mathrm{w}, 1595 \mathrm{vs}, 1575 \mathrm{~m}, 1540 \mathrm{~m}$, 1510 m, 1497 s, 1481 m, $1449 \mathrm{~m}, 1428 \mathrm{w}, 1414 \mathrm{w}, 1376 \mathrm{~m}, 1330 \mathrm{~m}, 1295 \mathrm{~m}, 1286$ m, 1236 s, 1164 m, 1121 m, 1111 m, 1087 m, 1065 w, 1039 m, 1020 w, 997 m, 946 m, $935 \mathrm{w}, 818 \mathrm{~m}, 811 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: 1049 ([2M-H] ${ }^{+}$).

HR ESI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~N}_{2} 525.2537$, found 525.2526.
Optical rotation: $[\alpha]^{22}{ }_{D}-356^{\circ}\left(\mathrm{c} 0.025, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

2-[(M,2R,5R)-2,5-Dimethyl-4-(4-methylphenyl)-2,5-dihydrobenzo[1,2-c:4,3-c']dichromen-3-yl]-N,N-dimethylpyridin-4-amine (M, R, R)-106

In a flame dried 20 ml microwave vial triphenylphosphine (135 $\mathrm{mg}, 0.515 \mathrm{mmol}, 2.0$ equiv.) and ionic liquid [BDMIM][BF 4] (ca 100 mg) were flushed with argon and a solution of triyne $(R, R)-231$ ($114 \mathrm{mg}, 0.218 \mathrm{mmol}$) in THF (16 ml) was added. Then dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) ($30 \mu \mathrm{l}, 0.228 \mathrm{mmol}, 1.0$ equiv.) was added to the mixture and it was heated at $180{ }^{\circ} \mathrm{C}$ for 25 min under microwave irradiation. The reaction mixture was filtered through a short pad of silica gel (ethyl acetate) and solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 95:5 to 20:80) to provide product (M, R, R)-106 ($203.3 \mathrm{mg}, 89 \%$), which was further recrystallised (hexanediethyl ether $1: 1$) to provide white crystals (56%). Single crystal was grown by slow evaporation from a saturated acetonitrile solution.
M.p.: $244-245^{\circ} \mathrm{C}$ (hexane-diethyl ether).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, d_{6}$-DMSO, $\mathrm{rfp}=2.50, \mathrm{~T}=373.3 \mathrm{~K}$): $0.92(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.7), 0.99(3 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.7), 2.26(3 \mathrm{H}, \mathrm{bs}), 2.80(6 \mathrm{H}, \mathrm{s}), 5.18(1 \mathrm{H}, \mathrm{q}, J=6.7), 5.41(1 \mathrm{H}, \mathrm{bq}, J=6.7)$, $6.28(1 \mathrm{H}, \mathrm{d}, J=2.7), 6.38(1 \mathrm{H}, \mathrm{dd}, J=6.0,2.7), 6.80(2 \mathrm{H}, \mathrm{ddd}, J=7.8,7.2,1.3)$, 6.84-6.87 (1H, m), 6.96-6.99 (1H, m), 7.02 ($2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.3$), 7.13-7.16 (1H, m), 7.20-7.23 (1H, m), 7.22 (2H, ddd, $J=8.0,7.2,1.6$), 7.32 (2H, dd, $J=7.8,1.6$), 8.06 (1H, d, J = 6.0).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, d_{6}$-DMSO, rfp=39.50, $\mathrm{T}=373.3 \mathrm{~K}$): 17.51 (q), 17.65 (q), 20.01 (q), 37.90 (q), 71.19 (d), 71.58 (d), 104.59 (d), 108.80 (d), 118.53 (d), 118.51 (d), 120.25 (d), 120.30 (d), 122.51 (d), 122.54 (s), 124.11 (s), 124.26 (s), 127.61 (d), 127.96 (d), 128.03 (d), 128.69 (d), 128.77 (d), 128.77 (d), 129.96 (d), 133.93 (s), 135.35 (s), 135.78 (s), 136.61 (s), 138.27 (s), 138.27 (s), 147.87 (d), 152.54 (s), 152.59 (s), 153.45 (s), 155.64 (s).

IR (CHCl_{3}): $3081 \mathrm{vw}, 3064 \mathrm{vw}, 2983 \mathrm{w}, 2817 \mathrm{vw}, 1599 \mathrm{vs}, 1585 \mathrm{~m}, 1558 \mathrm{w}, 1542 \mathrm{~m}$, 1515 w, 1505 w, 1488 m, 1452 w, 1435 m, 1420 w, 1369 m, 1331 w, 1291 w, 1247 w, 1179 w, 1153 m, 1118 w, 1107 w, 1087 w, 1066 m, 1037 w, 1022 w, 993 m, 946 vw, $833 \mathrm{w}, 811 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $525\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{~N}_{2} 525.2537$, found 525. 2536.
Optical rotation: $[\alpha]^{22}{ }_{D}-457^{\circ}\left(\mathrm{c} 0.163, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for Ni -catalysed enantioselective cyclotrimerisation of triynes 233 and 237 to products 234 and 238:

In a Schlenk flask $\mathrm{Ni}(\operatorname{cod})_{2}(0.01 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and chiral ligand ($0.02 \mathrm{mmol}, 40$ $\mathrm{mol} \%$) were dissolved in THF (1 ml) under argon. After stirring for 5 min at room temperature a solution of triyne 233 or $\mathbf{2 3 7}$ (0.05 mmol) in THF (1 ml) was added and the reaction mixture was stirred at room temperature for 15 min . The volatiles were removed in vacuo and the residue purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 95:5) to provide product 234 or 238 as an off-white solid. The product was then analysed on the analytical chiral HPLC (R, R)-Whelk-O1 column. Retention times were: (-)-234 $5.5 \mathrm{~min},(+)-2346.4 \mathrm{~min}$ (heptane, $1 \mathrm{ml} / \mathrm{min}$); $(-)-23814.2 \mathrm{~min},(+)-23821.2 \mathrm{~min}$ (heptane-2-propanol=98:2, $1 \mathrm{ml} / \mathrm{min}$).

Chloro\{[(P,3S,6S)-3,6-dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e'] benzo[1,2-c:4,3-c']bisoxepin-11-yl](diphenyl)phosphane-kP\}gold (P, S, S)-239

A solution of phosphine borane complex (P, S, S)-127 (57 mg, 0.082 mmol) in diethylamine (1.5 ml) was heated at $50^{\circ} \mathrm{C}$ for 15 h. The volatiles were removed in vacuo and the residue dried at $50^{\circ} \mathrm{C}$ for 1 h . Sodium tetrachloroaurate ($65 \mathrm{mg}, 0.163 \mathrm{mmol}, 2.0$ equiv.) was dissolved in water (4 ml) and thiodiethanol ($50 \mu \mathrm{l}$, $0.484 \mathrm{mmol}, 5.9$ equiv.) was added. A solution of deprotected phosphine (54 mg , 0.072 mmol) in THF (3 ml) was added to the aqueous gold solution at room temperature and the reaction mixture was stirred for 30 min . The solvents were removed in vacuo and the residue purified by flash chromatography on silica gel (hexane-diethyl ether-ethyl acetate 8:1:1) to provide gold complex (P,S,S)-239 (48 $\mathrm{mg}, 33 \%$) as a grey powder.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $0.56(3 \mathrm{H}, \mathrm{d}, J=7.1), 0.66(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.44(1 \mathrm{H}, \mathrm{d}, J$ $=11.6), 4.50(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.65(1 \mathrm{H}, \mathrm{d}, J=11.5), 4.88(1 \mathrm{H}, \mathrm{q}, ~ J=7.1), 4.92(1 \mathrm{H}$, $\mathrm{d}, J=11.5), 4.95(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.56(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.68(1 \mathrm{H}, \mathrm{dd}, J=13.4$, 1.7), 6.80-6.85 (4H, m), 7.02-7.14 (4H, m), $7.07(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.15-7.24$ $(2 \mathrm{H}, \mathrm{m}), 7.16(1 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.3), 7.16-7.25(4 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.4)$, 7.38-7.42 (4H, m), 7.46 (1 H , ddd, $J=13.3,7.8,1.7$), $7.49-7.54(2 \mathrm{H}, \mathrm{m}), 7.55(1 \mathrm{H}, \mathrm{dd}$, $J=7.8,2.6)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.02 (q), 22.63 (q), 66.73 (t$), 67.22$ (t$), 72.52$ (d), 72.86 (d), 126.45 (d), 126.50 (d), 127.37 (d), 127.45 (d), 127.51 (d), 127.71 (d), 127.89 (s, $J_{\mathrm{PC}}=61.6$), 127.89 ($\mathrm{s}, J_{\mathrm{PC}}=63.3$), 127.90 (d), 128.37 ($\mathrm{s}, J_{\mathrm{PC}}=62.4$), 129.00 (d), 129.02 (d), 129.08 (d), 129.10 (d), 129.48 (d), 129.59 (d, $\left.J_{P C}=12.9\right), 129.86$ (d, $J_{P C}=$ $7.9), 131.76\left(\mathrm{~d}, J_{\mathrm{PC}}=2.5\right), 131.83\left(\mathrm{~d}, J_{\mathrm{PC}}=2.5\right), 131.90(\mathrm{~d}), 133.02\left(\mathrm{~d}, J_{\mathrm{PC}}=15.4\right)$, 134.13 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=13.9$), 134.53 (d, $\mathrm{J}_{\mathrm{PC}}=13.9$), 135.37 (s$), 137.15$ (s$), 137.35$ (s), 137.37 (d, JPC $=2.9$), 137.68 (s), 137.83 (s), 139.42 (s$), 139.49$ (s$), 139.57$ (s), $141.40\left(\mathrm{~s}, J_{\mathrm{PC}}=11.9\right), 141.50\left(\mathrm{~s}, \mathrm{~J}_{\mathrm{PC}}=2.5\right), 142.15(\mathrm{~s}), 142.67(\mathrm{~s})$.

[^5]IR (CHCl_{3}): $3079 \mathrm{w}, 3061 \mathrm{w}, 3034 \mathrm{w}, 1601 \mathrm{w}, 1588 \mathrm{w}, 1577 \mathrm{w}, 1556 \mathrm{vw}, 1495 \mathrm{w}$, 1483 w, 1438 s, 1409 w, 1393 w, 1370 m, 1309 w, 1178 w, 1115 m, 1103 s, 1080 vs, 1071 s, 1028 w, 999 w, 906 w, 705 vs, 693 s, 483 w, $434 \mathrm{vw} \mathrm{cm}^{-1}$.

