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Katedra: Matematický ústav Univerzity Karlovy v Praze
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talu slitin s pamět́ı tvaru zahrnuj́ıćıho termodynamicky konsistentńı popis termome-
chanických vazeb. Pod pojmem “mesoskopický” v tomto kontextu rozumı́me schop-
nost modelu zachytit jemné prostorové oscilace deformačńıho gradientu pomoćı gra-
dientńıch Youngových měr. Existence řešeńı navrženého modelu byla dokázaná v tzv.
“phase-field”-aproximaci pomoćı přechodu z mikroskopického modelu obsahuj́ıćıho člen
popisuj́ıćı povrchovou energii. Tento přechod z fyzikálně relevantńıho modelu na jiné
škále zajist́ı oprávněnost mesoskopické relaxace. Existence řešeńı byla také dokázána
zpětnou Eulerovou časovou diskretizaćı. Tato metoda tvoř́ı koncept numerického algo-
ritmu, na němž byla založena poč́ıtačová implementace navrženého modelu. Ta byla
dále optimalizována pro rychlostně nezávislý isotermálńı př́ıpad. Vybrané výsledky
simulaćı spoč́ıtaných touto implementaćı jsou rovněž prezentovány. V neposledńı řadě
jsou uvedena zjemněńı analýzy v př́ıpadě konvexńı obálky Helmholtzovy volné energie
a odpov́ıdaj́ıćı limita phase-field aproximace.
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Title: Mathematical and computational modeling of shape-memory alloys
Author: Barbora Benešová
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Preface: motivation, overview of
main results

Motivation

Shape memory alloys (SMAs) are so-called intelligent (or smart or also active) materials
that exhibit remarkable hysteretic stress/strain/temperature responses and, hence, are
advantageous for a lot of applications in engineering and human medicine. In particular,
SMAs have the ability to recover their original shape after deformation just by heat
supply; this is referred to as the shape-memory effect.

The outstanding properties of SMAs are due to a diffusionless solid-to-solid phase
transformation, called the martensitic transition; this transformation can be (and usu-
ally is) accompanied by fast spatial oscillations of the deformation gradient referred to
as microstructure. It is exactly the formation of microstructure that play a key role in
the behavior of SMAs because the material can compensate stress by a reorientation
of the microstructure.

Mathematical and computational modeling of SMAs is challenging mainly because
of their multiscale character, when changes in the crystalline structure have crucial
impact on the macroscale. It has received huge attention during past three decades,
cf. the monographs (Bhattacharya, 2003; Dolzmann, 2003; Frémond, 2002; Frémond
and Miyazaki, 1996; Pitteri and Zanzotto, 2003). The variety of models is very large,
ranging from atomistic to continuum mechanical, from the ones focusing on special
loading regimes and/or particular phenomena to very general ones; cf. also (Roub́ıček,
2004) for a survey.

In order to model behavior of single-crystalline shape-memory alloys the so-called
mesoscopic scale is advantageous since laboratory-sized specimen can be taken into
account on this scale; models on this scale are based on relaxation in variational calculus
using gradient Young measures. So far, on the mesoscopic scale, the following types of
models have been scrutinized:

• Static models based on minimization of the Helmholtz free energy; cf. e.g. (Ball
and James, 1987, 1992; Müller, 1999).

• Evolutionary isothermal variants of mesoscopic models prescribing a Helmholtz
free energy and a dissipation potential; see (Kruž́ık et al., 2005; Mielke and
Roub́ıček, 2003).

• Evolutionary variants with a uniform temperature distribution in the specimen
with temperature prescribed as a load; see (Mielke et al., 2009; Mielke and Petrov,
2007).

However, a mesoscopic model including thermo-coupling effects has been still missing
although this coupling effects are absolutely essential for a complete description of
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SMAs; in particular they play a key role when understanding the shape-memory effect.1

Aims

Since accurate models including thermomechanic coupling on the mesoscopic scale have
still been missing a challenge the community working in this area faces can be summa-
rized as:

Design a thermodynamically and mathematically consistent modeling framework for
single crystalline SMAs on the mesoscopic scale that couples mechanic and thermal
effects and gives instructions on numerical analysis. Furthermore, find an experiment-
justified form of the constitutive parts of the modeling framework and implement the
concrete model to be able to compare its predictions to experiments.

Within this thesis we contribute to this challenge, in particular the following goals have
been set:

• To design a thermodynamically consistent modeling framework for single crys-
talline SMAs on the mesoscopic scale that couples mechanic and thermal effects
but possibly posses restriction on the involved energy/dissipation representation.

• To prove existence of solutions to the system of equations/inclusions representing
the modeling framework in a appropriate weak setting.

• To design a mathematically consistent discretization of system of equations/inclusions
representing the modeling framework.

• To implement a simple model falling within the modeling framework and compare
the results to theoretical predictions.

Overview of main results

The main results of this thesis and some of the papers developed within the work
on it (namely (Benešová, 2009; Benešová, Kruž́ık and Roub́ıček, 2012; Benešová and
Roub́ıček, 2012; Benešová, 2011a,b)) contribute to all of the set goals, in particular
results fall within the so-called “Modeling part” that is concerned with designing a
modeling framework, within the “Analytical part” where existence of solutions is proved
and the “Numerical part” on implementation; naturally there is a synergy between the
respective parts. Although all three parts are treated, emphasis was laid upon the
analytical part.

Modeling part

The modeling, we work within the framework of generalized standard materials in
continuum mechanics (Chapter 3) and the large strain setting ; let us sketch here the
main modeling ideas and the effects that can be captured.

We fix Ω ⊂ Rd as the reference configuration of the body, we define the deformation
of the body y : Ω → Rd and a variable capturing the microstructure ν ∈ G p(Ω;Rd×d)

1Such models exist on the macroscopic scale (e.g. (Frémond, 2002)); however, those models are
mathematically much easier to handle, so we can borrow only very few ideas on mathematics from
them.
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being a gradient Young measure2. The set of state variables further includes the tem-
perature θ : Ω → R and, as an internal variable, a vectorial phase-field λ : Ω → RM+1.
This phase-field corresponds (up to a possible small mismatch) to the volume fraction of
the high-temperature phases or to one of the so-called variants in the low-temperature
phase in some material point of the SMA specimen; its evolution is, in the presented
modeling approach, related with energy dissipation during phase transformation.

Within the framework of generalized standard solids (cf. (Halphen and Nguyen,
1975)), we constitutively define two potentials: the Gibbs free energy G = G(t, y, ν, λ, θ)
and a dissipation potential R = R(

.
λ), a careful choice of these potentials will allow us

to capture qualitatively some of the important phenomena in SMAs. The Gibbs free
energy is proposed in the form (see (5.6))

G(t, y, ν, λ, θ) =
∫
Ω
ψ̃0(·, λ, θ) •ν dx︸ ︷︷ ︸
stored energy

+

∫
Qκ(λ−L •ν)︸ ︷︷ ︸
mismatch term

−
∫
Ω
f(t, ·)·y dx−

∫
ΓN

g(t, ·)·y dS︸ ︷︷ ︸
energy of the applied load

,

where, “ • ” is the “momentum” operator (cf. the Nomenclature), f(t, x) is the applied

volume force and g(t, x) the applied surface force on one part of the boundary denoted
ΓN (cf. the Nomenclature). In the penalty-like mismatch term we use a quadratic form
Qκ : L2(Ω) → R, defined through (5.2), we assume that κ is large causing only a
presumably small mismatch between λ and L •ν, the latter being the volume fraction

stemming from microstructure.
The specific free energy ψ̃0(F, λ, θ) is assumed in the following, partly linear form

(see (5.1))

ψ̃0(F, λ, θ) = ϕ0(θ)︸ ︷︷ ︸
thermal
part

+ ϕ1(F )︸ ︷︷ ︸
multiwell

mechanical part

+ (θ−θtr)⃗a·λ︸ ︷︷ ︸
thermomechanical

coupling

,

where θtr is the transformation temperature (see Chapter 1) and a⃗ is related to the
transformation entropy (see Section 5.1); the linear thermomechanic coupling is the
leading term in the chemical energy and ϕ1 has typically a multiwell structure chosen
e.g. like in (Ball and James, 1987; Kruž́ık et al., 2005).

Due to the structure of ϕ1, the model predicts formation of microstructure in the
specimen, cf. (Ball and James, 1987; Bhattacharya, 2003; Müller, 1999); thermome-
chanic coupling term on the other hand drives the shape-memory effect. Thus, not only
the shape-memory effect but heating/cooling accompanying evolution of microstructure
can be captured.

It is well known and documented by many experiments (cf. e.g. (Novák et al., 2008;
Otsuka and Ren, 2005)) that the martensitic transformation is a dissipative process.

Hence, the dissipation potential R(
.
λ) is proposed to be of the form (see (5.9))

R(
.
λ) =

∫
Ω
ρq(
.
λ) dx,

with ρq of order q ≥ 2 but non-smooth at
.
λ = 0 to model the martensitic transformation

as an activated process. However, since the dissipation potential depends only on
.
λ,

purely geometric changes of the microstructure that do not change ratio of the phases3

are, on this scale, considered non-dissipative.

2See Chapter 2 for details on gradient Young measures.
3For simplification, we use in this introduction the term “phases”, but also changes of the ratio of

variants are considered dissipative.
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The evolution of the system is the, following (3.17)-(3.18), governed by the following
Biot’s type system of inclusions (note that we assume quasi-static evolution)

∂ν
(
G(t, y, ν, λ, θ) + δG p

ΓD
(Ω;Rd×d)

)
∋ 0, (1)

∂ .
λ
R(
.
λ) + ∂λG(t, y, ν, λ, θ) ∋ 0, (2)

with (due to the non-convexity of the set G p
ΓD

(Ω;Rd×d)) rather formally understood

(sub-)differentials ∂ and δG p
ΓD

(Ω;Rd) the indicator function to the set G p
ΓD

(Ω;Rd). The

system is completed by intial/boundary conditions and a heat equation for θ. This
equation will be derived from the local balance of the entropy s = −[ψ̃0]

′
θ that reads

(cf. (3.19))

θ
.
s+div j = heat-production rate = ∂ρq(

.
λ)·
.
λ, (3)

where j stands for the heat flux which assumed to be governed by the Fourier law
j = −K∇θ with the heat-conductivity tensor K = K(λ, θ).

Note that, due to the mentioned Gibbs relation s = −[ψ̃0(∇y, λ, θ)]′θ(λ, θ) = −ϕ′0(θ)−
λ, the model also predicts heating of parts of the specimen that undergo austenite-to-
martensite transformation and cooling in the parts undergoing the reverse transforma-
tion, as actually observed during experiments.

Let us stress that, contrary to (Mielke and Petrov, 2007), within our approach the
shape-memory effect can be modeled when prescribing the temperature only at the
boundary and not in the whole specimen. Also, when designing the model, special
attention was paid to thermodynamic consistency; cf. Section 5.2.

Analytical part

As far as mathematical analysis is concerned, we devise the following weak formulation
of the problem the system (1)-(3) in Section 5.3, namely in Definition 5.4 and are able
to prove the following theorem:

Theorem 0.1. Let (A1)-(A7)4 hold. Then at least one weak solution (y, ν, λ, w) to the
problem (1)-(3) in accord with Definition 5.4 does exist.

In other words, we can prove existence of solutions to (1)-(3) formulated weakly.

Two different methods have been devised to prove Theorem 0.1, each one of them
of its own particular importance. One method relies on finding a related modeling
framework that, however, takes the interfacial energy into account and is thus suitable
only for microscopical grains/specimen – we would call this framework “microscopic”
– and passing to the limit if the interfacial energy becomes negligible. This method is
particularly important from the modeling point of view since in surpasses scales and,
thus, justifies the mesoscopic approach based on relaxation. The other method relies
on time-discretization and, thus, gives instructions on numerical analysis.

The method of approximation through approximation by microscopic models is ex-
posed in Section 5.4 and has been published in (Benešová and Roub́ıček, 2012) while
the method based on time-discretization is contained in Section 5.5; this result is pub-
lished for the first time in this thesis. Let us, in this short overview, point out the basic
ingredients of both methods of proof.

4Assumptions (A1)-(A7) are stated in Section 5.3.
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The related microscopic framework, we need to prove Theorem 0.1, is obtained by
setting, within the framework of generalized standard solids, the Gibbs free energy to

Gε(t, y, λ, θ) =

∫
Ω
ψ̃0(F, λ, θ) dx︸ ︷︷ ︸
stored energy

+

∫
Ω

ε

2
|∇2y|2 dx︸ ︷︷ ︸

interfacial energy

+

∫
Qκ(λ−L(∇y))︸ ︷︷ ︸
mismatch term

−
∫
Ω
f(t, ·)·y dx−

∫
ΓN

g(t, ·)·y dS︸ ︷︷ ︸
energy of the applied load

.

Here, the stored energy, the applied loads as well as the mismatch term are taken from
the mesoscopic model and, as announced, an interfacial energy is added. Note that in
this case we work only with the deformation y – because of the interfacial energy there
is no need for relaxations. Physically this corresponds to the fact, that these models
are fitted to smaller scales at which the oscillations of the deformation gradient can be
resolved fully and not just in an average sense.

Furthermore, we set the dissipation potential to

Rε(
.
y,
.
λ) =

∫
Ω
ρq(
.
λ) + ε

∣∣∇.y∣∣dx,
where the first term is corresponds to the mesoscopic model while the second term
counts a small activation energy to vary the deformation gradient and can be concep-
tually related to the concept of wiggly energies as proposed in (Abeyaratne et al., 1996;
James, 1996).

The proof in Section 5.4 is then based on passing to the limit ε→ 0.
As far as time-discretization is concerned, we employ the Rothe method; i.e., we

introduce an equi-distant partition 0 = t0 ≤ t1 ≤ . . . ≤ tN = T with τ the distance
between the partition points and call (ykτ , ν

k
τ , λ

k
τ , θ

k
τ ) the time-discrete weak solutions

to the presented model, if they satisfy:
The minimization problem for λ with given λk−1

τ , θk−1
τ , yk−1

τ and νk−1
τ :

Minimize G(tk, yk−1
τ , νk−1

τ , λ, θk−1
τ ) + τR

(
λ−λk−1

τ
τ

)
+ τ

∫
Ω |λ|2q

subject to λ ∈ L2q(Ω;RM+1).

}
(4)

The minimization problem for (y, ν) with given λkτ , θ
k−1
τ , yk−1

τ :

Minimize G(tk, y, ν, λkτ , θk−1
τ )

subject to (y, ν) ∈W 1,p
ΓD

(Ω;Rd)× G p
ΓD

(Ω;Rd×d),

}
(5)

and the discretized heat equation.

The devised discretization relies on a kind of “altering minimization” of the increment
of the Gibbs free energy plus dissipation – a time discretization based on minimization
of this quantity is well known in the isothermal, rate-independent setting (Francfort
and Mielke, 2006; Mielke and Theil, 2004). The proof in Section 5.5 is the based on
passing to the limit τ → 0.

Besides these two methods of proof, we present in Chapter 6 changes in the mathe-
matical treatment in the convex case; in particular we prove an existence proof based on
yet on the more common discretization based on minimization of the increment of the
Gibbs free energy plus dissipation – this result has been obtained in (Benešová, Kruž́ık
and Roub́ıček, 2012). Moreover, we are able to pass to the limit κ → ∞, i.e., in this
case, we show that models containing the “mismatch term” approach those for which
the constrain λ = L •ν is fulfilled. This justifies the penalty-like “mismatch term” in

the non-convex case – this result is published for the first time within this thesis.
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Numerical part

Within this thesis, a numerical implementation of the system of equations/inclusions
(1)-(3) has been based on the proposed time-discretization; details are given in Chapter
7. Within computation the hardest part is to compute the global minima of the Gibbs
free energy in a very large state space having, possibly, several thousands degrees of
freedom. To this end, we tested several minimization algorithms and adapted them to
our case. Moreover, in the isothermal, rate-independent case further optimalizations
based on necessary conditions have been obtained. While the results on the isothermal,
rate-independent case have already been published in (Benešová, 2011a), simulations
on thermally coupled case are, for the first time, published here.

Results beyond the main scope of the thesis

Within the preparation of this thesis also two results were obtained that are beyond
the main scope of the topic of the resulting thesis but still connected to the area of
modeling of SMAs. Namely, the following two results were obtained:

• In (Benešová, Kruž́ık and Pathó, 2012) a subclass of gradient Young measures,
namely those that are (roughly) generated by sequences of gradients in Rd×d

bounded together with their inverse, has been obtained. This result represents a
contribution to an important, still open, problem on how to design relaxed ener-
gies to those that enforce the local non-interpenetration condition. The problem
is also related to mesoscopic models of SMAs that are based on relaxation and,
since the problem is still open, the interpenetration condition has to be omitted.
We present a summary of the results in Section 2.3.2.

• In (Sedlák et al., 2012) a macroscopic model for the SMA NiTi has been devised.
The model can be applied for complex loading situations, captures anisotropy
and the effect of the so-called R-phase. The results from this paper are not a part
of the thesis.

Overview of all papers prepared within the work on this thesis

• In (Benešová, 2009) calculations within a rate-indepentent model for the R-phase
of NiTi were presented.

• In (Benešová, 2011a) enhancements of the global-optimum search in the rate-
independent setting were proposed; cf. Section 7.2.

• In (Benešová, 2011b) the thermally coupled model presented in this thesis has
been introduced; cf. Chapter 5.

• In (Benešová, Kruž́ık and Roub́ıček, 2012) a thermally coupled model for micro-
magnetics has been studied; for the main mathematical outcomes see Chapter
6.

• In (Benešová and Roub́ıček, 2012) the micro-to-meso scale transition in the ther-
mally coupled case has been investigated; cf. Section 5.4.

• In (Benešová, Kruž́ık and Pathó, 2012) a subclass of Young measures relevant to
problems in elasticity has been characterized; cf. Section 2.3.2.

• In (Sedlák et al., 2012) a macroscopic model for SMAs has been proposed.
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Nomenclature

M number of martensitic variants
d dimension of the problem
θtr transformation temperature; cf. Section 1.1
Ω an open bounded domain in Rd with Lipschitz boundary; the reference

configuration except for Chapter 2
[0, T ] a time-interval on which the evolutionary problems are set
Γ the boundary of the domain Ω
ΓD the part of the boundary of the domain Ω where Dirichlet boundary

conditions are considered
ΓN the part of the boundary of the domain Ω where Neumann boundary

conditions are considered
Q = [0, T ]× Ω
Σ = [0, T ]× Γ
ΣD = [0, T ]× ΓD

ΣN = [0, T ]× ΓN

C a generic constant; possibly independent of some variables, if so it is
explicitly stated

id the identity mapping from Rd×d → Rd×d

I the identity matrix in Rd×d

O(d) the set of orthogonal matrices in Rd×d

SO(d) the set of rotations in Rd×d

δS the indicator function (in the sense of convex analysis) to the set S
C(Ω) the space of continuous functions on Ω equipped with the norm ∥u∥ =

maxx∈Ω̄ |u(x)|
Ck(Ω) the space of functions that have continuous derivatives up to the order

k on Ω
C(Ω̄;V ) the space of continuous functions on Ω̄ with values in some Banach

space V equipped with the norm ∥u∥ = maxx∈Ω̄ ∥u(x)∥V
C([0, T ];V ) the space of continuous functions on [0, T ] with values in some Banach

space V equipped with the norm ∥u∥ = maxt∈[0,T ] ∥u(t)∥V
Lp(Ω;V ) the space of p-integrable functions on Ω with values in some Ba-

nach space V equipped with the norm (for p ∈ [1,∞)) ∥u∥ =(∫
Ω ∥u(x)∥pV dx

)1/p
; if V = R we simply write Lp(Ω)

Lp([0, T ];V ) the space of p-integrable functions on [0, T ] with values in some
Banach space V equipped with the norm (for p ∈ [1,∞))∥u∥ =(∫ T

0 ∥u(t)∥pV dx
)1/p

; if V = R we simply write Lp([0, T ])
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M(Rd×d) the space of Radon measures on Rd×d

W 1,p(Ω;V ) the Sobolev space of p-integrable functions on Ω whose distri-
butional derivatives are also p-integrable with values in a Ba-
nach space V equipped with the norm (for p ∈ [1,∞))∥u∥ =(∫

Ω ∥u(x)∥pV + ∥∇u(x)∥pV dx
)1/p

; if V = R we simply write W 1,p(Ω)
W 1,p([0, T ];V ) the Sobolev space of p-integrable functions on [0, T ] whose dis-

tributional derivatives are also p-integrable with values in a
Banach space V equipped with the norm (for p ∈ [1,∞))

∥u∥ =
(∫ T

0 ∥u(t)∥pV + ∥∇u(t)∥pV dt
)1/p

; if V = R we simply write

W 1,p([0, T ])

W 1,p
ΓD

(Ω;V ) the space of Sobolev functions with y(x) = x on ΓD ⊂ ∂Ω

W 2,2(Ω;V ) the Sobolev space of quadratically integrable functions on Ω whose
first and second distributional derivatives are also quadratically in-
tegrable with values in a Banach space V equipped with the norm

∥u∥ =
(∫

Ω ∥u(x)∥2V + ∥∇u(x)∥2V + ∥∇2u(x)∥2V dx
)1/2

; if V = R we
simply write W 2,2(Ω)

H−1(Ω;V ) the dual space to W 1,2
0 (Ω;V ∗) with V ∗ the dual to the reflexive

Banach space V .
BV ([0, T ];V ) the space of function with bounded variation with values in the Ba-

nach space V equipped with the norm ∥u∥ = sup
{∑N

i=1 ∥u(ti+1)−

u(ti)∥V ; over all partitions 0 ≤ t1 ≤ t2 . . . ≤ tN ≤ T
}

B([0, T ];V ) the spaces of bounded not necessarily measurable functions on [0, T ]
with values in the Banach space V

p′ the conjugate exponent to p ∈ [1,∞], namely p′ = p
p−1

p∗ the exponent in the embedding W 1,p(Ω;V ) ↪→ Lp∗(Ω;V ), namely
p∗ = dp

d−p if Ω ⊂ Rd and p < d, p∗ is anything in [1,∞) if p = d and
p∗ = ∞ if p > d

p♯ the exponent in the trace operator u → u|Γ : W 1,p(Ω;V ) →
Lp♯(Γ;V ), namely p♯ = dp−p

d−p if Ω ⊂ Rd and p < d, p♯ is anything in

[1,∞) if p = d and p♯ = ∞ if p > d
Wα,p(Ω;V ) the Sobolev space of p-integrable functions on Ω having fractional

derivatives (for α ∈ (0, 1))
Y (Ω;Rd×d) the set of Young measures defined in (2.18)
Y p(Ω;Rd×d) the set of Lp-Young measures defined in (2.19)
G (Ω;Rd×d) the set of gradient Young measures defined in (2.21)
G p(Ω;Rd×d) the set of Lp gradient Young measures defined in (2.22)
GΓD

(Ω;Rd×d) the set of gradient Young measures generated by sequences being
identity on ΓD defined in (2.23)

G p
ΓD

(Ω;Rd×d) the set of Lp gradient Young measures generated by sequences being
identity on ΓD defined in (2.24)

• the momentum operator defined through (2.17)
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Chapter 1

Introduction to shape-memory
alloys

Shape-memory alloys (SMAs) belong to the class of so-called smart materials owing
to their outstanding thermo-mechanic properties. Namely, the following characteristic
responses to thermo-mechanical loading (cycles) are of particular interest to physi-
cists, engineers as well as mathematicians (see e.g. the monographs and review papers
(Bhattacharya, 2003; Dolzmann, 2003; Frémond, 2002; Otsuka and Ren, 2005; Pitteri
and Zanzotto, 2003; Roub́ıček, 2004)): the shape-memory effect, pseudo-plasticity and
super-elasticity.

The shape-memory effect refers to the possibility to induce mechanic deformation far
beyond thermal expansion by heat supply. In more detail, whenever a SMA-specimen
is deformed at a temperature lower than a critical temperature θtr (will be defined in
Section 1.1, below), it can recover its original shape if it is heated to temperature above
θtr. The shape-memory effect was first observed in 1951 for an Au-Cd alloy and has
been documented in many experimental papers for various alloys since then (cf. e.g.
the review paper (Otsuka and Ren, 2005) and references therein).

Further, when a SMA-specimen is mechanically loaded at a temperature lower than
θtr it maintains its new shape, even after all loads are released. This is similar to a
plastic response and hence this effect is referred to as pseudo-plasticity. Note, that the
material can recover its original shape upon heating.

If kept at a temperature higher that θtr a SMA-specimen can be mechanically loaded
up to several percents and, when all loads are released, it returns to its original shape.
This effect is know as super-elasticity.

Due to these unique responses to thermo-mechanical loads, SMAs have a strong
potential to be applied in a variety of technical systems like self-erecting space antennae,
helicopter blades, surgical tools, reinforcement for arteries and veins, self-locking rivets
or actuators; in some of them SMAs are already used routinely today (Hartl et al.,
2009; Machado and Savi, 2003).

Let us stress, at this point, that this work will consider only single-crystalline SMA
specimen.

1.1 Martensitic transformation

All the remarkable temperature-stress-strain responses of SMAs are due to a diffusion-
less, first-order solid-to-solid phase transition, called the martensitic transformation a
SMA can undergo when exposed to thermal or mechanic loads. This transformation is
characterized by a change in the symmetry of the crystal lattice of the alloy. Namely,
a stress-free SMA-specimen is at high temperatures (above θtr) stable in the austenitic
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phase, characterized by a higher symmetry of the atomic lattice (usually cubic sym-
metry). At low temperatures in stress-free condition the stable phase, martensite, is
characterized by lower symmetry of its atomic lattice. It is exactly this lower symme-
try that allows the martensite to be found in several so-called variants, which can be
combined to form microstructure (cf. Section 1.2). Changes in this microstructure are
often called martensite reorientation and form a key ingredient for thermo-mechanical
responses described above. In more detail this is explained in Section 1.2, making use
of the description of the phases/variants of a SMA by deformation gradients.

It has been proven experimentally (cf. e.g. (Otsuka and Ren, 2005)) that the marten-
sitic transformation is a dissipative process. So is martensite reorientation (Sedlák et al.,
2012); an important experimental finding backing this claim is the so-called marten-
site stabilization. Namely, is has been observed, on single- as well as on polycrystals,
that the temperature at which a SMA-specimen transforms from martensite back to
austenite is considerably higher when it has been subject to (specific) mechanical loads
before heating (Liu and Favier, 2000; Picornell et al., 2006).

For modelling, we shall follow, in this work, e.g (Bhattacharya, 2003) and assume
that, in the static situation, there is exactly one temperature θtr at which austenite
and martensite are energetically equivalent. Above this temperature, only austenite
is (energetically) stable (in stress-free configuration), below it only martensite. This
approach has also been exploited by a large number of other authors, e.g. (Aubry
et al., 2003; Auricchio and Petrini, 2002; Ball and James, 1992; Kruž́ık et al., 2005;
Mielke and Roub́ıček, 2003; Sadjadpour and Bhattacharya, 2007b). We refer to this
specific temperature as the transformation temperature; however, as explained below,
this temperature does not, even in stress-free situations, need to be the one at which
austenite actually transforms to martensite or vice versa.

In experiments, often a whole range of temperatures in which martensite and austen-
ite co-exist in the specimen is observed (Liu and Favier, 2000; Otsuka and Ren, 2005;
Šittner et al., 2004); moreover this range differs when the transformation proceeds from
austenite to martensite from the one observed in the reverse transformation. Yet, this
is rather evidence that the martensitic transformation is dissipative than a falsification
of our assumption of one transformation temperature. Indeed, if the amount of energy
that the material would lose in dissipation by performing a martensitic transformation
in the whole specimen is larger that the energy gain by performing it, it might be ad-
vantageous to transform only partly. Similarly, martensite stabilization (Liu and Favier,
2000; Picornell et al., 2006) is rather an indication for the presence of dissipation due
to martensite reorientation rather than falsifying our assumption.

Some experiments also hint to the idea that if the single-crystalline SMA specimen
did not have corners at the martensitic transformation would not start upon heating
(Ball et al., 2011). Still, we are entitled to use one transformation temperature, if we
understand it to be, as already pointed out, the temperature of energetic equilibrium
between austenite and martensite. Indeed, it has been shown in (Ball et al., 2011) that
the experimentally observed phenomenon can be explained by the mechanic incompat-
ibility of an austenitic nucleus in the martensite specimen apart from corners; i.e. if a
nucleus apart the corner formed the specimen had to break within the simplified model
used in (Ball et al., 2011).1

1In (Ball et al., 2011) the Helmholtz free energy was chosen to be finite only for deformations
gradients corresponding to austenite/the variants of martensite and their rotations. However, since
elastic constants of SMAs are rather large compared to other parameters entering mesoscopic models,
a similar behavior can be expected within model presented in Chapters 4 and 5.
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1.2 Crystalline structure and its relation to continuum
mechanics

Since it is the crystalline structure that characterizes the different phases of a SMA, let
us briefly review its description and how it can be translated in to continuum mechanics.

