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Abstrakt

Název: Určováńı strukturńıch a dynamických vlastnost́ı biomolekul pomoćı teoretických

výpočt̊u parametr̊u spekter NMR

Autor: Ladislav Benda, ladislav.benda@gmail.com

Katedra/Ústav: Ústav organické chemie a biochemie AV ČR, v.v.i.

Vedoućı doktorské práce: Dr. Vladimı́r Sychrovský, Ústav organické chemie a biochemie

AV ČR, v.v.i., vladimir.sychrovsky@uochb.cas.cz

Abstrakt: Předkládaná doktorská práce se zaměřuje na teoretické modelováńı parametr̊u

spekter nukleárńı magnetické rezonance (NMR) v peptidech a nukleových kyselinách. Mo-

delovány byly předevš́ım závislosti NMR parametr̊u na molekulárńı struktuře a solvataci.

Velký d̊uraz byl kladen na porovnáńı vypočtených dat s experimentem. Studovanými

modely byly předevš́ım di-peptid l-alanyl-l-alanin (AA) a fosfátová skupina páteře nuk-

leových kyselin. Na základě výpočt̊u se podařilo určit konformace všech tř́ı nabitých

forem AA v roztoku a vysvětlit experimentálně pozorované změny NMR parametr̊u při

změnách pH. Byly kalibrovány závislosti NMR kros-korelovaných relaxačńıch rychlost́ı na

geometrii molekuly AA. 31P NMR parametry ve fosfátu nukleových kyselin byly systema-

ticky modelovány v závislosti na konformaci a solvataci fosfátu. Navrhli jsme pravidla pro

kvalitativńı strukturńı interpretaci dvojvazných jaderných spin–spinových konstant 2JPC.

Podařilo se modelovat změny 31P NMR parametr̊u zp̊usobené koordinaćı iontu Mg2+ k

fosfátu nukleových kyselin. Byly úspěšně simulovány ńızkofrekvenčńı pásy v Ramanových

spektrech vodných roztok̊u soĺı iontu Mg2+.

Kĺıčová slova: kvantově-chemické výpočty, NMR parametry, peptidy, nukleové kyseliny,

kovové ionty
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Abstract

Subject: Determination of structure and dynamics of biomolecules by theoretical calcu-

lations of NMR spectroscopic parameters

Author: Ladislav Benda, ladislav.benda@gmail.com

Department/Institute: Institute of Organic Chemistry and Biochemistry, AS CR

Supervisor: Dr. Vladimı́r Sychrovský, Institute of Organic Chemistry and Biochemistry,
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Abstract: This doctoral work was focused on theoretical modeling of nuclear magnetic

resonance (NMR) parameters in peptides and nucleic acids. Dependences of NMR para-

meters on molecular structure and solvation were primarily modeled. Great emphasis was

put on the comparison of the calculated data with the NMR experiment. The molecular

models studied included the l-alanyl-l-alanine di-peptide (AA) and the phosphate group

of nucleic acid backbone. Conformations of all three charged forms of AA in solution

were determined and the respective pH-induced changes of experimental NMR chemical

shifts and nuclear spin–spin coupling constants were explained. Dependences of NMR

cross-correlated relaxation rates on the AA backbone geometry were calibrated. The 31P

NMR parameters in nucleic acid phosphate were systematically calculated in dependence

on the backbone conformation and the phosphate solvation pattern. Qualitative rules for

the structural interpretation of two-bond nuclear spin–spin couplings 2JPC were proposed.

Changes in the 31P NMR parameters induced by the coordination of the Mg2+ cation to

the nucleic acid phosphate were calculated. Specific low-frequency bands observed in the

Raman spectra of aqueous Mg2+ salt solutions were successfully simulated.

Keywords: quantum-chemistry calculations, NMR parameters, peptides, nucleic acids,

metal ions
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1 Introduction

Determination of structure and dynamical behavior of biomolecules is a fundamental

part of contemporary research. The knowledge of biomolecular structure is crucial for

understanding their function and role in biological processes as well as for development

of new drugs and nanodevices. Molecular spectroscopy techniques such as NMR, infrared

and Raman spectroscopy, (vibrational) circular dichroism, Raman optical activity, and

many others are well suited for detailed studies of molecular systems in liquid phase.

Reliable interpretation of the experimental data is essential for the application of all

spectroscopic methods. Improved interpretation schemes can substantially increase both

the amount and relevance of information obtained from spectroscopic measurements.

During the past two decades, theoretical calculations have become an indispensable

part of spectroscopic research, enabling unique correlation of the experimental data with

molecular structure and dynamics at the atomic level. Many computational methods

are available nowadays, ranging from very accurate and demanding quantum chemistry

methods based on fundamental principles of quantum mechanics to rather rough semi-

empirical approximations. The ab initio wavefunction methods rigorously approximate

the exact solution of Schrödinger equation and their accuracy can be systematically im-

proved. However, due to their high computational cost they are mostly used only for

calibration purposes. An alternative approach emerged with the onset of density functio-

nal theory (DFT). It was shown that satisfactory results can be obtained with the DFT at

a fraction of the ab initio computational cost provided that the DFT was properly tested

and calibrated for the particular purpose. The DFT methods turned out particularly use-

ful for calculations of spectroscopic parameters. With the current computer power, DFT

allows for affordable spectroscopic calculations even in large molecular systems, extensive

conformational sampling, and averaging over statistical distribution of solvent molecules.

As explained in chapter 2, the quantum chemistry calculations of spectroscopic pa-

rameters are much more demanding than those of energy or gradient. Moreover, the

effects of solvent and molecular motion are usually not negligible and their proper des-

cription further increases the time demands. The performance of individual techniques

also depends on the calculated quantity and the particular system under study. Therefore,

the accuracy of all approximations employed in the spectroscopic calculations should be

balanced with their computational cost.

This doctoral thesis is aimed at theoretical modeling and interpretation of NMR spec-

troscopic properties of fundamental building blocks of peptide and nucleic acid structure.

Special attention is dedicated to the effects of molecular flexibility and solvation. The

presented material is for clarity divided into two sections according to the molecular sys-

tem under study: (1) Computational NMR studies of l-alanyl-l-alanine (publications
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I–III). (2) Modeling the effects of molecular flexibility and solvation on NMR parame-

ters in nucleic acid phosphate (publications IV–VI). The rest of this chapter introduces

the reader to these topics and states the aims of the thesis. Chapter 2 summarizes the

applied computational techniques and chapter 3 gives the theoretical background for the

NMR spectroscopy and NMR parameters. The important results of publications I–VI are

presented in chapter 4 and the achieved goals are summarized in the final chapter 5. A

complete account of the presented work is given in the explicitly enclosed publications.

1.1 Computational NMR studies of l-alanyl-l-alanine

Peptides and proteins are functional biomolecules consisting of amino acids linked with

amide bonds. One of the most distinguished features of peptides is their ability to fold into

active conformation in which they can exert their biological function. Peptide conforma-

tion is characterized by repetitive sequence of backbone torsion angles ϕ, ψ and ω (Figure

1.1). The torsions ϕ and ψ describe backbone conformation of each amino acid; the values

found in peptides are usually visualized in the form of so-called Ramachandran plot. The

torsion angle ω describing the conformation of the amide bond is mostly found around

180◦ (trans conformation) and rarely also around 0◦ (cis conformation).

(a) (b) (c)

ϕn

ψn

ωn

ϕn+1

α

α

Figure 1.1 (a) A schematic example of peptide fold (visualized with Chimera). (b)
A close-up of peptide backbone structure with definition of backbone torsion angles ϕ,
ψ, ω, backbone atoms Cα, C′, N, amino-acid side chains -R, and amino-acid residue
numbering (starting from N-terminus). (c) Example of Ramachandran plot; adopted
from http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/rama.html.

Determination of peptide structure with NMR spectroscopy usually relies on mea-

surement and interpretation of the three-bond nuclear spin–spin coupling constants (3J-

couplings), the NMR relaxation enhancements due to the nuclear Overhauser effect (NOE),

and the residual dipolar couplings (RDCs) in partially oriented media. The 3J-couplings

are interpreted as structural restraints on the peptide backbone torsion angles via known

Karplus relations, the NOEs provide 1H–1H inter-atomic distances, and the RDCs contain

information on spatial orientation of dipolar vectors.

http://www.cryst.bbk.ac.uk/PPS95/course/3_geometry/rama.html
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Of the three backbone torsion angles, NMR determination of torsion ψ is typically the

most problematic since there is no 3JHH coupling that could be assigned to this angle with

a Karplus relation. At the same time, the torsion ψ is very important as it distinguishes

between two major peptide backbone patterns, the α-helix and the β-sheet (Figure 1.1).

Other NMR parameters such as cross-correlated relaxation rates [1–3] could be used for

determining the torsion angle ψ, provided that their relation to the peptide structure was

calibrated.

Various models of peptide structure can be adopted for computational characteriza-

tion of geometry dependencies of NMR parameters. We studied the l-alanyl-l-alanine

dipeptide (AA; Figure 1.2) which correctly represents the Cα−C′−N−Cα link of peptide

backbone including its chemical surroundings. The AA molecule can be thus regarded

as the smallest system suitable for realistic modeling of conformational dependencies of

NMR parameters adjacent to the amide bond.

ψ1 ω1 ϕ2
ψ1 ω1 ϕ2

Figure 1.2 The l-alanyl-l-alanine zwitterion with the definition of three main torsion
angles ψ1, ω1, ϕ2 and notation of atoms Cα1, Hα1, C′, HN, Cα2, Hα2 numbered according
to the amino-acid residue starting from the N-terminus.

The AA molecule in aqueous solution exists in three protonation forms, whose mutual

ratios depend on pH. At neutral pH both amino (-NH+
3 ) and carboxyl (-COO−) groups

are charged, forming thus a neutral AA zwitterion (further denoted AAzw; Figure 1.2).

In acidic environment at low pH, the carboxyl group accepts proton (-COOH) and the

molecule is positively charged (AA+). Finally, at high pH the amino group loses proton

(-NH2) and the AA is anionic (AA–). The terminal amino and carboxyl groups strongly

interact with solvent, what substantially influences conformational flexibility and spectro-

scopic properties of AA; the AAzw form is actually unstable in gas phase. The solvation

effects thus have to be included for reliable modeling of NMR parameters in AA.

The AA structure is mainly described with three torsion angles ψ1, ω1 and ϕ2 (Figure

1.2). Other degrees of freedom such as rotation of methyl side chains and the amino and

carboxyl terminal groups can be considered less important for modeling the NMR parame-

ters in peptide backbone. Moreover, as stated above, the ω1 torsion is typically restricted

around 180◦. There are thus two major structural descriptors of the AA molecule, the

backbone torsions ψ1 and ϕ2. It is feasible to theoretically model the conformational
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dependence of spectroscopic parameters in the AA dipeptide by systematic variation of

these two torsion angles.

Spectroscopic characterization of basic building blocks of peptide structure has been

one of the central research topics in the Molecular Spectroscopy group at the Institute of

Organic Chemistry and Biochemistry in Prague. Prior to publications I–III presented in

this thesis, the AAzw molecule was characterized with Raman optical activity (ROA) [4],

its absolute conformation in solution was determined based on both NMR calculations

and experiment [5], and the pH dependence of the electronic circular dichroism spectra

was studied [6]. Directly related to this topic are also NMR conformational studies of

other dipeptides [7, 8], simulations of molecular dynamics effects on ROA spectra of l-

alanine [9] and l-proline [10], evaluation of anharmonic effects on optical [11] and NMR

[12] spectra of these amino-acids, and modeling the solvent effects on NMR parameters

in l-alanine [13,14].

1.2 Modeling the effects of molecular flexibility and solvation

on NMR parameters in nucleic acid phosphate

Nucleic acids (NAs) are nowadays recognized as rather versatile biomolecules with large

variety of functions, far exceeding the traditional view of NAs as mere means of storage and

translation of genetic information. Structure and dynamics of NAs have been extensively

studied with many methods including NMR spectroscopy [15, 16]. Particular attention

has been dedicated to ribonucleic acids (RNAs) [17, 18] that can form many unusual

structures, some even exhibiting catalytic activity [19,20].

NA molecule is a poly-anion constituting of a sequence of (2’-deoxy)ribonucleotides

connected with phosphodiester bonds. The negative charge of NA phosphates is stabilized

in aqueous solution by dissolved cations. Conformation of each nucleotide is described

with seven torsion angles α, β, γ, δ, ε, ζ, χ, the firs six describing the conformation of

the sugar-phosphate backbone and the last torsion determining the orientation of NA

base (Figure 1.3). Only certain combinations of the backbone torsion angles are possible.

DNA mostly occurs in the A-, BI-, BII-, or Z-form, whereas the conformational richness

of RNA molecules is described with 46 RNA conformational classes [21].

Similarly as for peptides, the NMR studies of NA structure utilize mainly NOE re-

straints on inter-atomic distances, RDCs in partially aligned samples, and 3J-couplings

assigned to torsion angles and interpreted via Karplus relations [15, 16, 22]. The appli-

cability of NMR for determining the NA structure is, however, more problematic than

for peptides, mainly due to relatively low density of 1H nuclei in NA molecules and also

because the 31P NMR spectra are typically very crowded. The size of NA structures that

can be determined with NMR is therefore limited.
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(a) (b)

Figure 1.3 (a) Scheme of NA primary structure. Definition of NA backbone torsion
angles α, β, γ, δ, ε and ζ, glycosidic torsion χ, notation of atoms of sugar-phosphate
backbone (X′2 = H′2 in DNA or O′2H in RNA), and nucleotide residue numbering starting
from 5′-terminus. B is a NA base. (b) Example of NA phosphate specific solvation: inner-
sphere coordination of Mg2+ (green sphere) to phosphate oxygen OP1. First hydration
shell of the phosphate oxygen OP2 and the Mg2+ ion is retained.

Phosphorus NMR is one of the key techniques for studying NA structure [23,24]. The
3JPC and 3JPH coupling constants interpreted via Karplus relations [25] are used for de-

termining the NA backbone torsion angles ε and β. The P–O torsions ζ and α (Figure

1.3), however, cannot be obtained on the basis of three-bond coupling constants, since the
3JOC couplings are not measurable. Instead, the 31P chemical shifts δP are used as some-

what loose restraints on the (ζ, α) conformation of NA phosphate. Recently, the ΓP,CH

cross-correlated relaxation (CCR) rates were applied for unambiguous determination of

torsion angles ζ and α [26, 27]. The resulting structural restraints were demonstrated to

substantially reduce the uncertainty of a RNA 14-mer structure determined with NMR

[28]. A drawback of this approach might be the great complexity of NMR experiments

needed for the ΓP,CH measurement. Considering the gain in quality of NA structure de-

termination, finding some further restraints on the (ζ, α) conformation of NA phosphate

is still very attractive.

The relationship between δP and NA phosphate conformation has been for a long time

known only semi-empirically [29]. A significant improvement became possible with deve-

lopment of accurate computational methods and reliable solvent models. Quite recently,

the 31P chemical shielding tensor has been calculated on SOS–DFPT level for several geo-

metries of explicitly hydrated dimethyl phosphate corresponding to the most populated

(ζ, α) conformers of NA backbone [30, 31]. Přecechtělová et al. also successfully modeled
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the experimentally known δP difference of 1.6 ppm between the BII and BI forms of DNA

[32]. However, a systematic first-principles calibration of the δP dependence on torsion

angles ζ and α in the full (0◦, 360◦) range has not been reported.

One of the few remaining options for monitoring the torsion angles ζ and α with NMR

spectroscopy are the 2JPC3′ and 2JPC5′ coupling constants involving carbon atoms in the

closest vicinity of NA phosphate (Figure 1.3). Previous theoretical calculations indicated

that the trans orientation of either torsion ζ or α could be distinguished from gauche

by a significantly decreased absolute value of 2JPC3′ or 2JPC5′ coupling (by 2 − 3 Hz),

respectively [22]. Similar variations of the two 2JPC couplings were actually measured in

NAs, but no structural interpretation was available [33–37]. Theoretical calculations of

the 2JPC coupling constants in dependence on torsion angles ζ and α thus may reveal

their applicability in NA structure determination.

NMR parameters related to the phosphate group are generally sensitive to two fac-

tors: the NA backbone geometry and the phosphate group solvation. Solvation of NAs

has been an important topic since the discovery of NA structure [38]. Negative charge of

NA backbone is in water solution compensated by the surrounding cations, mostly Na+

and K+. Apart from the non-specific water mediated electrostatic solvation, metal ca-

tions can specifically coordinate to NA phosphate. Such specific interactions have turned

out exceedingly important in biochemical processes like RNA folding [39, 40], ribozyme

catalysis [19, 20, 41], or drug-DNA complexation [42]. Exceptional structural role of the

Mg2+ ion has been recognized in all of these cases.

The most usual method for monitoring the NA metalation is X-ray crystallography.

The identification of Na+ and Mg2+ is, however, slightly complicated by the fact that these

cations are hard to distinguish from water molecules since they possess the same number of

electrons. Metal coordination sites around phosphate are known from statistical analysis

of X-ray structures of organic phosphate salts [43]. The statistical distributions of metal

cations obtained by the method of Fourier averaging [44] are well localized around the

phosphate, similarly to water molecules in the phosphate first hydration shell [45]. Mg2+

cation has two sharp distributions around the phosphate, one near each of the charged

phosphate oxygens OP1 and OP2 (Figure 1.3). Only one of the two coordination sites

can be populated at a time. This very distinct phosphate coordination pattern is clearly

related to the exceptional properties of the Mg2+ ion in aqueous solution (see below).

Metalation of NA phosphate could be also detected with NMR spectroscopy, by mo-

nitoring NMR parameters adjacent to the phosphate group. From the available experi-

mental evidence, only effects of direct (inner-sphere) coordination of metal ions to NA

phosphate were observed in 31P NMR spectra. In particular, Cd2+ coordination to a

thio-substituted metal binding site in hammerhead ribozyme lead to the decrease of δP

of the phosphorothioate residue by 1.5 − 10 ppm [46–48] and Mg2+ coordination to the
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minimal metal binding motif of hammerhead ribozyme caused decrease of δP by 0.3 ppm

[49]. Theoretical investigation of Mg2+ binding to NA phosphate and associated changes

in the 31P NMR spectra may shed light on the molecular basis of metal-binding effects in

NAs.

Divalent magnesium itself is very interesting because of its biological importance and

unique properties [50,51]. Mg2+ in water solution strongly coordinates six water molecules,

enforcing a regular octahedral structure of its first hydration shell. The corresponding

water residence time of about 1 µs is by far the largest among all physiological cations

[52]. Regularity of the Mg2+ hydration is preserved even in the limit case of MgCl2 · 6 H2O

(bischofite) crystal [53], where the water molecules just saturate the first hydration shell

of the Mg2+ ions. Such high affinity of Mg2+ towards water and its exceptional solvent-

structuring properties [54] lead to observable effects in optical spectra of magnesium salts

in water solution. In particular, local symmetry of water solvent induced by Mg2+ and

the strength of the Mg−O bond cause significant increase of certain Raman signals in

low-wavenumber region [55, 56]. Theoretical studies of ionic liquids have been so far

mainly concentrated on modeling the structure and dynamics of the ion hydration shell

[55, 57–65], vibrational spectra of ion-water clusters [55, 66–68], behavior of the ions on

water surface [69–71], and ionic solution acidity [72]. However, faithful simulation of

Raman bands measured in ionic solutions and theoretical explanation of the origin of

low-wavenumber spectral features are still challenging.

1.3 Aims of the thesis

� Thorough computational characterization of the l-alanyl-l-alanine dipeptide in its

various protonation forms. Assessment of the relationship between the dipeptide

conformation and NMR parameters. Theoretical analysis of cross-correlated relaxa-

tion mechanisms in l-alanyl-l-alanine.

� Exploring the relationship between nucleic acid backbone conformation and NMR

parameters related to the phosphate group. Calculating the effect of Mg2+ coordi-

nation to nucleic acid phosphate on 31P NMR spectra. Modeling of the magnesium

ion properties in aqueous solution.
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2 Computational methods

Virtually all chemistry is described at the level of relativistic quantum mechanics [73].

For the spectroscopic calculations carried out in this work, non-relativistic description is

sufficient. Molecular systems including their interactions with electromagnetic fields are

described in the non-relativistic limit with the Schrödinger equation

i~
∂Ψ

∂t
= ĤΨ , (2.1)

where ~ is the reduced Planck constant, Ĥ = Ĥ(t) is the molecular Hamiltonian, and

Ψ = Ψ(t) is the wave function. In the absence of electromagnetic fields, the molecular

Hamiltonian is time-independent and the corresponding Schrödinger equation is statio-

nary with energy E :

ĤΨ = EΨ . (2.2)

The molecular Hamiltonian Ĥ consists of the following terms:

Ĥ = T̂ + T̂nuc + Û + Ûnuc + V̂ , (2.3)

where T̂ and T̂nuc are the electronic and nuclear kinetic energy operators, Û and Ûnuc

include all the electron-electron and nucleus-nucleus repulsion terms, and V̂ describes

the electrostatic attraction between electrons and nuclei. The individual terms in atomic

units can be expressed as

T̂ = −1

2

N∑
i=1

∇2
i , Û =

∑
i<j

1

rij
, V̂ = −

N∑
i=1

Q∑
A=1

ZA
riA

,

T̂nuc = −1

2

Q∑
A=1

1

2MA

∇2
A , Ûnuc =

∑
A<B

ZAZB
RAB

,

(2.4)

where N and Q are numbers of electrons and nuclei, ∇2
i and ∇2

A are Laplace operators

acting on electrons and nuclei, MA and ZA are nuclear masses and charges, and rij,

riA and RAB are the electron-electron, electron-nucleus and nucleus-nucleus distances,

respectively.

2.1 Born–Oppenheimer approximation

The Schrödinger equation (2.2) with Hamiltonian (2.3) can be solved exactly only in

the simplest cases such as one-electron atoms. The solution for molecular systems can be

approximated by assuming that the electronic and nuclear parts of the total wave function
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Ψ are uncoupled and separable as

Ψ({xi}, {RA}) = Φ({xi}; {RA}) ·Θ({RA}) , (2.5)

where {xi} = x1,x2, . . . ,xN = {ri, si} denote spatial and spin coordinates of electrons.

The electronic wave function Φ implicitly depends also on the positions of nuclei {RA}.
By further assuming ∇AΦ = 0 and ∇2

AΦ = 0 we obtain the Born–Oppenheimer approxi-

mation [74], which allows to describe the electrons and nuclei separately. The respective

Schrödinger equations for electrons and nuclei are:

(
T̂ + Û + V̂

)
Φ = EΦ (2.6a)(

T̂nuc + Ûnuc + E
)
Θ = EΘ (2.6b)

The electronic energy E = E({RA}) introduced in (2.6a) as an eigenvalue of the electronic

Hamiltonian Ĥ = T̂ + Û+ V̂ parametrically depends on the configuration of atomic nuclei

and it acts as an external potential for the nuclei in (2.6b). The operator V̂ is sometimes

referred to as the external potential since it is the only term in (2.6a) involving interactions

reaching out of the otherwise purely electronic system.

2.2 Hartree–Fock approximation

The electronic structure calculations in molecules require simplifications of the many-

electron equation (2.6a). The N -electron wave function Φ({xi}) is in the Hartree–Fock

(HF) method assumed in the form of antisymmetrized product of orthonormal one-

electron spin orbitals, the Slater determinant

ΦSD({xi}) =
1√
N !

∣∣∣∣∣∣∣∣
χ1(x1) · · · χN(x1)

...
. . .

...

χ1(xN) · · · χN(xN)

∣∣∣∣∣∣∣∣ , (2.7)

where each spin orbital χ(xi) is defined as a product of molecular orbital (MO) ψ(ri)

and spin function σ(si). The antisymmetry of the Slater determinant with respect to the

exchange of electrons ensures that the Pauli exclusion principle is satisfied. Spin orbitals

of the electronic ground state are found by applying the variational principle to minimize

the energy functional

E[ΦSD] =
〈
ΦSD

∣∣Ĥ∣∣ΦSD
〉

(2.8)

upon the condition of orthonormality of spin orbitals 〈χi|χj〉 = δij. This procedure leads

to canonical HF equations [75]
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f̂χi = εiχi , (2.9)

where f̂ is the Fock operator, its eigenfunctions χi are the HF spin orbitals and the

corresponding eigenvalues εi are the HF orbital energies. In the following we use the

indexes a, b, c, d for occupied orbitals, p, q, r, s for unoccupied (virtual) orbitals and i, j, k, l

for all orbitals. The Fock operator can be expressed as

f̂ = ĥ+ ĝ , (2.10a)

ĥ = −1

2
∇2 −

Q∑
A=1

ZA
|r −RA|

, (2.10b)

ĝ =
N∑
b=1

(
Ĵb − K̂b

)
, (2.10c)

where ĥ is the ‘core’ operator containing all one-electron terms and ĝ is the HF potential

describing the interaction of one electron with all remaining N − 1 electrons. Ĵb and K̂b

are the Coulomb and exchange operators, respectively, defined as

Ĵbχi(x1) =

[∫
1

r12

χ∗b(x2)χb(x2) dx2

]
χi(x1) , (2.11a)

K̂bχi(x1) =

[∫
1

r12

χ∗b(x2)χi(x2) dx2

]
χb(x1) . (2.11b)

Since both Ĵb and K̂b involve occupied spin orbitals, the Fock operator implicitly depends

on its own eigenfunctions. The HF equations are thus non-linear and have to be solved

iteratively.

The HF ground-state energy EHF
0 is obtained by evaluating the expectation value (2.8)

with the Slater determinant formed by occupied HF spin orbitals χa. After introducing

the MOs and integrating over the spin parts we obtain

EHF
0 =

N∑
a=1

〈a|ĥ|a〉+
1

2

N∑
a=1

N∑
b=1

(
(aa|bb)− δσaσb(ab|ba)

)
, (2.12)

where we used the usual notation for one-electron and two-electron integrals

〈a|ĥ|a〉 =

∫
ψ∗a(r)ĥψa(r) dr , (2.13a)

(ab|cd) =

∫∫
ψ∗a(r1)ψb(r1)

1

r12

ψ∗c (r2)ψd(r2) dr1dr2 . (2.13b)

The exchange integral (ab|ba) represents the so-called ‘static correlation’ between same-

spin electrons and its presence only for the same-spin electron pairs (note the Kronecker
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delta in (2.12)) is a pure consequence of Pauli exclusion principle invoked by the anti-

symmetry of the Slater determinant (2.7). The absence of such correlation between the

opposite-spin electrons leads to the orbital instability of the HF method [76,77] (see sec-

tion 3.3.1). Note that for b = a the Coulomb and HF exchange integrals (aa|bb) and

(ab|ba) exactly cancel, which implies that the spurious self-interaction error is absent at

the HF level.

This work involved only molecular systems with closed-shell electronic configuration,

where the MOs for α and β electrons coincide. The closed-shell HF equations are in this

case solved only for the N/2 lowest doubly-occupied MOs. In the following, if not stated

otherwise, the theory will be formulated only for closed-shell systems.

2.2.1 LCAO method

In most cases of chemical interest, the HF equations cannot be solved analytically. In

practice, the MOs are approximated as expansions into the basis of atomic orbitals (AOs)

φµ centered at atomic positions Rµ, rµ = r −Rµ:

ψi(r) ≈
M∑
µ=1

Cµiφµ(rµ) , M ≥ N/2 , (2.14)

where Cµi is the matrix of AO expansion coefficients. In the rest of this section, the

Greek letters µ, ν, λ, σ are used as suffixes for the AO basis functions, whereas the Roman

letters are used for the MOs. Each AOs is characterized with three quantum numbers

n, l,m and formed by a product of angular part (spherical harmonic Ylm) and radial

part Rnl(r) = Pnl(r) exp(−αnr), where Pnl(r) is a polynomial of order n− 1. To facilitate

integration, the exponential functions exp(−αnr) are in most quantum chemistry packages

approximated by linear combinations of several Gaussian functions, forming thus the

Gaussian-type orbitals (GTOs). Obviously, the accuracy of expansion (2.14) depends on

the basis set size and quality. Nevertheless, if the AO basis is chosen suitably to the

calculation type, results close to the HF complete basis set limit can be achieved with

only a moderate effort.

Using the LCAO expansion, the HF equations (2.9) can be in the closed-shell case

rewritten into the matrix form usually referred to as the Roothaan (or Roothaan–Hall)

equations [78,79]:

M∑
ν=1

(Fµν − εiSµν)Cνi = 0 , (2.15)
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where Fµν are the elements of the Fock matrix

Fµν = hµν +
M∑
λ,σ

Pλσ
[
(µν|λσ)− 1

2
(µσ|λν)

]
. (2.16)

Sµν , hµν , and Pµν are the elements of overlap matrix, one-electron ‘core’ matrix, and

closed-shell density matrix defined as

Sµν = 〈φµ|φν〉 =

∫
φ∗µ(rµ)φν(rν) dr , (2.17a)

hµν = 〈φµ|ĥ|φν〉 =

∫
φ∗µ(rµ)ĥφν(rν) dr , (2.17b)

Pµν = 2

N/2∑
a=1

C∗aµCνa (2.17c)

and the two-electron AO integrals in (2.16) are defined as

(µν|λσ) =

∫∫
φ∗µ(r1µ)φν(r1ν)

1

r12

φ∗λ(r2λ)φσ(r2σ) dr1 dr2 . (2.18)

Similarly as in the case of HF equations, the Roothaan equations have to be solved

iteratively, using the self-consistent field (SCF) method. The HF ground-state energy

(2.12) is then evaluated as

EHF
0 =

M∑
µ,ν

Pµνhµν +
1

2

M∑
µ,ν,λ,σ

PµνPλσ
[
(µν|λσ)− 1

2
(µσ|λν)

]
. (2.19)

2.3 Correlation energy

Accuracy of the HF method is inherently limited by the Ansatz (2.7). The factorization

of the wave function to one-electron functions leads to unphysical separation of electro-

nic degrees of freedom and, therefore, to a too large probability of finding the electrons

near each other. The omitted part of the electron-electron interaction is usually refer-

red to as the dynamical correlation. Furthermore, the HF approximation fails for the

multi-reference systems, i.e. for those where the description using a single configuration

of electrons is inappropriate. The missing interaction is usually referred to as the non-

dynamical (or static) correlation. Both dynamical and non-dynamical correlation contri-

bute to the correlation energy defined as a difference between the exact non-relativistic

Born–Oppenheimer ground-state energy E0 and the HF energy,

Ec ≡ E0 − EHF
0 . (2.20)
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As follows from the variational principle, the correlation energy is always negative.

The electron correlation is generally very important for the calculation of molecular

properties. Numerous approximate methods have been developed to include it in the

quantum chemistry calculations. Rigorous approximations are provided by the correla-

ted ab initio methods such as post-HF methods [75, 80–82] (Møller–Plesset perturbation

theory, configuration interaction, coupled-clusters theory) or multi-reference approaches

[82]. The correlated ab initio methods are regarded as very robust and reliable since they

offer a well-defined accuracy and there is a clear hierarchy of ab initio methods enabling

systematic improvement of the calculated results. However, the computational require-

ments grow rapidly with the increasing level of approximation, what limits the use of the

high-level ab initio methods only to small systems. A computationally much more fea-

sible alternative is provided by the density-functional theory (DFT), where the electron

correlation is approximated by the exchange-correlation potential. Most of the results

presented in this thesis were obtained using DFT.

2.4 Density-functional theory

DFT is, in principle, an exact theory of electronic ground state formulated in terms of

electron density ρ(r) [83–86]. The idea of describing many-electron systems with one-

electron density instead of wave function originates in the works of Thomas, Fermi, and

Dirac from late 1920s [87–89]. However, working theory applicable to real systems was

developed only in 1960s by Hohenberg, Kohn, and Sham [90, 91]. Originally, DFT was

designed for calculations in periodic systems and solids. When sufficiently accurate DFT

functionals appeared in late 1980s, DFT became vastly successful also for molecules,

mainly due to its relatively good accuracy and low computational cost.

The electron density ρ(r) is a positive real function describing the ground-state electron

distribution that is observable e.g. in x-ray diffraction experiments. It is conceptually

much simpler than the many-electron wave function Φ0(x1,x2, . . . ,xN). The electron

density is defined as

ρ(r) = n

∫
· · ·
∫
|Φ0(x,x2, . . . ,xN)|2 dσ dx2 . . . dxN . (2.21)

It integrates to the number of electrons,∫
ρ(r) dr = N , (2.22)

and it exponentially decays for r → ∞. There are other physically sound requirements

on the electron density (or related quantities) such as density cusp at nuclear positions

or boundary conditions for the pair density and the associated exchange-correlation hole
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[85,92], which are invoked as boundary conditions at different DFT approximations.

2.4.1 Hohenberg–Kohn theorem

Recall the electronic Hamiltonian (2.6a), where the external potential V̂ is written as a

sum of one-electron contributions,

V̂ =
N∑
a=1

v(ra) . (2.23)

The Hohenberg–Kohn (HK) theorem [90] states that the electron density ρ(r) uniquely

determines the one-electron potential v(r) and, by integration (2.22), also the number of

electrons n. Therefore, ρ(r) fully determines the electronic Hamiltonian Ĥ and implicitly

also the exact ground-state wave function Φ0[ρ] and energy E0[ρ]. The HK theorem

implies that once ρ(r) is known, all other ground-state properties of a given system are

readily available and can be exactly evaluated.

The ground-state energy functional E0[ρ] can be expressed as

E0[ρ] = 〈Φ0|T̂ |Φ0〉+ 〈Φ0|Û |Φ0〉+ 〈Φ0|V̂ |Φ0〉

= T [ρ] + U [ρ] +

∫
v(r)ρ(r) dr ,

(2.24)

where we defined the kinetic and electron-electron energy functionals T [ρ] and U [ρ], res-

pectively. The functionals T [ρ] and U [ρ] are independent of v(r), wherefore they are

universal functionals of ρ(r), the same for all electronic structure problems. The explicit

forms of T [ρ] and U [ρ] are unknown but their existence is guaranteed by the HK theorem.

The ground-state electron density is found by applying the variational principle to

minimize the energy functional E0[ρ] (2.24) subject to the constraint (2.22). The existence

of the variational principle for E0[ρ] is often stated as the second HK theorem.

The electron-electron energy functional U [ρ] can be decomposed as

U [ρ] =
1

2

∫∫
ρ(r)ρ(r′)

|r − r′|
dr dr′ + Encl[ρ] , (2.25)

where the first term is a classical Coulomb repulsion J [ρ] appearing also in the HF theory

(the second term in (2.12)) and Encl[ρ] is a very important non-classical energy contribu-

tion. Within the HK framework, the functionals T [ρ] and Encl[ρ] are the unknown parts

of E0[ρ], which need to be approximated. Unfortunately, direct approximations of these

functionals turned out to be rather poor even for atoms, mainly due to unsatisfactory

models of T [ρ] [83].
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2.4.2 Kohn–Sham formulation of DFT

Kohn and Sham [91] introduced the Thomas–Fermi model of non-interacting uniform

electron gas as a reference system for calculation of T [ρ]. The non-interacting Hamiltonian

Ĥs = T̂ + V̂ =
N∑
a=1

(
−1

2
∇2
a + v(ra)

)
(2.26)

contains only one-electron operators and, therefore, the non-degenerate ground-state wave

function is exactly given by a single Slater determinant Φs[ρ]. The electron density can

be expressed in terms of occupied spin orbitals as

ρ(r) =
N∑
a=1

|χa(r)|2 (2.27)

and the kinetic energy of the model non-interacting system is

Ts[ρ] =
〈

Φs[ρ]
∣∣∣T̂ ∣∣∣Φs[ρ]

〉
=

N∑
a=1

〈
χa
∣∣− 1

2
∇2
a

∣∣χa〉 . (2.28)

In the interacting system, the functional Ts[ρ] contains almost all of the true kinetic

energy T [ρ]. Hence, the total electronic energy of the interacting system (2.24) can be in

the Kohn–Sham (KS) formalism rewritten as

E0[ρ] = Ts[ρ] + J [ρ] +

∫
v(r)ρ(r) dr + Exc[ρ] , (2.29)

where the first three terms are dominant and can be calculated exactly. The residual

functional Exc[ρ] defined as

Exc[ρ] = T [ρ]− Ts[ρ] + U [ρ]− J [ρ] (2.30)

is the exchange-correlation energy that remains to be found. The exact form of Exc[ρ] is

unknown but it satisfies a number of boundary conditions which can be imposed also on

approximate DFT functionals. Moreover, the existence of exact Exc[ρ] is guaranteed by

the HK theorem, what encourages constant development in this filed.

The central idea of the KS approach is based on transforming the Hamiltonian of a

real (interacting) many-electron system into the form of model Hamiltonian (2.26), for

which Ts[ρ] is the exact kinetic energy. This can be done by introducing the effective KS

potential

vKS(r) = v(r) +

∫
ρ(r′)

|r − r′|
dr′ + vxc(r) , (2.31)
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where vxc(r) is the exchange-correlation potential defined as

vxc(r) =
δExc[ρ]

δρ
. (2.32)

The electronic Hamiltonian then adopts the desired form

ĤKS =
N∑
a=1

(
−1

2
∇2
a + vKS(ra)

)
, (2.33)

which corresponds to a system of non-interacting electrons moving in the external poten-

tial vKS(r). The Schrödinger equation with the Hamiltonian (2.33) has an exact solution,

the Slater determinant ΦKS formed out of occupied KS spin orbitals χKS
a . In other words,

the insufficiency of the single-determinant approximation is in KS-DFT remedied by ad-

justing the Hamiltonian, so that ΦKS is an exact eigenfunction of ĤKS. Obviously, ĤKS

and ΦKS need not describe any real system, as they were constructed only to provide

exact E0[ρ].

The KS spin orbitals χKS
i are found by applying the variational principle to mini-

mize the ground-state energy functional E0[ρ] (2.29) under the orthonormality constraint

〈χi|χj〉 = δij:

f̂KSχKS
i = εKS

i χKS
i , (2.34)

where

f̂KS = −1

2
∇2 + vKS(r) (2.35)

is the KS operator. The KS equations (2.34) formally resemble the HF equations (2.9)

but, same as for the KS wave function ΦKS, the spin orbitals χKS
i and the eigenvalues

εKS
i have no strict physical significance [84]. Nevertheless, KS-DFT is in principle exact

theory of the electronic ground state, where the only error (in a complete basis set limit)

arises due to the approximation of Exc[ρ]. The KS operator f̂KS implicitly depends on the

ground-state density ρ(r) and thus, through (2.27), also on its own eigenfunctions χKS
i .

The KS equations are thus non-linear and have to be solved by an iterative self-consistent

procedure.

2.4.3 Exchange-correlation functionals

The single-determinant solution of KS equations suggests that the exchange-correlation

energy functional Exc[ρ] can be formally decomposed into the exchange and correlation

contributions Ex[ρ] and Ec[ρ] analogous (but not equal) to those known from the HF
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theory:

Exc[ρ] = Ex[ρ] + Ec[ρ] . (2.36)

The exchange energy is in the KS framework defined as

Ex[ρ] =
〈

ΦKS[ρ]
∣∣∣Û ∣∣∣ΦKS[ρ]

〉
− J [ρ] (2.37)

and it contains major portion of Exc[ρ]. Ex[ρ] dominates by far the non-classical energy

Encl[ρ] defined in (2.25) and it is usually very close to the exact HF exchange energy (third

term in (2.12)).

The KS correlation energy Ec[ρ] is defined by (2.36). It can be rearranged as

Ec[ρ] = T [ρ]− Ts[ρ] + Encl[ρ]− Ex[ρ] , (2.38)

where the kinetic energy difference T [ρ] − Ts[ρ] is always positive, while the potential

energy contribution Encl[ρ]− Ex[ρ] is about twice as large and always negative.

Local density approximation. The simplest form of Exc[ρ] is the local density ap-

proximation (LDA) introduced already by Kohn and Sham [91]. It has a general form

ELDA
xc [ρ] =

∫
εxc[ρ] ρ(r) dr , (2.39)

where εxc[ρ] is the exchange-correlation energy per particle of uniform interacting electron

gas with density ρ. The exchange part of εxc[ρ] is in LDA given by the uniform-electron-gas

exchange energy functional of Dirac [89],

εLDA
x [ρ] = −Cxρ

1/3 , Cx =
3

4

(
3

π

)1/3

, (2.40)

which is, apart from a prefactor, equivalent to the well-known Xα approximation of the

HF exchange potential by Slater [93]. Approximating the correlation contribution εc[ρ]

required much more effort. The most widely used local approximations of εc[ρ] were

developed by Vosko, Wilk, and Nusair (functionals III and V of ref. [94], usually denoted

VWN3 and VWN5, respectively).

Open-shell systems can be described with a spin-polarized extension of LDA, the local

spin density approximation (LSDA). For example, the LSDA exchange energy is

ELSDA
x [ρα, ρβ] = −Cx

∫ (
ρ4/3
α (r) + ρ

4/3
β (r)

)
dr , (2.41)
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where ρα and ρβ are the densities of α and β electrons, respectively, ρα+ρβ = ρ. LSDA is

superior to LDA even for closed-shell systems because introducing two density functions

instead of one increases the flexibility of any approximate exchange-correlation functional

Exc[ρα, ρβ]. All currently used DFT functionals are spin-polarized.

The local approximations are valid only for slowly varying densities [83]. It is thus

somewhat surprising that LSDA performs well also in molecules, where it provides similar

accuracy as the HF method for equilibrium geometries, vibrational frequencies, and charge

moments [84]. The success of LSDA can be understood by realizing that the density of the

uniform electron gas naturally fulfills the boundary conditions for the exchange-correlation

hole [85,92], which were not a priori assumed in the LSDA model. Nevertheless, LSDA has

a clear overbinding tendency and it fails completely for magnetic properties. Improved

approximations of Exc[ρ] are therefore desired.

Generalized gradient approximation. The next logical step in improving the ap-

proximations of Exc[ρ] is including the dependence on the density gradient ∇ρ. However,

it turned out that a simple correction using a simple gradient expansion disturbs the na-

turally favorable properties of LSDA such as correct behavior of the exchange-correlation

hole [85]. These properties are restored within a somewhat more elaborate generalized

gradient approximation (GGA), which represents a major improvement over LSDA. The

increase in computational cost due to the evaluation of ∇ρα and ∇ρβ is only modest. In

most cases, the gradient-corrected exchange-correlation energy can be expressed as

EGGA
xc =

∫
fxc(ρα, ρβ, γαα, γββ, γαβ) dr ,

γσσ′ = ∇ρσ · ∇ρσ′ ,

(2.42)

where fxc is a function only of densities ρα, ρβ, and their gradient invariants γσσ′ , σ, σ′ =

{α, β}.
The gradient correction is most important for the exchange part of Exc[ρ]. The

gradient-corrected exchange energy functionals typically have a general form introduced

by Perdew in his P86 functional [95]:

EGGA
x = ELSDA

x −
∑
σ=α,β

∫
F (ξσ) ρ4/3

σ (r) dr

ξσ =
|∇ρσ(r)|
ρ

4/3
σ (r)

(2.43)

The function F (ξσ) defines the particular GGA exchange functional and its argument

ξσ is the dimensionless reduced density gradient, which can be interpreted as a local

inhomogeneity parameter. Probably the most commonly used GGA exchange correction
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is the Becke’s 1988 functional [96]

∆EB88
x = −

∑
σ=α,β

∫
b ξ2

σ

1 + 6b ξσ sinh−1 ξσ
ρ4/3
σ (r) dr , (2.44)

where b = 0.0042 a.u. is the only parameter fitted such that the sum ELSDA
x + ∆EB88

x

correctly reproduces the exact exchange energy of noble gas atoms. Apart from correct

properties of the associated electron density, the exchange energy EB88
x also reproduces the

asymptotic behavior of exact Ex for r → ∞. Other notable GGA exchange functionals

are the parameter-free functionals PW91 (Perdew and Wang, 1991) [97, 98] and PBE

(Perdew, Burke, and Ernzerhof, 1996) [99].

The GGA corrections to the correlation energy Ec are much smaller and their forms

are substantially more complicated than those for exchange. Among the most widely

used GGA correlation functionals are P86 [100], the parameter-free functionals PW91

[97, 98] and PBE [99], and probably the most popular functional LYP (Lee, Yang, and

Parr, 1988). Unlike other functionals mentioned so far, LYP is not based on the uniform

electron gas but rather on the correlation energy of the helium atom [101]. Hence, LYP

does not involve the LSDA correlation and it does not have an easily separable local

component.

Reliable DFT approximations are usually developed by imposing physically rigorous

requirements on density, exchange-correlation hole, and exchange-correlation functional

itself. However, since DFT is inherently semi-empirical, the rigorous approximations are

sometimes outperformed by more arbitrary functionals due to simple error cancellation.

In other words, it is not the physics but the results which dictate the choice of the

mathematical constructs [85]. The same pragmatic view so typical for DFT in general

applies also for pairing of the exchange and correlation functionals. Thus, although they

were not specifically designed to work together, the GGA combinations known as BP86,

BPW91, or BLYP typically provide better results than the others. The principle of

favorable error cancellation applies even more profoundly to hybrid DFT functionals.

Hybrid DFT functionals. The performance of GGA functionals may be improved by

adding the exact HF exchange into Exc. Although the reasons may not be immediately

seen, Becke gave a straightforward explanation for the need of non-local exchange by invo-

king the concept of adiabatic connection between the non-interacting KS reference system

(2.26) and the fully interacting system (2.33) [102]. Becke combined the admixtures of

B88 exchange, PW91 correlation, and exact HF exchange into his famous three-parameter

hybrid functional [103], which is known today as B3PW91. A slight modification was sug-

gested soon afterwards, replacing the PW91 correlation with the LYP correlation [104]
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and arriving thus at the B3LYP functional in the well-known form

EB3LYP
xc = (1− a)ELSDA

x + aEexact
x + b∆EB88

x + (1− c)ELSDA
c + cELYP

c , (2.45)

where a, b, c are the fitted parameters of Becke [103],

a = 0.20 , b = 0.72 , c = 0.81 .

The portion of exact exchange is given by the parameter a; the values around 20− 25 %

seem to be the amount needed also for other general-purpose hybrid functionals. Note

that Vosko, Wilk, and Nusair originally recommended to use their VWN5 variant for the

LSDA correlation [94] but the implementation of B3LYP within the Gaussian program

uses the VWN3 variant [105].

B3PW91 was originally parameterized to reproduce correct thermochemistry [103], but

both B3PW91 and its twin B3LYP perform unexpectedly well also in many other areas.

To date B3LYP has been applied probably in all major fields of computational chemistry,

providing acceptable results in most of the cases. Such universality is unique and probably

very fortunate but it keeps being massively exploited throughout the literature and it was

extensively applied also in this work.