APCI MS: $944\left(\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{OH}_{2}\right]^{+}\right), 875\left([\mathrm{M}-\mathrm{Cl}]^{+}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{AuP}$ 875.2348, found 875.2312.
Optical rotation: $[\alpha]^{22}{ }_{D}-143^{\circ}\left(\mathrm{c} 0.065, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chloro\{[(P,3S,6S)-3,6-dimethyl-4,5-diphenyl-1,3,6,8-tetrahydrodibenzo[e,e'] benzo[1,2-c:4,3-c]bisoxepin-10-yl](diphenyl)phosphane-kP\}gold (P, S, S)-240

A solution of phosphine borane complex $(P, S, S)-143(50 \mathrm{mg}, 0.072$ mmol) in diethylamine (1.0 ml) was heated at $50^{\circ} \mathrm{C}$ for 15 h . The volatiles were removed in vacuo and the residue dried at $50^{\circ} \mathrm{C}$ for 1 h . Sodium tetrachloroaurate ($69 \mathrm{mg}, 0.178 \mathrm{mmol}, 2.5$ equiv.) was dissolved in water (4 ml) and thiodiethanol ($50 \mu \mathrm{l}, 0.484 \mathrm{mmol}, 6.7$ equiv.) was added. A solution of the phosphine ($48.9 \mathrm{mg}, 0.072 \mathrm{mmol}$) in THF (3 ml) was added to the aqueous gold solution and the reaction mixture was stirred at room temperature for 30 min . The solvents were removed in vacuo and the residue purified by flash chromatography on silica gel (diethyl ether) to provide the gold complex $(P, S, S)-240(61 \mathrm{mg}, 42 \%)$ as a grey powder.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.63(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1), 0.69(3 \mathrm{H}, \mathrm{d}, J=7.1), 4.55(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=11.6), 4.59(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.86(1 \mathrm{H}, \mathrm{d}, J=11.6), 4.88(1 \mathrm{H}, \mathrm{dd}, J=11.6,0.8)$, $4.94(1 \mathrm{H}, \mathrm{q}, J=7.1), 4.97(1 \mathrm{H}, \mathrm{q}, J=7.1), 6.54(1 \mathrm{H}, \mathrm{dd}, J=7.7,1.3), 6.72(1 \mathrm{H}, \mathrm{dd}, J$ $=8.0,2.4), 6.83-6.86(2 \mathrm{H}, \mathrm{m}), 7.04-7.12(4 \mathrm{H}, \mathrm{m}), 7.04(1 \mathrm{H}, \mathrm{dt}, J=7.6,7.6,1.4), 7.12$ (1H, ddd, $J=12.8,8.0,1.8), 7.13-7.17(2 \mathrm{H}, \mathrm{m}), 7.19-7.23(2 \mathrm{H}, \mathrm{m}), 7.27(1 \mathrm{H}, \mathrm{dt}, J=$ $7.5,7.5,1.3), 7.41(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,1.4), 7.45-7.49(8 \mathrm{H}, \mathrm{m}), 7.52-7.56(2 \mathrm{H}, \mathrm{m}), 7.56$ (1H, dd, J = 13.2, 1.8).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.17 (q), 22.68 (q), 66.97 (t), 67.37 (t), 72.73 (d), 72.82 (d), 126.56 (d), 126.60 (d), 127.41 (d), 127.44 (,$J_{\mathrm{PC}}=62.1$), 127.47 (d), 127.51 (d), 127.80 (d), 127.82 (d), 128.22 (d), 128.22 ($\mathrm{s}, J_{\mathrm{PC}}=62.6$), 128.82 ($\mathrm{s}, \mathrm{J}_{\mathrm{PC}}=62.4$), $128.88(\mathrm{~d}), 129.24\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=7.4\right), 129.32\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=7.4\right), 129.55(\mathrm{~d}), 129.64(\mathrm{~d}), 129.92$
(d), 129.98 (d), 132.02 (d), 132.04 (d, $J_{P C}=2.5$), $132.13\left(d, J_{P C}=2.5\right), 132.66\left(d, J_{P C}\right.$ $=13.4), 132.81\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=12.0\right), 134.04\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=13.8\right), 134.26\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=13.8\right), 135.50$ (s), 137.48 (s), 137.52 (s), 137.76 (s), 137.95 (s), 139.00 (s, JPC $=11.8$), 139.49 (s), 139.60 (s), 142.26 (s), 142.99 ($s), 144.74$ ($s, J_{\mathrm{PC}}=2.5$).
${ }^{31}$ P NMR ($202 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 32.72 (s).
IR (CHCl_{3}): $3079 \mathrm{w}, 3062 \mathrm{w}, 3034 \mathrm{w}, 1600 \mathrm{w}, 1577 \mathrm{vw}, 1553 \mathrm{vw}, 1494 \mathrm{w}, 1483 \mathrm{w}$, 1438 w, 1407 w, 1393 w, 1370 m, 1309 w, 1115 m, 1103 s, 1079 s, 1073 s, 1028 w, 999 w, 704 s, $639 \mathrm{~s}, 479 \mathrm{w}, 432 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

APCI MS: $916\left(\left[\mathrm{M}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}\right), 875\left([\mathrm{M}-\mathrm{Cl}]^{+}\right)$.
HR APCI MS: calculated for $\mathrm{C}_{50} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{NAuP} \mathrm{916.2613} ,\mathrm{found} \mathrm{916.2578}$.
Optical rotation: $[\alpha]^{22}{ }_{D}-152^{\circ}\left(\mathrm{c} 0.023, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

General procedure for enantioselective cyclisation of enynes 241-244 using helical phosphinegold(I) complexes to products 245-248:

In a Schlenk flask phosphinegold(I) complex (P, S, S)-239 or (P, S, S)-240 (2 $\mu \mathrm{mol}, 2$ mol\%) was dissolved in methanol (2 ml) and $\mathrm{AgSbF}_{6}(2 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$) was added. After stirring at room temperature for 15 min , a solution of enyne (0.1 mmol) in methanol (1 ml) was added and the reaction mixture was stirred at room temperature (or at $80^{\circ} \mathrm{C}$ for 243 and 244) until the starting material was completely consumed. Then the reaction mixture was filtered through a short pad of silica gel (hexane-ethyl acetate $70: 30$) to provide products as an off-white solid. The compounds were analysed on the analytical chiral HPLC Daicel Chiralpak AD-H column. Retention times were: (-)-245 $34.8 \mathrm{~min},(+)-24545.0 \mathrm{~min}$ (heptane-2-propanol=5:1, flow 0.5 $\mathrm{ml} / \mathrm{min}$); (-)-246 $53.8 \mathrm{~min},(+)-24664.6 \mathrm{~min}$ (heptane-2-propanol=6:1, flow 0.5 $\mathrm{ml} / \mathrm{min}$); (-)-247 $17.4 \mathrm{~min},(+)-24721.4 \mathrm{~min}$ (heptane-2-propanol=98:2, flow 0.5 $\mathrm{ml} / \mathrm{min}$); (-)-248 $17.1 \mathrm{~min},(+)-24818.7 \mathrm{~min}$ (heptane-2-propanol=98:2, flow 0.5 $\mathrm{ml} / \mathrm{min}$).

Procedure for enantioselective cyclisation of enyne 241 using PtCl_{2} and (-)-2aza[6]helicene:

In a Schlenk flask enyne 241 ($33.5 \mathrm{mg}, 0.083 \mathrm{mmol}$), $\mathrm{PtCl}_{2}(1.0 \mathrm{mg}, 3.76 \mu \mathrm{~mol}, 4.5$ $\mathrm{mol} \%$) and (-)-2-aza[6]helicene ($2.6 \mathrm{mg}, 7.84 \mu \mathrm{~mol}, 9.4 \mathrm{~mol} \%$) were dissolved in methanol (3 ml) and heated at $80^{\circ} \mathrm{C}$ for 22 h . The solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (hexane-ethyl acetate $7: 3$) to provide product (-)-245 ($35.7 \mathrm{mg}, 97 \%, 9 \%$ ee) as a solid, which was analysed on the analytical chiral HPLC Daicel Chiralpak AD-H column (heptane-2propanol $=5: 1$, flow $0.5 \mathrm{ml} / \mathrm{min},(-)-24534.8 \mathrm{~min},(+)-24545.0 \mathrm{~min})$.

3,4-Bis[(trimethylsilyl)ethynyl]thiophene-2,5-dicarbaldehyde 250

In a Schlenk flask 3,4-dibromothiophene-2,5-dicarbaldehyde 249 (300 $\mathrm{mg}, 1.01 \mathrm{mmol}$), bis(acetonitrile)palladium(II) dichloride $(26.1 \mathrm{mg}$, $0.101 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine ($53.4 \mathrm{mg}, 0.204 \mathrm{mmol}, 20$ $\mathrm{mol} \%$) and copper iodide ($20.2 \mathrm{mg}, 0.106 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were flushed with argon and toluene (10 ml) and diisopropylethylamine ($0.350 \mathrm{ml}, 2.01$ mmol, 2.0 equiv.) were added. Ethynyl(trimethyl)silane ($0.360 \mathrm{ml}, 2.55 \mathrm{mmol}, 2.6$ equiv.) was added to the solution and it was stirred at room temperature for 2 h . Then the reaction mixture was filtered through a short pad of silica gel (hexane-ethyl acetate $90: 10$) and the volatiles were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-diethyl ether 100:0 to 90:10) to provide product 250 ($290 \mathrm{mg}, 90 \%$) as a yellow solid.
M.p.: 167-170 ${ }^{\circ} \mathrm{C}$ (hexane).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.31 (18H, s), $10.18(2 \mathrm{H}, \mathrm{s})$.
${ }^{13}$ C NMR (151 MHz, CDCl_{3}): -0.34 (q), 93.71 (s), 106.45 (s), 133.20 (s), 147.66 (s), 183.41 (d).

IR (CHCl_{3}): $2901 \mathrm{w}, 2816 \mathrm{vw}, 2710 \mathrm{vw}, 2161 \mathrm{w}, 1685 \mathrm{vs}, 1674 \mathrm{vs}, 1506 \mathrm{vw}, 1411 \mathrm{w}$, 1352 w, $1252 \mathrm{~s}, 1243 \mathrm{~s}, 850 \mathrm{vs}, 699 \mathrm{~m}, 557 \mathrm{vw}, 437 \mathrm{w} \mathrm{cm}^{-1}$.

APCI MS: $333\left([\mathrm{M}+\mathrm{H}]^{+}\right)$.

HR APCI MS: calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{SSi}_{2}$ 333.0806, found 333.0796.

3,4-Bis[(2-\{4-[tris(1-methylethyl)silyl]but-3-yn-1-l\}phenyl)ethynyl]thiophene-2,5dicarbaldehyde 253

In a Schlenk flask 3,4-dibromothiophene-2,5dicarbaldehyde 249 ($53.4 \mathrm{mg}, 0.161 \mathrm{mmol}$), bis(acetonitrile)palladium(II) dichloride $(4.8 \mathrm{mg}$, $0.018 \mathrm{mmol}, 10 \mathrm{~mol} \%$), triphenylphosphine (10.9 $\mathrm{mg}, 0.041 \mathrm{mmol}, 26 \mathrm{~mol} \%$) and copper iodide (3.3 $\mathrm{mg}, 0.017 \mathrm{mmol}, 11 \mathrm{~mol} \%$) were suspended in toluene (5 ml) and diisopropylethylamine ($120 \mu \mathrm{l}, 0.69 \mathrm{mmol}, 4.3$ equiv.) under argon. After stirring at room temperature for 15 min a solution of diyne 254 ($118.3 \mathrm{mg}, 0.381 \mathrm{mmol}, 2.4$ equiv.) in toluene (5 ml) was added and the reaction mixture was stirred at room temperature overnight. The reaction mixture was filtered through the short pad of silica gel (ethyl acetate) and the solvents were removed in vacuo. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 95:5) to give product 253 ($58 \mathrm{mg}, 48 \%$) as a yellow amorphous solid and product 255 (10 mg , 6 \%) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ 0.93-1.00 $(42 \mathrm{H}, \mathrm{m}), 2.60(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.0), 3.08(4 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ 7.0), 7.25 (2H, ddd, $J=7.7,7.1,1.7$), 7.35 (2H, ddd, $J=7.7,7.1,1.4$), 7.38 (4H, ddd, $J=7.7,1.7,0.5), 7.58(2 \mathrm{H}, \mathrm{ddd}, J=7.7,1.4,0.5), 10.31(2 \mathrm{H}, \mathrm{s})$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.20 (d), 18.52 (q), 20.89 (t), 33.76 (t), 81.76 (s), 83.33 (s), 98.07 (s), 107.07 (s), 120.77 (s), 126.56 (d), 129.60 (d), 129.88 (d), 132.76 (d), 132.86 (s), 143.01 (s), 146.87 (s), 182.98 (d).