As any other solid crystalline material, SMAs consist of atoms that are arranged
into a crystal lattices described by a set of three linearly independent vectors {ea}. The
set of points

L(ea) = {x ∈ Rd, x =
∑
a

naea, na ∈ Z}, 2 (1.1)

is then called a lattice, cf. (Pitteri and Zanzotto, 2003, pages 61-62).
The crystal structure is usually characterized by the point group of symmetry G(ea)

of its lattice defined as

G(ea) = {H ∈ O(d), L(Hea) = L(ea)}, (1.2)

where O(d) denotes the set of all orthogonal tensors. If the group of symmetry is larger,
the crystalline structure is said to be more symmetric and vice versa.

As already announced, a typical SMA exhibits two kinds of crystalline structures: a
more symmetric one, the austenitic structure and a less symmetric one, the martensitic
structure; it is of key importance that the martensitic point group of symmetry is a
subgroup of the astenitic one Bhattacharya et al. (2004). In some SMAs, like in NiTi,
even a third structure can be observed; in NiTi this is the so-called R-phase (cf. (Šittner
et al., 2004)).

In SMAs the austenitic structure is usually of a cubic symmetry, while the marten-
sitic structures can have e.g. a tetragonal (NiMgGa, cf. (Bhattacharya, 2003; Kruž́ık
and Roub́ıček, 2004)), an orthorhombic (CuAlNi, cf. (Bhattacharya, 2003; Kruž́ık et al.,
2005)), a rhombohedral (R-phase of NiTi, cf. (Hane and Shield, 2000; Šittner et al.,
2004)) or a monoclinic (martensite of NiTi, cf. (Bhattacharya, 2003)) symmetry.

Since, in this work, we shall be concerned only with models of SMAs that operate on
the continuum mechanics level, we need to transform the description of the austenitic
and martensitic phases by crystalline structure to continuum mechanics. Before doing
so, let us review some basic kinematic concepts in continuum mechanics we will need
to use.

In continuum mechanics one assumes3 that the investigated body is exposed to an
action of forces or displacements on the boundary, which cause a mechanical response
characterized by a vectorial function called deformation.

Indeed, having a body occupying the domain Ω ⊂ Rd in the reference configuration
(in this work the stress-free austenitic state is always assumed to be the reference
configuration), any smooth injective function y(t) : Ω → Rd such that det∇y(x, t) > 0
is called a deformation of the body.

In solids, as in the situation considered in this work, the deformation gradient, ∇y,
is often used as the main variable describing the state of the material (Gurtin, 1982).
We shall hence assign appropriate deformation gradients to the respective crystalline
structures. First of all, we identify the reference austenitic configuration, where the
atoms of the body are organized in a lattice L(e0a), with the identity matrix, I ∈ Rd×d.
If then these atoms are rearranged to a lattice L(ea), e.g. by transforming to marten-
site, we may assume that the effect is the same as if a homogeneous deformation,
the deformation gradient, F , of which satisfies Fe0a = ea, had been applied. This as-
sumption is backed by the so-called Cauchy-Born hypothesis (cf. (Bhattacharya, 2003,

2Recall that d is the dimension of the problem.
3For an introduction to continuum mechanics we refer to e.g. (Gurtin, 1982).
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Figure 1.1: Micrograph of the microstructure observed in the SMA CuAlNi. Courtesy
of Hanuš Seiner, LUM, Institute of Thermomechanics of the ASCR.

pages 34-37)). Therefore, we assign to a martensitic structure with the crystall lattice
L(ea) exactly this matrix F and will use L(ea) and F interchangeably to describe the
martensitic structure.

Now, due to the lower symmetry of the martensitic crystalline structure, several
matrices F i, such that F i ̸= QF j for any rotation Q ∈SO(d), can be found that
transform the austenitic into a martensitic lattice with the prescribed symmetry. These
matrices characterize so-called variants of martensite. To see this clearer, consider
a simple example of a shape memory alloy having a cubic crystalline structure in
austenite and tetragonal in martensite. Then, we can form a (martensitic) cuboid by
stretching the (austenitic) cube along one arbitrary axis of the coordinate system.
All these stretches (described by appropriate deformation gradients Ui) realize the
transformation from a cubic to a tetragonal lattice; notice that no Q ∈ SO(d) exists
such that Ui = QUj . Hence, though there is only one martensitic phase, we identified
d variants of martensite. 4

It can be observed (cf. e.g. (Bhattacharya, 2003; Pitteri and Zanzotto, 2003) and
also Figure 1.1) that variants of martensite can be combined into so-called twins or
laminates. This refers to an arrangement two variants of martensite characterized by
matrices U1 and U2 into narrow stripes like in Figure 2.1. This kind of microstructure is
often formed to minimize the elastic energy (see Example 2.20 in Chapter 2). However,
such stripes can only be formed between variants characterized by matrices that satisfy

U1 −QU2 = a⊗ n,

for some vectors a and n and some Q ∈ SO(d). This condition assures that it is possible
to form a planar interface between the two variants in such a way that the overall
deformation is continuous; note that n, in particular, is the normal of the interface.
We shall elaborate the formation of microstructure in more detail in Chapters 2 and 4.
Yet, only the knowledge about the existence of microstructure and twinning allows us
to explain, from the microscopic point of view, the most prominent stress-temperature
responses observed in SMAs.

To explain the shape-memory effect suppose that the specimen is held at a temper-
ature θ < θtr, in martensite, in stress-free configuration. Assume, moreover, that inside

4Occasionally in mathematical literature (e.g. (Kruž́ık et al., 2005)), the name “phases” is also used
for variants of martensite; in this thesis we might use this nomenclature only when there is no risk of
confusion.
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the specimen a microstructure, e.g a laminate, has formed. Usually, a SMA specimen is
capable to form this microstructure in such a way that the overall (stress-free) shape of
the specimen is the same as the shape of the (stress-free) austenite - assume therefore
that the material is in this special state. When being deformed by a (suitable) small
enough loading the deformation can be compensated by rearrangement of variants and
a change in microstructure (cf. (Bhattacharya, 2003, pages 143-150)). On heating, a
phase transition to austenite occurs; yet since there is only one variant of austenite
there is only one possible shape it can have in a stress free configuration. Therefore the
specimen will recover exactly this shape.

In the superelastic regime the specimen is held at a temperature θ > θtr; hence
the specimen is in the austenitic state. When (suitable) mechanical loads are applied,
it transits to martensite and creates a microstructure. The mechanical loads will first
induce the phase transition and then force a change in microstructure as described in
the case of the shape-memory effect. After removing all loads the only stable stress free
configuration at the given temperature is the austenitic one and therefore the material
recovers its original shape, similarly as if the material were elastic. (see also (Huo et al.,
1994))

Pseudo-plasticity on the other hand occurs when θ < θtr and mechanical loading is
applied. Similarly to the previous cases, the deformation leads to a rearrangement of
variants. When all loads are released the new microstructure is stable as well, so the
shape of the material is unchanged. Therefore, the behavior of the material seems to
be plastic.

1.3 Overview of modeling approaches in the case of SMAs

Of course, modeling the behavior of SMAs is crucial for optimizing their usage in tech-
nical systems and hence has received a large amount of attention from mathematicians
(cf. e.g. (Arndt et al., 2006; Ball and James, 1987; Dolzmann, 2003; Kruž́ık et al., 2005;
Mielke et al., 2009; Mielke and Roub́ıček, 2003; Paoli and Petrov, 2011; Roub́ıček,
2004; Roub́ıček et al., 2007)) as well as engineers (cf. e.g. (Auricchio and Petrini, 2004;
Auricchio et al., 2007; Hartl and Lagoudas, 2009; Hartl et al., 2010; Khandelwal and
Buravalla, 2009; Lagoudas et al., 2011; Lexcellent et al., 2006; Panico and Brinson, 2007;
Souza et al., 1998)) in the past decades. Mathematically correct and accurate models
are also highly desired by physicists to help them with interpretation of measured data.

Clearly, modeling the response of SMAs is really a multiscale problem. Depending
on the purpose of the model, one can approach the description of SMA behavior on
different scales ranging from the nano-scale considering only several hundreds of atoms
to truly macroscopic models for polycrystalline materials (Roub́ıček, 2004); cf. also
Figure 1.3. Naturally, the larger sizes of the specimen the model considers, the larger
is the amount of phenomenology entering the model.

In Figure 1.3 several representative modeling scales are depicted; let us now describe
them in more detail.

• Models on the atomic level or nanoscale use molecular dynamics to predict the
behavior of the specimen, cf. e.g. (Entel et al., 2000; Meyer and Entel, 1998;
Rubini and Ballone, 1995); thus they are able to model only small grains of the
size of several nm. For results on mathematical analysis on this scale, we refer to
e.g. (Schwetlick and Zimmer, 2007).

• Scales about 1-100 µm will be considered as the microscopic level in this work. At
this level, it is appropriate to use continuum mechanics as the modeling framework
and thus deformation gradients as well as, if necessary, temperature fields are used
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Figure 1.2: A schematic representation of the different scales of an SMA taken from
(Roub́ıček, 2004).

to describe the state of the material. It is characteristic for this scale that the
microstructure inside the specimen needs to be fully resolved at this level. Works
considering microscopic models include e.g. (Arndt et al., 2006; Aubry et al.,
2003; Bhattacharya and James, 1999; Stupkiewicz and Petryk, 2002, 2004, 2010).

• The mesoscopic scale is suitable for modeling responses of single crystals of SMA
(i.e. at the mm- or cm-scale). At this level, it is again appropriate to use continuum
mechanics; however, unlike in microscopic models, the state of the material is
described only by “averaged” microscopic deformation gradients (the appropriate
mathematical tool are (gradient) Young measures, cf. Chapter 2) and volume
fractions of the corresponding phases. The modeling assumptions characterizing
this scale are given in more detail in Chapter 4; there also the existing literature
is reviewed.

• The so-called macroscale is used to model polycrystalline specimen, again in the
size of cm. Models on this scale are rather phenomenological and use adequate
internal variables (like the vector of volume fractions of martensite and the trans-
formation strain, see e.g. (Sedlák et al., 2012)) to describe the state of the speci-
men. Constitutive equations are chosen in such a way, that the model reproduces
thermal/mechanical loading cycles; often some parameters need to be fitted. A
non-exhaustive list of macroscopic models proposed in the past years includes
(Auricchio et al., 2007; Bernardini and Pence, 2002; Frost et al., 2010; Hartl and
Lagoudas, 2009; Hartl et al., 2009; Lagoudas et al., 2011; Lexcellent et al., 2000;
Panico and Brinson, 2007; Patoor et al., 2006; Rajagopal and Srinivasa, 1999;
Sedlák et al., 2010; Souza et al., 1998).

One of the biggest challenges in mathematical modeling is not only to analyze the
models on every individual scale, but also to rigorously prove a scale transition between
the respective models, when, due to the increased size of the specimen, some quantities
become negligible and/or the response corresponds to a homogenized structure (Patoor,
2009; Roub́ıček, 2004). As far as the transition from the nanoscale to the microscopic
scale is concerned, so far, only very few results on a rigorous scale transition between
these two levels are given in literature (Zimmer, 2006), one of the pioneering works
aiming however to plasticity rather then SMAs is (Mielke and Truskinovsky, 2012).

As to the transition between the microscopic and mesoscopic models, note, that in
this work we rigorously prove that the description on the mesoscopic level can be seen
as a limit of microscopic models when the surface energy of twin boundaries and/or
austenite/martensite interface becomes negligible compared to the total stored energy
of the specimen, cf. Chapter 5. While this is fairly easy to establish in the static case
(see Proposition 4.1), in Theorem 5.12 we prove a (formalized version) of this statement
also in thermally coupled case.
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The scale transition from the micro/mesoscopic level to the macroscopic level seems
to be very hard not only from the mathematical but also from the physical point of
view - e.g. the precise influence of texture of the material on its overall behavior is still
not explored well enough; it could be based on some statistical approach as in (Bruno
et al., 1996).
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Chapter 2

Mathematical background on
relaxation of variational problems

In this chapter we shall review some basic mathematical concepts on relaxation in
calculus of variations. To this end, let us define the functional I :W 1,p(Ω;Rd) → R as

I(y) =

∫
Ω
ϕ(∇y) dx, (2.1)

and we shall be concerned with the problem

Minimize I(y)

subject to y ∈W 1,p
ΓD

(Ω,Rd),

}
(2.2)

with ΓD ⊂ ∂Ω, Ω a regular domain, W 1,p
ΓD

(Ω,Rd) =
{
W 1,p(Ω;Rd) with y = x on ΓD

}
(cf. also the Nomenclature) and ϕ a continuous function1, usually of p-growth, i.e.

c1(|F |p − 1) ≤ ϕ(F ) ≤ c2(1 + |F |p), (2.3)

for some c1, c2 > 0.

In Section 2.2 we shall first state under which assumptions on ϕ one can guarantee
existence of solutions to (2.2), i.e. we introduce quasiconvexity. Also, we introduce
upper and lower bounds for the quasiconvex envelope. In Section 2.3.1 we introduce
(gradient) Young measures and state their basic properties. Finally, in Section 2.3.2, we
introduce a recent characterization of a special subset of Young measures, that, when
used for relaxation, allows for a generalization of the constraint (2.3) on ϕ.

Let us note that, since this chapter is understood as an introductory review, we
give the majority of theorems without proofs and only refer to literature.

2.1 Basic notation

Before starting the review in the next sections, let us fix, at this point, some notation
we shall use hereinafter.2

As already announced in the Nomenclature, if not specified differently, the exponent
p takes values in (1,∞), i.e. excluding 1 and ∞.

1We do not consider ϕ dependent on x; however all of theorems stated here have been generalized
also to this case if ϕ is a Carathédory function; cf. (Benešová, Kruž́ık and Pathó, 2012; Dacorogna,
1989; Pedregal, 1997)

2Let us remind the reader that some basic notation has also been summarized in the Nomenclature
at the beginning of this thesis.
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Standardly, C0(Rd×d) denotes for the space of all continuous functions on Rd×d → R
vanishing at infinity, hence C0(Rd×d) = Cc(Rd×d) with Cc(Rd×d) the space of continuous
functions with compact support. By the classical Riesz theorem (see e.g. the monograph
(Rudin, 1991)) its dual C0(Rd×d)∗ is isometric isomorph to the space of Radon measures
M(Rd×d), normed by the total variation. We shall denote by L∞

w (Ω;M(Rd×d)) the
space of essentially bounded weakly* measurable mappings x 7→ νx : Ω → M(Rd×d);
the adjective “weakly* measurable” means that, for any v ∈ C0(Rd×d), the mapping
Ω → R : x 7→ ⟨νx, v⟩ =

∫
Rd×d v(s)νx( ds) is measurable in the usual sense.

Let us also introduce continuous functions with “sub-p growth” as

Cp(Rd×d) :=

{
v ∈ C(Rd×d); lim

|s|→∞

v(s)

|s|p
= 0

}
.

Eventually, we shall also need continuous functions with an appropriate growth defined
only on invertible matrices Rd×d

inv

Cp,−p(Rd×d
inv ) :=

{
v ∈ C(Rd×d

inv ); lim
|s|+|s−1|→∞

v(s)

|s|p + |s−1|p
= 0

}
. (2.4)

2.2 Quasiconvexity, polyconvexity and rank-one convexi-
ty

To formalize ideas, let us take I from (2.1) with ϕ continuous, satisfying (2.3) and
p ∈ (1,∞).

As highlighted above, we are to investigate existence of minima; a convenient
method of proving that I possesses at least one minimizer is the so-called direct method
which works as follows: Take {yk}∞k=0, an infimizing sequence of the functional I, which,
due thanks to (2.3) (coercivity), will be bounded in W 1,p(Ω,Rd). Hence, due to the re-
flexivity of Sobolev spaces for p ∈ (1,∞), a subsequence of {yk}∞k=0 (not-relabeled) con-
verges weakly to y inW 1,p(Ω,Rd). If I were (sequentially) weakly lower semi-continuous
on W 1,p(Ω,Rd) 3 then clearly y would be the sought minimizer - i.e. weak lower semi-
continuity is a sufficient property for I to have minimizer. Therefore, we shall concen-
trate on studying this property; in fact we shall see that, provided (2.3), I is weakly
lower semi-continuous if and only if it is quasiconvex (cf. Definition 2.1 and Proposition
2.2).

Definition 2.1. 4 We say that a continuous φ : Rd×d → R is quasiconvex in Y ∈ Rd×d

if

φ(Y ) ≤ inf
ω∈W 1,∞

0 (Ω,Rd)

1

|Ω|

∫
Ω
φ(Y +∇ω) dx. (2.6)

A function φ quasiconvex in Y is called W 1,p-quasiconvex if moreover

φ(Y ) ≤ inf
ω∈W 1,p

0 (Ω,Rd)

1

|Ω|

∫
Ω
φ(Y +∇ω) dx. (2.7)

The function φ is called simply (W 1,p-)quasiconvex if it is (W 1,p-)quasiconvex in all
Y ∈ Rd×d.

3I is(sequentially) weakly lower semi-continuous on W 1,p(Ω,Rd) if, for any sequence yk ⇀ y in
W 1,p(Ω,Rd),

I(y) ≤ lim inf
k→∞

I(yk). (2.5)

4The notion of quasiconvexity was introduced by Morrey (1952), the generalized concept of W 1,p-
quasiconvexity was later introduced by Ball and Murat (1984).
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Proposition 2.2. 5 Let ϕ : Rd×d → R be a continuous function satisfying (2.3) for
every F ∈ Rd×d and p ∈ (1,∞). Then the I defined through (2.1) is weakly lower
semi-continuous if and only if ϕ is quasiconvex.

If ϕ in (2.1) fails to be quasiconvex, existence of solutions (2.2) to usually cannot be
established by the direct method; often, even non-existence of minima is a consequence.
In this situation, therefore, we need to find a relaxation of the original problem.

Definition 2.3. 6 Take a functional I : V → R, with V a linear vector space. Further,
let us take a linear vector space X on which a notion of convergence is defined. Then
we call the functional Ĩ : X → R is called a relaxation of I, if

1. V ⊂ X, or if at least V can be identified with a subset of X through an isomor-
phism,

2. there exists x̃ ∈ X satisfying Ĩ(x̃) = min
x∈V X Ĩ(x) with V

X
denoting the closure

of V with respect to the convergence on X,

3. any cluster point of an infimizing sequence to I, with respect to the convergence
on X, satisfies that Ĩ(x̄) = min

x∈V ∥·∥X Ĩ(x).

4. for any x̃ ∈ X such that Ĩ(x̃) = min
x∈V X Ĩ(x) there exists a minimizing sequence

of I that converges to x̃.

In order to define relaxations of I from (2.1) with ϕ not quasiconvex we introduce
the quasiconvex envelope of ϕ through

Qϕ(Y ) = sup
{
φ(Y );φ quasiconvex, φ(F ) ≤ ϕ(F ) for all F ∈ Rd×d

}
, 7 (2.8)

and define the following functional

I∗(y) =

∫
Ω
Qϕ(∇y) dx. (2.9)

As shown by the following proposition, I∗(y) is then a relaxation of I(y):

Proposition 2.4. 8 Take I from (2.1) with ϕ continuous, satisfying (2.3). Then there
exists a minimizer of I∗ on W 1,p

ΓD
(Ω,Rd) and

min
y∈W 1,p

ΓD
(Ω,Rd)

I∗(y) = inf
y∈W 1,p

ΓD
(Ω,Rd)

I(y).

Moreover, any cluster point of an infimizing sequence {yk}k∈N inW 1,p
ΓD

(Ω,Rd) minimizes
I∗ and vice versa any minimizer of I∗ is a cluster-point of a infimizing sequence of I.

5This proposition is essentially due to Morrey (1952). Actually, if (2.3) is fulfilled, ϕ is even W 1,p-
quasiconvex; so, we could equivalently demand ϕ to be also W 1,p-quasiconvex as shown by (Ball and
Murat, 1984).

6Note that the definition of relaxation given is very general in order to able to cope also with
relaxation by Young measures.

7If ϕ is a locally bounded continuous function the quasiconvex envelope can also be defined as (see
e.g. (Dacorogna, 1989, Section 5.1.1.2))

Qϕ(Y ) = inf
ω∈W

1,p
0

1

|Ω|

∫
Ω

ϕ(Y +∇ω)dx.

8This is originally due to Dacorogna (1989, Section 1), here taken from (Pedregal, 1997).
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Remark 2.5. An important property that allows us to prove that I∗ really possesses
minimizers is the fact that the growth of ϕ (2.3) is preserved also for its quasiconvex
envelope (Dacorogna, 1989); in particular, the coercivity is preserved, which allows us
to extract a weakly converging subsequence out of the infimizing sequence.

Hence, we have found a suitable relaxation of I (from 2.1) through calculating the
convex hull of ϕ. Yet, even if we could use the formula

Qϕ(Y ) = inf
ω∈W 1,p

0

1

|Ω|

∫
Ω
ϕ(Y +∇ω)dx,

to do so, we had to explicitly solve yet another minimization problem, that we are,
mostly, unable to do. Therefore, it is desirable to replace, e.g. in numerical calcula-
tions, the quasiconvex hull by some kind of its approximation; two approximations are
commonly used: the polyconvex hull and the rank-1 convex hull. To introduce these
two, let us first define rank-1 convex and polyconvex functions.

Definition 2.6 (Polyconvexity). 9 We say that a function φ : Rd×d → R is polyconvex
if there exist another function ψ : Rd×d × Rd×d × R 7→ R that is convex such that

φ(A) = ψ(A, cof(A), det(A)).

Definition 2.7 (Rank-1 convexity). 10 We say that φ : Rd×d → R is rank-1 convex if

ϕ(λF1 + (1− λ)F2) ≤ λϕ(F1) + (1− λ)ϕ(F2). (2.10)

for all λ ∈ [0, 1] and all F1, F2 such that rank(F1 − F2) ≤ 1

Having Definitions 2.6 and 2.7 at hand, the polyconvex envelope of ϕ is, analogously
to (2.8), defined through

Pϕ = sup
{
φ(Y );φ polyconvex, φ(F ) ≤ ϕ(F ) for all F ∈ Rd×d

}
, (2.11)

whereas the rank-1 convex envelope of ϕ is defined analogously through

Pϕ = sup
{
φ(Y );φ rank-1 convex, φ(F ) ≤ ϕ(F ) for all F ∈ Rd×d

}
. (2.12)

Due to the general relation

convexity ⇒ polyconvexity ⇒ quasiconvexity ⇒ rank-1 convexity, 11 (2.13)

we find that for the envelopes and their minimizers/infimizers the following relations
holds

Pϕ ≤ Qϕ ≤ Rϕ ≤ ϕ, (2.14)

min
v∈V

∫
Ω
Pϕ(x, v)dx ≤ min

v∈V

∫
Ω
Qϕ(x, v)dx = inf

v∈V

∫
Ω
Rϕ(x, v)dx = inf

v∈V

∫
Ω
ϕ(x, v)dx, (2.15)

9The notion of polyconvexity was introduced by Ball (1977).
10The notion of rank-1 convexity was introduced by Morrey (2008).
11This can be found e.g. in (Dacorogna, 1989). Note that none of the converse implications holds

if ϕ : Rd×d → R and d > 2 (while for d = 1 all implications are in fact equivalences). To see that
polyconvexity does not imply convexity (even for d > 1) just consider the function ϕ(F ) = det(F )
which is even polyaffine but not convex. Also quasiconvexity does not imply polyconvexity even for
d > 1 as was shown in e.g. (Dacorogna, 1989). Šverák’s important counter example (Šverák, 1992) is a
construction of a function that is rank-1 convex, but not quasiconvex and holds for d > 3. For d = 2
the question whether quasiconvexity and rank-1 are equivalent is still open.
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with V =W 1,p
ΓD

(Ω;Rd).
Therefore, working with the polyconvex envelope (as an estimation of the quasi-

convex one) can lead to under-relaxation of the problem, i.e. the energy corresponding
to the found minimizer is too small. On the other hand, working with the rank-1 con-
vex envelope bears the drawback that for it the existence of minimizers cannot be
guaranteed.

Nevertheless, both the polyconvex and the rank-1 convex envelope have the advan-
tage that they can be, at least in some approximation, calculated numerically. Moreover,
the infimum of the rank-1 convex envelope gives the same value as the minimum of the
quasiconvex one. Of course the supremum definitions (2.11) - (2.12) are not suitable to
do so, since they are not explicit; however for the rank-1 convex envelope we can exploit
Proposition 2.812 while for the polyconvex envelope so-called polyconvex measures (see
Definition 2.17 and (Bartels and Kruž́ık, 2011)) can be employed.

Indeed for the rank-1 convex envelope we have:

Proposition 2.8. 13 Let φ : Rd×d → R be bounded from below. Then for any F ∈ Rd×d

it holds that

Rφ(F ) = lim
k→∞

Rkφ(F ) where

R0φ = φ and

Rk+1φF = inf {λRkφ(F1) + (1− λ)Rkφ(F2), where λ ∈ [0, 1]

such that F = λF1 + (1− λ)F2 and rank(F1 − F2) ≤ 1}.

Let us note that the procedure (and the closely related concept of laminates in
Definition 2.15) from Proposition 2.8 shall be exploited in numerical implementations
in Chapter 7; in numerics then we use only some Rkφ to approximate Rφ.

To sum up this subsection, quasiconvexity (cf. Definition 2.1) of the function ϕ
is, under growth condition (2.3), a necessary and sufficient condition for weak lower
semi-continuity of the functional I from (2.1); this (again thanks to (2.3)) implies
the existence of minimizers. Should ϕ not be quasiconvex we can relax the functional
by substituting ϕ by its quasiconvex envelope (see 2.8). Yet, this envelope is hard to
compute and hence it is approximated by the polyconvex (2.11) or rank-1 convex (2.12)
envelope.

2.3 (Gradient) Young measures

Though replacing ϕ in I from (2.1) by its quasiconvex envelope is a straightforward way
of relaxation for minimization problems, its main drawback is that a lot of information
about the behavior of infimizing sequences of the original problem is lost. Therefore,
we introduce an equivalent tool, gradient Young measures, that assures existence of
minimizers, but, on the other hand, also keeps track about some important features of
the infimizing sequences.

Young measures were introduced by Young in the connection with optimal control
(Young, 1937) and studied by many authors in different contexts later. Some of the
results given here can be found e.g. in (Ball, 1989; Fonseca and Kruž́ık, 2010; Fon-
seca and Leoni, 2007; Fonseca et al., 1998; Kinderlehrer and Pedregal, 1991, 1992,
1994; Kristensen, 1994; Kruž́ık and Roub́ıček, 1996; Pedregal, 1997; Valadier, 1990)
and many others; for introductory reading e.g. the monographs (Fonseca and Leoni,
2007; Pedregal, 1997) are suitable.

12Or, equivalently, we could work with so-called laminates, cf. Definition 2.15.
13This can be found e.g. in (Kohn and Strang, 1986) or (Dacorogna, 1989, Section 5.1)
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2.3.1 General facts on (gradient) Young measures

We shall start this section by giving the fundamental theorem introducing Young mea-
sures:

Theorem 2.9. 14

1. Let {uk}∞k=0 be a bounded sequence in L∞(Ω,Rd×d) (i.e. uk(x) ∈ K with K ⊂
Rd×d compact for a.a. x ∈ Ω and all k ∈ N). Then there exists a subsequence
of {uk}∞k=0 (not relabeled) and a family of probability measures ν = {νx} ⊂
L∞
w (Ω;M(Rd×d))15 with the property that for any continuous function ϕ : Rd×d →

R
lim
k→∞

∫
Ω
ξ(x)ϕ(uk(x))dx =

∫
Ω
ξ(x)

∫
Rd×d

ϕ(A)dνx(A)dx, (2.16)

for any ξ ∈ L∞(Ω). Moreover, supp νx ⊂ K for a.a. x ∈ Ω.

2. Let {uk}∞k=0 be a bounded sequence in Lp(Ω,Rd×d) for some p ∈ (1,∞). Then
there exists a subsequence of {uk}∞k=0 (not relabeled) and a family of probability
measures ν = {νx} ⊂ L∞

w (Ω; rca(Rd×d)) with the property that for any continuous
function ϕ : Rd×d → R such that {ϕ(uk(x))}∞k=0 is weakly convergent in L1(Ω)
(2.16) holds.
In particular, if ϕ ∈ Cp(Rd×d) then the condition of weak convergence on ϕ in
L1(Ω) is satisfied.