2.4.4 LCAO method in DFT

Same as in the HF method, the LCAO expansion (2.14) is usually introduced in KS-

DFT, enabling the use of standard computational machinery developed for the ab initio

methods. The matrix form of the KS equations is the same as that of the spin-dependent

variant of the Roothaan equations (the Pople–Nesbet equations), where the Fock matrix

is replaced with the KS matrix

FKSα
µν = hµν +

M∑
λ,σ

Pλσ(µν|λσ) +

∫
φ∗µ(rµ)vαxc(r)φν(rν) dr , (2.46)

where Pλσ = Pα
λσ + P β

λσ; analogous expression applies for the spin β. The integrals

involving vαxc(r) and vβxc(r) are mostly not known analytically and have to be evaluated

by numerical quadrature. An efficient scheme for the calculation of these integrals with

the GGA functionals of the form (2.42) was presented by Pople et al. [106]. The KS

ground-state energy is given by

EKS
0 =

M∑
µ,ν

Pµνhµν +
1

2

M∑
µ,ν,λ,σ

PµνPλσ(µν|λσ) + Exc[ρ] . (2.47)
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2.4.5 Performance of DFT methods

Unlike the ab initio wave function methods, DFT does not have a strict hierarchy of

approximations that would gradually improve towards the exact theory. There is no

known systematic way within DFT that would allow to reach an arbitrarily high level of

precision [84]. Nevertheless, following the development of exchange-correlation functionals

as outlined above, the first few ‘rungs’ on the Jacob’s ladder of DFT accuracy [92, 107]

are nowadays well-established. Starting from the Hartree approximation (which can be

regarded as the zeroth level of DFT) with no exchange or correlation whatsoever and

passing the local approximations, the GGA functionals are the first that provide results of

acceptable quality for a large scale of chemical problems and quantities at a very favorable

computational cost. Hybrid DFT functionals mostly provide a distinct improvement over

the GGAs. They have somewhat higher computational demands due to the calculation

of HF exchange, but a moderate increase in computer time is usually not an issue for the

calculation of molecular properties. Hybrid DFT functionals, and B3LYP in particular,

are the workhorses of current computational spectroscopy.

As already mentioned, all DFT approximations are inherently semi-empirical and their

accuracy is limited. Therefore, the DFT results should be always compared with the avai-

lable experimental data. However, a simple comparison with the experiment provides only

a very rough idea about the actual DFT error since there are several other possible sources

of computational imperfections (see section 2.6). For many molecular properties, bench-

mark ab initio methods are nowadays available and the results for small model systems

can be used to reliably monitor the DFT accuracy. Such an approach was employed also

in this work.

2.5 Molecular properties

Molecular properties characterize the response of electronic system of a molecule to the

external perturbations such as electric or magnetic fields, nuclear magnetic moments,

electronic spin, nuclear displacements from equilibrium positions, and combinations of

thereof. The electronic Hamiltonian Ĥ, its exact eigenfunctions |Φi〉 and energies Ei in

the presence of two different static external perturbations can be expanded as

Ĥ = Ĥ(0) + κĤ(10) + λĤ(01) + κ2Ĥ(20) + κλĤ(11) + λ2Ĥ(02) + . . . (2.48a)

|Φi〉 = |i〉+ κ|Φ(10)
i 〉+ λ|Φ(01)

i 〉+ κ2|Φ(20)
i 〉+ κλ|Φ(11)

i 〉+ λ2|Φ(02)
i 〉+ . . . (2.48b)

Ei = E
(0)
i + κE

(10)
i + λE

(01)
i + κ2E

(20)
i + κλE

(11)
i + λ2E

(02)
i + . . . (2.48c)

where Ĥ(kl), |Φ(kl)
i 〉, and E

(kl)
i are the (k + l)th-order perturbations, wave functions, and

molecular properties of the i-th electronic electronic state. The zeroth-order quantities
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Table 2.1 Ground-state molecular properties as energy derivatives.

Energy derivativea Molecular property Related observables

dE0

dRA

Energy gradient equilibrium geometry

d2E0

dRAdRB

molecular force field vibrational frequencies

d2E0

dmKdB0

NMR chemical shielding

tensor

chemical shift, chemical

shielding anisotropy

d2E0

dmKdmL

nucleus-independent

J-coupling tensor

scalar spin–spin coupling

(in Hz)

d3E0

dRAd2ε
electric polarizability

derivatives

Raman intensities

a with respect to nuclear coordinates RA, nuclear magnetic moments mK , static
magnetic field B0, and electric field ε

Ĥ(0), |i〉 ≡ |Φ(0)
i 〉, and E

(0)
i correspond to the unperturbed Schrödinger equation (2.6a).

The (k+ l)th-order properties E
(kl)
i can be expressed as energy derivatives with respect to

the perturbations κ and λ [108],

E
(kl)
i =

d(k+l)Ei
dκkdλl

∣∣∣∣∣
κ=λ=0

. (2.49)

This work involved only ground-state properties E
(kl)
0 (i = 0) of closed-shell molecular

systems, as summarized in Table 2.1.

In practice, the energy derivatives can be evaluated either analytically (provided that

higher-order wave functions can be calculated) or numerically, by finite-differentiation

techniques. The analytical self-consistent scheme is usually preferable [108] since it pro-

vides reliable results with a well-defined accuracy. The numerical differentiation typically

requires several lower-order energy evaluations and the control of its accuracy may not

be guaranteed. Moreover, the use of the numerical approach for magnetic perturbations

is complicated by the fact that the perturbed wave functions are no longer real-valued

and need not be pure singlet even for closed-shell systems (see section 3.3). On the other

hand, the numerical approach can be quite useful for obtaining geometry derivatives.

The numerical calculation of geometry derivatives does not require extensive coding, it

is accessible to massive parallelization, and it can be conveniently combined with the

analytical scheme to obtain higher-order properties such as geometry derivatives of NMR

parameters, anharmonic frequencies or Raman intensities.
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2.5.1 First-order properties

Probably the most important first-order molecular property is the energy gradient, which

is a key quantity for finding equilibrium molecular structures by minimization of energy

and molecular forces (the procedure known as the geometry optimization). The geometry

optimization was employed throughout this work as a basic computational tool and the

method of calculation of molecular forces will be thus briefly introduced.

The energy gradient was the first molecular property calculated at a rigorous ab initio

level [109] and, as such, it serves as a good example of practical issues arising in the

calculations of molecular properties. A general first-order ground-state property E
(1)
0

corresponding to a perturbation Ĥ(1) is given by the Hellmann–Feynman theorem [110]

E
(1)
0 = 〈0|Ĥ(1)|0〉 . (2.50)

This theorem, however, holds only for an exact ground-state wave function |0〉 (and for

certain special cases such as the HF complete basis set limit). Evaluation of the molecular

gradient according to (2.50) with an approximate wave function gives rise to a fictitious

wave-function force (Pulay force) [109]. This computational artifact can be avoided by

calculating the HF energy gradient as a total derivative of the energy EHF
0 + Unuc with

respect to nuclear coordinates RA [75, 109]:

d

dRA

(EHF
0 + Unuc) =

M∑
µ,ν

Pµν
∂hµν
∂RA

+
1

2

M∑
µ,ν,λ,σ

PµνPλσ
∂
[
(µν|λσ)− 1

2
(µσ|λν)

]
∂RA

−
M∑
µ,ν

∂Sµν
∂RA

N∑
a=1

εaCνaC
∗
aµ +

∂Unuc

∂RA

. (2.51)

An analogous expression for efficient calculation of the KS energy gradient was given by

Pople et al. [106].

2.5.2 Time-independent perturbation theory

The expressions for higher-order ground-state properties E
(kl)
0 can be derived using the

Rayleigh–Schödinger pertubation theory [75,111]. The Hamiltonian Ĥ, ground-state wave

function |Φ0〉, and energy E0 (2.48) in the presence of perturbations satisfy the time-

independent Schrödinger equation

Ĥ|Φ0〉 = E0|Φ0〉 . (2.52)

By collecting the terms of individual perturbation orders and applying the wave-function

normalization condition, the higher-order molecular properties are obtained. In particular,
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a general second-order ground-state property can be expressed as

E
(11)
0 = 〈0|Ĥ(11)|0〉+ 2 〈0|Ĥ(10)|Φ(01)

0 〉

= 〈0|Ĥ(11)|0〉+ 2 〈0|Ĥ(01)|Φ(10)
0 〉 ,

(2.53)

where the first term can be readily evaluated using the unperturbed ground-state wave

function |0〉 as a simple expectation value of the second-order Hamiltonian Ĥ(11). The

second term of (2.53) can be expressed in two equivalent ways using the first-order wave

functions |Φ(10)
0 〉 or |Φ(01)

0 〉. Note that the second-order wave functions are not needed to

calculate the second-order property. In general, Wigner’s (2n + 1)-rule applies, stating

that the nth-order wave functions are sufficient to evaluate the (2n+ 1)th-order properties

[108,112].

Assuming non-degenerate ground state |0〉, the first-order wave functions |Φ(10)
0 〉 and

|Φ(01)
0 〉 can be expanded into a basis of virtual states |m〉, m 6= 0, and the second-order

property E
(11)
0 can be rewritten into the sum-over-states (SOS) form

E
(11)
0 = 〈0|Ĥ(11)|0〉+ 2

∑
m6=0

〈0|Ĥ(10)|m〉〈m|Ĥ(01)|0〉
E

(0)
0 − E

(0)
m

. (2.54)

In the theory of NMR parameters, the first term in (2.54) is usually called diamagnetic

and the SOS expansion is referred to as the paramagnetic term. Unfortunately, the

exact virtual states |m〉 are almost never available and the SOS calculations employing

approximate states |m〉 and energies E
(0)
m can be quite inaccurate. The SOS expansions

are mainly used to gain insight into the theoretical characteristics of molecular properties.

The actual calculations are most usually carried out in the framework of perturbed HF

or KS equations.

2.5.3 Coupled-perturbed scheme

For accurate and rigorous calculation of molecular properties, the perturbed wave func-

tions have to be found in a self-consistent manner. In the coupled-perturbed (CP) scheme,

instead of focusing on the total wave function, the perturbational expansion is applied di-

rectly to the HF or KS equations. Here we concentrate on the coupled-perturbed Hartree–

Fock (CPHF) method [113] for ground-state molecular properties.

The perturbation Ĥ(kl) can be decomposed into contributions acting on individual

occupied spin orbitals χa:

Ĥ(kl) =
N∑
a=1

ĥ(kl)(a) . (2.55)
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Assuming the perturbed ground-state wave function |Φ0〉 (2.48b) in a form of Slater

determinant, the second-order ground-state property E
(11)
0 (2.53) can be expressed as

E
(11)
0 =

N∑
a=1

〈χ(0)
a |ĥ(11)|χ(0)

a 〉+ 2
N∑
a=1

〈χ(0)
a |ĥ(10)|χ(01)

a 〉 . (2.56)

Same as in the perturbation theory, the calculation of expectation values of the second-

order operator ĥ(11) with the unperturbed spin orbitals χ
(0)
a is straightforward. χ

(01)
a are

the first-order spin orbitals that remain to be found.

The Fock operator f̂ , the occupied spin orbitals χa, and the orbital energies εa can

be expanded in analogy to (2.48). Inserting these expansions into the HF equations (2.9)

and collecting the ‘(01)’ terms we get the perturbed HF equations [113–115]

(
f̂ (01) − ε(01)

a

)
χ(0)
a +

(
f̂ (0) − ε(0)

a

)
χ(01)
a = 0 (2.57)

for the unknown first-order spin orbitals χ
(01)
a . The CPHF scheme thus requires previous

solution of the unperturbed HF equations. The first-order Fock operator f̂ (01) can be

decomposed into the one- and two-electron parts,

f̂ (01) = ĥ(01) + ĝ(01) , (2.58)

where the first-order two-electron operator ĝ(01) consists of the first-order Coulomb and

exchange operators Ĵ
(01)
b and K̂

(01)
b :

ĝ(01) =
N∑
b=1

(
Ĵ

(01)
b − K̂(01)

b

)
, (2.59a)

Ĵ
(01)
b χ(0)

a (1) =

[∫
1

r12

(
χ

(01)∗
b (2)χ

(0)
b (2) + χ

(0)∗
b (2)χ

(01)
b (2)

)
d2

]
χa(1) , (2.59b)

K̂
(01)
b χ(0)

a (1) =

[∫
1

r12

χ
(01)∗
b (2)χ(0)

a (2) d2

]
χ

(0)
b (1)

+

[∫
1

r12

χ
(0)∗
b (2)χ(0)

a (2) d2

]
χ

(01)
b (1) , (2.59c)

where, for brevity, the indexes 1 and 2 were used instead of the electron coordinates x1 and

x2. Through ĝ(01), the first-order Fock operator f̂ (01) depends on the first-order occupied

spin orbitals χ
(01)
b . At the same time, each perturbed spin orbital χ

(01)
a is generated by

f̂ (01) as a solution of the perturbed HF equations (2.57). f̂ (01) and χ
(01)
a are thus coupled

and the equations (2.57) have to be solved iteratively.

The first-order spin orbitals χ
(01)
a can be expanded into the basis of unperturbed virtual
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spin orbitals χ
(0)
q ,

χ(01)
a =

∑
q>N

d(01)
qa χ(0)

q , (2.60)

where d
(01)
qa are the expansion coefficients. By substituting (2.60) into (2.57), multiplying

with 〈χ(0)
q | and integrating over the electron coordinates we obtain the expansion coeffi-

cients

d(01)
qa =

〈χ(0)
q |f̂ (01)|χ(0)

a 〉
ε

(0)
a − ε(0)

q

. (2.61)

This is the basic equation used in the coupled-perturbed iterative scheme. In the initial

step, the perturbation ĥ(01) is taken as a first guess for the perturbed Fock operator f̂ (01).

The expansion coefficients d
(01)
qa are determined from (2.61) and inserted into (2.60). The

perturbed spin orbitals |χ(01)
a 〉 are then used to construct new f̂ (01) according to (2.58)

and (2.59). The CPHF procedure continues until the convergence of both f̂ (01) and d
(01)
qa .

Finally, using the converged expansion coefficients d
(01)
qa , the first-order spin orbitals χ

(01)
a

are found according to (2.60) and the corresponding one-electron contributions to the

second-order ground-state property E
(11)
0 (2.56) are calculated as

〈χ(0)
a |ĥ(10)|χ(01)

a 〉 =
∑
q>N

〈χ(0)
a |ĥ(10)|χ(0)

q 〉d(01)
qa . (2.62)

Note that the CP equations need to be solved only for one of the perturbations ‘(01)’ and

‘(10)’. Since the CP iterative procedure is the most time-consuming step in molecular

property calculations, a suitable choice of the perturbation entering the CP scheme can

substantially reduce the computational costs.

The general CP theory can be transformed into working self-consistent matrix equa-

tions by introducing the LCAO expansion (2.14). The actual implementations of the CP

scheme are specific for each molecular property and usually exploit the particular form of

the perturbation operators ĥ(01) and ĥ(10).

CPKS method. The KS variant of the coupled-perturbed scheme [116] can be obtained

from the CPHF by substituting the exchange part of the first-order Fock operator f̂ (01)

with the first-order exchange-correlation potential v
(01)
xc :

f̂KS (01) = ĥ(01) +
N∑
b=1

Ĵ
(01)
b + v(01)

xc . (2.63)

The particular form of v
(01)
xc is specific for each DFT functional type.
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Magnetic perturbations represent a specific case for the CPKS scheme since they

involve imaginary perturbation operators [117, 118]. The pure imaginary perturbations

lead to pure imaginary first-order KS spin orbitals χ
KS (01)
a , which yield zero contribution

to the total density. Therefore, both Coulomb and exchange-correlation parts of f̂KS (01)

vanish and the calculations of the corresponding perturbation terms with non-hybrid

DFT functionals reduce to an uncoupled (non-iterative) case. Note, however, that the

imaginary first-order spin orbitals contribute to the first-order current density. Therefore,

if a functional dependent on current density would be used, the imaginary perturbation

operators would enter the CPKS procedure [119].

2.6 General notes on the computational methodology

Equilibrium molecular geometries were usually optimized using the DFT method (mostly

the B3LYP functional) with a moderately sized basis set (such as 6-31+G(d)) and the

implicit polarizable continuum model (PCM) [120–122] or COSMO-PCM (CPCM) [123]

hydration. The most typical NMR computational method also employed the B3LYP

functional, as it is known to perform well for the NMR parameters [118,124], the IGLO-

III basis set [125], and the implicit PCM hydration. This approach, further denoted

DFT/PCM, proved very useful for obtaining qualitative NMR results for large numbers

of molecular conformers.

The DFT/PCM results were compared to the experimental data whenever possible

and the differences were explained in terms of computational corrections due to various

approximations underlying the DFT/PCM method. A perturbational view of these cor-

rections was adopted, assuming their simple additivity. Within this ‘piecewise approxi-

mation’, the individual corrections were evaluated separately, using more elaborate com-

putational techniques. The main sources of computational imperfections were:

(i) electronic structure method

(ii) atomic basis set

(iii) explicit solvent effects

(iv) (ro)vibrational corrections

(v) model system size and quality

As already discussed in section 2.4.5, the (i) DFT error can be estimated by a com-

parison with benchmark electronic structure methods such as coupled clusters. Testing

the quality of (ii) atomic basis set and (v) computational model by gradually increasing

the size of either of them is also quite obvious. The corrections due the (iii) explicit
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solvent are usually quite demanding as they require averaging of the calculated results

over many solute-solvent configurations generated e.g. with molecular dynamics. The (iv)

(ro)vibrational corrections to the spectroscopic parameters were not calculated in this

work but they represent a very important and not yet fully explored area [11,13,126,127].

Indeed, the piecewise approximation is not exactly accurate. For example, the basis

set convergence properties are certainly differ for different electronic structure methods,

wherefore the corrections due to the points (i) and (ii) are strictly speaking not sepa-

rable. The explicit solvent effects and (ro)vibrational corrections (iii) and (iv) are also

very closely related and in the case of the solute internal dynamics they are completely

intertwined. Nevertheless, the piecewise approximation is often the only feasible way how

to estimate the combined effect of different computational approximations and it helps to

explain the differences between the calculated and experimental data.

2.6.1 Quantum chemistry programs

Most of the calculations in this doctoral work were done using the Gaussian 03 and

Gaussian 09 programs. The dynamical simulations of work V were performed within

the Amber 10 program package and the benchmark coupled-clusters NMR calculations in

work VI employed the Cfour program.
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3 Theory of NMR spectroscopic method

3.1 NMR spectroscopy

Nuclear magnetic resonance spectroscopy is one of the most powerful experimental tech-

niques nowadays. It is widely used in many research fields, ranging from solid-state

material science through biomolecular research to many applications of non-invasive ima-

ging. High-resolution Fourier-transform NMR represents a unique method for obtaining

detailed information on structure and dynamics of biomolecules. In this section we will

very briefly outline the theoretical basis of liquid-phase biomolecular NMR.

The phenomenon of nuclear magnetism applies to atomic nuclei with non-zero spin Î.

Placing of such nucleus into magnetic field B gives rise to a Zeeman interaction described

with a Hamiltonian

ĤZ = −m̂ ·B , (3.1)

where we introduced the nuclear magnetic moment operator

m̂ = γ~Î . (3.2)

The gyromagnetic ratio γ in rad · s−1 · T−1 is a constant specific for each nuclear isotope

and it characterizes magnitude of the nuclear magnetic moment.

Magnetic field acting on a nucleus in NMR experiment generally consists of a static

magnetic field B0 and a time-dependent part B1(t):

B(t) = B0 + B1(t) . (3.3)

Expectation value 〈m̂〉 of the nuclear magnetic moment in magnetic field B(t) undergoes

a time evolution corresponding to the time-dependent Hamiltonian (3.1). By inserting

ĤZ into Schrödinger equation (2.1) and considering properties of the spin operator Î we

obtain equation of motion

d〈m̂〉
dt

= 〈m̂〉 × γB(t) . (3.4)

Static magnetic field. A sample placed inside NMR spectrometer experiences a highly

homogeneous and extremely stable magnetic field B0 (also called static or longitudinal).

It is typically much stronger than the time-dependent magnetic field B1(t). The inter-

action of a nuclear magnetic moment with B0 is described by time-independent Zeeman
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Hamiltonian

ĤZ = −m̂ ·B0 . (3.5)

Solutions of the corresponding stationary Schrödinger equation are Zeeman eigenstates

equidistant in energy. The equation (3.4) then corresponds to the Larmor precession

of the expectation value of nuclear magnetic moment 〈m̂〉 at Larmor angular frequency

ωL
0 = −γB0.

Time-dependent magnetic field. Two kinds of the time-dependent magnetic field

B1(t) are important in NMR: A local, stochastically fluctuating field Bloc(t) and an ex-

ternal radio-frequency field Brf(t) oscillating in transversal plane (perpendicular to B0).

Both these fields can induce transitions between Zeeman energy levels of a nuclear spin

through time-dependent perturbation ĤZ(t) = −m̂ ·B1(t).

The local magnetic field Bloc experienced by a nucleus is created by the surroun-

ding nuclear spins and by the electron cloud in a molecule. A real sample consists of a

huge amount of statistically identical molecular systems; each nuclear spin in a molecule

thus corresponds to an ensemble of statistically identical nuclear spins in the sample.

The stochastic time evolution of Bloc arises due to the thermal molecular motion which

causes random variation of the local magnetic interactions (see section 3.1.1). This in-

herent magnetic noise enables the ensemble of statistically identical nuclear spins reach

thermodynamic equilibrium in which populations of Zeeman energy levels correspond to

Boltzmann distribution. The difference in populations of individual Zeeman states is

demonstrated in creation of macroscopic magnetization in the sample. The stochastic

magnetic field Bloc is thus directly related to the phenomenon of NMR relaxation (see

section 3.1.4).

One of the fundamental concepts in NMR is the application of transversal magnetic

field Brf oscillating at Larmor frequency of a particular nucleus. It can be shown that the

whole ensemble of statistically identical nuclear spins is then rotated around the direction

of Brf with angular frequency |1
2
γBrf| (the factor of 1

2
arises due to linear polarization of the

Brf). Macroscopic magnetization in a sample thus can be manipulated by radio-frequency

pulses applied in a transversal plane.

3.1.1 Magnetic interactions in molecules

Local magnetic field Bloc interacting with nuclear magnetic moment m̂K gives rise to

energy contributions in the total Zeeman Hamiltonian (3.1). In this work we were concer-

ned only with spin-½ nuclei in diamagnetic (i.e. closed-shell) molecular systems. The

main magnetic interactions in such systems are the chemical shielding and the direct and
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indirect spin–spin coupling.

Chemical shielding. According to the semi-classical view developed by Ramsey [128],

if a molecule is placed in the external magnetic field B0, it induces currents in the electron

cloud of the molecule, which in turn create a small secondary magnetic flux that adds to

B0. The interaction of a nuclear magnetic moment m̂K with the induced magnetic flux

is known as the chemical shielding. It can be described with a Hamiltonian

ĤCS
K = m̂K ·

↔
σK ·B0 , (3.6)

where
↔
σK is the dimensionless chemical shielding tensor, usually reported in ppm (parts

per million, 10−6). The orientation of
↔
σK is fixed in the molecule and it is strongly

dependent on the electronic environment of a nucleus K. In the most general case, all

nine components σuv (u, v = {x, y, z}) are independent. However, in NMR spectra of

isotropic liquids only the isotropic part σiso
K = 1

3
Tr
↔
σK is retained. The anisotropic part

of the chemical shielding tensor contributes to the NMR relaxation (see section 3.1.4).

Direct spin–spin coupling. Nuclear magnetic moments are subjected to the direct

(through-space) dipole–dipole interaction which can be expressed in the explicit form

ĤDD
KL = −µ0

4π

(
3m̂K ·RKLRKL · m̂L

R5
KL

− m̂K · m̂L

R3
KL

)
= m̂K ·

↔
DKL · m̂L ,

(3.7)

where RKL = RK −RL is the position of nucleus K relative to nucleus L and
↔
DKL is the

direct spin–spin coupling tensor. In isotropic liquids, the direct dipole–dipole interaction

gets completely averaged out due to the molecular motion and it thus does not contribute

to liquid-phase NMR spectra. It does, however, significantly contribute to NMR relaxation

(see section 3.1.4).

Indirect spin–spin coupling. Finally, we must also consider an electron-mediated

nuclear spin–spin interaction, usually called J-coupling. It is manifested by magnetic-field-

independent splitting of NMR spectral lines that is specific to the electronic environment

between the coupled nuclei K and L. The most general form of this interaction is again

tensorial,

ĤJ
KL = hÎK ·

↔
JKL · ÎL . (3.8)
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However, only the isotropic (scalar) J-coupling is retained in the NMR spectra of isotropic

liquids,

ĤJ,iso
KL = hJKLÎK · ÎL (homonuclear case)

ĤJ,iso
KL = hJKLÎK,z ÎL,z (heteronuclear case)

(3.9)

where JKL = 1
3
Tr
↔
JKL is the scalar spin–spin coupling constant (J-coupling) denoting the

magnitude of the spectral splitting in Hz.

3.1.2 Effective spin Hamiltonian

The individual magnetic interactions ĤZ
K , ĤCS

K , ĤDD
KL and ĤJ

KL can be collected into the

effective spin Hamiltonian

Ĥeff = −
∑
K

m̂K ·
(↔
1 − ↔σK

)
·B0 +

1

2

∑
K 6=L

m̂K ·
(↔
DKL +

↔
KKL

)
· m̂L (3.10)

which empirically describes a general NMR spectrum of a diamagnetic molecular system

with spin-½ nuclei. The summations are running through all nuclear spins and spin pairs in

the system, respectively. In (3.10) we introduced a nucleus-independent indirect spin–spin

coupling tensor
↔
KKL related to the J-coupling tensor according to

↔
JKL = h

γK
2π

γL
2π

↔
KKL . (3.11)

Assuming that the Born–Oppenheimer approximation holds also in the presence of

magnetic field, we can distinguish between the through-space magnetic interactions (ĤZ
K

and ĤDD
KL ) that contribute only to the nuclear energy and the electron-mediated magnetic

interactions (ĤCS
K and ĤJ

KL) that perturb the electronic energy and can be thus evalua-

ted using quantum chemistry methods. In the following, the nuclear magnetic moment

operator m̂ can be replaced with a vector m.

3.1.3 NMR parameters

In this work, when referring to NMR parameters, we mean specifically the tensors
↔
σK

and
↔
JKL and related quantities which are manifested either in NMR spectra or in NMR

relaxations (see below). The NMR tensors are commonly presented as 3 × 3 Cartesian

matrices while they are still referred to as tensors. In the following we will stick to

this convention, omitting the formal difference between tensor and its Cartesian matrix

representation.
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NMR parameters as energy derivatives. The chemical shielding tensor
↔
σK is a

second-order molecular property (as defined in section 2.5) corresponding to the ground-

state electronic energy E0 perturbed by static magnetic field B0 and nuclear magnetic

moment mK . The chemical shielding tensor components σK,uv, u, v = {x, y, z}, can be

evaluated as

σK,uv =
d2E0

dmK,udB0,v

∣∣∣∣∣
mK=B0=0

. (3.12)

Similarly, the J-coupling is also a second-order property. The Cartesian components of

the nucleus-independent spin–spin coupling tensor
↔
KKL are given by

KKL,uv =
d2E0

dmK,udmL,v

∣∣∣∣∣
mK=mL=0

. (3.13)

Chemical shielding tensor invariants. The chemical shielding tensor
↔
σ is in the

Cartesian basis represented by a 3× 3 matrix with nine independent components. It can

be decomposed into irreducible tensors of rank 0, 1 and 2,

↔
σ =

↔
σ(0) +

↔
σ(1) +

↔
σ(2) . (3.14)

The rank-0 irreducible tensor is the isotropic chemical shielding,
↔
σ(0) = 1

3
Tr
↔
σ = σiso.

The antisymmetric rank-1 tensor
↔
σ(1) with three independent components is manifested

only in higher-order NMR effects and it will not be discussed here. The remaining five

components of
↔
σ correspond to the rank-2 irreducible tensor

↔
σ(2). The rank-0 and rank-2

tensors together constitute a symmetric tensor
↔
σsymm, which can be diagonalized, finding

thus principal values σii and the corresponding eigenvectors eii, i = {1, 2, 3}. As the

diagonalization does not alter the trace of the tensor, the isotropic chemical shielding is

an average of the three principal values,

σiso =
1

3
(σ11 + σ22 + σ33) . (3.15)

In the chemical shielding calculations, a convention σ11 < σ22 < σ33 is usually adopted.

An important characteristic of the
↔
σ tensor is the chemical shielding anisotropy (CSA,

∆σ). It can be expressed in several ways; we use the definition

∆σ = σ33 −
σ11 + σ22

2
. (3.16)

Chemical shift. Absolute chemical shielding σ is almost never reported in the lite-

rature since the chemical shielding scale originates at the Larmor frequency of a bare
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atomic nucleus. Instead, an expectedly inert molecule of so-called NMR standard (NMR

reference) is added to the NMR sample, and the relative chemical shift δ defined as

δ =
ω − ωstd

ωstd

=
σstd − σ
1− σstd

≈ σstd − σ
(3.17)

is reported. ω and ωstd are the nuclear resonance frequencies in the sample and in the

NMR standard, respectively. The definition (3.17) also provides an easy way for obtaining

the chemical shift computationally—by subtracting the chemical shielding σ calculated in

the molecule of NMR sample from that of the NMR standard σstd. Further, if both σ and

σstd are calculated with the same method, some computational errors may get canceled

in the subtraction.

The σstd might be difficult to calculate, as is the case of a widely used 31P NMR stan-

dard, the 85% aqueous solution of phosphoric acid, H3PO4 (aq.). Problematic modeling

of σH3PO4
can be circumvented by introducing secondary standard PH3, as suggested by

van Wüllen [129]. Experimental chemical shift of gas-phase PH3 relative to H3PO4 (aq.)

is known to be −266.1 ppm [130]. 31P chemical shift δP thus can be calculated using the

secondary standard approach as

δP = −266.1 + σPH3
− σP, (3.18)

where σPH3
is the 31P chemical shielding calculated for the phosphine molecule in vacuum.

Note that the accuracy of δP calculated this way is still limited by the precision of the

computational method used.

3.1.4 NMR relaxation

The phenomenon of NMR relaxation has been utilized as a valuable source of information

on molecular systems since the early days of NMR. The theory describing the evolution

of nuclear magnetization in static magnetic field was first formulated by Bloch [131]. The

origin of both longitudinal and transversal NMR relaxation has been ascribed to stochastic

fluctuations of local magnetic fields acting on nuclear spins.

In molecular systems with spin-½ nuclei, the main sources of NMR relaxation are

the direct dipole–dipole interaction (DD) and the chemical shielding anisotropy (CSA).

Theory of NMR relaxation due to the dipole–dipole interaction was first given for a two-

spin system by Solomon [132]. This simple case already included the theoretical basis for

the explanation of the nuclear Overhauser effect.

A general description of relaxation processes in molecular systems was provided by the

Bloch–Wangsness–Redfield theory [133, 134], usually called the Redfield theory. Essen-
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tially, it is a second-order time-dependent perturbation theory that approximately solves

the Liouville–von Neumann equation for the density matrix ρ̂(t) of a nuclear spin en-

semble in the presence of a stochastic magnetic perturbation. The magnetic interactions

are expressed in terms of irreducible spherical tensors which are transformed from their

principal axis frame to the laboratory frame using reduced Wigner coefficients. The time

evolution of the expectation value 〈M̂〉 of nuclear spin operator M̂ is within the so-called

secular approximation given by [135]

d

dt
〈M̂〉 = −1

2

∑
λλ′

cλcλ′
∑
r

Jλλ
′
(ωr) · Tr

{[[
M̂, Q̂λ

r

]
, Q̂λ′ †

r

]
ρ̂(t)

}
, (3.19)

where the first sum runs over all pairs of magnetic interactions λ and λ′ (NMR relaxation

mechanisms) in the nuclear spin ensemble, the constants cλ are cλ′ are the magnetic

interaction strengths, Jλλ
′
(ωr) is the spectral density function involving the stochastic

parts of magnetics perturbations correlated at characteristic frequencies ωr of the nuclear

spin ensemble, and Q̂λ
r are spin operators specific for the magnetic interaction λ.

The spectral density function Jλλ
′
(ω) is a Fourier transform of the correlation function

between the magnetic interactions λ and λ′ represented by irreducible spherical tensors.

The explicit form of the Jλλ
′
(ω) can be very complex, depending on the employed model

of molecular motion.

By particular choice of the nuclear spin operator M̂ in equation (3.19) we find equa-

tions of motion for the spin populations (longitudinal NMR relaxation), single-quantum

spin coherences (transversal NMR relaxation) and multiple-quantum coherences. The

terms of (3.19) with λ = λ′ correspond to the so-called auto-correlated relaxation while

the remaining terms with λ 6= λ′ describe the interference of two different relaxation

mechanisms, the cross-correlated relaxation (CCR).

Cross-correlated relaxation. Three types of CCR can occur by interference of dif-

ferent DD or CSA relaxation mechanisms: the DD–DD, the CSA–DD and the CSA–CSA

cross-correlated relaxation [136]. The DD–DD and CSA–DD cross-correlations are mani-

fested in both longitudinal and transversal NMR relaxation; the CSA–CSA mechanism

contributes only to the relaxation of multiple-quantum coherences. The DD–DD is usually

the strongest CCR mechanism and has been successfully applied in the determination of

biomolecular structure [1]. We focused on the CSA–DD mechanism that turned out im-

portant in structural studies of peptides [2, 3] and nucleic acids [26].

The cross-correlated relaxation rate ΓCSA-DD
I,JK involving CSA of a nucleus I and the DD

interaction between nuclei J and K is given by [2, 135]

ΓCSA-DD
I,JK =

1

2

(µ0

4π

)
~
γJγK
r3
JK

γIB0

∑
r

arJ
CSA-DD(ωr) , (3.20)
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where γI , γJ , γK are the gyromagnetic ratios, rJK is the length of the dipolar vector, B0

is the magnetic field strength, ar are the coefficients resulting from evaluating the double

commutator in the equation (3.19) and JCSA-DD(ωr) is the CSA–DD spectral density

function evaluated at resonance frequencies ωr. Assuming that the mutual orientation of

the CSA and DD principal axis frames is rigid, the CSA–DD spectral density function

can be expressed in the form

JCSA-DD(ω) =

[
3∑
i=1

σI,ii · D(2)
00 (ϑJK,ii)

]
J(ω) = ∆σeff

I,JK J(ω) , (3.21)

where σI,ii are the principal values of the chemical shielding tensor of nucleus I, D(2)
00 (ϑJK,ii)

= (3 cos2 ϑJK,ii − 1)/2 is the reduced Wigner coefficient corresponding to the transition

between CSA and DD principal axis frames, ϑJK,ii is the angle between the dipolar vector

rJK and the i-th principal axis of the chemical shielding tensor, and J(ω) is the ordinary

spectral density function; in the special case of isotropic molecular tumbling characterized

by the rotation correlation time τc, J(ω) = 2
5

τc
1+(ωτc)2

. The effective CSA ∆σeff
I,JK defined

in (3.21) and the dipolar distance factor r−3
JK in (3.20) constitute the molecular-geometry-

dependent parts of CSA–DD cross-correlated relaxation rates that can be conveniently

evaluated using quantum chemistry methods.

3.1.5 Structural interpretation of NMR parameters

The ability of NMR spectroscopy to sensitively probe the local environment of atomic

nuclei is one of the main reasons for the vast success of NMR. The relationships between

NMR parameters and molecular structure are essential tools for the application of NMR in

biomolecular research. Empirical rules can be obtained experimentally for molecules with

known geometry. However, a much deeper and more general insight into the structural

dependence of NMR parameters is obtained from theoretical calculations. A prominent

example of the theoretical approach was finding a general form of the dependence of three-

bond vicinal J-coupling on the associated torsion angle by Karplus [137]. The famous

Karplus relation can be expressed in the form

3JKL(α) = C + A1 cos(α− φ) + A2 cos2(α− φ) , (3.22)

where the constant C, the amplitudes A1, A2 and the phase φ are parameters specific

for each pair of coupled nuclei K, L, and α is the torsion angle assigned to the coupled

atoms. Recent advances in quantum chemistry computational methods enable finding

more complex relations between NMR parameters and molecular structure [22, 32, 138].

Theoretical modeling of NMR parameters in dependence on molecular geometry was one

of the central topics of this doctoral work.
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3.2 Theory of NMR parameters

The theory of NMR parameters can be formulated following an approach outlined by

Fukui [114, 115], starting from the Dirac equation [139, 140] for an electron in magnetic

field, [
c

(
0 σ

σ 0

)
· π̂ +

(
1 0

0 −1

)
mec

2

](
ψL

ψS

)
= Erel

(
ψL

ψS

)
, (3.23)

where ψL and ψS are the large and small components of the total four-component wave

function, Erel is the relativistic electron energy, c is the speed of light in vacuum, me is

the electron mass, 1 is a 2×2 unit matrix, σ is the vector of Pauli matrices σx, σy, σz, and

π̂ = p̂+eA is the mechanical momentum of electron constituting of canonical momentum

p̂ = −i~∇ and a contribution from vector potential A. The particular form of A is specific

for each NMR parameter and can be inserted later.

Since there is no potential V̂ in the Dirac Hamiltonian of equation (3.23), the com-

ponents ψL and ψS are not coupled and the Dirac equation can be rewritten for the large

component only,[
c2(σ · π̂)2

Erel +mec2
+mec

2

]
ψL = ErelψL . (3.24)

The one-electron Hamiltonian corresponding to Erel is thus (discarding the negative-

energy solution)

Ĥrel =
√
m2

ec
4 + c2(σ · π̂)2

≈ mec
2 +

(σ · π̂)2

2me

+O(c−2) = E0 + Ĥ1 +O(c−2) , (3.25)

where E0 is the rest mass energy, the Hamiltonian Ĥ1 includes all non-relativistic terms,

and the relativistic corrections are of the order of c−2.

By choosing the Coulomb gauge ∇ ·A = 0 , the Hamiltonian Ĥ1 can be shown equi-

valent to the non-relativistic Pauli Hamiltonian ĤPauli for an electron in magnetic field:

ĤPauli = − ~2

2me

∆− µBgsŝ · ∇ ×A +
e

me

A · p̂ +
e2

2me

A2 , (3.26)

where µB = e~/(2me) is Bohr magneton, gs = 2.002319... is the electron g-factor, and

ŝ = −σ/gs is the electron spin operator. By introducing the semi-classical operator ŝ we

definitively moved from the two-component non-relativistic limit of the Dirac Hamiltonian

to the one-component case accessible to standard quantum chemistry calculations.
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3.2.1 J -coupling Hamiltonian

Rigorous theoretical description of the J-coupling interaction was first given by Ramsey

[141]. The J-coupling Hamiltonian can be found by inserting the vector potential of two

magnetic dipoles (nuclear magnetic moments) mK and mL

A = AK + AL =
µ0

4π

(
mK × rK

r3
K

+
mL × rL

r3
L

)
(3.27)

into the one-electron Pauli Hamiltonian (3.26). µ0 is the vacuum permeability and the

vectors rK = r −RK and rL = r −RL describe the electron position relative to the two

magnetic moments. The magnetic field of each magnetic dipole is given by

∇×AK =
µ0

4π

3mK · rKrK −mKr
2
K

r5
K

+
2

3
µ0mKδ

3(rK) , (3.28)

where the second term involving three-dimensional Dirac δ-function arises due to the

differentiation in a distribution sense [142] and it is directly related to the Fermi-contact

term of the J-coupling Hamiltonian. Griffiths gave a clear and intuitive explanation for

the need of δ-function in the expression for magnetic field of point magnetic dipole in

order to preserve the consistency of the theory for rK → 0 [143].

Using (3.27) and (3.28), the Pauli Hamiltonian (3.26) can be rewritten as

ĤJ
Pauli = − ~2

2me

∆ +
e2

2me

(A2
K + A2

L) + ĤJ
KL , (3.29a)

ĤJ
KL = ĤDSO

KL + ĤPSO
K + ĤPSO

L + ĤFC
K + ĤFC

L + ĤSD
K + ĤSD

L , (3.29b)

where neither the electron kinetic energy in the first term of (3.29a) nor the terms qua-

dratic in the vector potentials of magnetic dipoles contribute to the non-relativistic J-

coupling. The full non-relativistic one-electron Hamiltonian ĤJ
KL (3.29b) of J-coupling

between nuclei K and L constitutes of the diamagnetic spin-orbit (DSO), paramagnetic

spin-orbit (PSO), Fermi-contact (FC), and spin-dipolar (SD) operators:

ĤDSO
KL =

(µ0

4π

)2 e2

me

mK ·mLrK · rL −mK · rLrK ·mL

r3
Kr

3
L

(3.30a)

ĤPSO
X = 2

(µ0

4π

) µB

~
mX · l̂X
r3
X

(3.30b)

ĤFC
X = −8π

3

(µ0

4π

)
µBgsmX · ŝδ3(rX) (3.30c)

ĤSD
X = −

(µ0

4π

)
µBgs

3mX · rXrX −mXr
2
X

r5
X

· ŝ , (3.30d)
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where X = {K,L} and l̂X = −i~rX ×∇ is the orbital angular momentum operator.

The DSO operator describes the interaction between the two magnetic moments me-

diated by the electron orbital motion. The PSO term corresponds to the interaction of

nuclear magnetic moment with the electron orbital momentum. Both FC and SD opera-

tors describe the interaction between the nuclear magnetic moments and the electron spin,

each corresponding to one part of the magnetic dipole field (3.28). Namely, the FC term

arises due to the non-zero electron density at the position of nucleus. The decomposition

of the electron spin-dependent part of ĤJ
KL into the FC and SD terms is possible only in

the non-relativistic case [142, 144] and it is thus somewhat artificial but convenient since

the FC term of J-coupling is often dominant and relatively easy to evaluate.

3.2.2 Perturbation theory of J -coupling

According to (3.13), the nucleus-independent spin–spin coupling tensor
↔
KKL is a second-

order molecular property corresponding to the electronic system perturbed by nuclear

magnetic moments mK and mL. Assuming a closed-shell molecule with non-degenerate

ground state, the tensor components KKL,uv, u, v = {x, y, z}, can be expressed using the

sum-over-states expansion (2.54) as

KKL,uv =
〈
0
∣∣ĥDSO
KL,uv

∣∣0〉+ 2
∑
s>0

〈
0
∣∣ĥPSO
K,u

∣∣s〉〈s∣∣ĥPSO
L,v

∣∣0〉
E0 − Es

+

+ 2
∑
t

〈
0
∣∣ĥFC
K,u + ĥSD

K,u

∣∣t〉〈t∣∣ĥFC
L,v + ĥSD

L,v

∣∣0〉
E0 − Et

, (3.31)

where |0〉 is the ground state, |s〉 and |t〉 are the singlet and triplet virtual states, E0,

Es, and Et are the corresponding electronic energies, and each of the perturbation ope-

rators ĥDSO
KL,uv, ĥPSO

X , ĥFC
X , ĥSD

X , X = K,L, in the many-electron case is a sum of one-

electron contributions obtained by differentiating the respective terms of the one-electron

J-coupling Hamiltonian ĤJ
KL (3.30):

ĥDSO
KL,uv =

(µ0

4π

)2 e2

me

N∑
a=1

raK · raLδuv − raK,vraL,u
r3
aKr

3
aL

(3.32a)

ĥPSO
X = 2

(µ0

4π

) µB

~

N∑
a=1

l̂aX
r3
aX

(3.32b)

ĥFC
X = −8π

3

(µ0

4π

)
µBgsŝ

N∑
a=1

δ3(raX) (3.32c)

ĥSD
X = −

(µ0

4π

)
µBgs

N∑
a=1

3ŝ · raXraX − ŝr2
aX

r5
aX

. (3.32d)
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The PSO operator does not act on the spin part of wave-function and, therefore, it

contributes only to the matrix elements between singlet ground state and singlet virtual

states. The FC and SD operators on the other hand contain the electron spin operator

and the corresponding integrals thus involve both singlet and triplet virtual states.

Therefore, in total five terms contribute to the tensor
↔
KKL. Namely, the DSO term

represents the diamagnetic part of the J-coupling and the PSO–PSO, FC–FC, SD–SD and

FC–SD terms constitute the paramagnetic part. Moreover, the mixed FC–SD contribution

is fully anisotropic [115]. The isotropic J-coupling in the non-relativistic limit thus consists

of the four well-known terms JDSO
KL , JPSO

KL , JFC
KL and JSD

KL.

3.2.3 Chemical shielding Hamiltonian

The theory of chemical shielding in molecules was developed by Ramsey [128, 145]. The

chemical shielding Hamiltonian can be obtained by inserting the vector potential of a

magnetic dipole mK and a static magnetic field B0

A = AK + A0 =
µ0

4π

mK × rK
r3
K

+
1

2
B0 × rO (3.33)

into the one-electron Pauli Hamiltonian (3.26). Here rO = r−RO is the electron position

relative to the origin of vector potential RO (gauge origin), which can be in theory placed

anywhere in space since ∇ × A0 = B0 for any choice of RO. Similar to the J-coupling

theory, the magnetic dipole field BK corresponding to the vector potential AK is given by

(3.28). The Pauli Hamiltonian for an electron in the presence of magnetic perturbations

mK and B0 thus adopts the form

ĤCS
Pauli = − ~2

2me

∆ +
e2

2me

(A2
K + A2

O)− µB

~
gsŝ ·B0 + ĤFC

K + ĤSD
K + ĤCS

K , (3.34a)

ĤCS
K = Ĥdia

K + Ĥorb + ĤPSO
K , (3.34b)

where neither the kinetic energy in the first term nor the terms quadratic in vector poten-

tial contribute to the chemical shielding. Moreover, the terms involving the electron spin

operator (triplet operators FC and SD) do not play part in the non-relativistic chemical

shielding, as can be seen from the perturbational expansion (3.36); these terms are in-

volved in relativistic corrections to the chemical shielding. The non-relativistic chemical

shielding Hamiltonian thus consists of the diamagnetic (“dia”), orbital Zeeman (“orb”)

and PSO (3.30b) terms:

Ĥdia
K =

(µ0

4π

) e2

2me

B0 ·mKrO · rK −B0 · rKrO ·mK

r3
K

(3.35a)

Ĥorb =
µB

~
B0 · l̂O , (3.35b)
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where l̂O = −i~rO ×∇ is the orbital angular momentum relative to the gauge origin.