IR (CHCl_{3}): 3064 w, 3031 w, $2959 \mathrm{~s}, 2865$ s, $2205 \mathrm{~m}, 2171 \mathrm{~m}, 1683 \mathrm{vs}, 1672 \mathrm{~s}, 1599$ vw, 1514 vw, 1495 w, 1480 w, 1463 m, 1452 w, 1400 vw, 1386 w, 1374 w, 1349 w, 1298 w, 1162 vw, 1127 vw, 1103 w, 1074 w, 1017 w, 996 m, 948 w, 884 m, 860 w, $677 \mathrm{~s}, 661 \mathrm{~m}, 589 \mathrm{w}, 417 \mathrm{w} \mathrm{cm}^{-1}$.

ESI MS: $1545\left(\left[2 \mathrm{M}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}\right]^{+}\right), 1485\left([2 \mathrm{M}-\mathrm{CHO}]^{+}\right), 756\left(\mathrm{M}^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{48} \mathrm{H}_{60} \mathrm{O}_{2} \mathrm{SSi}_{2} 756.3858$, found 756.3854 .

\{3,4-Bis[(2-\{4-[tris(1-methylethyl)silyl]but-3-yn-1-yl\}phenyl)ethynyl]thiene-2,5-diyl\}dibut-1-yne-4,4-diyl diacetate 257

In a Schenk flask indium ($7.8 \mathrm{mg}, 0.068 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) and gallium ($95.4 \mathrm{mg}, 1.37 \mathrm{mmol}, 4.1$ equiv.) were suspended in THF (10 ml) under argon. The suspension was cooled down to $0^{\circ} \mathrm{C}$ and propargyl bromide (80% solution in toluene, $300 \mu \mathrm{l}, 2.7 \mathrm{mmol}, 8.2$ equiv.) was added dropwise. After stirring at $0^{\circ} \mathrm{C}$ for 1 h the suspension was sonicated at room temperature for 20 min until gallium was completely dissolved. Then a solution of aldehyde 253 ($250 \mathrm{mg}, 0.330 \mathrm{mmol}$) in THF $(10 \mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . After the reaction was completed it was diluted with diethyl ether (100 ml) and extracted with water ($3 \times 100 \mathrm{ml}$). The combined organic phases were dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was evaporated from benzene (3 x) and dried on oil pump at room temperature for 1 h before the next reaction. Then it was dissolved in THF (15 ml) under argon and 4-(dimethylamino)pyridine ($46 \mathrm{mg}, 0.38$ mmol, 1.15 equiv.) was added. Acetic anhydride ($150 \mu \mathrm{l}, 1.59 \mathrm{mmol}, 4.8$ equiv.) was added dropwise and the reaction mixture was stirred at room temperature for 30 min . After the reaction was complete diethyl ether (100 ml) was added and the solution was washed with water ($3 \times 100 \mathrm{ml}$). The combined organic phases were dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (hexane-ethyl acetate $90: 10$ to $85: 15$) to give product 257 ($183 \mathrm{mg}, 60 \%$) as a yellow oil.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.90-1.06 ($42 \mathrm{H}, \mathrm{m}$), $2.06(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.6)$, $2.16(6 \mathrm{H}, \mathrm{s})$, 2.61 ($4 \mathrm{H}, \mathrm{t}, J=6.8$), 2.89* (2 H , ddd, $J=17.0,6.8,2.6$), 2.90* (2 H , ddd, $J=17.0,6.8$, 2.6), 2.91* (2H, ddd, $J=17.0,5.8,2.6), 2.97^{*}(2 H$, ddd, $J=17.0,5.8,2.6), 3.06$ (4 H , $\mathrm{t}, J=6.8), 6.41^{*}(2 \mathrm{H}, \mathrm{dd}, J=6.8,5.8), 6.42^{*}(2 \mathrm{H}, \mathrm{dd}, J=6.8,5.8), 7.20(2 \mathrm{H}, \mathrm{dt}, J=$ $7.5,7.5,1.4), 7.26(2 \mathrm{H}, \mathrm{dt}, J=7.5,7.5,1.5), 7.36(2 \mathrm{H}, \mathrm{ddt}, J=7.6,1.4,0.6,0.6)$, 7.53 (2H, ddd, J = 7.6, 1.5, 0.5).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 11.22 (d), 18.55 (q), 20.70 (q), 20.70 (t$), 20.88$ (q), 25.99* (t), 26.03* (t), 33.57 (t), 68.69* (d), 68.82* (d), 71.60* (d), 71.64* (d), 78.37 (s), 81.28 (s), 85.12 (s), 94.45 (s), 107.81 (s), 121.84 (s), 122.48 (s), 126.30 (d), 128.65
(d), 129.69 (d), 132.51 (d), 142.32 (s), 142.70* (s), 142.76* (s), 169.41 (s), 169.43 (s). *Diastereomeric species

IR (CHCl_{3}): $3310 \mathrm{~m}, 3064 \mathrm{w}, 3031 \mathrm{w}, 2958 \mathrm{~s}, 2892 \mathrm{~m}, 2865 \mathrm{~s}, 2207 \mathrm{vw}, 2170 \mathrm{~m}$, $2127 \mathrm{vw}, 1746 \mathrm{~s}, 1599 \mathrm{vw}, 1499 \mathrm{w}, 1483 \mathrm{w}, 1464 \mathrm{~m}, 1451 \mathrm{~m}, 1382 \mathrm{~m}, 1372 \mathrm{~m}, 1339$ w, 1292 w, 1231 vs, 1170 w, 1123 vw, 1101 w, 1072 w, 1040 s, 1020 m, 996 m, 947 vw, 884 m, $678 \mathrm{~s}, 660 \mathrm{~s}, 639 \mathrm{~m}, 620 \mathrm{~m}, 604 \mathrm{w}, 589 \mathrm{w}, 416 \mathrm{vw} \mathrm{cm}{ }^{-1}$.

ESI MS: $959\left([\mathrm{M}+\mathrm{K}]^{+}\right), 943\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{58} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{NaSSi}_{2} 943.4582$, found 943.4555 .

\{3,4-Bis[(2-but-3-yn-1-ylphenyl)ethynyl]thiene-2,5-diyl\}dibut-1-yne-4,4-diyl diacetate 258

In a Schlenk flask silane 257 ($310 \mathrm{mg}, 0.33 \mathrm{mmol}$) was dissolved in THF (10 ml) at room temperature under argon and a solution of tetrabutylammonium fluoride trihydrate (1 M in THF, $0.5 \mathrm{ml}, 0.5 \mathrm{mmol}, 1.5$ equiv.) was added and the reaction mixture was stirred at room temperature overnight. Then solvent was removed in vacuo and the residue was purified by column chromatography on silica gel (gradient hexane-ethyl acetate 90:10 to $80: 20$) to afford product $\mathbf{2 5 8}$ ($125 \mathrm{mg}, 63 \%$) as an amorphous solid.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.6), 2.07(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7), 2.16(6 \mathrm{H}, \mathrm{s})$, $2.54(4 \mathrm{H}, \mathrm{dt}, J=7.3,7.3,2.6), 2.90(2 \mathrm{H}, \mathrm{ddd}, J=17.0,6.7,2.7), 2.91^{*}(2 \mathrm{H}, \mathrm{ddd}, J=$ 17.0, 6.7, 2.7), $2.96(2 \mathrm{H}, \mathrm{ddd}, J=17.0,5.8,2.7), 2.97^{*}(2 \mathrm{H}, \mathrm{ddd}, J=17.0,5.8,2.7)$, 3.08 ($4 \mathrm{H}, \mathrm{t}, J=7.3$), 6.44 ($2 \mathrm{H}, \mathrm{dd}, J=6.7,5.8$), $6.45^{*}(2 \mathrm{H}, \mathrm{dd}, J=6.7,5.8), 7.30-7.32$ ($4 \mathrm{H}, \mathrm{m}$), 7.21-7.24 (2H, m), 7.55 (2H, dd, J = 7.6, 1.1).
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 19.42 (t$), 20.89$ (q), 26.04 (t$), 26.08^{*}$ (t$), 33.41$ (t$), 68.66$ (d), 68.78^{*} (d), 69.17 (d), 71.62 (d), 71.67^{*} (d), 78.40 (s), 83.56 (s), 83.57^{*} (s), 85.23 (s), 94.21 (s), 122.03 (s), 122.45 (s), 126.48 (d), 128.82 (d), 129.16 (d), 132.68 (d), 142.16 (s), 142.95 (s), 143.00* (s), 169.42 (s), 169.45* (s). *Diastereomeric species

IR (CHCl_{3}): $3309 \mathrm{~s}, 3065 \mathrm{w}, 3029 \mathrm{w}, 2958 \mathrm{w}, 2208 \mathrm{vw}, 2119 \mathrm{w}, 1746 \mathrm{~s}, 1600 \mathrm{w}, 1500$ w, 1484 w, 1449 m, 1372 s, 1350 w, 1341 w, 1294 w, 1230 vs, 1170 w, 1124 vw, 1102 w, 1044 m, 1029 m, 945 w, 640 s, 607 w, 596 w cm ${ }^{-1}$.

ESI MS: $647\left([\mathrm{M}+\mathrm{K}]^{+}\right), 631\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$.
HR ESI MS: calculated for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{NaS}$ 631.1914, found 631.1901.