For shortening the notation, let us introduce the “momentum” operator “ • ” defined

by

[f •ν](x) :=

∫
Rd×d

f(s)νx( ds). (2.17)

In view of Theorem 2.9 we introduce the set of Young measures

Y (Ω;Rd×d) =
{
ν ∈ L∞

w (Ω;M(Rd×d)); ∃{uk}∞k=0 ⊂ L∞(Ω,Rd×d) s.t.∫
Ω
ξ(x)ϕ(uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ C(Rd×d)

}
, (2.18)

as well as the set of Lp-Young measures

Y p(Ω;Rd×d) =
{
ν ∈ L∞

w (Ω;M(Rd×d)); ∃{uk}∞k=0 ⊂ Lp(Ω,Rd) s.t.∫
Ω
ξ(x)ϕ(uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ Cp(Rd×d)

}
, (2.19)

Take any (Lp-)Young measure ν. Then the sequence {uk}∞k=0 for which (2.16) holds is
called a generating sequence of ν and, on the other hand, ν is called the Young measure
associated to {uk}∞k=0.

A characterization of the sets Y and Y p posing only requirements on the involved
measures themselves is given through Proposition 2.10:

Proposition 2.10. 16

• ν ∈ L∞
w (Ω;M(Rd×d)) is an element of Y (Ω;Rd×d) if and only if supp νx ⊂ K

for some compact set K for a.a. x ∈ Ω.

14In the L∞ case we refer to (Tartar, 1995; Warga, 1972), for the Lp case this was for the first time
shown by Schonbek (1982); for a proof we may point the reader also to e.g. (Ball, 1989).

15In the sequel, we shall often omit the index x for ν and have the whole family in mind.
16For Y and Y p we refer to (Valadier, 1990) and (Kruž́ık and Roub́ıček, 1996), respectively.
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• ν ∈ L∞
w (Ω;M(Rd×d)) is an element of Y p(Ω;Rd×d) if and only if

∫
Ω |·|p •ν dx <

+∞.

Suppose that {uk}∞k=0 ⊂ Lp(Ω,Rd) is a generating sequence for the measure ν ⊂
Y p(Ω;Rd). Then, for continuous ϕ satisfying only (2.3) (and thus no necessarily ele-
ments of Cp(Rd×d)), the relation (2.16) does not follow from Theorem 2.9 and does
not even need to be true in general. 17 However, at least an inequality by the following
proposition can be established.

Lemma 2.11. 18 Let φ be an arbitrary continuous function bounded from below,
{zk}∞k=1 a bounded sequence in Lp(Ω,Rd×d) and ν = {νx} the associated gradient Young
measure. Then ∫

Ω
φ •ν dx ≤ lim inf

k→∞

∫
Ω
φ(zk)dx. (2.20)

Remark 2.12. It follows from the proof Proposition 2.10 given in (Kruž́ık and Roub́ıček,
1996) that for any ν ∈ Y p(Ω;Rd×d) there exist at least one generating sequence of ν
denoted {z̃k}∞k=1 such that |z̃k|p is weakly convergent in L1(Ω).

In particular this means that, for this sequence {z̃k}∞k=1, and for any continuous ϕ
satisfying only (2.3) we even have that∫

Ω
ϕ •ν dx = lim

k→∞

∫
Ω
ϕ(z̃k) dx.

An important subclass of (Lp-)Young measures are those generated by gradients of
functions in W 1,∞(Ω;Rd) or W 1,p(Ω;Rd) called (Lp-)gradient Young measures - let us,
thus, define those subclasses as:

G (Ω;Rd×d) :=
{
ν ∈ L∞

w (Ω;M(Rd×d));∃{uk}∞k=0 ⊂W 1,∞(Ω;Rd) s.t.∫
Ω
ξ(x)ϕ(∇uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ C(Rd×d)

}
, (2.21)

G p(Ω;Rd×d) :=
{
ν ∈ L∞

w (Ω;M(Rd×d)); ∃{uk}∞k=0 ⊂W 1,p(Ω,Rd) s.t.∫
Ω
ξ(x)ϕ(∇uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ Cp(Rd×d)

}
. (2.22)

For gradient Young measures one could even demand a boundary condition to be
satisfied for the generating sequence (in sense of traces); here we shall need only the
“identity boundary condition”, which corresponds to zero displacement at some part
ΓD ⊂ ∂Ω of the boundary; i.e. we are interested in

GΓD
(Ω;Rd×d) :=

{
ν ∈ L∞

w (Ω;M(Rd×d));∃{uk}∞k=0 ⊂W 1,∞
ΓD

(Ω;Rd) s.t.∫
Ω
ξ(x)ϕ(∇uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ C(Rd×d)

}
, (2.23)

G p
ΓD

(Ω;Rd×d) :=
{
ν ∈ L∞

w (Ω;M(Rd×d));∃{uk}∞k=0 ⊂W 1,p
ΓD

(Ω;Rd) s.t.∫
Ω
ξ(x)ϕ(∇uk) dx→

∫
Ω
ξ(x)ϕ •ν dx for all ξ ∈ L∞(Ω), ϕ ∈ Cp(Rd×d)

}
. (2.24)

17For example consider the sequence

uk(x) =

{
k if x ∈ [0, 1/k2],

0 elsewhere,

which is bounded in L2([−1, 1]) and generates the Young measure δ0. Now take ϕ(A) = A2. Then
clearly limk→∞

∫ 1

−1
ϕ(uk) dx = 1 for all k ∈ N. Yet,

∫ 1

−1
ϕ • δ0 dx = 0.

18This lemma is taken from (Pedregal, 1997) and is a consequence of Chacon’s biting lemma originally
proved by Brooks and Chacon (1980).
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Also for the sets of gradient Young measures a characterization has been obtained
that poses only requirements on the involved measures themselves and not on the
generating sequences. We give this characterization for gradient Young measures in
Theorem 2.13 and in Theorem 2.14 for Lp-gradient Young measures.

Theorem 2.13. 19 Let ν = {νx} ∈ L∞
w (Ω;M(Rd×d)) be a family of probability mea-

sures. Then ν ∈ G (Ω;Rd×d) (ν ∈ GΓD
(Ω;Rd×d)) if and only if

1. there exists z ∈ W 1,∞(Ω;Rd) (W 1,∞
ΓD

(Ω;Rd)) such that ∇z = id •ν20 for a.e.

x ∈ Ω,

2. ψ(∇z(x)) ≤ ψ(A) •νx for a.e. x ∈ Ω and for all ψ quasiconvex, continuous and

bounded from below,

3. supp νx ⊂ K for some compact set K ⊂ Rd×d and a.a. x ∈ Ω.

Theorem 2.14. 21 Let p ∈ (1,∞). and let ν = {νx} ∈ L∞
w (Ω;M(Rd×d)) be a family

of probability measures. Then ν ∈ G p(Ω;Rd×d) (ν ∈ G p
ΓD

(Ω;Rd×d)) if and only if

1. there exists a z ∈W 1,p(Ω;Rd) (W 1,p
ΓD

(Ω;Rd)) such that ∇z = id •ν for a.e. x ∈ Ω,

2. ψ(∇z(x)) ≤ ψ(A) •νx for a.e. x ∈ Ω and for all ψ quasiconvex, continuous,

bounded from below and such that |ψ(F )| ≤ c(1 + |F |p) with c > 0,

3.
∫
Ω |·|p •νx dx <∞.

As will be proved below (cf. Theorem 2.19), Lp-gradient Young measures, charac-
terized by Theorem 2.14, present an appropriate tool of relaxation for problems like
in (2.2). Yet, their explicit characterization requires the Jensen inequality (cf. point 2
in Theorem 2.14) to be satisfied for all quasiconvex functions and hence, as it cannot
be easily verified whether a function is quasiconvex or not, it cannot be easily verified
whether a parameterized measure is indeed in G p(Ω;Rd×d). Therefore, similarly as for
the quasiconvex envelope, for numerical calculations we need to replace the set of Lp-
gradient Young measures by another suitable set. Two replacements that correspond
to the polyconvex and rank-1 convex envelope, respectively (cf. (Bartels and Kruž́ık,
2011) for the polyconvex envelope and e.g. (Pedregal, 1997) for the rank-1 convex one)
are possible, we define them

Definition 2.15. The set {λi, Fi}2
l

i=1 for λi > 0 for all i and
∑2l

i=1 λi = 1 is said to
satisfy the lamination condition of the l-th order if

1. for l = 1 rank(F1 − F2) ≤ 1,

2. for l > 1 (after possibly rearranging indices) rank(F1 − F2) ≤ 1, rank(F3 − F4) ≤
1 . . . rank(F2l−1 − F2l) ≤ 1 and the set {λ̃i, F̃i}2

l−1

i=1 where

λ̃1 = λ1 + λ2, F̃1 =
λ1

λ̃1
F1 +

λ2

λ̃1
F2

λ̃2 = λ3 + λ4, F̃4 =
λ3

λ̃2
F3 +

λ4

λ̃2
F4

...
...

λ̃2l−1 = λ2l−1 + λ2l , F̃2l−1 =
λ
2l−1

λ̃
2l−1

F2l−1 +
λ
2l

λ̃
2l−1

F2l

satisfies the lamination condition of order l − 1.

19This is a result of Kinderlehrer and Pedregal (1991).
20Recall that id : Rd×d → Rd×d is the identity mapping.
21This is a result of Kinderlehrer and Pedregal (1994).
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Definition 2.16. Let {λi, Fi}2
l

i=1 be a set that satisfies the lamination condition of the

order l. Then the gradient parameterized measure νl =
∑2l

i=1 λiδFi , where δ is the Dirac
mass, is called a laminate of the l-th order.

The equivalent to the rank-1 convex envelope is then the set of laminates defined
as

L p(Ω;Rd×d) =
{
ν ∈ L∞

w (Ω;M(Rd×d));∃ νl laminates of the l-th order s.t.

νl
∗
⇀ ν in L∞

w (Ω;M(Rd×d))
}
. (2.25)

For the equivalent of the polyconvex envelope we introduce the following definition
(cf. (Bartels and Kruž́ık, 2011))

Definition 2.17. A parameterized measure ν ∈ L∞
w (Ω;M(Rd×d)) is called polyconvex

and belongs to the set Pp(Ω;Rd×d) if there exists a y ∈ W 1,p(Ω;Rd) such that for
a.a. x ∈ Ω

T(∇y(x)) = T •ν,

where T(F ) denotes the vector of all subdeterminants of F .

The following relation holds between the set of Lp - gradient Young measures,
laminates and the set of polyconvex measures (cf. (Pedregal, 1997) for the first inclusion,
the second is immediate due to Theorem 2.14)

L p(Ω;Rd×d) ⊂ G p(Ω;Rd×d) ⊂ Pp(Ω;Rd×d).22

In Remark 2.12 we stated that, already from (Kruž́ık and Roub́ıček, 1996), for any
Lp-Young measure ν the existence of a generating sequence {z̃k}∞k=1 with |zk|p weakly
convergent in L1(Ω) can be established; in particular, this holds true for any Lp-gradient
Young measure. However, in order to prove Theorem 2.19 it will be important to assure
that at least one such sequence consists of gradients of functions in W 1,p(Ω;Rd). To
this end, we exploit the following lemma:

Lemma 2.18. 23 Let p ∈ (1,∞) and {zk}∞k=1 be a bounded sequence in W 1,p(Ω,Rd)
generating the gradient Young measure ν. Then there exists another bounded sequence
{wk}∞k=1 ⊂ W 1,p(Ω,Rd) such that {|∇wk|p}∞k=1 is weakly convergent in L1(Ω) and the
gradient Young measures associated with these sequences are same ones.
Moreover, let z be the weak limit of the sequence {zk}∞k=1. Then the sequence {wk}∞k=1

can be chosen in such a way that wk − z ∈W 1,p
0 (Ω) for all integers k.

With all the necessary information about Young measures at hand, let us now prove
that Lp-gradient Young measures represent a correct relaxation tool for the problem
(2.2).

Theorem 2.19. 24 Let p ∈ (1,∞) and let the functional I(y) be defined through (2.1)
with ϕ continuous, satisfying the growth condition (2.3). Furthermore, let us define

Ī(ν) =

∫
Ω
ϕ •ν dx

where ϕ corresponds again to (2.1).Then

inf
y∈W 1,p

ΓD
(Ω;Rd)

I(y) = min
ν∈G p

ΓD
(Ω;Rd×d)

Ī(ν).

22Note that, from (2.14) and the remarks made there, all of these inclusions are strict if d ≥ 3
23This lemma was originally proved by Fonseca et al. (1998) and independently also by Kristensen

(1994).
24This theorem can be found in e.g. (Pedregal, 1997).
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Moreover, if we denoted {vk}k∈N ⊂ W 1,p
ΓD

(Ω;Rd) the infimizing sequence of I, a sub-

sequence of {∇vk}k∈N generates a minimizer of Ī.

Proof. Let us choose {vk}∞k=1 ⊂ W 1,p
ΓD

(Ω;Rd), an infimizing sequence of the functional

I(y). This sequence is, due to (2.3), bounded in W 1,p
ΓD

(Ω,Rd); therefore gradients of
a (non-relabeled) subsequence of {vk}∞k=1 generate the family of Lp-gradient Young
measures denoted ν. Thus, we have, by Lemma 2.11, that∫

Ω
ϕ •ν dx ≤ lim

k→∞

∫
Ω
ϕ(∇vk)dx = inf

y∈W 1,p
ΓD

(Ω;Rd)
I(y),

and consequently

inf
ν̄∈G p

ΓD
(Ω;Rd×d)

Ī(ν̄) ≤
∫
Ω
ϕ •ν dx ≤ inf

y∈W 1,p
ΓD

(Ω;Rd)
I(y).

To show the equality, suppose that, by contradiction, there existed a ν̃ ∈ G p
ΓD

(Ω;Rd×d)

such that Ī(ν̃) < Ī(ν). Then, there had to exist a sequence {zk}∞k=1 ⊂W 1,p
ΓD

(Ω;Rd) gen-
erating ν̃. Moreover due to Lemma 2.18 this sequence can be chosen in such a way
that {ϕ(∇zk(x))}∞k=1 is weakly convergent in L1(Ω) (thanks to the assumed growth
condition (2.3)) and therefore

Ī(ν) > Ī(ν̃) = lim
k→∞

∫
Ω
ϕ(∇zk)dx ≥ inf

y∈W 1,p
ΓD

(Ω;Rd)
I(y),

a contradiction.

To end this section, let us give a simple example that demonstrates how the re-
laxation of (2.2) by gradient Young measures can preserve useful information about
infimizing sequences of the original problem.

Example 2.20. Let us choose d = 3 and consider ϕ : R3×3 7→ R in (2.2) as

ϕ(F ) = min
i∈{1,2}

(U−T
i FTFU−1

i − I)2, (2.26)

where the matrices U1, U2 satisfy

U1 − U2 = a⊗ n. (2.27)

for n = (0, 0, 1) and some vector a. Moreover, we assume that 1
2U1 +

1
2U2 = I. At last,

let us choose ΓD = ∂Ω in (2.2).
With this choice, solutions to (2.2) do not exist. Indeed, I(y) ≥ 0 for all y ∈

W 1,p
ΓD

(Ω;Rd). Yet, since neither U1 nor U2 can be equal to I we see that I(y) > 0 for

all y ∈W 1,p
ΓD

(Ω;Rd). Still, I(y) can be as near to zero as demanded by choosing y such
that its gradients form a “narrow-stripe” arrangement of U1 and U2 like in Figure 2.1;
there the gray triangles represent a transition layer in order to satisfy the boundary
condition 25. As ϕ is positive only in these gray triangles, by letting ∇y oscillate faster
between U1 and U2 and hence reducing the measure of the gray triangles, the energy
can be arbitrarily close to zero.

Therefore, the sequence of yk ∈ W 1,2
ΓD

(Ω;R3) the gradients of which correspond
to finer and finer stripes as in Figure 2.1 is an infimizing sequence of the functional
I. Furthermore, (a subsequence of) {∇yk} generates the Lp-gradient Young measure
1
2δU1 +

1
2δU2 which, due to Theorem 2.19, is a minimizer of the relaxed problem. This

measure can, very roughly, be understood as a collection of “infinitely fine stripes” in
Figure 2.1 or “infinitely fast oscillating function between U1 and U2”.

25Note that, due to (2.27), y is continuous and hence in W 1,2
ΓD

(Ω;R3)
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Figure 2.1: Infimizing sequence of (2.2) with ϕ from (2.26).

2.3.2 (Gradient) Young measures generated by invertible sequences

So far, when qualifying ϕ in (2.1), we demanded the continuous function ϕ to satisfy
(2.3). However, if the minimization problem in (2.2) should represent the search for
stable states in elasticity (with ∇y being then the deformation gradient) one should
also require that

ϕ(A) → +∞ whenever detA→ 0+. (2.28)

Note, that this is in contradiction to (2.3).

One possibility to assure (2.28), is to generalize the preceding theory by letting ϕ
depend also on A−1 and extending (2.3) as

c(−1 + |A|p + |A−1|p) ≤ ϕ(A) ≤ c̃(1 + |A|p + |A−1|p).

Physically, this introduces just another strain measure from the Seth-Hill family of
strain measures (Curnier and Rakotomanana, 1991; Šilhavý, 1997).

This motivates the study of Young measures generated by a.e. on Ω invertible
matrices bounded together with its inverse in Lp(Ω;Rd×d). Such measures have recently
been characterized by Benešová, Kruž́ık and Pathó (2012). In this paper, measures
generated by a.e. on Ω invertible gradients of maps in W 1,∞(Ω;Rd) with an essentially
bounded inverse were considered, too.

Though we cannot use these results for relaxation in shape-memory alloys later
in Chapters 4 and 5, since, in this setting, equivalents of Theorem 2.14 and Lemma
2.18 are still missing, we will give the main results of (Benešová, Kruž́ık and Pathó,
2012) together with the most important proof ingredients because of their independent
interest.

Note that, because the support of the resulting parameterized measures is of partic-
ular importance in this section, we avoid to use the shortening “ •” for the momentum

operator within it.
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Let us first introduce the subset of Lp-Young measures

Y p,−p(Ω;Rd×d) :=
{
ν ∈ Y p(Ω;Rd×d);

∫
Ω

∫
Rd×d
inv

(|s|p + |s−1|p)νx(ds) dx < +∞ ,

νx(Rd×d
inv ) = 1 for a.a. x ∈ Ω

}
; (2.29)

recall that Rd×d
inv denotes the set of invertible matrices.

Then, this subset of Lp-Young measures can be generated by bounded sequences
of matrices in Lp(Ω;Rd×d) that are a.e. invertible with their inverse also bounded in
Lp(Ω;Rd×d); this is summarized in the following theorem:

Theorem 2.21. Let p ∈ (1,∞), and let {Yk}k∈N, {Y −1
k }k∈N ⊂ Lp(Ω;Rd×d) be bounded.

Then there is a subsequence of {Yk}k∈N (not relabeled) and ν ∈ Y p,−p(Ω;Rd×d) such
that for every g ∈ L∞(Ω) and every v ∈ Cp,−p(Rd×d

inv )26 it holds that

lim
k→∞

∫
Ω
v(Yk(x))g(x) dx =

∫
Ω

∫
Rd×d
inv

v(s)νx(ds)g(x) dx , (2.30)

Conversely, if ν ∈ Y p,−p(Ω;Rd×d) then there exists bounded sequence {Yk}k∈N ⊂
Lp(Ω;Rd×d) such that {Y −1

k }k∈N ⊂ Lp(Ω;Rd×d) is also bounded and (2.30) holds for
all g and v defined above.

The proof Theorem 2.21 can be established very similarly as in (Kruž́ık and Roub́ıček,
1996) or (Pedregal, 1997); however, an important additional ingredient for the necessary
condition is to establish that any Young measure generated by a sequence {Yk}k∈N that
is bounded together with its inverse in Lp(Ω;Rd×d) is supported on invertible matrices
Rd×d
inv . This is assured by the following proposition:

Proposition 2.22. 27 Let {Yk}k∈N ⊂ Lp(Ω;Rd×d) generate ν ∈ Y p(Ω;Rd×d) and let∫
Ω |detY −1

k |q dx ≤ C for some C > 0 and some q > 0. Then for almost all x ∈ Ω νx is

supported on Rd×d
inv in the sense that νx(Rd×d \ Rd×d

inv ) = 0 for almost all x ∈ Ω.

Proof. Assume that the assertion did not hold, i.e., that there existed a measurable
ω ⊂ Ω with positive measure such that

∫
ω

∫
Rd×d\Rd×d

inv
νx(ds) dx > 0. Then, for any

ϵ > 0, define a smooth cut-off Φdet,0
ϵ such that Φdet,0

ϵ (s) = 1 on Rd×d \ Rd×d
inv and

Φdet,0
ϵ (s) = 0 for all s ∈ Rd×d

inv such that | det s| ≥ ϵ.28 We have by Lemma 2.11

lim
k→∞

∫
ω
Φdet,0
ϵ (Yk(x)) dx =

∫
ω

∫
Rd×d

Φdet,0
ϵ (s)νx(ds) dx ≥

∫
ω

∫
Rd×d\Rd×d

inv

νx(ds) dx =: δ > 0 .

(2.31)

Hence, there is k0 ∈ N such that
∫
ω Φdet,0

ϵ (Yk(x)) dx > δ/2 if k > k0; i.e. if the assertion
was false there always exists a measurable set denoted ω(k) ⊂ Ω, |ω(k)| > δ/2 such
that |det Yk(x)|q < εq if x ∈ ω(k). Consequently, |det Y −1

k (x)|q > ε−q if x ∈ ω(k).
Thus, for every k > k0∫

Ω
|det Y −1

k (x)|q dx ≥
∫
ω(k)

|det Y −1
k (x)|q dx ≥ δ

2εq
. (2.32)

As ε > 0 is arbitrary it contradicts the bound
∫
Ω |detY −1

k |q dx ≤ C.

26Cp,−p(Rd×d
inv ) was defined in (2.4).

27Taken from (Benešová, Kruž́ık and Pathó, 2012).
28Φdet,0

ϵ can be found as follows: first of all find a smooth φϵ : R → R such that φϵ(0) = 1 and
φϵ(x) = 0 for |x| > ϵ. Then define Φdet,0

ϵ (s) = φϵ(det s).
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Having obtained a characterization of Young measures generated (roughly) by in-
vertible bounded matrices with a bounded inverse, we would like to establish a similar
characterization also for the gradient case. Within the work on this thesis, only results
in the L∞-case have been obtained (cf. (Benešová, Kruž́ık and Pathó, 2012)); they are
summarized below.

Let us first introduce the set of gradient Young measures supported on invertible
matrices G+∞,−∞(Ω;Rd×d) by the following construction: we define

G+∞,−∞
ϱ (Ω;Rd×d) :=

{
ν ∈ Y ∞(Ω;Rd×d); ∃{yk} ⊂W 1,∞(Ω;Rd) ,

for a.a. x ∈ Ω {∇yk(x)} ⊂ Rd×d
ϱ and {∇yk}k∈N generates ν

}
with Rd×d

ϱ := {A ∈ Rd×d
inv ; max(|A|, |A−1|) ≤ ϱ}; then

G+∞,−∞(Ω;Rd×d) := ∪ϱ>0G
+∞,−∞
ϱ (Ω;Rd×d). (2.33)

The set G+∞,−∞(Ω;Rd×d) can be characterized similarly as the set of gradient Young
measures in Theorem 2.13; however we need to introduce a different an additional con-
dition on the support of the measure and a generalization of the quasiconvex envelope
(introduced below) has to be used.

First, we specify the set of admissible test functions; to this end, put Rd×d
+∞ := Rd×d

inv

and denote for ϱ ∈ (0;+∞]

O(ϱ) := {v : Rd×d → R ∪ {+∞}; v ∈ C(Rd×d
ϱ ) , v(s) = +∞ if s ∈ Rd×d \Rd×d

ϱ } .

If F ∈ Rd×d and v ∈ O(ϱ) we denote by Qinvv : Rd×d → R ∪ {+∞} the function

Qinvv(F ) :=
1

|Ω|
inf

y∈UF

∫
Ω
v(∇y(x)) dx , (2.34)

where

UF := {y ∈W 1,∞(Ω;Rd); (∇y)−1 ∈ L∞(Ω;Rd×d), y(x) = Fx for x ∈ ∂Ω} . (2.35)

Remark 2.23. Note that (2.34) also introduced a “variation of quasiconvexity”. Indeed,
we could say that φ : Rd×d

inv → R is Qinv−convex if Qinvφ(F ) = φ(F ) for all F ∈ Rd×d.
Clearly, any W 1,p−quasiconvex function is also Qinv−convex; however, the opposite
does not need to be true. To see this, consider just the function ϕ : R → R (depicted in
Figure 2.23) such that ϕ(0) = 0 and ϕ(x) = 1 for all x ̸= 0. Then this ϕ is not convex
(not quasiconvex ) but it is Qinv−convex.

Theorem 2.24. 29 Let ν ∈ Y ∞(Ω;Rd×d). Then ν ∈ G+∞,−∞(Ω;Rd×d) if and only if
the following three conditions hold

1. supp νx ⊂ Rd×d
ϱ for a.a. x ∈ Ω and some ϱ > 0,

2. ∃ u ∈W 1,∞(Ω;Rd) : ∇u(x) =
∫
Rd×d
inv

s νx(ds) for a.a. x ∈ Ω,

3. for a.a. x ∈ Ω all ϱ̃ ∈ (ϱ; +∞], and all v ∈ O(ϱ̃) the following inequality is valid

Qinvv(∇u(x)) ≤
∫
Rd×d
inv

v(s)νx(ds) .

29Taken from (Benešová, Kruž́ık and Pathó, 2012).
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x

ϕ(x)

Figure 2.2: An example of a function that is Qinv−convex, however not convex.

This theorem can be proved similarly as Theorem 2.13, the proof which can be found
e.g. in (Kinderlehrer and Pedregal, 1994; Pedregal, 1997); however, one has to be careful
when in comes to the use of cut-off techniques. Indeed the proof in (Kinderlehrer and
Pedregal, 1994; Pedregal, 1997) relies in several places on the fact that for any gradient
Young measure a generated sequence can be found, all elements of which have the
same boundary value as the weak* limit of the sequence. To prove this fact, a cut-off
technique is used in (Pedregal, 1997).

To obtain a similar result also in this case, clearly, the conventional cut-off technique
is not suitable since we cannot guarantee that, after a cut-off has been used, the resulting
gradients in the sequence are still invertible. To circumpass this problem, we can rely
Lemma 2.25.

First, let us recall that O(d) id the set of orthogonal matrices in Rd×d and denote
by λd(A) the largest singular value of A ∈ Rd×d, i.e., the largest eigenvalue of

√
A⊤A.

Lemma 2.25. 30 Let ω ⊂ Rd be open and Lipschitz. Let φ ∈ W 1,∞(ω;Rd) be such
that there is ϑ > 0, so that 0 ≤ λd(∇φ) ≤ 1 − ϑ a.e. in ω. Then, there exist map-
pings u ∈ W 1,∞(ω;Rd) for which ∇u ∈ O(d) a.e. in ω and u = φ on ∂ω. Moreover,
the set of such mappings is dense (in the L∞ norm) in the set {ψ := z + φ; z ∈
W 1,∞

0 (ω;Rd) , λd(∇ψ) ≤ 1− ϑ a.e. in ω}.

With the aid of this lemma, we are now able to prove the following Proposition
2.26; this Proposition, in turn, allows us to follow the arguments of (Pedregal, 1997) to
prove Theorem 2.24.

Proposition 2.26. Let F ∈ Rd×d, uF (x) := Fx, yk
∗
⇀ uF in W 1,∞(Ω;Rd) and let,

for some α > 0, ∇yk(x) ∈ Rd×d
α for all k > 0 and almost all x ∈ Ω. Then for every

ε > 0 there is a sequence {uk} ⊂ W 1,∞(Ω;Rd) such that ∇uk(x) ∈ Rd×d
α+ε for all k > 0

and almost all x ∈ Ω, uk − uF ∈ W 1,∞
0 (Ω;Rd) and |∇yk − ∇uk| → 0 in measure. In

particular, {∇yk} and {∇uk} generate the same Young measure.

Proof. Define for ℓ > 0 sufficiently large Ωℓ := {x ∈ Ω; dist(x, ∂Ω) ≥ 1/ℓ} and the
smooth cut-off functions ηℓ : Ω → [0, 1]

ηℓ(x) =

{
1 if x ∈ Ωℓ

0 if x ∈ ∂Ω

such that |∇ηℓ| ≤ Cℓ for some C > 0. Define zkℓ := ηℓyk + (1 − ηℓ)uF . Then zkℓ ∈
W 1,∞(Ω;Rd) and zkℓ = yk in Ωℓ and zkℓ = uF on ∂Ω. We see that ∇zkℓ = ηℓ∇yk+(1−

30This can be found in (Dacorogna and Marcellini, 1999, p. 199 and Remark 2.4).
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ηℓ)F+(yk−uF )⊗∇ηℓ. Hence, in view of the facts that |F | ≤ lim infk→∞ ∥∇yk∥L∞(Ω;Rd×d)

≤ α and that yk → uF uniformly in Ω̄, we can extract for every ε > 0 a subsequence
k = k(ℓ) such that

∥∇zk(ℓ)ℓ∥L∞(Ω;Rd×d) < α+
ε

2
.