3.2.4 Perturbation theory of chemical shielding

The chemical shielding tensor is a second-order property defined by (3.12). Its Cartesian

components σK,uv, u, v = {x, y, z}, for a closed-shell molecule with non-degenerate ground

state can be expressed using the perturbational expansion (2.54) as

σK,uv =
〈
0
∣∣ĥdia
K,uv

∣∣0〉+ 2
∑
s>0

〈
0
∣∣ĥorb
u

∣∣s〉〈s∣∣ĥPSO
K,v

∣∣0〉
E0 − Es

, (3.36)

where the summation runs only over singlet virtual states |s〉. Therefore, the chemical

shielding tensor can be symbolically expressed as a sum of the diamagnetic and paramag-

netic terms,
↔
σ =

↔
σdia+

↔
σpara. The perturbation operators ĥdia

K,uv and ĥorb for many-electron

systems can be obtained similar to the J-coupling operators (3.32) by differentiating the

terms of the chemical shielding Hamiltonian ĤCS
K (3.34b) and summing over all electrons:

ĥdia
K,uv =

(µ0

4π

) e2

2me

N∑
a=1

raO · raKδuv − raO,vraK,u
r3
aK

(3.37a)

ĥorb =
µB

~

N∑
a=1

l̂aO , (3.37b)

The form of the perturbation operator ĥPSO
K was given above (3.32b).

3.3 DFT calculations of NMR parameters

From the theoretical point of view, there is a fundamental obstacle to using DFT in

magnetic response calculations: the electronic energy and other molecular properties in

magnetic field depend not only on the electron density but also on the current density.

Fortunately, the dependence of NMR parameters on the current density is typically small

and it can be neglected [146]. Therefore, the usual current-density independent DFT

functionals can be used in NMR calculations.

3.3.1 DFT calculation of J -coupling

This work involved DFT calculations of all four Ramsey’s terms of the isotropic part of
↔
JKL tensor, the scalar spin–spin coupling (J-coupling). DFT is very efficient for calcu-

lating the J-coupling. It includes the electron correlation, which is essential for correct

description of the electron-mediated mechanism of J-coupling. Moreover, the DFT re-

sults are not much affected by the triplet instability problem of HF and related ab initio
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methods (see below).

First DFT J-coupling calculations were done by combining the finite-perturbation

method for the FC term with the uncoupled DFT calculation of the DSO and PSO terms,

and neglecting the difficult SD term [119, 147–149]. Rigorous CPKS implementations of

the FC and SD terms were developed slightly later [118,124]. Standard GGA functionals

were shown to provide quite accurate J-couplings. Despite the triplet instability problem,

the addition of a small portion of the HF exchange (∼ 20 %) on average improves the pure

GGA results [118,124].

Practical J-coupling calculations exploit the fact that if the CP equations are solved

for the perturbations placed on one (‘perturbing’) nucleus, the J-couplings with all other

(‘responding’) nuclei are available only at the cost of integral evaluation. A smart selection

of the perturbing nuclei in the J-coupling calculations can thus substantially reduce the

computational costs.

J -coupling terms. DFT calculations of the individual J-coupling terms have certain

specifics. The DSO term does not involve the perturbed orbitals and it thus does not

enter the CP scheme. It only requires the evaluation of one-electron integrals of the type

〈
φµ
∣∣rK,u
r3
K

rL,v
r3
L

∣∣φν〉 , (3.38)

where φµ, φν are basis functions and u, v = {x, y, z}. These integrals are not known

analytically; they can be evaluated either by numerical quadrature or by applying the

resolution of identity [118], converting thus the problem to the calculation of integrals of

the PSO type (3.39). The DSO term is mostly small and of the four J-coupling terms it

depends the least on the DFT functional choice.

The pure imaginary PSO perturbation operator ĥPSO
K (3.32b) yields pure imaginary

first-order spin orbitals. As mentioned in section 2.5.3, the imaginary perturbations do

not enter the CPKS scheme and the calculation of the PSO term with non-hybrid DFT

functionals thus reduces to the uncoupled DFT level. When HF exchange is added, all

three Cartesian components of the PSO perturbation have to be evaluated by the CP

procedure. The PSO calculations involve integrals of the type

〈
φµ
∣∣rK,u
r3
K

∣∣φν〉 , (3.39)

which are zero for s-orbitals at the nucleus K. The PSO term can be large when low-lying

virtual orbitals with a distinct non-s-character (p-, d-orbitals) are present [118].

The FC term is isotropic and, hence, only the zz-component JFC
KL,zz = JFC

KL has to be

calculated via the CP procedure. Moreover, the Dirac δ-function in the FC perturbation

operator ĥFC
K (3.32c) reduces the FC integrals to simple products of the orbital values at
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the position of the perturbing nucleus K:

〈χ(0)
aσ |ĥFC

K,zz|χ
(0)
qσ′〉 ∼ σδσσ′ψ∗a(RK)ψq(RK) , (3.40)

where σ, σ′ = {α, β}. Thus, the largest contributions to the FC term arise from the core

s- and bonding sigma-electrons of the perturbing nucleus, which requires high precision

on the DFT integration grid and basis set flexibility, mainly in the core region of the s-

subspace. Nevertheless, the calculation of the FC term is very efficient and since it often

dominates the total J-coupling, it can be used for qualitative estimates of J-coupling

trends when other terms are too expensive.

The SD term is the most demanding as it requires the CP calculation for six perturba-

tions. It is significant in similar cases as the PSO term, i.e. when low-lying non-s- virtual

orbitals are present at the coupled nuclei [118].

In summary, the J-coupling calculations require the iterative solution of CP equations

for 10 perturbations (7 for non-hybrid DFT) per each ‘perturbing’ nucleus. The im-

portance of the individual J-coupling terms can be roughly estimated from the bonding

situation in the molecule. Large basis sets including tight s-functions with large expo-

nents (due to the FC term) and polarization functions (due to the PSO and SD terms)

are needed for satisfactory results.

Triplet instability. The calculation of the FC and SD terms is complicated by the in-

volvement of triplet virtual states and the consequent spin polarization of the perturbed

wave function. In the HF approximation, the exact exchange energy contribution lowers

the triplet-state energies too much relative to the singlet ground state. The correspon-

ding triplet excitation energies can be near zero or even negative in certain cases (such

as multiply-bonded systems) [77, 150] and the HF J-coupling calculation then provides

meaningless results.

The description of singlet and triplet states in DFT is unbalanced as well, but the

consequences are not so drastic as for HF. Unfortunately, the triplet instability is exhibited

also by the correlated ab initio methods which involve HF orbitals relaxed in response to

the magnetic perturbation [150]. Reliable ab initio alternatives, which avoid the instability

problem, are provided by the multi-reference methods [151] or by the correlated single-

reference methods that allow calculations without the orbital relaxation, such as the

orbital-unrelaxed CCSD method [152,153].

3.3.2 DFT calculations of chemical shielding

The chemical shielding calculations in this work were done for the whole
↔
σ tensor including

its principal component magnitudes σii and orientations ei, i = 1, 2, 3. The CP-GIAO
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implementation of chemical shielding at the hybrid DFT level was used [117].

Performance of the HF and DFT methods for chemical shielding is different than for

the J-coupling. While the HF method is inadequate for the J-coupling, the chemical

shielding calculated with HF is already quite accurate. Actually, the popular B3LYP

functional is on average only as accurate as the HF method [117]. The optimal amount

of HF exchange in hybrid DFT calculations of NMR chemical shielding is usually close to

∼ 50 %.

Gauge origin problem. The chemical shielding calculations are complicated by the

fact that the NMR shielding perturbation operators (3.37a) and (3.37b) and the corres-

ponding diamagnetic and paramagnetic terms of the chemical shielding tensor
↔
σdia and

↔
σpara are dependent on the position of the origin of the Cartesian coordinate system (in

this context usually called ‘gauge origin’). In exact theory, the gauge-dependent parts

of
↔
σdia and

↔
σpara mutually cancel [114, 154] and the total chemical shielding is gauge-

independent. In actual NMR calculations, however, the cancellation is only approximate

and the calculated chemical shielding depends on the position of molecule relative to the

gauge origin. The common-gauge chemical shielding calculations thus require extremely

large basis sets.

The gauge origin dependence of molecular properties can be suppressed by several

methods. Probably the most popular approach, which was used also in this work, is

GIAO (gauge-including atomic orbitals) [155,156], where the atomic orbitals are assumed

in the form of London orbitals [157] explicitly dependent on the external magnetic field:

φGIAO
µ (rµ) = exp

[
−i e

2~
(B0 ×Rµ) · r

]
φµ(rµ) . (3.41)

The expressions for the GIAO-NMR calculations at the CPHF and CPKS levels are

found by replacing the casual field-independent AOs with the London orbitals. Thus,

apart from the usual expressions that are present in the common-gauge theory, additional

terms appear in GIAO in both diamagnetic and paramagnetic shielding components,

which compensate the gauge dependence [155,156].

Chemical shielding terms. The one-electron contributions to the diamagnetic shiel-

ding tensor
↔
σdia are calculated as integrals of the diamagnetic perturbation operator

(3.37a) with unperturbed spin orbitals χ
(0)
a .

The calculations of paramagnetic chemical shielding with non-hybrid DFT methods

differ from the HF calculations. The perturbation operators ĥorb and ĥPSO
K are pure

imaginary and the non-hybrid DFT calculations of chemical shielding thus reduce to the

uncoupled DFT level (see section 2.5.3) [158]. When the HF exchange is involved, the

HF contribution to the paramagnetic chemical shielding term has to be calculated by the
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iterative CPHF procedure [117]. The operator ĥorb is a natural choice for the perturbation

entering the CPHF scheme since there are only three CPHF equations that have to be

solved and the chemical shielding tensors in the whole molecule are then available at the

cost of integral evaluation.
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4 Results

This chapter gives an overview of the most important results of this doctoral thesis. The

published works are appended in a separate section.

Computational NMR studies of l-alanyl-l-alanine comprise of publications I–III. The

contribution I presented at a students’ conference contained initial results of theoretical

modeling of the effective CSAs in peptide backbone. The set of calculated effective CSAs

was later greatly extended and published as a full paper III. The publication II resulted

from a systematic computational and experimental work focused on the pH dependence

of NMR parameters in AA.

Theoretical modeling of NMR parameters in nucleic acid phosphate was a subject

of publications V–VI. The study V presents a thorough analysis of the effect of direct

Mg2+ coordination to NA phosphate. Dependencies of 31P NMR parameters on (ζ, α)

conformation of NA phosphate were explored in the work VI. Properties of the Mg2+ ion

itself were investigated in the publication IV, where the theoretical calculations were used

for the interpretation of experimental Raman spectra of aqueous salt solutions.

4.1 Computational NMR studies of l-alanyl-l-alanine

The cation, zwitterion and anion of AA were characterized in the work II by combining

NMR calculations and experiment. Firstly, the potential energy surfaces (PES) of AA+,

AAzw and AA– in dependence on torsion angles ψ1 and ϕ2 were calculated with the

BPW91/6-311++G(d,p) method including PCM of water solvent. In the case of AA–,

rotation and intramolecular hydrogen bonding of the -NH2 group was taken into account

by calculating three PESs for the three minima of -NH2 rotation.

Four energy minima were found for AAzw (denoted A–D), which was in agreement with

the previous results obtained with sparser (ψ1, ϕ2) grid [5]. By comparing their relative

energies we confirmed that only the lowest-energy AAzw conformer A = (147◦, 207◦) is

significantly populated at room temperature (Table 4.1). In the AA+ form, four energy

minima analogous to those of AAzw were found. The conformer A = (149◦, 239◦) is again

global minimum, but the conformer B = (150◦, 60◦) is also thermally reachable. These

theoretical findings indicated that the AA molecule exists in a well-defined conformation

at room temperature and at pH ranging from neutral to low. The most complex case

was the AA– form, for which in total seventeen local minima were obtained. For all -NH2

orientations, the conformers A ∼ (125◦, 210◦) and C ∼ (350◦, 210◦) were significantly

populated and a new energy minimum E ∼ (250◦, 205◦) appeared between A and C. We

therefore concluded that the AA– molecule is rather flexible and at higher temperatures

it might even undergo hindered rotation along the ψ1 dimension.
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Table 4.1 Calculated (BPW91/6-311++G(d,p)/PCM=water) geometry parameters,
relative energies and Boltzmann populations (300 K) of individual conformers of the three
AA forms (left).a Graphical representation of the calculated potential energy surfaces
(right).b

Conformer ψ1 ϕ2 ∆E p c

AA+

A 149 239 0.0 91.4
B 150 60 1.4 8.6
C 305 233 5.1 0.0
D 305 53 6.3 0.0

AAzw

A 147 207 0.0 99.8
B 150 66 3.6 0.2
C 309 210 5.1 0.0
D 312 64 9.2 0.0

AA–

A 127 208 0.0 45.4
B 135 63 4.3 0.0
C 339 210 1.4 4.0
D 343 62 6.1 0.0
E 255 206 2.7 0.5
F 244 61 6.9 0.0

A′ 128 209 0.8 11.7
B′ 136 63 5.2 0.0
C′ 8 213 0.8 12.3
D′ 14 62 5.0 0.0
E′ 283 204 3.9 0.1
F′ – – – –

A′′ 119 210 1.9 1.7
B′′ 128 62 6.3 0.0
C′′ 341 208 0.4 24.1
D′′ 344 63 5.0 0.0
E′′ 215 204 3.3 0.2
F′′ 233 61 7.5 0.0

a Torsion angles ψ1 and ϕ2 in degree, relative energies ∆E in kcal · mol−1 and relative

conformer populations p in %. Unprimed, primed and doubly-primed AA– conformers

correspond to the three -NH2 rotamers.
b For the AA– form, only the PES for the unprimed rotamer with is depicted.
c Boltzmann populations calculated from the relative energies ∆E.
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4.1.1 Geometry dependencies of NMR chemical shifts and J-couplings

In the experimental part of publication II we performed a complete assignment of 1H,
13C, and 15N chemical shifts and J-couplings measured for AA and l-alanine in aqueous

solution at pH 2, 7, and 12. By varying the pH in smaller steps we found that the AA

dissociation constants are pK1 = 3.12 and pK2 = 8.30, confirming thus that at pH 2, 7,

and 12 only the cationic, zwitterionic and anionic form of AA was present, respectively.

Computational part of work II was initiated by testing the performance of B3LYP

functional, IGLO-III basis set, and PCM of water in NMR calculations. Theoretical NMR

chemical shifts and J-couplings were obtained for the l-alanine cation, zwitterion, and

anion and compared with NMR experiment for l-alanine at pH 2, 7, and 12 (work II, Table

2). The B3LYP/IGLO-III/PCM approach performed well for J-couplings and somewhat

worse for chemical shifts. The largest discrepancy obtained for the 15N chemical shift

was probably caused by neglecting the multireference character of the 15N NMR standard

CH3NO2 [159]. Nevertheless, the pH-induced changes in NMR parameters were calculated

in qualitative agreement with the experiment. The remaining errors were attributed to

incomplete description of the solute–solvent interactions by PCM and also to the absence

of vibrational corrections. The significance of both effects was confirmed in the follow-

up studies [12, 13], where the explicit solvent averaging and the inclusion of vibrational

effects were shown to substantially improve the agreement between NMR calculations and

experiment.

Having tested our computational approach for the simple case of l-alanine, we applied

it also to the AA molecule. A complete set of NMR chemical shifts and J-couplings

was calculated for local energy minima of the three AA forms and also for the full set of

AA geometries on the (ψ1, ϕ2) grid. We found that the NMR parameters (especially J-

couplings) calculated for the populated minima were on average in better agreement with

the NMR experiment than those for higher-energy minima (work II, Table 4 and Table

5). This confirmed our theoretical assignment of the most populated AA conformers in

solution.

NMR parameters in the AA dipeptide are influenced by both molecular conformation

and charge of terminal groups. The pH-induced changes of chemical shifts and J-couplings

in AA were reproduced with similar accuracy as for the l-alanine. Naturally, the changes

were the largest for NMR parameters in the vicinity of the AA (de)protonation site (work

II, Figure 6 and Figure 7).

The 3JNHα1 and 3JHNHα2 couplings assigned to peptide backbone torsion angles ψ1

and ϕ2, respectively, were compared with semi-empirical Karplus curves known from

the literature (work II, Figure 9). A very good agreement was found for the 3JHNHα2

coupling, but we noted a significant difference for 3JNHα1 . The discrepancy was caused

by comparison with an outdated 3JNHα1 parameterization by Demarco et al. [160]; the
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improved parameterization by Wang et al. [161] matches our calculations. As expected,

the 3JNHα1 coupling in the AA– form differed from that in the AAzw and AA+ forms due

to deprotonation of the -NH+
3 group occurring close to the Hα1 atom.

Apart from vicinal 3J-couplings assigned to AA backbone torsion angles ψ1 and ϕ2, the

variation of AA conformation also affected the geminal and one-bond spin–spin couplings.

In particular, the 2JC′Hα1 and 1JCα1Hα1 couplings were significantly modulated only in

the ψ1 dimension and the 1JCα2Hα2 coupling only in the ϕ2 dimension. Although these

couplings generally cannot be assigned to a single torsion in larger peptides, they can be

used for determining the conformation of dipeptides in solution.

4.1.2 Geometry dependencies of cross-correlated relaxation rates

In the study I we analyzed the dependencies of N–NHN, N–Cα1Hα1 and N–Cα2Hα2 effective

CSAs (as introduced in the section 3.1.4) on conformation and charge of the AA molecule.

We proposed pH-independent Karplus-like parameterizations for the N–Cα1Hα1 and N–

Cα2Hα2 effective CSAs.

The successive work III greatly extended the set of modeled effective CSAs, encompas-

sing virtually all sensible combinations of the 15N or 13C′ chemical shielding tensors and

adjacent dipolar vectors in the AA molecule (see work III, Figure 1). We even considered

dipolar interactions between not directly bonded atoms, for which the distance factor

1/r3
JK (see equation 3.20) significantly alters the magnitude of CCR rates. We therefore

focused on conformational dependence of the product 1/r3
JK ·∆σeff

I,JK . Effective CSAs in-

volving the 1HN chemical shielding tensor were not analyzed since they are substantially

influenced by hydrogen bonding, for which our computational model didn’t account.

The applicability of each CSA–DD cross-correlation mechanism was assessed based

on several criteria, the most preferential being smooth, large-scale, and one-dimensional

dependence of the product 1/r3
JK · ∆σeff

I,JK on AA conformation. We confirmed that the

CCR rates ΓX,CαHα (X = N,C′; α = α1, α2) that have been probed experimentally

[2, 3, 162–164] are the most convenient for structural interpretation, exhibiting large and

smooth dependence on either ψ1 or ϕ2 (work III, Figure 6). We identified several other

promising CCR mechanisms, namely the ΓX,NHα2 and ΓX,C′Hα1 (X = N,C′) CCR rates,

which could also serve for peptide structure determination, but their applicability has yet

to be experimentally tested.

4.2 Modeling the effects of molecular flexibility and solvation

on NMR parameters in nucleic acid phosphate

Three models of NA phosphate were employed in works V and VI (Figure 4.1): dimethyl

phosphate (DMP), ethyl methyl phosphate (EMP), and abasic RNA dinucleotide mono-
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phosphate (nPn). The latter two models contain the inherent asymmetry of NA backbone

and were thus used for modeling the dependencies NMR parameters on molecular confor-

mation and solvation. The symmetry of the DMP molecule was exploited in benchmark

coupled-clusters NMR calculations.

(a)

(b)

(c)

Figure 4.1 NA phosphate models: (a) dimethyl phosphate, (b) ethyl methyl phos-
phate, (c) abasic RNA dinucleotide monophosphate.

4.2.1 Benchmark NMR calculations

Testing of computational methods in works V and VI brought several methodological in-

sights into the calculation of 31P NMR parameters in NA phosphate. The performance of

B3LYP functional was compared with the coupled-clusters method, we tested the conver-

gence of electronic basis set and the influence of implicit and/or explicit solvent models

on 31P NMR parameters.

Basis set convergence of B3LYP calculations of isotropic 31P chemical shielding σP and

Fermi-contact term of 2JPC coupling was explored in work V (Figure 2). Very good cost-

effective results were obtained for both σP and 2JFC
PC with the 6-311++G(d,p), IGLO-III

and cc-pCVTZ basis sets. Surprisingly, the performance of Jensen’s (aug)-pcJ-n basis sets

(n = 0, 1, 2) specifically designed for J-coupling calculations was only mediocre, what was

probably caused by different bonding situations in NA phosphate and in model systems,

for which these basis sets were optimized [165].

The isotropic 31P chemical shift δP obtained with the secondary standard approach

(3.18) was found quite sensitive to local phosphate geometry, electronic structure method

and solvation model used in the NMR calculations. The δP decreased by ∼6 ppm when

geometries of DMP and secondary standard PH3 were optimized with the CCSD method

and by additional ∼3.5 ppm when both molecular structures and NMR shielding tensors

were obtained at the CCSD level (work VI, Table 2). Nevertheless, both B3LYP and

CCSD methods provided essentially the same conformational differences of δP, indicating

thus that the B3LYP functional is suitable for exploring the geometry dependence of δP.
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The effect of water solvent on δP varied with the solvation model used (work V, Table 2),

indicating that dynamical averaging of explicit solvent is necessary to obtain converged

results. Importantly, we found that the effect of water solvent on δP is not uniform, but it

varies with the phosphate conformation (work VI, Table 2). Reliable solvent description

is therefore needed for accurate modeling of geometry dependencies of δP. Dynamical

averaging of explicit solvent is probably the most reliable approach, but it becomes rather

costly for a large number of conformers. In such a case, implicit solvation is a more

feasible alternative enabling consistent treatment of hydration effects in all conformers of

NA phosphate.

Principal components of the 31P chemical shielding tensor σP,ii, i = 1, 2, 3 were much

more sensitive to the NMR computational method than δP. The σP,ii values calculated

with the CCSD method differed by up to 14 ppm from those obtained with the B3LYP

functional. The inclusion of PCM hydration changed the σP,ii values even more, by up to

50 ppm. The B3LYP/PCM results differed from previous calculations with explicit phos-

phate hydration [30], implying that PCM accounts only partially for the solvent-induced

changes in σP,ii. Interestingly, the orientation of the 31P chemical shielding tensor in

the phosphate-frame coordinate system was practically independent of the computational

method.

The FC term of the 2JPC coupling is dominant [22]. Unlike for δP, the difference

between 2JFC
PC calculated with B3LYP and CCSD methods depends on phosphate confor-

mation (work VI, Table 2). This fact limited the accuracy of structural assignment of

the 2JPC couplings calculated with the B3LYP functional. Similarly as for δP, the 2JPC

values were very sensitive to the solvation model used (work V, Table 2). Also in analogy

to δP, the effect of implicit PCM hydration on 2JFC
PC varied with phosphate conformation

(work VI, Table 2). The importance of reliable modeling of water solvent for the 31P

NMR calculations in NA phosphate was thus again confirmed.

4.2.2 Geometry dependencies of 31P NMR parameters

The 31P chemical shielding tensor, the ΓP,CH CCR rates, and the nJPC spin–spin cou-

pling constants, n = 2, 3, were calculated in study VI in dependence on NA backbone

torsion angles ζ and α (P–O torsions). Absolute accuracy of the calculated values was

not crucial in this case, since we were mainly interested in the geometry trends. Thus,

the B3LYP/IGLO-III method and implicit PCM hydration was used.

Values of δP calculated with the secondary standard approach were somewhat larger

than the experimental δP scale, which could be explained by the imperfections of the

B3LYP/PCM computational approach. Nevertheless, the experimentally known diffe-

rence of 1.6 ppm between the BII and BI conformations of NA backbone [24] was reprodu-

ced quite well: the δP difference calculated between the (t, g−) and (g−, g−) phosphate
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conformers was 2.4 ppm in EMP and 1.8− 2.6 ppm in nPn. The B3LYP/PCM computa-

tional approach thus proved suitable for modeling the geometry dependence of δP in NAs

(work VI, Table 3). Our calculations provided a systematic first-principles calibration of

the dependence of δP on torsion angles ζ and α in a full (0◦, 360◦) range.

→

→

→

Figure 4.2 Schematic representation of the 31P chemical shielding tensor in EMP
molecule: the principal components ~σP,ii = σP,ii ei, i = 1, 2, 3, where ei are unit vectors,
and their deviations ϕii from the axes of the phosphate-frame coordinate system defined
by Herzfeld et al. [166]. The correspondence between the principal components σP,11 <
σP,22 < σP,33 and phosphate-frame axes is as follows: 11↔ z, 22↔ x, 33↔ y.

Variation of principal components σP,ii on the (ζ, α) grid (by up to 46 ppm) was much

larger than the range of isotropic values δP (∼13 ppm), what indicated mutual compensa-

tion of the components (work VI, Figure 3). Further analysis revealed that the geometry

dependencies of both δP and chemical shielding anisotropy ∆σP, are dominated by the

principal component σP,33, owing to mutual compensation of σP,11 and σP,22. Orientation

of the 31P chemical shielding tensor in the molecular frame (Figure 4.2) was found almost

independent of torsion angles ζ and α. Deviations ϕii of 31P principal components from

the phosphate-frame axes were quite small, rarely exceeding 6◦. The deviations measured

[166] in the BDEP crystal containing Ba2+ ions directly coordinated to the phosphate

group [167] were somewhat larger (ϕ11 ≈ 7◦, ϕ22 ≈ 13◦, ϕ33 ≈ 9◦). Increased ϕii va-

lues were also calculated in the study V for the phosphate group directly coordinated by

Mg2+. The correspondence between the 31P chemical shielding tensor in BDEP and in

NAs is quite important since the BDEP 31P-tensor is used for the interpretation of 31P

NMR relaxation measurements in NAs. We proposed in work VI that the 31P chemical

shielding tensor measured in BDEP is influenced by the coordination of Ba2+ ions and

that ϕii values smaller than 6◦ are natural for all (ζ, α) conformations.

The quite large variation of σP,ii on the (ζ, α) grid could affect the ΓP,CH CCR rates.

To test the validity of the rigid tensor approximation we calculated the dependence of
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ΓP,C5′H5′1 and ΓP,C5′H5′2 CCR rates on torsion angles ζ and α using ‘relaxed’ and ‘rigid’

approach (for details see the Methods section of work VI). These CCR rates depend

dominantly on torsion angles α and β [26, 27]. We found that they are only slightly

modulated by torsion angle ζ (work VI, Figure 4). The ‘rigid’ approach thus provided

ΓP,CH values close to those obtained using the ‘relaxed’ approach. Validity of the rigid

tensor approximation for the interpretation of ΓP,CH CCR rates was thus confirmed.

Torsion angle dependencies of the 2JPC couplings revealed that both ζ and α modulate

the 2JPC value, but only one of the P–O torsions is dominant for each coupling (work VI,

Figure 5). Thus, the 2JPC3′ and 2JPC5′ couplings can be loosely assigned to torsion angles

ζ and α, respectively. We also calculated dependence of the 2JPC5′ coupling on torsion

β, using the EMP molecule with torsions ζ and α fixed to 290◦ (work VI, Supporting

Information). The 2JPC5′ coupling was nearly constant in the whole 120 − 240◦ region,

which is predominantly populated in NAs. A geometry change to one of the rare NA

conformers with β near 80◦ [21] would be accompanied by increase the of 2JPC5′ absolute

value by ∼1 Hz. Similar dependence of 2JPC3′ on torsion angle ε may be expected.

The absolute 2JPC values calculated with the B3LYP/PCM method appeared too large

when compared with the available experimental data. In particular, the B3LYP/IGLO-

III/PCM results for the (g−, g−) conformer were near −8 Hz, while the experimental

range for the this conformer is 4.5−5.5 Hz [35,37] (work VI, Table 4; the J-coupling sign is

usually not determined experimentally). We were able to explain the discrepancy between
2JPC calculations and experiment. Assuming simple additivity of computational errors

as discussed in section 2.6, we separately evaluated the error of the B3LYP functional

in 2JPC calculations, the error due to inaccuracy of the B3LYP geometry, the basis-set

error, and the influence of explicit water solvent dynamics. All of these contributions were

similarly important, each amounting in absolute value ca. 0.5− 1 Hz. Their added effect

shifted the calculated 2JPC values to within ∼ 1 Hz from the experimental range (work

VI, Table 4). Thus, the most important sources of computational errors were identified,

allowing to use the calculated geometry dependencies for quantitative predictions.

Bearing in mind the limited accuracy of the B3LYP/IGLO-III/PCM computations as

well as the inherently multi-dimensional character of the 2JPC geometry dependencies, we

proposed qualitative rules for the structural interpretation of 2JPC couplings:

� If the 2JPC coupling is in absolute value smaller than ∼3 Hz, the orientation of the

assigned torsion angle (ζ or α) is different from typical gauche (near 70 or 290◦).

� If the 2JPC coupling is in absolute value larger than ∼4.5 Hz, the orientation of the

assigned torsion angle (ζ or α) deviates from the trans region (120− 240◦).

If confirmed experimentally, these rules could serve as new restraints on the NA phos-

phate conformation, similar to those already existing for δP [24].
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Modulation of the 3JPC4′ coupling by torsions ζ and α is also significant, up to ∼2 Hz.

This could cause uncertainty as large as ∼25◦ in the determination of torsion angle β via

standard 3JPC4′ Karplus equations [34, 168, 169]. This result represents the missing link

between the 3JPC spin–spin coupling constants and the P−O torsions of NA backbone.

4.2.3 Response of 31P NMR parameters to Mg2+ coordination

Coordination sites of Mg2+ and water at NA phosphate were determined in the first part of

the study V for a set of 53 RNA crystal structures containing over 7700 nucleotides by the

method of Fourier averaging. Two sharp Mg2+ distributions analogous to those obtained

previously for organic phosphate salts [43] were found, each localized at 1.9 Å from one

of the charged phosphate oxygens OP1 and OP2. Five water coordination sites similar

to those found in DNA [45] were confirmed; the sixth site completing the phosphate first

hydration shell was somewhat less populated. Based on the bioinformatic analysis, the

effects of direct (inner-shell) Mg2+ coordination to NA phosphate were evaluated with

two approaches: (i) static NMR calculations for DFT-optimized nPn structures with

explicit hydration or Mg2+ coordination patterns (see Figure 1.3 for an example) and (ii)

averaging of NMR parameters in nPn solvated by clusters of explicit solvent generated

with molecular dynamics (MD).

NMR calculations were carried out for phosphate geometries with static B-DNA and

A-RNA solvation patterns. The trends in NMR parameters upon Mg2+ coordination

obtained for the two kinds of phosphate solvation differed (work V, Table 3). In the case

of B-DNA solvation, δP varied nonspecifically, ∆σP, decreased by 35 − 40 ppm, and the
2JPC3′ and 2JPC5′ coupling magnitudes increased site-specifically upon Mg2+ coordination.

For the solvation patterns found in A-RNA, δP decreased by ∼4 ppm, ∆σP, decreased by

20−40 ppm, and the 2JPC3′ and 2JPC5′ couplings varied only slightly and without the site-

specificity. Therefore, the NMR parameters obtained with the static approach depended

more significantly on the particular phosphate solvation pattern than on whether the Mg2+

ion was coordinated or not. In other words, limited number of NA backbone solvation

patterns, although selected reliably, cannot provide accurate trends for NMR parameters

in NA phosphate and averaging over solvent reorientation is necessary.

The next step in theoretical calculation of the effects of Mg2+ coordination was thus

modeling of solvent dynamics around NA phosphate. Three MD simulations were carried

out, one with hydrated NA phosphate (nomg) and two for the cases of Mg2+ coordination

at phosphate oxygen OP1 (mg1) or OP2 (mg2). The Mg2+ ions remained directly coor-

dinated to the phosphate group throughout the simulations mg1 and mg2. To eliminate

the influence of geometry dependence of NMR parameters, the backbone conformation

was restrained in the A-form by applying a rather strong 500 kcal · mol−1 · Å−2
energy

penalty for displacement of backbone atoms from their initial DFT-optimized positions.
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From each MD run, snapshot geometries including solvent molecules inside the sphere of

radius 5.5 Å around the phosphorus atom were taken every 50 ps. It was verified that

the dominant effect on NMR parameters comes from the first hydration shell surrounding

the phosphate and Mg2+, while the effects of higher solvent layers can be modeled with

PCM (work V, Figure 3).

Although the NA backbone was restrained in the MD simulations, the bond distances

and bond angles relaxed during MD equilibration and the MD snapshots geometries the-

refore differed from the DFT-optimized nPn structure. To reduce the influence of MD

force-field on NA phosphate geometry while preserving the solvation shell structure, we

re-optimized the positions of NA backbone atoms in the MD snapshots with the solvent

kept fixed. NMR parameters were then calculated both for original MD snapshots (‘un-

relaxed’ calculations) and for partially optimized geometries (‘relaxed’ calculations). The

resulting data were analyzed in terms of mean values and standard errors of the mean

(SEM). The ‘unrelaxed’ calculations provided different trends upon Mg2+ coordination

and larger SEM values than the ‘relaxed’ ones (work V, Table 4). The latter approach

can be considered more appropriate for modeling the NA phosphate solvation and was

used to gather the following results.

Upon Mg2+ coordination, the mean values of 31P chemical shift decreased by 5−6 ppm,

which agrees with the results obtained for static A-RNA solvation. Taking into the account

the SEM values, δP decreased by 2 − 9.5 ppm, which is in excellent agreement with the

1.5 − 10 ppm decrease measured in thio-substituted hammerhead ribozyme upon Cd2+

coordination [46–48]. The measured decrease of δP due to Mg2+ coordination to phosphate

in minimal metal binding motif of hammerhead ribozyme was much smaller, only 0.3 ppm

[49], which could be explained by weaker binding and faster exchange of Mg2+ at the metal

binding site. Detailed look on the principal components σP,ii revealed that the calculated

decrease of δP is solely due to the increase of the σP,33 component (work V, Supporting

Information, Figure S1), whose importance for geometry dependence of δP was already

noted above.

Apart from δP, that is up to our knowledge the only NMR parameter used so far

for the detection of NA phosphate metalation, statistically significant effects of Mg2+

coordination were obtained also for ∆σP, (0− 25 ppm increase) and 2JPC5′ (0.2− 1.8 Hz

decrease of its magnitude). The results for other NMR shifts and J-couplings in NA

phosphate were statistically inconclusive. In contrary to the static results, none of the

dynamically averaged NMR parameters distinguished between the two Mg2+ coordination

sites. Considering the two limit cases in the study V—the static and dynamic phosphate

solvation—we conclude that the solvent dynamics has a substantial impact on 31P NMR

parameters in NA phosphate.



Nucleic acid phosphate and the magnesium ion 61

4.2.4 Magnesium ion imprints in Raman scattering of water

The study IV correlated Raman spectra measured in magnesium salt solutions with those

calculated with several methods for Mg2+–water clusters.

Experimental Raman spectra of water and aqueous solutions of sodium, magnesium,

and calcium chloride were recorded at 20 ◦C and a rather high 5 mol/kg concentration in

the 200 − 2000 cm−1 region. All salts notably increased the water Raman signal in the

200−900 cm−1 region corresponding to water librations, rotations, and hydrogen bonding

(work IV, Figure 1). The frequency and intensity of water bending signal at 1640 cm−1

also slightly increased, while the bandwidth decreased. In the MgCl2 spectrum, a rather

sharp peak appeared at 355 cm−1 and it was present also in the Raman spectra of MgBr2

solution. The peak was thus assigned to specific Mg2+ interaction with water. The

absence of such distinct feature in the low-frequency region of Raman spectra of NaCl

and CaCl2 solutions confirmed that the water interaction with Ca2+ and Na+ is much

weaker. The difference between the MgCl2 and MgBr2 spectra was quite small, indicating

that the role of Mg2+ is dominant and the anions cause only minor spectral changes.

In accord with current perspective [53, 68], there were no indications of direct Mg−Cl

contacts even at high MgCl2 concentrations. Raman spectra were also measured in D2O

solution of MgCl2, where the Mg−O peak shifted to 337 cm−1, i.e. by the mass factor

(MH2O/MD2O)1/2, confirming thus the spectral assignment.

The computational part of work IV employed two different theoretical approaches: (i)

static DFT calculations of geometry parameters, orbital properties, and Raman spectra

of [M(H2O)6] clusters with Th symmetry (Figure 4.3a), M = Mg2+,Ca2+,Na+, (ii) Raman

spectra generation from Car–Parrinello molecular dynamics (CPMD [170]) simulations of

pure water and MgCl2 aqueous solution. The dynamical Raman spectra modeling was

done either by using a modified Fourier-transform method or by averaging the Raman

spectra calculated for [Mg(H2O)6]2+ clusters extracted from random CPMD snapshot geo-

metries. The latter method turned out clearly superior and the modified Fourier-transform

technique is thus not discussed further. Note that classical MD employing empirical pa-

rameterization of intermolecular forces cannot be a priori expected to correctly simulate

the dynamical behavior of Mg2+ microhydration and more reliable first-principles me-

thods such as CPMD are thus preferential. Nevertheless, it was shown recently that for

example the interfacial properties of aqueous salt solutions can be successfully modeled

with a specifically adjusted MD force-field [68,70,71].

The static cluster calculations helped to elucidate the differences between Mg2+ and

other cations and served also for the calibration of computational methods (work IV, Table

2). The Mg−O distance 2.084 Å optimized with the B3LYP/6-311++G(d,p) method and

the CPCM hydration was in good agreement with the average Mg−O distance 2.063 Å

found in crystals [61]. In the CPMD simulations discussed below, the first two maxima of
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(a) (b)

Figure 4.3 (a) The [Mg(H2O)6]2+ cluster with Th symmetry. (b) Calculated CPMD
distribution of the water oxygen (red) and hydrogen (green) atoms in the first hydration
shell of the Mg2+ ion (yellow sphere).

the Mg−O radial distribution function were at 2.1 Å and 4.2 Å (work IV, Figure 2), which

agreed with previous CPMD studies [65] as well as with the average crystallographic values

2.063 Å and 4.312 Å [61]. The calculated Mg−O distance was by about 0.3 Å shorter

than the Na−O and Ca−O distances, which corresponds with much tighter arrangement of

water molecules in the Mg2+ first hydration shell. NBO analysis revealed that the strength

of the Mg2+–water interaction could be explained by a partially covalent character of the

Mg−O bond (work IV, Figure 4 and Table 6). Natural charge of Mg2+ in the [Mg(H2O)6]2+

complex amounts only 1.819, i.e. 91 % of its nominal charge. The remaining 9 % is

compensated by electron density donated from oxygen lone pairs; this value is much

smaller for Ca2+ and Na+ (∼7 % both).

There are twenty-one unique normal modes in the Th-symmetrized [Mg(H2O)6]2+ clus-

ter, of which lowest sixteen were analyzed in the work IV (omitting the O−H vibrations).

The [Mg(H2O)6]2+ vibrational frequencies calculated with the B3LYP and MP2 methods

were quite close to the experimental values, indicating that a very good accuracy was

achieved already at the DFT level (work IV, Table 3). The inclusion of higher hydration

layers via PCM and CPCM provided somewhat inconsistent frequency changes; obviously,

the calculations of low-frequency modes in a charged system pose a specific challenge for

the numerical stability of continuum solvation models. Nevertheless, the frequency of the

symmetrical Mg−O breathing mode, which clearly matches to the experimental Raman

peak at 355 cm−1, improved from 314 cm−1 in gas-phase to 337 (335) cm−1 with PCM

(CPCM). Only eight of the sixteen lowest normal modes in [Mg(H2O)6]2+ are Raman

active. Their calculated Raman intensities were most sensitive to the quality of electronic

basis set and to the effect of higher hydration shells modeled with PCM; the difference

between B3LYP and MP2 methods was only minor (work IV, Table 4).

The static DFT calculations also shed light on the differences in low-frequency Raman
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spectra among different salt solutions (work IV, Table 5). Raman intensity of the symme-

trical breathing mode calculated for the [Mg(H2O)6]2+ cluster decreased by a factor of ∼4

in the case of [Ca(H2O)6]2+ and it was almost zero for [Na(H2O)6]+. At the same time,

the calculated metal−O breathing frequency decreased in a series Mg2+ > Ca2+ > Na+,

consistently with the decreasing ion–water affinity [52]. The exceptionally high Mg−O

stretching frequency is thus coherent with the strength of the Mg2+–water interaction and

the tight arrangement of the Mg2+ first hydration shell enables large polarizability changes

along the Mg−O stretching, causing large Raman intensity of the symmetric breathing

mode.

The combination of Raman spectra calculations with CPMD simulations proved to

be a very good method for modeling the low-frequency Raman spectra of aqueous salt

solutions. Similar to the methodology used in the work V, the CPMD snapshot geometries

of the [Mg(H2O)6]2+ clusters were partially relaxed by normal-mode optimization [171] of

the lowest-frequency modes (< 200 cm−1). Vibrational frequencies and Raman intensities

were then calculated for the [Mg(H2O)6]2+ clusters and the resulting Raman spectra were

averaged. Moreover, by substituting the hydrogen mass with the deuterium mass and

repeating the force field diagonalization, the Raman spectra of [Mg(D2O)6]2+ clusters

were also obtained. The averaged Raman spectra of the [Mg(H2O)6]2+ and [Mg(D2O)6]2+

clusters were in excellent agreement with the experimental Raman spectra of the H2O and

D2O solutions of MgCl2 (work IV, Figure 7). Not only the calculated Mg−O specific peak

at 318 (307) cm−1 and the water bending band at 1645 (1200) cm−1 nicely corresponded

with the experimental Raman bands, but even the broad band of water librations and

rotations near 605 (495) cm−1 was successfully modeled around 560 (440) cm−1 for the

H2O (D2O) solution. The CPMD simulations also included the chlorine anions, what

allowed us to investigate their influence on the Raman spectra. We found that hydrated

Cl– clusters do not exhibit Raman signal that would interfere with the low-frequency

features arising due to Mg2+.
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5 Summary

The aims of this doctoral thesis were successfully achieved. The most important results

are summarized as follows:

� Potential energy surfaces of l-alanyl-l-alanine in dependence on the backbone tor-

sion angles ψ1 and ϕ2 were thoroughly characterized by DFT calculations for all

its charged forms AA+, AAzw, AA–. The potential energy surfaces for AA+ and

AAzw were both similar with a pronounced global minimum, implying that a single

conformer is dominantly populated at the room temperature in solutions with low

to neutral pH. The conformational behavior of AA– significantly differed from the

other two forms owing to the intramolecular interactions of the -NH2 group. Accor-

ding to the calculations, several low-lying conformers of AA– are populated at the

room temperature and a hindered rotation about the ψ1 angle occurs.

� NMR parameters calculated for the lowest-energy AA conformers were overall in

better agreement with the NMR experiment than those calculated for the local

minima with higher energy, what confirmed our theoretical assignment of the most

populated AA conformers in solution. On the basis of DFT/PCM calculations we

thus rationalized the experimental pH-induced changes of the NMR parameters in

the AA di-peptide.

� We confirmed that the experimentally probed cross-correlated relaxation rates N–

Cα1Hα1, C′–Cα1Hα1, N–Cα2Hα2, and C′–Cα2Hα2 are the most convenient CCR rates

that can be used for the determination of peptide backbone geometry. The CCR me-

chanisms N–NHα2, C′–NHα2, N–C′Hα1, and C′–C′Hα1 were suggested as additional

restraints for the NMR determination of peptide structure.

� Dependencies of 31P NMR parameters on the nucleic acid phosphate geometry were

systematically studied with DFT calculations. The geometry dependencies of the

isotropic 31P chemical shift and the principal components of the 31P chemical shiel-

ding tensor were calibrated. Validity of the rigid-tensor approximation for the inter-

pretation of ΓP,CH CCR rates was confirmed. New qualitative rules for the structural

interpretation of the 2JPC spin–spin coupling constants were proposed.

� Response of the 31P NMR parameters in nucleic acid phosphate to the coordination

of Mg2+ was modeled using a combined molecular dynamics/DFT approach. The

calculated decrease of the isotropic 31P chemical shift upon Mg2+ coordination by

5 − 6 ppm was in agreement with the available experimental data. A statistically

significant increase of the 31P chemical shielding anisotropy and a decrease of the
2JPC5′ coupling magnitude upon the Mg2+ coordination were also calculated.
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� Differences in the low-frequency Raman spectra measured for aqueous solutions of

NaCl, MgCl2, and CaCl2 were explained by the Raman spectra calculations for

the [M(H2O)6] clusters, M = Na+,Mg2+,Ca2+. The well-known tight coordination

of water solvent to Mg2+ was rationalized in terms of bond distances, metal−water

vibrational frequencies, and natural charges calculated for the [Mg(H2O)6]2+ cluster.

The theoretical approach combining the ab initio molecular dynamics with the DFT

calculations for MD clusters was established as a reliable method for modeling the

spectroscopic response of aqueous salt solutions.
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List of abbreviations

AA l-alanyl-l-alanine

AO atomic orbital

B3LYP Becke’s 1993 three-parameter hybrid functional with Lee–Yang–Parr corre-

lation functional

BLYP Becke’s 1988 functional with Lee–Yang–Parr correlation functional

BPW91 Becke’s 1988 functional with Perdew–Wang correlation functional

CCR cross-correlated relaxation

CCSD coupled clusters singles and doubles

CP coupled-perturbed

CPHF coupled-perturbed Hartree–Fock

CPKS coupled-perturbed Kohn–Sham

CPMD Car–Parrinello molecular dynamics

CSA chemical shielding anisotropy

DD dipole–dipole

DFT density functional theory

DMP dimethyl phosphate

DNA deoxyribonucleic acid

DSO diamagnetic spin–orbit (operator)

ECP effective core potential

EMP ethyl methyl phosphate

FC Fermi contact (operator)

GGA generalized gradient approximation

GIAO gauge including atomic orbitals

GTO Gaussian type orbital

HOMO highest occupied molecular orbital

IGLO individual gauge for localized orbitals

IR infrared

HF Hartree–Fock

KS Kohn–Sham

LCAO linear combination of atomic orbitals

LSDA local spin density approximation

LUMO lowest unoccupied molecular orbital

MD molecular dynamics

MO molecular orbital

NA nucleic acid

NBO natural bond orbital
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NMR nuclear magnetic resonance

NOE nuclear Overhauser effect

nPn abasic dinucleotide monophosphate

PCM polarizable continuum model

PES potential energy surface

PSO paramagnetic spin–orbit (operator)

RDC residual dipolar coupling

RNA ribonucleic acid

SCF self-consistent field

SD spin–dipole (operator)

SEM standard error of the mean

SOS sum over states
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Calculation of the Effective Chemical Shielding Anisotropy  
in L-Alanyl-L-Alanine, Conformational and Charge Dependence Study 
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Abstract.  DFT quantum-chemical calculations were carried out for the cationic, 
zwitterionic and anionic form of the L-Alanyl-L-Alanine di-peptide that can be 
experimentally accessed at different pH. The 15N NMR chemical shielding tensor of 
the amide nitrogen was used for theoretical modeling of the cross-correlated 
relaxations. In particular, effective chemical shielding anisotropies (effective CSA, 
∆σeff) were calculated in dependence on two major structural descriptors of the peptide 
backbone, the torsion angles ϕ and ψ. Proposed calibration of Karplus-like curves can 
be used for structural interpretation of the cross-correlated relaxation rates in peptides. 
The variation of modeled effective CSA’s upon pH was discussed. 