1,2,12,13-Tetrahydrobisbenzo[5,6]phenanthro[3,4-b:4',3'-d]thiophene 259

A Schlenk flask was charged with hexayne 258 ($50.0 \mathrm{mg}, 0.082$ mmol) and triphenylphosphine ($43.6 \mathrm{mg}, 0.164 \mathrm{mmol}, 2.0$ equiv.) The Schlenk flask was closed with septum containing a thermometer and filled with argon. Then decane (4 ml) and dicarbonyl(η^{5}-cyclopentadienyl)cobalt(I) ($11 \mu \mathrm{l}, 0.082 \mathrm{mmol}, 1.0$ equiv.) were added and the reaction mixture was stirred and heated at $160{ }^{\circ} \mathrm{C}$ by two 250 W halogen lamps for 30 min . The reaction mixture was allowed to cool down to room temperature and dissolved in chloroform (10 ml). Then an excess of methyl iodide (1 ml) was added and the solution was stirred at room temperature for 30 min . The solvents were removed in vacuo and the residue was purified by flash chromatography on silica gel (hexane-ethyl acetate 100:0 to 90:10) to furnish product 259 ($12 \mathrm{mg}, 30 \%$) as amorphous solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $2.52(2 \mathrm{H}, \mathrm{dt}, J=16.1,16.1,5.9), 2.66(2 \mathrm{H}, \mathrm{ddd}, J=14.3$, $5.7,1.7$), $2.86(2 \mathrm{H}$, ddd, $J=15.9,5.7,1.7), 3.29(2 \mathrm{H}$, dddt, $J=16.2,14.3,5.9,1.1$, $1.1), 5.90(2 \mathrm{H}, \mathrm{dd}, J=7.9,1.3), 6.02(2 \mathrm{H}, \mathrm{dddd}, J=7.9,7.2,1.4,0.9), 6.57(2 \mathrm{H}, \mathrm{dt}, J$ $=7.3,7.3,1.3), 6.76(2 \mathrm{H}, \mathrm{ddt}, J=7.4,1.4,0.7,0.7), 7.02(2 \mathrm{H}, \mathrm{dt}, J=8.0,0.7,0.7)$, $7.38(2 \mathrm{H}, \mathrm{bd}, J=8.0), 7.66(2 \mathrm{H}, \mathrm{dd}, J=8.3,0.4), 7.80(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3)$.
${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 29.02 (t), 29.15 (t), 118.83 (d), 123.65 (d), 124.47 (d), 125.40 (d), 125.69 (d), 126.51 (d), 126.77 (s), 126.88 (d), 126.94 (d), 129.63 (s), 131.65 (s), 132.11 (s), 133.86 (s), 135.89 (s), 135.90 (s), 138.68 (s).

IR (CHCl_{3}): $3056 \mathrm{w}, 2928 \mathrm{vs}, 1628 \mathrm{vw}, 1593 \mathrm{w}, 1574 \mathrm{w}, 1536 \mathrm{vw}, 1502 \mathrm{w}, 1482 \mathrm{w}$, 1464 w, 1454 m, 1442 w, 1306 w, 1251 w, 1175 w, 1159 w, 1018 vw, 1003 vw, 974 $\mathrm{vw}, 945 \mathrm{vw}, 880 \mathrm{vw}, 830 \mathrm{~m}, 708 \mathrm{vw}, 586 \mathrm{~m} \mathrm{~cm}{ }^{-1}$.

EI MS: 488 (${ }^{+\bullet}, 25$), 322 (8), 285 (10), 257 (12), 239 (7), 185 (5), 153 (5), 149 (20), 139 (9), 125 (15), 111 (28), 97 (40), 83 (55), 71 (67), 57(100), 43 (48).

HR EI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~S} 488.1599$, found 488.1603.

Bisbenzo[5,6]phenanthro[3,4-b:4',3'-d]thiophene 107

To a solution of helicene $259(2.5 \mathrm{mg}, 4.5 \mu \mathrm{~mol})$ in dichloroethane (0.5 ml) tritylium tetrafluoroborate ($15.1 \mathrm{mg}, 45 \mu \mathrm{~mol}, 10.0$ equiv.) was added in a Schlenk flask under argon and the solution was stirred at $80{ }^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was allowed to cool down to room temperature and then triethylamine (2 ml) was added for neutralisation. The solvents were removed in vacuo and the residue was purified by thin layer chromatography on silica gel (hexane-ethyl acetate 90:10) to give product 107 (~1 mg) as an amorphous material.

El MS: 484 (${ }^{+\bullet}, 100$), 467 (4), 450 (6), 306 (6), 240 (9), 150 (6).
HR EI MS: calculated for $\mathrm{C}_{36} \mathrm{H}_{20} \mathrm{~S} 484.1286$, found 484.1284.

Appendix A: Single-crystal X-ray diffraction analysis

Compound	(P, S , S)-153	(P, S_{a}, S, S)-157	(P, S_{a}, S, S)-159	(P, S , S)-167
Formula	$\mathrm{C}_{43} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{P}$	$\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{BrO}_{2}$	$\mathrm{C}_{49} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{P} \cdot 1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{C}_{38} \mathrm{H}_{34} \mathrm{O}_{3}$
$M_{\text {r }}$	616.7	587.53	751.25	538.65
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group	P $2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$	P $2_{1} 2_{1} 2_{1}$	$P 2_{1} 2_{1} 2_{1}$
a, A	13.3839(5)	10.1911(5)	9.7151(3)	9.8458(6)
b, A	15.0953(6)	10.6235(4)	16.6419(5)	12.4322(8)
c, A	16.0521(6)	26.2466(12)	24.8997(8)	23.5830(16)
$\boldsymbol{\alpha}{ }^{\circ}{ }^{\circ}$	90.00	90.00	90.00	90.00
$\beta,{ }^{\circ}$	90.00	90.00	90.00	90.00
$\mathrm{Y},{ }^{\circ}$	90.00	90.00	90.00	90.00
Crystal size (mm^{3})	$0.52 \times 0.42 \times 0.41$	$0.24 \times 0.22 \times 0.17$	$0.53 \times 0.41 \times 0.32$	$0.36 \times 0.31 \times 0.18$
Appearance	colourless prism	colourless prism	colourless prism	colourless prism
Cell volume (${ }^{3}{ }^{3}$)	3243.1(2)	2841.6(2)	4025.7(2)	2886.7(3)
Z	4	4	4	4
Temperature (K)	150(2)	150(2)	150(2)	150(2)
Radiation type	MoK_{α}	MoK_{α}	MoK_{α}	MoK_{α}
Radiation wavelength, Å	0.71073	0.71073	0.71073	0.71073
S	1.028	1.010	1.047	1.039
R -factor (\%)	3.69	4.13	6.51	4.59
wR (\%)	7.96	8.07	16.43	9.54
Number of parameters	418	364	403	374
Flack parameter	0.01(7)	-0.004(8)	0.01(13)	-0.1(15)
X-ray diffractometer	Bruker Apex II	Bruker Apex II	Bruker Apex II	Bruker Apex II
Software	SHELXS	SHELXS	SHELXS	SHELXS

Compound	(P, S , S)-172	(M, S , S)-207	(M, R, R)-106
Formula	$\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{O}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{4}$	$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{CH}_{3} \mathrm{CN}$
M_{r}	582.74	402.47	565.71
Crystal system	monoclinic	orthorhombic	orthorhombic
Space group	P 2_{1}	$P 2_{1} 2_{1} 2$	P $2_{1} 2_{1} 2_{1}$
a, A	6.05682(18)	12.9543(10)	10.7586(3)
b, \AA	16.3534(5)	8.0220(7)	14.6318(5)
c, A	16.0720(5)	9.9226(7)	19.0604(6)
$\underline{\alpha}{ }^{\circ}$	90.00	90.00	90.00
$\beta,{ }^{\circ}$	97.699(3)	90.00	90.00
$\mathrm{Y},{ }^{\circ}$	90.00	90.00	90.00
Crystal size (mm^{3})	$0.18 \times 0.23 \times 0.57$	$0.58 \times 0.51 \times 0.38$	$0.13 \times 0.25 \times 0.62$
Appearance	colourless prism	colourless prism	colourless plate
Cell volume (${ }^{\text {² }}$)	1577.58(8)	1031.15(14)	3000.46(16)
Z	2	2	4
Temperature (K)	170(2)	150(2)	170(2)
Radiation type	CuK_{α}	MoK ${ }_{\alpha}$	CuK_{α}
Radiation wavelength, \AA	1.54184	0.71073	1.54184
S	1.065	1.040	1.104
R -factor (\%)	3.69	3.31	4.79
wR (\%)	4.56	8.11	5.64
Number of parameters	399	138	390
Flack parameter	-0.09(15)	0.20(10)	-0.1(2)
X-ray diffractometer	Xcalibur	Bruker Apex II	Xcalibur
Software	CRYSTALS	SHELXS	CRYSTALS

Appendix B: Quantum mechanical calculations

Rotation energy barrier involved in the interconversion of the atropisomeric bromides (P, S_{a}, S, S)-157 and (P, R_{a}, S, S)-157 was first estimated by calculating relaxed potential energy surface (PES) scan using semi-empirical AM1 ${ }^{221}$ model in Gaussian 03, where the changing parameter was the dihedral angle between the helical scaffold and the phenyl ring bearing the bromo substituent (Figure 8.1). This helped to indentify the potential minima (R_{a} and S_{a}) and transition state structures (TS1 and TS2). The geometries of these structures were optimised using DFT on the B3LYP/cc-pVDZ ${ }^{222-224}$ level of theory in Gaussian $03 .{ }^{212}$ The transition states were located using STQN method ${ }^{225}$ (QST3 option). Unfortunately, calculation of the transition state TS2 did not converge on the DFT level. However, semiempirical AM1 method predicts the TS1 to be more stable by $\sim 6 \mathrm{kcal} / \mathrm{mol}$ and thus it could be used in the calculation of the rotation barrier. Identity of the minima and the transition state TS1 were confirmed by vibrational frequency calculations at the same computational level (B3LYP, cc-pVDZ). Vibrational analysis also allowed calculating thermodynamic energy values (Table 8.1, Figure 8.2).

Figure 8.1 PES scan of the bromide (P, S, S)-157 using AM1 in Gaussian 03. Scan step 2°.

Table 8.1 The computed energies (B3LYP, cc-pVDZ, in Hartree units).

$\left.$| Species | Potential
 energy, PE | PE+ZPE | PE+thermal
 energy [a] |
| :---: | :---: | :---: | :---: | :---: | :---: | | PE+thermal |
| :---: |
enthalpy $^{[a]}$		PE+thermal				
free energy ${ }^{[a]}$	\right\rvert\,	R_{a}	-4153.28280	-4152.70751	-4152.60570	-4152.67261
:---:	:---:	:---:	:---:	:---:		
S_{a}	-4153.28241	-4152.70709	-4152.67314	-4152.67220		
TS1	-4153.21297	-4152.63848	-4152.67356	-4152.60476		

${ }^{[a]}$ at $298.150 \mathrm{~K}, 1.000 \mathrm{Atm}$.

Figure 8.2 Free energy differences between the atropisomers and the calculated transition state (B3LYP, cc-pVDZ).