Consequently, {zk(ℓ)ℓ} is uniformly bounded in W 1,∞(Ω;Rd). Moreover,

λn

(∇zk(ℓ)ℓ
α+ ε

)
≤

∥∇zk(ℓ)ℓ∥L∞

α+ ε
≤ 1− ε

2(α+ ε)
,

where we used the inequality λd(A) ≤ |A| for any A ∈ Rd×d. Denote ωℓ = Ω \Ωℓ. Then
wk(ℓ)ℓ = zk(ℓ)ℓ|ωℓ

/(α+ ε) is such that λn(∇wk(ℓ)ℓ) ≤ 1− ϑ for ϑ := ε/2(α+ ε). We use
Lemma 2.25 for ω := ωℓ and φ := wk(ℓ)ℓ to obtain ϕk(ℓ)ℓ ∈ W 1,∞(ωℓ;Rn) such that
ϕk(ℓ)ℓ = wk(ℓ)ℓ on ∂ωℓ and ∇ϕk(ℓ)ℓ ∈ O(n). Define

uk(ℓ)ℓ =

{
yk if x ∈ Ωℓ

(α+ ε)ϕk(ℓ)ℓ if x ∈ Ω \ Ωℓ.

Notice that {uk(ℓ)ℓ}ℓ∈N ⊂ W 1,∞(Ω;Rd) and that uk(ℓ)ℓ(x) = Fx for x ∈ ∂Ω. Further,

∇uk(ℓ)ℓ ∈ Rd×d
α+ε. Moreover, ∇uk(ℓ)ℓ ̸= ∇yk only on sets of vanishing measure, therefore

they generate the same Young measure by (Pedregal, 1997, Lemma 8.3).
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Chapter 3

Framework of generalized
standard solids

Let us introduce the so-called framework of generalized standard materials suited for
description of dissipative processes in solids; we shall exploit this concept in Chapters
4 and 5. The main assumption of this concept is that (apart from the heat flux) only
two functions, namely the free energy and a dissipation potential1 need to be chosen
constitutively. A large number of rheological models falls into this framework, as e.g.
the standard Maxwell or Kelvin model.

In this introductory chapter, we largely follow the book of Nguyen (2000), who
together with Halphen introduced this framework in 1975 (Halphen and Nguyen, 1975);
let us just note, however, that even before the notion of a “flow potential” was used
by Rice (1971) to substitute the concept of yield surfaces used in plasticity. Since
then, the framework of generalized standard solids has been widely used in modeling
of e.g. plasticity, delamination, damage, crack propagation or phase transitions (a not
exhaustive list includes (Arndt et al., 2006; Bartel and Hackl, 2008, 2009; Frost et al.,
2010; Knees and Mielke, 2010; Maugin, 1992; Mielke et al., 2009, 2010; Roub́ıček et al.,
2009; Sadjadpour and Bhattacharya, 2007b; Toader and Zanini, 2009)) and has been
further analyzed from thermodynamical (e.g.(Hackl and Fischer, 2008; Houlsby and
Puzrin, 2000)) and mathematical (e.g. (Francfort and Mielke, 2006; Mainik and Mielke,
2005; Mielke, 2003, 2005)) point of view; note that an independent but closely related
concept was developed by Petryk (2003).

Let us stress that, in the physical derivations in this chapter, all functions are
assumed sufficiently smooth. If the smoothness is not given, balance equations would
be satisfied only in an appropriate weak setting.

3.1 Continuum thermodynamics in a nutshell

In order to introduce the framework, let us review some basic concepts from continuum
thermodynamics within this section.

A basic assumption of continuum thermodynamics (cf. e.g. (Nguyen, 2000)) is that
“the (continuum mechanical) system is composed of infinitesimal sub-systems in slow
evolution such that each sub-system can be always considered as almost in thermody-
namic equilibrium at any time”; a material point is then supposed to be composed of
one of these infitesimal sub-systems. Of course, the system as whole does not have to
be in equilibrium anymore. Still, this local state postulate allows us to introduce locally

1The name dissipation potential is sometimes disputed and instead the name dissipation function
(e.g. (Petryk, 2003)) is used. We shall give more details on this in Subsection 3.2.
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the entropy and thermodynamic potentials (like the internal energy or the Helmholtz
or Gibbs free energy)2 as functions of so-called state variables. Those are variables that
characterize the current state of the system. One of these variables is, clearly, the tem-
perature θ, another obvious choice is some measure of deformation Y; this can be e.g.
the deformation y : Ω → Rd itself or the deformation gradient ∇y. Shall other state
variables be necessary, they will be denoted simply by χ.3.

Hence, one can introduce the entropy s = s(θ,Y, χ) and the internal energy e =
e(θ,Y, χ).4

The first law of thermodynamics, which states that the overall energy in a
closed system has to be conserved, is then expressed in form of the following balance:
(cf. e.g. (Gurtin et al., 2010; Nguyen, 2000))5

d

dt

( ∫
V

ρ

2
|.y|2 dx︸ ︷︷ ︸

kinetic energy

+

∫
V
ρe(θ, y, χ) dx︸ ︷︷ ︸
internal energy

)
=

∫
V
f ·.y dx+

∫
∂V
(Pn)·.y dS︸ ︷︷ ︸

external power

−
∫
∂V
q·ndS︸ ︷︷ ︸

heat flow

(3.1)

for any control volume V ⊂ Ω. Here f is the applied body force and P is the first
Piola-Kirchhoff stress tensor (so that Pn represents the surface force on the boundary
of V ), q is the heat flux, ρ is the density of the specimen and n is the outer normal to
∂V .

Further, we exploit also the well-known balance of momentum equations (here writ-
ten in local form with boundary conditions omitted)

divP + f = ρ
..
y ∀x ∈ Ω, (3.2)

when multiplying it by
.
y and integrating over V ; this gives∫

V
(divP)·.y dx+

∫
V
f ·v dx =

∫
V
ρ
1

2

d

dt
|.y|2 dx,

which, after applying the divergence theorem (see e.g. (Gurtin et al., 2010, page 312))
yields ∫

∂V
(Pn)·.y dx−

∫
V
P : ∇.y +

∫
V
f ·v dx =

∫
V
ρ
1

2

d

dt
|.y|2 dx; (3.3)

this expression is sometimes referred to as the balance of mechanic energy. Combining
this equation with (3.1), exploiting ones again the divergence theorem and assuming
(naturally for solids) that the density ρ does not depend on time finally gives the
following global form of the first law of thermodynamics:∫

V

.
e(θ,Y, χ) dx =

∫
V
P : ∇.y − div(q) dx. (3.4)

Since the control volume V was arbitrary, (3.4) yields6 the following local form

ρ
.
e(θ, y, χ) = P : ∇.y − div(q). (3.5)

2Note that, since these quantities are only defined in equilibrium (cf. e.g. (Callen, 1985)), it would
not be possible to define these principal thermodynamic functions without this postulate.

3The state variables depend, of course, on time t and the position x of the material point in reference
domain Ω.

4Usually in thermodynamics, the internal energy is understood to depend on the entropy rather then
on temperature, see (Callen, 1985). Later, we shall, however, work with a Legendre-Fenchel transform
of the internal energy (which forms the so-called free energy) which depends on the temperature indeed.

5For simplicity we assume zero external heat sources, like radiation. Also note that we work in the
Lagragean description here while, mostly, balance laws are formulated in the Euler’s description.

6Sufficient smoothness is assumed to be granted, as elsewhere in this section.
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The second law of thermodynamics can be expressed as follows: given any
control volume V ⊂ Ω, the increase of the entropy in this volume must be non-negative.
When realizing that the total entropy can be increased, besides by its production in the
volume, also by transporting heat to the volume through the boundary, this statement
can be formalized as

Entropy increase =

∫
V
ρ
.
s dx+

∫
∂V

q

θ
·ndS ≥ 0. (3.6)

Exploiting once again the divergence theorem, this can be reformulated as∫
V
ρ
.
s + div

(q
θ

)
dx ≥ 0,

which allows us (as the control volume V is arbitrary) to deduce the following local
form of the second law of thermodynamics

ρ
.
s − div

(q
θ

)
≥ 0.

It shall be more advantageous, for our purposes, to reformulate this equation by com-
bining it with the already obtained local form of the first law of thermodynamics (3.5)
to obtain an equivalent form of the second law, that is sometimes referred to as the
Clausius-Duhem inequality, 7

θρ
.
s − ρ

.
e + P : ∇.y − q·∇θ

θ
≥ 0.

Since we will work rather with free energies (and prescribe them constitutively) than
with the internal energy, we introduce the Helmholtz free energy ψ as

ψ = e− θs. (3.7)

This allows us to reformulate the second law of thermodynamics into its most suitable
form for our purposes as follows:

D = P : ∇.y − ρ
.
ψ − ρs

.
θ − q·∇θ

θ
≥ 0. (3.8)

where D is referred to as dissipation or sometimes, more exactly, rate of dissipation.

3.1.1 Example: Reversible processes in solids

We shall understand those processes that produce zero dissipation as reversible pro-
cesses. For these processes we, hence, have

P : ∇.y − ρ
.
ψ − ρs

.
θ − q·∇θ

θ
= 0

Recall that we assumed ψ = ψ(θ,Y, χ) with Y some measure of deformation. For the
sake of clarity, let us assume the concept of so-called simple materials when Y = ∇y8.
Then the zero-dissipation requirement leads to

(P − ρψ′
∇y) : ∇

.
y + ρ(−s− ψ′

θ)
.
θ − ρψ′

χ
.
χ− q·∇θ

θ
= 0.

7We need to rewrite div
(
q
θ

)
= divq

θ
− q·∇θ

θ2
, multiply the local form of the second law of thermody-

namics by θ and finally subtract (3.5).
8Note that if the choice of variables had to be more complicated, e.g. if Y = (y,∇y), we could, for

the calculations in this section, include y in the set of the remaining state variables χ.
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Since the change of all state variables is considered independent this equation can be
satisfied if only if

s = −ψ′
θ(θ,∇y), (3.9)

P = ρψ′
∇y(θ,∇y), (3.10)

q = 0, (3.11)

and the Helmholtz free energy depends only on θ, ∇y and no other variable.

Note that (3.9) is known as the Gibbs relation and (3.10) yields the response of a
hyperelastic material.

3.1.2 Irreversible processes in solids

Let us now turn our attention to irreversible processes characterized by an overall
positive dissipation. While for reversible processes there is a general agreement to use
the framework of entropy maximization or, equivalently, minimization of an appropriate
(free) energy, the situation is much less well understood in this case (Callen, 1985).

Here, we follow the approach of (Nguyen, 2000), that will be suitable for our mod-
eling purposes, which is in correspondence with an often used approach of fluxes and
generalized forces as presented e.g. in (Callen, 1985).

First, let us distinguish between thermal and mechanic dissipation when defining

Dmech = P : ∇.y − ρ
.
ψ + ρs

.
θ, (3.12)

Dtherm = −q·∇θ
θ

. (3.13)

Following (Nguyen, 2000), we assume that thermal and mechanic processes are in-
dependent in the sense that both, thermal and the mechanic dissipation, need to be
non-negative.9

Throughout this thesis, we shall limit our attention only to processes in which the
heat flux is governed by the Fourier law

q = −K(θ,Y, χ)∇θ, (3.14)

and hence thermal dissipation shall be non-negative if K is positive definite (with θ
assumed non-negative, of course).

Let us, therefore, focus on mechanic dissipation. Again let us assume that Y = ∇y
when “hiding” possible necessary generalizations to the variable χ. Furthermore, let
us allow for P to depend beside the state variables themselves also on their rates,10

because these characterize the evolution towards equilibrium and hence seem to be of
importance. Still, let us introduce the following split

P(θ,
.
θ,∇y,∇.y, χ, .χ) = Pel(θ,∇y, χ) + Pin(θ,

.
θ,∇y,∇.y, χ, .χ),

such that Pin(θ,
.
θ,∇y,∇ .

y, χ,
.
χ) = 0 if (

.
θ,∇ .

y,
.
χ) = 0. So, Pel is the part of the Piola-

Kirchhoff tensor present in equilibrium while Pin accounts for inelastic processes. Then,

9Even if one could not be certain that mechanic and thermal dissipation is caused by independent
processes, requiring that Dmech ≥ 0 and Dtherm is always sufficient in order to satisfy the second law of
thermodynamics. Thus, if in our modeling approach we pose this assumption we might exclude some
very sophisticated, even though thermodynamically consistent, models but can always easily verify that
the proposed model is indeed in accordance with the laws of thermodynamics.

10Note that we do not allow this for thermodynamic potentials ψ and s since they are only defined
in equilibrium of every material point and hence have to depend on the state variables only.
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the mechanic dissipation inequality reads as((
Pel(θ,∇y, χ)− ρψ′

∇y(θ,∇y, χ)
)
: ∇.y + ρ

(
ψ′
θ(θ,∇y, χ) + s

).
θ

− ρψ′
χ(θ,∇y, χ)

.
χ+ Pin(θ,

.
θ,∇y,∇.y, χ, .χ) : ∇.y

)
≥ 0

Following the classical Coleman-Noll procedure (Coleman and Noll, 1963) one gets that
the second law of thermodynamics is satisfied if and only if 11

Pel(θ,∇y, χ) = ρψ′
∇y(θ,∇y, χ)

s = −ψ′
θ(θ,∇y, χ)

−ρψ′
χ(θ,∇y, χ)

.
χ+ Pin(θ,

.
θ,∇y,∇.y, χ, .χ) : ∇.y ≥ 0,

with the last expression referred to as the reduced dissipation inequality.
Consistently with the common approach of irreversible thermodynamics of general-

ized forces and fluxes (Callen, 1985), we would call −ψ′
χ (and also Pin as in (Nguyen,

2000)) the generalized forces and
.
χ (and also ∇ .

y) the generalized fluxes. This nomen-
clature follows from the idea that if Pin and ψ′

χ are non-zero12 the system cannot be in
equilibrium because the mechanical dissipation is positive. So, the system tries to reach
equilibrium through an irreversible process and forces ∇y and χ to change in order to
do so. Hence, Pin and ψχ’ “enforces” a flux (∇ .

y,
.
χ) towards equilibrium.

If we shortly denote A = (Pin,−ρψ′
χ) the vector of generalized forces and

.
α =

(
.

∇y, .χ) the vector of generalized fluxes, the reduced dissipation inequality can be writ-
ten compactly as

A· .α ≥ 0.

Since we are considering irreversible processes here, they cannot be fully determined by
those constitutive quantities that determine reversible processes, therefore a constitutive
relation between the generalized forces and fluxes has to be prescribed, i.e.

.
α = T (A,α), (3.15)

where T needs not to be a function, but can be an operator so that
.
α can, for example,

be a solution of a differential equation or even a more complicated procedure. Choosing
T constitutively then specifies the dissipative mechanism present in the solid; however,
T cannot be chosen arbitrarily since we are restricted by the second law of thermody-
namics. A convenient procedure to prescribe T that respects this law is shown in the
next section.

3.2 Description of a generalized standard material by two
potentials

A widely used concept on how to prescribe (3.15) is by choosing a so-called dissipation
potential R such that

A ∈ ∂ .αR(α,
.
α), (3.16)

11While the sufficiency is easy to see, the necessity is usually proved by claiming that always a
process can be constructed such that rates of the state variables are independent. In easy cases an
explicit construction can be found in e.g. (Callen, 1985); however, constructing these processes in e.g.
the situation here can be very difficult. Anyhow, our main concern is to deduce sufficiency conditions
to develop thermodynamically consistent models.

12It is assumed that the fluxes cannot be zero, if the generalized forces are non-zero (Callen, 1985).
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where ∂ is the sub-differential of a convex function that was used in order to indicate
that R does not have to be smooth. Of course, the choice (3.16) restricts our attention
to a specific class of material models, referred to as the generalized standard materials,
generalized standard models or generalized standard solids, cf. Definition 3.1 below;
however this class is wide enough to comprise a large number of models in plasticity
(Maugin, 1992) and, in particular, all material models considered in this thesis.

Definition 3.1. 13 “A model of material behavior is a generalized standard model if
it is defined by two potentials, the energy potential ψ and the dissipation potential R.
The energy is a function of state variables and the dissipation potential is a convex
function of the flux and may eventually depend on the present state.” (from (Nguyen,
2000))
Furthermore, in a generalized standard model the dissipation potential has to be non-
negative and zero for zero flux; the relation between generalized fluxes and forces is
given through (3.16).

Remark 3.2 (Nomenclature). Let us note, that equation (3.16) is then sometimes (e.g.
(Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003)), in analogy with plasticity, referred
to as the flow-rule; we shall use this term in this thesis as well.

Further we remark that, in this work, we follow the terminology of the original paper
of Halphen and Nguyen (1975) and call R a dissipation potential motivated by the fact
that its derivative corresponds to the generalized force. On the other hand, since the
change of the dissipation potential between two states is not path-independent, some
authors (e.g. (Petryk, 2003)) prefer to use the name dissipation function.

It is easy to check that a generalized standard model, as introduced in Definition
3.1, is thermodynamically consistent, i.e. satisfies the second law of thermodynamics.
Indeed,

A· .α = ∂ .αR(α,
.
α)· .α ≥ R(α,

.
α)−R(α, 0)︸ ︷︷ ︸

0

≥ 0,

where the first inequality is due to convexity.

Remark 3.3 (Onsager reciprocity). If R is smooth, generalized standard models satisfy
automatically Onsager reciprocal relations. (Callen, 1985)

Remark 3.4 (Relation to maximum dissipation principles). Note that the flow-rule
(3.16) can be understood (when considering also the convexity) as a minimization
principle for the dissipation potential; this minimization principle could also be stated
as a postulate replacing (3.16).

Another well known postulate for formulation of constitutive function is the so-
called maximum dissipation principle (or equivalently maximum entropy production
principle) due to Hill (1948), recently advocated by e.g. Rajagopal and Srinivasa (2004).
It has been shown by Hackl and Fischer (2008) that these two principles coincide only
for some dissipation potentials, for example for those potentials that are homogeneous
of degree l in the fluxes, i.e. R(α, l

.
α) = |l|R(α, .α) for any l ∈ N.14

Remark 3.5 (Internal variables). Let us also remark, that within the framework of
generalized standard solids the set of state variables (θ,Y, χ) is divided into so-called
observable variables (θ,Y) and internal variables χ. (Maugin, 1992).15 The motivation

13This definition follows (Nguyen, 2000) and is based on the original paper due to Halphen and
Nguyen (1975).

14In (Hackl and Fischer, 2008) it was, however, also noted that if R is a sum of two functions, one of
order l1, the other of order l2, the two principles do not need to coincide anymore; we shall use such
concept in Chapter 5.

15Sometimes, only a part of the vector χ would be called internal.
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for calling χ “internal” stems from their interpretation as variables accounting for
some processes on microscale that manifest themselves on macroscale mainly through
dissipation (Maugin, 1992). Consistently, in pure elastic processes the Helmholtz free
energy was not allowed to depend on χ.

All in all, the procedure of formulating models within the framework of generalized
standard solids is summarized by the following scheme: (Nguyen, 2000)

1. Identification of observable variables, finding the expression of the free energy.

2. Identification of dissipative processes, finding appropriate internal variables (and
hence also generalized fluxes).

3. Finding a relation between generalized fluxes and forces, i.e. prescribing the dis-
sipation potential.

After performing these steps, the evolution of the specimen is governed by the following
laws when neglecting inertia and when assuming that ψ = ψ(θ,∇y, χ)

div
(
∂∇ .yR(θ,∇y,∇

.
y, χ,

.
χ) + ψ′

∇y(θ,∇y, χ)
)
∋ 0, (3.17)

∂ .χR(θ,∇y,∇
.
y, χ,

.
χ) + ψ′

χ(θ,∇y, χ) ∋ 0, (3.18)

θ
.
s + div(q) = D = ∂∇ .yR(θ,∇y,∇

.
y, χ,

.
χ) : ∇.y + ∂ .χR(θ,∇y,∇

.
y, χ,

.
χ)· .χ, (3.19)

where the first equation corresponds to the balance of momentum, the second to (3.16)
and the third to the fact that the entropy production multiplied by temperature is, in
a control volume, equal to the rate of dissipated energy, i.e. the entropy balance.

Examples of dissipation potentials

Let us now give two prominent examples of dissipation potentials, namely the dissi-
pation potential for the Kelvin-Voigt material and for von-Mises type elasto-plasticity.
In both cases we assume isothermal evolution; this corresponds to the idea that the
specimen in question is kept in a basin of constant temperature and is so small that
any temperature change due dissipation can be evened out instantly. Also, let us as-
sume only the small-eformation setting. Finally, as already above, we assume that the
evolution is quasi-static; so, terms corresponding to inertia can be neglected.

It is well known (see e.g. (Nguyen, 2000)) that the constitutive equation of a Kelvin-
Voigt material reads (in its simplest d-dimensional form) as

σ = D.ε + Cε, (3.20)

with ε(u) = 1
2

(
∇u + (∇u)T

)
the small strain tensor, u(x) : Ω → Rd the displacement

defined as u(x) = y(x) − x 16. Furthermore, the fourth-order tensors C and D are
the tensor of elastic constants and the tensor of viscous moduli, respectively. For both
tensors it is natural to assume the symmetries Cijkl = Cjikl = Cijlk = Cklij and
Dijkl = Djikl = Dijlk = Dklij .

The quasi-static evolution of the specimen is then governed by the balance of mo-
mentum 17

− divσ = f, ∀x ∈ Ω (3.21)

with appropriate initial and boundary conditions.

16Recall that x ∈ Ω with Ω the reference configuration and y(x) is the deformation.
17This corresponds to (3.2) with

..
y neglected and P identified as σ in the small strain setting.
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To see that this constitutive model falls into the framework of generalized standard
solids, we do not consider any internal variables χ and define the stored energy as

ψ(ε) =
1

2
εTCε,

and the dissipation potential as

R(
.
ε) =

1

2

.
εTD.ε.

Then (3.21) is recovered by inserting the respective potentials to (3.17) and replacing
∇y by ε(u), as usual in the small deformations setting. Hence the Kelvin-Voigt material
can be described by two potentials as required in Definition 3.1; the dissipation potential
satisfies all requirements of the definition if D is positive (semi)definite.

For the example of von-Mises elasto-plasticity, we restrict ourselves, again, to the
small strain setting. Then, the small strain tensor ε is usually decomposed into its
elastic εel and plastic εpl part, i.e.

ε = εel + εpl. (3.22)

The plastic part of the strain tensor is then understood to play the role of an internal
variable. Perfect von-Mises elasto-plasticity can be then introduced by the following set
of axioms (Maugin, 1992, Pages 18,54,55)

1. There exists a strain-energy potential18 ϕ = ϕ(εel) such that :

σ =
dϕ

dεel
,

for the stresses σ.

2. The stresses are constrained to a ball19, i.e.

|σ| ∈ CvM = {σ̃, |σ̃| ≤ cvM}.

3. The plastic stress changes (flows) in the direction of stress only if the boundary
of the elasticity domain is reached, i.e.

.
εpl = 0 if |σ| < cvM and

.
εpl = λ

σ

cvM
if |σ| = cvM.

Now realize that the conditions in point 3 can be written compactly as
.
εpl ∈ NCvM(σ) = ∂δCvM(σ), (3.23)

with NCvm and δCvM the normal cone and the indicator function to the convex set
Cvm, respectively. Rewriting (3.23) by exploiting the Legendre-Fenchel conjugates20

(Rockafellar, 1970) leads to

−σ + δ∗CvM(
.
εpl) ∋ 0 ⇔ −

dϕ(ε− εpl)

dεel
+ δ∗CvM(

.
εpl) ∋ 0

⇔ −
dϕ(ε− εpl)

dεpl
+ δ∗CvM(

.
εpl) ∋ 0.

Note that, when identifying δ∗CvM(
.
εpl) as the dissipation potential this corresponds to

(3.18); so, again, we work in the framework of generalized standard materials.

18This potential corresponds to the Helmholtz free energy in our setting.
19This ball is refered to as the elasticity domain.
20The Legendre-Fenchel conjugate is, for a function f : RM+1 → R, defined as

f∗(x∗) = sup
x∈RM+1

{(x∗, x)− f(x)}.
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Chapter 4

Review of existing mesoscopic
models for shape-memory alloys

Recall from Chapter 1 that modeling of shape-memory alloys is a multiscale problem,
modeling approaches range from the nanoscale to the polycrystalline macroscale. With-
in this thesis, mesoscopic models that are suitable for large single-crystalline specimen
are our primary concern. For these models, the microstructure (cf. Chapter 1) is de-
scribed by introducing (gradient) Young measures; physically this corresponds to the
idea that “the microstructure is so fine that it can be reduced to one material point”.

So far, only static models based on the pioneering works of Ball and James (1987,
1992) (see e.g. (Ball et al., 2011; Dolzmann, 2003; Müller, 1999)) and quasi-static evo-
lutionary but isothermal (Bartel and Hackl, 2008, 2009; Kruž́ık et al., 2005; Kruž́ık and
Roub́ıček, 2004; Mielke and Roub́ıček, 2003) mesoscopic models for SMAs have been
proposed; we review these models within this chapter.

Besides mesoscopic models, we consider also microscopic ones suitable, again, for
modeling single crystalline shape-memory alloys, however taking the interfacial ener-
gy of phase/variant boundaries into account and hence resolving the finite width of
the microstructure. We shall show that in the static case, and later in Chapter 5 al-
so for thermally coupled case, solutions of microscopic models approach solutions to
mesoscopic models when the interfacial energy becomes negligible.

4.1 Static case

Recall, from Chapter 1, that Ω ∈ Rd, a regular1 domain, is the reference configuration
of the specimen which we identify with the stress-free austenitic state. Recall further
that any smooth injective function y(t) : Ω → Rd such that det∇y(x, t) > 0 is called a
deformation of the body.

In the sequel, however, we shall relax the smoothness requirement by assuming
that the deformation is an element of W 2,2(Ω;Rd) in the case of microscopic models,
in the mesoscopic case only the “average deformation” is expected to be an element of
W 1,p(Ω;Rd) with p ∈ [2,∞). Furthermore, we omit the constraint on the positivity of
the determinant of the deformation gradient as relaxation theory cannot cope with this
constraint up to now (cf. Chapter 2 and especially Section 2.3.2 for details).

Classically in continuum mechanics, the stable states of a specimen are assumed to
be minimizers of the appropriate thermodynamic potential (see e.g. (Šilhavý, 1997)) -
in the case when surface/volume forces are applied minimizers of the Gibbs free energy
are sought, if not the appropriate potential is the Helmholtz free energy. Throughout

1We shall always assume at least Lipschitz regularity.
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this thesis, we shall consider the case when surface/volume forces are taken into account
and the specimen is fixed on some part of the boundary of the reference configuration
ΓD ⊂ ∂Ω of non-zero (d−1)-dimensional measure. Hence, we shall work with the Gibbs
free energy.

In order to capture the main responses of SMAs, a constitutive choice for the Gibbs
free energy is made. For models devised for the microscopic/mesoscopic scale, usual-
ly, the complicated behavior of a SMA specimen is modeled by employing (at least
implicitly) the following simplifying assumptions:

• The variants of martensite as well as the austenitic phase of the material can be
distinguished by the values of ∇y (deformation gradient), i.e. the material is in
variant i of martensite if ∇y = QUi (or at least ∇y ≈ QUi) and the material is in
austenite if ∇y = Q (or at least ∇y ≈ Q) with U1 . . . UM denoting the distortion
matrices of the M variants of martensite and Q ∈ SO(d).

• When the material is (purely) in some variant of martensite or the austenitic
phase, the material is stable (i.e. the energy is minimized).

• Phase transition can be thermally driven - i.e. above the transformation tem-
perature, θtr, austenite is stable, below it only martensite; at θtr the phases are
energetically equal.

In accordance with these assumptions the Gibbs free energy G is chosen to be of
the following form

G(y, θ) =

∫
Ω
ψ(∇y, θ)− f ·y dx−

∫
ΓN

g·y dS, (4.1)

where ΓN = ∂Ω \ ΓD (up to a null-set), f and g are the (prescribed) volume and
surface force, respectively. Finally, ψ is the Helmholtz free energy which is of a multiwell
character, i.e. it satisfies

∀ θ ≥ θtr

{
ψ(QI, θ) = 0 ∀Q ∈ SO(d),

ψ(F, θ) > 0 ∀F ̸= QI, ∀Q ∈ SO(d),
(4.2)

∀ θ ≤ θtr

{
ψ(QUi, θ) + δ(θ) = 0 ∀i = 1 . . .M , ∀Q ∈ SO(d),

ψ(F, θ) > 0 ∀F ̸= QUi ∀i = 1 . . .M , ∀Q ∈ SO(d),
(4.3)

where I denotes the distortion matrix of the austenite, i.e. the identity matrix and δ
is an offset. The idea to use this kind of multiwell Helmholtz free energy can be found
e.g. in the works (Ball and James, 1987, 1992; Dolzmann, 2003; Müller, 1999)

Since we are considering the static case, the temperature θ is understood to be
prescribed throughout the specimen.