Introduction 
Nuclear Magnetic Resonance (NMR) spectroscopy is a non-invasive experimental technique that provides 

unique information on the local magnetic field perturbations at the site of atomic nucleus. This spectroscopy 
method is based on manipulating the nuclear magnetization with external magnetic fields and probing the time 
evolution of the resulting magnetization. Detailed analysis of NMR spectra can thus unveil essential local 
properties of the examined system. 

In the past decades, the high-resolution NMR spectroscopy has become an indispensable tool in 
biomolecular research. Variety of different NMR applications in this field has grown to an unprecedented extent 
[Levitt, 2001]. However, the accurate determination of molecular structure with NMR spectroscopy still remains 
challenging. Currently, the fundamental techniques used for the structural refinement are measurement of the 
NOE (Nuclear Overhauser Effect) that reflects the through-space distance between protons, and determination of 
the scalar spin-spin coupling constants (J-couplings) that can be used for the assignment of torsion angles with 
Karplus curves [Karplus, 1963]. However, the structural information gained in this way is often ambiguous, 
insufficient or inaccurate. Additional geometry restraints are therefore needed in NMR structural studies. 

The cross-correlated relaxation is a specific NMR phenomenon that might be exploited to obtain further 
geometry restrains provided that its structural behavior has been calibrated [Reif et al., 1997; Reif et al., 2000]. 
Although the existence of this relaxation mechanism has been known since the early days of NMR [Kumar et al., 
2000], a systematic utilization of the cross-correlations has been established only in recent years due to the rapid 
development of the multi-spin NMR sequences and NMR metodology in general [Kumar et al., 2000]. 
Theoretical research in this field is thus highly desired and can improve the currently used protocols for 
structural interpretation of the measured data. 

Theoretical modeling of the NMR spectroscopic parameters using modern quantum-chemistry methods has 
become an essential tool that complements NMR experiment. Analysis of calculated results provides a deep 
insight into the structural behavior of NMR parameters and their relation to the electronic structure of 
investigated systems. 

There are several NMR parameters that can be nowadays accessed from quantum mechanical calculations, 
namely chemical shielding tensor, J-coupling and electric field gradient [Helgaker et al., 1999]. To the best of 
our knowledge only a limited number of theoretical studies dealing with theoretical modeling of NMR para-
meters involved in the cross-correlations is currently available [Bartoschek et al., 2003; Sychrovský et al., 2005]. 

In the present work we studied the structural behavior of 15N chemical shielding tensor of the amide 
nitrogen of peptide bond in L-Alanyl-L-Alanine (LALA) di-peptide. This simple model of peptide chain has 
recently  been studied in our group by both computational and experimental spectroscopic techniques [Bouř et 
al., 2005; Šebek et al., 2007]. 

Theory 
A comprehensive theoretical description of the cross-correlated relaxations is given by the Bloch-

Wangsness-Redfield theory, usually called the Redfield theory [Kowalewski et al., 2006; Kumar et al., 2000]. 
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 BENDA: CALCULATION OF THE EFFECTIVE CHEMICAL SHIELDING ANISOTROPY 

The phenomenon of NMR relaxation arises from the existence of fluctuating local magnetic fields at the site of 
atomic nucleus. There are several relaxation mechanisms of a nuclear spin: direct dipole-dipole (DD) interaction, 
chemical shielding anisotropy (CSA), quadrupolar interaction (for the nuclear spin > ½) and other weaker 
relaxation mechanisms. 

The Redfield theory leads to a matrix form of relaxation equations. On the diagonal of the Redfield matrix 
we find the auto-relaxation rates while the off-diagonal terms are the desired cross-correlated relaxation rates. To 
be more specific, the cross-terms represent the mutual correlation between any pair of the NMR relaxation 
mechanisms mentioned above. The only limitation in practice is the experimental accesibility of a particular 
cross-correlation mechanism. 

In the present work we were interested in structural interpretation of the cross-correlation between CSA and 
direct DD interaction that is described by the following equations [Kumar et al., 2000] 
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where  stands for the cross-correlated relaxation rate, DD-CSA
,i jkΓ eff

,σi jk∆  is the effective CSA of nucleus i with 

respect to the dipolar vector between nuclei j and k, and ( )ωqJ  is the spectral density function of the local 

magnetic field fluctuations at the frequency ωq. A particular formula for the spectral density function depends on 
the model used for the description of molecular rotation. The spectral density (3) corresponds to the ideal case, 
the isotropic tumbling of a rigid spherical molecule. The autocorrelation time τc can be determined either by 
fitting the NMR experimental data or theoretically from the molecular dynamics simulation. However, 
theoretical modeling of the spectral density function was not the aim of this study. Our particular attention was 
paid to the conformational dependence of the effective CSA (2) that essentially contributes to the cross-
correlated relaxation rate (1). 

The effective CSA (2) can be accessed from quantum-chemical calculations since the only data needed for 
its evaluation are the principal components of the chemical shielding tensor and the angles σnn

i θnn
jk  between the 

nn-component of the chemical shielding tensor and the dipolar vector jk. The structural dependence of the 
effective CSA modeled in this work is twofold since the chemical shielding tensor inherently depends on 
molecular conformation and the projection of tensor components on the dipolar vector (the angular part of eq. 
(2)) reflects their mutual orientation in the molecular frame. 

Methods 
The L-Alanyl-L-Alanine (LALA) molecule consists of two amino-acid residues that are numbered starting 

from the N-terminus of the peptide. Backbone conformation of the n-th amino-acid residuum is defined by the 
torsion angles ϕn, ψn and ωn (Fig. 1). In the vast majority of peptides, the torsion angle ω is confined around 
180° due to the π-electron character of peptide bond. So the major structural descriptors of peptide backbone are 
the torsion angles ϕn and ψn. 

For anionic and cationic form of the LALA di-peptide both ψ1 and ϕ2 torsion angles were varied with a step 
of 30º, and for each of the resulting 12×12=144 geometries all the remaining coordinates were fully relaxed by 
energy minimization. The calculations for zwitterion were performed with larger step of 60°. 

All the calculations were carried out using the density functional theory (DFT) methods with the PCM 
model of water solvent included. The geometries and NMR parameters were obtained at the BPW91/6-
311++G(d,p) and the GIAO B3LYP/IGLO-II level of theory, respectively. The Gaussian 03 program package 
was used for all quantum-chemical calculations done in this work. 

Results 
Local conformation of peptides is primarily described by the structural parameters of the peptide backbone. 

This theoretical study aims to suggest a possibility of structural interpretation of the cross-correlated relaxations. 
Three different DD-CSA cross-correlation mechanisms between atoms of the LALA backbone were considered.  

85



 BENDA: CALCULATION OF THE EFFECTIVE CHEMICAL SHIELDING ANISOTROPY 

HH
H H H H

C CH H

C

ϕ2
ω1

N

O 

CN C
α2

C
α1

ψ1

H

O
OH Hα1 Hα2

 
Figure 1.  A sketch of the zwitterionic form of LALA di-peptide with the definition of backbone torsion angles 
and nuclear dipolar vectors (CαHα and NH) involved in the cross-correlated relaxations. 
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Figure 2.  2D potential energy surfaces (PES) calculated for the three forms of LALA di-peptide. 

In particular, we calculated the N-NH, N-Cα1Hα1 and N-Cα2Hα2 effective CSA’s that reflect mutual orientations 
between the 15N chemical shielding tensor of amide nitrogen and the NH, Cα1Hα1, and Cα2Hα2 dipolar vectors, 
respectively (Fig. 1). Further we studied the dependence of these NMR parameters on the backbone torsion 
angles ψ1 and ϕ2 for the cationic, zwitterionic, and anionic form of LALA di-peptide. 

The solution acidity, which is usually expressed in units of pH, essentially influences the peptide structure. 
At low pH the N-protonated cationic form of peptide prevails, at intermediate pH the double-charged 
zwitterionic form is the most populated one, and at high pH the C-deprotonated anionic form predominates. 
Therefore any theoretical investigation of the peptide structure has to consider the (de)protonation effects. 

The importance of taking the molecular charge into account is clearly demonstrated in Fig. 2. The three 
plots exhibit appreciable differences not only in the relative energies and the positions of local minima but even 
the number of local minima differs. 

The geometry changes obtained for different protonation states of the LALA are recapitulated in the 
Ramachandran plot in Fig. 3. The positions of global minima for the zwitterion and the cation coincide with the 
β-sheet region of the peptide secondary structure. However, for the anion the global minimum is shifted in the ψ1 
dimension (-21°) compared to the zwitterion (146°). This geometry change results from the intramolecular 
stabilization between the NH2 terminal group and the amide proton of peptide bond in the anion. Only the second 
local minimum on the PES for the anion coincides with the global minima of zwitterion and cation (the β-sheet 
region). 

The energy of local minima relative to the global minima calculated for all forms of the LALA, along with 
the particular angular coordinates are given in the first three columns of Table 1. The relative populations of the 
higher energy minima can be assessed from the Boltzman statistics at the room temperature of 300 K. For 
example, the relative population ratio of the conformers corresponding to the two lowest energy minima for the 
cation (energy difference 1.3 kcal/mol, Table 1) is approximately 1:9. This means that only global minima of the 
three LALA forms would be significantly populated, when not considering any external folding force. Thus only 
the NMR parameters for the conformers of global minima (Table 1) would be sufficent for the prediction of 
experimental observations. However, our aim was to model the general conformational behaviour of the 
effective CSA’s in peptides with significant structural variations along the backbone that could appear in any 
region of Ramachandran plot. That’s why we need to know the complete [ψ1, ϕ2] surface of each particular 
effective CSA. 
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Figure 3.  Ramachandran plot of the LALA with respect to the peptide backbone torsion angles ψ1 and ϕ2. 

Table 1.  Calculated geometry, energy and NMR parameters for the local minima of the three forms of LALA. 
 

ψ1 [°] ϕ2 [°] N-NH N-Cα1Hα1 N-Cα2Hα2 σN
iso ∆σN

Anion -21 -153 0.0 -160 76 -70 99 98
124 -149 1.6 -152 -84 -87 91 125

-140 -156 2.9 -138 71 -58 98 92
-16 62 4.5 -183 78 -24 103 119
127 61 5.9 -171 -109 -2 98 116

-124 61 7.1 -167 87 -21 103 95
Zwitterion 147 -153 0.0 -154 -97 -69 90 109

150 66 3.6 -171 -98 -17 96 98
-51 -150 5.1 -150 35 -81 95 94
-48 64 9.2 -169 21 -23 102 104

Cation 146 -117 0.0 -157 -80 -124 101 106
151 56 1.3 -161 -92 9 103 101
-51 -126 5.1 -152 42 -119 106 93
-47 56 6.2 -157 27 7 107 89

∆σeff  [ppm] 15N CS [ppm]
LALA

Torsion angles ∆E 
[kcal/mol]

 
 

The surfaces of the N-NH effective CSA (first row in Fig. 4) obviously depend on both coordinates ψ1 and 
ϕ2. Although the structural interpretation of this cross-correlation mechanism is not straightforward, a detailed 
analysis of the surface(s) could provide a useful information for the confined regions of backbone conformation 
(like α-helix or β-sheet). 

The amide nitrogen of peptide bond is involved in both NMR relaxation mechanisms, either in the 15N CSA 
and in the NH direct dipolar interaction. Thus, the N-NH cross-correlated relaxation rate inherently depends only 
on variation of the chemical shielding tensor of the amide nitrogen since the origin of the NH dipolar vector 
coincides with the centre of the 15N chemical shielding tensor. On the contrary, both N-CαHα effective CSA’s 
further depend on the mutual orientation of the 15N chemical shielding tensor with respect to the Cα1Hα1 and 
Cα2Hα2 dipolar vectors, i.e. they are closely related to the torsion angles ψ1 and ϕ2, respectively (Fig. 1). These 
ideas help to understand the qualitatively different shapes of the calculated surfaces (Fig. 4). 

The N-Cα1Hα1 effective CSA (the second row in Fig. 4) depends dominantly on the torsion angle ψ1 
whereas only a slight modulation was calculated in the ϕ2-dimension. This is true for all forms of the LALA and 
it’s rather consistent with the previous reasoning. The variation of the torsion angle ψ1 modulates the angular 
part of the eq. (2) due to its structural overlap with the N-Cα1Hα1 cross-correlation mechanism (Fig. 1), while the 
angle ϕ2 is spatially separated from this cross-correlation mechanism. 

The prevalent one-dimensionality of the N-Cα2Hα2 effective CSA (the last row in Fig. 4) is again obvious. 
This time the torsion angle ϕ2 is the determining variable, what is again supported by the geometric evidence 
from Fig. 1. 

The N-Cα1Hα1 and N-Cα2Hα2 effective CSA’s are worth further analysis, since their dependence on the 
backbone conformation is one-dimensional and relatively smooth and thus they might be parametrized rather 
simply. Firstly, the “weak” dependence of each effective CSA on one of the torsion angles may be neglected. 
Then an averaged one-dimensional projection of each surface was constructed (Figure 5). The maximal variation 
in the “weaker“ dimension was 33 ppm for the N-Cα1Hα1 effective CSA and 41 ppm for the N-Cα2Hα2 effective 
CSA. 

These smoothed true one-dimensional dependencies of the two effective CSA’s were fitted with the 
Karplus-like curves [Karplus, 1963] (Fig. 5): 

2
1 2cos( ) cos ( )y C A x b A x b= + − + −    (4) 
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Figure 4.  Surfaces of the effective CSA’s. Columns represent the three different forms of the LALA and rows 
correspond to the three studied cross-correlation mechanisms, N-NH, N-Cα1Hα1 and N-Cα2Hα2. 

CSA-N  vs  DD-Cα1Hα1

-150

-100

-50

0

50

100

150

-200 -100 0 100 200

ψ1 [°]

[p
pm

]

Anion
Zwitterion
Cation
Fit

CSA-N  vs  DD-Cα2Hα2

-150

-100

-50

0

50

100

150

-200 -100 0 100 200

ϕ2 [°]

[p
pm

]

Anion
Zwitterion
Cation
Fit

 

α-helix β-sheet 

Figure 5.  The fitted pH-independent Karplus-like curves for the N-Cα1Hα1 (left) and N-Cα2Hα2 (right) effective 
CSA averaged over all three forms of LALA di-peptide. 

Before we started looking for the fitting parameters in eq. (4) we could make the second simplification of 
our results. Based on the great similarity of the surfaces for the three LALA forms (Fig. 4, Fig. 5) and taking into 
account the accuracy of the theoretical predictions as well as the possible experimental errors we could state that 
the calculated structural dependencies of the effective CSA’s are pH-independent. Therefore we finally fitted all 
the calculated data for each effective CSA with only one pH-independent Karplus-like curve shown in Fig. 5 
(see Appendix for the fitted parameters). 

Conclusion 
The calculated dependences of the N-NH, N-Cα1Hα1 and N-Cα2Hα2 effective CSA’s on the torsion angles ψ1 

and ϕ2 can be used for distinguishing between various conformations of peptide backbone. For example, the N-
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Cα1Hα1 effective CSA is indicative for discrimination between the major peptide backbone conformations, since 
even the sign of this NMR parameter is specific with regard to the  α-helix and the β-sheet (Fig. 5). 

The N-Cα1Hα1 and N-Cα2Hα2 effective CSA’s exhibit one-dimensional behaviour, while the N-NH effective 
CSA is strongly modulated by both backbone torsion angles ψ1 and ϕ2. 

The dependence of the calculated effective CSA’s on pH is very modest. For example, the splitting of the 
N-Cα1Hα1 effective CSA between α-helix and β-sheet is very similar for all three forms of the LALA molecule. 
We thus can conclude that major structural characteristics of the modeled effective CSA’s remain almost 
identical in a wide range of pH. The effective CSA’s that exhibit significant dependence on one dimension only 
were fitted as the pH-independent Karplus-like curves. 

The calculated effective CSA’s in LALA di-peptide can be generalized and used for the structural 
interpretation of the cross-correlated relaxation rates in peptides. 
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Appendix 
Table 2.  Parameters of the Karplus-like curves (4) fitted with the Least squares method. 

 

Parameter Value Parameter Value
C  [ppm] 65.3 C  [ppm] 31.2

A 1 [ppm] -73.7 A 1 [ppm] 63.9
A 2 [ppm] -96.8 A 2 [ppm] -102.6

b  [°] -118.6 b  [°] -67.1

N-Cα1Hα1 N-Cα2Hα2
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TheL-alanyl-L-alanine (AA) molecule behaves differently in acidic, neutral, and basic environments. Because
of its molecular flexibility and strong interaction with the aqueous environment, its behavior has to be deduced
from the NMR spectra indirectly, using statistical methods and comparison with ab initio predictions of
geometric and spectral parameters. In this study, chemical shifts and indirect spin-spin coupling constants
of the AA cation, anion, and zwitterion were measured and compared to values obtained by density functional
computations for various conformers of the dipeptide. The accuracy and sensitivity of the quantum methods
to the molecular charge was also tested on the (mono)-alanine molecule. Probable AA conformers could be
identified at two-dimensional potential energy surfaces and verified by the comparison of the computed
parameters with measured NMR data. The results indicate that, whereas the main-chain peptide conformations
of the cationic (AA+) and zwitterionic (AAZW) forms are similar, the anion (AA-) adopts also another,
approximately equally populated conformer in the aqueous solution. Additionally, the NH2 group can rotate
in the two main chain conformations of the anionic form AA-. According to a vibrational quantum analysis
of the two-dimensional energy surfaces, higher-energy conformers might exist for all three charged AA forms
but cannot be detected directly by NMR spectroscopy because of their small populations and short lifetimes.
In accord with previous studies, the NMR parameters, particularly the indirect nuclear spin-spin coupling
constants, often provided an excellent probe of a local conformation. Generalization to peptides and proteins,
however, has to take into account the environment, molecular charge, and flexibility of the peptide chain.

Introduction

NMR spectroscopy has a long history in the conformational
analyses of peptide structures.1,2 Empirical correlations of
chemical shifts and nuclear spin-spin coupling constants (J-
coupling) with the geometry were originally used to discriminate
helical and sheetlike peptides and subsequently were extended
to protein studies.3-5 The possibility to calculate the NMR
parameters for larger molecules with reasonable precision has
lately provided an additional basis for the interpretation of the
experiment, which consequently facilitated the verification of
various conformational models. Particularly, the analytical
approaches to chemical shifts6 and the coupling constants7-9

within the density functional theory (DFT) speeded up the
computations and facilitated the conformational studies of
interesting peptide systems.10,11The computations improved, for
example, the empirical Karplus relations between the spectra
and the structure.12,13 However, peptide flexibility, solvent
effects, and local vibrational motions have to be taken into
account in accurate modeling.14

The dependence of theL-alanyl-L-alanine (AA) conformation
on molecular charge studied in this work thus provides additional
information about the behavior of the peptide chain in various
pH conditions as well as about the accuracy and validity of
current simulation techniques. NMR properties of charged and
zwitterionic peptides themselves are notoriously difficult to

calculate15 mainly because of the electronic charge concentration
requiring a large basis set and because of the strong interaction
with the environment, in most cases with water.16 The three
AA forms also provide an experimentally well-accessible
example of a simple molecular mechanical system controllable
by pH. Therefore, we find it interesting to analyze in detail the
two-dimensional potential energy surface and account for
possible vibrational quantum effects.17

In the second part of this work, we use the statistical
comparison of the experimental and computed chemical shifts
and spin-spin coupling constants developed previously for the
AA zwitterion.11 The ability of the computation to discriminate
between various charged forms is tested on the alanine molecule
(A) labeled with stable15N and 13C isotopes, where the
conformational problem is simpler than in AA. The influence
of the charge on the molecular potential energy surface,
expressed as a function of the main-chain peptide torsion angles
(æ, ψ), is computed with the inclusion of a continuum solvent
correction. It appears that the pH (charge) change stabilizes a
new anion (AA-) conformer and that the conformational
equilibrium can be proven from the NMR data. The quantum
vibrational analysis predicts also other well-defined conformers,
which, however, are neither significantly populated under normal
conditions nor can be observed directly by NMR due to their
short lifetimes.

Experimental Section

Isotopically labeledL-alanine (13C,98%;15N,98%) was pur-
chased from Stable Isotopes, Inc., whereas the nonlabeled AA

* To whom correspondence should be addressed: E-mail:
vladimir.sychrovsky@uochb.cas.cz (V.S.), budes@uochb.cas.cz (M.B.),
vladimir.spirko@marge.uochb.cas.cz (V.S.), bour@uochb.cas.cz (P.B.).
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was purchased from Sigma. The synthesis of labeled AA is
described elsewhere.11 NMR spectra of labeled alanine (A+, A-,
AZW), natural AA (AA+, AA-, AAZW), and labeled AAZW were
measured with Fourier transform (FT) NMR spectrometers
Varian UNITY-500 and Bruker AVANCE-500 (1H at 500 MHz,
13C at 125.7 MHz,15N at 50.7 MHz,17O at 67.8 MHz) in D2O
and/or in the mixture H2O/D2O (9:1). The solution pH was
varied by additions of 2 M HCl (pH ≈ 2) and NaOH (pH≈
12) solutions. For these pH values, the AA peptide exists
exclusively in the AA+ and AA- forms, respectively, which
was confirmed by measuring of the NMR titration curves
(provided in the Supporting Information (SI), together with
relevant pK constants for A and AA). The zwitterionic forms
were obtained by dissolving the compounds in distilled water
without any buffer. All spectra were measured at room tem-
perature. Chemical shifts were referenced either to internal (DSS
for 1H and13C and H2O for 17O, but the oxygen is not discussed
in this work) or external (nitromethane in the capillary for15N)
standards. The structural assignment of the hydrogen and carbon
chemical shifts was achieved using homonuclear and hetero-
nuclear two-dimensional techniques with pulse field gradients
(2D-1H,1H-PFG-COSY,1H,13C-PFG-HSQC, and 2D-1H,13C-
PFG-HMBC) in D2O. The solvent mixture H2O/D2O (9:1) was
used to observe the signals of NH and NH3

+ protons. Only the
couplings of amide NH could be observed in this mixture
because of the fast exchange rate of amine NH3

+ protons with
water. TheJ(H,H) values were determined from the 1D-1H
NMR spectrum and theJ(C,H) couplings from the non-
decoupled 1D-13C NMR spectrum. A series of selective1H-
decoupled13C NMR spectra was used to assign individual
J(C,H) couplings. The labeled15N and15N,13C AA samples were
used mainly in order to obtainJ(N,H), J(N,C), and J(C,C)
coupling constants using the 1D-1H and13C NMR spectra, the
1D-13C-INADEQUATE (Incredible Natural Abundance Double
Quantum Transfer Experiment), and the 2D-1H,15N-PFG-HMBC
spectra.

Calculations. The GAUSSIAN software18 was used for the
quantum chemical computations. The torsion anglesæ andψ
(Figure 1) were varied with 30° steps, and for each of the

resultant 12× 12 ) 144 geometries, all the remaining
coordinates were fully relaxed by energy minimization. The
angleω was initially set to 180° so as to maintain thetrans-
peptide bond, because the experimental data do not suggest a
presence of thecis-conformer. In the scans, the relaxedω angle
deviated from 180° by less than∼5°. The BPW9119 functional
and the standard Pople-type 6-311++G** basis were used with
the PCM solvent model for water.20 For the anion AA-, three
scans were performed (3× 144 points), taking into account
three initial orientations (R ) -120, 0, and 120°) of the NH2

group. For this purpose, we defined the angleR as an average
of the two amine hydrogen-(C3-C2-N1-H) angles. The
geometries of the local minima located on the resultant surfaces
were fully optimized without any constraints. The scan of the
zwitterion mimics previous computations done with smaller grid
steps.11 For control computations, other potential energy scans
were done in a vacuum for AA+ and AA- (AAZW is not stable
without solvent), and local minima geometries were reoptimized
at the MP221/6-311++G** level of approximation.

For the grid points and local minima geometries, the NMR
shielding tensors and the indirect NMR spin-spin coupling
constants were calculated. The default gauge-invariant atomic
orbital (GIAO)22 method was used for the shieldings to prevent
their origin dependence. For theJ-couplings, all four important
terms7,23were included in the analytical coupled-perturbed DFT
computation. For the shieldings andJ-couplings, we used the
B3LYP functional24 with the IGLOII or IGLOIII bases,25 which
are believed to be well-suited for computations of the NMR
properties.8 In all cases, the same PCM solvent model was
applied. With the same method, the NMR parameters were
calculated for the anion, cation, and zwitterion of (mono)-alanine
in equilibrium geometries. Chemical shifts were related to
standard molecules (DSS for1H and13C, nitromethane for15N,
water for17O, same as in ref 11).

The quantum and dynamical effects of the torsional motions
involving the angles (æ, ψ) were studied using an approximate
Hamiltonian described in full in ref 11, where the potential was
obtained by fitting of the computed two-dimensional surfaces,
and the kinetic part was expressed in the curvilinear angular

Figure 1. The ionic forms and symbols used forL-alanine (a) and AA (b). The numbering of the atoms for the definition of NMR parameters is
shown in zwitterionic forms of both molecules. In addition to standard peptide torsion angles (φ, ψ, ω), we have introduced the angleR as the
average angle of the two amine hydrogen-(C3-C2-N1-H1) torsion angles (for the NH2 residue in AA-).
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coordinates.26 The eigenvalue vibrational problemHΨ ) EΨ
was solved variationally in basis set functions expressed as
products of the eigenfunctions of the corresponding uncoupled
one-dimensional Schro¨dinger equations. The one-dimensional
functions were determined numerically using the Numerov-

Cooley integration procedure27 and used for averaging the NMR
parameters. The averaging, however, did not bring significant
corrections with respect to the overall accuracy and is not
discussed further. The lifetimes of selected localized excited
vibrational states were estimated from simplified one-dimen-
sional modeling.11,28

Results and Discussion

AA Conformers. The calculated adiabatic energy depend-
encies on theæ andψ torsion angles are presented in Figure 2.
Apparently, the energy profiles of the three hydrated forms
exhibit several similarities. The global minimumA is associated
with comparable angle values for all cases (see Table 1 for
details). The similarity of the AAZW and AA+ surfaces is the
most obvious. However, the protonation of AAZW makes the
resultant cation (AA+) more flexible with respect to theæ
rotation, and the potential well is elongated along this coordinate.
The MP2 method provides an equilibrium value of theæ angle
(-151°, see Table 1) even significantly shifted from the DFT
angle of-121°. For AA+, the local energy minimumB deepens
when compared to the other forms, but its relative energy of
1.4 kcal/mol (cf. Table 1) and narrow potential well probably
still prevent a significant population of this conformer in the
sample. Obviously, the least probable is an occurrence of the
other two,C andD conformers of AAZW and AA+.

The energy surface of the anion (AA-, the middle of Figure
2) is different. Whereas the geometry of the lowest-energyA
conformer is very close to that of the zwitterion, the minimum
well C significantly broadens, and its energy is comparable with
the global minimumA. Additionally, new, very shallow minima
(E, F) appear for the anion; these are, along with theB andD
extremes, not populated due to their high relative energies. For
C, however, the computed relative energy (0.4 kcal/mol, Table
1) is probably comparable with the computational error and
suggests a significant presence of this conformer in the sample
at room temperature.

The more complicated behavior of the anion AA- stems
predominantly from the directional and ambivalent binding
properties of the NH2 group. The nitrogen electron lone pair
can make an internal hydrogen bond to the amide hydrogen, or
the NH2 protons can be bonded to the carbonyl oxygen. This is
documented in Figure 3, where for a fixed value ofæ ) -150°
the energy dependence on theψ angle is plotted. Although
detailed three- or more dimensional energy scans are currently
not feasible, the coupling of theR, ψ, andæ torsional motions

Figure 2. Contour plots of the computed (BPW91/6-311++G**)
potential energy surfaces of the three AA forms. By default, the PCM
solvent model was applied (right-hand side); for the AA+ and AA-

forms stable in a vacuum, the dependencies without the solvent are
shown on the left. Approximate positions of local minima are marked
by the capital letters. To avoid splitting of the minimum well, the angles
are plotted within the positive (0, 360°) interval instead of the usual
(-180, 180°) range.

TABLE 1: Computed (BPW91/PCM/6-311++G**) Geometries and Relative Conformer Energies of the Three Charged AA
Formsa

AA + AAZW AA -

conformer ψ æ E ψ æ E R ψ æ E

A 149 -121 0.0 147 -153 0.0 -2 127 -152 0.0
A′ 118 128 -151 0.8
A′′ -125 119 -150 1.9
Ab 178 -159 -11.3 138 -160
Ac 150 -151 146 -158 -13.1 133 -157
Ad 169 -160 -2.5 139 -160
Be 150 60 1.4 150 66 3.6 -3 135 63 4.3
C -55 -127 5.1 -51 -150 5.1 -136 -19 -152 0.4
C′ 145 8 -147 0.8
C′′ 9 -21 -150 1.4
D -55 53 6.3 -48 64 9.2 -138 -16 63 5.0
E 5 -105 -154 2.7
F 7 -116 61 6.9

a Torsion angles (æ, ψ, R) are given in degrees and the relative energies (E) in kcal/mol. b BPW91, gas phase.c MP2, PCM.d MP2, gas phase.
e Calculated lifetimes of this conformer are approximately 1, 6-10, and 0.7 ms for AA+, AAZW, and AA-, respectively.
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in AA- nicely reveals the complexity and caveats that must be
taken into account in the modeling of peptide conformational
landscape. In longer molecules and proteins the folding of the
backbone can presumably be influenced by side-chain interac-
tions similarly as the (ψ, æ) energy map by the NH2 group
rotation. The one- and two-dimensional surfaces (Figures 2 and
3) can be also considered as projections of multidimensional
surfaces. Another way illustrating this situation is represented
in Figure 4, where three (æ, ψ) anionic surfaces are plotted as
obtained from scans with three different NH2 rotamers. The
lowest-energy surface in Figure 2 was obviously obtained by
taking the minimum energies for each (æ, ψ) pair in Figure 4.

However minor the purely electrostatic influence of the
charged ends on the conformation might be in comparison with

the role of the NH2 group, a more detailed look at the optimal
geometries in Table 1 reveals effects that can be attributed solely
to the charge/pH changes. The protonation of the COO- group
(AAZWfAA+) results in a change of theæ torsion around the
adjacent C-N bond by about 30° with theψ torsion remaining
nearly unaffected. Similarly, for the anionic form theψ torsion
decreases by about 20° under the NH3+ f NH2 deprotonation
of the zwitterion. Whereas the effects of the pH and the NH2

intrinsic hydrogen bonding can hardly be separated, the charge
change undoubtedly further tweaks the dipeptide conformational
properties.

Strictly speaking, two rotamers of the COOH group (and two
other rotamers associated with the OH rotation are theoretically
possible) should be considered in the potential energy surface
of the cation AA+ in a similar way as the NH2 rotation was
treated in the anion AA-. However, the energy changes involved
in the COOH rotation are minor (less than 1 kcal/mol) and so
is the effect of these geometry variations on the NMR
parameters. Therefore, the AA+ (æ,ψ) surface was considered
only for the lowest-energy COOH conformers.

Not all local minima on the potential energy surfaces in Figure
2 can support a stable quantum state. For both AA+ and AA-,
only the two lowest-energy conformers are stable. This can be
deduced from the two-dimensional Hamiltonian and the resultant
localized wave functions shown for the cation and anion in
Figure 5. A similar result was obtained for the AA zwitterion.11

The transition barriers are clearly high enough to support at
least the two distinct conformers with the wavefunctions plotted
by the green lines in Figure 5. Moreover, we can deduce from
the lifetimes of the second-lowest energy states listed in the
footnotes of Table 1 (a few milliseconds) that it is in principle
possible to prepare these conformers, although presently they
cannot be detected by the inherently slow NMR experiment.

By comparison of the computations performed in a vacuum
and with the solvent correction (the left- and right-hand parts
of Figure 2, respectively), one can well estimate the effect of
the environment on the peptide conformational properties. While
it is true that the basic conformational characteristics of the
dipeptide given by the covalent bonds do not change upon the
solvation, the final energy profiles, the exact minima geometries,
and, particularly, the steepness of the equilibrium potential wells
do change. The MP2 method provides virtually the same
conformers as the BPW91 functional (Table 1) except for the
æ angle of the AA+ form; in this case, however, the global
minimum well is very broad and the equilibriumæ difference
does not necessarily implicate a different behavior. Other
backbone torsion angles obtained for the minima with the
BPW91 and MP2 methods differ by less than 6°. The values of
the torsion angles for theA-type AA conformers are close to
those observed inâ-sheet structures of longer peptides and
proteins (antiparallelâ-sheet: æ,ψ ) -139°,135°; parallel
â-sheets: æ,ψ ) -119°,113°),29 whereas the other types do
not have canonical protein counterparts.

Similarly as for the zwitterion,11 molecular dynamics (MD)
simulations provided analogous conformer distribution to those
deduced from the ab initio relative energies also for the
positively and negatively charged AA forms (see Figure 1s in
SI for the Amber force field). Particularly, the MD computations
are consistent with the one (for AAZW and AA+) and two (for
AA-) conformer presence in the sample under room tempera-
ture. Obviously, detailed MD results strongly depend on the
force field parametrization, and presently we consider them
inferior to those based on the DFT energy maps.

Figure 3. Detailed one-dimensional profile of the AA- calculated
potential energy surface foræ ) -150°. The NH2 binding pattern
changes along the lowest-energy path: (a) the NH2 hydrogens may be
attracted by the COO- group and the amide bondπ-system, or (b) the
NH2 nitrogen electron lone pair creates a hydrogen bond to the amide
hydrogen which is (c, d) conserved during the rotation over the syn (ψ
≈ 0°) conformation. At the other minimum (e), the NH2 hydrogens
are attracted to theπ-system as well as to the amide oxygen. The NH2

rotation is indicated (R, in degrees).

Figure 4. Part of the anionic (AA-) potential energy surfaces (green,
blue, and red) calculated for three NH2 rotamers.
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Alanine NMR pH Dependence.The anion (A-), cation (A+),
and zwitterion (AZW) of the15N,13C-isotopically labeled alanine
allowed us to investigate the dependence of the chemical shifts
and spin-spin coupling constants for a system where no
significant change of molecular shape can be induced by the
change of the molecular charge. A complete set of experimental
and calculated NMR parameters is given in Table 2. The
absolute chemical shifts are reproduced with a notable error (e.g.,
computed 53.35 ppm, experimental 62.79 ppm for C2); never-
theless all signs of the differences between the charged and
neutral forms are reproduced correctly. As expected, the
hydrogen shifts could be calculated with a higher precision than
those for the heavy atoms.

The alanine spin-spin coupling constants change under the
deprotonation and protonation like the shifts, typically within
1-10%. The computation well reproduces the magnitudes of
the individual coupling constants (e.g., for AZW, the experimental

1J(C2,H2) ) 145.1 Hz was calculated as 143.6 Hz, i.e., with
1% error). As in the case of the shifts, the computations
reproduce most trends induced by the pH change, albeit with a
limited precision. As an extreme case, the1J(C2,C3) coupling
changes by-1.3 Hz while a+3.1 Hz change is predicted by
the theory. With the exception of the error of the DFT method,
we attribute the deviations to MD or solvent-solute interactions,
incompletely covered by the present model. Other functionals
(BPW91) and bases (IGLOII, 6-311++G**) provided similar
results. Overall, we can see that the computations correctly
reproduce the main changes in NMR shifts and coupling patterns
induced by the change of molecular charge.

Accuracy of the Calculated NMR Parameters in AA.For
the AA+ cation, the accuracy of various approximate levels used
for the computations of the NMR shifts and coupling constants
are demonstrated in Table 3. The anion AA- behaves similarly;
the data can be found in the SI (Table 1s). As for alanine, the
error of the chemical shifts computed for dialanine significantly
exceeds the estimated experimental inaccuracy (estimated as
0.01, 0.02, and 4 ppm for the NMR shifts of hydrogen, carbon,
and nitrogen, respectively). As observed earlier,11,30the hydrogen
shifts are reproduced relatively accurately, whereas the DFT
method becomes inaccurate for carbons, with the inaccuracy
being even higher for the nitrogen atom. The parameters
computed at different approximation levels do not vary dramati-
cally. The best overall agreement of the calculated data with
the experiment was achieved with the BPW91/6-311++G**/
PCM equilibrium geometry and at the B3LYP/IGLOII/PCM
level for the NMR parameters. The IGLOIII basis, although
bigger, provides less accurate shifts than IGLOII.

Interestingly enough, the gas-phase computations appear to
be reasonably accurate. For the geometry obtained with the MP2
method in the gas phase (vacuum), for example, the calculated
carbonyl carbon shifts are even closer to experiment than when
the PCM solvent correction is applied. For DFT, however, the
PCM results are more precise. The differences in geometries
(Table 1) and NMR shifts obtained with the MP2 and DFT and
with PCM and gas phase might indicate that the current potential
energy surfaces (Figure 2) are not quite accurate and that a better
solvent model accounting for the directional hydrogen bonds31

would be more appropriate; this is, however, impossible to
achieve with the computer means available. On the other hand,
some properties of the dipeptide are reproduced very well, e.g.,
the observed 84 ppm shift difference between N1 and N4 was
calculated within the 92-95 ppm interval. The chemical
environment (amine-amide) is thus perhaps more reproducible
than solvent environment (vacuum-water), whose influence is
weaker.

Figure 5. One-dimensional sections of the cation (AA+) and anion (AA-) smoothed potential energy surfaces (the red line) and vibrational wave
functions of the lowest-energy states (the dashed/dotted lines, with the asymptotes corresponding to their energies).

TABLE 2: Experimental (in D 2O) and Computeda Changes
of Alanine NMR Parameters under the pH Variations

∆(A+ - AZW) AZW ∆(A- - AZW)

calcd exptl calcd exptl calcd exptl

Chemical Shifts (ppm)
N -4.00 -2.20 -386.1 -339.6 -13.1 -6.6
C2 -0.17 -1.77 62.79 53.35 1.32 0.93
C3 -0.26 -3.11 188.38 178.66 11.74 8.94
C4 -0.27 -0.83 20.70 18.97 8.14 4.25
H2 0.81 0.37 4.17 3.78 -0.64 -0.48
H4 0.18 0.08 1.57 1.48 -0.44 -0.26

Spin-Spin Coupling Constants (Hz)
1J:
N1,C2 -1.6 -0.85 -3.2 -5.7 1.9 1.4
C2,C4 -4.1 -0.8 36.8 34.9 -1.9 0.3
C2,C3 12.2 5.6 48.5 54.0 3.1 -1.3
C2,H2 4.4 1.5 143.6 145.1 -10.4 -6.7
C4,H4 2.9 1.3 127.0 129.7 -3.4 -2.1
2J:
N1,H2 -0.2 0 -0.9 0 -2.4 -2.2
N1,C4 -0.1 0 -0.7 0 -3.1 0
N1,C3 0.1 0 -0.5 0 0 0
C2,H4 0.2 -0.2 -3.1 -4.4 0.3 0.1
C4,H2 -0.8 -0.35 -3.1 -4.55 1.0 -0.15
C3,C4 -0.3 -0.1 -0.7 -1.2 0.4 1.2
C3,H2 -0.8 -1.0 -4.6 -5.0 0.5 0.7
3J:
N1,H4 0.3 0.05 -3.3 -3.05 0.6 0.1
C3,H4 0.5 0.35 4.1 4.2 -0.2 0.1
H2,H4 0.1 0 7.3 7.3 -0.6 -0.2

a BPW91/6-311++G**/PCM geometries, B3LYP/IGLOIII NMR
parameters. For A+ and A-, differences with respect to AZW are given;
for A-; the values calculated for three NH2 rotamers were averaged.
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The scalar couplings calculated using different approaches
(the lower part of Table 3) also vary rather moderately. Like
the shifts, the average absolute deviations ranging in a narrow
interval of 1.4-1.7 Hz do not favor any particular method. No
preferential approach was indicated even by a decomposition
of the statistics into the absolute average deviations for the1J,
2J, and3J couplings (not shown). The final precision seems to
be an internal property of the B3LYP functional and perhaps
the DFT methodology;32 it was also discussed in previous
works.11,33An occasional generalization, however, can be made.
Particularly, the application of the PCM method improves some
one-bond couplings (1J(C2,C3) and1J(C3,N4)) for both the DFT
and MP2 geometries. On the contrary, some couplings deviate
more from the experiment upon the application of PCM (2J(C2,-
N4) and1J(C5,H5)). As expected, the charged and polar groups
are the most sensitive to the PCM-vacuum environment change.

Behavior similar to that of the calculated cation chemical
shifts was also observed for the anion (Table 1s in the SI),

although here the situation is complicated by the influence of
the NH2 group rotation. Indeed, a relatively large dispersion of
the calculated shifts appeared for the nuclei in the vicinity of
the amine group. For the three NH2 rotamers of the conformer
A, the calculated shifts are, for example, 24.7, 24.7, and 29.5
ppm for carbon C7, 63.3, 63.9, and 63.7 ppm for carbon C2,
and 193.8, 190.7, and 190.6 ppm for carbon C3. The dispersion
is even bigger for the conformerC: 27.1, 25.9, and 25.7 ppm
for carbon C7, 61.9, 62.9, and 65.5 ppm for carbon C2, and
190.4, 191.5, and 193.7 ppm for carbon C3.

AA Chemical Shifts. Similarly as for the alanine, the
computed and experimental chemical shift changes for the
charged AA forms (related to AAZW, Figure 6) confirm that
the theory can reproduce the experiment on average but with a
limited accuracy. Extreme changes are usually better reproduced
than the small ones. Especially the hydrogen shift changes are
smaller than 0.5 ppm, with the exception of H1 (experimental
values areσ ) 6.16 ppm for AAZW and 8.09 ppm for AA+)

TABLE 3: Chemical Shifts and Spin-Spin Coupling Constants Calculated at Different Levels of Theory for Conformer A of
the AA+ Cationa

geometry (6-311++G**):
NMR (B3LYP):

BPW91 PCM
IGLOIII/PCM

BPW91 PCM
IGLOII/PCM

BPW91 (gas)
IGLOIII (gas)

MP2 PCM
IGLOIII/PCM

MP2 (gas)
IGLOIII (gas) exptl

Chemical Shifts (ppm)
H2 4.63 4.45 4.07 4.40 3.87 4.10
H5 5.53 5.27 4.75 5.01 4.58 4.42
H7 1.58 1.58 1.77 1.41 1.56 1.55
H8 1.48 1.45 1.69 1.31 1.52 1.45
C2 63.2 61.4 63.3 59.9 60.0 51.8
C3 182.6 177.4 178.7 181.5 176.0 173.5
C5 56.4 54.6 61.8 55.7 58.9 51.6
C6 192.2 186.6 187.9 189.8 185.7 179.1
C7 22.0 21.5 21.0 21.8 22.2 19.4
C8 24.3 23.8 21.8 23.2 21.4 18.9
N1 -390 -379 -390 -392 -392 -342
N4 -295 -288 -297 -300 -299 -258

∆σ 11.09 8.27 10.67 10.89 10.11

Coupling Constants (Hz)
1J:
C7,H7 129.1 129.8 130.2 128.6 129.9 130.7
C8,H8 128.7 129.3 130.7 128.1 129.8 130.4
C5,H5 140.1 141.8 144.6 142.1 144.1 146.8
C2,C3 52.1 54.5 45.4 51.9 46.1 52.4
C5,C6 60.6 63.7 58.7 60.1 58.6 58.9
C2,C7 32.7 34.6 33.7 32.0 31.8 33.7
C5,C8 33.7 35.6 32.6 32.2 32.1 34.4
C2,N1 -4.6 -5.0 -6.0 -0.2 -0.6 -9.2
C3,N4 -18.4 -19.4 -23.0 -18.4 -22.5 -17.0
C5,N4 -11.8 -12.6 -10.8 -12.3 -11.3 -11.5
2J:
C2,H7 -2.6 -3.2 -2.6 -2.8 -2.6 -4.4
C5,H8 -2.9 -3.5 -2.9 -3.0 -3.0 -4.5
C7,H2 -2.6 -3.0 -2.8 -2.5 -2.4 -3.9
C8,H5 -4.7 -5.0 -3.8 -4.1 -3.7 -4.2
C6,H5 -6.2 -6.9 -5.7 -6.3 -5.7 -4.2
C6,C8 0.2 0.1 -1.2 -0.6 -1.3 1.1
C7,N1 -0.5 -0.5 -0.4 -0.5 -0.5 1.3
C2,N4 -11.1 -11.6 -8.5 -11.0 -9.2 -6.9
C6,N4 -1.0 -1.0 -1.1 -1.2 -1.0 -1.1
3J:
H2,H7 7.0 6.7 7.2 6.9 7.2 7.1
H5,H8 7.3 7.1 7.0 7.2 7.1 7.0
C3,H7 4.3 4.4 4.6 4.2 4.3 4.4
C6,H8 4.4 4.5 4.7 4.4 4.6 4.5
N1,H7 -3.8 -3.8 -3.7 -3.8 -4.0 -3.1
N4,H8 -2.8 -2.8 -2.9 -2.5 -2.9 -3.1
C2,C5 2.4 2.5 2.2 2.5 2.2 2.1

∆J 1.4 1.5 1.4 1.6 1.7

a ∆σ and∆J are average absolute deviations. Isotropic shielding values of (31.83, 183.45, and-180.16 ppm, for the H, C, and N atoms, respectively)
and (31.53, 181.10, and-194.36 ppm) were used for the IGLOII and IGLOIII computations.
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and not easily reproducible. The amide NH group is also
problematic: the computation overestimates the observed
nitrogen (N4) shift both in the anion and cation. On the other
hand, the amide carbon (C3) change in AA- is easily repro-
duced; it is clearly caused by the loss of charge at the amine
group. Large charge-induced shift variations (exceeding 1 ppm)
have also been measured for the C5, C6, and N1 AA+ atoms,
all indicated in Figure 6. The calculated carbon shifts (conformer
A in cation, zwitterion, and anion) of C3 (182.6, 181.3, 193.8
ppm), C5 (56.4, 61.9, 60.5 ppm), C6 (192.2, 192.5, 194.4 ppm),
and C7 (19.4, 19.3, 22.6) thus nicely correspond to the trend
observed under the pH change experimentally: C3 (173.5,
172.8, 180.6 ppm), C5 (51.6, 54.1, 53.6 ppm), C6 (179.1, 182.5,
183 ppm), and C7 (22.0, 22.2, 24.7 ppm). This reflects a general
tendency of the ab initio/DFT computation to reproduce relative
values of NMR parameters with a higher accuracy than for
absolute ones.34

The accuracy of the calculated shifts (Table 2s in Supporting
Information), however, is not sufficient to discriminate between
the individual AA conformersA-F. For example, the absolute
overall deviations from the experiment range within 11.1-11.7,
11.8-16.5, and 11.3-11.9 ppm (for the cation, zwitterion, and
anion, respectively) only. All three AA forms thus behave
similarly. The variations of the calculated NMR shifts should

then be attributed to several factors, such as the reaction of the
PCM continuum to the charge redistribution in the charged
peptide forms, and do not directly reflect detailed conformational
changes.