Computed data for (P, R_{a}, S, S)-157:

Dihedral angle $\theta=-85.03^{\circ}$ (the arrow indicates positive sense of rotation)
XYZ Coordinates:

C	-3.882505	-0.653845	-1.379934
C	-2.908596	-1.183530	-0.516134
C	-3.169578	-2.407134	0.134666
C	-4.396168	-3.052553	-0.064334
C	-5.364376	-2.508068	-0.910434
C	-5.098395	-1.308863	-1.578634
H	-3.681019	0.280058	-1.906734
H	-4.587653	-4.000256	0.446066
H	-6.316968	-3.021982	-1.057334
H	-5.839801	-0.880875	-2.257134
C	-2.080168	-3.030417	0.970166
C	-1.588107	-0.502909	-0.326034
H	-2.472355	-3.875023	1.554966
H	-1.668979	-2.288410	1.681266
C	-0.397395	-1.250991	-0.490634
O	-1.034459	-3.585801	0.180666
C	-0.970867	-3.068800	-2.220234
H	-0.955350	-4.160699	-2.360634
H	-1.998073	-2.715915	-2.379834
H	-0.323974	-2.612690	-2.988134
C	-1.520528	0.878292	-0.006334
C	-0.270039	1.542711	0.013866
C	0.847994	-0.590771	-0.416334
C	0.912873	0.806730	-0.218734
C	-2.759640	1.650573	0.326466
C	-3.003260	2.892669	-0.296434
C	-3.666533	1.188759	1.295466
C	-4.150371	3.623651	0.035866
C	-4.802445	1.928641	1.625766
H	-3.474819	0.240962	1.800466
C	-5.054664	3.146337	0.986766
H	-4.329086	4.584948	-0.453434
H	-5.492339	1.552230	2.384466
H	-5.945572	3.726923	1.237066
O	-0.800075	3.908503	-0.612034
C	-1.977868	3.437585	-1.258534

H	-2.374982	4.310479	-1.796734
H	-1.718356	2.666989	-2.010634
H	-1.571063	3.114891	2.052866
C	-0.544367	3.395207	1.785466
H	0.145240	2.896218	2.486466
H	-0.438584	4.483709	1.914166
H	2.849671	0.911260	1.733166
C	3.132863	1.454364	0.829266
C	4.373053	2.094683	0.767066
C	2.248862	1.494950	-0.259234
C	4.775842	2.796289	-0.378534
H	5.043154	2.044194	1.629866
C	2.648351	2.197056	-1.408334
C	3.889641	2.832976	-1.465934
H	1.972950	2.249946	-2.265534
H	4.174933	3.368880	-2.375534
C	6.104731	3.511310	-0.430834
H	6.944542	2.814123	-0.287434
H	6.176319	4.276611	0.362366
H	6.248723	4.026512	-1.393134
C	2.127606	-1.354052	-0.615934
C	2.730307	-1.387842	-1.886334
C	2.778017	-2.050842	0.416966
C	3.917217	-2.083124	-2.119034
C	3.967528	-2.752323	0.202466
C	4.537828	-2.768014	-1.071534
H	4.356618	-2.088717	-3.118534
H	4.439636	-3.281016	1.030866
C	-0.158362	3.035113	0.341866
H	0.896734	3.307929	0.235666
C	-0.422772	-2.747991	-0.819834
H	0.616633	-3.095075	-0.815334
H	5.467137	-3.316600	-1.239634
H	2.245598	-0.849350	-2.703034
Br	2.041517	-2.071053	2.192766

Computed data for (P, S_{a}, S, S)-157:

Dihedral angle $\theta=93.82^{\circ}$ (the arrow indicates positive sense of rotation) XYZ Coordinates:

C	3.803145	-0.969071	1.073093
C	2.945147	-1.263451	0.000150
C	3.307879	-2.285657	-0.901605
C	4.520435	-2.964753	-0.731230
C	5.374444	-2.652012	0.328473
C	5.005947	-1.656759	1.238829
H	3.520395	-0.196965	1.790027
H	4.791242	-3.755754	-1.435786
H	6.317298	-3.189946	0.450690
H	5.656491	-1.414657	2.082271
C	2.339345	-2.667483	-1.992457
C	1.634379	-0.558343	-0.163907
H	2.817880	-3.339292	-2.719966
H	2.009685	-1.761022	-2.537084
C	0.456811	-1.329584	-0.318159
O	1.208772	-3.389536	-1.513712
C	0.947718	-3.542287	0.933219
H	0.936767	-4.632155	0.775348
H	1.953954	-3.254549	1.262462
H	0.235461	-3.301820	1.738648
C	1.560541	0.857938	-0.153631
C	0.300492	1.504906	-0.189217
C	-0.791089	-0.675490	-0.397497
C	-0.875818	0.732153	-0.305037
C	2.804518	1.691901	-0.131761
C	2.925128	2.746838	0.796417
C	3.839476	1.483550	-1.059226
C	4.077023	3.542872	0.799009
C	4.979774	2.287811	-1.054594
H	3.746483	0.685381	-1.797089
C	5.107721	3.315561	-0.115133
H	4.158855	4.357982	1.522948
H	5.770680	2.110174	-1.786681
H	6.001001	3.944220	-0.103113

O	0.668227	3.650175	1.048965
C	1.766841	3.038333	1.716540
H	2.060180	3.755868	2.496631
H	1.438478	2.108146	2.219667
H	1.796468	3.530839	-1.603109
C	0.735223	3.735540	-1.412467
H	0.156716	3.423467	-2.297853
H	0.610710	4.822292	-1.286315
H	-2.373036	1.328447	-2.519799
C	-2.860775	1.635218	-1.591802
C	-4.108827	2.260526	-1.644264
C	-2.224025	1.396343	-0.364420
C	-4.766053	2.669919	-0.475191
H	-4.581331	2.431807	-2.615561
C	-2.879517	1.805108	0.808021
C	-4.127602	2.428041	0.750607
H	-2.403823	1.633357	1.774933
H	-4.615649	2.731729	1.680874
C	-6.101198	3.372786	-0.532322
H	-6.856174	2.765750	-1.054894
H	-6.022358	4.333528	-1.071361
H	-6.482190	3.597759	0.476144
C	-2.052557	-1.467745	-0.603032
C	-2.875984	-1.913783	0.444032
C	-2.452003	-1.795602	-1.912089
C	-4.049557	-2.635782	0.207077
C	-3.616355	-2.519307	-2.167080
H	-1.816280	-1.475677	-2.740142
C	-4.421197	-2.936497	-1.103902
H	-4.661311	-2.962642	1.048245
H	-3.894152	-2.757344	-3.195918
C	0.181936	3.032678	-0.162377
H	-0.886748	3.269623	-0.132165
C	0.501614	-2.860879	-0.370563
H	-0.522405	-3.205015	-0.553961
H	-5.337123	-3.501909	-1.288540
Br	-2.400572	-1.577941	2.276669

Transition state 1:

Dihedral angle $\theta=18.37^{\circ}$ (the arrow indicates positive sense of rotation)
XYZ Coordinates:

C	3.695083	-0.526917	1.246980
C	2.642106	-1.207952	0.613980
C	2.802151	-2.575947	0.332980
C	4.018172	-3.213906	0.593980
C	5.070149	-2.511872	1.176980
C	4.897105	-1.172877	1.523980
H	3.569048	0.531079	1.524980
H	4.135208	-4.280903	0.351980
H	6.026166	-3.016840	1.377980
H	5.712086	-0.620850	2.015980
C	1.626177	-3.356986	-0.145020
C	1.411082	-0.491993	0.257980
H	1.899212	-4.421977	-0.380020
H	1.161161	-2.879001	-1.049020
C	0.131101	-1.078035	0.401980
O	0.673181	-3.480017	0.898980
C	0.374130	-1.941027	2.709980
H	0.265160	-2.851031	3.346980
H	1.433119	-1.594992	2.760980
H	-0.294897	-1.137049	3.097980
C	1.525038	0.829011	-0.221020
C	0.394011	1.666974	-0.150020
C	-1.005922	-0.363073	-0.047020
C	-0.862970	1.067932	0.006980
C	2.792021	1.344053	-0.748020
C	3.348982	2.518071	-0.210020
C	3.431042	0.705074	-1.817020
C	4.536965	3.030111	-0.731020
C	4.616025	1.226113	-2.336020
H	2.997073	-0.212940	-2.241020
C	5.170987	2.384132	-1.793020
H	4.970935	3.948125	-0.306020
H	5.113042	0.718130	-3.175020
H	6.106973	2.791163	-2.203020

O	1.436939	3.818008	0.582980
C	2.648961	3.174048	0.930980
H	3.265933	4.008069	1.369980
H	2.433986	2.410041	1.730980
H	1.685963	3.095016	-2.131020
C	0.759948	3.568986	-1.727020
H	-0.108042	3.258957	-2.356020
H	0.875911	4.677990	-1.783020
H	-2.161040	3.184889	-1.280020
C	-2.586031	2.913875	-0.300020
C	-3.670055	3.633839	0.195980
C	-2.035996	1.852893	0.433980
C	-4.232044	3.312820	1.436980
H	-4.090082	4.462825	-0.393020
C	-2.603985	1.532874	1.677980
C	-3.688009	2.253838	2.171980
H	-2.184957	0.701888	2.266980
H	-4.120000	1.986824	3.147980
C	-5.373070	4.094783	1.961980
H	-6.124076	4.288758	1.156980
H	-5.013103	5.081794	2.348980
H	-5.884052	3.556766	2.797980
C	-2.235907	-0.836114	-0.723020
C	-2.785939	0.151868	-1.596020
C	-2.842865	-2.100134	-0.851020
C	-3.995935	0.017828	-2.254020
C	-4.099860	-2.229175	-1.481020
C	-4.704895	-1.178195	-2.147020
H	-4.384962	0.842815	-2.868020
H	-4.611828	-3.207192	-1.464020
C	0.512961	3.160978	-0.281020
H	-0.451055	3.650946	0.064980
C	-0.021858	-2.289040	1.276980
H	-1.109848	-2.607076	1.289980
H	-5.691891	-1.298228	-2.614020
H	-2.211970	1.065887	-1.819020
Br	-2.229808	-3.801113	-0.366020