The precise form of ψ is not crucial for the discussion here, but in order to meet
the frame-indifference principle ψ ahs to satify that

ψ(F, θ) = ψ(QF, θ) for all F ∈ Rd×d, all θ > 0 and all Q ∈ SO(d). (4.4)

Consistently with this principle, some authors use e.g. a minimizing procedure to obtain
a possible form of the free energy (e.g. (Kruž́ık et al., 2005; Roub́ıček et al., 2007)):

ψ(F, θ) = min
m=1...M+1

ψm, (4.5)
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with ψm the free energies of the austenite and the respective variants of martensite
chosen, for example, in accordance with the St. Venant-Kirchhoff ansatz as

ψm(F, θ) =
1

2

∑
ijkl

ϵmijC
m
ijklϵ

m
kl + cmV θtr ln

(
θ

θtr

)
,

ϵm =
U−T
m F TFU−1

m − I
2

. (4.6)

Here Cm
ijkl are the elastic constants of austenite or of the respective variants of marten-

site.

Another approach found in literature (cf. e.g. (Bartel and Hackl, 2008, 2009) in the
small strain setting) defines the Helmholtz free energy through averaging, i.e.:

ψ(F, θ) =

M+1∑
i=1

λiψi, (4.7)

where λ ∈ RM+1 is the vector of volume fractions2 and ψi are again the stored energies
of austenite and of the variants of martensite.

Also, one could exploit the method presented in (Zimmer, 2004).

These mentioned forms of the stored energy have, for our purposes, rather an illus-
trative character, since the main responses of SMAs will be qualitatively captured by
any stored energy of the form (4.2). For the sake of mathematical correctness, however,
we shall demand the stored energy to be of p-growth, i.e. there exist constants c1, c2
such that

c1(|F |p − 1) ≤ ψ(F, θ) ≤ c2(|F |p + 1), (4.8)

for all F ∈ Rd×d, θ ∈ R+ and some p ∈ [1, 2d
d−2) if d > 2, otherwise p ∈ [1,∞) arbitrary.3

Microscopic models

Note that, the form of the Gibbs free energy proposed in (4.1) with a stored energy
from (4.2) does not contain any energy contributions from the surface energy stem-
ming from phase/variant interfaces. However such an energy contribution is essential
in microscopic modeling; therefore we have to add the appropriate energy term.

Though fine approaches to determine the interfacial energy from elastic compati-
bility arguments can be found in literature (see e.g. (Maciejewski et al., 2005)), for the
purposes of this thesis we adopt, as in e.g. (Bhattacharya, 2003; Müller, 1999), a very
simple way to account for this energy contribution; namely, we add the second gradient
to the Gibbs free energy and define (for some ε > 0 small)

GS
ε (y, θ) =

∫
Ω
ψ(∇y, θ) + ε

2
|∇2y|2 − f ·y dx−

∫
ΓN

g·y dS. (4.9)

An intuitive way to understand the choice of ε
2 |∇

2y|2 for the interfacial energy arises
from the assumption that the interfacial energy contribution manifests itself mainly by
preventing extremely fast oscillations of the deformation gradient like in Example 2.20;
so, its contribution causes the finite width of the microstructure. Indeed, due to its
compactifying effect, the second gradient prevents the extremely fast oscillations.

2The i-th component of the vector of volume fractions describes “how much of the i-th variant of
martensite/austenite is contained in the material point”. Naturally, it holds that λi ≥ 0, i = 1 . . .M+1,
and

∑M+1
i=1 λi = 1.

3The upper bound of p is caused by the assumed form of the interfacial energy in (4.9); by assuming
a different form this bound could be arbitrarily large, but finite.

45



In the microscopic case, we are now in the position to rigorously formulate the
minimization problem determining stable states

minimize GS
ε (y, θ)

subject to y ∈W 2,2(Ω;Rd) y(x) = x for a.a. x ∈ ΓD,
with θ prescribed,

 (4.10)

with f and g given having the following integrability4

f ∈ Lp∗
′
(Ω;Rd)

g ∈ Lp♯
′
(ΓD,Rd),

}
(4.11)

where p corresponds to (4.8) and where p∗, p♯ were specified in the Nomenclature.
Note that proving existence of solutions to (4.10) is possible, e.g. by the direct

method (cf. (Dacorogna, 1989) or the beginning of Subsection 2.2) owing to, the already
mentioned, compactifying effect of ε

2 |∇
2y|2.

Mesoscopic models

For large specimen, the surface energy becomes negligible and can be omitted. To see
this we provide a scaling argument following (De Simone, 1993) For simplicity, when
confining ourselves only to the Helmholtz free energy and the interfacial energy5, both
integrated over the set rΩ with |Ω| = 1 and r > 0, we have the overall free energy:∫

rΩ
ψ(∇y(x), θ(x)) + ε

2
|∇2y(x)|2 dx =

∫
rΩ
ψ(∇xy(rx̃), θ(rx̃)) +

ε

2
|∇2

xy(rx̃)|2 dx

= rd
∫
Ω
ψ(∇xy(rx̃), θ(rx̃)) +

ε

2
|∇2

xy(rx̃)|2 dx̃

with x̃ ∈ Ω. Introducing the scaled deformation ỹ(x̃) = 1
ry(rx̃)

6 and the scaled temper-

ature θ̃(x̃) = θ(rx̃) gives finally that the energy of the large body is rescaled to a body
of unit volume7 as ∫

Ω
ψ(∇x̃ỹ(x̃), θ̃(x̃)) +

ε

2r2
|∇2

x̃ỹ(x̃)| dx̃,

which shows that indeed, with r → ∞, the interfacial energy goes to zero.
Let us therefore concentrate on the case when the surface energy is omitted. In this

case, due to the its multiwell character, the stored energy is not quasiconvex and hence
the problem

minimize G(y, θ)
subject to y ∈W 1,p(Ω;Rd), y(x) = x for a.a. x ∈ ΓD

with θ prescibed and G from (4.1),

 (4.12)

may not and often8 will not possess solutions. In fact, it can be expected that the
infimizing sequences of G(y, θ) may exhibit very fast spatial oscillations.

4This integrability could be even generalized in the microscopic case. One could, for example, assume
only f ∈ La(Ω;Rd), with 1

a
= 1

2
+ 2

d
and 1

a
= 1

2
+ 2

d
if d > 2. However, since we shall need (4.11)

anyhow in the mesoscopic case, we do not consider these generalizations here.
5So, we do not consider the extrnal force terms here.
6While this scaling may seem strange at the first sight, it is chosen in such a manner that the relative

distortion, which is the comparable quantity is preserved.
7To this end, we express the derivatives with respect to x by derivatives with respect to x̃. Moreover,

as the energy of the specimen will scale with its volume, we need to divide the energy of the body with
a volume |rΩ| by rd to rescale it to unit volume.

8Whether or not solutions exist will depend on the temperature θ and the prescribed forces.
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Therefore, with the tools from Chapter 2, we relax the problem (4.12); in particular,
we utilize Lp-gradient Young measures (cf. Section 2.3) to obtain9

minimize GS(y, ν, θ) =
∫
Ω ψ(·, θ) •ν−f ·y dx−

∫
ΓN
g·y dS

subject to y ∈W 1,p(Ω;Rd), ν ∈ G p
ΓD

(Ω;Rd×d)

such that ∇y = id •ν a.e. on Ω with θ prescribed,

 (4.13)

Let us remind the reader that, physically, the introduced Young measures can be inter-
preted as representants of microstructure so fine that it can be “reduced to a material
point”.

Assuming (4.8) for ψ and (4.11), the relaxed problem (4.13) possesses, exploiting
Theorem 2.19 in Chapter 2, solutions. As already stressed in Example 2.20, the mini-
mizer also contains some information about the infimizing sequence.

To end this section, let us show that gradients of solutions to (4.10) generate some,
perhaps not all, minimizers of (4.13).

Proposition 4.1. Let (4.8) and (4.11) hold. Let yε ∈ W 2,2(Ω;Rd) be the solutions
to (4.10). Then there exists a subsequence of ε (not relabeled) and a couple (y, ν) ∈
W 1,p

ΓD
(Ω;Rd) × G p

ΓD
(Ω;Rd×d) such that yε ⇀ y in W 1,p(Ω;Rd) and ∇yε generates ν.

Furthermore, ∇y = id •ν a.e. on Ω and (y, ν) solve (4.13).

Proof. By testing the minimization problem (4.10) e.g. by y(x) = x in can be seen
that GS

ε (yε, θ) is uniformly bounded in R and hence, by the coercivity (4.8), yε is
uniformly bounded in W 1,p(Ω;Rd). Thanks to the Banach selection principle and to
Theorem 2.9, we select a subsequence of ε (not relabeled) and a couple (y, ν) ∈
W 1,p

ΓD
(Ω;Rd) × G p

ΓD
(Ω;Rd×d) such that yε ⇀ y in W 1,p(Ω;Rd) (thanks to the bound

on {∇yε}ε>0 and the Dirichlet boundary condition) and ∇yε generates ν.
Since id is of linear growth – and hence an element of Cp(Ω;Rd×d)10–

∫
Ω∇yε(x)χ(x) dx

→
∫
Ω id •ν(x)χ(x) dx, for any χ ∈ L∞(Ω), which readily yields ∇y = id •ν a.e. on Ω.

It only remains to show that (y, ν) solve (4.13). To this end we exploit Lemma 2.11
and the non-negativity of ε

2 |∇
2y(x)|2 to get

GS(y, ν, θ) ≤ lim inf
ε→0

∫
Ω
ψ(∇yε, θ)−f ·yε dx−

∫
ΓN

g·yε dS

≤ lim inf
ε→0

∫
Ω
ψ(∇yε, θ)+

ε

2
|∇2y(x)|2−f ·yε dx−

∫
ΓN

g·yε dS = GS
ε (yε, θ).

Since yε solves (4.10) we have that

lim inf
ε→0

GS
ε (yε, θ) ≤ lim inf

ε→0
GS
ε (ỹ, θ) =

∫
Ω
ψ(ỹ, θ)−f ·ỹ dx−

∫
ΓN

g·ỹ dS

for any ỹ ∈ W 2,2(Ω;Rd). Now choose any ν̄ ∈ G p
ΓD

(Ω;Rd×d) and a corresponding

ȳ ∈ W 1,p
ΓD

(Ω;Rd) with ∇ȳ = id • ν̄ a.e. on Ω. Then, due to Lemma 2.18, ν̄ can be

generated by a sequence yk ∈ W 1,p
ΓD

(Ω;Rd) such that |∇yk|p is weakly convergent in

L1(Ω); by mollifier arguments one could even assume that yk ∈ W 2,2(Ω;Rd) without
destroying the weak convergence of |∇yk|p in L1(Ω). Choosing therefore ỹ = yk in the
already proved relation

GS(y, ν, θ) ≤
∫
Ω
ψ(ỹ, θ)−f ·ỹ dx−

∫
ΓN

g·ỹ dS,

and passing to the limit k → ∞ gives the claim.

9This relaxation approach is due to Ball and James (1987, 1992).
10Recall that we assume p ∈ [1, 2d

d−2
) if d > 2, otherwise p ∈ [1,∞).
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Let us stress that, while this proposition justifies the mesoscopic approach since
it shows that it is a good approximation for the case the interfacial energy becomes
negligible, it does not imply that GS is the Γ-limit of GS

ε when ε→ 0.

4.2 Mesoscopic models in the isothermal quasi-static rate-
independent case

Finding stable states of a SMA specimen, when exposed to given loads, offers insight
into its behavior, but generalizations of the static models also to the evolutionary
case on the microscopic/mesoscopic scale are desirable to be able to model loading
cycles. Therefore, evolutionary mesoscopic models for SMAs have been proposed in e.g.
(Bartel and Hackl, 2008, 2009; Kruž́ık et al., 2005; Kruž́ık and Zimmer, 2011; Mielke
and Roub́ıček, 2003; Roub́ıček et al., 2007). Let us stress, however, that all these works
consider the isothermal case or consider with temperature as a given prescribed load.
(see e.g. (Mielke and Petrov, 2007)).

In this review, we follow the approach of (Kruž́ık et al., 2005; Roub́ıček et al., 2007),
since ideas from these papers will be extended in Chapter 5 for thermally coupled
case; still, we point to other works on modeling of evolution on other scales whenever
appropriate.

As confirmed by many experiments (see e.g. the review paper (Otsuka and Ren,
2005)), when the state of an SMA specimen evolves and, in particular, when its internal
structure changes, energy is dissipated; this manifests itself by a pronounced hysteresis
in stress/ temperature/strain loading cycles. Any generalization of static models should,
therefore, be able to capture this hysteresis effect.

Realize that it is exactly this dissipation mechanism that makes the response of a
SMA specimen path-dependent, i.e. the currently observed state of the specimen (which
might even seem stable) does depend on the way how this state was reached. An inter-
esting experimental confirmation of this fact was given in (Seiner et al., 2009; Seiner
and Landa, 2009) (and analyzed in (Ball et al., 2009)) where a so-called X-interface
in a CuAlNi -single crystal was observed that does not correspond to any stable state
obtained solving (4.13). The deviation from a stable state predicted by (4.13) is small
but still supports the necessity of including dissipation mechanisms into the model.

Some authors (cf. (Kruž́ık et al., 2005) for a review) try to model this dissipation
also through the stored-energy landscape. It assumed that, if the orbits SO(d)Ui and
SO(d)Uj are rank-1 connected, then dissipation of a phase transition between these
variants is small, or rather zero – otherwise dissipation is related with metastability.

Especially authors developing macroscopic models rely rather on the idea that the
dissipation mechanism needs to be described by a separate phenomenology (recording,
e.g, impurities and dislocations etc.) (cf. e.g. (Auricchio et al., 2007; Lagoudas et al.,
2011; Lexcellent et al., 2000, 1994; Rajagopal and Srinivasa, 1999; Sadjadpour and
Bhattacharya, 2007a,b) ).

In the spirit of works (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003), which we
aim to extend, we shall follow the second approach, but some ideas from the first one
are reflected, too.

Indeed, Kruž́ık et al. (2005); Mielke and Roub́ıček (2003) work within the framework
of generalized standard materials and hence have to carry out the steps specified in
Section 3.2, i.e. identify a suitable set of state variables as well as define the appropriate
energy and dissipation potential.

Since Kruž́ık et al. (2005); Mielke and Roub́ıček (2003) are concerned mesoscopic
models, and the authors understand their work as an extension of the concepts presented
in Section 4.1, the “averaged” deformation y ∈ W 1,p

ΓD
(Ω;Rd) and the gradient Young
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measure ν ∈ G p
ΓD

(Ω;Rd×d) were selected as a state variables. Furthermore, an internal
variable, namely the the vector of volume fractions λ, was introduced – the component
λi(x) of which represents the ratio of the i-th’s variant of martensite (i = 1 . . .M11)
and λM+1(x) the ratio of austenite contained in the material point x. Therefore, one
assumes λ ∈ L∞(Ω;RM+1) and λi(x) ≥ 0 and

∑M
i=1 λi(x) = 1 for a.a. x ∈ Ω.12

Recall, that the state variable ν can be conceptually understood as “infinitely fine
microstructure”; so, it is natural to impose a connection between the vector of volume
fractions and ν. In (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003) this connection
was expressed by introducing a function L : Rd×d → RM+1 and putting

λ(x) = L •νx for a.a. x ∈ Ω. (4.14)

When describing the dissipation, the authors of (Kruž́ık et al., 2005; Mielke and
Roub́ıček, 2003) pursued the modeling assumption that only changes in the ratio of the
respective phases and/or variants in a material points are dissipative but not purely
geometric changes that preserve the vector of volume fractions. This is clearly a sim-
plification, since if a geometric change occurs a rearrangement of atoms in the crystal
lattice is needed, similarly as when their ratio changes. Hackl and Kochmann (Hackl
and Kochmann, 2008) address this issue for laminates in crystal plasticity; we, however,
accept this simplification following (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003)
having also in mind that geometric changes are usually not observed in experiments
(see e.g (Bartel and Hackl, 2009)).

The dissipation mechanism is then modeled by prescribing a dissipation potential

density r : RM+1 7→ R which depends on
.
λ only, i.e. r = r(

.
λ). Again, this is a sim-

plification since the dissipation may well depend on the current state of the material.
However, the state dependence of the dissipation potential is not explored well enough
up to now and was, to the authors’ knowledge, taken into account only in macroscopic
models e.g. (Sedlák et al., 2012).

In order to capture that the martensitic transformation and martensite reorientation
are activated processes, r has to be non-smooth at 0. Moreover, r was chosen to be
homogeneous of degree 1 in (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003) as their
modeling approach followed the often used rate-independent approximation (also used
in e.g. (Arndt et al., 2006; Aubry et al., 2003; Auricchio and Petrini, 2002; Bartel and
Hackl, 2008, 2009; Lexcellent et al., 1994; Petryk and Stupkiewicz, 2010; Petryk et al.,
2010; Sadjadpour and Bhattacharya, 2007b) and many others).

As long as one-homogeneity is guaranteed, from the mathematical point of view, no
further assumptions have to be put on the dissipation potential; prescribing a specific
form is not necessary for performing the existence analysis. Yet, in the precise form
of the dissipation potential the idea that dissipation should be small if a transition
proceeds between two variants of martensite, the distortion matrices of which are rank-
1 connected (cf. (Kruž́ık et al., 2005)), can be reflected – indeed, for most of the known
SMA-materials distortion matrices corresponding to any two variants of martensite
are rank-1 connected (see e.g. (Bhattacharya, 2003)). Then, when choosing R(·) for
example as 13

r(
.
λ) =

M+1∑
i=1

γi|
.
λi|, (4.15)

one could set γi for i = 1 . . .M small compared to γi+1. However, note that because of
the experimental evidence of martensite stabilization mentioned in Chapter 1 (Liu and

11Recall that M is the number of martensitic variants.
12In mathematics, however, we shall enforce these constrains through the function L defined in (4.14).
13Precisely this form has been chosen in (Kruž́ık et al., 2005) to perform calculations.
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Favier, 2000; Picornell et al., 2006) the coefficients γi should not be set to 0 even for
i = 1 . . .M .

The dissipation potential is then, by means of its density, defined as

RRI(
.
λ) =

∫
Ω
r(
.
λ) dx. (4.16)

In accordance with the static case, the following form of the Gibbs free energy has been
chosen (here already relaxed by means of gradient Young measures)

GRI(t, y, ν, θ) =

∫
Ω
ψ(·, θ) •ν − f(t)·y dx−

∫
ΓN

g(t)·y dS + δ ∥λ∥rα,r , (4.17)

where ψ could be chosen as in (4.2) 14 and ∥λ∥rα,r is the norm in the Sobolev-Slobodeckii

space Wα,r(Ω;RM+1) and δ > 0. Note that this form corresponds to the one presented
in (4.13) except for the norm of the space with fractional derivatives Wα,r(Ω;RM+1).
This norm can be linked to some capillarity-like effects (Kruž́ık et al., 2005), however
the authors include it mostly for reasons of mathematical consistency - without it, they
would not have enough regularity at disposal to prove existence of solutions.

Note also, that since (4.17) refers to an energy for an evolutionary problem the
Gibbs free energy also depends directly on the time t ∈ [0, T ].

Following (3.17)-(3.18) the evolution of the specimen is then governed by the fol-
lowing inclusions

∂ν
(
GRI(t, y, ν, λ) + δG p

ΓD
(Ω;Rd×d)(ν)

)
∋ 0, (4.18)

∂RRI(
.
λ) + [GRI]′λ(t, y, ν, λ) ∋ 0, (4.19)

with y uniquely through the relations ∇y = id •ν, y = x on ΓD. We furthermore

prescribe the initial conditions

y(0, ·) = y0, ν(0, ·) = ν0, λ(0, ·) = λ0 on Ω, (4.20)

that are again compatible in the sense that ∇y0 = id •ν0.

Now, since the G p
ΓD

(Ω;Rd×d) is not a convex set, the subdifferentials in (4.18)-
(4.19) are understood rather formally; hence it is necessary to formulate (4.18)-(4.19)
appropriately weakly. An advantageous weak formulation to this kind of doubly non-
linear problems was proposed by Mielke and Theil in (Mielke and Theil, 2004) and is
referred to as the energetic formulation, see also the related works (Mainik and Mielke,
2005; Mielke, 2005; Mielke and Theil, 2004; Mielke and Levitas, 2002). This approach
was taken also by the authors of (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003) and
the following concept of solutions was defined:

Definition 4.2. 15 Assume that L(·)i ≥ 0 for i = 1 . . .M+1,
∑M+1

i=1 L(·)i = 116. Then,
the triple (y, ν, λ) : [0, T ] → Qc with

Q =
{
(ỹ, ν̃, λ̃) ∈W 1,p(Ω,Rd)× G p

ΓD
(Ω;Rd×d)×Wα,r(Ω,RM+1) such that ∇y = id •ν

}
Qc =

{
(ỹ, ν̃, λ̃) such that λ̃ = L • ν̃ for a.a. x ∈ Ω

}
14In fact, the authors of (Kruž́ık et al., 2005) chose the form as in (4.5)-(4.6) for their calculations,

however their existence analysis is valid under general assumptions of continuity and p-growth of ψ, cf.
Proposition 4.3 below.

15Following (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003) and the concept of energetic solutions
as presented in e.g. (Mielke, 2005; Mielke and Theil, 2004; Mielke and Levitas, 2002).

16Note that we shall drop the requirement for the vector of volume fraction λ that λi ≥ 0 for i =
1 . . .M + 1,

∑M+1
i=1 λi = 1 and rather imposed it through the function L; this procedure shall be again

exploited in Chapter 5.
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will be called an energetic solution to the (4.18)-(4.19) with initial conditions (4.20), if
it satisfies

1. the stability condition:

GRI(t, y, ν, λ) ≤ GRI(t, ỹ, ν̃, λ̃) +RRI(λ− λ̃), (4.21)

for any (ỹ, ν̃, λ̃) ∈ Qc and all t ∈ [0, T ],

2. the energetic equality : whenever q(t) ∈ Qc then ∂tGRI(t, y, ν, λ) exists, is continu-
ous and moreover

GRI(T, y(T ), ν(T ), λ(T )) + VarRRI(λ; Ω× [0, T ])

= GRI(0, y0, ν0, λ0) +

∫ T

0
[GRI]′t(t, y(s))ds, (4.22)

when realizing that actually [GRI]′t(t, y(s), ν(s), λ(s)) = [GRI]′t(t, y(s)) and where
Varf denotes the variation in time of a functions φ with respect to f defined as

Varf (ϕ;B × [t1, t2]) = sup
{∑

i

∫
B
f(ϕ(ti, x)−ϕ(ti−1, x)) dx;

for all partitions t1 ≤ t1 ≤ t2 . . . ≤ tn ≤ t2

}
. (4.23)

and the initial condition (4.20).

In (Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003) the existence of energetic solu-
tions (4.18)-(4.19) with initial conditions (4.20) under appropriate integrability condi-
tions on data and continuity/growth conditions on the potential could be proved. We
summarize, for the readers convenience, the statements of (Kruž́ık et al., 2005; Mielke
and Roub́ıček, 2003) in Proposition 4.3 and provide a short sketch of proof.

Proposition 4.3. 17 Assume that α > 0, r > 1 ψ ∈ C(Rd×d × R+) satisfies (2.3) and

there exist constants e1, e2 s.t. e1|·| ≤ r(·) ≤ e2|·| (4.24)

f ∈W 1,1([0, T ], Lp∗
′
(Ω,Rd)) (4.25)

g ∈W 1,1([0, T ], Lp♯
′
(ΓN,Rd)) (4.26)

(y0, ν0, λ0) ∈ Qc. (4.27)

Then there exists an energetic weak solution to (4.18)-(4.19) with initial conditions
(4.20).

Short sketch of proof. The proof in (Kruž́ık et al., 2005) follows the general framework
proposed in the works of Francfort and Mielke (2006) and Mielke and Theil (2004)
and is performed within five steps. Here we give just a short sketch to highlight the
main ideas and refer the reader to the original papers (Kruž́ık et al., 2005; Mielke and
Roub́ıček, 2003) for further details.

Step 1: Formulation of a time-incremental problem
Let us discretize the time with a time-step τ and introduce the so-called time-incremental
minimization problem in every time-step; this problem is the discrete counterpart to
(4.21) and (4.22).

17Taken from (Kruž́ık et al., 2005).
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Hence, we call the triple (ykτ , ν
k
τ , λ

k
τ ) ∈ Q the discrete weak solution of (4.18)-(4.19)

at time-level k, k = 1 . . . T/τ , if it satisfies:

Minimize GRI(tk, y, ν, λ) +
1

τ
∥λ− L •ν∥H−1(Ω;RM+1) +RRI(λ− λk−1

τ )

subject to (y, ν, λ) ∈ Q with λk−1
τ obtained at time-level k − 1,

 (4.28)

where we abbreviated tk = kτ .
Note that, in this discrete formulation, the constraint λ = L •ν was dropped (hence

we are using the space Q instead of Qc for the search of minimizers) and instead the
penalization 1

τ ∥λ − L •ν∥H−1(Ω;RM+1) was introduced. Therefore, λ and ν are, for the

moment, decoupled which allows for using the direct method to prove existence of
solutions to (4.28).

For further convenience, let us also denote

GRI
τ (t, y, ν, λ) = GRI(t, y, ν, λ) +

1

τ
∥λ− L •ν∥H−1(Ω;RM+1).

Step 2: A-priori estimates
Let us define the backward piecewise constant interpolants yτ , ντ and λτ as[

yτ , ντ , λτ ](t) =
(
ykτ , ν

k
τ , λ

k
τ

)
for (k−1)τ < t ≤ kτ , k = 1, ..., T/τ . (4.29)

Then these interpolants satisfy the following bounds (here and in the following we use
C as a generic constant that does not depend on τ):

sup
t∈[0,T ]

|Gτ (t, ντ (t), yτ (t), λτ (t))| ≤ C, (4.30)

sup
t∈[0,T ]

∥yτ∥W 1,p(Ω;Rd) ≤ C, (4.31)

sup
t∈[0,T ]

∥∥∥|·|p •ντ

∥∥∥
L1(Ω;Rd)

≤ C, (4.32)

∥λτ∥BV ([0,T ],L1(Ω;RM+1))∩L∞([0,T ];Wα,r(Ω,RM+1)) ≤ C. (4.33)

Moreover a discrete stability condition

GRI
τ (tk, yτ (tk), ντ (tk), λτ (tk)) ≤ GRI

τ (tk, ỹ, ν̃, λ̃) +RRI(λτ (tk)− λ̃) ∀ (ỹ, ν̃, λ̃) ∈ Q,
(4.34)

and the discrete two-sided energy inequality∫ tl

0
[GRI]′t(s, yτ (tk))ds ≤ GRI

τ (tk, yτ (tk), ντ (tk), λτ (tk))+VarRRI(λτ ; Ω× [0, T ])

−Gτ (0, y0, ν0, λ0) ≤
∫ tl

0
[GRI]′t(s, yτ (tk−1))ds, (4.35)

for any l ∈ 1 . . . T/τ can be proved.
The bounds (4.30) - (4.33) are obtained by testing (4.28) with the initial conditions;

note also that for the initial conditions we have λ0 = L •ν0; so, the estimates are really

uniform in τ . We refer to (Kruž́ık et al., 2005) for details.
As to (4.34), note that the convexity and one-homogeneity of RRI assure the triangle

inequality RRI(λ1 +λ2) ≤ RRI(λ1)+RRI(λ2) to be satisfied, cf. e.g. (Mielke and Rossi,
2007). Therefore, one can test (4.28) by any (ỹ, ν̃, λ̃) ∈ Q to get (see e.g. (Francfort
and Mielke, 2006; Kruž́ık et al., 2005; Mielke and Theil, 2004))

GRI
τ (tk, yτ (tk), ντ (tk), λτ (tk))+R

RI(λτ (tk)−λτ (tk−1)) ≤ GRI
τ (tk, ỹ, ν̃, λ̃)+R

RI(λ̃−λτ (tk−1)),
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which, by using the triangle, inequality leads to (4.34).
In order to show (4.35), test (4.28) by (yτ (tk−1), ντ (tk−1), λτ (tk−1)) to get

GRI
τ (tk, yτ (tk), ντ (tk), λτ (tk))+R

RI(λτ (tk)−λτ (tk−1)) ≤ GRI
τ (tk, , yτ (tk−1), ντ (tk−1), λτ (tk−1))

= GRI
τ (tk−1, , yτ (tk−1), ντ (tk−1), λτ (tk−1)) +

∫ tk

tk−1

[GRI]′t(s, yτ (tk−1))ds.