AA Spin-Spin Coupling. As documented in Figure 7, the
coupling constant pH variation can be reproduced with the
computation similarly as the shifts. Also here, smaller changes
are less reliably calculated than the bigger ones, and the
theoretical values concerning the vicinity of the charged residues
are less accurate. The change of1J(C5,H5) in AA+, for example,
was predicted at the opposite direction. The magnitudes of the
one-bond (1J) constants change most, but the biggest relative
changes can be found between the vicinal and geminal couplings
(2J,3J).

Unlike for the shifts, calculated coupling constants provide
useful information on AA conformation. This can be seen for
the anion AA- in Table 4, where the measurable coupling
constants calculated for 10 conformers are listed and compared
to the experiment. We can see that the results are consistent
with the estimated relative conformer energies: The coupling
constants calculated for the energetically inconvenient conform-
ers (B, D-F) significantly deviate from the experimental values,
which is also indicated by the average absolute deviations from
the experiment listed at the bottom of the Table. The conformer
C alone exhibits the lowest average deviations in the constants,
whereas theA conformer is more preferred energetically.
However, this can be explained by the conformational equilib-
rium. Indeed, the Boltzmann averaging, taking into account all
the conformersA-F including the NH2 group rotamers,
provides a reasonably low average deviation of the couplings.
Obviously, as discussed above and observed in previous
works,11,33 a future improvement of the computational model
is desirable because more accurate theoretical constants can lead
to a better discrimination between the peptide conformers.

For example, the NMR spectra would be sensitive to the NH2

group rotation as the constants computed for the three rotamers
differ significantly (for conformerA, the calculated1J(C2,H2)
are 135.9, 134.0, and 136.8 Hz,1J(C2,C3) 48.3, 53.4, and 53.4
Hz, 2J(N1,H2)-3.3, 0.7, and-3.9 Hz, etc.). The NH2 rotation,
however, influences the couplings only locally with remote
atomic groups not being affected: The constants1J(N4,H4)

Figure 6. Comparison of calculated and experimental pH chemical
shift changes (for the lowest-energy AA+ and AA- conformers, with
respect to the zwitterionic form AAZW). For the biggest changes, the
corresponding atoms are indicated in the plot.

Figure 7. Computed and experimental pH-induced changes of spin-spin coupling constants (for the lowest-energy conformer of AA+ and AA-,
with respect to that of the zwitterionic form AAZW).
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(-91.5,-91.4, and-91.6 Hz for the three rotamers),2J(C5,-
H4) (3.2, 3.2, and 3.1 Hz), or3J(H4,H5) (7.1, 7.4, and 7.2 Hz)
are rather insensitive to the rotation.

Also the computed coupling constants of the AA+ form listed
in Table 5 agree best with the experiment for the energy-
preferred conformerA. Average deviations of theC conformer
are low as well, but this form can be excluded on the basis of
the energy estimation. For the cation, especially the vicinal
couplings (3J) seem to be computed with significant errors.
Fortunately, for AA+, the number of conformers that can
contribute to the averaged observedJ’s is smaller than for AA-.
In fact, the conformerA seems to be clearly dominant (∼90%),
with Boltzmann population of the conformerB estimated from
the equilibrium geometry being about 10%. Given the narrow
potential well (Figure 2) in comparison withA, the population
of conformerB, obtained through a complete integration over
the two-dimensional potential energy surface, would be even
smaller. Additionally, the average error (∆J ) 1.9 Hz, see Table
5) of the couplings for theB form is much higher than that for
A (∆J ) 1.4 Hz).

Finally, we can focus our attention on the conformational
sensitivity of individual spin-spin coupling constants repre-
sented by the average absolute deviations plotted in Figure 8.
In spite of the errors of the computed couplings, some constants
clearly exhibit larger variations under the conformational change,
and thus the NMR technique along with the quantum computa-
tion may be able to discriminate between peptide conformers.
The 1J(C5,H5) coupling is the most sensitive one, particularly

to the change of the closeæ angle, and can thus monitor the
ratios of the (A, C) and (B, D) conformer classes (cf. Tables 4
and 5). Theψ torsion has little impact on this coupling.
Similarly, the analogous1J(C2,H2) coupling constant is more
sensitive to theψ angle, which makes it possible for these two
couplings alone in principle to determine the AA secondary
structure. To be able to generalize the results, however, one
has to realize also the dependence on the molecular charge (the
experimental1J(C5,H5) constant is 146.8, 142.7, and 139.5 Hz
for the cation, zwitterion, and anion, respectively), and in larger
peptides similar variation can be expected for various amino
acid side chains. The1J(C5,C6) coupling, for example, is
predominantly driven by the molecular charge (the measured
values for the cation, zwitterion, and anion are 58.9, 54.4, and
54.4 Hz, which are actually very well reproduced by the
calculation as 60.6, 51.9, and 52.3 Hz; see Tables 4 and 5 and
ref 11), and the conformational variance does not exceed 0.7
Hz.

The three-bond couplings, however, are more important for
the peptide structural determination than the one- and two-bond
interactions.1,2,12,13Therefore, their dependence on other factors
than the torsion angle, such as charges of close molecular
groups, is of paramount importance for peptide chemistry. As
an example, two constants,3J(H4,H5) and3J(N4,H2), were
selected and their dependence on the main-chain torsion angle
plotted in Figure 9. Calculated curves for the AA cation, anion,
and zwitterions are compared to the empirical Karplus-type
curves derived in the literature on the basis of theoretical and

TABLE 4: Spin -Spin Coupling Constants (Hz) Calculated for 10 AA- Conformers (A-F)a and Comparison with Experimental
Values

A A ′ A′′ B C C′ C′′ D E F

ηb 0.452 0.119 0.018 0.000 0.240 0.125 0.041 0.000 0.005 0.000 avgc exptld

J1:
C7,H7 125.0 124.7 125.0 125.0 125.5 124.9 125.5 124.9 123.9 123.7 125.0 129.0
C8,H8 125.8 125.8 125.7 125.0 125.7 125.6 125.8 124.8 125.9 125.1 125.7 128.3
C2,H2 135.9 136.8 134.0 135.4 137.7 130.6 137.8 130.5 136.2 135.1 135.7 142.2
C5,H5 139.6 139.6 139.5 127.6 139.2 138.8 139.6 127.6 140.1 127.6 139.4 139.5
C2,C3 48.3 53.4 53.4 47.8 52.5 52.6 47.1 52.5 48.8 48.2 50.5 50.5
C5,C6 52.3 52.3 52.4 52.3 52.5 52.4 52.1 52.5 51.3 52.4 52.3 54.4
C2,C7 36.5 31.3 35.9 36.0 34.0 35.3 35.2 35.6 36.6 36.6 35.0 35.2
C5,C8 34.6 34.7 34.6 39.2 34.6 34.9 35.0 39.0 35.2 39.2 34.7 34.9
C2,N1 -1.2 -1.0 -2.6 -1.2 -2.6 -2.0 -1.2 -2.2 -0.7 -0.8 -1.6 -4.5
C3,N4 -13.6 -14.6 -14.5 -13.8 -16.0 -15.9 -15.4 -16.7 -13.7 -13.9 -14.7 -15.7
C5,N4 -9.2 -9.3 -9.3 -9.0 -9.9 -9.9 -9.6 -9.8 -9.3 -9.1 -9.5 -10.6
J2:
C2,H7 -2.8 -2.8 -2.8 -2.8 -2.9 -3.1 -2.9 -3.1 -2.9 -3.0 -2.9 -4.2
C5,H8 -2.8 -2.8 -2.8 -3.3 -2.8 -2.8 -2.8 -3.3 -2.9 -3.3 -2.8 -4.25
C7,H2 -3.3 -0.4 -0.8 -3.5 -3.1 -3.5 -4.8 -3.8 -2.9 -3.1 -3.0 -5.0
C8,H5 -3.2 -3.2 -3.2 -3.8 -3.2 -3.2 -3.2 -3.5 -3.0 -3.8 -3.2 -4.8
C3,H2 -1.1 -3.9 -0.8 -1.1 -3.2 -6.1 -3.6 -5.9 -4.5 -4.2 -2.7 -5.0
C6,H5 -4.7 -4.7 -4.7 -5.9 -4.6 -4.6 -4.7 -5.9 -4.6 -5.9 -4.7 -5.3
N1,H2 -3.3 -3.9 0.7 -3.3 1.2 -1.2 -4.4 -0.7 -2.4 -2.4 -2.0 -1.1
C3,C5 -0.9 -0.6 -0.5 -0.8 -0.3 -0.3 -0.5 -0.1 -1.0 -0.9 -0.6 -0.5
C6,C8 -0.6 -0.6 -0.5 0.7 -0.6 -0.5 -0.5 0.7 -0.8 0.6 -0.6 1.2
C2,N4 -9.1 -9.3 -9.6 -9.3 -6.6 -6.4 -7.5 -6.5 -7.8 -7.6 -8.1 -6.8
C6,N4 -0.5 -0.5 -0.5 0.2 -0.7 -0.6 -0.6 0.2 -0.6 0.2 -0.6 -1.2
J3:
H2,H7 6.7 6.2 6.2 6.8 6.8 6.8 7.1 6.9 7.0 6.9 6.7 7.3
H5,H8 6.8 6.8 6.8 7.0 6.8 6.9 6.8 7.0 6.8 7.0 6.8 7.2
C3,H7 4.1 4.1 4.5 4.0 4.3 3.9 4.0 4.0 4.0 4.0 4.1 4.2
C6,H8 3.9 3.9 3.9 3.5 3.9 3.9 3.9 3.5 4.0 3.5 3.9 4.25
N1,H7 -3.7 -0.8 -3.4 -3.7 -2.9 -1.0 -3.7 -1.1 -3.8 -3.7 -2.8 -3.0
N4,H2 -0.8 -1.2 -1.2 -0.7 -0.7 -0.6 -1.1 -0.4 -1.2 -1.1 -0.8 -2.1
N4,H8 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.4 -2.5 -2.5 -2.5 -2.95
C2,C5 1.7 2.0 2.0 2.1 1.3 1.3 1.4 1.7 1.3 1.6 1.6 1.5

∆Je 1.6 1.7 1.7 2.1 1.2 1.4 1.2 1.9 1.5 2.0 1.3 0.0

a See Table 1 for the definition of the conformers.b Conformer ratios were estimated from the Boltzmann factor at 300 K.c The Boltzmann-
weighted average.d pH ) 12. e Average absolute deviations.
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experimental data. Clearly, for3J(H4,H5), the angular depen-
dence does not rely significantly on the molecular charge and
nicely corresponds to the two approximations proposed previ-
ously. Within æ ≈ -180...-30°, the cationic AA+ 3J(H4,H5)
curve somewhat deviates from the anion and zwitterion, which
can be explained by the vicinity of the COO- group, protonated
in the cation. Some dispersion occurs also aroundæ ≈ 150°;
this is, however, rather minor with respect to the principal
conformational dependence.

Apparently, the3J(N4,H2) coupling (lower part of Figure 9)
is more sensitive to the molecular charge and deviates more
from the previously proposed curve. As expected, the anion AA-

curve deviates from the cation and zwitterion because of the
deprotonation of the NH3+ group close to the rotating bond.
However, a closer inspection reveals that the absolute coupling
dispersion is like for the previous case, since the3J(N4,H2)
constant varies in a much narrower range than3J(H4,H5).

Conclusions

On the basis of the DFT computations (BPW91/6-311++G**)
of the two-dimensional potential energy surfaces, we were able
to estimate the conformational behavior of the AA dipeptide
under the pH changes. Whereas the neutral zwitterionic form
AAZW and the cation (AA+) adopt similar conformations of the
main peptide chain (æ, ψ angles), the anion (AA-) exists in
two forms differing by theψ-angle values. The forms are
approximately equally populated in aqueous solutions at room
temperature. The anion main chain folding is more complex
than for the other forms because of the influence of the NH2

group, which can serve both as a hydrogen donor and acceptor
in an intramolecular hydrogen bonding. The results of the
analysis of the potential energy surfaces are in agreement with
both experimental and calculated NMR chemical shifts and
spin-spin coupling constants. The NMR parameters could be
calculated with a limited accuracy, but the pH dependence of
the chemical shifts for the dipeptide as well as for the alanine
monomer could be explained on the basis of the theory.
Furthermore, the comparison of the experimental and calculated
coupling constants is consistent with the energetic analysis.
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TABLE 5: Spin -Spin Coupling Constants (Hz) Calculated
for Four AA + Conformers and a Comparison with the
Experimenta

A B C D

η 0.91 0.09 0.00 0.00 exptl
1J:
C7,H7 129.1 129.2 128.9 128.9 130.7
C8,H8 128.7 127.7 128.7 127.5 130.4
C5,H5 140.1 132.5 140.8 133.2 146.8
C2,C3 52.1 51.1 54.6 53.4 52.4
C5,C6 60.6 59.2 60.8 59.5 58.9
C2,C7 32.7 32.7 32.1 32.2 33.7
C5,C8 33.7 38.9 33.5 39.1 34.4
C2,N1 -4.6 -4.6 -0.7 -0.8 -9.2
C3,N4 -18.4 -17.6 -16.4 -15.6 -17.0
C5,N4 -11.8 -9.4 -11.8 -9.1 -11.5
2J:
C2,H7 -2.6 -2.6 -2.5 -2.5 -4.4
C5,H8 -2.9 -3.3 -2.9 -3.3 -4.5
C7,H2 -2.6 -2.7 -3.1 -3.1 -3.9
C8,H5 -4.7 -4.2 -4.7 -3.9 -4.2
C6,H5 -6.2 -7.2 -6.3 -6.8 -4.2
C6,C8 0.2 1.1 0.1 1.1 1.1
C7,N1 -0.5 -0.5 -0.4 -0.4 1.3
C2,N4 -11.1 -10.9 -8.7 -8.5 -6.9
C6,N4 -1.0 0.3 -1.2 0.5 -1.1
3J:
H2,H7 7.0 7.0 7.2 7.2 7.1
H5,H8 7.3 7.0 7.3 6.9 7.0
C3,H7 4.3 4.2 4.5 4.4 4.4
C6,H8 4.4 4.5 4.4 4.5 4.5
N1,H7 -3.8 -3.8 -4.1 -4.1 -3.1
N4,H8 -2.8 -2.6 -2.7 -2.7 -3.1
C2,C5 2.4 2.6 1.3 1.5 2.1

∆J 1.4 1.9 1.5 2.0

a The symbols have the same reference as in Table 4.

Figure 8. Computed sensitivities of selected spin-spin coupling
constants to the conformational change (average absolute deviations
from the average over individual conformersA-F are plotted for each
form).

Figure 9. Calculated dependence of the3J(H4,H5) (top) and3J(N4,-
H2) (bottom) vicinal spin-spin coupling constants on the encompassed
torsion angle for the three charged AA forms and a comparison to the
JK1,35 JK2,36 and JK3

37 semiempirical Karplus curves.
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(33) Bouř, P.; Raich, I.; Kaminsky´, J.; Hrabal, R.; Cˇ ejka, J.; Sychrovsky´,

V. J. Phys. Chem. A2004, 108, 6365.
(34) The Encyclopedia of Computational Chemistry; Schleyer, P. R.,

Allinger, N. L., Clark, T., Gasteiger, J., Kollman, P. A., Schaefer, H. F.,
III, Schreiner, P. R., Eds.; John Wiley & Sons: Chichester, 1998.

(35) Case, D. A.; Scheurer, C.; Bru¨schweiler, R.J. Am. Chem. Soc.2000,
122, 10390.

(36) Schmidt, J. M.; Blu¨mel, M.; Löhr, F.; Rüterjans, H.J. Biomol. NMR
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Theoretical Study of the Effective Chemical Shielding Anisotropy (CSA) in Peptide
Backbone, Rating the Impact of CSAs on the Cross-Correlated Relaxations in
L-Alanyl-L-alanine
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Institute of Organic Chemistry and Biochemistry V.V.i., Academy of Sciences of the Czech Republic,
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UniVersity, Altenbergerstrasse 69, 4040 Linz, Austria
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The dependence of the effective chemical shielding anisotropy (effective CSA, Δσeff) on the � and ψ peptide
backbone torsion angles was calculated in the L-alanyl-L-alanine (LALA) peptide using the DFT method.
The effects of backbone conformation, molecular charge including the cation, zwitterion, and anion forms of
the LALA peptide, and the scaling taking into account the length of the dipolar vector were calculated for the
effective CSAs in order to assess their structural behaviors and to predict their magnitudes which can be
probed for the �-sheet and R-helix backbone conformations via measurement of the cross-correlated relaxation
rates (CCR rates). Twenty different CSA-DD cross-correlation mechanisms involving the amide nitrogen
and carbonyl carbon chemical shielding tensors and the CRHR (R-carbon group), NHN (amide group), CRHN,
NHR, C′HR, and C′HN (R ) R1, R2) dipolar vectors were investigated. The X-CRHR (X ) N, C′; R ) R1,
R2) cross-correlations, which had already been studied experimentally, exhibited overall best performance of
the calculated effective CSAs in the LALA molecule; they spanned the largest range of values upon variation
of the ψ and � torsions and depended dominantly on only one of the two backbone torsion angles. The
X-NHN (X ) N, C′) cross-correlations, which had been also probed experimentally, depended on both
backbone torsions, which makes their structural assignment more difficult. The N-NHR2 and N-C′HR1 cross-
correlations were found to be promising for the determination of various backbone conformations due to the
large calculated range of the scaled effective CSA values and due to their predominant dependence on the ψ
and � torsions, respectively. The 20 calculated dependencies of effective CSAs on the two backbone torsion
angles can facilitate the structural interpretation of CCR rates.

Introduction

During the past decades, high-resolution nuclear magnetic
resonance (NMR) spectroscopy has become an indispensable
tool in structural studies of molecules.1,2 Applications of NMR
spectroscopy for obtaining valuable structural information for
biologically important molecules such as proteins and nucleic
acids have grown to an unprecedented extent.3-7

Despite the marvelous progress in experimental technique,
the NMR-resolved molecular structures may suffer from natural
restrictions. Typically, the 1H-1H proton-proton distances
probed with NOE (nuclear Overhauser effect) are not sufficient
for an unambiguous determination of molecular structure. The
NMR chemical shifts and scalar coupling constants can be
assigned only to geometric parameters that are confined in the
vicinity of the probed nuclei such as bond length or bond/torsion
angle,3 contrary to the long-range structural restraints by residual
dipolar couplings8 or cross-correlated relaxation rates (CCR
rates).9 High resolution of the NMR-determined structures thus
still remains challenging and requires methods combining
various NMR parameters assigned to specific structural descrip-
tors. New reliable geometry restraints are therefore needed in
NMR studies of global structural features, such as the protein
tertiary structure.

The CCR is a specific NMR phenomenon known for a long
time that was relatively recently exploited in dynamic studies
of biomolecules10-17 and for obtaining geometry restraints in
proteins9,18-25 and in nucleic acids.26-33 The cross-correlation
between chemical shielding anisotropy and dipole-dipole
interaction (CSA-DD) was also used for the determination of
the NMR chemical shielding tensor (σ-tensor) principal com-
ponents and their relative orientation with respect to the
molecular frame even in the liquid state.34-37 The applicability
of the CCRs exceeds the limited range of biomolecular
studies.38,39

Measurement of the CSA-DD cross-correlated relaxation
rates probes both the dynamics (specific fluctuations of molec-
ular motions) and the σ-tensor (see Theory). While reliable
prediction of the CCR dynamic component might be a chal-
lenging task,40,41 the structural dependence of the σ-tensor and
its orientation with respect to the dipolar vector can be obtained
with many calculation methods. The theoretical modeling of
NMR spectroscopy parameters using modern quantum-chemistry
methods has become a practical tool that complements NMR
experiments.42 The theoretical analysis of NMR parameters can
provide fast and deep insight into their dependence on molecular
structure including the impact of specific solvent effects and
molecular motion.42 To the best of our knowledge, only a limited
number of theoretical studies dealing with the ab initio modeling
of NMR parameters appertained to the CCR phenomenon is
currently available.43-45 The goal of this theoretical study was
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to shed light on the protocols used for the structural interpreta-
tion of relevant CSA-DD cross-correlations which can be used
in probing the structure of peptide backbone. Some of the
CSA-DD cross-correlation mechanisms investigated in this
work were also probed in recent NMR studies.18-20,24,37,46

However, the majority of them were theoretically modeled in
this work probably for the first time.
Our study was focused on the calculation of the effective

CSAs for different CSA-DD cross-correlation mechanisms
involving the σ-tensors of amide nitrogen (15N) and carbonyl
carbon (13C′) in the L-alanyl-L-alanine (LALA) peptide. The
calculated dependence of NMR properties on backbone con-
formation was further extended by modeling the effects of
protonation and deprotonation of the LALA terminal groups
occurring at different pH values. The three forms of the LALA
molecule (cation, zwitterion, and anion) were characterized in
our recent joint computational and experimental NMR work.47,48

Benchmark conformational analysis of short alanine peptides
carried out with the molecular dynamics was successfully
correlated with complex NMR data.49 In the future we plan to
use the structural information obtained previously for the LALA
molecule with both NMR and optical spectroscopies47,48,50 for
calibration of measured CCR rates in peptides.

Theory

A comprehensive theoretical description of the CCR phe-
nomenon is given by the Bloch-Wangsness-Redfield theory
of relaxations, usually called the Redfield theory.51 The matrix
form of relaxation equations includes the autorelaxation rates
on its diagonal, whereas the off-diagonal terms describe mutual
correlations between different relaxation mechanisms (i.e., the
CCR rates). The CCRs typically contribute by a very small
amount to the overall relaxation of a nuclear spin, and the
experimental accessibility of a particular CCR rate can be
therefore limited.
On the assumption of isotropic overall molecular motion of

a molecule that can be considered rigid on the time scale of the
overall molecular motion, the CSA-DD cross-correlated re-
laxation rate Γi,jk

CSA-DD is described by the following equations:51,52

where B0 is the magnetic field strength, Δσi,jk
eff is the effective

CSA that correlates the principal components of the σ-tensor
of nucleus i with the nuclear dipolar vector interconnecting
nuclei j and k, rjk is the length of the dipolar vector, and θjk

nn is
the angle between the nn-principal component of the σ-tensor
and the dipolar vector. J(ωq) is the spectral density function
describing the local magnetic field fluctuations at frequency ωq.
The other symbols in eq 1 have the meaning of usual physical
constants: γi is the gyromagnetic ratio of nucleus i, μ0 is the
vacuum permeability, and p is the reduced Planck constant.
The particular form of the J(ωq) function depends on the

physical model of molecular motion. The spectral density

function in eq 3 describes the ideal case of isotropic tumbling
of a rigid spherical molecule. The rate of this tumbling is
characterized by the autocorrelation time τc which can be either
determined experimentally by fitting the NMR data (T1, T2, and
heteronuclear NOE) or modeled theoretically with the methods
of molecular dynamics.44

The Δσeff essentially modulates the CCR rates (eq 1) via its
angular dependence, projecting the principal components of the
σ-tensor onto the dipolar vector of a particular CSA-DD
mechanism.43-45 The spectral density function J(ωq) and the
magnetic field strength B0 can in that regard be considered as
constants. The CSA-DD cross-correlation therefore probes the
site-specific mutual orientation of the σ-tensor and the dipolar
vector. This theoretical study models both effects that contribute
to modulation of the effective CSAs: the dependence of the
σ-tensor on molecular geometry that is implicitly considered
in eq 2, and the projections of the σ-tensor principal components
onto the dipolar vector. Although the latter effect is usually
dominant, the former effect can be also significant, and models
going beyond the so-called rigid tensor approximation are
therefore more reliable.45

The experimental detection of the CSA-DD cross-correla-
tions (generally involving three different nuclei A, B, C) requires
the development of two-spin coherences in the first step followed
by measurement of differential relaxation between the double-
and zero-quantum coherences.46 The CCR rates usually cannot
be accessed directly since only the Γ(A-BC) + Γ(B-AC),
Γ(B-AC) + Γ(C-AB), and Γ(C-AB) + Γ(A-BC) terms are
observable. Therefore, in the most general case three indepen-
dent NMR experiments have to be performed from which the
three linked CCR rates can be extracted. However, if one of
the CCR rates is much smaller than the other (e.g., due to a
much smaller CSA value), it can be neglected and only one
NMR experiment is then sufficient for the actual CCR rate
determination. Further, in some cases the CCR rates can be
obtained even from one-dimensional (1D) NMR spectra (for
example, when only two different nuclei are involved as in the
case of the N-NHN cross-correlation).37
We used the usual definition of the chemical shielding

anisotropy (CSA, Δσ):

where σnn are the σ-tensor principal values defined such that
σ33 > σ22 > σ11.

Methods

The LALA molecule consists of two L-alanine residues.
Whenever unequivocal clarity was required, we used the indexes
“1” and “2” (Figure 1) to distinguish between the N-terminal
and the C-terminal residues of the LALA peptide, respectively.
However, in the text we often omit the indexes, as in the case
of the ψ and � backbone torsions.
The backbone conformation of the LALA is determined by

the ψ1, ω1, and �2 torsion angles (Figure 1). The values of the
ω torsion angle are close to 180° in the majority of peptides
due to the partial π-character of the peptide bond. The only
geometry parameters describing the LALA backbone are thus
the ψ and � torsion angles.
For the anionic (NH2 and COO- termini) and the cationic

(NH3+ and COOH termini) forms of the LALA peptide both
the ψ and the � torsion angles were varied with steps of 30°,

Γi,jk
CSA-DD ) 1

2(μ0p
4π )γjγk

rjk
3

γiB0(Δσi,jk
eff )∑

q

J(ωq) (1)

Δσi,jk
eff ) ∑

n)1

3

σi
nn(3 cos2 θjk

nn - 1

2 ) (2)

J(ωq) )
2
5

τc
1 + (ωqτc)

2
(3)

Δσ ) σ33 - (σ11 + σ22

2 ) (4)
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and for each of the resulting 12 × 12 ) 144 geometries all the
remaining coordinates were fully relaxed by energy minimiza-
tion. The calculations for the zwitterion (NH3+ and COO-

terminus) were performed with a larger step of 60°.47,48
The calculations were carried out using the density functional

theory (DFT) method. The geometries and the NMR chemical
shielding tensors were obtained at the BPW9153,54/6-311++G(d,p)55
and the GIAO B3LYP56,57/IGLO-II58 level of theory, respectively.
The PCM dielectric model of water solvent was used consis-
tently in both geometry optimization and NMR calculations.
The Gaussian 03 program package59 was used in all quantum-

chemistry calculations. The numerical evaluation of eq 2 was
carried out with the Matlab program package.

Results and Discussion

The � and ψ backbone torsion angles are essential geometry
parameters for describing peptide conformation. Once their
values are determined in each residue along the peptide
backbone, the global structural characteristics of proteins, in
particular their fold, can be explicitly studied. From this point
of view, the assignment of CCR rates to backbone torsion angles
represents a rather versatile restraint, since in principle a plethora
of CSA-DD cross-correlated relaxation rates involving different
nuclei can be measured in oligopeptides and proteins.
The experimental accessibility of all CCR rates cannot be

automatically taken for granted only on the basis of the
calculated effective CSAs. For example, the rjk

-3 factor (eq 1)
scales effectively down the CCR rates with longer dipolar
vectors, i.e., those with the dipolar interaction between atoms
that are not directly bonded. Also, the involvement of low-
gamma nuclei reduces the magnitude of cross-correlation effects.
Current experimental detection of the CCR rates in peptides
was therefore carried out for the dipolar vectors corresponding
to covalently bonded atoms (see the rDD column and references
in Table 2) and for the high-gamma nuclei preferentially. It
should be also mentioned that from the experimental point of
view the magnetization transfers necessary for detection of the
CCR rates with the atoms appearing in the CSA-DD mecha-
nism separated by more bonds can be rather inconvenient and
inefficient. Further, the spectral density function (eq 3) reflects
the specificity of molecular motions with respect to a given CCR
mechanism and its actual form together with the approximations
usually made can significantly alter the interpretation of
measured CCR rates.
We therefore found it useful to model the effective CSAs

for a certain class of the CSA-DD cross-correlations which
actually complemented the CCR rates that were measured in
recent experimental studies (as referenced in Table 2). The cross-
correlations studied in this work involved the amide nitrogen
and carbonyl carbon CSAs and the CR1HR1, CR2HR2, CR1HN,
CR2HN, NHN, NHR1, NHR2, C′HN, C′HR1, and C′HR2 dipolar
vectors (Figure 1). The dipolar vectors systematically included
the HR and HN hydrogen atoms on one side and the backbone
CR carbon, carbonyl carbon, and amide nitrogen on the other
side. These dipolar vectors possess characteristic orientations
with respect to the peptide backbone (Figure 1), and their lengths
range from 1.0 to 3.0 Å. The calculated dependencies of the
Δσeff on the ψ and � torsion angles for all three forms of the
LALA peptide (cation, zwitterion, and anion) can be found in
the Supporting Information.
Many aspects concerning the effective CSAs, and conse-

quently also the CCR rates, could be theoretically modeled and
analyzed. For practical applications to structural studies, a
smooth dependence of the Δσeff on the assigned geometry
parameter(s) would be preferential. Even higher preference could
be given to the cross-correlations with notable 1D character of
the corresponding Δσeff, i.e. to those depending dominantly on
only one geometry parameter. Strong differentiation between
typical backbone conformation archetypes, such as R-helix and
�-sheet, would be another obvious advantage.
We analyzed the calculated Δσeff values with such complex

criteria in order to determine whether (i) the R-helix and the
�-sheet conformers of the LALA peptide could be distinguished
due to sizable differences in the Δσeff values (Tables 1 and 2)
and (ii) the overall character of the Δσeff (ψ,�) surfaces was

Figure 1. Schematic representation of the LALA molecule in its
zwitterionic form with the indicated CSA-DD cross-correlated relax-
ation mechanisms between the anisotropy of σ-tensor (ellipses) and
nuclear dipole-dipole vector (thick arrows).

Figure 2. Localization of global (larger symbols) and local energy
minima calculated for the three forms of the LALA molecule with
respect to R-helix and �-sheet regions.48
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generally suitable for the structural studies in peptides (Table
2, Figures 4-6).
The composition of the solvent environment at different pH

values clearly affects the backbone structure of the LALA
peptide.48 The protonation and deprotonation occurring at the
LALA termini thus represent large perturbations for NMR
properties.48 The backbone geometry parameters calculated
previously for the global energy minima of the three LALA
forms unveiled that the zwitterion and cation forms are well
localized within the �-sheet region, while the anion potential
energy surface is rather flat along the ψ dimension, allowing

thus transitions between the R-helix and �-sheet conformers
(Figure 2).48 For the CSA-DD cross-correlated relaxation rates,
we implied that those CCR mechanisms which possessed a
rather stable structural dependence irrespective of the actual
protonation state could be also more resistant with respect to
similar structural perturbations occurring in terminal peptide
residues or in polar side chains.
The optimal values of the backbone torsions corresponding

to the global energy minima of the three LALA forms (the
�-sheet conformation) were site-specifically affected by the
protonation state (Table 1, Figure 2). The optimal values of

Figure 3. Dependence of the chemical shielding anisotropies ΔσN and ΔσC′ on the ψ1 and �2 backbone torsion angles calculated for the LALA
zwitterion.

TABLE 1: Geometry48 and NMRa Parameters Calculated for the �-Sheet and r-Helix Backbone Conformation of the LALA
Peptide

�-sheetb R-helixc

anion zwitterion cation anion zwitterion cation

ψ [deg] 119 147 149 -30 -30 -30
� [deg] 210 207 239 -90 -90 -90
σN [ppm] 91.0 90.1 100.9 98.5 94.6 106.0
ΔσN [ppm] 125.0 108.8 105.7 117.6 101.1 109.1
σC′ [ppm] -9.6 -0.2 -1.5 -12.4 -0.5 -0.9
ΔσC′ [ppm] 137.4 123.5 124.4 144.8 122.5 123.8

Δσeff [ppm]
CSA-DD
C′-CR1HR1 -26.7 24.0 30.6 -32.3 5.9 1.7
C′-CR2HR2 32.7 44.7 2.6 -3.7 12.1 21.0
C′-CR1HN -107.9 -84.7 -94.6 -96.9 -88.6 -97.6
C′-CR2HN -59.6 -79.2 -70.8 -69.8 -69.8 -60.2
C′-NHN -18.4 -8.2 -3.3 -31.5 0.0 2.7
C′-NHR1 -93.1 -110.9 -108.3 -103.2 -102.4 -109.7
C′-NHR2 -36.1 -53.4 -58.7 -56.8 -62.3 -48.0
C′-C′HN -48.6 -13.5 -17.7 -51.1 -16.5 -23.1
C′-C′HR1 -37.9 -57.3 -47.2 -99.3 -105.4 -109.6
C′-C′HR2 -91.7 -101.4 -118.5 -96.6 -118.8 -112.6
N-CR1HR1 -84.0 -96.5 -79.6 83.4 62.7 74.4
N-CR2HR2 -87.3 -69.1 -124.4 -121.7 -137.3 -112.2
N-CR1HN 122.9 101.7 104.1 92.9 86.9 96.6
N-CR2HN -118.7 -122.3 -129.8 -147.2 -136.0 -135.2
N-NHN -151.7 -154.5 -157.1 -181.7 -168.7 -154.0
N-NHR1 -26.7 -8.7 -13.7 96.0 94.7 103.5
N-NHR2 -103.4 -91.2 -146.1 -154.2 -147.0 -137.0
N-C′HN -3.4 -18.2 -15.8 -32.6 -36.4 -17.2
N-C′HR1 -158.5 -136.7 -138.7 60.1 72.0 77.5
N-C′HR2 34.5 33.0 -8.1 -9.8 -3.6 1.6

a The isotropic NMR shielding σ,48 the chemical shielding anisotropy Δσ, and the effective chemical shielding anisotropy Δσeff for the
CSA-DD cross-correlations. b The geometries of global energy minima. c Grid-point geometries close to the R-helix region (Figure 2).
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the ψ torsion angle obtained for the zwitterion and cation were
similar since the NH3+ terminus remained unchanged in these
two forms, while for the anion (the NH2 terminus) ψ increased
by ∼20° (Table 1). Similar behavior was found for the � angle;
the value calculated in the cation (COOH) was larger by ∼30°
compared to both the anion and the zwitterion (COO-). These
backbone conformational changes were reflected by the values
of the amide nitrogen (σN) and the carbonyl carbon (σC′)
isotropic shielding constants that had been analyzed in detail
previously48 (see also Table 1). Similar correlations could be
observed for the chemical shielding anisotropies ΔσN and ΔσC′
(eq 4) with the exception of ΔσN in the zwitterion, which was
closer to the value calculated for the cation (Table 1). The
calculated dependencies of ΔσN and ΔσC′ on the ψ and �
backbone torsion angles were significantly modulated in both
dimensions (Figure 3).
The Δσeff values calculated for the �-sheet and R-helix

conformers (Table 1) certainly provide an alternative approach
for the identification of the respective conformers in LALA
dipeptide and (due to the local character of NMR properties)
probably also generally in oligopeptides and proteins. Large
differences of the calculated Δσeff values between �-sheet and
R-helix could be considered as a qualitative indicator for their
possible distinguishing with the CCR rates (Tables 1 and 2). In
order to estimate the Δσeff values in the R-helix conformation,
we used one of the grid points in a vicinity of that region (Table
1, Figure 2), while the geometries of global energy minima for
all LALA forms were used as models for the �-sheet conforma-
tion. The calculated absolute Δσeff differences between the
�-sheet and R-helix conformations (|ΔR�Δσeff|) in the LALA
zwitterion spanned a relatively wide range: 3-48 ppm and
14-209 ppm for the cross-correlations involving carbonyl

carbon and amide nitrogen, respectively (Table 2). For the cross-
correlations that were recently probed experimentally (see the
references in Table 2), the |ΔR�Δσeff| absolute differences in the
LALA zwitterion were 18, 8, and 3 ppm (C′-CR1HR1, C′-NHN,
C′-C′HN) and 160, 68, 14, and 18 ppm (N-CR1HR1, N-CR2HR2,
N-NHN, N-C′HN).
The effective CSAs calculated for one backbone conformation

in the three LALA forms reflected the structural changes due
to different pH values in a similar way as calculated for the
isotropic shieldings48 and CSAs (Table 1). The Δσeff values
calculated in �-sheet geometries for the C′-CR1HR1 (zwitterion
and cation) and C′-CR2HR2 (anion, zwitterion) cross-correlations
ranged over relatively narrow intervals (24-31 ppm and 33-45
ppm, respectively) compared to the C′-CR1HR1 effective CSA
in the anion (-27 ppm) and the C′-CR2HR2 effective CSA in
the cation (3 ppm) (Table 1).
The calculated Δσeff (ψ,�) surfaces are rather universal since

they show overall trends which should be more or less valid in
peptides unless some larger effect perturbed the local nature of
this NMR parameter (for example, the proximity of an aromatic
ring or an additional charge). The dependencies of the Δσeff

(ψ,�) surfaces on pH can also help to estimate the stability of
a particular cross-correlation mechanism with regard to the
fluctuating total charge of a peptide molecule (Table 2). Global
characteristics of the (ψ,�) surfaces (Table 2), structural
variation of the calculated Δσeff values (Supporting Information),
and the rjk

-3 scaling (Table 2, Figure 6B) can provide a reliable
estimate for the conformational dependence of the CCR rates.
The magnitudes of CSA-DD cross-correlation effects are of

course very much dependent on the angular projections of the
σ-tensor principal components on the particular dipolar vector (eq
2). In this sense, the CSA and the effective CSA can be regarded

TABLE 2: Summary for the Calculated Effective CSAs in the LALA Peptide

CSA-DD Δ(Δσeff)a Δ(rDD-3Δσeff)b ΔR�(Δσeff)c ΔR�(rDD-3Δσeff)d rDDe ΔrDDf surfaceg pH dependenceh Mi Nj available NMR expts

C′-CR1HR1 200.1 146.1 18.1 13.5 1.1 1.4 ψ + + 3 1 refs 20 and 24l

C′-CR2HR2 151.9 112.8 32.6 24.4 1.1 1.0 � + 3 1
C′-CR1HN 19.7 2.0 3.9 -0.4 2.6 14.6 2D C 3 1
C′-CR2HN 38.7 4.8 -9.4 -0.9 2.1 6.7 2D C 3 1
C′-NHN 32.2 29.4 -8.2 -7.5 1.0 2.3 2D C 3 3 refs 37 and 46k

C′-NHR1 47.9 4.5 -8.5 -3.4 2.9 31.1 ψ + + 3 1
C′-NHR2 107.6 12.5 9.0 1.2 2.1 3.9 � + + 3 1
C′-C′HN 34.6 3.8 3.0 0.3 2.1 6.7 2D + + 2 1 refs 37 and 46
C′-C′HR1 100.7 10.9 48.1 5.5 2.1 5.4 ψ + + 2 1
C′-C′HR2 60.7 5.5 17.4 1.7 3.0 28.7 2D + 2 1
N-CR1HR1 215.6 160.4 -159.2 -118.9 1.1 1.4 ψ 0 3 1 ref 19
N-CR2HR2 222.5 166.6 68.2 51.1 1.1 1.0 � 0 3 1 ref 18
N-CR1HN 94.5 5.9 14.8 1.5 2.6 14.6 2D + 3 1
N-CR2HN 62.3 5.9 13.8 1.6 2.1 6.7 2D (�) + 3 1
N-NHN 72.1 69.2 14.3 15.1 1.0 2.3 2D 0 2 1 refs 37 and 46
N-NHR1 148.1 5.8 -103.4 -3.1 2.9 31.1 ψ 0 2 1
N-NHR2 274.9 31.6 55.7 6.6 2.1 3.9 � 0 2 1
N-C′HN 68.8 8.7 18.2 2.0 2.1 6.7 2D (�) 0 3 3 refs 37 and 46k

N-C′HR1 256.1 26.2 -208.7 -20.2 2.1 5.4 ψ 0 3 1
N-C′HR2 141.8 5.0 36.6 2.0 3.0 28.7 � + 3 1

a The maximal calculated difference between the maximum and minimum values on the Δσeff surface among the three forms of the LALA
peptide; Δ(Δσeff) [ppm]. b The maximal calculated difference between the maximum and minimum values on the rDD-3Δσeff surface among the
three forms of the LALA peptide; Δ(rDD-3Δσeff) [Å-3 ppm]. c The difference between the Δσeff values calculated for
the �-sheet and the R-helix conformation in the LALA zwitterion (Table 1); ΔR�(Δσeff) [ppm]. d The difference between the rDD-3Δσeff values
calculated for the �-sheet and the R-helix conformation in the LALA zwitterion (Table 1); ΔR�(rDD-3Δσeff) [Å-3 ppm]. e The average length of
the dipolar vector [Å]. f The maximal deviation of the dipolar vector length on the (ψ,�) grid relative to the average length; ΔrDD [%]. g The
dominant structural dependence of the (ψ,�) surfaces calculated for the Δσeff (Supporting Information) (the surfaces significantly modulated in
both dimensions are denoted “2D”). h Qualitative classification of the Δσeff surfaces variation between the three charged LALA forms (“+ +”
stands for “large”, “+” for “small”, “C” for “complex”, and “0” for “negligible”). i The number of nuclei involved in the CSA-DD
cross-correlation. j The number of independent NMR experiments needed for the experimental detection of CCR rate. k Only the linked
Γ(C′,NHN) + Γ(N,C′HN), Γ(N,C′HN) + Γ(HN,NC′), or Γ(HN,NC′) + Γ(C′,NHN) terms can be measured. l The inseparable term Γ(CR,C′HR) was
considered to be negligible due to the small CR-CSA.

Effective CSAs in LALA Peptide Backbone J. Phys. Chem. B, Vol. 113, No. 15, 2009 5277



as two different linear combinations of the σ-tensor principal values,
one with constant coefficients (eq 4) and the other with molecular
structure dependent coefficients (eq 2). The relative importance of
the angular projections in comparison to the variation of the
shielding tensor itself is thus immediately seen. The range of values
calculated for the ΔσN and ΔσC′ CSAs on the (ψ,�) grid (Figure
3) was relatively small compared to the ranges calculated for the
effective anisotropies Δσeff (eq 2, Figure 6A, Supporting Informa-
tion), which were modulated specifically by the particular choice
of the DD vector. Moreover, the calculated (ψ,�) surfaces of the
ΔσN andΔσC′ anisotropies possessing a significant “2D character”
(i.e., the dependence on both torsion angles, see Figure 3) could
have been smoothed or even may have lost their 2D character for
a suitable choice of the DD vector. Such effective CSAs are rather
attractive with regard to their direct structural interpretation (see
the surface classification in Table 2 and the Supporting Informa-
tion). Vice versa, the choice of the σ-tensor may also have resulted
in a qualitatively different performance of the respective effective
CSAs for one dipolar vector (see, for example, the C′-C′HR2 and
N-C′HR2 effective CSAs in Table 2 and in the Supporting
Information).
The experimentally rather easily accessible N-NHN cross-

correlation is a particularly interesting parameter due to the amide
nitrogen being the CSA center and the origin of the DD vector.
The orientation of the DD vector with respect to the molecular
frame remained quite similar for all backbone conformations. The
N-NHN effective CSA therefore depended mainly on reorientation
and magnitude alteration of the nitrogen σ-tensor principal com-

ponents upon variation of the backbone torsions. The calculated
(ψ,�) surfaces of the N-NHN effective CSA (Supporting Informa-
tion) were thus significantly modulated in bothψ and� dimensions
(Figure 5), similarly to the chemical shielding anisotropy ΔσN of
the amide nitrogen (Figure 3). It should be however noted that in
the case of hydrogen bonding both the direction and length of the
NHN vector may vary considerably.
The ΔΔσeff values, i.e., the differences between maximum

and minimum of the calculated Δσeff on the whole (ψ,�) surface,
were used to estimate the extent of the effective CSA modulation
by the variation of the two torsion angles. For the X-CRHR (X
) N, C′; R ) R1, R2) cross-correlations, the ΔΔσeff values were
large (Table 2, Figure 6A) and the Δσeff (ψ,�) surfaces depended
predominantly on the � (X-CR2HR2) or ψ (X-CR1HR1) torsion
angles (Table 2, Supporting Information). These cross-correla-
tions thus appear to be well suited for the peptide structural
studies since they exhibit smooth and specific dependences on
the backbone conformation, which is at the same time notably
modulated (Table 2, Figures 4-6, and Supporting Information).
A somewhat lower applicability for the peptide structural studies

could be expected from the rest of the cross-correlations involving
the carbonyl carbon CSA. The |ΔR�Δσeff| absolute differences were
mostly small (exceeding 20 ppm in only two cases; see Tables 1
and 2), and the corresponding surfaces had usually pronounced
2D character often combined with significant pH dependence
(Table 2) or shallow modulation (Figure 6A).
The effective CSAs involving the amide nitrogen σ-tensor

performed significantly better. The calculated ΔΔσeff values

Figure 4. Dependence of selected Δσeff on the ψ1 and �2 backbone torsion angles calculated for the three forms of the LALA molecule and scaled
with the length of the dipolar vector. The cross-correlation mechanisms involved the carbonyl carbon σ-tensor and the CR1HR1, NHN, and C′HN
dipolar vectors.

5278 J. Phys. Chem. B, Vol. 113, No. 15, 2009 Benda et al.



were overall larger than those involving the carbonyl carbon
CSA (Figure 6). Also the (ψ,�) surfaces of the nitrogen effective

CSA were more often dominated by only a single torsion, and
their pH dependence was smaller (Table 2, Supporting Informa-

Figure 5. Dependence of selected Δσeff on the ψ1 and �2 backbone torsion angles scaled with the length of the dipolar vector. The cross-correlation
mechanisms involved the amide nitrogen σ-tensor and the CR1HR1, CR2HR2, NNH, NHR2, and C′HR1 dipolar vectors.