REFERENCES AND NOTES

1. Kelly, T. R.; Sestelo, J. P.; Tellitu, I. J. Org. Chem. 1998, 63, 3655.
2. Rigaudy, J.; Klesney, S. P. K. (1979) Nomenclature of Organic Chemistry (IUPAC). Pergamon Press: New York.
3. Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem. Int. Ed. 1966, 5, 385.
4. Adriaenssens, L.; Severa, L.; Koval, D.; Císařová, I.; Belmonte, M. M.; Escudero-Adan, E. C.; Novotná, P.; Sazelová, P.; Vávra, J.; Pohl, R.; Šaman, D.; Urbanová, M.; Kašička, V.; Teplý, F. Chem. Sci. 2011, 2, 2314.
5. Jierry, L.; Harthong, S.; Aronica, C.; Mulatier, J. C.; Guy, L.; Guy, S. Org. Lett. 2011, 14, 288.
6. Rajca, A.; Pink, M.; Xiao, S.; Miyasaka, M.; Rajca, S.; Das, K.; Plessel, K. J. Org. Chem. 2009, 74, 7504.
7. Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M. Angew. Chem. Int. Ed. 2011, 50, 3684.
8. Stará, I. G.; Alexandrová, Z.; Teplý, F.; Sehnal, P.; Starý, I.; Šaman, D.; Buděšínský, M.; Cvačka, J. Org. Lett. 2005, 7, 2547.
9. Weitzenbock, R.; Klingler, A. Monatsh. Chem. 1918, 39, 315.
10. Cook, J. W. J. Chem. Soc. 1933, 1592.
11. Newman, M. S.; Lednicer, D. J. Am. Chem. Soc. 1956, 78, 4765.
12. Mallory, F. B.; Wood, C. S.; Gordon, J. T. J. Am. Chem. Soc. 1964, 86, 3094.
13. Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373.
14. Flammang-Barbieux, M.; Nasielski, J.; Martin, R. H. Tetrahedron Lett. 1967, 8, 743.
15. Martin, R. H. Angew. Chem. Int. Ed. 1974, 13, 649.
16. Laarhoven, W. H. Recl. Trav. Chim. Pays-Bas 1983, 102, 241.
17. Neo, A. G.; Lopez, C.; Romero, V.; Antelo, B.; Delamano, J.; Perez, A.; Fernandez, D.; Almeida, J. F.; Castedo, L.; Tojo, G. J. Org. Chem. 2010, 75, 6764.
18. Liu, L.; Yang, B.; Katz, T. J.; Poindexter, M. K. J. Org. Chem. 1991, 56, 3769.
19. Pearson, M. S. M.; Carbery, D. R. J. Org. Chem. 2009, 74, 5320.
20. Aloui, F.; El Abed, R.; Marinetti, A.; Hassine, B. Tetrahedron Lett. 2008, 49, 4092.
21. Owens, L.; Thilgen, C.; Diederich, F.; Knobler, C. B. Helv. Chim. Acta 1993, 76, 2757.
22. Deshayes, K.; Broene, R. D.; Chao, I.; Knobler, C. B.; Diederich, F. J. Org. Chem. 1991, 56, 6787.
23. Wynberg, H.; Groen, M. B. J. Am. Chem. Soc. 1970, 92, 6664.
24. Martin, R. H.; Baes, M. Tetrahedron 1975, 31, 2135.
25. Yamada, K.; Ogashiwa, S.; Tanaka, H.; Nakagawa, H.; Kawazura, H. Chem. Lett. 1981, 10, 343.
26. Tanaka, K.; Osuga, H.; Suzuki, H.; Shogase, Y.; Kitahara, Y. J. Chem. Soc., Perkin Trans. 1 1998, 935.
27. Laarhoven, W. H.; Cuppen, T. J. H. Tetrahedron Lett. 1966, 7, 5003.
28. Laarhoven, W. H.; Cuppen, T. J. H.; Nivard, R. J. F. Tetrahedron 1970, 26, 1069.
29. Laarhoven, W. H.; Cuppen, T. J. H.; Nivard, R. J. F. Tetrahedron 1970, 26, 4865.
30. Mallory, F. B.; Mallory, C. W. (2004) Photocyclization of Stilbenes and Related Molecules. Organic Reactions. John Wiley \& Sons.
31. Jorgensen, K. B. Molecules 2010, 15, 4334.
32. Larsen, J.; Bechgaard, K. Acta Chem. Scand. 1996, 50, 77.
33. Willmore, N. D.; Liu, L. B.; Katz, T. J. Angew. Chem. Int. Ed. 1992, 31, 1093.
34. Fox, J. M.; Katz, T. J. J. Org. Chem. 1999, 64, 302.
35. Paruch, K.; Vyklický, L.; Wang, D. Z.; Katz, T. J.; Incarvito, C.; Zakharov, L.; Rheingold, A. L. J. Org. Chem. 2003, 68, 8539.
36. Dreher, S. D.; Weix, D. J.; Katz, T. J. J. Org. Chem. 1999, 64, 3671.
37. Minuti, L.; Taticchi, A.; Marrocchi, A.; GacsBaitz, E. Tetrahedron 1997, 53, 6873.
38. Altman, Y.; Ginsburg, D. J. Chem. Soc. 1959, 466.
39. Minuti, L.; Taticchi, A.; Marrocchi, A.; Gacs-Baitz, E.; Galeazzi, R. Eur. J. Org. Chem. 1999, 11, 3155.
40. Minuti, L.; Taticchi, A.; Marrocchi, A. Synthetic Commun. 1998, 28, 2181.
41. Bogaert-Verhogen, D.; Martin, R. H. Tetrahedron Lett. 1967, 8, 3045.
42. Bestmann, H. J.; Both, W. Angew. Chem. Int. Ed. 1972, 11, 296.
43. Bergmann, E. D.; Szmuszkovicz, J. J. Am. Chem. Soc. 1951, 73, 5153.
44. Jenard-De Koninck, A.; Defay, N.; De Ridder, R. Bull. Soc. Chim. Belg. 1960, 69, 558.
45. Huber, R. S.; Jones, G. B. Tetrahedron Lett. 1994, 35, 2655.
46. Dubois, F.; Gingras, M. Tetrahedron Lett. 1998, 39, 5039.
47. Gingras, M.; Dubois, F. Tetrahedron Lett. 1999, 40, 1309.
48. Rajca, A.; Miyasaka, M.; Pink, M.; Wang, H.; Rajca, S. J. Am. Chem. Soc. 2004, 126, 15211.
49. Harrowven, D. C.; Nunn, M. I. T.; Fenwick, D. R. Tetrahedron Lett. 2002, 43, 3189.
50. Harrowven, D. C.; Guy, I. L.; Nanson, L. Angew. Chem. Int. Ed. 2006, 45, 2242.
51. Ichikawa, J.; Yokota, M.; Kudo, T.; Umezaki, S. Angew. Chem. Int. Ed. 2008, 47, 4870.
52. Takenaka, N.; Sarangthem, R. S. Abstr. Pap. Am. Chem. Soc. 2008, 236.
53. Takenaka, N.; Sarangthem, R. S.; Captain, B. Angew. Chem. Int. Ed. 2008, 47, 9708.
54. Takenaka, N.; Chen, J. S. Abstr. Pap. Am. Chem. Soc. 2009, 238.
55. Takenaka, N.; Chen, J. S.; Captain, B.; Sarangthem, R. S.; Chandrakumar, A. J. Am. Chem. Soc. 2010, 132, 4536.
56. Côté, J.; Collins, S. K. Synthesis-Stuttgart 2009, 1499.
57. Grandbois, A.; Collins, S. K. Chem.-Eur. J. 2008, 14, 9323.
58. Stará, I. G.; Strarý, I.; Kollárovič, A.; Teplý, F.; Šaman, D.; Tichý, M. J. Org. Chem. 1998, 63, 4046.
59. Andronova, A.; Szydlo, F.; Teplý, F.; Tobrmanová, M.; Volot, A.; Stará, I. G.; Starý, I.; Rulíšek, L.; Šaman, D.; Cvačka, J.; Fiedler P.; Vojtíšek, P. Collect. Czech. Chem. Commun. 2009, 74, 189.
60. Krausová, Z.; Sehnal, P.; Teplý, F.; Stará, I. G.; Starý, I.; Šaman, D.; Cvačka, J.; Fidler, P. Collect. Czech. Chem. Commun. 2007, 72, 1499.
61. Rybáček, J.; Huerta-Angeles, G.; Kollárovič, A.; Stará, I. G.; Starý, I.; Rahe, P.; Nimmrich, M.; Kühnle, A. Eur. J. Org. Chem. 2011, 853.
62. Stará, I. G.; Starý, I.; Kollárovič, A.; Teplý, F.; Vyskočil, S.; Šaman, D. Tetrahedron Lett. 1999, 40, 1993.
63. Stará, I. G.; Starý, I.; Kollárovič, A.; Teplý, F.; Šaman, D.; Fiedler, P. Collect. Czech. Chem. Commun. 2003, 68, 917.
64. Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Šaman, D.; Vyskočil, S.; Fiedler, P. J. Org. Chem. 2003, 68, 5193.
65. Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Luštinec, D.; Krausová, Z.; Šaman, D.; Fiedler, P. Eur. J. Org. Chem. 2007, 4244.
66. Alexandrová, Z.; Stará, I. G.; Sehnal, P.; Teplý, F.; Starý, I.; Šaman, D.; Fiedler, P. Collect. Czech. Chem. Commun. 2004, 69, 2193.
67. Alexandrová, Z.; Sehnal, P.; Stará, I. G.; Starý, I.; Šaman, D.; Urquhart, S. G.; Otero, E. Collect. Czech. Chem. Commun. 2006, 71, 1256.
68. Stará, I. G.; Kollárovič, A.; Teplý, F.; Starý, I.; Šaman, D.; Fiedler, P. Collect. Czech. Chem. Commun. 2000, 65, 577.
69. Teplý, F.; Stará, I. G.; Starý, I.; Kollárovič, A.; Šaman, D.; Rulíšek, L.; Fiedler, P. J. Am. Chem. Soc. 2002, 124, 9175.
70. Kaseyama, T.; Furumi, S.; Zhang, X.; Tanaka, K.; Takeuchi, M. Angew. Chem. Int. Ed. 2011, 50, 3684.
71. Osuga, H.; Tanaka, K. J. Syn. Org. Chem. Jpn. 2002, 60, 593.
72. Tanaka, K.; Osuga, H.; Kitahara, Y. J. Org. Chem. 2002, 67, 1795.
73. Tanaka, K.; Kamisawa, A.; Suda, T.; Noguchi, K.; Hirano, M. J. Am. Chem. Soc. 2007, 129, 12078.
74. Tanaka, K.; Fukawa, N.; Suda, T.; Noguchi, K. Angew. Chem. Int. Ed. 2009, 48, 5470.
75. Crittall, M. R.; Rzepa, H. S.; Carbery, D. R. Org. Lett. 2011, 13, 1250.
76. Severa, L.; Adriaenssens, L.; Vávra, J.; Šaman, D.; Císařová, I.; Fiedler, P.; Teplý, F. Tetrahedron 2010, 66, 3537.
77. Teplý, F. Chem. Listy 2011, 105, 506.
78. Han, S. D.; Bond, A. D.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem. Int. Ed. 2002, 41, 3223.
79. Han, S. D.; Anderson, D. R.; Bond, A. D.; Chu, H. V.; Disch, R. L.; Holmes, D.; Schulman, J. M.; Teat, S. J.; Vollhardt, K. P. C.; Whitener, G. D. Angew. Chem. Int. Ed. 2002, 41, 3227.
80. Peňa, D.; Cobas, A.; Pérez, D.; Guitán, E.; Castedo, L. Org. Lett. 2003, 5, 1863.
81. Peña, D.; Pérez, D.; Guitán, E. Heterocycles 2007, 74, 89.
82. Peña, D.; Pérez, D.; Guitán, E. Chem. Rec. 2007, 7, 326.
83. Rajca, A.; Miyasaka, M. (2007) Functional Organic Materials: Syntheses, Strategies and Applications. John Wiley \& Sons.
84. Urbano, A. Angew. Chem. Int. Ed. 2003, 42, 3986.
85. Newman, M. S.; Lutz, W. B. J. Am. Chem. Soc. 1956, 78, 2469.
86. Thongpanchang, T.; Paruch, K.; Katz, T. J.; Rheingold, A. L.; Lam, K. C.; Liable-Sands, L. J. Org. Chem. 2000, 65, 1850.
87. Phillips, K. E. S.; Katz, T. J.; Jockusch, S.; Lovinger, A. J.; Turro, N. J. J. Am. Chem. Soc. 2001, 123, 11899.
88. Field, J. E.; Muller, G.; Riehl, J. P.; Venkataraman, D. J. Am. Chem. Soc. 2003, 125, 11808.
89. Latorre, A.; Urbano, A.; Carreño, M. C. Chem. Comm. 2009, 43, 6652.
90. Latorre, A.; Urbano, A.; Carreño, M. C. Chem. Commun. 2011, 47, 8103.
91. Šámal, M.; Míšek, J.; Stará, I. G.; Starý, I. Collect. Czech. Chem. Commun. 2009, 74, 1151.
92. Tanaka, K.; Shogase, Y.; Osuga, H.; Suzuki, H.; Nakamura, K. Tetrahedron Lett. 1995, 36, 1675.
93. Guin, J.; Besnard, C.; Lacour, J. Org. Lett. 2010, 12, 1748.
94. Kim, Y. H.; Tishbee, A.; Gil-Av, E. J. Am. Chem. Soc. 1980, 102, 5915.
95. Kim, Y. H.; Tishbee, A.; Gil-Av, E. Science 1981, 213, 1379.
96. Ogawa, Y.; Ueno, T.; Karikomi, M.; Seki, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2002, 43, 7827.
97. Ogawa, Y.; Toyama, M.; Karikomi, M.; Seki, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2003, 44, 2167.
98. Karikomi, M.; Yamada, M.; Ogawa, Y.; Houjou, H.; Seki, K.; Hiratani, K.; Haga, K.; Uyehara, T. Tetrahedron Lett. 2005, 46, 5867.
99. Sehnal, P.; Krausová, Z.; Teplý, F.; Stará, I. G.; Starý, I.; Rulíšek, L.; Šaman, D.; Císařová, I. J. Org. Chem. 2008, 73, 2074.
100. Starý, I.; Stará, I. G.; Alexandrová, Z.; Sehnal, P.; Teplý, F.; Šaman, D.; Rulíšek, L. Pure Appl. Chem. 2006, 78, 495.
101. Stará, I. G.; Starý, I.; Tichý, M.; Závada, J.; Hanuš, V. J. Am. Chem. Soc. 1994, 116, 5084.
102. Miyasaka, M.; Rajca, A.; Pink, M.; Rajca, S. Chem.-Eur. J. 2004, 10, 6531.
103. Tanaka, K.; Suzuki, H.; Osuga, H. J. Org. Chem. 1997, 62, 4465.
104. Carreño, M. C.; Garcia-Cerrada, S.; Urbano, A. Chem. Commun. 2002, 1412.
105. Carreño, M. C.; Gonzalez-Lopez, M.; Urbano, A. Chem. Commun. 2005, 611.
106. Carreño, M. C.; García-Cerrada, S.; Urbano, A. Chem.-Eur. J. 2003, 9, 4118.
107. Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. Chemistry Chem.Eur. J. 2005, 11, 1145.
108. Benhassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1986, 95, 557.
109. Benhassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1985, 94, 597.
110. Benhassine, B.; Gorsane, M.; Pecher, J.; Martin, R. H. Bull. Soc. Chim. Belg. 1987, 96, 801.
111. Weix, D. J.; Dreher, S. D.; Katz, T. J. J. Am. Chem. Soc. 2000, 122, 10027.
112. Dreher, S. D.; Katz, T. J.; Lam, K. C.; Rheingold, A. L. J. Org. Chem. 2000, 65, 815.
113. Nakano, D.; Hirano, R.; Yamaguchi, M.; Kabuto, C. Tetrahedron Lett. 2003, 44, 3683.
114. Nakano, D.; Yamaguchi, M. Tetrahedron Lett. 2003, 44, 4969.
115. Reetz, M. T.; Beuttenmuller, E. W.; Goddard, R. Tetrahedron Lett. 1997, 38, 3211.
116. Reetz, M. T.; Sostmann, S. J. Organomet. Chem. 2000, 603, 105.