Summing this from 1 to l gives exactly the second part in (4.35). Moreover, as we
know that (yτ (tk−1), ντ (tk−1), λτ (tk−1)) satisfies the discrete stability condition (4.34),
we have

GRI
τ (tk−1, yτ (tk−1), ντ (tk−1), λτ (tk−1))

≤ GRI
τ (tk−1, yτ (tk), ντ (tk), λτ (tk)) +RRI(λτ (tk)−λτ (tk−1))

= GRI
τ (tk, yτ (tk), ντ (tk), λτ (tk))−

∫ tk−1

tk

[GRI]′t(s, yτ (tk), )ds+RRI(λτ (tk)−λτ (tk−1)),

which, when summing again from 1 to l, gives exactly the first part of the discrete
energy inequality.

Step 3: Selecting subsequences
Due to the estimate (4.33), we may find, by an application of Helly’s selection principle
in its slightly generalized form (cf. (Mainik and Mielke, 2005)), a subsequence of τ ’s
(not relabeled) and λ ∈ BV ([0, T ];L1(Ω;RM+1))∩L∞([0, T ];Wα,r(Ω,RM+1)) such that
λτ (t)⇀ λ(t) in Wα,r(Ω;RM+1) for all t ∈ [0, T ].

Thanks to estimate (4.30), GRI
τ (T, yτ (T ), ντ (T ), λτ (T )) converges to a limit, say

GRI(T ) ∈ R; after possibly choosing a further subsequence of τ ’s.
Also, as the collection of measurable function [GRI]′t(t, yτ ) is, due to (4.31), uniformly

in τ bounded from above by yet another measurable function, we get by Fatou’s lemma
that18

lim sup
τ→0

∫ T

0
[GRI]′t(s, yτ ) ds ≤

∫ T

0
lim sup

τ→0
[GRI]′t(s, yτ ) ds.

Fix some t ∈ [0, T ]. Then, we select a t-dependent subsequence of τ ’s denoted τt
such that

lim sup
τ→0

[GRI]′t(t, yτ ) = lim
τt→0

[GRI]′t(t, yτ ).

From this time-dependent subsequence, we select yet another subsequence (which we

do no relabel, however) such that ντt(t)
∗
⇀ ν(t) in GΓD

(Ω;Rd×d) and yτt(t) ⇀ y(t) in
W 1,p(Ω;Rd) such that y(t) = x on ΓD and ∇y(t) = id •ν(t) a.e. on Ω.

In particular, the limit y(t) satisfies

lim sup
τ→0

∫ T

0
[GRI]′t(s, yτ ) ds ≤

∫ T

0
[GRI]′t(s, y) ds, (4.36)

details in (Kruž́ık et al., 2005; Mainik and Mielke, 2005); a similar procedure will be
also performed in Step 1 of the proof Theorem 5.12.

Finally, we realize that due to (4.30) λ(t) = L •ν(t) for all t ∈ [0, T ] and so, in

particular, (y(t), ν(t), λ(t)) ∈ Qc.

Step 4: Passing to the limit in the discrete stability condition
Realizing that if λτ (t)⇀ λ(t) inWα,r(Ω;RM+1) then also λτ (t) → λ(t) in L1(Ω;RM+1),
leads to the observation that RRI(λτ (t)−λ̃) → RRI(λ(t) − λ̃) for any λ̃ ∈ RM+1. This

18This procedure is inspired by (Dal Maso et al., 2005) and was used in (Kruž́ık et al., 2005), however
not in (Mielke and Roub́ıček, 2003) where instead a so-called non-buckling condition was introduced.
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and the weak lower semi-continuity in the Gibbs free energy allow usto keep the time
t ∈ [0, T ] fixed and pass to the limit τt → 0 in (4.34) to obtain (4.21). Note that this
procedure also gives the GRI(T ) = GRI(T, y(T ), ν(T ), λ(T )) with GRI(T ) defined in Step
3.

Step 5: Passing to the limit in the lower energy inequality
Exploiting that GRI

τ (T, yτ (T ), ντ (T ), λτ (T )) → GRI(T, y(T ), ν(t), λ(T )), the weak lower
semi-continuity of the variation and the relation (4.36) allows for a limit pasage τ → 0
in the lower inequality of (4.35) yielding (cf. (Kruž́ık et al., 2005) for details)

GRI(T, y(T ), ν(T ), λ(T ))−G(0, y0, ν0, λ0)+VarRRI(λ; Ω× [0, T ]) ≤
∫ T

0
[GRI]′t(s, y(s))ds.

Step 5: Establishing the energy inequality
The opposite inequality in (4.22) is actually a consequence of the stability as realized
in e.g. (Kruž́ık et al., 2005).
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Chapter 5

Thermally coupled extension of
mesoscopic SMA models

Most existing evolutionary mesoscopic models (e.g. (Bartel and Hackl, 2008, 2009;
Kruž́ık et al., 2005; Mielke and Roub́ıček, 2003; Roub́ıček et al., 2007)), in particular
those reviewed in Section 4.2, consider the temperature as fixed. Clearly, this assump-
tion rules out modeling of heating and cooling of the specimen and hence one of the
most important responses of SMAs, the shape-memory effect, cannot be captured by
these models. To overcome this issue, a rather straightforward extensions of the model
reviewed in Section 4.2 with temperature as an prescribed load can be formulated based
on (Mielke et al., 2009; Mielke and Petrov, 2007). Although this extension might be
suitable for very small specimen, where one can assume that temperature changes can
be compensated very fast and hence the temperature within the specimen is practically
equal to the one prescribed on the boundary, for larger specimen this approach is again
insufficient. Rather, including thermomechanic coupling into the model that would allow
us to prescribe the temperature on the boundary and calculate its distributions within
the specimen is required. Therefore, an extension of the mesoscopic model reviewed in
Section 4.2 including thermomechanic coupling represents a key result obtained within
this thesis and is presented in this chapter.

Let us note that such an thermomechanical coupling has already been included
in macroscopic models and mathematical results in the fully coupled case have been
obtained as in e.g. (Krejč́ı and Stefanelli, 2011) for the Souza-Auricchio model (cf.
(Auricchio and Petrini, 2004; Souza et al., 1998)) or in e.g. (Colli et al., 2000; Colli and
Sprekels, 1992; Stefanelli, 2002, 2005) for the Frémond model (cf. (Frémond, 1987)).

This chapter is built up upon the works (Benešová and Roub́ıček, 2012; Benešová,
2011b), but also new results, not presented in these papers, are exposed in Section 5.5;
also the proof Proposition 5.9 has not been presented elsewhere in full length.

Within this chapter, we first introduce the devised extension to thermally coupled
case in Section 5.1; we also line out thermodynamic consistency in Section 5.2. Then,
in Sections 5.4 and 5.5 we prove existence of solutions to thermally coupled model
by two different methods, each of them having its own significance. The first method
extends the ideas from Theorem 4.1 to show, that even in thermally coupled case the
mesoscopic model can be understood as an approximations of microscopic models when
the interfacial energy becomes negligible, i.e. the specimen becomes large. The second
method, on discrete equivalent to the model and hence offers a conceptual numerical
algorithm.

55



5.1 Presentation of the devised thermally coupled model

Since the model presented in this subsection aims to extend mesoscopic models as
presented in Section 4.2, we again formulate the model within the framework of gener-
alized standard solids in continuum mechanics and the large strain setting. Recall from
Chapter 3 that this requires us to first find an appropriate set of internal variables, and
further to prescribe two potentials, namely the Gibbs free energy and the dissipation
potential to constitutively determine the behavior of the SMA specimen.

As to the set of state variables, we follow Section 4.2 and take y ∈W 1,p
ΓD

(Ω;Rd), the

averaged deformation, ν ∈ G p
ΓD

(Ω;Rd×d), i.e. the gradient Young measure representing
the microstructure due to very fine oscillations of the deformation gradient, and also
the vector of volume fractions λ ∈ RM+1 as state variables. Furthermore, to capture
thermal evolution, we enrich this set by the temperature θ ∈ R.

As to the choice of the Gibbs free energy, G, we start from the form prescribed in
the static case

GS(y, ν, θ) =

∫
Ω
ψ(·, θ) •ν−f ·y dx−

∫
ΓN

g·y dS;

however, we let the Helmholtz (and thus also the Gibbs) free energy depend also on
the new state variable λ1. Moreover we consider, as quite usual (Falk, 1980; Falk and
Konopka, 1990), the partially linearized ansatz

ψ̃0(F, λ, θ) = ϕ0(θ)︸ ︷︷ ︸
thermal
part

+ ϕ1(F )︸ ︷︷ ︸
multiwell

mechanical part

+ (θ−θtr)⃗a·λ︸ ︷︷ ︸
thermomechanical

coupling

, (5.1)

which restricts the assumptions from (4.2)2. Still, in (5.1), the multiwell mechanic
part ϕ1(F ) can be chosen, for example, as in (4.5) with thermal part canceled in (4.6).
Choosing ϕ1(F ) of a multiwell character will enable the formation of microstructure; on
the other hand, simultaneously, the need for relaxation will arise as already in Chapter
4.

In the term corresponding to thermomechanic coupling (θ−θtr)⃗a·λ we set a⃗ =
(0, . . . , 0,−str) where str is the the specific transformation entropy, i.e. the difference of
martensite versus austenite entropy, or, in other words, the latent heat of the marten-
sitic transformation divided by the transformation temperature θtr > 0. Furthermore
str corresponds also, roughly, to the so-called Clausius-Clapeyron constant multiplied
by a transformation strain, cf. (Arndt et al., 2006; Kruž́ık et al., 2005). Furthermore,
the chosen coupling term is the leading term in the chemical energy (Sedlák et al.,
2012).

Note that an important feature of this ansatz is that the mechanic part entering
thermomechanic coupling is representing only by the vector of volume factions; thus
we implicitly neglect thermal expansion. Even though this approach is a simplification,
the important feature that when temperature rises up, martensite takes higher energy
than austenite becoming thus energetically preferable at higher temperatures, and vice
versa for lower temperatures is captured through the coupling term; hence the thermally
induced martensitic transformation can be modeled. Note that this simplified coupling
will also be important from the mathematical point of view as mentioned in Remark
5.5.

1We shall denote the Helmholtz free energy depending on the variables (F, λ, θ) as ψ̃0 = ψ̃0(F, λ, θ)
to distinguish it from the static free energy ψ depending only on (F, θ).

2Recall that in (4.2) we only required the Helmholtz free energy to be of a multiwell type with
energetically preferable martensite wells for θ < θtr while for θ > θtr the austenite well takes the lowest
energy.
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5.1.1 Introducing a phase field

In Section 4.2 the vector of volume fractions λ was fully determined by the second
mechanic variable ν through the relation (4.14); this approach was also used in (Kruž́ık
et al., 2005; Roub́ıček et al., 2007). In the macroscopic models, on the other hand, the
volume fraction of martensite and the deformation gradient are regarded as completely
independent (see e.g. (Frémond and Miyazaki, 1996; Sadjadpour and Bhattacharya,
2007b)).

Inspired by the macroscopic case, we choose, for thermally coupled model, a kind
of a compromise approach: we still have λ and ν independent but we have in mind
that, at least with some accuracy, λ ∼ L •ν with respect to a certain norm, denoted

by Qκ(·)1/2, rather than exactly having zero residuum λ−L(F ) = 0. Hence, λ will
correspond to a phase field that will enjoy higher regularity in time and that will be
equal to the vector of volume fractions determined by the microstructure ν up to some
small mismatch only.

The mentioned norm is considered as

Qκ(ξ) =

∫
Ω

κ
2
|Qξ|2 dx with some Q ∈ Lin(L2(Ω), L2(Ω)) compact, (5.2)

with κ presumably large. Note that the differential

Q′
κ(ξ) = κQ∗Q ∈ Lin(L2(Ω), L2(Ω)) (5.3)

is a compact operator, too. For an example, one can think of Q = ∇∆−1 and then
simply Q′

κ = −κ∆−1; in this case Qκ(·)1/2 is equivalent to the H−1(Ω)-norm as shown
in (Benešová, Kruž́ık and Roub́ıček, 2012).

For further shortening of notation let us introduce

Pκ(∇y, λ) = Q′
κ(λ− L(∇y)), (5.4)

Pκ(ν, λ) = Q′
κ(λ− L •ν). (5.5)

To assure that λ ∼ L •ν with respect to the norm Qκ(·)1/2, we augment the Gibbs

free energy used in the static case, GS, by the term Qκ(λ−L •ν), which results to

G(t, y, ν, λ, θ) =
∫
Ω
ψ̃0(·, λ, θ) •ν dx︸ ︷︷ ︸
stored energy

+

∫
Qκ(λ−L •ν)︸ ︷︷ ︸
mismatch term

−
∫
Ω
f(t, ·)·y dx−

∫
ΓN

g(t, ·)·y dS︸ ︷︷ ︸
energy of the applied load

.

(5.6)

Remark 5.1 (Mathematical advantages of the phase field model). Implementing the
phase field concept makes the model mathematically amenable. Indeed, if the holonomic
constraint λ = L •ν was required to be fulfilled this would lead to a strong coupling

between the (rate-independent) evolution of ν and the (rate-dependent) evolution of the
temperature θ. In turn, this would make it very hard to proove existence of solutions
of thermally coupled model; in particular the flow-rule (5.11b) below would rather be
a doubly non-linear inclusion.

Remark 5.2 (Justification of the phase-field approach). In order to justify the phase-
field approach, let us prove that, under assumptions (A1), (A3) from Section 5.3, in
the static case solutions (λκ, νκ) of the “penalized” problem3

minimize

∫
Ω
ϕ1 •ν + (θ−θtr)⃗a·λ− ϕ0(θ) dx+Qκ(λ− L •ν)

subject to ν∈G p
ΓD

(Ω;Rd×d), λ ∈ HQκ (Ω;RM+1) with θ ∈ C1(Ω)4.

 (5.7)

3For simplicity, we omit the external forces here; however, they could be routinely included.
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with HQκ (Ω;RM+1) the formal completion of the space of functions in L2(Q;RM+1)

equipped with the Q1/2
κ -norm, converge in HQκ (Ω;RM+1)× G p

ΓD
(Ω;Rd×d) to solutions

of

minimize

∫
Ω
ϕ1 •ν + (θ−θtr)⃗a·λ− ϕ0(θ) dx

subject to ν∈G p
ΓD

(Ω;Rd×d), λ ∈ HQκ (Ω;RM+1) with θ ∈ C1(Ω).

and λ = L •ν for a.a. x ∈ Ω.

 (5.8)

if κ → ∞.

Indeed, it easy to see, simply by testing (5.7) by any (λ̂, ν̂) such that λ̂ = L • ν̂, that∫
Ω |·|p •νκ dx is bounded uniformly with respect to κ.5 Hence also ∥L •νκ∥L2(Ω;Rd+1)

6

and in turn also Qκ(L •νκ) are uniformly bounded with respect to κ. By this test,

we, furthermore, get that Qκ(λκ −L •νκ) and thus also ∥λκ∥HQκ (Ω;RM+1) are bounded

independently of κ.
Thus, exploiting standard selection principles, we find a pair (λ, ν) ∈ HQκ (Ω;RM+1)×

G p
ΓD

(Ω;Rd×d) such that (in terms of a not-relabeled subsequence) νκ
∗
⇀ ν in G p

ΓD
(Ω;Rd×d)

and λκ ⇀ λ in HQκ (Ω;RM+1). Also, as Qκ(λκ − L •νκ) is bounded independently of

κ, necessarily λ = L •ν holds for the weak limits.

Then thanks to the weak-lower semi-continuity we have that∫
Ω
ϕ1 •ν+(θ−θtr)⃗a·λ− ϕ0(θ) dx ≤ lim inf

κ→∞

∫
Ω
ϕ1 •νκ + (θ−θtr)⃗a·λκ − ϕ0(θ) dx

≤ lim inf
κ→∞

∫
Ω
ϕ1 •νκ + (θ−θtr)⃗a·λκ − ϕ0(θ) dx+Qκ(λκ − L •νκ)

≤ lim inf
κ→∞

∫
Ω
ϕ1 • ν̂ + (θ−θtr)⃗a·λ̂− ϕ0(θ) dx+Qκ(λ̂− L • ν̂)

=

∫
Ω
ϕ1 • ν̂ + (θ−θtr)⃗a·λ̂− ϕ0(θ) dx,

for any (λ̂, ν̂) such that λ̂ = L • ν̂, which shows that (λ, ν) is a solution to (5.8).

Even though Remark 5.2 is concerned only with the static situation, a similar result
can be proved also in the evolutionary but isothermal setting from Section 4.2; cf.
(Benešová, Kruž́ık and Roub́ıček, 2012) for details. We shall prove a result of this type
also in thermally coupled, however convex, case in Chapter 6 below. Even though in the
non-convex thermally coupled a result of this kind is still missing, the known results
justify in a certain sense the mathematically favorable penalty approach.

5.1.2 Dissipation and heat equation

Following further the concept of generalized standard materials; we define the following
dissipation potential

R(
.
λ) =

∫
Ω
ρq(
.
λ) dx (5.9)

where

ρq(ξ) =
α

q
|ξ|q + δ∗S(ξ) (5.10)

5Also, we have in mind the coercivity of ϕ1 (i.e. (A1) from Section 5.3) – p then corresponds to
(A1).

6We exploit assumption (A3) stating that 0 ≤ Li(·) ≤ 1 for i = 1 . . .M + 1.
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with α > 0, q ≥ 2 and δ∗S(·) the Legendre-Fenchel conjugate7 convex set S ⊂ RM+1.
As to the interpretation of the terms in (5.9), δ∗S(ξ) describes rate-independent losses

(the contribution of which we consider dominant) and term α
q |ξ|

q models rate-dependent
dissipation. As α is presumably small, our choice of the dissipation potential implies
that at small rates (small driving forces) the behavior of the material is nearly rate-
independent, but becomes rate-dependent at higher rates (large driving forces). It has
been argued in (Sadjadpour and Bhattacharya, 2007b) that such a choice is necessary
as “boundaries require an unboundedly increasing driving force for the propagation
speeds to reach towards some sound speed”, cf. also (Bhattacharya et al., 2003). This
is also consistent with experiments, see again (Sadjadpour and Bhattacharya, 2007b)
and the references therein. As was also noted in (Sadjadpour and Bhattacharya, 2007b)
the rate-dependents effect take place in a range of loading frequencies for which the
isothermality assumption is mostly violated ; therefore it makes sense to include the
rate-independent terms here even if they were omitted on Section 4.2. We include the
rate-dependent term here, however, not only for its physical relevance but also for
mathematical reasons which we expose in Remark 5.3.

Hence, in view of (3.17)-(3.19), we solve in Q = [0, T ]× Ω the following system

∂ν
(
G(t, y, ν, λ, θ) + δG p

ΓD
(Ω;Rd)(ν)

)
∋ 0, (5.11a)

∂ .
λ
R(
.
λ) + ∂λG(t, y, ν, λ, θ) ∋ 0, (5.11b)

θ
.
s+div j = heat-production rate = ∂ρq(

.
λ)·
.
λ, (5.11c)

that is understood very formally, in particular the indicator function δG p
ΓD

(Ω;Rd)(ν) is

not convex. We give a more suitable (and in fact even more restrictive) strong for-
mulation reflecting the non-convexities in Section 5.1.3. Also, we did not specify the
initial/boundary conditions and will do so again in Section 5.1.3.

At this point, let us, however, evaluate the entropy balance (5.11c). Due to the Gibbs

relation s = −[ψ̃0(F, λ, θ)]
′
θ(λ, θ) (see also (3.9)), we have that

.
s = −[ψ̃0]

′′
θλ(λ, θ)·

.
θ−[ψ̃0]

′′
θλ

.
λ

where [ψ̃0]
′′
θλ = a⃗. This allows us to reformulate the entropy imbalance into a heat equa-

tion

cv(θ)
.
θ − div(q) = δ∗S(

.
λ) + α|

.
λ|q + a⃗·θ

.
λ with cv(θ) = −θ[ψ̃0]

′′
θ(θ), (5.12)

where cv is the specific heat capacity. In (5.12), the last term stems from thermome-
chanic coupling and is referred to as adiabatic heat. Furthermore, we have to make a
constitutive choice for the heat-flux q; we consider it governed by the Fourier law

q = −K(λ, θ)∇θ (5.13)

7Recall, from Chapter 3, that for a function f : RM+1 → R, we define its convex conjugate as
(Rockafellar, 1970)

f∗(x∗) = sup
x∈RM+1

{(x∗, x)− f(x)}.

For example, consider the indicator function to the hypercuboid CRM+1 = {x ∈ RM+1; |xi| ≤ γi} for
some γi ≥ 0 given. Then, for its Legendre-Fenchel conjugate we have

δ∗CRM+1
(x∗) = sup

x∈RM+1

{
(x∗, x)− δCRM+1 (x)

}
= sup

x∈CRM+1

{M+1∑
i=1

x∗i xi
}
.

In order to maximize this expression, we maximize each particular term of the sum x∗i xi. It is easy to
see, that the maximum is obtained if choosing xi = γix

∗
i /|x∗i | and hence

δ∗CRM+1
(x∗) =

M+1∑
i=1

γi|x∗i |.

Note that this form indeed corresponds to (4.15).
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withK the heat-conductivity tensor. For thermodynamic consistency, we have to assume
thatK is positive definite; cf. assumption (A5) in Section 5.3 below where even a stricter
ellipticity-like requirement is assumed.

Remark 5.3 (Mathematical reasons to consider a rate-dependent dissipation potential).

Mathematically, having a rate-dependent dissipation potential and q ≥ 2 in (5.9) is
essential due to the adiabatic heat term in (5.12). Indeed, if we neglected the rate-
dependent contribution to the dissipation potential (by setting α = 0 in (5.9)) one

could expect at most
.
λ ∈ L1([0, T ];L1(Ω;RM+1)). Thus, in order to have the adiabatic

heat well defined, one would need to prove that θ ∈ L∞([0, T ];L∞(Ω)), which cannot
be obtained due to the terms stemming from dissipation on the right-hand side of the
heat equation (5.12).

5.1.3 Governing equations in strong form

In this subsection, let us give a suitable strong formulation of the very formal system
(5.11). As already pointed out, especially (5.11a) is understood rather formally. There-
fore, instead of (5.11a) we introduce the minimization problem (5.17a) – if the set of
gradient Young measures and the Gibbs free energy were convex, (5.11a) and (5.17a)
would be equivalent. In the non-convex case (5.17a) is even more restrictive but reflects
the physically well accepted idea of (stored) energy minimization.

Further, it is mathematically advantageous to perform the so-called enthalpy trans-
formation 8. For this, let us introduce a new variable w, called enthalpy, by

w = ĉv(θ) =

∫ θ

0
cv(r) dr. (5.14)

It is natural to assume that cv is positive, hence ĉv is increasing and thus invertible9.
Therefore, denote

Θ(w) :=

{
ĉ−1
v (w) if w ≥ 0

0 if w < 0
(5.15)

and note that θ = Θ(w). From the definition of w, we immediately see that
.
w = cv(θ)

.
θ.

Rewriting further the heat flux in terms of w gives

K(λ, θ)∇θ = K
(
λ,Θ(w)

)
∇Θ(w) = K(λ,w)∇w, (5.16)

where K(λ,w) = K(λ,Θ(w))
cv(Θ(w)) .

All in all, we end up with the following governing equations:

minimize

∫
Ω
ϕ1 •ν+Θ(w)λ−f(t, ·)·y dx

+Qκ
(
λ−L •ν

)
−
∫
ΓN

g(t, ·)·y dS

subject to (y, ν) ∈W 1,p(Ω;Rd)× G p
ΓD

(Ω;Rd×d)

such that∇y = id •ν and (λ, θ) are fixed,


for t∈ [0, T ], (5.17a)

∂δ∗S(
.
λ)+α|

.
λ|q−2

.
λ+(Θ(w)− θtr)⃗a ∋ −κQ∗Q(λ−L •ν) in Q, (5.17b)

.
w−div(K(λ,w)∇w) = δ∗S(

.
λ)+α|

.
λ|q+Θ(w)⃗a·

.
λ in Q, (5.17c)(

K(λ,w)∇w
)
·n+bΘ(w) = bθext on Σ; (5.17d)

8Introduced in the context of the so-called Stefan problem (Kamenomotskaya, 1961; Oleinik, 1960).
Here we adapted it from (Roub́ıček, 2010).

9Here we assume that θ ≥ 0 since we understand θ to be the absolute temperature.
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Note that (5.17b) was obtained from (5.11b) just by writing out the derivatives. Note
further that we have added a Robin-type boundary condition for the heat equation in
(5.17d) with b > 0 prescribed and θext > 0 the given external temperature. The system
(5.17) has thus to be completed by prescribing initial conditions in the form

y(0, ·) = y0, ν(0, ·) = ν0, λ(0, ·) = λ0, w(0, ·) = w0 = ĉv(θ0) on Ω, (5.18)

that have to be compatible in the sense that y0 = id •ν0 a.e. on x ∈ Ω.

5.2 Thermodynamic consistency

Let us stress that the model proposed in this chapter with governing equations (5.17)
is thermodynamically consistent, by which we understand that it fulfills the first and
the second law of thermodynamics.

As to the second law, realize that the dissipation potential R(
.
λ) is convex and the

heat conduction tensor is assumed positive definite by (A5) in Section 5.3. In view of
the discussion in Chapter 3, the second law of thermodynamics is satisfied, as desired.

It remains to show energy conservation. We show it for suitably smooth solutions
(y, ν, λ, θ) of (5.17); however instead of the enthalpy equation, we shall rather consider
the original entropy balance (5.11c) with the heat flux governed by (5.13). Since (y, ν)
minimize the Gibbs free energy G the partial derivatives with respect to these variables
evaluated at each minimizer need to be zero. Hence we can write

G(T,y(T ), ν(T ), λ(T ), θ(T )) = G(0, y0, ν0, λ0, θ0)

+

∫ T

0
⟨G′

λ(ν(t), λ(t), θ(t)),
.
λ(t)⟩+ G′

θ(λ(t), θ(t)),
.
θ(t)⟩+ G′

t(t, y(t)) dt, (5.19)

when realizing that, due to the assumed form of the Gibbs free energy (5.6), the partial
derivatives of G depend only on the indicated state variables.

Let us furthermore exploit the flow-rule (5.17b), multiply it by
.
λ and integrate over

Ω and [0, T ]. This leads to the following equality 10∫ T

0

∫
Ω
α|
.
λ|+ δ∗S(

.
λ) dxdt = −

∫ T

0
⟨G′

λ(ν(t), λ(t), θ(t)),
.
λ(t)⟩. (5.20)

Furthermore, multiplying (5.11c) by 1 and integrating over Ω and [0, T ] leads to∫ T

0

∫
Ω
θ
.
s − div(K(λ, θ)∇θ) =

∫ T

0

∫
Ω
δ∗S(
.
λ) + α|

.
λ|q dx dt.

Exploiting the divergence theorem for div(K(λ, θ)∇θ) and also boundary condition
(5.17d)11 allows us to write, using also the prescribed form of the Gibbs free energy
(5.6) and the Gibbs relation (cf. e.g. 3.9),∫ T

0
⟨G′

θ(λ(t), θ(t)),
.
θ(t)⟩ =

∫ T

0

∫
Ω
s
.
θ = −

∫ T

0

d

dt

∫
Ω
θs dxdt+

∫ T

0

∫
Ω

.
sθ dx dt

= −
∫ T

0

d

dt

∫
Ω
θs dx dt+

∫ T

0

∫
Ω
δ∗S(
.
λ)+α|

.
λ|q dxdt+

∫ T

0

∫
Γ
bθext − bθ dS dt. (5.21)

10Realize that, though ∂δ∗S(
.
λ) is a set-valued mapping, ∂δ∗S(

.
λ)·
.
λ = δ∗S(

.
λ) is single valued.

11When reformulated in terms of temperature rather then the enthalpy, (5.17d) reads as(
K(λ, θ)∇θ

)
·n+bθ = bθext on Γ.
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Therefore, plugging (5.20) and (5.21) into (5.19) leads to(
G(T )+

∫
Ω
(θs)(T ) dx

)
︸ ︷︷ ︸

finalinternal energy

−
(
G(0)+

∫
Ω
(θs)(0) dx

)
︸ ︷︷ ︸

initialinternal energy

=

∫ T

0
G′
t(t, y(t)) dt︸ ︷︷ ︸

power of mechanical forces

+

∫ T

0

∫
Γ
bθext+bθ dS dt︸ ︷︷ ︸

power of thermal forces

,

where we introduced the shorthand notation

G(T ) = G(T, y(T ), ν(T ), λ(T ), θ(T ))
G(0) = G(0, y0, ν0, λ0, θ0).