Figure 6. (A) Ranges of the effective CSA values corresponding to their maxima/minima on the (ψ,�) surfaces calculated in the anion (red),
zwitterion (green), and cation (blue) forms of the LALA molecule. (B) Calculated ranges of Δσeff scaled with the rDD-3 factor, where rDD is the
length of the dipolar vector.
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tion). In addition to the four cross-correlations involving the
amide nitrogen CSA, which were probed in recent experimental
studies (references in Table 2), we found similar ΔΔσeff

magnitudes for the N-NHR and N-C′HR (R ) R1, R2) effective
CSAs. These cross-correlations might be also good candidates
for the structural studies in peptides, since they depend mostly
on a single torsion angle and their pH variation is negligible.
A comprehensive analysis of the calculated effective CSAs

that can be used for a reliable estimate of the CCR rates must
take into account their scaling with the length of the dipolar
vector (rjk

-3 factor in eq 1, rDD-3 column in Table 2). The scaling
substantially reduced the Δσeff values for the cross-correlations
with longer dipolar vectors (Table 2, Figure 6B). The length of
the DD vector thus can be a rather limiting factor for the
experimental accessibility of the CCR rates. On the other hand,
the grid point dependent lengths of the investigated DD vectors
varied only up to 2.3, 6.7, and 31.1% (relative to the average
value) for the DD vectors shorter than 1.1, 2.1, and 3.0 Å,
respectively (Table 2). Therefore, the calculated conformational
dependence of the studied effective CSAs should not be
significantly altered by the rDD-3 scaling. Several selected (ψ,�)
surfaces of the scaled effective CSAs (Figures 4 and 5) can be
compared to the original Δσeff surfaces (Supporting Information).
The differences of the scaled Δσeff values calculated between

the �-sheet and R-helix conformers (Table 2) as well as the
scaled Δσeff ranges (Table 2, Figure 6B) were evaluated
consistently with the original effective CSAs. Significantly large
values of the scaled Δσeff were obtained for the experimentally
probed C′-CR1HR1, C′-NHN, N-CR1HR1, N-CR2HR2, and
N-NHN cross-correlations (Table 2 and references therein,
Figure 6B). The C′-CR2HR2, N-NHR2, and N-C′HR1 cross-
correlations, for which an experimental reference was not
available, and which were theoretically modeled only in this
work, appeared after the scaling with similarly good prerequi-
sites for application in conformational studies of peptide
backbone as those CCRs already experimentally tested.
In particular, the C′-CR2HR2 cross-correlation had a range

of Δσeff values equivalent to its complement C′-CR1HR1

involving the CR1HR1 dipolar vector (Table 2, Figure 6B). While
the Δσeff calculated for the C′-CR1HR1 cross-correlation de-
pended dominantly on the ψ torsion, the choice of the NHN
dipolar vector for the same CSA dramatically changed the shape
and other characteristics of the Δσeff surface (Figure 4, Table
2). Of the other cross-correlations involving the carbonyl carbon,
the C′-NHN was the only scaled Δσeff that still possessed a
relatively large range of values. However, the scaled Δσeff

surfaces were significantly modulated in both the ψ and the �
dimensions for all forms of the LALA molecule (Figure 4), and
the charge of the terminal groups also had a notable impact
(Figures 4 and 6B).
The cross-correlations involving the amide nitrogen CSA were

shown to be overall more suitable for peptide structural studies
than those involving the carbonyl carbon CSA. For a given
dipolar interaction, the range of the scaled Δσeff values was
almost always larger for the N–DD type of cross-correlation
than for the C′–DD type (Table 2, Figure 6B). Such behavior
could have been expected from a well-known fact that the amide
15N CSA is larger than the carbonyl 13C CSA.60 Interestingly,
the scaled Δσeff (ψ,�) surfaces for the experimentally probed
N-CR1HR1 and N-CR2HR2 cross-correlations18,19 were rather
smooth and depended almost exclusively on one backbone
torsion only. On the contrary, the scaled Δσeff surfaces for the
experimentally most convenient N-NHN cross-correlation10,37,46
were significantly modulated in both dimensions, which renders

its structural interpretation difficult (Table 2, Figure 5), although
not unsuitable in the form of restraints.
The promising N-NHR2 and N-C′HR1 cross-correlations,

which had not been reported previously, involved the amide
nitrogen CSA and relatively long DD vectors (rDD ∼ 2.1 Å,
Table 2). Although the calculated ranges of the scaled Δσeff

values were somewhat smaller compared to the experimentally
probed cross-correlations discussed above (Table 2, Figure 6B),
they exhibited a rather smooth dependence on only one of the
two backbone torsions (Table 2, Figure 5) and a negligible pH
variation. Moreover, the N-NHR2 cross-correlation mechanism
involves only two nuclei, which is experimentally favorable.
These two cross-correlations probably represent the best per-
forming examples of the CSA-DD mechanism involving the
dipolar interaction between not directly bonded atoms.
The following cross-correlations, which were not yet mea-

sured, can be probably also considered useful for the peptide
backbone structural studies, namely because they depended
dominantly on a single torsion only: C′-NHR1, C′-NHR2,
C′-C′HR1, N-NHR1, and N-C′HR2 (Table 2, Figure 6B). The
other cross-correlation mechanisms, among which the C′-C′HN
and N-C′HN experimentally probed CCRs can be counted,
possessed either a small range of the scaled Δσeff values on the
(ψ,�) grid, or the surfaces were modulated in both ψ and �
dimensions. Their usability in peptide structural studies is
therefore limited.

Conclusion

The calculated dependencies of the effective chemical shield-
ing anisotropies on the main backbone torsion angles ψ and �
in the cationic, zwitterionic, and anionic forms of the L-alanyl-
L-alanine peptide were analyzed in order to assess the ap-
plicability of the corresponding cross-correlated relaxation rates
in structural studies of oligopeptides and proteins. The analysis
of the calculated effective CSAs was focused on the overall
character of their dependence on backbone conformation and
molecular charge, on their usability for distinguishing between
the �-sheet and R-helix backbone conformations, and on the
effect of scaling by the length of the dipolar vector.
The 20 cross-correlated relaxation mechanisms studied in this

work involved either the amide nitrogen CSA or the carbonyl
carbon CSA and dipolar vectors connecting R-carbon, carbonyl
carbon, or amide nitrogen to amide hydrogen or R-hydrogen.
The effective CSAs generally depend on both backbone

torsion angles, but for the X-CRHR, X-NHR, X-C′HR1, and
N-C′HR2 (X ) C′, N; R ) R1, R2) effective CSAs, a dominant
dependence on a single torsion angle was observed. The amide
nitrogen effective CSAs showed an overall clearer dependence
on only one of the two backbone torsions with a smaller
variation by the molecular charge compared to the carbonyl
carbon effective CSAs. The cross-correlations involving the
amide nitrogen also exhibited larger ranges of the effective CSA
values, which probably implies their better usability in peptide
structural studies.
By taking into account the length of the dipolar vector, a

more conclusive estimate of the cross-correlated relaxation rates
and their relative magnitudes was obtained. The cross-correla-
tions involving the dipolar vectors with a length corresponding
to a single covalent bond (X-CRHR, X-NHN; rDD ∼ 1.1 Å)
expectedly provided the largest calculated ranges of the scaled
effective CSAs. The complex analysis carried out for the
effective CSAs showed that the X-CRHR cross-correlations
probed in recent experimental studies18-20,24 are best suited for
the determination of both ψ and � peptide backbone torsion
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angles. The dipolar scaling damped down most of the other
investigated effective CSAs that would otherwise be also
attractive due to their large effective CSA ranges and dominant
dependence on a single torsion angle (namely the C′-NHR1,
C′-NHR2, C′-C′HR1, N-NHR1, and N-C′HR2 effective CSAs).
Finally, the N-NHR2 and N-C′HR1 cross-correlations involving
the dipolar vectors of intermediate length (rDD ∼ 2.1 Å) were
classified as the most promising candidates for peptide backbone
structural studies, which should be probed experimentally in
the future. To assess the weaker cross-correlation effects
predicted in this paper reliably, highly sensitive experiments
and high accuracy of the measurements are a stringent require-
ment. The symmetrical reconversion schemes introduced by
Bodenhausen’s group37,61 provide valuable approaches for this.
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Hydration envelopes of metallic ions significantly influence their chemical properties and biological functioning.
Previous computational studies, nuclear magnetic resonance (NMR), and vibrational spectra indicated a strong
affinity of the Mg2+ cation to water. We find it interesting that, although monatomic ions do not vibrate
themselves, they cause notable changes in the water Raman signal. Therefore, in this study, we used a
combination of Raman spectroscopy and computer modeling to analyze the magnesium hydration shell and
origin of the signal. In the measured spectra of several salts (LiCl, NaCl, KCl, MgCl2, CaCl2, MgBr2, and
MgI2 water solutions), only the spectroscopic imprint of the hydrated Mg2+ cation could clearly be identified
as an exceptionally distinct peak at ∼355 cm-1. The assignment of this band to the Mg-O stretching motion
could be confirmed on the basis of several models involving quantum chemical computations on metal/water
clusters. Minor Raman spectral features could also be explained. Ab initio and Fourier transform (FT) techniques
coupled with the Car-Parrinello molecular dynamics were adapted to provide the spectra from dynamical
trajectories. The results suggest that even in concentrated solutions magnesium preferentially forms a
[Mg(H2O)6]2+ complex of a nearly octahedral symmetry; nevertheless, the Raman signal is primarily associated
with the relatively strong metal-H2O bond. Partially covalent character of the Mg-O bond was confirmed
by a natural bond orbital analysis. Computations on hydrated chlorine anion did not provide a specific signal.
The FT techniques gave good spectral profiles in the high-frequency region, whereas the lowest-wavenumber
vibrations were better reproduced by the cluster models. Both dynamical and cluster computational models
provided a useful link between spectral shapes and specific ion-water interactions.

Introduction
Simple monatomic ions in aqueous environment are essential

for many important biological processes in living organisms,
such as osmotic regulation, neural impulses, muscle contraction,
and protein conformational changes.1-3 The metal ions often
react quite specifically, exhibiting strong affinity to particular
binding sites.4 Anions, such as halogens, appear more important
for water bulk properties.5 It is clear that ionic physical
properties are modulated by the hydration shell and interactions
with the water molecules, but determination of the exact
mechanisms is often hindered by the lack of experimental data.
Some biological systems that could enlighten the role of the
ions are difficult to crystallize. Nevertheless, many techniques,
such as X-ray crystallography or NMR spectroscopy, did provide
valuable insights into the origin of specific ionic interactions.1,6

Vibrational spectra allow one to estimate the metal-water bond
strength.7 To contribute to this process, we explore the ability
of the Raman scattering to detect specific ion-water interactions,
particularly those of the magnesium ion providing the most
distinct signal in the spectrum.

Vibrational properties probed by the Raman techniques and
infrared absorption (IR) proved previously as sensitive indicators
of the water structure. For example, the IR and Raman signal
of the OH stretching seems to indicate clustering in liquid water
as dependent on the temperature.8-10 Librational motions (within
700-900 cm-1) are sensitive to the ice structure and isotopomer

composition.11 Vibrational investigations of more complex ionic
solutions are rarer.7,12

The information about structure encoded into the spectral
band frequencies and intensities can be to a great extent decoded
by computer simulations. Unlike for isolated molecules, how-
ever, bulk water and aqueous ionic solutions provide a limited
amount of spectral features. A large part of the structural
information is reflected in an inhomogeneous broadening of
spectral shapes and requires special interpretation procedures.13-15

Molecular dynamics (MD) with empirical9,16-18 and ab initio19,20

force fields provide the most flexible means for modeling of
the structure and its development in time. Most often, the
computationally efficient Car-Parrinello formulation of the ab
initio molecular dynamics (CPMD) is preferred.21 The CPMD
and other ab initio MD techniques particularly enhanced
structural studies of ionic solutions that, being complicated
electronic systems, cannot be described by empirical force
fields.2,22,23

IR and Raman spectral profiles can be simulated by various
Fourier transform techniques from the time dependence of the
dipole and polarizability functions, respectively.18,20,24,25 The
Fourier simulations can partially account for anharmonic effects
and inhomogeneous broadening of spectral lines; in principle,
however, they are constrained to the harmonic approximation.
Alternatively, the instantaneous mode approximation and cluster
approaches reproduce most of the spectral features.26,27 The static
models do not include the motion explicitly but typically allow
one to calculate spectroscopic properties at a higher approxima-
tion level, and provide more flexibility, potentially including
also the anharmonic effects. In the present study, both ap-
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proaches are used, as they reveal different aspects of the origin
of the Raman signal.

The metal ions obviously have no vibrational spectra them-
selves. The specific spectroscopic signal comes from the
perturbed liquid water structure in the vicinity of the ion.
Potentially, the weak water-water, metal-water, and other
noncovalent interactions are involved, which makes the Raman
technique very attractive, as it enables measurement to very low
vibrational frequencies comprising fundamental vibrational
modes that correspond to these weak interactions.7,28,29

In this work, we have measured Raman spectra of several
salts dissolved in water in order to map their influence on the
water light scattering and, in final effect, on the water and
hydration shell structure. As only the magnesium ion among
the light metals exhibited an exceptionally specific band at ∼355
cm-1, we concentrated MD and ab initio modeling to this ion
in aqueous solutions. Classical and Car-Parrinello MD were
used to estimate the dynamical behavior of the hydration shell.
Cluster and Fourier transform techniques were tested for
generation of the Raman spectra. The computations confirm that
the signal stems from the tight magnesium-oxygen binding and
relatively rigid structure of the magnesium first hydration shell.
The experimental results and CPMD computations indicate that
the signal is not exclusively associated with an ideal octahedral
structure but rather with individual Mg-O bond stretchings. A
natural bond orbital analysis suggests that the Mg-O bond
adopts a partially covalent character.

Methods

Experimental Section. Samples of the salts (LiCl, NaCl, KCl,
MgCl2, CaCl2, MgBr2, and MgI2) were supplied by Sigma-
Aldrich and used without further purification. Raman spectra
were measured in a backscattering mode using the previously
described ChiralRAMAN instrument (BioTools, Inc.).30 The
laser wavelength was 532 nm, laser power at the sample ∼0.3
W, spectral resolution 10 cm-1, and acquisition times 10-30
min. All spectral intensities were divided by accumulation time
so that they are normalized to the same intensity scale. The
Raman spectrum of an empty quartz cell was subtracted from
all spectra. Note that the normalization is very approximate, as
the collection angle of Raman scattering depends, among other
factors, on the concentration and hence on the refractive index
of the solution. For the HOH bending signals, Lorentzian bands
were fitted to the experimental spectra with a correction to linear
baseline using the SpectraCalc (Galactic Industries) software
to get central peak positions and full widths at half-height.

Ab Initio Cluster Calculations. Geometries of metal (Na+,
Ca2+, Mg2+) and water clusters were optimized by energy
minimization at the HF, MP2, MP4, and B3LYP31 approxima-
tion levels and standard 6-311++G** and aug-cc-pVTZ basis
sets, using the Gaussian software.32 At the same level as for
the optimization, harmonic frequencies and backscattered Raman
transition intensities were calculated as33

where S1 ) ∑i)1...3,j)1...3 RijRij and S0 ) ∑i)1...3,j)1...3 RiiRjj are the
isotropic invariants of the transition polarizability. The spectra
were generated using a temperature correction factor33 and
Lorentzian bands of full width at half-maximum ∆ ) 5 cm-1

as

where k is the Boltzmann constant, T temperature, ωi transition
frequency, and ω the light frequency. The Gaussian program
was also used for the natural bond orbital (NBO) analysis34 of
the wave function.

CPMD Simulations. Periodic boxes containing 33 water
molecules and salt ions were created by the HyperChem
program.35 The sizes of the boxes approximately corresponded
to the experimental densities of salt solutions at 300 K. The
systems included pure water, hydrated Mg2+, Ca2+, Na+, and
Cl- ions, and a box containing three Mg and six Cl atoms
corresponding to the experimentally investigated 5 mol/kg
MgCl2 solution. Within HyperChem and the Amber99 force
field,36,37 classical molecular dynamics (MD) was run for 1 ns
with 1 fs integration time steps and a temperature of 400 K to
equilibrate the systems. The TIP3P38 model as a part of Amber99
was used for water. Because this approach did not provide
symmetric Mg2+ hydration, alternatively, the starting geometry
with ideal octahedral [Mg(H2O)6]2+ geometry was created
manually. Both approaches, however, gave very similar spectra
and energies. The box geometry was optimized (Amber99) and
input into the Car-Parrinello CPMD software package.39 The
same periodic boundary conditions, 4 au ) 0.09676 fs time step,
and energy cutoff of 85 Ry were used for all CPMD calculations
performed with the BLYP31 functional and Troulier-Martins40

norm-conserving pseudopotentials. The initial configuration was
relaxed by six short CPMD runs comprising 200 steps. After
each run, the system was quenched to the Born-Oppenheimer
surface by reoptimizing the wave function. Subsequently, longer
2.5-10 ps production runs were performed. A temperature of
300 K was maintained with the Nosé-Hoover algorithm,41

which also kept the system in the canonical (NVT) ensemble.
During the long simulations, the trajectory was saved at every
step for the FT spectra generation and geometry analyses.

Spectral Simulations from Dynamical Trajectories. The
spectral response was derived for an ensemble of N molecules
with dipoles µi. A local field Ei sensed by molecule i is the
external electric field E0 plus the field from other dipoles42,43

where Rij ) Ri - Rj is the distance vector. The total dipole
moment is

and the total polarizability

I180 ) 7S1 + S0 (1)

S(ω) ) I180[1 - exp(-ωi

kT)]-1 1
ωi

[4(ω - ωi

∆ )2

+ 1]-1

(2)

Ei ) E0 + 1
4πε0

∑
j*i

3µj · RijRij - µjRij
2

Rij
5

(3)

µtotal ) ∑
i

(µi0 + ri · Ei) (4)

≈ ∑
i

(µi0 + ri · E0) +

1
4πε0

∑
i

∑
j*i

ri · (3µ0j · RijRij - µ0jRij
2
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5

+
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2
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A derivative of (5) with respect to the ε-coordinate of an atom
λ present in molecule m is

In the derivation of the previous formula, we used the definition
of molecular position as a geometrical center of M atoms with
position vectors ri, Rm ) M-1∑i)1

M ri, so that M(∂Rm/∂rλ) ) 1 is
the identity matrix. We can thus formally carry out the
computations with polarizability derivatives obtained for one
molecule (rm

(λε)) corrected by the interactions with the rest of
the system. A similar approach using the “dressed” tensors was
proposed for mixed molecular and colloidal systems.44 The
approximate expansions of the induced dipole in colloidal
systems could be avoided using a matrix formulation;45 for
molecules of relatively weak polarizability, however, the
perturbational approach presented above is sufficient. In eq 6,
we originally adopted the atomic polarizability model43 where
all atoms were treated as polarizable spheres of isotropic
polarizabilities Ri, i ) 1...NAT. While this approach was useful
for program tests and relating our method to previous works,
we show more advanced results only, with the polarizability
derivatives calculated ab initio by Gaussian.

From the coordinate derivatives of the polarizability (eq 6),
the time derivatives were calculated by the chain rule, ∂RR�/∂t
) ∑kε (∂RR�/∂rε

k)(∂rε
k/∂t), where ∂rε

k/∂t ) Vε
k are the MD (CPMD)

velocities. The Fourier transforms of the polarizability derivatives

provided the Raman intensity of the backscattered (180°) signal
as

where S0 ) ∑R� [(Im FRR)(Im F��) + (Re FRR)(Re F��)], S1 )
∑R� [(Im FR�)(Im FR�) + (Re FR�)(Re FR�)], k is the Boltzmann
constant, T is the temperature, K is an arbitrary intensity
multiplier, and p is the Planck constant. For all of the simulated
spectra, the y-scale is arbitrary, since the absolute intensities
are not measured.

Spectral Simulations from CPMD Clusters. In a static
model, 20 [Mg(H2O)6]2+ and [Cl(H2O)N]- (N ) 4-6) complex
geometries were selected from randomly chosen CPMD snap-

shots and subjected to restricted normal mode optimization46,47

performed at the B3LYP/6-311++G**/PCM(H2O) level. The
program Qgrad48 interfaced to Gaussian was used for the
optimization; normal modes within i300(imaginary)...200 cm-1

were kept fixed. Thus, the water molecules could approximately
be maintained at instantaneous CPMD positions, while higher-
frequency modes could be relaxed. Note that the relaxation is
required to get the true harmonic vibrational frequencies. For
the optimized geometries, Raman spectra were calculated by
Gaussian at the B3LYP/6-311++G**/CPCM(H2O) approxima-
tion level and averaged. A Lorentzian bandwidth of 15 cm-1

was used for the spectra plotting.

Results and Discussion

Experimental Spectra. In Figure 1, we display typical
examples of the spectra for MgCl2, MgBr2, CaCl2, and NaCl
solutions. The signal from a quartz cell was subtracted, and
spectra were normalized to the same accumulation time;
nevertheless, the intensity scale should be considered rather
informative. All salt solutions notably modify the Raman signal.
However, such a significant increase in intensity of the HOH
bending mode (∼1640 cm-1) in the salt solutions was recorded
that it cannot be explained solely by variations in the collection
angle of Raman scattering caused by changes of the solution
refractive indices. This result is surprising, since there are fewer
water molecules per volume in the salt solutions than in pure
water. Moreover, in the set of MgCl2 solutions in D2O, an
increase of DOD bending and decrease of OD stretching mode
intensity with increasing concentration were recorded (see later,
Figure 7), which also suggests that the changes in aqueous
Raman scattering caused by the salts reflect the solution
structure.

The changes in relative intensities (spectral shapes) are more
specific and occur mostly within the 200-1000 cm-1 range.
This region comprises the librational and rotational motion of
water molecules, probably inseparable form the hydrogen bond
stretching.16,18,27,49 Most probably, the observed line shapes
reflect the structure of the metal cation hydration spheres, while
the anions give less specific signals. For example, the divalent
Mg and Ca metals perturb the spectra more than the monovalent
sodium. Potassium and lithium chlorides behaved similarly to
the sodium chloride and are not shown. The specific “355 cm-1”
magnesium band is present in Raman spectra of both in MgCl2

and MgBr2 salt solutions. There are no indications that the

r )
∂µtotal

∂E0

) ∑
i

ri +
1

4πε0
∑

i
∑
i*j

3rj · Rijri · Rij - ri · rjRij
2

Rij
5

(5)

∂r
∂rε

λ
) rm

(λε) + 1
2πε0

∑
j*m

rm
(λε) ·

3rj · RmjRmj - rjRmj
2

Rmj
5

+

3
2Mπε0

∑
j*m [rjεrm · Rmj + rj · Rmjrmε + rm · rjRmjε

Rmj
5

-

5
rj · Rmjrm · RmjRmjε

Rmj
7 ] (6)
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Figure 1. Experimental Raman spectra of water and MgCl2, MgBr2,
CaCl2, and NaCl solutions at 20 °C.
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halogen anions would form a stable complex with Mg2+.
Nevertheless, from the comparison of the bromide and chloride
spectra, it is clear that also the anions cause minor spectral
changes. However, their interpretation goes beyond the scope
of this study. Supposedly, the role of the metal cation is
dominant and the interaction of simple halogenide ions with
water is weaker.1,5,12 For example, the computations indicate
that the shortest Mg-O distance (∼1.95 Å) is much smaller
than a Cl-H hydrogen bond (∼2.2 Å).

Individual peak positions are summarized in Table 1 for a
wider variety of salts and experimental conditions. For example,
the Mg-O stretching band moves to 352 cm-1 at 48 °C; in
MgI2 solution, its line shape (not shown) is significantly distorted
and it is centered even lower, at 325 cm-1. In fact, a new band
appears also at 225 cm-1 for MgI2. A similar shoulder at 202
cm-1 is apparent also for MgBr2.

The HOH bending vibration (at 1636 cm-1 in pure water)
moves up for most salts (except for MgI2, where it goes down
by ∼10 cm-1), up to 1651 cm-1 for concentrated MgCl2

solutions. This band also becomes significantly narrower for
the salt solutions. The fitted Lorenzian bandwidth (cf. Table 1)
changes from 115 cm-1 in pure water to 62 cm-1 for MgI2.
The combination band (HOH bending and hydrogen bond
stretching) centered at 2090 cm-1 in pure water moves down,
up to 2011 cm-1, and disappears completely for MgI2. However,
it should be noted that the MgI2 solution is a brown absorbing
liquid and its baseline may be significantly distorted. Especially
the combination signal (>2000 cm-1) may be hidden in the
background radiation. The temperature of the sample around
the laser beam may be elevated, unlike for the other salts.

The MgCl2 spectral trends in D2O mostly follow those for
H2O. All vibrational frequencies are shifted down due to the
larger mass of deuterium. Also, the bandwidth of the DOD
bending band in pure D2O (72 cm-1) is significantly smaller
than that for the HOH (115 cm-1) in H2O, even more than it
would correspond to the central frequency ratio (1204/1638).

Hydrated Metal-Ion Geometries. Although the dynamical
coordination number of the Mg2+ is known to be lower than
six even in ideal conditions (N ∼ 5.85),1 the ideal octahedral
geometry with N ) 6 well represents the predominant structure
of the first hydration shell of the magnesium ion.6 In Table 2,

the metal-water oxygen and OH bond distances calculated for
the [Mg(H2O)6]2+ complex at different levels are compared
to the Mg2+ ·H2O system, and to the [Ca(H2O)6]2+ and
[Na(H2O)6]+ complexes. More ab initio results are compiled in
Table 1s of the Supporting Information. The calculated vacuum
Mg-O distances are similar to those reported previously;6

however, embedding the system into the polarizable dielectrics
(CPCM) shortens the distance in [Mg(H2O)6]2+ by ∼0.016 Å
and improves thus the agreement of the calculations with
experimental X-ray studies, where an average Mg-O distance
of 2.063-2.068 Å is encountered.6 On the other hand, the
distances in the Mg2+ ·H2O bimolecular system are too short,
even with the CPCM model, which reflects known deficiencies
of the continuum approach in representations of strong polar
interactions.50,51 The Amber MD geometry parameters are
reasonable; nevertheless, the quantum CPMD clearly provides
more reliable data.

The calcium and sodium ions also form computationally
stable octahedral complexes, but the distances between the metal
and the water oxygen are significantly larger than those for Mg.
For Ca2+, this can be partially attributed to its larger covalent
radius than Mg2+. The calculated metal-water oxygen distances
agree with the previously reported theoretical results52 as well
as with the known ionic radii.1 Interestingly, the calculated
Na-O and Ca-O distances are quite similar and, depending
on the approximation used, one can be smaller or longer than
the other. The OH distance does not seem to be significantly
perturbed by the water coordination to the metals. The HF and
higher-correlated MP2/MP4/CCSD(T) and B3LYP method give
very similar results; the larger aug-cc-pVTZ basis brings only
minor shortening of the Mg-O distance. On the basis of the
comparison with the presumably most reliable MP4 and
CCSD(T) computations, we can conclude that the computa-
tionally faster B3LYP method is adequate for a reliable
description of the metal-water cluster geometries. The results
thus suggest that the Mg-O link behaves to some extent like a
stable single covalent bond. An analogous strong Mg-O
interaction was also observed for Mg2+ methanol solutions.22

The geometry parameters obtained from the static CPMD
computations (Table 2) were quite similar to those observed
for the ab initio optimized clusters. Next, we look at the average
geometries during the dynamics. The simulations with the
HyperChem starting geometries and those starting with the
arbitrarily Th symmetrized Mg(H2O)6 initial structure provided
very similar results. In accord with previous studies,2,4 the radial
distribution function of water oxygens around the magnesium
ion (Figure 2) exhibits an exceptionally sharp and narrow peak
at ∼2.1 Å. A similar peak can also be observed for concentrated
MgCl2 solution (dashed line in Figure 2), where the number of
water molecules coordinated around Mg2+ was limited to N ∼3.
Nevertheless, the CPMD approach reveals more differences
between the calcium and sodium ions than the static computa-
tions summarized in Table 2; the Ca2+ binds the water molecules
much more efficiently and perturbs the water ordering to a larger
distance than Na+, although less than Mg2+ exhibiting a
secondary peak at ∼4.2 Å. Test MD computations reproduced
this peak also with the Amber99 force field, and excluded an
artifact influence of the limited box size (Figure 1s in the
Supporting Information). The CPMD distribution gives more
realistic Mg · · ·O distances than MD; both dynamical models
predicted a much broader chlorine · · ·hydrogen distance distribu-
tion than for the Mg (cf. Figure 2s in the Supporting Informa-
tion).

TABLE 1: Experimental Raman Peak Frequencies (cm-1)
of Various Aqueous Salt Solutions

ν(M · · ·OH2) δ(HOH)a δ(HOH)b
ν(H · · ·O) +

δ(HOH)

Water Solutions
pure water 20 °C 1636 1638(115) 2090
MgBr2 5 mol/kg 20 °C 355 1642 1639(70) 2011
MgI2 5 mol/kg 20 °C 325 1625 1628(62)
CaCl2 5 mol/kg 20 °C 1647 1644(72) 2060
NaCl 5 mol/kg 20 °C 1649 1645(89) 2063
LiCl 5 mol/kg 20 °C 1648 1645(95) 2063
MgCl2 5 mol/kg 20 °C 355 1651 1647(83) 2052
MgCl2 2.5 mol/kg 20 °C 357 1648 1646(101) 2068
MgCl2 1.3 mol/kg 20 °C 361 1644 1644(111) 2076
MgCl2 5 mol/kg 0 °C 355 1651 1647(80) 2048
MgCl2 5 mol/kg 48 °C 352 1651 1646(83) 2018

D2O Solutions
pure D2O 20 °C 1205 1204(72) 1554
MgCl2 in D2O 5 mol/kg
20 °C

337 1216 1210(57) 1516

MgCl2 in D2O 2.5 mol/kg
20 °C

337 1210 1208(70) 1522

MgCl2 in D2O 1.3 mol/kg
20 °C

332 1206 1206(73) 1552

a Peak maximum. b Peak center and width (in parentheses) from a
Lorentzian band fit.
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From the calculated water 3D probability distribution in the
octahedral magnesium complex in Figure 3, we see that
the oxygen atoms indeed oscillate only moderately around the
equilibrium positions. On the other hand, the hydrogen positions
are dispersed more as the water molecules bound in the complex
are perturbed by hydrogen bonds to molecules from the second
hydration sphere.

Bond Strengths and Vibrational Frequencies. The rela-
tively strong Mg2+-O binding is reflected in the vibrational
properties of the [Mg(H2O)6]2+ complex. Harmonic frequencies
calculated for optimized structures at seven approximation levels

are summarized in Table 3. The mode assignment is based on
potential energy distributions of internal vibrational coordinates
as well as on a visual inspection of the normal mode displace-
ment. The six Mg2+-O bonds generate three normal modes of
Ag, Tu (triple degenerate), and Eg (double degenerate) sym-
metries. Note that, for the Th point group only, the gerade
symmetry modes (Ag, Eg, Tg) are Raman active (cf. Table 4).53

Ungerade modes are active in IR and can be assigned to previous
observations (Table 3, ref 7). Although due to dynamical
symmetry distortions the Th symmetry rules may not hold in
solution, from the calculated intensities (Table 4), the totally
symmetric “breathing” mode clearly dominates in the Raman
spectrum within the Mg-O stretching region. Unlike Mg2+, the
Ca2+ and Na2+ octahedral aqueous clusters exhibit metal-O
stretching frequencies (Table 5) too low to be detectable.

As discussed before, although lacking the d-orbitals, mag-
nesium binds to water as strongly as much heavier elements.7

Our NBO analysis indicates that the relative strength of the
Mg-O bond is also reflected in its partially covalent character.
A “non-bonding” natural lowest unoccupied molecular orbital
(LUMO)34 centered on the metal ion (Figure 4) was identified
that could clearly be associated with the magnesium binding to
the water molecules in the complex. Its partial occupations and
the metal natural charges are summarized in Table 6, also for
other metals and clusters with chlorine. The nonzero occupancy
of the natural LUMO indicates that it can be associated with
the metal binding to the water molecules for all of the Na+,
Ca2+, and Mg2+ metal ions. The highest value of the occupancy
for Mg thus correlates with the strongest metal-water bond.
Moreover, the calculated natural charge of the metal ion is lower
than an ideal ionic charge (+1 for Na, +2 for Mg and Ca) by
approximately the amount of the natural LUMO occupancy.
Perhaps surprisingly, for the [Mg(H2O)6]2+ cluster, there are
negligible differences in the occupancy and the charge for the
vacuum and solvent environments (Table 6).

The water lone-pair orbital aligned along the metal-O bond
slightly differs for the three ions (Figure 4) as well. It is most
extended in the [Mg(H2O)6]2+ complex, where it is even partially
localized on the metal. This simplified picture suggests that,
although the metal-O bond strengths are different, the nature
of the metal-water interaction is similar for all of the ions.
Interestingly, the shape (not shown) and occupation (last two
lines in Table 6) of the “unoccupied” central orbital remain
similar in complexes where some water atoms are replaced by
Cl-.

All quantum methods in Table 3 provide reasonable estimates
of the complex vibrations. For HF, the HOH bending frequencies
(1792-1799 cm-1) are somewhat higher, and the Mg-O
breathing frequency (320 cm-1) is lower than the experimental
ones (1653 and 355 cm-1, respectively). The larger aug-cc-pVTZ
basis set brings only a minor improvement over the 6-311++G**
basis set. Embedding the [metal · (H2O)6] clusters in implicit

TABLE 2: Calculated Geometry Parameters (Å) for Some Model Metal-H2O Clusters

[MgH2O]2+ [Mg(H2O)]6
2+ [Ca(H2O)6]2+ [Na(H2O)6]+

level dMg-O
a dH-O dMg-O dH-O dCa-O dH-O dNa-O dH-O

Amber99 1.878 0.996 2.000 0.981 2.643 0.975 2.421 0.964
BLYP/CPMD 2.120 0.979 2.427 0.979
CCSD(T)/6-311++G** 1.956 0.975 2.100 0.965 2.399 0.965 2.355 0.961
B3LYP/6-311++G** 1.942a 0.980a 2.111a 0.948a 2.414b 0.974b 2.386 0.963
B3LYP/aug-cc-pVTZ 1.916 0.979 2.100 0.966 2.393 0.963
B3LYPCPCM/6-311++G** 2.039 0.978 2.084 0.965 2.368 0.977 2.397 0.972
Exp. 2.063a 2.397c

a Reference 6. b Reference 58. c Reference 59.

Figure 2. Calculated (CPMD) radial distribution functions for the
Mg2+, Ca2+, and Na+ hydrated metal ions. For the Mg2+ · · ·O distance,
the calculated RDF in a 5 mol/kg MgCl2 solution is also plotted as the
dashed line.

Figure 3. Calculated (CPMD) distributions of the aqueous oxygen
(red) and hydrogen (green) atoms around the central Mg2+ ion.

3578 J. Phys. Chem. B, Vol. 114, No. 10, 2010 Kapitán et al.



(PCM, COSMO) solvent models improves the Mg-O stretching
frequencies; however, the Gaussian implementation of PCM
(and also that of COSMO, not shown) provides HOH bending
frequencies that are too low. From Table 4, we see that the
intensities are even more sensitive to the computational model
than the frequencies. The PCM environment, for example,
causes a modest (∼40%) increase against vacuum; the intensity
calculated with the larger aug-cc-pVTZ basis is more than
doubled against that obtained with the smaller 6-311++G**
set.

As the ideally symmetric clusters may be disturbed in real
solutions, we also investigated spectra obtained with a varying
number of water molecules around the Mg2+ ion (Figure 3s in
the Supporting Information). The position of the strongest
Mg-O stretching band was found to be relatively stable for
the higher-coordinated (N > 2) clusters, drifting only within
330-375 cm-1. The minor fluctuations of the frequency are
consistent with the minor differences observed experimentally
for different anions that presumably influence the number of
water molecules present around Mg2+. For instance, MgBr2 gives

a broader peak than MgCl2, there is a shoulder around 410 cm-1

and a broadband at 600 cm-1 for chloride, and a maximum 550
cm-1 for bromine. The computations indicate that even partially
hydrated magnesium ions in concentrated solutions may be
visible in the spectra due to the Mg-O vibration. The narrow-
ness of the experimental peak and previous ab initio and CPMD
computations1,2 nevertheless suggest a strong tendency toward
the hexahydrated complexes. The higher-frequency wagging
modes (∼450-530 cm-1) also significantly contribute to the
Raman scattering. However, their resulting signal is much
broader (cf. Figure 1), as they are mixed with the water hydrogen
bond stretching and water librational motions.

Many features observed in the experimental Raman spectra
could also be obtained from the CPMD trajectories by the
modified Fourier transform method. For example, the simulated
pure water spectrum in Figure 5 exhibits the main features
observed experimentally, in particular the HOH bending band
at 1608 cm-1 (observed at ∼1650 cm-1) and the broad signal
around 460 cm-1. The simulated HOH bandwidth (∼130 cm-1)
is somewhat larger than the experimental one (115 cm-1, Table
1). The anharmonic combination signal above 2000 cm-1 cannot
be modeled using this approach, as the simulations based on
classical trajectories are restricted to harmonic potentials.25 For

TABLE 3: Fundamental Vibrational Frequencies of the [Mg(H2O)6]2+ Complexa

B3LYP

HF MP2 b c d b, c exp. (gas phase)

16 Ag 1799 1678 1670 1664 1575 1644 1574 1653 δ(HOH)
15 Eg 1794 1674 1665 1660 1569 1635 1571 δ(HOH)
14 Tu 1792 1673 1664 1659 1571 1634 1570 δ(HOH)
13 Tu 607 579 566 416 503 540 486 627e H2O wagging
12 Tg 589 549 543 516 481 528 459 591 wag + in plane rot.
11 Tu 487 417 439 415 407 419 405 421e in plane H2O rot.
10 Au 433 406 427 407 277 372 256 axial H2O rot.
9 Ag 320 319 314 318 337 335 360 355 νbreathing(Mg-O)
8 Tg 453 380 410 392 203 309 185 in plane H2O rot.
7 Tu 388 386 378 368 163 300 163 178e ν(Mg-O)
6 Tg 299 237 286 275 132 285 134 axial H2O rot.
5 Eg 253 266 249 246 263 263 273 309e ν(Mg-O)
4 Eu 230 186 213 205 153 250 134 axial H2O rot.
3 Tu 166 155 155 160 99 165 102 133e δ(OMgO)
2 Tg 136 92 122 129 59 135 46 δ(OMgO)
1 Tu 100 97 96 99 42 88 δ(OMgO)

a By default, the 6-311++G** basis set was used. Raman-active modes are indicated in bold. b aug-cc-pVTZ basis set. c PCM solvent model
(Gaussian). d COSMO solvent model (Turbomole). e IR spectra, ref 7, tentative assignment only.

TABLE 4: [Mg(H2O)6]2+ Complex, Raman Intensities of
Fundamental Vibrationsa

B3LYP

MP2 b c

16 Ag 0.02 0.00 0.12 0.25
15 Eg 4.42 3.88 3.11 5.55
14 Tu 0 0 0 0
13 Tu 0 0 0 0
12 Tg 0.06 0.00 0.00 1.00
11 Tu 0 0 0 0
10 Au 0 0 0 0
9 Ag 0.89 1.13 2.45 1.58
8 Tg 1.89 1.88 1.27 0.85
7 Tu 0 0 0 0
6 Tg 0.05 0.34 0.31 0.44
5 Eg 0.18 0.20 0.23 0.17
4 Eu 0 0 0 0
3 Tu 0 0 0 0
2 Tg 0.02 0.02 0.01 0.63
1 Tu 0 0 0 0

a By default, the 6-311++G** basis set was used; Mg-O
stretching vibrations are indicated in italics. b aug-cc-pVTZ basis
set. c PCM solvent model (Gaussian).

TABLE 5: [Metal · (H2O)6] Clusters, Calculated (B3LYP/
6-311++G**) Frequencies, and Intensities of Fundamental
Vibrations

ω (cm-1) I (au)

M: Mg2+ Ca2+ Na+ Mg2+ Ca2+ Na+

16 Ag 1670 1673 1632 0.00 0.09 0.22
15 Eg 1665 1670 1630 3.88 4.13 4.35
14 Tu 1664 1669 1629
13 Tu 566 506 351
12 Tg 543 503 354 0.00 0.08 0.04
11 Tu 439 444 131
10 Au 427 325 326
9 Ag 314 262 172 1.13 0.25 0.01
8 Tg 410 415 211 1.88 1.22 1.67
7 Tu 378 311 210
6 Tg 286 220 205 0.34 0.76 0.09
5 Eg 249 237 138 0.20 0.02 0.02
4 Eu 213 157 163
3 Tu 155 88 54
2 Tg 122 77 i56 0.02 0.32
1 Tu 96 57 33
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the MgCl2 solution (red curve in Figure 5), the signal of the
Mg-O stretching is clearly apparent; however, its Raman
intensity is significantly underestimated and the width is too
broad. Also, the narrowing of the HOH bending band observed
for the salt solutions (Table 1) is not reproduced. Thus, we see

that, although the CPMD-FT model has the potential to comprise
both geometrical and dynamical factors of the metal-water
interactions, its inherent approximations (Newtonian trajectories
and harmonic potentials) may cause inaccuracies in the simu-
lated spectra.

To investigate a larger part of the potential surface governing
the Mg-H2O interaction at least qualitatively, we calculated
energies of a complex consisting of Mg2+ cation and one water
molecule, as dependent on the metal-oxygen distance (Figure
6). The C2V symmetry was conserved, and all other coordinates
were relaxed. Indeed, the symmetry of the potential is apparently
distorted already for modest deviations from the minimum. Thus,
the partial anharmonic character may account for some of the
inconsistencies in the FT simulation above. When exact adiabatic
one-dimensional wave functions are calculated numerically as
dependent on the r(Mg · · ·OH2) coordinate,54-57 the anharmo-
nicity transfers to the asymmetry of the wave functions (Figure
6). Nevertheless, the vibrational energy levels remain ap-
proximately equidistant, similarly as in the harmonic case, within
2-5 cm-1.

Finally, the Raman spectra of the octahedral hydrated
[Mg(H2O)6]2+ complex were generated by the force field
diagonalization directly from 20 randomly selected CPMD
clusters (subjected to the constrained normal-mode optimization,
see Methods) and averaged. Such an approach corresponds to
the instantaneous mode approximation,26,27 as can be justified
by the predominantly harmonic character of the vibrational
motions (cf. Figure 6). The backscattered Raman spectra for
the H2O and D2O complexes thus obtained are compared to the
experimental spectra in Figure 7. The cluster approach provided
similar spectral shapes as the FT method; however, the Mg-O
signal (at ∼318 cm-1 for H2O) is more distinct and more
evidently corresponds to the experimental one (355 cm-1).
Strictly speaking, the calculated water bands (shoulder at 559
cm-1 and HOH bending peak at 1645 cm-1) should not be
directly compared to experiment which includes also free water
molecules. Nevertheless, we see that also these frequencies and
bandwidths reasonably correspond to the observed ones. The
experimental frequency of the shoulder (605 cm-1) is higher
than the theoretical one, but this is not surprising, as the limited
clusters lack the water hydrogen bond network. More impor-
tantly, the deuteration effects are well reproduced by the
calculation, in particular the red shift of the Mg-O stretching
signal (experimentally at 355 cm-1 in H2O and 338 in D2O,
i.e., a difference of 17 cm-1), calculated as 318-307 ) 11 cm-1.
Thus, the assignment of the band to the Mg-O bond stretching
is ultimately confirmed.

Figure 4. Comparison of the [M(H2O)6] NBO lone pair (LP) and NBO-
LUMO (Mg only) orbitals (B3LYP/6-311++G**/PCM(H2O) calcula-
tion).

TABLE 6: Occupancy of the Metal Nonbonded LUMO and
the Natural Charge (q) in Model Complexes as Obtained by
the NBO Analysis34 of the B3LYP/6-311++G**/PCM Wave
Function

complex occ. q

[Na(H2O)6]+ 0.073 0.927
[Ca(H2O)6]2+ 0.102 1.855
[Mg(H2O)6]2+(vac) 0.172 1.821
[Mg(H2O)6]2+ 0.175 1.819
[Mg(H2O)5Cl]+ 0.201 1.783
[Mg(H2O)4Cl2] 0.222 1.752

Figure 5. Raman spectra of pure water and 5 mol/kg MgCl2 solution
obtained from the CPMD trajectories (∼4 ps) by the Fourier transform
method.

Figure 6. Calculated (MP2/cc-pVTZ) dependence of the relative
energy of the Mg2+ ·H2O complex on the Mg-O distance, the adiabatic
vibrational energy levels, and the corresponding wave functions.
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The cluster models are thus superior to the CPMD-FT
simulations for the lowest-frequency vibrations. The FT method,
nevertheless, can well reproduce the inhomogeneous HOH
bandwidth, or the HOHf DOD bending frequency shift (1620
f 1210 cm-1, experimentally 1647f 1216 cm-1), and the shift
of the lowest-frequency signal (<1000 cm-1, see Figure 4s in
the Supporting Information). To obtain insight also into the
Raman scattering of the hydrated chlorine anions, we simulated
the spectra for 20 clusters of hydrated Cl- obtained by CPMD,
containing four to six water molecules from the first hydration
sphere. The normal mode optimization was not used in this case,
not to affect the CPMD geometry distribution; otherwise, the
same approximation (B3LYP/6-311++G**/PCM) was used as
for Mg2+. In comparison with the magnesium, chlorine anion
causes a high-frequency shift of the HOH bending band (cf.
Figure 5s in the Supporting Information) and an overall Raman
intensity increase but no specific signal in the lowest-frequency
region. Finally, spectra of hexacoordinated Mg2+ clusters with
a varying number of water molecules and chlorine ions (not
shown) and spectra of the large CPMD cluster corresponding
to the 5 mol/kg MgCl2 solution (Figure 6s in the Supporting
Information) were simulated, which are, however, consistent
with the previous simulations. They suggest that the spectral
signal around 355 cm-1 originates in the Mg-O binding, and
survives in distorted or incomplete hydration shells, in particular
when some water molecules are replaced by chlorine.

Conclusions

Among the Raman spectra of concentrated salt solutions, we
identified a strong signal for Mg2+ that could be, in accord with
previous computational studies and experimental data, attributed
to the strong magnesium-water binding. On the basis of the
quantum-chemical computations, we could also determine that
the specific 355 cm-1 peak is not exclusively associated with a
complete octahedral hydration of Mg2+ but stems mostly from
the vibrations of the Mg-O linkage. Partially covalent character
of the bond was confirmed by the natural bond orbital analysis.