117. Krausová, Z.; Sehnal, P.; Bondzic, B. P.; Chercheja, S.; Eilbracht, P.; Stará, I. G.; Šaman, D.; Starý, I. Eur. J. Org. Chem. 2011, 3849.
118. Chen, J. S.; Takenaka, N. Chem.-Eur. J. 2009, 15, 7268.
119. Chen, J. S.; Captain, B.; Takenaka, N. Org. Lett. 2011, 13, 1654.
120. J. Vacek, J. Vacek Chocholoušová, unpublished results.
121. a) Caruso, A.; Tovar, J. D. J. Org. Chem. 2011, 76, 2227; b) Chouhan, G.; Alper, H. J. Org. Chem. 2009, 74, 6181.
122. Zarei, A.; Hajipour, A. R.; Khazdooz, L. Synthesis 2009, 941.
123. The role of the aryl substituents on the triyne structure will be discussed in detail in Chapter 3.1.1.3.
124. Aloui, F.; El Abed, R.; Marinetti, A.; Ben Hassine, B. Tetrahedron Lett. 2007, 48, 2017.
125. Bailey, W. F.; Patricia, J. J.; Nurmi, T. T.; Wang, W. Tetrahedron Lett. 1986, 27, 1861.
126. Schlosser, M. (2004) Organometallics in synthesis: A manual. John Wiley \& Sons.
127. Leroux, F.; Schlosser, M.; Zohar, E.; Marek, I. (2004) The preparation of organolithium reagents and intermediates. Chemistry of Organolithium Compounds 1. New York: Wiley.
128. Jedlička, B.; Crabtree, R. H.; Siegbahn, P. E. M. Organometallics 1997, 16, 6021.
129. Lau, K. S. Y.; Schlosser, M. J. Org. Chem. 1978, 43, 1595.
130. Neumann, H.; Seebach, D. Tetrahedron Lett. 1976, 17, 4839.
131. Phillips, N. H.; Reich, H. J. Abstr. Pap. Am. Chem. Soc. 1985, 190, 259.
132. Reich, H. J.; Phillips, N. H.; Reich, I. L. J. Am. Chem. Soc. 1985, 107, 4101.
133. Imamoto, T.; Oshiki, T. Tetrahedron Lett. 1989, 30, 383.
134. Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto, T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244.
135. Keglevich, G.; Ujszaszy, K.; Szollosy, A.; Ludanyi, K.; Toke, L. J. Organomet. Chem. 1996, 516, 139.
136. Oshiki, T.; Imamoto, T. Bull. Chem. Soc. Jpn. 1990, 63, 2846.
137. Oshiki, T.; Imamoto, T. Bull. Chem. Soc. Jpn. 1990, 63, 3719.
138. Laue, S.; Greiner, L.; Woltinger, J.; Liese, A. Adv. Synth. Catal. 2001, 343, 711.
139. Lau, S. Y. W.; Hughes, G.; O'Shea, P. D.; Davies, I. W. Org. Lett. 2007, 9, 2239.
140. Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333.
141. Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
142. Paul, R.; Ali, M.; Punniyamurthy, T. Synthesis 2010, 4268.
143. Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333.
144. Nishide, H.; Kaneko, T.; Toriu, S.; Kuzumaki, Y.; Tsuchida, E. Bull. Chem. Soc. Jpn. 1996, 69, 499.
145. Ruiz, J.; Ardeo, A.; Ignacio, R.; Sotomayor, N.; Lete, E. Tetrahedron 2005, 61, 3311.
146. Hillard, R. L.; Vollhardt, K. P. J. Am. Chem. Soc. 1977, 99, 4058.
147. Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008, 3537.
148. Yamazaki, H.; Hagihara, N. J. Organomet. Chem. 1970, 21, 431.
149. Gleiter, R.; Langer, H.; Nuber, B. Angew. Chem. Int. Ed. 1994, 33, 1272.
150. Gleiter, R.; Kratz, D. Angew. Chem. Int. Ed. 1990, 29, 276.
151. Roidl, G.; Enkelmann, V.; Bunz, U. H. F. Organometallics 1998, $18,4$.
152. Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168.
153. Gonzalez, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 5500.
154. Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste F. D. Science 2007, 317, 496.
155. These calculations were done as a part of the Molecular Modelling course under academic guidance of Dr. Jana Vacek Chocholoušová and Dr. J. Vacek.
156. Takeuchi, R.; Tanaka, S.; Nakaya, Y. Tetrahedron Lett. 2001, 42, 2991.
157. Geny, A.; Agenet, N.; Iannazzo, L.; Malacria, M.; Aubert, C.; Gandon, V. Angew. Chem. Int. Ed. 2009, 48, 1810.
158. Fukazawa, A.; Yamada, H.; Yamaguchi, S. Angew. Chem. Int. Ed. 2008, 47, 5582.
159. Allen, F. H.; Motherwell, W. D. S. Acta Crystallogr. Sect. B. 2002, 58, 407.
160. Saaby, S.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2005, 3, 3365.
161. Novák, P.; Pohl, R.; Kotora, M.; Hocek, M. Org. Lett. 2006, 8, 2051.
162. Das, S. K.; Roy, R. Tetrahedron Lett. 1999, 40, 4015.
163. Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143.
164. Dr. J. Vacek, Dr. J. Vacek Chocholoušová, DFT calculations, unpublished results.
165. Žádný, J.; Jančařík, A.; Andronova, A.; Šámal, M.; Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.; Šaman, D.; Císařová, I.; Stará, I. G.; Starý, I. 2012, accepted.
166. Mitsunobu, O.; Yamada, Y. Bull. Chem. Soc. Jpn. 1967, 40, 2380.
167. Cowart, M.; Faghih, R.; Curtis, M. P.; Gfesser, G. A.; Bennani, Y. L.; Black, L. A.; Pan, L.; Marsh, K. C.; Sullivan, J. P.; Esbenshade, T. A.; Fox, G. B.; Hancock, A. A. J. Med. Chem. 2004, 48, 38.
168. Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1996, 118, 1809.
169. Sehnal, P.; Stará, I. G.; Šaman, D.; Tichý, M.; Míšek, J.; Cvačka, J.; Rulíšek, L.; Chocholoušová, J.; Vacek, J.; Goryl, G.; Szymonski, M.; Císařová, I.; Starý, I. Proc. Natl. Acad. Sci. USA 2009, 106, 13169.
170. Tribout, J.; Wynberg, H.; Doyle, M.; Martin, R. H. Tetrahedron Lett. 1972, 2839.
171. Botek, E.; Champagne, B. J. Chem. Phys. 2007, 127.
172. Groen, M. B.; Wynberg, H. J. Am. Chem. Soc. 1971, 93, 2968.
173. Burgi, T.; Urakawa, A.; Behzadi, B.; Ernst, K. H.; Baiker, A. New J. Chem. 2004, 28, 332.
174. Abbate, S.; Lebon, F.; Longhi, G.; Fontana, F.; Caronna, T.; Lightner, D. A. Phys. Chem. Chem. Phys. 2009, 11, 9039.
175. Miyasaka, M.; Pink, M.; Rajca, S.; Rajca, A. Angew. Chem. Int. Ed. 2009, 48, 5954.
176. Lebon, F.; Longhi, G.; Gangemi, F.; Abbate, S.; Priess, J.; Juza, M.; Bazzini, C.; Caronna, T.; Mele, A. J. Phys. Chem. A 2004, 108, 11752.
177. Furche, F.; Ahlrichs, R.; Wachsmann, C.; Weber, E.; Sobanski, A.; Vogtle, F.; Grimme, S. J. Am. Chem. Soc. 2000, 122, 1717.
178. Graule, S.; Rudolph, M.; Vanthuyne, N.; Autschbach, J.; Roussel, C.; Crassous, J.; Reau, R. J. Am. Chem. Soc. 2009, 131, 3183.
179. Stephens, P. J.; Devlin, F. J.; Gasparrini, F.; Ciogli, A.; Spinelli, D.; Cosimelli, B. J. Org. Chem. 2007, 72, 4707.
180. Berova, N.; Bari, L. D.; Pescitelli, G. Chem. Soc. Rev. 2007, 36, 914.
181. Abbate, S.; Bazzini, C.; Caronna, T.; Fontana, F.; Gangemi, F.; Lebon, F.; Longhi, G.; Mele, A.; Sora, N. I. Inorg. Chim. Acta 2007, 360, 908.
182. Laarhoven, W.; Prinsen, W. J. C. (1984) Carbohelicenes and heterohelicenes. Stereochemistry (pp. 63-130). Springer Berlin / Heidelberg.
183. The triyne 233 was prepared by A. Andronova as a part of the Master thesis.
184. The phosphite (P, S, S)-235 was prepared from the corresponding 3-hydroxyhelicene-like compound at the same reaction conditions used for obtaining (P, S, S)-168. The 3-hydroxyhelicene-like compound was prepared in our group by Dr . N. C. Clemence.
185. Pignataro, L.; Lynikaite, B.; Colombo, R.; Carboni, S.; Krupička, M.; Piarulli, U.; Gennari, C. Chem.Commun. 2009, 3539.
186. Jiang, X. B.; Lefort, L.; Goudriaan, P. E.; de Vries, A. H. M.; van Leeuwen, P. W. N. M.; de Vries, J. G.; Reek, J. N. H. Angew. Chem. Int. Ed. 2006, 45, 1223.
187. Li, J.; Siegler, M. A.; Lutz, M.; Spek, A. L.; Klein Gebbink, R. J. M.; van Koten, G. Organometallics 2009, 28, 5323.
188. Connolly, D. J.; Lacey, P. M.; McCarthy, M.; Saunders, C. P.; Carroll, A. M.; Goddard, R.; Guiry, P. J. J. Org. Chem. 2004, 69, 6572.
189. Flanagan, S. P.; Goddard, R.; Guiry, P. J. Tetrahedron 2005, 61, 9808.
190. The triyne 237 was prepared in our group by Mgr. A. Jančařik.
191. a) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168; b) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675.
192. Nieto-Oberhuber, C.; Muñoz, M. P.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
193. Nieto-Oberhuber, C.; Muñoz, M. P.; López, S.; Jiménez-Nuñez, E.; Nevado, C.; Herrero-Gómez, E.; Raducan, M.; Echavarren, A. M. Chem.-Eur. J. 2006, 12, 1677.
194. Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem. Int. Ed. 1998, 37, 1415.
195. Casado, R.; Contel, M.; Laguna, M.; Romero, P.; Sanz, S. J. Am. Chem. Soc. 2003, 125, 11925.
196. Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.
197. Braunstein, P.; Lehner, H.; Matt, D.; Burgess, K.; Ohlmeyer, M. J. (2007); A Platinum-Gold Cluster: Chloro-1кCl-Bis(Triethylphosphine-1кP)Bis(Triphenyl-Phosphine)-2к $P, \quad 3 \kappa P$-Triangulo-Digold-Platinum(1+) Trifluoromethanesulfonate Inorganic Syntheses (pp. 218-221). John Wiley \& Sons.
198. Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178.
199. Muñoz, M. P.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293.
200. Xiao, H.; Weng, Y. X.; Wong, W. T.; Mak, C. W.; Che, C. M. J. Chem. Soc., Dalton Trans. 1997, 221.
201. Mendez, M.; Munoz, M. P.; Echavarren, A. M. J. Am. Chem. Soc. 2000, 122, 11549.
202. 2-aza[6]helicene was synthesised by Dr. J. Míšek.
203. Nielsen, C. B.; Fraser, J. M.; Schroeder, B. C.; Du, J.; White, A. J. P.; Zhang, W.; McCulloch, I. Org. Lett. 2011, 13, 2414.
204. Perepichka, I. F. Perepichka, D. F. (2009) Handbook of Thiophene-Based Materials: Applications in Organic Electronics and Photonics, John Wiley \& Sons.
205. Shultz, D. A.; Gwaltney, K. P.; Lee, H. J. Org. Chem. 1998, 63, 4034.
206. Halbes, U.; Pale, P. Tetrahedron Lett. 2002, 43, 2039.
207. Lee, P. H.; Kim, H.; Lee, K. Adv. Synth. Catal. 2005, 347, 1219.
208. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.
209. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Crystallogr. 2003, 36, 1487.
210. Moseley, K.; Kang, J. W.; Maitlis, P. M. J. Chem. Soc. A 1970, 2875.
211. Garcia, P.; Evanno, Y.; George, P.; Sevrin, M.; Ricci, G.; Malacria, M.; Aubert, C.; Gandon, V. Org. Lett. 2011, 13, 2030.
212. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Laham, Al, Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. Gaussian 03, Revision C. 02. 2003.
213. Varetto, U. Molekel. [v5.4]. 2012. Swiss National Supercomputing Centre: Manno (Switzerland).
214. Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. J. Appl. Crystallogr. 2006, 39, 453.
215. Ruiz, J.; Ardeo, A.; Ignacio, R.; Sotomayor, N.; Lete, E. Tetrahedron 2005, 61, 3311.
216. Wang, L.; Shevlin, P. B. Tetrahedron Lett. 2000, 41, 285.
217. Krausová, Z. PhD thesis; Charles University in Prague; Faculty of Science, 2008.
218. Cuperly, D.; Gros, P.; Fort, Y. J. Org. Chem. 2001, 67, 238.
219. Jones, G. B.; Wright, J. M.; Hynd, G.; Wyatt, J. K.; Warner, P. M.; Huber, R. S.; Li, A.; Kilgore, M. W.; Sticca, R. P.; Pollenz, R. S. J. Org. Chem. 2002, 67, 5727.
220. Arcadi, A.; Cacchi, S.; Del Rosario, M.; Fabrizi, G.; Marinelli, F. J. Org. Chem. 1996, 61, 9280.
221. Dewar, M. J. S., Zoebisch, E. G., Healy, E. F. J. Am. Chem. Soc. 1985, 107, 3902.
222. a) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200; b) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.
223. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
224. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
225. Peng, C.; Schlegel, H. B. Israel J. Chem. 1993, 33, 449.
226. a) Plehnert, R.; Schroeter, J. A.; Tschierske, C. J. Mat. Chem. 1998, 8, 2611;
b) Kukosha, T.; Trufilkina, N.; Katkevics, M. Synlett 2011, 2525.