Thus, we obtained energy conservation.

5.3 Weak formulation, data qualifications, main result

In this section we give an appropriate weak formulation of the strong system (5.17);
in particular, we use the standard weak formulation for the inclusion (5.17b) (see e.g.
(Roub́ıček, 2005)) and the standard very weak formulation of the enthalpy equation
(5.17c).

Definition 5.4. We call the quadruple (y, ν, λ, w) ∈ B([0, T ];W 1,p(Ω;Rd))×
(G p

ΓD
(Ω;Rd×d))[0,T ] ×W 1,q([0, T ];Lq(Ω))× L1([0, T ];W 1,1(Ω)) such that ∇y(t) = id •ν

for all t ∈ [0, T ] a.e. on Ω and y = x on ΣD
12 a weak solution of (5.17) with initial

condition (5.18) if it satisfies:
1.The minimization principle

G(t, y(t), ν(t), λ(t),Θ(w(t))) ≤ G(t, ỹ, ν̃, λ(t),Θ(w(t))), (5.22)

for any couple (ỹ, ν̃) ∈W 1,p(Ω;Rd)×G p
ΓD

(Ω;Rd×d) such that ∇ỹ = id • ν̃ a.e. on Ω and

all t ∈ [0, T ].
2.The flow rule∫

Q

(
Θ(w)−θtr

)
a⃗·
(
v−
.
λ
)
+ρq(v)+κQ(λ−L •ν)Q(v−

.
λ) dx dt ≥

∫
Q
ρq(
.
λ) dxdt. (5.23)

for any v ∈ Lq(Q;RM+1).
3.The enthalpy equation:∫
Q
K(λ,w)∇w·∇ζ−w

.
ζ dxdt+

∫
Σ
bΘ(w)ζ dS dt =

∫
Ω
w0ζ(0) dx+

∫
Σ
bθextζ dS dt

+

∫
Q

(
δ∗S(
.
λ)+α|

.
λ|q+Θ(w)⃗a·

.
λ
)
ζ dxdt, (5.24)

for any ζ ∈ C1(Q̄) with ζ(T ) = 0
4.The remaining initial conditions in (5.18):

ν(0, ·) = ν0 and λ(0, ·) = λ0 in Ω.

Remark 5.5 (Coupling between (5.22)-(5.24)). Note that, due to the proposed linearized
ansatz of the Helmholtz free energy in (5.1) and by introducing the phase-field λ, (5.24)
determining ν and (5.24) determining w are coupled only through the intermediate
equation (5.23). The advantage of this is, roughly, that both variables for which only
little regularity is assumed (i.e. ν and w) are not coupled directly but by means of λ
which enjoys a higher regularity.

12Recall that ΣD = [0, T ]× ΓD.
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Data qualifications:
Furthermore, let us summarize the data qualifications needed to prove existence of
solutions:

(A1) Mechanical part of the Helmholtz free energy : ϕ1 ∈ C(Rd×d) and there exist 0 <
c1 ≤ c2, such that c1|·|p ≤ ϕ1(·) ≤ c2(1+|·|p), where p ∈ [1, 2d

d−2) if d > 2, otherwise
p ∈ [1,∞) arbitrary.

(A2) Outer forces: f ∈ W 1,∞([0, T ];Lp∗
′
(Ω;Rd)) and g ∈ W 1,∞([0, T ];Lp♯

′
(ΓN,Rd)),

where p corresponds to (A1).

(A3) Phase distribution function: L ∈ C(Rd×d;RM+1) and L(·) ∈ {s ∈ RM+1, 0 ≤ si ≤
1 for all i = 1 . . .M+1,

∑M+1
0 si = 1}.

(A4) Specific heat capacity : cv ∈ C(R) and there exists a constants ω1 ≥ ω ≥ q′, q ≥ 2,
and c1, c2 > 0 such that c1(1+θ)

ω−1 ≤ cv(θ) ≤ c2(1+θ)
ω1−1.

(A5) Heat conduction tensor K ∈ C(R×R,Rd×d) and there exist CK > 0, κ0 > 0 such
that K(λ,w) ≤ CK and χTK(λ,w)χ ≥ κ0|χ|2 for all λ ∈ R, w ∈ R and χ ∈ Rd.

(A6) Heat-transfer boundary condition : θext ∈ L1(Σ), θext ≥ 0, and b ∈ L∞(Σ), b ≥ 0.

(A7) Initial conditions:
ν0 ∈ G p

ΓD
(Ω;Rd×d), λ0 ∈ Lq(Ω), θ0 ≥ 0, ĉv(θ0) ∈ L1(Ω).

The requirement that p ∈ [1, 2d
d−2) in (A1) will only be needed in Section 5.4 and even

there could be avoided by using a different type of interfacial energy in (5.26). Yet, if
d = 3, (A1) states that p ∈ [1, 6], which can be satisfied if we chose (the mechanical
part of) our stored energy of St. Venant - Kirchhoff type (4.6).

Note also that the growth condition in (A1) is not compatible with the non-
interpenetration condition stating that ϕ1(F ) → ∞ whenever det(F ) → 0. This is
due to the fact that, as we stressed in Chapter 2, relaxation results by means of Young
measures as in (Kinderlehrer and Pedregal, 1994; Pedregal, 1997) work only with func-
tions having a growth as in (A1). Unfortunately, also the set G∞,−∞(Ω;Rd×d) (see
(2.33), Section 2.3.2) is insufficient in our situation, too.13

Note also that (A4) implies that (taking also the natural constraint θ > 0 into
account)

w =

∫ θ

0
cv(r) dr ≥ c1

∫ θ

0
(1+r)ω−1 dr ≥ c1((1+θ)

ω−1) = c1((1+Θ(w))ω−1).

Let us now concentrate on the mathematical analysis of the non-convex problem
(5.17a), namely we shall concentrate on the proof that solutions to (5.17a) exist under
assumptions (A1)-(A7). Indeed, we can formulate the following theorem:

Theorem 5.6. Let (A1)-(A7) hold. Then at least one weak solution (y, ν, λ, w) to
the problem (5.17) in accord with Definition 5.4 does exist. Moreover, some of these
solutions satisfies also14

w ∈ Lr([0, T ];W 1,r(Ω)) ∩ W 1,1(I;W 1,∞(Ω)∗) with 1 ≤ r <
d+2

d+1
. (5.25)

13In order to use G ∞,−∞(Ω;Rd×d) for relaxation, one would need to assure that the gradients of the
infimizing sequences of the unrelaxed potential are, for a.a.x ∈ Ω, supported a compact set K such that
there exists yet another open set Kδ for which K ⊂ Kδ and the relaxed functional is finite on Kδ. Thus,
augmenting the free energy by the indicator function of any compact set would not open a possibility
for relaxation.

14This additional quality thanks to the fine estimates as in (Boccardo et al., 1997; Boccardo and
Galloët, 1989).
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Within this chapter, we give two different proofs of Theorem 5.6, each of them of
its own particular importance.

Namely, in Section 5.4 we prove Theorem 5.6 by formulating yet another physical-
ly relevant model, namely a microscopic model including the interfacial energy due to
laminate formation as in (4.9). We then show that if this interfacial energy becomes
negligible, as it is the case for large specimen, solutions to the microscopic model con-
verge to (some) solutions of the proposed mesoscopic model (5.17); this corresponds to
Proposition 4.1 where a similar conjecture was prooved in the static case. This method
of proof justifies the proposed model.

The other proposed method of proof exploits the Rothe method and hence forms
a conceptual numerical algorithm, at least after a spatial discretization has been per-
formed. Indeed, we introduce in Section 5.5 a partition 0 = t0 ≤ t1 ≤ t2 . . . ≤ tN ≤ T
of the interval [0, T ] and define a time-discretization of (5.17); subsequently we prove
that solutions of this time-discrete problem converge to (some) weak solutions of (5.17).
This result will be essential for numerical implementation in Chapter 7, since it will
allow us to design a justified discretization of our problem.

Let us now turn our attention to the particular proofs within the next two sections.

5.4 Proof Theorem 5.6 via approximation through micro-
scopic models

Within this section, we prove Theorem 5.6 by approximating the original mesoscopic
model by microscopic models with vanishing interfacial energy ; note that this section in
large parts follows (Benešová and Roub́ıček, 2012). Furthermore, in this section we give
the proof Proposition 5.9 in full length while in has only been sketched in (Benešová
and Roub́ıček, 2012).

5.4.1 Introducing an appropriate microscopic model

First of all, let us devise an appropriate microscopic model, again, the framework of
generalized standard solids. Hence, we propose a Gibbs free energy Gε in the form:

Gε(t, y, λ, θ) =

∫
Ω
ψ̃0(∇y, λ, θ) dx︸ ︷︷ ︸

Helmholtz free energy

+

∫
Ω

ε

2
|∇2y|2 dx︸ ︷︷ ︸

interfacial energy

+

∫
Qκ(λ−L(∇y))︸ ︷︷ ︸
mismatch term

−
∫
Ω
f(t, ·)·y dx−

∫
ΓN

g(t, ·)·y dS︸ ︷︷ ︸
energy of the applied load

. (5.26)

Notice, that this form corresponds to the static form proposed in (4.9); however, here
we already made use of the phase field approach described in Subsection 5.1.1 – hence,
the Helmholtz free energy depends on this phase-field λ and the mismatch term has
been added. Recall also from Section 4.1 that, in this case, no relaxation is needed due
to the compactifying effect of the interfacial energy. Again, we assume the partially
linearized ansatz for the Helmholtz free energy (5.1).

Next, we have to prescribe the dissipation potential, i.e.

Rε(
.
λ,∇.y) =

∫
Ω

α

q
|ξ|q + δ∗S(ξ) dx︸ ︷︷ ︸

Dissipation due to
transformation/reorientation

+

∫
Ω
ε|∇.y| dx,︸ ︷︷ ︸

Small dissipation
due to pinning effects

(5.27)
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Here, the first part of the dissipation potential is the same as in (5.9) (and so we will
occasionally use the abbreviation ρq from (5.10)), the second part is rather needed for
mathematical reasons yielding more regularity of ∇y (cf. Remark 5.11 below) however
can “really microscopically” be related with a wiggly energy landscape, invented in
(Abeyaratne et al., 1996; James, 1996) and further rigorously analyzed for the 1-D case
in (Mielke and Truskinovsky, 2012). Note that we will scale this term to 0 as ε→ 0.

Plugging (5.26)-(5.27) into the general equations (3.17)-(3.19) and using again the
Fourier law for the heat flux, using the same type of boundary conditions for tem-
perature as for the mesoscopic system (5.17) and, lastly, also performing the enthalpy
transformation (cf. (5.14)) yields the following system in strong formulation:

−divεDir(∇.y)−divϕ′1(∇y)+εdiv2∇2y+div
(
Pκ(∇y, λ)L′(∇y)

)
∋ f in Q, (5.28a)

y(t, x) = x in ΣD, (5.28b)(
εDir(∇.y) + ϕ′1(∇y)−Pκ(∇y, λ)L′(∇y)− εdiv∇2y

)
n

+ ε(divSn)∇2y:(n⊗n)− εdivS(∇2y·n) = g on ΣN, (5.28c)

ε∇2y:(n⊗n) = 0 on Σ, (5.28d)

∂δ∗S(
.
λ)+α|

.
λ|q−2

.
λ+Θ(w)·⃗a ∋ θtr ·⃗a− Pκ(∇y, λ) in Q, (5.28e)

.
w−div(K(λ,w)∇w) = δ∗S(

.
λ)+α|

.
λ|q+ε|∇.y|+Θ(w)⃗a·

.
λ in Q, (5.28f)(

K(λ,w)∇w
)
·n+bΘ(w) = bθext on Σ. (5.28g)

where Pκ(∇y, λ) was defined in (5.4), Dir is a sub-gradients of the convex, positively 1-
homogenous potential |·|, n denotes the unit outward normal to Γ, and divS = Tr(∇S),
with Tr : R(d−1)×(d−1) → Rd−1 the usual matrix trace, denotes the (d−1)-dimensional
“surface divergence” with the tangential derivative ∇S defined as ∇Sv = ∇v−(∇v·n)n.
Notice that, (5.28,a-d) correspond to (3.17) augmented also with boundary conditions.

While boundary condition (5.28b) is rather standard, the complicated forms of
(5.28,c-d) are necessary due to the second gradient of y in the interfacial energy; this
effect is well known in mechanics of complex (also called non-simple) continua; we refer
to (Fried and Gurtin, 2006; Podio-Guidugli and Vergara Caffarelli, 1990; Toupin, 1962)
for details.

Again, we complete the system (5.28) by the initial conditions

y(0, ·) = y0,ε, λ(0, ·) = λ0,ε, w(0, ·) = w0,ε = ĉv(θ
0,ε) on Ω, (5.29)

where (y0,ε, λ0,ε) are the initial deformation and the phase field, while θ0,ε is the initial
temperature.

We now turn to devising a weak formulation for (5.28). While for the flow-rule
(5.28e) and the enthalpy equation (5.28f), we use a rather standard approach, similarly
as in Definition 5.4, the weak formulation for the inclusions/equations (5.28,a-d) is to
a great extend inspired by the energetic formulation for rate-independent processes
(see e.g. (Francfort and Mielke, 2006; Mielke and Theil, 2004)) and its generalization,
given in e.g. (Roub́ıček, 2010), for problems that include both rate-independent and
rate-dependent processes.

Then weak solutions to the microscopic model are defined as follows:

Definition 5.7. We shall call the triple (yε, λε, wε) ∈ L∞([0, T ],W 2,2(Ω;Rd))×
W 1,q([0, T ];Lq(Ω;RM+1))× L1([0, T ];W 1,1(Ω)) satisfying yε ∈ BV([0, T ];W 1,1(Ω;Rd))
and yε(t, x) = x on ΣD a weak solution of (5.28) with the initial condition (5.29) if it
fulfills:
1.The semi-stability:
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Gε(t, yε(t), λε(t),Θ(wε(t))) ≤ Gε(t, ỹε, λε(t),Θ(wε(t))) + ε

∫
Ω
|∇yε(t)−∇ỹε| dx (5.30)

for any ỹε ∈ W 2,2(Ω;Rd) such that ỹε = x on ΓD and all t ∈ [0, T ] with Gε defined
in (5.26).

2.The mechanical energy equality:

Gε(T, yε(T ), λε(T ))+εVar|·|(∇yε; Ω× [0, T ]) = Gε(0, y0,ε, λ0,ε)

+

∫ T

0
⟨[Gε]

′
λ(t, yε(t), λε(t)),

.
λε⟩+[Gε]

′
t(t, yε(t), λε(t)) dt, (5.31)

where Gε abbreviates the mechanical part of the microscopic energy, i.e.

Gε(t, y, λ) =

∫
Ω
ϕ1(∇y)+

ε

2
|∇2y|2−f ·y dx+Qκ(λ−L(∇y))−

∫
ΓN

g·y dS; (5.32)

where Varf was defined in (4.23).

3.The flow rule: For any v ∈ Lq(Q)∫
Q

(
Θ(wε)−θtr

)
a⃗·
(
v−
.
λε
)
+ρq(v)+Pκ(λε−L(∇yε))(v−

.
λε) dxdt ≥

∫
Q
ρq(
.
λε) dxdt. (5.33)

4.The enthalpy equation: For any ζ ∈ C1(Q̄) with ζ(T ) = 0,∫
Q
K(λε, wε)∇wε·∇ζ−wε

.
ζ dxdt+

∫
Σ
bΘ(wε)ζ dS dt =

∫
Ω
w0,εζ(0) dx+

∫
Σ
bθextζ dS dt

+

∫
Q

(
δ∗S(
.
λε)+α|

.
λε|q+Θ(wε)⃗a·

.
λε

)
ζ dxdt+ ε

∫
Q̄
ζHε( dxdt). (5.34)

here we denoted by Hε ∈ M(Q̄) the measure (=heat production rate by rate-
independent dissipation) defined by prescribing its values on every closed set
A = [t1, t2]×B, where B ⊂ Ω is a Borel set as Hε(A) = Var|·|(∇yε;B × [t1, t2]).

5.The remaining initial conditions in (5.29): y(0, ·) = y0,ε and λ(0, ·) = λ0,ε in Ω.

Remark 5.8 (Mechanic part of the Gibbs free energy in Definition 5.7). Notice, that we
are entitled to consider in (5.31) only the mechanic part of the Gibbs free energy. This
is due to the modeling approach, when introducing the phase field λ and the linearized
ansatz (5.1), so that the deformation y and the enthalpy w are not directly coupled.
If the deformation and the enthalpy were directly coupled, we would rather demand a
conservation of the overall Gibbs free energy as in (Roub́ıček, 2010).

Note that the weak formulation obtained in Definition 5.7 is indeed selective as
shown in (Benešová and Roub́ıček, 2012, Remark 4.3).

We now assure existence of microscopic solutions through Lemma 5.9; let us stress
that in this section C as understood as a generic constant independent of ε.

5.4.2 Existence analysis for the microscopic model

Proposition 5.9 (Existence of solutions to the microscopic model). Let (A1)-(A6)
hold and let

y0,ε ∈W 2,2(Ω;Rd), λ0,ε ∈ Lq(Ω), θ0,ε ≥ 0, ĉv(θ0,ε) ∈ L1(Ω).

Then, for fixed ε, at least one weak solution to (5.28) together with initial conditions
(5.29) in accord with Definition 5.7 does exist. Moreover, a solution can be found that
satisfies
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supt∈[0,T ] ∥yε(t)∥W 2,2(Ω;Rd) ≤ Cε−1/2,

supt∈[0,T ] ∥yε(t)∥W 1,p(Ω;Rd) ≤ C,

∥yε(t)∥BV([0,T ];W 1,1(Ω;Rd)) ≤ Cε−1,

 (5.35)

∥
.
λε∥Lq(Q;RM+1) ≤ C, (5.36)

∥wε∥L∞([0,T ];L1(Ω)) ≤ C, (5.37)

∥wε∥Lr([0,T ];W 1,r(Ω)) ≤ C(r) with any 1 ≤ r <
d+2

d+1
, (5.38)

∥ .wε∥M([0,T ];W 1,∞(Ω)∗) ≤ C. (5.39)

Proof. The proof is performed by the Rothe method of time-discretization. For lucidity,
let us divide the proof into several steps.

Step 1: Defining and proving existence of discrete weak solutions to (5.28)
Let us introduce a partition of the interval [0, T ] 0 = t0 ≤ t1 ≤ t2 . . . ≤ tN = T
such that (ti − ti−1) = τ for all i = 1 . . . N and employ a semi-implicit method of
time-discretization in such a way that it decouples the discrete equivalent of (5.30)
and (5.33) from the discrete analogue of the enthalpy equation (5.34) in any particular
time-step k by using the “retarded” values of w in (5.40a).

Hence, we shall call the triple (ykε,τ , λ
k
ε,τ , w

k
ε,τ ) ∈ W 2,2(Ω;Rd) × L2q(Ω;RM+1) ×

W 1,2(Ω) the discrete weak solution of (5.28) with initial condition (5.29), if it fulfills:
1.The minimization problem:

MinimizeGε(tk, y, λ,Θ(wk−1
ε,τ ))+

∫
Ω
τ |λ|2q+ε|∇y−∇yk−1

ε,τ |+τρq
(λ−λk−1

ε,τ

τ

)
dx

subject to (y, λ) ∈W 2,2(Ω;Rd)× L2q(Ω;RM+1) such that y = x on ΓD. (5.40a)

2.The enthalpy equation: For all φ ∈W 1,2(Ω) it holds∫
Ω

wk
ε,τ−wk−1

ε,τ

τ
φ+K(λkε,τ , w

k
ε,τ )∇wk

ε,τ∇φdx+

∫
Γ
bkτΘ(wk

ε,τ )φ dS =

∫
Γ
θkext,τφ dS

+

∫
Ω
ϱq

(λkε,τ−λk−1
ε,τ

τ

)
φ+

∣∣∣∣∣ykε,τ−yk−1
ε,τ

τ

∣∣∣∣∣φ+Θ(wk
ε,τ )⃗a·

(λkε,τ−λk−1
ε,τ

τ

)
φdx, (5.40b)

where we abbreviated

ϱq(ξ) = δ∗S(ξ) + α|ξ|q. (5.40c)

3.The initial condition in the sense that

y0ε,τ = y0,ε λ0ε,τ = λ0,ε,τ Θ(w0
ε,τ ) = θ0,ε,τ for a.a. x ∈ Ω. (5.40d)

In (5.40d), we denoted by λ0,ε,τ ∈ L2q(Ω;RM+1) a suitable approximation of the original
initial condition λ0,ε ∈ Lq(Ω;RM+1), such that

λ0,ε,τ → λ0,ε strongly in Lq(Ω;RM+1) and ∥λ0,ε,τ∥L2q(Ω;RM+1) ≤ Cτ−1/(2q+1), (5.41)

and by θ0,ε,τ an approximation of θ0,ε, such that w0
ε,τ ∈W 1,2(Ω) and Θ(w0

ε,τ ) → θ0,ε in

L1(Ω). Moreover θkext,τ ∈ L2(Γ) and bkτ ∈ L∞(Γ) are defined in such a way that their
piecewise constant interpolants[

θ̄ext,τ , b̄ε,τ ](t) =
(
θkext,τ , b

k
τ , ) for (k−1)τ < t ≤ kτ , k = 1, ..., N.
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satisfy
θ̄ext,τ → θext strongly in L1(Σ) and b̄τ

∗
⇀ b weakly* in L∞(Σ). (5.42)

To show existence of (5.40), we first note that (5.40a) and (5.40b) are decoupled;
hence, we are entitled to first show existence of solutions to (5.40a) independently
of (5.40b). To do so, we proceed by the direct method, i.e. take an infimizing se-

quence {qk,j}∞j=0 = {yk,jε,τ , λ
k,j
ε,τ}∞j=0 of (5.40a). Then, due to the coercivity of the cost

function through the surface energy term
∫
Ω ε|∇

2yk,jε,τ |2 dx and the regularization term∫
Ω τ |λ

k,j
ε,τ |2q dx, qk,j is, for τ , ε fixed, bounded in W 2,2(Ω,Rd)×L2q(Ω;RM+1); thus, we

may extract a subsequence that converges weakly in this space some qk. In addition,
owing to assumption (A1), yk,jε,τ → ykε,τ strongly in W 1,p(Ω;Rd). Hence, by convexity of
cost function from (5.40a) in λ as well as in the second gradient of y, and by exploiting

the above mentioned strong convergence of yk,jε,τ , qk is the sought minimizer at time-step
k.

The existence of solutions to (5.40b) for k = 1 (and subsequently also for all other
k) can be proved by exploiting the Brezis’ theorem (Roub́ıček, 2005). For this, note
that due to the regularization term |λ|2q the right-hand side of the discrete enthalpy
equation is an element of W 1,2(Ω)∗.

Further, we assure that wk
ε,τ are non-negative. To this end, let us test (5.40b) by

[wk
ε,τ ]

− ≡ min (0, wk
ε,τ ) (which is a legal test function as wk

ε,τ ∈W 1,2(Ω)). We get∫
Ω
wk
ε,τ [w

k
ε,τ ]

−+τK(λkε,τ , w
k
ε,τ )∇wk

ε,τ∇[wk
ε,τ ]

− dx ≤
∫
Ω
τϱq

(λkε,τ−λk−1
ε,τ

τ

)
[wk

ε,τ ]
− dx

+

∫
Ω
Θ(wk

ε,τ )⃗a·(λkε,τ−λk−1
ε,τ )[wk

ε,τ ]
−+wk−1

ε,τ [wk
ε,τ ]

− dx−τ
∫
Γ
bkτΘ(wk

ε,τ )[w
k
ε,τ ]

−+θext[w
k
ε,τ ]

− dS

As Θ(wk
ε,τ )[w

k
ε,τ ]

− = 0 (recall that we defined in (5.15) Θ(w) = 0 for w ≤ 0) and

also ϱq
(λk

ε,τ−λk−1
ε,τ

τ

)
≥ 0 and hence ϱq

(λk
ε,τ−λk−1

ε,τ

τ

)
[wk

ε,τ ]
− ≤ 0 we get, when exploiting

furthermore that θext[w
k
ε,τ ]

− ≤ 0, that∫
Ω
|[wk

ε,τ ]
−|2+τκ0|∇[wk

ε,τ ]
−|2 dx ≤

∫
Ω
wk−1
ε,τ [wk

ε,τ ]
− dx.

When using this equation recursively and when also taking into account that w0
ε,τ ≥ 0

we get truly that wk
ε,τ ≥ 0.

Step 2: Definition of interpolants and a-priori estimates
We introduce the notion of piecewise affine interpolants yε,τ , λε,τ and wε,τ defined by[

yε,τ , λε,τ , wε,τ

]
(t) =

t−(k−1)τ

τ

(
ykε,τ , λ

k
ε,τ , w

k
ε,τ

)
+
kτ−t
τ

(
yk−1
ε,τ , λk−1

ε,τ , w
k−1
ε,τ

)
, (5.43)

for t ∈ [(k−1)τ, kτ ] with k = 1, ..., T/τ .
In addition, we define the backward piecewise constant interpolants ν̄ε,τ , λ̄ε,τ , and

w̄ε,τ by[
ȳε,τ , λ̄ε,τ , w̄ε,τ

]
(t) =

(
ykε,τ , λ

k
ε,τ , w

k
ε,τ

)
for (k−1)τ < t ≤ kτ , k = 1, ..., N .

(5.44)

Finally, define the “retarded” enthalpy piecewise constant interpolant wε,τ

[wε,τ (t)] = [wk−1
ε,τ ] for (k−1)τ < t ≤ kτ , k = 1, ..., N. (5.45)

For these interpolants we obtain a-priori estimates formulated in Lemma 5.10 (be-
low) and proved, for the sake of clarity, following the current proof.
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Lemma 5.10. Let (A1)-(A6) hold and let

y0,ε ∈W 2,2(Ω;Rd), λ0,ε ∈ Lq(Ω), θ0,ε ≥ 0, ĉv(θ0,ε) ∈ L1(Ω).

Then the piecewise affine interpolants (yε,τ , λε,τ , wε,τ ) defined through (5.43) and the
piecewise constant interpolants (ȳε,τ , λ̄ε,τ , w̄ε,τ ) defined through (5.44) satisfy

supt∈[0,T ] ∥ȳε,τ (t)∥W 2,2(Ω;Rd) ≤ Cε−1/2

supt∈[0,T ] ∥ȳε,τ (t)∥W 1,p(Ω;Rd) ≤ C

∥ȳε,τ (t)∥BV([0,T ];W 1,1(Ω;Rd)) ≤ Cε−1

 (5.46)

∥
.
λε,τ∥Lq(Q;RM+1) ≤ C, (5.47)

∥λ̄ε,τ∥L∞([0,T ];L2q(Ω;RM+1)) ≤ Cτ−1/2q (5.48)

∥w̄ε,τ∥L∞([0,T ];L1(Ω)) ≤ C, (5.49)

∥w̄ε,τ∥Lr([0,T ];W 1,r(Ω)) ≤ C(r) with any 1 ≤ r <
d+2

d+1
, (5.50)

∥ .wε,τ∥M([0,T ];W 1,∞(Ω)∗) ≤ C, (5.51)

for some generic C independent of τ and ε.

Step 3: Selection of subsequences
By the a-priori estimates from Lemma 5.10, we may find a subsequence of τ ’s (not
relabeled) and (yε, λε, wε) such that

ȳε,τ (t)⇀ yε(t) ∀t ∈ [0, T ] in W 2,2(Ω;Rd) (5.52)

λ̄ε,τ
∗
⇀ λε in L∞([0, T ];Lq(Ω;RM+1)) (5.53)

λ̄ε,τ (t)⇀ λ(t) ∀t ∈ [0, T ] in Lq(Ω;RM+1), (5.54)
.
λε,τ ⇀

.
λε in Lq(Q;RM+1), (5.55)

w̄ε,τ ⇀ wε in Lr([0, T ];W 1,r(Ω)), r < d+2
d+1 and w̄ε,τ → w in L1(Q), (5.56)

Indeed, by (5.47) we know that
.
λε,τ is bounded in Lq(Q;RM+1) and hence also λ̄ε,τ (con-

sidering also (5.41) and λ0,ε ∈ Lq(Ω;RM+1)) is bounded in L∞([0, T ];Lq(Ω;RM+1)).

Hence, by standard selection principles, we find λε such that
.
λε,τ ⇀

.
λε in L

q(Q;RM+1)

and λ̄ε,τ
∗
⇀ λε in L∞([0, T ];Lq(Ω;RM+1)).15

AsW 1,q(I;Lq(Ω;RM+1)) ⊂ C([0, T ];Lq(Ω;RM+1)), we also get that λ̄ε,τ (t)⇀ λε(t)
for all t ∈ [0, T ] in Lq(Ω), i.e. (5.54).