Both the static cluster and dynamical models reproduced the
most significant experimental spectral features. The isotopic
shifts observed for the D2O solutions were reproduced by the
computations, and thus, the normal mode assignment could be
verified. Hydrated chlorine anion clusters did not exhibit a
Raman signal interfering with that of the metal. The data
confirmed the large potential of the Raman spectroscopy for
the studies of solution structure and dynamics. In particular,
although the monatomic ions do not vibrate themselves, they
moderate the solvent signal in a specific way that faithfully
reflects their hydration patterns.
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’ INTRODUCTION

Nucleic acids (NAs) perform a multitude of biological func-
tions: DNA stores genetic information, mRNA mediates be-
tween DNA and the final protein, rRNA forms scaffold and
catalytic center for protein synthesis, tRNA fetches amino acids
to a growing polypeptide chain, various interference RNA
molecules fine-tune the translation process by controlling spli-
cing of mRNA, signal recognition particles steer transport of
proteins across membranes. Many aspects of these functions are
directly related to the exact three-dimensional structure. Both
kinetic and thermodynamic stability of the folded NA molecules
essentially depend on counterions balancing out the negative
charge of the phosphodiester backbone. Most RNA folding
pathways depend on the presence of a particular metal cation
and its concentration.1

Metal solvation can be classified as either nonspecific or
specific. A diffuse “cloud” of positively charged ions binds
nonspecifically to a NA molecule to compensate its negative
charge. This interaction is critical for stability of both DNA and
RNA and can be described by phenomenological physical
models.2-5 A useful comparison of methods and approaches

that integrates empirical facts and theoretical concepts has been
reviewed.6

Metals are also known to bind to “specific” sites of DNA and
especially RNA molecules; “specific” in this context means
sufficiently long residence times or occupancies for metals to
be identified by NMR and/or by crystallography. Specifically
bound cations interact directly with NA atoms forming so-called
inner shell complexes, in contrast to nonspecifically bound outer
shell complexes. Specific binding requires at least partial dehy-
dration of the interacting metal cation and NA atoms, typically
highly hydrated phosphates. Energetically costly desolvation of
both the phosphate and the ion causes a large local electrostatic
attraction between the metal and NA to be stabilizing overall
RNA orDNA structure only in such relatively rare cases when the
metal binds to sites of highly negative potential with advanta-
geous stereochemistry.7 Therefore, nonspecific solvation by fully
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ABSTRACT: Dependence of NMR 31P shielding tensor and
2J(P,C) coupling constants on solvation of nucleic acid phos-
phate by Mg2þ and water was studied using methods of
bioinformatic structural analyses of crystallographic data and
DFT B3LYP calculations of NMR parameters. The effect of
solvent dynamics on NMR parameters was calculated using
molecular dynamic. The NMR calculations for representative
solvation patterns determined in crystals of B-DNA and A-RNA
molecules pointed out the crucial importance of local Mg2þ

coordination geometry, including hydration by explicit water
molecules and necessity of dynamical averaging over the solvent reorientation. The dynamically averaged 31P chemical shift
decreased by 2-9.5 ppm upon Mg2þ coordination, the chemical shielding anisotropy increased by 0-20 ppm, and the 2J(P,C50)
coupling magnitude decreased by 0.2-1.8 Hz upon Mg2þ coordination. The calculated decrease of the 31P chemical shift is in
excellent agreement with the 1.5-10 ppm decrease of the phosphorothioate 31P chemical shift upon Cd2þ coordination probed
experimentally in hammerhead ribozyme (Suzumura; et al. J. Am. Chem. Soc. 2002, 124, 8230-8236; Osborne; et al., Biochemistry
2009, 48, 10654-10664). None of the dynamically averaged NMR parameters unequivocally distinguishes the site-specific Mg2þ

coordination to one of the two nonesterified phosphate oxygen atoms of the phosphate determined by bioinformatic analyses. By
comparing the limit cases of static and dynamically averaged solvation, we propose that mobility of the solvent has a dramatic impact
on NMR parameters of nucleic acid phosphate and must be taken into account for their accurate modeling.
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hydrated metal cations is a thermodynamically generally pre-
ferred mode of binding.

Invaluable data about solvation of biomolecules are obtained
from thermodynamic measurements. Various thermodynamic
and volumetric properties of monovalent metals have been
studied in the process of formation and melting of double helical
RNA and DNA.8

Structural aspects of the first solvation shell have been studied
in great detail in crystal structures of DNA double helical forms
for bases9 as well as for phosphates.10,11 These studies clearly
demonstrated that the first solvation shell is localized into well-
defined sites that are specific for DNA form and sequence. For a
long time structural data on RNA were scarce but hydration of
the double helical A-RNA has been analyzed.12 Recently, hydra-
tion of various base pairs in RNA can be visualized online using a
web service SwS.13 An interesting aspect of NA solvation, anion
binding, has been studied by analysis of crystal structures and by
MD simulations14 that have been critically reviewed.15

Specific, or “site” binding (albeit less frequent) is important for
its role in folding, stability, and also catalytic activity of NAs.
Either type can bind to phosphates or to bases. In the case of
RNA, bases bind metals, mostly Mg2þ, in the deep and narrow
major groove of the double helical regions that has highly
negative potential. One of such major groove motifs is for
instance a pocket of deep negative electrostatic energy formed
by the G-U tandems.16 Also a dinucleotidemotif, originally called
adenosine platform17 (that is not limited to adenines), binds
dehydrated Kþ.

Effects of metal ions on 31P NMR shielding tensor of NA
phosphate can be detected by NMR spectroscopy.18-21 Differ-
ent coordination sites in NAs have different affinity for metal ions
and bind them with different residence times; an Mg2þ ion
coordinated to a solvent exposed NA phosphate group cannot be
expected to have as long residence time as the same ion trapped,
for example, between two phosphates in the deep pocket of
folded RNA. The structural flexibility of NAs also affects values of
NMR parameters that respond to interactions with a metal ion.
Therefore, the NMR detection of a metal ion coordinated to
structurally rigid NA is likely to provide more structural details
than that for highly flexible NA. For example, NMR shifts of the
inner ring atoms in nucleobase measured for increasing concen-
trations of Cd2þ ion in hammerhead ribozyme22 can be inter-
preted safely as the effect of direct coordination of Cd2þ to N7
nitrogen of guanine.23 In contrast, structural assignments of
NMR parameters at direct neighborhood of the phosphorus
atom of the phosphodiester link pose a special challenge because
phosphate groups represent structurally the most variable seg-
ment of NAs.24-29 In addition, NMR parameters of NA back-
bone are difficult to interpret in structural terms because different
backbone conformations can result in similar values of NMR
parameters.30-33 What causes further ambiguity of structural
interpretation of metal coordination to the flexible phosphate
group is a small range of the 31P NMR shift in NAs ∼ 1-8
ppm30,34-36 and the fact that the chemical shift changes due to
backbone variation and metal coordination are likely to fall to the
same interval.

For most common physical methods such as X-ray crystal-
lography, NMR spectroscopy, UV/vis, IR, or Raman spectro-
scopies localization of alkali and alkali earth metals in NAs is a
complicated task. NMRmeasurements probing inner-shell metal
ion coordination to the NA phosphate are exceptional. One of
the prominent examples is metal binding in the hammerhead

ribozyme.37 The so-called “Cd2þ rescue”38 experiments unveiled
the decrease of 31P NMR shift by 1.5-10 ppm due to coordina-
tion of Cd2þ metal ion to the phosphorothioate.39-41 The
decrease of 31P shift by 0.3 ppm upon addition of Mg2þ was
measured in the native phosphate group of minimal metal-
binding motif of hammerhead ribozyme.42 We think that im-
provement of metal-ion detection techniques is desirable. That is
why we initiated this theoretical work focused on calculation of
31P NMR shielding tensor and indirect 2J(P,C) coupling con-
stants in NA backbone and their dependence on solvation by
Mg2þ ion.

’METHODS

This work consisted of three parts. First, we developed
representative molecular models of NA phosphate solvation
using bioinformatic analysis of NA crystals. Obtained models
were then used for DFT calculations of NMR parameters.
Finally, we calculated the effect of solvent reorientation by
averaging the NMR parameters using molecular dynamics
(MD).
Molecular Models. The phosphate group of NA backbone

was modeled as a dinucleotide monophosphate with both bases
replaced bymethyl groups (Figure 1a). The “abasic dinucleotide”
(sPs) was built in two conformations (Table 1) reflecting the
“canonical” BI- and AI-forms of NA architecture described by
seven backbone torsion angles (torsion values from Table 3
of Svozil et al.27 were used). We note that the BI and AI
patterns differ only slightly and particularly the ζ and R torsions
adopt the same g-,g-conformation (Table 1). Two prochiral
(nonesterified) phosphate oxygen atoms were distinguished
by indexes OP1 and OP2 in accordance with the IUPAC

Figure 1. (a) Reference hydration model of NA phosphate B-6w with
six water molecules as observed in B-DNA in crystals.10 (b) B-Mg1-10w
model of NA phosphate solvated by Mg-5w coordinated to the OP1
oxygen containing ten water molecules. (c) B-Mg1-9w model of NA
phosphate solvated by Mg-5w coordinated to the OP1 oxygen contain-
ing nine water molecules. (d) B-Mg2-9w model of NA phosphate
solvated by Mg-5w coordinated to the OP2 oxygen containing nine
water molecules.
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nomenclature (in the B-form the C50-O50-P-OP1 torsion
angle is ∼55� and the C50-O50-P-OP2 one is ∼185�).
Three hydration models were built: one for the B-form and

two for the A-form. The former conformer was used as a
reference model of hydration because the geometry of the first
hydration shell in B-DNA is well described.10 This reference
model, denoted hereafter B-6w (Figure 1a), consisted of the sPs
molecule in the BI conformation and six water molecules with
their oxygens in positions determined previously by the analysis
of B-DNA crystal structures.10 The resulting complex was
optimized (see below) with backbone torsions fixed to values
presented in Table 1 and with spatial arrangement of the six
waters constrained by fixing pseudotorsion angles Ow-OP1-
P-OP2 and Ow-OP2-P-OP1 to the values from the bioin-
formaticmodel;10 Ow is oxygen of thewth watermolecule (w = 1,
2, ..., 6) coordinating OP1 or OP2 (Figure 1a). All remaining
coordinates in the water-coordinated sPs were freely optimized.
All geometries in this studywere obtained similarly, by neglecting
small geometry fluctuations of solvent molecules in late cycles of
energy minimization, because the default criteria of energy
minimum convergence could not be fulfilled exactly in all
hydrated and solvated sPs complexes. The negligible energy
and geometry fluctuations of a particular model observed toward
the end of the optimization ensure that the relaxed geometries
provide representative structures for NMR calculations.
The two remaining hydration models were based on the

A-form and hydrated according to the bioinformatic analysis of
water positions in crystals of RNA. The protocol for obtaining
averaged water and Mg2þ positions was the same as in our
previous works, e.g., ref 9. The actual statistics for the RNA
ensemble were as follows: 53 RNA crystal structures containing
over 7700 nucleotides were analyzed; about two-thirds of them
were classified as A-RNA. Out of 16 000 water molecules in these
structures 13 000 were found within 3.2 Å from any nucleotide
atom. Corresponding numbers for Mg2þ cations were orders of
magnitude lower; of all 511, a total of 365 were located in the
neighborhood of an A-RNA nucleotide. Individual nucleotides
adopting the A-form were then overlapped including the crystal-
lographic waters andmagnesium ions that were found near them.
In the last step, water and Mg2þ positions were averaged by the
method of Fourier averaging.9,43

Resulting hydration sites around the A-RNA phosphate had
spatial a arrangement similar to that in B-DNA,10 but there were
quantitative differences in their relative positions and impor-
tance. While hydration in B-DNA was formed by two “cones of
hydration”with each cone consisting of three sites, one hydration
site in A-RNA had a very low density and the presence of water at

this site is questionable. Therefore, we built two models of
A-RNA hydration, one with five and one with six water molecules
around the sPs phosphate. A model further denoted A-5w
contained five water molecules in their statistically determined
positions. To form a A-6w model, the sixth water was added to
A-5w at the position of crystallographically rather weak phos-
phate hydration site.
Optimization of geometries of RNA models A-5w and A-6w

was done in a slightly different fashion compared to that of
B-DNA model B-6w. We allowed full relaxation of water
molecules coordinated to the phosphate and kept only the
backbone torsions fixed to A-RNA values (Table 1).
Phosphate solvation models including the inner-sphere co-

ordinated Mg2þ ion were built for both B-DNA and A-RNA
forms. Geometry arrangement of Mg2þ ions present in RNA
crystals is similar to that observed around organic phosphates:11

there are two populated Mg2þ sites each lying symmetrically at
1.9 Å from OP1 and OP2, respectively, near the OP1-P-OP2
plane. The distance between the two sites is about 5 Å but it is
unlikely that both the sites can be occupied by Mg2þ ion at the
same time. Structural similarity between Mg2þ sites in a general
diesterified organic phosphate with charge -111 and in A-RNA
nucleotides suggests that mutual spatial arrangement between
the phosphate and Mg2þ ion is a robust local property that
depends marginally on the broader neighborhood of the
complex.
Initial geometries of B-DNA models with Mg2þ ion were

assembled by replacing the water molecule in the B-6w hydration
shell nearest to the position observed for the Mg2þ ion with the
preoptimized complex of penta-hydrated Mg2þ (Mg-5w), as
illustrated in Figure 1b. In the next step, another water molecule
coordinated to the other prochiral phosphate oxygen was
removed and replaced by one water molecule from Mg-5w by
rotating Mg-5w around the OP1/2-Mg axis; the optimized
complexes are shown in Figure 1c,d. Initial geometries of
Mg2þ complexes in A-RNA conformation were constructed in
a slightly different fashion. Water molecules coordinated to one
of the two prochiral phosphate oxygens were removed from the
A-5w geometry and were replaced with the Mg-5w complex so
that the magnesium atom would coincide with the maximum of
Mg2þ statistical crystallographic distribution.
The sPs phosphate was therefore solvated by one Mg2þ ion

and five (models B-Mg1-10w and B-Mg2-10w), four (models
B-Mg1-9w and B-Mg2-9w), or three (A-Mg1-8w and A-Mg2-
8w) water molecules in the first solvation shell. In all these cases
the first solvation shell of the ion was saturated completely.
During geometry optimizations of sPs complexes with Mg2þ ion
only the backbone torsions were constrained to achieve systema-
tic comparison of the calculated NMR parameters; other geo-
metry parameters were freely relaxed.
DFT Computational Details. DFT calculations were per-

formed using the B3LYP functional44 as implemented in Gauss-
ian 03, revision C02 program.45 A standard 6-31þG(d) basis
set46-49 was used in all geometry optimizations. GIAO calcula-
tions of 31P NMR shielding tensor50 and indirect 2J(31P,13C)
scalar coupling constants51-53 were carried out with the IGLO-
III54 or cc-pCVTZ55-58 atomic basis set for H, C, O, and P atoms
and the Ahlrichs VTZ59 or cc-pCVTZ basis set for Mg atom. In
the following we skip the isotope indexing for 2J(P,C) couplings.
All geometry optimizations and NMR calculations (if not
specified otherwise) were done with the implicit polarizable
continuum model (PCM) of water solvent.60 The chemical

Table 1. Geometry Constraints Imposed on the sPsMolecule

torsion anglea B-DNA A-RNA

δ0 129 81

ε0 184 212

ζ0 265 288

R1 303 295

β1 176 174

γ1 48 53

δ1 129 81
a In degrees. The torsion angles are sorted according to their occurrence
in the sPs molecule from the 50-terminus. The residue number is
included in the torsion angle label.
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shielding anisotropy (CSA, Δσ) was defined in the usual way:

Δσ ¼ σ33 -
σ11 þ σ22

2

� �

where σnn are the σ-tensor principal values defined such that σ11
< σ22 < σ33.
To test the quality of different atomic basis sets, we ran NMR

calculations for the ethyl methyl phosphate molecule (ePm)
optimized on the same level as all complexes in this study.
The convergence test included the use of IGLO-II/III,54

Dunning’s cc-pVnZ55,56 (n = D, T, Q, 5), (aug-)cc-
pCVnZ55-58,61 (n = D, T, Q), Jensen’s (aug-)pcJ-n62-64 (n =
0-3), and Pople’s 6-31þG(d)46-49 and 6-311þþG(d,p)49,65,66

basis sets. All the basis sets were downloaded from the EMSL
Basis Set Exchange web portal.67,68 A possibility to save compu-
ter time in NMR calculations by applying locally dense basis
sets69 was also tested.
The effect of atomic basis set on NMR parameters of the

phosphate groupwas summarized in Figure 2. The cc-pVnZ basis
without the tight-core functions converged very slowly with the
number of atomic basis functions; inclusion of these functions in
the cc-pCVnZ basis dramatically improved the convergence. The
cc-pCVTZ calculations got very close to the basis set limit with
the computations being still affordable. Keeping the tight core
basis functions in the cc-pCVnZ basis only for the phosphorus
and all carbon atoms in the ePm molecule (the cc-pxVnZ
calculations) actually resulted in the same trends as with the
complete cc-pCVnZ basis but with slightly lower computational
demands. Addition of diffuse functions on all atoms (the aug-cc-
pxVnZ calculations) improved the cc-pxVnZ results even further
at somewhat higher computational cost. The popular NMR basis
sets IGLO-II/III performed rather well and IGLO-III represents
a reasonable choice for bigger systems. Surprisingly, Jensen’s
basis sets pcJ-n and aug-pcJ-n designed specifically for J-coupling
NMR calculations converged slower than some other general-
purpose basis sets. The reason for that might be that our
optimization of the pcJ-n and aug-pcJ-n basis sets was based on
calculations of one-bond scalar couplings in selected molecules63

with a bonding situation different from that in NA phosphate.
Very good results for all monitored NMR parameters were
obtained with rather small 6-311þþG(d,p) basis set of triple-ζ
quality. The cost-effectivness of this basis encouraged us in using
it further in dynamical averaging of NMR parameters.
Dynamical Solvent Averaging.NMR parameters of polar or

charged groups are known to be significantly influenced by
molecular environment,70,71 and dynamical averaging over the
solvent reorientation is, therefore, necessary for their reliable
calculation. Consequently, static picture was complemented by
calculation of dynamical motion of the solvent with MDmethod.
GpU dinucleotide monophosphate with A-RNA backbone con-
formation (Table 1) was arbitrarily selected as a model system.
Three phosphate solvation patterns were considered: direct

coordination of pentahydrated Mg2þ ion (Mg-5w) to the OP1
oxygen further denoted “mg1”, coordination of Mg-5w to the
OP2 oxygen denoted “mg2”, and the hydrated phosphate
denoted “nomg”. Each starting structure was embedded in an
orthogonal box of water molecules (for details, see Supporting
Information). The MD simulations were performed using stan-
dard Amber 99 force field72 with parmbsc073 refinement for NAs
as implemented in the Amber 10 program package.74 The MD
protocol consisted of initial solvent minimization, full system
minimization, solvent heating to 300 K, NPT equilibration (300
K, 1 atm), and 2 nsNPT production run (300 K, 1 atm). Further
details are given in the Supporting Information.
The NMR parameters depend both on the solvent orienta-

tion/coordination and on the adjacent torsion angles of the
phosphate.30-32,75 To calculate separately, the exclusive effect of
the solvent positions of backbone atoms were restrained to
A-RNA geometry using a 500 kcal mol-1 Å-2 Cartesian force
constant (Supporting Information).
Snapshots were taken every 50 ps from the three MD

trajectories (mg1, mg2, nomg) resulting in 3 � 41 MD geome-
tries in total. In the subsequent NMR calculations only the
nearest layers of the solvent surrounding the phosphate group
were preserved, i.e., only those water molecules with oxygen
atoms appearing within the defined sphere of radius r around the
phosphorus atom. Furthermore, the G and U bases of GpU
molecule were replaced by hydrogen atoms at the C10 carbon.
Validity of this approach was tested previously for all backbone J-
couplings in an ApU dinucleotide;75 the effect of removing NA
bases on nJ(P,X) coupling constants calculated with inclusion of
PCM hydration was smaller than 0.3 Hz.
Convergence of NMR parameters with the thickness of the

solvent shell around the phosphate was carefully tested for r = 0,
4.5, 5.5, 6.5, 7.5, and 8.5 Å (Figure 3). The resulting set of MD
geometries was directly, i.e., without any geometry relaxation,
subjected to NMR calculation including implicit PCM hydration
on top of explicit solvent layer (the level of theory is described
below). The contributions to NMR parameters due to extension
of explicit hydration by including individual solvent layes in
Figure 3 are de facto equal to errors that one would make by
substituting explicit hydration with implicit PCM solvent.
Water molecules inside the sphere with r = 4.5 Å covered the

first hydration shell of the phosphate. Because its effect is
apparently large, this level of explicit hydration must be included
in the NMR calculations. Higher layers of explicit solvent with r >
4.5 Å had only a minor effect on the NMR parameters. We
anticipate that after averaging over MD snapshots (Figure 3) the
overall effect of explicit treatment of higher solvent layers can be
sufficiently modeled with PCM.

Figure 2. Basis set convergence analysis for NMR isotropic shielding σi
(in ppm) and the Fermi-contact contribution of 2J(P,C50) coupling (in
Hz) calculated using the B3LYP functional in ethyl methyl phosphate
with cc-pVnZ (red circles; n = D, T, Q, 5), cc-pCVnZ (blue triangles
pointing up; n = D, T, Q), cc-pxVnZ (light green triangles pointing
down; n =D, T,Q), aug-cc-pxVnZ (pink triangles pointing left; n =D, T,
Q), IGLO-n (black squares; n = II, III), pcJ-n (tan triangles pointing
right; n = 0, 1, 2, 3), aug-pcJ-n (cyan diamonds; n = 0, 1, 2), and Pople’s
6-31þG(d) and 6-311þþG(d,p) basis sets (yellow squares).
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The results encouraged us to use a rather economic solvent
model in dynamical averaging of NMR parameters. The solvent
sphere with r = 5.5 Å covered the first hydration shell of both the
phosphate and coordinated Mg2þ ion. This solvation model
including PCM hydration was used in the B3LYP NMR calcula-
tions for the 3� 41MD snapshot geometries. The 6-311þþG**
basis set was used for the atoms of solute, 6-31þG* for the Mg2þ

ion, and 6-31G for the water molecules. All DFT calculations in
MDpart of this work were carried out using Gaussian 09, revision
A02.76

Optimal MD geometry of NA backbone could differ from that
obtained with DFT methods due to inherent difference between
classical force-field potential and quantum-mechanical energy
surface. Even a small difference in geometry could then result in a
substantial variation of calculated NMR parameters. We, there-
fore, calculated NMR parameters for both the unrelaxed MD
snapshot geometries and the MD geometries with partially DFT
optimized NA backbone (Supporting Information).

’RESULTS AND DISCUSSION

Effect of Hydration on NMR Parameters, the Static Model.
The calculations included various combinations of explicit and
implicit PCM hydration of the sPs molecule in B-DNA and
A-RNA conformations. Models starting with “B-” in Table 2
show pure electronic effect of different theoretical hydration
models on NMR parameters since geometry of the sPs molecule
in all models was identical with that optimized with explicit
hydration (Figure 1a) and PCM. The explicit hydration in A-5w
and A-6w models was optimized by unconstrained relaxation
(Methods).
The isotropic chemical shielding σi(

31P) of hydrated com-
plexes was referenced to the value σi

ref = 294.3 ppm calculated for
the B-6w model including PCM. The isotropic chemical shifts
δi(

31P) reported in Table 2 were thus calculated as δi = σi
ref- σi.

The δi(
31P) calculated with both explicit and implicit PCM

hydration ranged from-0.5 toþ1.6 ppm; values calculated with
explicit hydration only ranged from-1.7 to-1.3 ppm (Table 2).
Surprisingly, the gas-phase value of-1.3 ppm was in the explicit-
hydration-only interval. The PCM-only value þ2.7 ppm was
more than 1 ppm off from any other hydration model (Table 2),
which points to the necessity of explicit treatment of phosphate-
water interactions that are omitted in the PCM-only model.
In contrast to δi(

31P), the chemical shielding anisotropy
Δσ(31P) depended systematically and more significantly on
the level of hydration. The calculated Δσ(31P) ranged from

Figure 3. Contributions of individual solvent layers to isotropic 31P NMR shielding (σi; in ppm), 31P shielding anisotropy (Δσ; in ppm) and the two
2J(P,C) spin-spin coupling constants (in Hz) evaluated for five selected MD snapshot geometries (depicted with different colors), calculated as a
difference between the values for rmax and rmin.

Table 2. NMR Parametersa Calculated with B3LYP/IGLO-
III Method in the sPs Molecule with Different Models of
Hydration

complexb δi(
31P) Δσ(31P) 2J(P,C30) 2J(P,C50)

B -1.3 243 -9.2 -8.6

B-PCM 2.7 189 -8.2 -8.2

B-6w -1.3 158 -8.1 -7.8

B-6w-PCM 0.0 143 -8.1 -8.2

B-OP1-3w -1.7 207 -7.3 -8.8

B-OP1-3w-PCM 1.3 170 -7.8 -8.4

B-OP2-3w -1.4 215 -9.6 -7.2

B-OP2-3w-PCM 1.6 172 -8.5 -7.9

A-5w-PCM -0.5 154 -7.3 -7.1

A-6w-PCM 1.5 144 -6.1 -7.0
aThe isotropic chemical shift δi in ppm (referenced to the B-6w-PCM
isotropic shielding σi

ref = 294.3 ppm), the chemical shielding anisotropy
Δσ in ppm, and the indirect spin-spin coupling 2J(P,X), X = C30, C50 in
Hz. bCharacterization of the models: B: sPs molecule in B-DNA
conformation in the gas phase; B-PCM: B immersed in PCM model
of water solvent; B-6w: explicit hydration of B-DNA from crystal data;
B-OP1-3w: explicit hydration of the OP1 oxygen only; B-OP2-3w:
explicit hydration of the OP2 oxygen only; A-5/6w-PCM: explicit
hydration of A-RNA with five and six water molecules respectively
immersed in PCM.
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143 to 154 ppm for full explicit hydration with PCM, from 170 to
172 ppm for site-specific explicit hydration with PCM, and from
207 to 215 ppm for site-specific hydration without PCM. The
explicit-hydration-only value was 158 ppm, the PCM-only value
rose to 189 ppm, and the gas-phase value was 243 ppm. The large
span of the calculated Δσ(31P) values contrasts with a modest
range calculated for chemical shifts δi(

31P). This could be
attributed to the changes in 31P shielding tensor induced by
the solvent environment, which were mutually compensated in
the case of δi(

31P), whereas the same changes led to a large
variation of Δσ(31P). A similar effect occurring upon variations
of both phosphate conformation and hydration was observed
earlier by P�rececht�elov�a et al.30 We, therefore, propose that the
notable Δσ(31P) sensitivity is a general property of the phos-
phate 31P chemical shielding tensor exploitable in experimental
31P NMR.
Calculated scalar spin-spin coupling constants 2J(P,C30) and

2J(P,C50) ranged from-9.6 to-6.1 Hz and from-8.8 to-7.0
Hz, respectively. The gradual extension of the phosphate hydra-
tion was accompanied by decrease of both J-coupling magni-
tudes. We noted a selective increase of the difference between
2J(P,C30) and 2J(P,C50) couplings when only one of the two
prochiral oxygens (OP1 orOP2) was explicitly hydrated (models
B-OP1/2-3w in Table 2). The lack of hydration when one of
these oxygens was sterically blocked by the folded part of the NA
molecule or by another molecule, such as an interacting protein,
could, thus, be in principle detectable with NMR.
Variations ofδi(

31P) (2.0 ppm),Δσ(31P) (11ppm), and 2J(P,C)
(2.0 Hz) calculated with the three rather equivalent explicit
hydration models (B-6w, A-5w, A-6w, all including PCM,
Table 2) are not negligible. We anticipate that only a relevant
dynamic model of the phosphate hydration could provide more
realistic values of the NMR parameters. Nevertheless, calcula-
tions utilizing static models of hydration derived from crystals
provided useful trends for NMRparameters in representative NA
phosphate geometries.
Explicit hydration of the phosphate group cannot be readily

modeled by PCM, as seen for the δi(
31P) calculations in B-PCM,

B-6w, and B-6w-PCM models (Table 2). Additionally, the effect
of PCM hydration surrounding the explicit phosphate first
hydration shell was not negligible. The two 2J(P,C) spin-spin
couplings were much less sensitive to the particular level of
hydration than δi(

31P).
NA Phosphate Solvated by Mg2þ Ion. Coordination of Mg-

5w complex to sPs phosphate induced geometry changes that
were specific for the A- and B-forms (Supporting Information).
In both forms, the P-O30 and P-O50 bonds shrank and the P-
OPn bond adjacent to the Mg-5w complex lengthened upon the
ion coordination.
Coordination ofMg-5w in the B-form was slightly hindered by

two water molecules coordinated at the same OPn that were
absent in the A-form. This small solvation pattern difference
resulted in a significantly larger Mg-OPn distance and much
smaller Mg-OPn-P valence angle in the B-form. The observed
phosphate geometry variations were reflected in the Mulliken
atomic charges (Supporting Information) and mainly in the
response of NMR parameters to the Mg-5w coordination that
was qualitatively different in the two forms.
In this section, we aimed to obtain NMR parameters close to

the basis set limit. On the basis of our atomic basis set
convergence check, we used the cc-pCVTZ basis set as an
accurate yet affordable alternative.

The chemical shifts δi(
31P) in Table 3 were referenced to the

B-6w isotropic shielding σi
ref = 285.8 ppm in analogy with the

previous section. The three hydrated models provided values
dispersed similarly (0-1.9 ppm) to the results with IGLO-III
basis set in Table 2. The δi(

31P) calculated for the ion coordina-
tion toOP1 (-1.9,þ1.5,-4.0 ppm) and toOP2 (-0.9,þ1.7,-
5.6 ppm) in the three subclasses of complexes solvated byMg-5w
(-10w, -9w, -8w) indicated that the ion coordination effect on
δi(

31P) also reflected the phosphate solvation pattern and back-
bone conformation, as discussed above.
The principal components δnn (nn = 11, 22, 33) of the 31P

chemical shift tensor, δnn = σi
ref - σnn, responded sensitively to

ion proximity and local arrangement of solvent molecules
(Figure 4, Supporting Information). Upon Mg-5w coordination,
all the δnn changed toward the isotropic value δi(

31P) (Figure 4),
which was consistent with our previous analysis implying mutual
compensation of the molecular environment induced changes in
31P shielding tensor principal components. Δσ(31P) necessarily
decreased with increased isotropy of the chemical shielding
tensor upon Mg-5w coordination (Table 3). Orientations of all
the δnn components with respect to the phosphate-frame co-
ordinate system77 changed upon Mg-5w coordination by 8� at
the most (Table 3).

Table 3. NMR Parametersa Calculated with the B3LYP/cc-
pCVTZ Method Including PCM in the sPs Complexes with
Mg-5w

complexb δi(
31P) Δσ(31P) 2J(P,C30) 2J(P,C50) θ11 θ22 θ33

B-6w 0.0 148 -7.3 -7.4 3.8 3.3 1.8

B-Mg1-9w 1.5 109 -7.0 -9.1 5.7 8.8 8.0

B-Mg2-9w 1.7 107 -9.1 -7.9 3.4 5.8 6.4

B-Mg1-10w -1.9 113 -7.4 -9.1 6.9 11.4 10.1

B-Mg2-10w -0.9 110 -10.1 -7.8 3.7 8.0 7.9

A-5w 0.3 159 -6.6 -6.4 2.5 4.9 4.3

A-6w 1.9 148 -5.4 -6.3 2.6 3.3 2.1

A-Mg1-8w -4.0 126 -5.4 -6.6 1.3 1.4 0.5

A-Mg2-8w -5.6 121 -6.1 -5.7 3.5 3.5 1.6
aThe isotropic chemical shift δi in ppm (referenced to B-6w isotropic
shielding σi

ref = 285.8 ppm), the chemical shielding anisotropy Δσ in
ppm, the indirect spin-spin coupling 2J(P,X), X = C30, C50 in Hz, and
the θnn angles between the σnn principal shielding tensor components
(σ11 < σ22 < σ33) and the respective z-, x-, y-coordinates in the
phosphate-frame coordinate system77 in degrees. bThe complexes are
specified in the Methods.

Figure 4. Isotropic values δi (yellow) and principal components δ11
(red) > δ22 (green) > δ33 (blue) of the 31P chemical shift tensor
calculated with the B3LYP/cc-pCVTZ method including PCM in
hydrated and solvated sPs complexes referenced to isotropic chemical
shielding σi

ref = 285.8 ppm in B-6w complex (δnn = σi
ref - σnn).
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2J(P,C30) and 2J(P,C50) spin-spin couplings calculated for
B-form models depended site-specifically on the ion coordina-
tion. The 2J(P,C50) coupling magnitude increased by 1.7 Hz in
the B-Mg1-10w/-9w complexes relative to the B-6w value, while
the simultaneous change of 2J(P,C30) coupling was smaller than
0.4 Hz (Table 3). Similarly, 2J(P,C30) coupling increased by 2.8
and 1.8 Hz for the ion coordination to OP2 (the B-Mg2-10w/-9w
complexes, respectively), while, at the same time, the calculated
variation of 2J(P,C50) coupling was smaller than 0.6 Hz. The
static NMR calculations in the B-form, therefore, suggested that
site-specific coordination of the ion in phosphates could in
principle be probed by the two 2J(P,C) couplings. However,
the 2J(P,C) spin-spin couplings calculated in the A-Mgn-8w (n
= 1, 2) complexes failed to display the site-specificity observed for
the B-form.
Variations in the phosphate geometry and, especially, the

solvation pattern altered significantly the interpretation of the
static NMR calculations. Thus, dynamical modeling of the
phosphate solvation was the next logical step.
Effect of Solvent Dynamics on NMR Parameters. We

repeatedly observed in NMR calculations utilizing the solvation
patterns from crystals that theNMRparameters depended on the
local solvent geometry. In the dynamical regime, solvent fluctua-
tions around solute induce variations of NMR parameters.
Magnitude of the NMR response to the solvent reorientation
increases locally at highly polar or charged groups of solute and
with the increase of solvent polarity. The fluctuations of solvent
molecules are typically several orders of magnitude faster than
the time-scale distinguishable in NMR experiment. Therefore, an
experimentally determined NMR parameter is typically a time
average over all solvent configurations and fast-enough solute
conformation changes. In this sense, static calculations of NMR
parameters could have provided misleading trends despite the

fact that they were determined for representative molecular
structures.
The effect of solvent reorientation on NMR parameters was

calculated for the sPs molecule in the A-form and the mg1, mg2,
and nomg solvation model (Methods). We checked the geome-
try of the phosphate in the three MD runs (Supporting In-
formation) and verified that the sPs conformation remained
conserved during the simulations. As a result, only the solvent
dynamics was reflected in subsequent DFT calculations of NMR
parameters. We emphasize that in mg1 and mg2 simulations the
ion remained coordinated at the same position throughout the
whole MD run (as documented by Mg-OPn distance and Mg-
OPn-P valence angles, n = 1, 2, Supporting Information). The
agreement of the position and its stability with the crystal-
lographically determined Mg2þ distribution around the phos-
phate verified the validity of the MD simulations.
The NMR parameters were calculated for unrelaxed

(Figure 5) and partially optimized (Figure 6) MD snapshot
geometries. The ensembles of NMR data were statistically
characterized in Table 4. The arithmetic mean (μ) of the N-
point data set (N = 41) provided a reasonable estimate of
experimentally probed long-time average. The mean values were
determined with the accuracy given by a standard deviation of the
mean sM = [(Σ(xk - μ)2/(N(N - 1)))]1/2. The long-time
average should lie within the μ ( 3sM interval with 99.7%
confidence provided that the data distribution is normal. The
phosphate solvated by Mg2þ could, thus, be distinguished from
the hydrated phosphate with one of the NMR parameters when
the two corresponding confidence intervals (μ ( 3sM) do not
overlap. The OP1 and OP2 coordination sites of Mg2þ ion could
in principle be distinguished by the same statistical criterion.
The NMR data for unrelaxed MD snapshot geometries

(Table 4) indicated that the phosphate solvation by Mg2þ is

Figure 5. Statistical representation of σi and Δσ (in ppm) and 2J(P,C) (in Hz) calculated for unrelaxed snapshot geometries taken along nomg, mg1,
and mg2 MD runs (Methods). Parameters of the Gaussian functions, added for better clarity, were mean and standard deviation of the respective
statistical distribution.
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observable through statistically significant decrease of 2J(P,C30)
spin-spin coupling magnitude. Similarly, the coordination of
Mg2þ to OP1was manifested by increase of σi(

31P), i.e., decrease

of the 31P chemical shift. The results for the chemical shielding
anisotropy Δσ(31P) and 2J(P,C50) spin-spin coupling were
statistically inconclusive.
Partial DFT optimization of the MD snapshot geometries

brought the phosphate geometries in all three models much
closer to fully optimized structures in the A-form (Supporting
Information). The largest change of NMR parameters due to
the phosphate geometry relaxation was a decrease of σi(

31P)
by about 20 ppm (Table 4). The mean values of σi(

31P) in-
creased upon the ion coordination by 5-6 ppm (Table 4), which
was consistent with static calculations for the A-form structures
(Table 3). Importantly, the sM values decreased con-
siderably after geometry relaxation, which enabled us to
conclude that a phosphate coordinated by Mg2þ to either OP1
or OP2 should be distinguishable experimentally from the
hydrated-only phosphate by a significant decrease of the 31P
chemical shift.
The Δσ(31P) mean values with relaxed phosphate geometry

indicated an increase of chemical shielding anisotropy upon
Mg2þ coordination, which was actually the opposite trend to
that calculated for static models (Table 3). However, the
statistical distributions of all three solvation patterns (Figure 6)
were sufficiently wide to encompass the respective static values
thus explaining the apparent discerpancy.
Analysis of the calculated σ(31P) tensor unveiled an

increase of the largest σ33 principal component by about 13-
16 ppm upon Mg2þ coordination (Supporting Information),
which readily explained the Mg2þ-induced increase of σi(

31P).
Interestingly, response of the two remaining components and the
three tensor orientations θnn to Mg2þ coordination was
negligible.
After the phosphate geometry relaxation, 2J(P,C50) spin-spin

coupling dereased upon Mg2þ coordination while 2J(P,C30)
remained almost the same. Both couplings failed to respond
site-specifically to the ion coordination.

Figure 6. Statistical representation of σi andΔσ (in ppm) and 2J(P,C) (inHz) calculated for partially optimized snapshot geometries taken along nomg,
mg1, and mg2 MD runs (Methods). Parameters of the Gaussian functions, added for better clarity, were mean and standard deviation of the respective
statistical distribution.

Table 4. Statistical Parameters of Calculated NMR Data
Distributions

unrelaxed MD

geometries

DFT optimized MD

geometries

NMR parametera/

MD run μb 3sM
c μb 3sM

c

σi(
31P)

nomg 318.0 3.4 297.5 1.6

mg1 325.1 2.4 303.3 2.0

mg2 321.5 2.4 302.6 1.4

Δσ(31P)

nomg 133.9 6.1 126.5 6.2

mg1 130.8 5.7 137.0 5.6

mg2 137.7 6.7 142.5 5.5

2J(P,C30)

nomg -6.66 0.37 -6.95 0.38

mg1 -5.28 0.33 -6.56 0.37

mg2 -5.81 0.46 -6.52 0.25

2J(P,C50)

nomg -5.74 0.43 -6.83 0.38

mg1 -5.45 0.61 -5.73 0.32

mg2 -5.66 0.53 -5.91 0.34
aThe isotropic shielding σi(

31P) in ppm, the chemical shielding
anisotropy Δσ(31P) in ppm, and the indirect spin-spin coupling
2J(P,X), X = C30, C50 in Hz. bArithmetic mean. cThree times the
standard deviation of the mean sM = [(Σ(xk - μ)2/(N(N - 1)))]1/2.
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’CONCLUSIONS

This study focused on theoretical calculation of 31P shielding
tensor and 2J(P,C) coupling constants in dependence on solva-
tion of nucleic acid phosphate by Mg2þ ion. The following
conclusions can be drawn on the basis of (i) NMR calculations
for solvation patterns determined with bioinformatic analysis of
B-DNA and A-RNA molecules in crystals and (ii) NMR calcula-
tions including dynamically averaged reorientation of solvent
with molecular dynamics.

The bioinformatic analysis unveiled two coordination
sites of the phosphate with Mg2þ lying symmetrically at the
distance of 1.9 Å from the two nonesterified phosphate
oxygen atoms. However, only one of the two sites can be
exclusively populated, which gives rise to site-specific coordina-
tion of the Mg2þ ion.

NMR calculations for the distinguished solvent patterns found
in B-DNA and A-RNA molecules, here called “the static calcula-
tions”, provided important insight into the NMR parameters
dependence on solvent variation because backbone conforma-
tions were practically the same, while local coordination of
solvent molecules differed. In the static calculations for B-DNA
solvation 31P isotropic shifts varied unspecifically, 31P anisotro-
pies decreased by 35-40 ppm and 2J(P,C30) and 2J(P,C50)
coupling magnitudes increased site-specifically upon Mg2þ co-
ordination. For the ion coordination found in A-RNA the
calculated 31P isotropic shifts decreased by more than 4 ppm,
31P anisotropies decreased by 20-40 ppm, and 2J(P,C30) and
2J(P,C50) couplings varied only slightly and nonspecifically. To
conclude, the NMR parameters obtained for the static model
depended more on particular coordination of solvent than on
whether the phosphate was only hydrated or solvated by Mg2þ

ion. In other words, the limited number of nucleic acid backbone
patterns, although selected reliably, cannot provide accurate
trends for the NMR parameters and averaging over solvent
reorientation is indispensable.

An important aspect of dynamical averaging concerned de-
pendence of calculated NMR parameters on the thickness of
explicit water-solvent layer. It was verified here that the dominant
effect on NMR parameters comes from the first hydration shell
surrounding the phosphate and Mg2þ, while the effect of higher
solvent layers can be modeled with PCM.

The dynamically averaged 31P chemical shift decreased by 2-
9.5 ppm upon Mg2þ coordination, which is in excellent agree-
ment with the 1.5-10 ppm decrease of phosphorothioate 31P
chemical shift upon Cd2þ coordination probed experimentally in
hammerhead ribozyme.39-41 The decrease of the 31P chemical
shift by 0.3 ppm measured42 in the native phosphate group of
minimal metal-binding motif upon addition of Mg2þ is also in
qualitative agreement with our results although its magnitude is
smaller. This could probably be attributed to the fast exchange
rate of Mg2þ in minimal metal-binding motif. We propose that
the inner-shell Mg2þ coordination to the nucleic acid phosphate
is detectable via decrease of the 31P chemical shift and the
magnitude of the decrease is modulated by the metal-ion
exchange rate and local mobility of solvent.

To the best of our kowledge the isotropic 31P chemical shift is
the only NMR parameter used so far for detection of phosphate
metalation. The dynamically averaged chemical shielding anisot-
ropy increased by 0-20 ppm and the 2J(P,C50) coupling
magnitude decreased by 0.2-1.8 Hz upon Mg2þ coordination.
We propose that the 2J(P,C50) experiment represents an

alternative approach for the detection of metal ion coordination
in site-specifically 13C-labeled nucleoside. We emphasize that
this experiment would allow NMR detection of the metal in
native nucleic acids, i.e., without introducing the thio-phosphate
which moreover prefers binding with other metals like Cd2þ.

None of the four dynamically averaged NMR parameters
distinguished unequivocally the site-specific Mg2þ coordination.
Considering the two limit cases of this study, the static and the
dynamic pictures of solvation, we can conclude that mobility of
solvent has a dramatic impact onNMRparameters of nucleic acid
phosphate and must be taken into account for their accurate
modeling.
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ABSTRACT: Determination of nucleic acid (NA) structure
with NMR spectroscopy is limited by the lack of restraints on
conformation of NA phosphate. In this work, the 31P chemical
shielding tensor, the ΓP,C5′H5′1 and ΓP,C5′H5′2 cross-correlated
relaxation rates, and the 2JP,C3′,

2JP,C5′, and 3JP,C4′ coupling
constants were calculated in dependence on NA backbone
torsion angles ζ and α. While the orientation of the 31P
chemical shielding tensor was almost independent of the NA
phosphate conformation, the principal tensor components
varied by up to ∼40 ppm. This variation and the dependence
of the phosphate geometry on torsion angles ζ and α had only a minor influence on the calculated ΓP,C5′H5′1 and ΓP,C5′H5′2 cross-
correlated relaxation rates, and therefore, the so-called rigid tensor approximation was here validated. For the first time, the 2JP,C
spin−spin coupling constants were correlated with the conformation of NA phosphate. Although each of the two J-couplings was
significantly modulated by both torsions ζ and α, the 2JP,C3′ coupling could be structurally assigned to torsion ζ and the 2JP,C5′
coupling to torsion α. We propose qualitative rules for their structural interpretation as loose restraints on torsion angles ζ and α.
The 3JP,C4′ coupling assigned to torsion angle β was found dependent also on torsions ζ and α, implying that the uncertainty in
determination of β with standard Karplus curves could be as large as ∼25°. The calculations provided a unified picture of NMR
parameters applicable for the determination of NA phosphate conformation.