[^0]: ${ }^{[a]} 65 \%$ conversion.

[^1]: ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.05 (q), 22.08 (q), $25.74\left(\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=6.1\right), 25.79\left(\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=\right.$ 11.7, 2C), $26.13\left(t, J_{P C}=3.5\right), 26.32(t, 2 C), 26.56\left(t, J_{P C}=14.3\right), 26.63\left(t, J_{P C}=5.3\right)$, $26.70\left(\mathrm{t}, J_{\mathrm{PC}}=7.2\right), 26.93\left(\mathrm{t}, J_{\mathrm{PC}}=10.7\right), 30.24\left(\mathrm{~d}, J_{\mathrm{PC}}=34.0\right), 31.60\left(\mathrm{~d}, J_{\mathrm{PC}}=33.4\right)$, 66.98 (t$), 67.34$ (t), 72.62 (s), 72.82 (d), 125.05 (d, $J_{\mathrm{PC}}=47.3$), 126.39 (d), 126.41 (d), 127.33 (d), 127.34 (d), 127.44 (d), 127.66 (d), 127.72 (d), 127.76 (d), 128.49 (d, JPC $=$ 8.5), 129.15 (d), 129.57 (d), 129.65 (d), 129.91 (d), 130.05 (d), 131.68 (d, JPC $=4.8$), 131.89 (d), 136.13 (s), 137.22 (s), 137.26 (s), 137.71 (s), 137.94 (d, $J_{\mathrm{PC}}=9.9$), 138.23 (s), 139.70 (s), 139.74 (s), 139.77 (s), 140.40 (s, $J_{\mathrm{PC}}=2.4$), $140.87\left(\mathrm{~s}, J_{\mathrm{PC}}=\right.$ 10.4), 141.92 (s), 142.39 (s).

[^2]: ${ }^{13}{ }^{3}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 22.21 (q), 22.41 (q), 26.01 (t$), 26.33\left(\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=2.4\right.$), 26.35 $\left(\mathrm{t}, J_{\mathrm{PC}}=2.9\right), 26.67\left(\mathrm{t}, J_{\mathrm{PC}}=7.8\right), 26.78\left(\mathrm{t}, J_{\mathrm{PC}}=8.3\right), 31.34\left(\mathrm{~s}, J_{\mathrm{PC}}=33.7\right), 31.46(\mathrm{~s}$, $J_{\mathrm{PC}}=33.4$), 67.28 (t$), 67.43$ (t$), 72.74$ (d), 72.77 (d), $125.00\left(\mathrm{~s}, \mathrm{~J}_{\mathrm{PC}}=47.6\right), 126.45$ (d), 126.48 (d), 127.15 (d), 127.39 (d), 127.41 (d), 127.70 (d), 127.72 (d), 127.84 (d), 128.64 (d), 129.69 (d), 129.76 (d), 130.05 (d), 130.07 (d), 131.74 (d, JPC $=6.3$), 131.91 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=8.9$), 132.03 (d), 133.61 ($\mathrm{d}, \mathrm{J}_{\mathrm{PC}}=8.7$), 136.18 (s$), 137.37$ (s), 137.55 (s), 137.71 (s), 138.02 (s), 138.13 (s, J $\mathrm{JPC}^{2}=9.3$), 139.70 (s), 139.74 (s), 139.80 (s), 142.13 (s), 142.62 (s), 143.41 ($s, J_{\mathrm{PC}}=2.4$).

[^3]: ${ }^{13}$ C NMR ($151 \mathrm{MHz}, d_{6}$-acetone, $\mathrm{rfp}=29.8 \mathrm{ppm}$): 18.47 (q), 18.77 (q), 21.10 (q), 51.96 (q), 73.32 (d), 74.14 (d), 120.08 (d), 120.19 (d), 121.99 (d), 123.72 (s), 123.87 (s), 123.91 (s), 124.79 (s), 126.23 (s), 129.27 (d), 129.36 (d), 129.37 (d), 129.40 (d), 129.87 (d), 129.90 (d), 130.30 (d), 131.26 (d), 131.49 (d), 131.63 (d), 131.72 (d), 135.56 (s), 135.62 (s), 137.10 (s), 137.13 (s), 138.23 (s), 138.80 (s), 139.47 (s), 140.31 (s), 154.39 (s), 158.52 (s), 166.50 (s).

[^4]: ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 0.25 (q), 21.66 (q), 22.57 (q), 66.47 (d), 86.40 (s), 87.81 (s), 99.92 (s), 101.57 (s), 114.55 (s), 116.49 (d), 119.67 (s), 121.81 (d), 129.19 (d), 129.83 (d), 131.79 (d), 133.80 (d), 138.76 (s), 159.17 (s).

[^5]: ${ }^{31}$ P NMR (202 MHz, CDCl_{3}): 33.22 (s).