■ INTRODUCTION
The biological function of nucleic acids (NAs) is closely related
to their three-dimensional architecture, which is determined by
the geometry of the NA backbone. The NA backbone consists
of chemically identical segments appearing repetitively along
the NA strand (Figure 1a). Although full rotational freedom of
NA backbone torsion angles ε, ζ, α, β, γ, and δ would
correspond to a rather extreme number of hypothetical
conformers, the backbone geometries were shown to cluster
only into a relatively small number of distinguished structural
patterns.1 These so-called NA conformational classes deter-
mined both for DNA and RNA molecules in crystals2 are
nowadays used for classification of NA backbone geometries.
While the DNA molecules predominantly occur in A-, BI-, BII-,
and Z-form, the conformational richness of RNA molecules is
described with 46 conformational classes.1

Nuclear magnetic resonance (NMR) spectroscopy has
become an indispensable technique in structural studies of
NAs.3−6 It provides a unique alternative to X-ray crystallog-
raphy, enabling to probe conformation and dynamics of NAs in
their native environment. The NMR structural studies of the
NA backbone utilize mainly NMR relaxation enhancements
due to the nuclear Overhauser effect (NOE), residual dipolar
couplings (RDCs) in partially oriented media, three-bond
spin−spin coupling constants (3J-couplings), and newly also
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Figure 1. (a) Definition of NA backbone torsion angles. The symbols
B1 and B2 stand for NA bases, which were in the nPn model replaced
by methyl groups. (b) Ethyl methyl phosphate (EMP) with atoms and
torsion angles defined in analogy to NA backbone. The nPn and EMP
models of NA phosphate were used in this study for calculating the
dependence of NMR parameters on torsion angles ζ and α.
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cross-correlated relaxation (CCR) rates. The NOEs provide
interatomic distances, the RDCs contain information on spatial
orientation of dipolar vectors, and the 3J-couplings3,4,7 and the
ΓP,CH CCR rates8,9 are interpreted as structural restraints on the
NA backbone torsion angles.
The NMR measurements in the NA backbone are

conditioned by the abundance of spin-1/2 nuclei
1H, 13C, and

31P. The C3′−O3′−P−O5′−C5′ segment including the
phosphate group is in this regard particularly difficult due to
the multiple occurrences of backbone oxygen atoms (Figure 1).
The torsion angles ζ and α thus cannot be determined on the
basis of 3J-couplings, and alternative NMR restraints on NA
phosphate conformation are needed.3 Virtually, the only
available NMR parameters directly responding to the
conformation of torsion angles ζ and α are the isotropic 31P
chemical shift δP, the ΓP,CH CCR rates, which are closely related
to the 31P chemical shielding anisotropy (CSA), and the 2JP,C
spin−spin coupling constants. Their complex structural
dependencies, however, require accurate calibration, which
was the main aim of this work. It should be noted that an
empirical correlation between torsions ε and ζ in NA structures
is known and a combined measurement of δP and the 2JP,H3′
coupling is used to restrict the value of torsion ζ.10

There are further obstacles concerning the 31P NMR studies
of the NA backbone. The highly uniform chemical structure of
the NA backbone is manifested in a relatively narrow range of
δP.

11 This fact limits the assignment and interpretation of δP in
large NA molecules exceeding ca. 40 nucleotides. Specific
interactions of metal ions with the NA phosphate may also
affect the structural interpretation of 31P NMR parameters.12

The NMR determination of torsion angles ζ and α is therefore
still challenging, and restraints on the (ζ, α) conformation even
of a qualitative nature would help to improve the precision of
NA structures.
The torsions ζ and α typically adopt one of the orientations

commonly called gauche (g+, 60° or g−, 300°) and trans (t,
180°). Historically, δP was used as a very loose restraint on the
NA backbone structure, allowing one to exclude the trans
conformation of either torsion ζ or α if the δP value was within
the −5 to −4 ppm range.3 Structural interpretation of the δP
exceeding this interval was considered problematic. Early ab
initio calculations for the dimethyl phosphate (DMP) suggested
that δP decreases when the (ζ, α) conformation of NA
phosphate changes from (g−, g−) to (t, g−).11,13 The decrease
of δP by 1.6 ppm was actually measured and assigned to DNA
conformational transition BI → BII corresponding to the (t, g−,
g−) → (g−, t, g−) change of (ε, ζ, α) torsion angles.10 The
same δP difference was recently modeled by combining
molecular dynamics simulations of the Dickerson−Drew
dodecamer with DFT NMR calculations.14 Prěcechteľova ́ et
al. also calculated the structural dependence of the 31P chemical
shift in the DMP model with an explicitly hydrated phosphate
group, where the (ζ, α) torsions were confined around the (g−,
g−) and (t, g−) conformations.15 Despite the effort, general
rules for structural interpretation of δP in NA phosphate are still
missing. The reason is that, besides the dependence on torsion
angles ζ and α, δP is sensitive also to the O−P−O bond
angles,10,11,16 torsion angles ε and β,17,18 and phosphate group
solvation.12,19

The anisotropic components of the 31P chemical shielding
tensor can be exploited through their contribution to NMR
relaxations. It was shown that the torsion angles ζ and α can be
determined on the basis of CCR rates ΓP,CH in combination

with the 3J-couplings assigned to torsions ε and β.8 This
approach was modified in a recent work by Schwalbe’s group,9

where the torsion angles ζ and α were unambiguously
determined by combined measurement of ΓP,CH and NOE.
Structural interpretation of the ΓP,CH CCR rates usually relies
on the so-called “rigid tensor approximation”, which assumes
that the principal components of the 31P chemical shielding
tensor including their orientation in the molecular frame
remain the same for different phosphate geometries. The
approximation usually employs the 31P chemical shielding
tensor measured in barium diethyl phosphate (BDEP) in the
solid state.20 Validity of the rigid tensor approximation in the
interpretation of ΓP,CH CCR rates can be tested, e.g., by
theoretical calculations of their dependencies on NA phosphate
conformation.
The only remaining NMR parameters that could be used for

the determination of torsion angles ζ and α are the 2JP,C3′ and
2JP,C5′ spin−spin coupling constants involving the carbon atoms
in the closest vicinity of NA phosphate (Figure 1). While a
significant modulation of 2JP,C3′ and

2JP,C5′ by both torsion
angles ζ and α can be expected, their dependence on NA
phosphate geometry has not been systematically studied yet.
Our previous calculations indicated that the gauche and trans
orientations of torsions ζ and α could be distinguished with
∼2−3 Hz differences in magnitudes of the 2JP,C3′ and

2JP,C5′
couplings, respectively.7 Similar variation of the two 2JP,C
couplings was actually measured in NAs, but no structural
interpretation was available.21−25

In this theoretical work, we therefore particularly addressed
the dependencies of 2JP,C coupling constants on torsion angles ζ
and α in order to assess their applicability for determining the
NA phosphate conformation. We further studied the conforma-
tional behavior of the 31P chemical shielding tensor and
addressed the validity of the rigid tensor approximation
commonly accepted in the interpretation of CCR rates. By
this, we wish to fill the existing gap in utilization of the 31P
NMR parameters in structural studies of the NA backbone.

■ THEORY

Chemical Shielding and Chemical Shift. In this work, we
consistently distinguish 31P chemical shielding σP defined as a
decrease of magnetic field at the site of the 31P nucleus due to
the surrounding electronic environment, B = B0(1 − σP), from
the 31P chemical shift δP, which represents the relative NMR
scale defined with respect to the chemical shielding of a NMR
standard σstd

δ
σ σ

σ
σ σ=

−
−

≈ −
1P
std P

std
std P

(1)

Accordingly, the theoretical chemical shift is obtained as a
difference between chemical shielding calculated in NMR
standard and in the molecule of interest. In this work, σP and
σstd were always calculated at the same level.
The usual 31P NMR standard is 85% aqueous solution of

phosphoric acid (H3PO4 (aq)). Calculation of the 31P chemical
shielding in H3PO4 (aq) is a challenging task, which can be
circumvented, e.g., by introducing secondary standard PH3, as
was suggested by van Wüllen.26 The isotropic 31P chemical shift
in the NA phosphate is then evaluated as

δ σ σ= − + −266.1P PH3 P (2)
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where −266.1 ppm is the experimental chemical shift of the
gas-phase PH3 relative to the 85% H3PO4 (aq)

27 and σPH3
and

σP are the isotropic 31P chemical shieldings calculated in the
secondary standard PH3 and in NA phosphate, respectively. If
not specified otherwise, the value σPH3

= 566.0 ppm calculated
with the B3LYP/IGLO-III method was used. We note that,
while σPH3

was calculated in the gas phase to comply with the
experimental conditions,27 the calculation of σP required
inclusion of water solvent effects.
Chemical Shielding Anisotropy. The 31P CSA was

defined as

σ σ
σ σ

Δ = −
+
2P P,33

P,11 P,22
(3)

where σP,11 < σP,22 < σP,33 are the principal components of the
31P chemical shielding tensor.
CSA−DD Cross-Correlated Relaxation. The CSA−DD

CCR is a NMR phenomenon resulting from the interference of
the CSA and dipole−dipole (DD) relaxation mechanisms.28,29

The CSA−DD CCR rates depend on mutual orientation of the
CSA and DD interaction tensors and thus also on local
molecular geometry. The so-called “remote” CSA−DD CCRs,
which correlate CSA and DD interactions centered on different
nuclei, were previously applied for determination of torsion
angles in peptides30,31 and NAs.8,9,32,33 Theoretical studies
provided nonempirical insights into the geometry dependence
of the CSA−DD CCR rates, including the effect of geometry
dependence of the chemical shielding tensor.34,35

In this work, we focused on the remote CSA−DD cross-
correlation between the 31P chemical shielding tensor and the
adjacent C5′−H5′ dipolar vectors. According to the Redfield
theory of relaxations, assuming invariable relative orientation of
the CSA and DD principal axis frames, the remote transversal
CSA−DD CCR rate ΓP,CH is given by28,29

μ
π

γ
γ γ

σΓ = ℏ Δ ·B
r

J
1
2 4

4
3

(0)P,CH
0

P 0
C H

CH
3 P,CH

eff

(4)

where μ0 is the vacuum permeability, ℏ is the reduced Planck
constant, γP, γC, and γH are the gyromagnetic ratios of the 31P,
13C, and 1H nuclei, B0 is the magnetic field strength, rCH is the
length of the C−H dipolar vector rCH, J(0) is the spectral
density function at zero frequency, and

∑σ σ
ϑ

Δ =
−

=

3 cos 1

2
i

ii
ii

P,CH
eff

1

3

P,

2
CH,

(5)

is the effective CSA, which can be conveniently evaluated by
quantum-chemistry methods. Here, σP,ii is the ith principal
component of the 31P chemical shielding tensor and ϑCH,ii is the
angle between σP,ii and rCH. We further assume overall isotropic
molecular tumbling, for which J(0) = 2/5τc, where τc is the
rotation correlation time. The value τc = 2.27 ns determined
experimentally for a RNA 14-mer9 and the magnetic field B0 =
14.09 T corresponding to the 1H resonance frequency 600
MHz were used in our calculations.
It should be noted that the isotropic part of the 31P chemical

shielding tensor does not contribute to the effective CSA value,
because

∑
ϑ −

≡
=

3 cos 1

2
0

i

ii

1

3 2
CH,

(6)

for any orientation of the chemical shielding tensor. Therefore,
only the relative values of principal components σP,ii

r = σP,ii − σP
are essential in the effective CSA, and they can be used instead
of σP,ii for calculating the ΔσP,CHeff according to eq 5.

■ METHODS
Computational Details. All DFT calculations were

performed using the B3LYP functional36,37 as implemented in
the Gaussian 09 package.38 Water solvent in the DFT
calculations was simulated with the polarizable continuum
model (PCM).39 The coupled-cluster singles and doubles40

(CCSD) calculations of geometry and NMR parameters of
DMP and PH3 molecules were performed with the CFOUR
program.41 The DFT and CCSD geometry optimizations
employed the 6-31+G(d) and 6-311++G(d,p) basis sets as
obtained from the EMSL basis set exchange web portal,
respectively.42

The NMR parameters were calculated at the coupled-
perturbed B3LYP and CCSD level. The GIAO method43−45

was applied in all 31P chemical shielding calculations. The
principal components σP,ii and the corresponding eigenvectors
were obtained by diagonalizing the symmetric part of the
calculated 31P chemical shielding tensor. The Fermi contact
(FC), spin−dipolar (SD), paramagnetic spin−orbit (PSO), and
diamagnetic spin−orbit (DSO) terms of the total J-coupling
were evaluated at the B3LYP level.46,47 The FC term of the 2JP,C
coupling was calculated also with the CCSD method. The
triplet instability problem48 was avoided by applying the orbital-
unrelaxed approach in the coupled-cluster calculations (key-
word DIFF_TYPE = UNRELAXED). All NMR calculations
utilized the IGLO-III basis set; this choice was inspired by our
previous work, where the IGLO-III basis provided both 31P
chemical shielding and 2JP,C coupling close to the B3LYP basis-
set limit.12

Conformational dependencies of the ΓP,CH CCR rates in the
EMP molecule were evaluated with two different approaches:
(a) both the 31P chemical shielding tensor variation and the
molecular geometry relaxation were included in the ΓP,CH
calculations (“relaxed approach”); (b) the rigid tensor
approximation was adopted, using the 31P chemical shielding
tensor calculated in the EMP global minimum (g−, g−) and
transferring it on rigidly rotated EMP conformers (“rigid
approach”).

Molecular Models. We used three different molecular
models of NA phosphate. The DMP molecule was employed to
compare the performance of the B3LYP and CCSD computa-
tional methods. Dependence of NMR parameters on the NA
phosphate (ζ, α) conformation was calculated for the EMP
molecule (Figure 1b) and the abasic RNA dinucleotide (nPn,
Figure 1a), where the NA bases were replaced by methyl
groups.
The EMP molecule is the smallest NA phosphate model

respecting the asymmetry of the NA backbone. Its
conformation is described with torsion angles ζ, α, and β
(Figure 1). The global energy minimum with conformation (ζ,
α, β) = (g−, g−, t) was optimized at the B3LYP level. The
conformational space of EMP was explored by varying the
torsion angles ζ and α with 20° steps, resulting in 18 × 18 =
324 geometries, while the torsion β was fixed to 180°. The
constraint on torsion β reduced the complexity of the problem,
and it is consistent with the most usual value of torsion β in
NAs.1,2 Furthermore, we adopted the (ζ, α, β) values
corresponding to the 46 RNA conformational classes found
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by Richardson et al.1 For each (ζ, α, β) geometry of EMP, all
remaining coordinates were fully relaxed by B3LYP energy
minimization. By optimizing the EMP geometries in this way,
we obtained adiabatically relaxed phosphate group geometries,
namely, the P−O bond distances and O−P−O valence angles,
which most significantly influence the 31P NMR parameters in
NA phosphate.11

Nine different conformations of nPn (Table 1) were adopted
from our previous work.7 These structuresfurther denoted
nPn1, nPn2, nPn3, nPn6, nPn9, nPn12, nPn15, nPn18, and
nPn20represent RNA conformational classes 1, 2, 3, 6, 9, 12,
15, 18, and 20 (canonical A-form) as defined by Schneider et
al.2 The geometries were obtained previously with the Amber99
force field and were used in this work as starting structures for
rigid variation of either ζ or α torsion angle, thus sampling the
important regions of the (ζ, α) conformational space.
The effects of water solvent on both molecular geometries

and NMR parameters were simulated solely with the PCM.
Explicit hydration was not applied to avoid steric clashes when
sampling the complete (ζ, α) conformational space. The PCM
is known to provide only a rough approximation of water
solvent effects in NA phosphate.12 However, absolute accuracy
of NMR calculations was not crucial in our case, since we were
mainly interested in differences of NMR parameters between
different phosphate conformations (“conformational differ-
ences”). In this sense, PCM performed rather well and allowed
for consistent treatment of water solvent effects in all NA
phosphate models used.

For brevity, we used a notation Δζ′α′−ζα(X) standing for the
difference of NMR parameter X between (ζ′, α′) and (ζ, α)
conformers of NA phosphate. For example, the difference of δP
between the BII and BI conformers of DNA (“BII − BI”
difference) is denoted Δtg−gg(δP).

■ RESULTS AND DISCUSSION
Geometry Parameters of NA Phosphate Models. The

geometries of phosphate group in DMP molecule optimized
with the B3LYP and CCSD methods were rather similar,
differing only in the P−O bond lengths (Table 1). The gas-
phase optimized structures agreed with the DMP geometry
obtained previously by Floriań et al. at the MP2 level.49 The
inclusion of water solvent modeled with PCM had a sizable
effect on the DMP geometry; the influence of solvent on the
NMR (and other) properties of NA phosphate thus originates
also from geometry changes.
Molecular geometries optimized with the B3LYP/PCM and

Amber99 methods differed (Table 1), which had a sizable effect
on the calculated NMR parameters (see below). The geometry
of the EMP global minimum (g−, g−) could be directly
compared with the nPn20 structure corresponding to the A-
form of NAs. Torsion angles α and β obtained in EMP at the
B3LYP/PCM level were in very good agreement with the
nPn20 force-field values and also with the averaged crystallo-
graphic data for the A-form α = 295°, β = 174°.1,2 The slight
discrepancy in torsion ζ could be attributed to the fact that the
C3′ methyl group in EMP is a poor substitute for a ribose ring.
This limitation of the EMP model was also reflected in the

Table 1. Selected Geometry Parametersa of NA Phosphate Models

model geometry method ζ α β O3′−P−O5′ OP1−P−OP2 P−OPb P−O3′ P−O5′ O3′−C3′ O5′−C5′

DMP B3LYP 286 286 99.5 125.5 1.504 1.683 1.683 1.418 1.418
DMP B3LYP/PCM 293 293 102.3 121.7 1.512 1.655 1.655 1.435 1.435
DMP CCSD 288 288 99.2 125.7 1.488 1.663 1.663 1.412 1.412
EMP B3LYP/PCM 293 292 180 102.4 121.6 1.512 1.655 1.653 1.434 1.442
nPn1c Amber99 56 164 152 102.0 120.7 1.471 1.599 1.611 1.416 1.420
nPn2c " 286 162 163 101.7 121.1 1.473 1.594 1.603 1.414 1.420
nPn3c " 205 296 153 103.5 121.3 1.474 1.594 1.599 1.417 1.412
nPn6c " 163 293 167 99.9 121.4 1.473 1.584 1.596 1.411 1.419
nPn9c " 83 74 172 101.1 120.5 1.473 1.590 1.602 1.414 1.416
nPn12c " 165 289 166 102.0 121.4 1.472 1.590 1.600 1.414 1.416
nPn15c " 210 69 195 102.1 121.3 1.473 1.592 1.596 1.413 1.414
nPn18c " 260 63 179 102.2 120.2 1.474 1.606 1.608 1.417 1.415
nPn20c " 285 294 179 103.0 120.9 1.473 1.599 1.603 1.416 1.415
DMPd MP2 70 70 99 126 1.51 1.68 1.68 1.43 1.43
BDEPe Exp. 72 68 184f 103.5 121.7 1.513 1.620 1.593 1.474 1.442

aTorsion and bond angles in deg, bond lengths in Å. bAverage P−OPn bond length, n = 1, 2, calculated as P−OP = (P−OP1 + P−OP2)/2. cAbasic
RNA dinucleotide.7 dObtained previously by Floriań et al. with the 6-31G(d,p) basis set.49 eX-ray geometry of the barium diethyl phosphate (CSD
ID BADETP).50 Differences in O−P−O−C torsions (ζ and α) and P−O and C−O bond lengths in the structurally symmetric BDEP molecule were
caused by crystal packing. fAverage value of the P−O−C−C torsion in the BDEP crystal.

Table 2. Isotropic 31P Chemical Shiftsa in ppm and 2JP,C Coupling Constants in Hz Calculated with Different Methods and the
IGLO-III Basis Set for the (g−, g−) and (t, t) Conformers of DMP

geometry method NMR method
δP
a

(g−, g−)/(t, t)
2JP,C
FC

(g−, g−)/(t, t) Δtt−gg(δP) Δtt−gg(
2JP,C

FC )

B3LYP B3LYP 5.2/13.9b −7.6/−2.1 8.6 5.5
B3LYP/PCM B3LYP/PCM 8.9/15.3b −7.5/−2.9 6.5 4.6
CCSD B3LYP −0.7/8.2c −6.8/−1.8 8.9 5.1
CCSD CCSD −4.2/4.3d −6.4/−2.2 8.6 4.2

aRelative to 85% H3PO4 (aq), using the PH3 secondary standard as described in the Theory section. The calculated values of the 31P shielding in
PH3 were:

bσPH3
= 566.0 ppm, cσPH3

= 568.0 ppm, dσPH3
= 608.4 ppm.
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calculated 2JP,C3′ couplings (see below). Bond angles optimized
with B3LYP/PCM and Amber99 methods also nicely agreed,
but the bond lengths differed, especially for P−OPn, n = 1, 2
(by ∼0.04 Å) and P−Om′, m = 3, 5 (by ∼0.05 Å). This fact has
serious consequences for force-field modeling of NA phosphate
properties, some of which have been recently addressed.12

Benchmark NMR Calculations. We tested the perform-
ance of the B3LYP and B3LYP/PCM methods in calculations
of the 31P chemical shift δP and the FC term of the 2JP,C spin−
spin coupling against the benchmark CCSD method. The
global minimum (g−, g−) and transition state (t, t) of the DMP
molecule were used for this purpose.
The δP was quite sensitive to various conditions such as the

molecular geometry, the PCM solvation, and the electronic
structure method used in the NMR calculations (Table 2).
Namely, the calculated δP values decreased by 5.7−6.0 ppm
when the molecular geometries were optimized with the CCSD
method instead of B3LYP and by an additional 3.5−3.9 ppm
when both structure and NMR shielding were obtained at the
CCSD level. The inclusion of PCM solvation, that is currently
available only for DFT, led to an increase of δP by 1.4−3.7 ppm.
The Δtt−gg(δP) conformational differences of 8.6−8.9 ppm

were to a large extent independent of the electronic structure
method, indicating that the B3LYP method is well-suited for
theoretical modeling of conformational variation of δP in NA
phosphate. The decrease of Δtt−gg(δP) by ∼2 ppm induced by
the PCM hydration implies that the effect of water solvent on
δP is not uniform but varies with the DMP conformation.
Hence, both the DMP polarization and accessibility of the
phosphate group by water solvent must be considered for
accurate δP calculations.
The FC term of the 2JP,C coupling is dominant.7 The sum of

the remaining SD, PSO, and DSO terms ranged from −0.4 to
−0.6 Hz for different computational methods and DMP
conformers. The J-coupling difference Δtt−gg(

2JP,C
FC ) was over-

estimated by the B3LYP method relative to CCSD by 1.3 Hz,
mainly due to the different performance of B3LYP and CCSD
for the (g−, g−) conformer (Table 2). The accuracy of the 2JP,C
coupling calculated at the B3LYP level therefore varied with the
NA phosphate conformation. This fact was taken into account
when estimating the accuracy of the calculated structural
dependencies of 2JP,C couplings. Other DFT functionals
performed similarly as the B3LYP; the 2JP,C

FC values for the
(g−, g−) conformer of DMP calculated with BLYP, BPW91,
and B3PW91 functionals were 7.3, 7.2, and 7.4 Hz.
We also compared the performance of the B3LYP, B3LYP/

PCM, and CCSD methods in calculations of the full 31P
chemical shielding tensor (Supporting Information, Table S1).
The principal components σP,ii, ii = 11, 22, 33, calculated with
the CCSD method differed by 6−14 ppm from those obtained
with B3LYP. The inclusion of PCM hydration in the B3LYP
calculations had a much larger impact; the σP,ii values changed
by 22−50 ppm. The 31P-CSA calculated at the CCSD level was
by 21 ppm smaller than that obtained using B3LYP. The
inclusion of PCM hydration decreased the 31P-CSA by more
then 60 ppm. The principal components σP,ii were thus much
more sensitive to the NMR computational method and water
solvent description than the isotropic chemical shift δP itself.
Interestingly, the orientation of the 31P chemical shielding
tensor in the phosphate−frame coordinate system20 repre-
sented by angles φii, ii = 11, 22, 33 (Figure 2), was practically
independent of the computational method.

Our results are consistent with previous calculations by
Prěcechteľova ́ et al., who found that the 31P-CSA values
calculated in DMP with two explicit hydration patterns were by
up to 130 ppm smaller than the 31P-CSA in the gas phase.15

The PCM hydration thus accounted for approximately half of
the effect of static hydration on 31P-CSA and also on principal
components σP,ii (Supporting Information, Table S1). We note
that neither implicit PCM nor static hydration can be regarded
as a correct description of phosphate solvation. According to
the current state of knowledge, dynamical averaging of explicit
solvent is probably the best theoretical method for modeling
the solvation effects on NMR parameters in NA phosphate.12,14

The benchmark NMR calculations showed that the B3LYP
method performs rather well for both 31P chemical shift and
2JP,C coupling. We found that hydration has a larger impact on
the calculated NMR parameters than the particular choice of
electronic structure method. Solvation effects should be
therefore always included in NMR calculations in NA
phosphate.

Geometry Dependence of 31P Chemical Shift. The δP
calculated in the EMP molecule ranged from 0.7 ppm for the
rather unrealistic (0°, 0°) phosphate conformer to 13.8 ppm for
the (t, t) conformer (Figure 3). The δP values of ∼7.5−8.0 ppm
calculated for the (g−, g−) region dominantly populated in
NAs were somewhat larger than the values of −2.0−0.5 ppm
typically measured in NAs.10,11 This difference can be
attributed to intrinsic errors of the DFT chemical shielding
calculations, to insufficient accounting for water solvent by
PCM, and to improperly described 31P NMR reference via the
secondary standard approach. However, these systematic
computational errors tend to mutually cancel when calculating
the chemical shift differences between different conformers
(see Table 2). Hence, the geometry trends calculated for δP can
be trusted more than the absolute δP values.
The δP values calculated for the nPn structures were by ∼25

ppm smaller than those obtained for the corresponding (ζ, α)
conformers of EMP (Supporting Information, Figure S1). This
difference originates from the differences in local phosphate
geometry optimized with the Amber99 and B3LYP methods
(Table 1). Interestingly, the dependencies of δP on the (ζ, α)
conformation calculated for both EMP and nPn possessed a
very similar shape, thus indicating that a qualitatively correct
geometry dependence of δP can be obtained even with the
smaller EMP model.

Figure 2. Schematic representation of the 31P chemical shielding
tensor in the EMP molecule: principal components σP,ii and their
orientations φii, ii = 11, 22, 33, in the phosphate−frame coordinate
system.20
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Conformational differences of δP were in good agreement
with available experimental and theoretical data. The B3LYP/
PCM calculations satisfactorily reproduced the 31P chemical
shift difference between the BI and BII conformations of the NA
backbone (Table 3). Relative chemical shifts Δtg−gg(δP)
calculated in EMP (2.3 ppm) and nPn (1.8, 1.9, and 2.6
ppm) nicely coincided with the experimental BII − BI
difference10 (1.6 ppm). Previous theoretical calculations of
Δtg−gg(δP) in DMP with two different explicit hydration
patterns provided somewhat dispersed values (5.9 and 3.8
ppm, Table 3),15 which anticipated the need of dynamic
averaging of explicit hydration surrounding phosphate to obtain
converged results (2.1, 1.6 ppm).14 The need of dynamic
averaging of explicit solvent was also concluded in calculations
of solvation effects on 31P NMR parameters in NA phosphate.12

However, in the case of a large number of conformations like
here, the dynamic approach becomes rather costly and implicit
solvation may be the only feasible option. The PCM actually
performed rather well, because it accounted for a large part of
the conformation-dependent water solvent effect on the 31P
chemical shift: the Δtg−gg(δP) calculated in the gas phase was 3.8
ppm, with PCM it was 2.3 ppm, and the experimental value is

1.6 ppm. The comparison of calculated Δtg−gg(δP) values with
the experimentally known BII − BI difference thus indicates that
conformational differences of δP calculated with the B3LYP/
PCM method are qualitatively correct.
To the best of our knowledge, the theoretical δP data

available in the literature were calculated either for a limited set
of (ζ, α) phosphate conformations15,18 or for full variation of
torsion angles ζ and α with a crude semiempirical approach.51

Our DFT calculations provide consistent theoretical insight
into the complete dependence of δP on the (ζ, α) conformation
of NA phosphate.

Geometry Dependences of 31P Chemical Shielding
Tensor Components. Variation of principal components σP,ii,
ii = 11, 22, 33, by up to 15, 31, and 46 ppm, respectively
(Figure 3), calculated with the B3LYP/PCM method was much
larger than the range of isotropic values δP (∼13 ppm). This
could be explained by mutual compensation of the
components. Namely, the σP,11 and σP,22 surfaces were nearly
complementary, implying that the geometry dependencies of
both δP and ΔσP are to a large extent dominated by the σP,33
component (Figure 3).

Figure 3. Dependencies of isotropic 31P chemical shift δP, chemical shielding anisotropy ΔσP, principal components σP,ii of the 31P chemical shielding
tensor and their orientations in the molecular frame φii, ii = 11, 22, 33, on the (ζ, α) conformation of the EMP molecule calculated with the B3LYP/
PCM method. Black squares indicate the (ζ, α) regions that were explored previously by Prěcechteľova ́ et al.15

Table 3. Comparison of the BII − BI Differences of δP in ppm, Principal Components σP,ii in ppm, ii = 11, 22, 33, and 2JP,C3′
Coupling in Hz, Obtained with Different Computational Approaches

Δtg−gg

model geometry method NMR method δP σP,11 σP,22 σP,33
2JP,C3′

EMPa B3LYP B3LYP 3.8 6.9 4.3 −11.2 3.3
EMP−PCMa B3LYP/PCM B3LYP/PCM 2.3 4.0 −0.4 −3.6 2.2
nPnb Amber99 B3LYP/PCM 1.8, 1.9, 2.6 2.2, 2.2, 2.3
DMPa,c B3LYP SOS-DFPT-IGLO-PWP86 6.9 8.8 2.5 −11.3
DMP−ICa,c " " 5.9 8.5 −2.2 −6.4
DMP−SCa,c " " 3.8 7.9 1.2 −8.9
B-DNAd Amber99 " 2.1, 1.6
B-DNAe Exp. Exp. 1.6

aCalculated as differences between the (180°, 300°) and (300°, 300°) conformers. bResults obtained as differences between the respective
conformers of nPn3, nPn12, and nPn20. cReference 15; IC and SC denote two different explicit hydration patterns. dReference 14; results for two
phosphate residues of a Dickerson−Drew DNA dodecamer obtained by averaging of the respective δP values over MD trajectory. eReference 10.
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The geometry dependences of principal components of the
31P chemical shif t tensor δP,ii calculated with the secondary
standard approach (eq 2) were in qualitative agreement with
previously calculated data for explicitly hydrated DMP in (t,
g−) and (g−, g−) conformations15 (Supporting Information,
Figure S3). In the two conformational regions, the principal
component δP,22 consistently increased and δP,33 decreased with
the increase of torsion α. The δP,ii values, ii = 22, 33, calculated
in this work varied in the (t, g−) and (g−, g−) regions by ca.
15−20 ppm, which is significantly less than calculated
previously in explicitly hydrated DMP15 (by ca. 25−30 ppm).
Variation of the δP,11 component was only a few ppm both in
this and previous work. The isotropic δP values consistently
decreased with increasing torsion α. The decrease, which was
larger in the (t, g−) region, was more pronounced in the
previous work by Prěcechteľova ́ et al. than in this work, which
was probably caused by the difference between explicit and
implicit phosphate hydration. Interestingly, our calculations
provided quite similar BII − BI differences of σP,ii as obtained
previously for the explicitly hydrated DMP−IC model15 (Table
3).
The orientation of the 31P chemical shielding tensor in the

phosphate−frame coordinate system was nearly independent of
the EMP conformation because the calculated angles φii were
smaller than 6° (Figure 3). This agrees with the previous
theoretical results15 but conflicts with the experimental solid-
state NMR data for a crystal of BDEP (φ11 = 7°, φ22 = 13°, φ33

= 9°).20 We have to keep in mind that the first coordination
shell of the phosphate group in the BDEP crystal structure
contains only Ba2+ ions.50 In our previous work, we showed
that direct coordination of divalent ion to the phosphate group
has a significant impact on the 31P chemical shielding tensor.12

Therefore, we propose that the 31P shielding tensor measured
in the BDEP crystal was influenced by direct coordination of
Ba2+ ions and that the φii values smaller than 6° are natural for
all (ζ, α) conformations of NA phosphate.

ΓP,C5′H5′ Cross-Correlated Relaxation Rates. We showed
above that the principal components σP,ii vary significantly with
rotation of torsion angles ζ and α, by up to 46 ppm (Figure 3).
The question is to what extent this behavior affects the ΓP,CH
CCR rates and how large could be the error when applying the
rigid tensor approximation. We could answer this question by
calculating the ΓP,C5′H5′1 and ΓP,C5′H5′2 CCR rates in EMP with
the “relaxed” and “rigid” approach described in the Methods
section.
The ΓP,C5′H5′1 and ΓP,C5′H5′2 CCR rates depend dominantly on

torsion angles α and β.8,9 The EMP calculations with β = 180°
show only the dependence on torsions ζ and α (Figure 4, left).
To see the effect of β variation, we calculated the CCR rates
also for the EMP geometries sampling the RNA structural
classes,1 where the torsion β varies from 83 to 248°
(Supporting Information, Figure S2).
The CCR rates obtained with the “rigid” approach are

inherently independent of torsion angle ζ. The application of
the “relaxed” approach only slightly perturbed the one-
dimensional character of the two dependencies (Figure 4,
middle). Both ΓP,C5′H5′1 and ΓP,C5′H5′2 ranged from ca. −17 to 32
Hz. The difference between CCR rates calculated using the
“rigid” and “relaxed” approach was on average over all EMP
geometries smaller than 2 Hz. By detailed analysis of the
calculated data (not shown), we found that the differences were
caused by both conformational variation of the 31P chemical
shielding tensor and geometry relaxation of the C5′−H5′ bond
vectors affecting the angles ϑCH,ii in eq 5. The rCH

−3 factor varied
by 1.6% at most; its influence on the CCR rates was thus

Figure 4. (left) Dependencies of the ΓP,C5′H5′1 and ΓP,C5′H5′2 cross-correlated relaxation rates on the (ζ, α) conformation of EMP calculated using the
“relaxed” approach. (middle) Comparison of the “rigid” (thick black line) and “relaxed” approach (colored lines; each line corresponds to a specific
value of torsion ζ ranging from 0 to 340°), here displayed in dependence on torsion α only. (right) Correlation between the “rigid” and “relaxed”
approach in the calculations of ΓP,C5′H5′1 and ΓP,C5′H5′2 (in Hz) for EMP grid-point geometries with β = 180° (blue dots) and for EMP geometries
sampling the RNA structural classes (black crosses).
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negligible. The rigid tensor approximation can be therefore
considered valid for the ΓP,CH CCR rates in NA phosphate.

2JP,C Coupling Constants. For the first time, the
dependencies of 2JP,C3′ and

2JP,C coupling constants on the (ζ,
α) conformation of NA phosphate are reported (Figure 5). We
obtained two coherent sets of theoretical data for EMP and nPn
molecules. While the EMP calculations sample the complete (ζ,
α) dependence of the two J-couplings, the nPn data were
obtained for selected NA backbone classes by stepwise variation
of one of the two torsion angles. The 2JP,C5′ coupling depends
dominantly on torsion angle α and the 2JP,C3′ coupling on
torsion ζ, but the dependence on the second P−O torsion is
also not negligible. The two-dimensional dependencies of 2JP,C3′
and 2JP,C5′ are similar owing to the symmetry of NA phosphate.
The 2JP,C couplings are negative for all phosphate conforma-
tions. For better clarity, and also because the sign of the 2JP,C
coupling is usually not determined experimentally, we further
discuss only the absolute 2JP,C values.
The two 2JP,C couplings calculated in the EMP molecule

range approximately from 3 to 13 Hz (Figure 5). Some
conformers of NA phosphate can be clearly distinguished with
the 2JP,C couplings. The lowest values near 3 Hz were obtained
for the (t, t) conformer, while the values corresponding to the
most populated NA conformer (g−, g−) were around 8 Hz.
Unfortunately, the g+ and g− conformation of both ζ and α
torsion angles are hardly distinguishable, since they both
correspond to similar values of 2JP,C. The BI → BII transition
calculated as a change of the (ζ, α) conformation from (g−,
g−) to (t, g−) was accompanied by ∼2−3 Hz decrease of the
2JP,C3′ coupling (Table 3, Figure 5), which is in agreement with
our previous work for NA conformational classes.7 Similarly,
the transition of torsion α from gauche to trans corresponds to a
significant decrease of 2JP,C5′. Also, the effect of neighboring
torsions ε and β may not be negligible. For example, the 2JP,C5′

coupling notably increases when β exceeds the 120−240°
interval (Supporting Information, Figure S5).
Experimentally, the 2JP,C couplings typically occur between 1

and 6.5 Hz.21−25 Structural interpretation of the measured
values in terms of torsions ζ and α was so far unavailable. Here,
we correlated the experimental 2JP,C couplings with torsion
angles ζ and α for NA molecules with known structures: cyclic
d<pApA> dinucleotide,21 10 base-pair (bp) long DNA duplex
oligonucleotide23,52 (PDB ID 1NEV), and 8 bp long stem of
hairpin-35 of 23S rRNA25 (PDB ID 2GBH). The NMR data
for the most populated NA conformer (g−, g−) were used to
validate our theoretical approach. The experimental 2JP,C
couplings for the (g−, g−) conformer ranged from 4.5 to 5.5
Hz (Supporting Information, Table S2 and Figure S4), while
the values calculated in EMP were near 8 Hz (Table 4). The
deviation from experiment can be explained by imperfections of
the B3LYP method in both geometry and NMR calculations,
the effect of incomplete basis set, and the error of PCM in
describing the phosphate hydration (Table 4). The dynamically
averaged effect of solvent on 2JP,C values would be even larger
when considering NA phosphate solvation with metal cation, as
was reported in our previous work.12 Somewhat larger
deviations of the calculated 2JP,C values from experiment were
obtained for other phosphate conformations; similar sources of
computational errors can be expected, but their values are not
known. Nevertheless, we can anticipate that the geometry
dependencies of the 2JP,C couplings calculated with the B3LYP/
PCM method are qualitatively correct, albeit the 2JP,C
magnitudes are overestimated.
The nPn calculations provide an important link between the

simple EMP model and actual NA backbone structure. The
2JP,C couplings calculated in the EMP and nPn molecules for
the same (ζ, α) conformers differ (Figure 5), mainly due to
different local geometries of NA phosphate (Table 1) and also

Figure 5. (top) Dependencies of the 2JP,C3′ and
2JP,C5′ coupling constants in Hz on the (ζ, α) conformation of EMP. (bottom) Comparison of 2JP,C

couplings calculated in EMP (colored surfaces; the grid represents the calculated data points) and nPn (blue lines; dots mark the calculated data
points) molecules.
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because of the improper termination of the EMP molecule at
C3′ carbon. On the other hand, the dependencies obtained with
the two NA phosphate models correspond qualitatively to each
other, showing the same conformational trends (Figure 5). The
2JP,C3′ and 2JP,C5′ couplings calculated for the (g−, g−)
conformer of nPn ranged from 4.9 to 6.3 Hz and from 6.7 to
7.5 Hz, respectively. The J-couplings calculated with presum-
ably lower quality force-field geometries were thus closer to the
experimental range 4.5−5.5 Hz than those obtained for the
DFT-optimized EMP structures. This was probably caused by
error cancellation. Nevertheless, the correspondence between
geometry trends calculated in EMP and nPn indicates that the
dependencies shown in Figure 5 should be generally valid for
the NA backbone.
Structural interpretation of the 2JP,C3′ and

2JP,C5′ couplings can
be only qualitative, namely, because the two-dimensional
character of their dependences implies that similar 2JP,C values
may correspond to different phosphate conformers. Further-
more, the computational imperfections mentioned above and
the uncertainty of experimental determination of 2JP,C couplings
(which may be larger than 1 Hz23,24) prohibited so far their
accurate calibration. Nevertheless, we found that the 2JP,C3′ and
2JP,C5′ couplings can be loosely assigned to NA backbone
torsion angles ζ and α, respectively. On the basis of our
calculations and comparison with available experimental data,
we propose two qualitative rules: (a) The 2JP,C coupling smaller
than ∼3 Hz should indicate the orientation of the assigned
torsion angle (ζ or α) that is different from typical gauche (near
70 or 290°). (b) The 2JP,C coupling larger than ∼4.5 Hz should
indicate that the orientation of the assigned torsion angle
deviates from the 120−240° region. The 2JP,C values between 3
and 4.5 Hz are difficult to interpret in terms of torsions ζ and α
because the dominant J-coupling dependence on the assigned

torsion is largely perturbed by variation of the second torsion.
These rules may serve as qualitative restraints on phosphate
conformation in NMR structural studies of NAs. Their further
validation based on more extended comparison with accurate
experimental data is clearly advisable.

3JP,C4′ Coupling. The
3JP,C4′ coupling is assigned to torsion

angle β with a standard Karplus equation.22,53,54 The structural
interpretation of 3JP,C4′ relies on its independence of other
torsion angles. To validate this assumption, we calculated the
dependence of the 3JP,C4′ coupling on torsion angles ζ and α in
the EMP molecule. The calculated variation of 3JP,C4′ was quite
large, ca. 2 Hz (Supporting Information, Figure S6). Such
variation in the 3JP,C4′ value interpreted with standard Karplus
equations can cause error in determination of the assigned
torsion β as large as ∼25°.
The calculations thus revealed that variation of the NA

phosphate conformation may affect the spin−spin coupling
pathways between phosphorus and relatively distant atoms.
This could have been foreseen, since the complicated electronic
structure of negatively charged NA phosphate sensitively
responds to the local geometry deformations and a
perturbation at one side of the spin−spin coupling pathway is
in this way promoted to the total J-coupling value.

■ CONCLUSIONS

In this theoretical work, the isotropic 31P chemical shift, the
principal components σP,ii of the

31P chemical shielding tensor,
and their orientations in the molecular frame, the ΓP,C5′H5′1 and
ΓP,C5′H5′2 cross-correlated relaxation rates, as well as the 2JP,C3′,
2JP,C5′, and 3JP,C4′ coupling constants were calculated in
dependence on nucleic acid backbone torsion angles ζ and α.
Although the NMR calculations did not provide absolute

accuracy of the isotropic 31P chemical shift, the relative values
for different phosphate conformations were in good agreement
with previous experimental and theoretical data. Geometry
dependencies of both isotropic 31P chemical shift and chemical
shielding anisotropy were dominated by the σP,33 principal
component, owing to mutual compensation of the σP,11 and
σP,22 components. Deviations of the

31P principal components
from phosphate frame axes were smaller than 6°. The
orientation of the 31P chemical shielding tensor in the
molecular frame is thus almost independent of torsion angles
ζ and α.
We found that the ΓP,C5′H5′1 and ΓP,C5′H5′2 cross-correlated

relaxation rates are nearly independent of torsion angle ζ, being
only slightly modulated by the conformational variation of the
31P chemical shielding tensor and local phosphate geometry.
The approximation assuming a rigid 31P chemical shielding
tensor can be thus considered valid for the interpretation of
ΓP,CH cross-correlated relaxation rates in nucleic acids.
DFT calculations of 2JP,C coupling constants in nucleic acid

backbone revealed their strong dependence on both torsion
angles ζ and α with dominant modulation by only one of the
torsions. The 2JP,C3′ and 2JP,C5′ couplings thus could be
structurally assigned to torsions ζ and α, respectively, and
interpreted as loose restraints on the phosphate conformation.
The absolute 2JP,C values calculated with the B3LYP/PCM
method were overall overestimated relative to the experiment.
Computational errors for the most populated phosphate
conformer (g−, g−) were ascribed to imperfect performance
of the DFT method, which was tested against the benchmark
CCSD method, incomplete atomic basis set, and incomplete

Table 4. Comparison of the Calculated 2JP,C Coupling Values
and Corrections ΔJ (in Hz) with Available Experimental
Data for the Most Populated Phosphate Conformer (g−, g−)

J-coupling contributions 2JP,C3′
2JP,C5′

J: B3LYP/PCMa −8.1 −7.7
ΔJ: geometryb +0.7
ΔJ: electron correlationc +0.5
ΔJ: basis setd +0.5
ΔJ: explicit solvente +0.9 −0.5
J: total −5.4 −6.6
|J|: experimentf 4.5−5.5

aCalculated for the (ζ = 280°, α = 300°, β = 180°) conformer of EMP,
using the IGLO-III basis set. bThe effect of molecular geometry
obtained as a difference between the 2JP,C values calculated for DMP
optimized with the CCSD and B3LYP methods (Table 2). cThe effect
of the NMR calculation method obtained as a difference between the
2JP,C
FC values calculated in DMP with the CCSD and B3LYP methods

(Table 2). dThe effect of basis set obtained as a difference between
2JP,C values calculated in EMP with the B3LYP/aug-cc-pCVQZ (near
basis-set limit) and B3LYP/IGLO-III methods.12 eThe effect of
dynamically averaged explicit solvent obtained as a difference between
the 2JP,C values calculated for A-RNA dinucleotide with dynamically
averaged explicit water solvent (−6.9 and −6.8 Hz with the
uncertainty of ∼0.4 Hz; see our previous work12) and the respective
values calculated here for the same model with the same computa-
tional method employing PCM of water solvent (−7.9 and −6.3 Hz).
fThe experimental 2JP,C couplings for the (g−, g−) conformer taken
from refs 23 and 25 (see also the Supporting Information, Table S2
and Figure S4).

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp2099043 | J. Phys. Chem. B 2012, 116, 3823−38333831



description of phosphate hydration by PCM. Our results
provide the missing link between the 2JP,C3′ and

2JP,C5′ spin−spin
coupling constants and the NA backbone torsion angles ζ and
α.

■ ASSOCIATED CONTENT
*S Supporting Information
Comparison of the dependencies of 31P chemical shift on the
(ζ, α) conformation of EMP and nPn. Correlation between
backbone torsion angles ζ, α, and β in RNA conformational
classes. Comparison of calculated principal components of the
31P chemical shielding tensor and their orientations in the
phosphate−frame coordinate system with previous theoretical
results and NMR experiment. Correlation of available
experimental 2JP,C couplings with torsion angles ζ and α.
Dependence of the 2JP,C5′ coupling on torsion angle β.
Dependence of the 3JP,C4′ coupling on the (ζ, α) conformation
of EMP. Optimized geometries of the DMP and EMP models.
This material is available free of charge via the Internet at
http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: ladislav.benda@uochb.cas.cz (L.B.); vladimir.
sychrovsky@uochb.cas.cz (V.S.). Phone: +420 220 183 234.
Fax: +420 220 183 578.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Czech Science Foundation,
Grant No. 205/10/0228. Z.S.V. and M.S. acknowledge support
by the Czech Science Foundation, Grant Nos. P208/10/P398
and 203/09/2037, respectively. V.S. was supported by a
Human Frontier Science Program (HFSP) Young Investi-
gator’s Grant.

■ REFERENCES
(1) Richardson, J. S.; Schneider, B.; Murray, L. W.; Kapral, G. J.;
Immormino, R. M.; Headd, J. J.; Richardson, D. C.; Ham, D.;
Hershkovits, E.; Williams, L. D.; Keating, K. S.; Pyle, A. M.; Micallef,
D.; Westbrook, J.; Berman, H. M. RNA 2008, 14, 465−481.
(2) Schneider, B.; Morav́ek, Z.; Berman, H. M. Nucleic Acids Res.
2004, 32, 1666−1677.
(3) Varani, G.; Aboul-ela, F.; Allain, F. H.-T. Prog. Nucl. Magn. Reson.
Spectrosc. 1996, 29, 51−127.
(4) Wijmenga, S. S.; van Buuren, B. N. M. Prog. Nucl. Magn. Reson.
Spectrosc. 1998, 32, 287−387.
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