As to ȳε,τ , we exploit (a slight) modification of the Helly’s theorem (Mielke, 2005;
Mielke et al., 2008) to find a yε in BV([0, T ];W 1,1(Ω,Rd)) such that ȳε,τ (t) ⇀ yε(t) in
W 2,2(Ω,Rd) for all t ∈ [0, T ].

Now, w̄ε,τ converges weakly to some wε in L
r([0, T ];W 1,r(Ω)), r < d+2

d+1 owing to the
bound (5.50). Having the dual estimate on the time derivative of wε,τ , i.e. (5.51), at
our disposal, we exploit the Aubin-Lions-lemma generalized for measure-valued deriva-
tives (see (Roub́ıček, 2005, Corollary 7.9)) to get that w̄ε,τ converges even strongly

to wε in L
d+2
d

−δ(Q); for any small δ > 0 – cf. (Roub́ıček, 2010, Formulae (4.42) and
(4.55)). Moreover the estimate (5.51) assures that the retarded enthalpy wε,τ (t) con-

verges strongly in L
d+2
d

−δ(Q) to the same limit as w̄ε,τ .
Thanks to the growth condition in assumption (A4), |Θ(w)| ≤ C(1 + |w|1/ω) ≤

C(1 + |w|1/q′).; thus we may apply the Nemytskii theorem for mapping in Lebesgue

15Note that, owing to (5.47), both λε,τ and λ̄ε,τ converge weakly in L∞([0, T ];Lq(Ω;RM+1)) to the

same limit because ∥λε,τ−λ̄ε,τ∥Lq(Q;RM+1) ≤ τ∥
.
λε,τ∥Lq(Q;RM+1)
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spaces (see e.g. (Roub́ıček, 2005)), using continuity of Θ(·), to get that Θ(w̄ε,τ ) → Θ(wε)
in Lq′(Q). Similarly also Θ(wε,τ ) → Θ(wε).

Finally, let us note that, relying on the lower semi-continuity of norms, the limits
satisfy the bounds (5.35)–(5.39) with some C independent of ε.

Step 4: Convergence in the minimization principle and flow-rule
Let us fix, for the moment, some arbitrary t ∈ [0, T ]. From (5.40a) we have the following
discrete minimization principle

Gε(tτ , ȳε,τ (t), λ̄ε,τ (t)) ≤ Gε(tτ , ŷε, λ̄ε,τ (t))+ε

∫
Ω
|∇ȳε,τ−∇ŷε|dx, (5.57)

for any ỹε ∈ W 2,2(Ω;Rd) such that ỹε = x on ΓD. In (5.57) we, furthermore, denoted
tτ = l·τ , where l = mins∈N{t ≤ sτ}.

Let us exploit that ȳε,τ (t) ⇀ yε(t) weakly in W 2,2(Ω;Rd) and hence, due to (A1),
strongly in W 1,p(Ω;Rd); thus, it follows that ϕ1(∇ȳε,τ (t)) → ϕ1(∇ȳε(t)) in L1(Ω).
Also, L(∇ȳε,τ (t)) → L(∇yε(t)) in any Ls(Ω;RM+1), s ∈ [1,∞) because |L| is bound-
ed by 1 (cf. (A3)). Further, since λ̄ε,τ (t) ⇀ λε(t) in L2(Ω;RM+1), also Qκ(λ̄ε,τ (t) −
L(∇ȳε,τ (t))) → Qκ(lambdaε(t) − L(∇yε(t))) owing to the definition of Qκ in (5.2).
Finally, by exploiting convexity of ε|∇2ȳε,τ (t)|2, we get by applying lim infτ→0 in (5.57)

Gε(t, yε(t), λε(t)) ≤ lim inf
τ→0

Gε(tτ , ȳε,τ (t), λ̄ε,τ (t)) ≤ lim sup
τ→0

Gε(tτ , ȳε,τ (t), λ̄ε,τ (t))

≤ lim sup
τ→0

Gε(tτ , ŷε, λ̄ε,τ (t))+ε

∫
Ω
|∇ȳε,τ−∇ŷε| dx ≤ Gε(t, ŷε, λε(t))+ε

∫
Ω
|∇yε−∇ŷε|dx,

where we exploited that Qκ(λ̄ε,τ (t)−L(∇ŷε)) → Qκ(lambdaε(t)−L(∇ŷε)); hence, we
established (5.30). In particular, we got that Gε(tτ , ȳε,τ (t), λ̄ε,τ (t)) → Gε(t, yε(t), λε(t))
for all t ∈ [0, T ].

From now on, we do not fix t anymore and deduce the discrete flow rule by realizing
that any subdifferential of the cost function in (5.40a) with respect to λ evaluated at
λ̄ε,τ (tj) (for some j ∈ 1 . . . N) is equal to 0 and by summing these conditions from to 1
to N :∫ T

0

∫
Ω
ρq(
.
λε,τ ) dxdt ≤

∫ T

0

∫
Ω
Q′

κ
(
λ̄ε,τ−L(∇ȳε,τ )

)
·(vε,τ−

.
λε,τ ) + ρq(vε,τ ) dxdt

+

∫ T

0

∫
Ω
(Θ(wε,τ (t))−θtr)⃗a·(vε,τ−

.
λε,τ )+2qτ |λ̄ε,τ |2q−2λ̄ε,τ (vε,τ−

.
λε,τ ) dx dt, . (5.58)

for any vε,τ such that vτ (·, x) is piecewise constant on the intervals (tj−1, tj ] and
vτ (tj , ·) ∈ L2q(Ω;Rd+1) for every j.

Now, let us choose some arbitrary test function vε ∈ Lq(Q) – then we take the test
function in (5.58), vε,τ as its piecewise constant approximation such that vε,τ → vε
strongly on Lq(Q;RM+1) and moreover vε,τ (t) ∈ L2q(Ω;RM+1) for all t ∈ [0, T ] and

∥vε,τ∥L2q(Q;RM+1) ≤ Cτ
−1

2q+1 .

Using weak lower semi-continuity properties for the convex terms δ∗S(
.
λε,τ )+

α
q |
.
λε,τ |q

of the left-hand side of (5.58), we get that∫ T

0

∫
Ω
δ∗S(
.
λε)+

α

q
|
.
λε|q dx dt ≤ lim inf

τ→0

∫ T

0

∫
Ω
δ∗S(
.
λε,τ )+

α

q
|
.
λε,τ |q dxdt+

∫
Ω
τ |λ̄ε,τ (T )|2q dx.

As to the convergence right-hand-side of the flow rule, we use that Θ(wε,τ ) → Θ(w)

in Lq′(Q) to pass to the limit in
∫
QΘ(wε,τ−θtr)⃗a·(vε,τ−

.
λε,τ ) dxdt. Thanks to (5.41)

τ
∫
Ω |λ0|2q dx converges to zero. Also the term 2qτ |λ̄ε,τ |2q−2λ̄ε,τvε,τ can be pushed to
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zero thanks to (5.48) and the blow-up for vε,τ specified above that allow us to estimate∣∣ ∫
Q 2qτ |λ̄ε,τ |2q−2λ̄ε,τvε,τ

∣∣dxdt ≤ 2qτ∥λ̄ε,τ∥2q−1

L(2q)(Q;RM+1)
∥vε,τ∥L2q(Q;RM+1) ≤ Cτ

1
4q2+2q .

For the term Q′
κ
(
λ̄ε,τ−L(∇ȳε,τ )

)
·(vε,τ−λ̇ε,τ ), we realize that, due to the compact-

ness ofQκ(·),Q′
κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (t))

)
→Q′

κ
(
λε(t)−L(∇yε(t))

)
strongly in L2(Ω;RM+1)

for all t ∈ [0, T ]; therefore, we get by employing the Lebesgue’s dominated convergence
theorem that Q′

κ
(
λ̄ε,τ−L(∇ȳε,τ )

)
→ Q′

κ
(
λε−L(∇yε)

)
strongly also in L2(Q;RM+1).

This immediately implies that∫
Q
Q′

κ
(
λ̄ε,τ−L(∇ȳε,τ )

)
·(vε,τ−λ̇ε,τ ) dxdt→

∫
Q
Q′

κ
(
λε−L(∇yε)

)
·(vε−λ̇ε) dx dt.

Combining all above said, yields (5.33).

Step 5: Strong convergence of
.
λε,τ

First, we test the discrete flow rule (cf. (5.58), reformulated using the convexity of |·|q)
by

.
λS,ε,τ being a piecewise constant approximation of the function

.
λ such that

.
λS,ε,τ →

.
λ

strongly in Lq(Q;RM+1) and moreover ∥
.
λS,ε,τ∥L2q(Q;RM+1) ≤ Cτ−1/(2q+1). We get∫

Q
δ∗S(
.
λε,τ ) dxdt+

∫
Ω
τ |λ̄ε,τ (T )|2q dx ≤

∫
Ω
τ |λ0,ε,τ |2q dx+

∫
Q
2qτ |λ̄ε,τ |2q−2λ̄ε,τ ·

.
λS,ε,τ dxdt

+

∫
Q
Q′

κ
(
λ̄ε,τ − L(∇ȳε,τ )

)
·(
.
λS,ε,τ −

.
λε,τ )+δ

∗
S(
.
λS,ε,τ ) + α|

.
λε,τ |q−2

.
λε,τ ·(

.
λS,ε,τ−

.
λε,τ ) dxdt

+

∫
Q

(
Θ(wε,τ )−θtr

)
a⃗·(
.
λS,ε,τ−

.
λε,τ ) dx dt. (5.59)

Symmetrically, we test the continuous flow rule (5.33) reformulated as above by
.
λε,τ to

get ∫
Q
δ∗S(
.
λε) dxdt ≤

∫
Q
Q′

κ(λε − L(∇yε))·(
.
λε,τ −

.
λε) + δ∗S(

.
λε,τ )

+

∫
Ω

(
α|
.
λε|q−2

.
λε·(

.
λε,τ −

.
λε) + (Θ(wε)− θtr)⃗a·(

.
λε,τ −

.
λε)
)
dxdt. (5.60)

We add (5.59) and (5.60), apply Hölder inequality and limτ→0 to estimate

α lim
τ→0

(
∥
.
λε,τ∥q−1

Lq(Q;RM+1)
− ∥

.
λε∥q−1

Lq(Q;RM+1)

)(
∥
.
λε,τ∥Lq(Q;RM+1) − ∥

.
λε∥Lq(Q;RM+1)

)
≤ lim

τ→0
α

∫
Q

(
|
.
λε,τ |q−2

.
λε,τ − |

.
λε|q−2

.
λε

)
·(
.
λε,τ −

.
λε) dx dt

≤ lim
τ→0

(∫
Q
α|
.
λε,τ |q−2

.
λε,τ (

.
λS,ε,τ −

.
λε) + δ∗S(

.
λS,ε,τ )− δ∗S(

.
λε)︸ ︷︷ ︸

(I)

dxdt+

∫
Ω
τ |λ0,ε,τ |2q︸ ︷︷ ︸

(II)

+

∫
Q
(Θ(wε,τ )− θtr)⃗a·(

.
λS,ε,τ−

.
λε,τ ) + (Θ(wε)−θtr)⃗a·(

.
λε,τ−

.
λε)︸ ︷︷ ︸

(III)

dx dt

+

∫
Q
Pκ(∇yε, λε)·(

.
λε,τ−

.
λε)︸ ︷︷ ︸

(IV)

+Pκ(∇ȳε,τ , λε,τ )·(
.
λS,ε,τ −

.
λε,τ )︸ ︷︷ ︸

(V)

dx dt

+

∫
Q
2qτ |λ̄ε,τ |2q−2λ̄ε,τ

.
λS,ε,τ︸ ︷︷ ︸

(VI)

dxdt

)
≤ 0.
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When passing to the limit on the right-hand-side, we use that
.
λS,ε,τ →

.
λε in L

q(Q;RM+1)
to pass to 0 in Term (I); Term (II) converges also to 0 by exploiting (5.41). When turn-
ing to Term (III), we apply (5.55) to find this term approaching again 0; for Term

(IV) we apply to the same end (5.54) combined with the fact that
.
λS,ε,τ →

.
λε in

Lq(Q;Rd+1). Term (V) can be pushed to 0 similarly as when passing to the limit in the
flow rule using the available blow-up conditions. Finally, for Term (VI), we use that of
Θ(wε,τ ) → Θ(wε) in L

q′(Q) to see its limit being 0.

Using all above said, we arrive at the conclusion that ∥
.
λτ∥Lq(Q;RM+1)→∥

.
λ∥Lq(Q;RM+1).

Hence, by the local convexity of Lq(Q;RM+1), the already proved weak convergence.
λτ →

.
λ in Lq(Q;RM+1) turns to be strong.

Step 6: Mechanic energy equality
In this step we shall establish (5.31). For this, we first establish the discrete equivalent
of

Gε(T, yε(T ), λε(T ))+εVar|·|(∇yε; Ω× [0, T ]) ≤ Gε(0, y0,ε, λ0,ε)

+

∫ T

0
⟨[Gε]

′
λ(t, yε(t), λε(t)),

.
λε⟩+[Gε]

′
t(t, yε(t), λε(t)) dt. (5.61)

To this goal, we test, for some l ∈ 1 . . . N , the minimization principle (5.40a) by
(ȳε,τ (tl), λ̄ε,τ (tj)) which leads (in terms of the mechanic part of the Gibbs free energy)
to

Gε(tl, ȳε,τ (tl), λ̄ε,τ (tl))+

∫
Ω
ε|∇ȳε,τ (tl)−∇ȳε,τ (tl−1)|dx≤Gε(tl, ȳε,τ (tl−1), λ̄ε,τ (tl)).

(5.62)
Rewriting the right-hand side, using the convexity of G in λ, by means of the discrete
chain rule 16 leads to

Gε(tl,ȳε,τ (tl−1), λ̄ε,τ (tl)) ≤ Gε(tl−1, ȳε,τ (tl−1), λ̄ε,τ (tl−1))

+

∫ tl

tl−1

[Gε]
′
t(t, ȳε,τ (tl−1))+

∫
Ω
Q′

κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (tl−1))

)
·
.
λε,τ (t) dxdt,

and summing this expression from 1 . . . N gives

Gε(T, ȳε,τ (T ), λ̄ε,τ (T ))+εVar|·|(∇ȳε,τ ; Ω× [0, T ]) ≤ Gε(0, ȳε,τ (0), λ̄ε,τ (0))

+

∫ T

0

(
[Gε]

′
t(t, ȳε,τ (t−τ))+

∫
Ω
Q′

κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (t−τ))

)
·
.
λε,τ (t) dx

)
dt. (5.63)

We shall now apply lim infτ→0 to the left hand side of (5.63) which leads to

Gε(T, yε(T ), λε(t))+εVar|·|(∇yε; Ω× [0, T ])

≤ lim inf
τ→0

Gε(T, ȳε,τ (T ), λ̄ε,τ (T ))+εVar|·|(∇ȳε,τ ; Ω× [0, T ])

≤ lim sup
τ→0

Gε(T, ȳε,τ (T ), λ̄ε,τ (T ))+εVar|·|(∇ȳε,τ ; Ω× [0, T ]), (5.64)

due to the lower semi-continuity of the mechanic part of the Gibbs free energy and the

16See also (Benešová, Kruž́ık and Roub́ıček, 2012; Roub́ıček, 2010) for details.
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variation. Applying now lim supτ→∞ also the right-hand side of (5.63) gives

lim sup
τ→0

Gε(T, ȳε,τ (T ), λ̄ε,τ (T ))+εVar|·|(∇ȳε,τ ; Ω× [0, T ]) (5.65)

≤ lim sup
τ→0

(
Gε(0, ȳε,τ (0), λ̄ε,τ (0))

+

∫ T

0

(
[Gε]

′
t(t, ȳε,τ (t−τ))+

∫
Ω
Q′

κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (t−τ))

)
·
.
λε,τ (t) dx

)
dt

)
= Gε(0, yε(0), λε(0))

+

∫ T

0

(
[Gε]

′
t(t, yε(t))+

∫
Ω
Q′

κ
(
λε(t)−L(yε(t))

)
·
.
λε(t) dx

)
dt, (5.66)

where we used that
∫ T
0 ⟨[Gε]

′
λ(t, yε(t), λε(t)),

.
λε⟩ =

∫
QQ′

κ
(
λ̄ε−L(∇ȳε)

)
·(λ̇ε) dx dt con-

verges
∫ T
0 ⟨[Gε]

′
λ(t, yε(t − τ), λε(t)),

.
λε⟩ =

∫
QQ′

κ
(
λε−L(∇yε)

)
·
.
λε dx dt, as already ex-

plained in Step 4. Moreover, due to estimate (5.46) (line 3), ȳε,τ (t − τ) ⇀ yε(t) in

Lp([0, T ];W 1,p(Ω;Rd)) and hence
∫ T
0 [Gε]

′
t(t, ȳε,τ (t−τ)) dt→

∫ T
0 [Gε]

′
t(t, yε(t)) dt.

Combining (5.64) and (5.66) readily gives (5.61); let us, therefore, concentrate on
the opposite inequality:

Gε(T, yε(T ), λε(T ))+εVar|·|(∇yε; Ω× [0, T ]) ≥ Gε(0, y
0,ε, λ0,ε)

+

∫ T

0
[Gε]

′
t(t, yε(t), λε(t))+

∫
Ω
Q′

κ
(
λε−L(∇yε)

)
·
.
λε dxdt. (5.67)

As was realized in e.g. (Francfort and Mielke, 2006; Kruž́ık et al., 2005; Roub́ıček,
2010), (5.67) is actually a consequence of (5.30). To see this, we introduce an arbitrary

partition 0 = tβ0 < tβ1 < . . . < tβk(β) = T , with maxi=1,...,k(t
β
i −t

β
i−1) ≤ β, of the interval

[0, T ]. Then, from (5.30), we have

Gε(t
β
i−1, y(t

β
i−1), λ(t

β
i−1)) ≤ Gε(t

β
i−1, y(t

β
i ), λ(t

β
i−1)) +

∫
Ω
ε|∇y(tβi )− y(tβi−1)| dx

= Gε(t
β
i , y(t

β
i ), λ(t

β
i )) +

∫
Ω
ε|∇y(tβi )− y(tβi−1)| dx

−
∫ tβi

tβi−1

[Gε]
′
t(t, y(t

β
i ))+⟨[Gε]

′
λ(y(t

β
i ), λ(t)),

.
λ(t)⟩ dt.

Summing this expression for i = 1, ..., k(β) leads to

Gε(T, yε(T ), λε(T )) + εVar|·|(∇yε; Ω× [0, T ])−G(0, yε(0), λε(0))

≥ Gε(T, yε(T ), λε(T )) +

k(β)∑
i=1

∫
Ω
ε|∇yε(tβi )− yε(t

β
i−1)|dx−G(0, yε(0), λε(0))

≥
k(β)∑
i=1

∫ tβi

tβi−1

G′
t(t, yε(t

β
i )) + ⟨[Gε]

′
λ(yε(t

β
i ), λε(t)),

.
λε(t)⟩dt

=

k∑
i=1

∫ tβi

tβi−1

(∫
Ω
Q′

κ(λε(t)−λ(t
β
i ))·

.
λε(t)︸ ︷︷ ︸

=S1

+Q′
κ(λε(t

β
i )− L(∇yε(tβi )))·

.
λε(t

β
i )︸ ︷︷ ︸

=S2

dx

+

∫
Ω
Q′

κ(λε(t
β
i )−L(∇yε(t

β
i )))·(

.
λε(t)−

.
λε(t

β
i ))︸ ︷︷ ︸

=S3

dx+G′
t(t, yε(t

β
i ))︸ ︷︷ ︸

=S4

)
dt. (5.68)
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To pass to the limit β → 0 on the right-hand side, we exploit17 (Dal Maso et al.,
2005, Lemma 4.12) that for any Bochner integrable h : [0, T ] 7→ X, where X is a Banach

space, assures the existence of sequence of partitions 0 = tβ0 < tβ1 < . . . < tβk(β) = T

with maxi=1,...,k(β)(t
β
i −t

β
i−1) ≤ β such that

lim
β→0

k(β)∑
i=1

∫ tβi

tβi−1

∥h(t)− h(tβi )∥X dt = 0,

or, in other words, the piecewise constant interpolant of h denoted hβ such that hβ(t) =

h(tβi ) on [tβi−1, t
β
i ) converges strongly to h in L1([0, T ];X).

Further, if h ∈ Lp(Q;Rs) for some p > 1, the above mentioned lemma implies that
also hβ ⇀ h weakly Lp(Q;Rs), cf. (Benešová and Roub́ıček, 2012; Roub́ıček, 2011).

Note that (Dal Maso et al., 2005, Lemma 4.12) and its corollary hold with the same
sequence of partitions for finitely many functions, since we may always choose h in the
form of a vector. Hence, we can assume that our sequence of partitions 0 ≤ tβ1 < . . . <

tβk(β) = T is chosen in such a way that simultaneously18

λβ ⇀ λ weakly in Lq(Q), (5.69a)

[yε]β ⇀ yε weakly in Lp([0, T ],W 1,p(Ω;Rd)), (5.69b)

[
.
λε]β →

.
λε strongly in L1([0, T ];Lq(Ω)), and (5.69c)[∫

ΩQ
′
κ(λε−L(∇yε))

.
λε dx

]
β
→
∫
ΩQ

′
κ(λε−L(∇yε))

.
λε dx

strongly in L1([0, T ]). (5.69d)

Exploiting (5.69b) allows us to rewrite and converge:

k(β)∑
i=1

∫ tβi

tβi−1

S4 dt =

∫ T

0

(∫
Ω

.
f ·[yε]β dx+

∫
Γ

.
g·[yε]β dS

)
dt→

∫ T

0
G′

t(t, yε(t)) dt. (5.70)

For the term S2 we have that

k(β)∑
i=1

∫ tβi

tβi−1

S2 dt =

∫ T

0

[∫
ΩQ

′
κ(λε−L(∇yε))

.
λε dx

]
β
dt→

∫
Q
Q′

κ(λε−L(∇yε))
.
λε dxdt (5.71)

just by (5.69d). Owing to (5.69a), it holds

k(β)∑
i=1

∫ tβi

tβi−1

S1 dt→ 0. (5.72)

Eventually, for the term S3 we may rewrite

∣∣∣ k(β)∑
i=1

∫ tβi

tβi−1

∫
Ω
Q′

κ
(
λε(t

β
i )−L(∇yε(t

β
i ))
)
·(
.
λε(t)−

.
λε(t

β
i )) dt

∣∣∣
≤

k(β)∑
i=1

C sup
t∈[0,T ]

∥Q′
κ(λε(t)−L(∇yε(t)))∥L2(Ω)

∫ tβi

tβi−1

∥[
.
λε]β −

.
λε∥Lq(Ω) dt→ 0, (5.73)

17The procedure here is taken from (Benešová and Roub́ıček, 2012) where it was inspired by
(Roub́ıček, 2011).

18In fact, one could even assume that yε,β → yε strongly in (5.69c), but only in L1([0, T ],W 1,p(Ω;Rd))
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as supt∈[0,T ] ∥λε(t)−L(∇yε(t))∥L2(Ω) and, in turn, supt∈[0,T ] ∥Q′
κ(λε(t)−L(∇yε(t)))∥L2(Ω)

are bounded independently of β and because of the strong convergence of [
.
λε]β high-

lighted above. Merging (5.70)–(5.73) with (5.68) yields the desired inequality (5.67).
Finally, using (5.67) in (5.64) and (5.66) yields after reformulating

εVar|·|(∇yε; Ω× [0, T ]) ≤ lim inf
τ→0

εVar|·|(∇ȳε,τ ; Ω× [0, T ]) ≤ lim sup
τ→0

εVar|·|(∇ȳε,τ ; Ω× [0, T ])

≤ lim sup
τ→0

(
Gε(0, ȳε,τ (0), λ̄ε,τ (0))−Gε(T, ȳε,τ (T ), λ̄ε,τ (T ))

+

∫ T

0

(
[Gε]

′
t(t, ȳε,τ (t−τ))+

∫
Ω
Q′

κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (t−τ))

)
·
.
λε,τ (t) dx

)
dt

)
=

(
Gε(0, yε(0), λε(0))−Gε(T, yε(T ), λε(T ))

+

∫ T

0

(
[Gε]

′
t(t, yε(t))+

∫
Ω
Q′

κ
(
λε(t)−L(∇yε(t))

)
·
.
λε(t) dx

)
dt

)
≤ εVar|·|(∇yε; Ω× [0, T ]), (5.74)

i.e., since all inequalities are actually equalities,

εVar|·|(∇yε; Ω× [0, T ]) = lim
τ→0

εVar|·|(∇ȳε,τ ; Ω× [0, T ]). (5.75)

Step 7: Convergence of the enthalpy equation.
Performing discrete by parts integration in (5.40b) summed from 1 to N yields

−
∫ T

0

(∫
Ω
w̄ε,τ

.
φ+K(λ̄ε,τ , w̄ε,τ )∇w̄ε,τ ·∇φ̄dx+

∫
Γ
b̄ε,τΘ(w̄ε,τ )φ̄dS

)
dt =

∫
Ω
w0
ε,τ φ̄(0) dx

+

∫ tk

0

(∫
Ω

(
ϱq(
.
λε,τ )+ε|

.
yε,τ |

)
φ̄+Θ(w̄ε,τ )⃗a·

.
λε,τ φ̄dx+

∫
Γ
b̄τ θ̄ext,τ φ̄ dS

)
dt, (5.76)

for all φ̄ piecewise constant on the intervals (tj−1, tj ] such that, for any j, φ̄(tj , ·) ∈
W 1,2(Ω), φ̄(T ) = 0 and φ piecewise linear on the intervals (tj−1, tj ], such that φ̄(tj , ·) =
φ(tj , ·). Note that by such test functions we may approximate (strongly in the norm of
Lr(Q), r ∈ [1,∞]) any φ̃ ∈ C1(Q̄).

To pass to the limit τ → 0 in this equation, we make use of (5.56) to handle the
term w̄ε,τ

.
φ; furthermore, we use that λ̄ε,τ → λε strongly in Lq(Q;RM+1) (owing to Step

5 ), which together with assumption (A5), gives K(λ̄ε,τ , w̄ε,τ ) → K(λε, wε) strongly in
any Lebesgue space, except for L∞(Q;Rd×d).

Next, by the Aubin-Lions theorem and by interpolation (see (Roub́ıček, 2005)), we
get that w̄ε,τ → wε strongly in L(d+2)/(d+1)−δ([0, T ];W 1−δ,(d+2)/(d+1)−δ(Ω)) for any δ >

0 small, so that the traces converge strongly in L(d+2)/(d+1)−δ([0, T ];L(d2+d−2)/(d2−2)−δ(Γ)).
Combining that with assumption (A6) and (5.42) allows us to handle the left-hand-side
boundary term.

For the right-hand-side we exploit the strong convergence
.
λε,τ →

.
λε in L

q(Q;RM+1)

to take the limit in the terms expressing dissipated heat in
.
λ. To establish the limit of

ε| .yε,τ |φ̄, we exploit (5.75) and follow the procedure of (Roub́ıček, 2010). For the term

Θ(w̄ε,τ )⃗a·
.
λε,τ φ̄, we employ that Θ(w̄ε,τ ) → Θ(w) in Lq′(Q); finally, for the right-hand-

side boundary term the weak convergence of b̄τ θ̄ext,τ → bθext in L1(Q) (see (5.42)) is
available, which allows us to pass to the limit in this term.

Remark 5.11 (On mathematical importance of the “pinning” term ε|∇ .
yε| in (5.27)).

Let us, at this point, shortly point out the philosophy of the term ε|∇ .
yε| from (5.27) –
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the main purpose for including it is to get more information on the behavior “in-time”
of the deformation.

Indeed the term ε|∇ .
yε| from (5.27) was exploited already in the a-priori estimates

in Lemma 5.10 yielding the third estimate in (5.46). This was subsequently exploited
in Step 3 of the above proof to get (5.52); that was again essential in Step 4 in order

to pass to the limit in the flow-rule, in particular in the term
∫ T
0

∫
Ω Pκ(∇yε,τ , λε,τ )·(v−.

λε,τ ) dx dt.

Without the added dissipation term ε|∇ .
yε|, we could only establish that for any t ∈

[0, T ] there exists a subsequence τt, depending on t, such that∇yε,τt(t) → ∇yε(t) strong-
ly in L2(Ω;Rd×d). This, however, is not sufficient to pass to the limit in the in the dis-

crete flow rule (5.58), namely the limit of the aforementioned term
∫ T
0

∫
Ω Pκ(∇yε,τ , λε,τ )·

(v −
.
λε,τ ) dxdt, stemming from the penalty, cannot be evaluated.

For completeness, we need to prove the a-priori estimates from Lemma 5.10; the
procedure taken here follows in large parts (Benešová, Kruž́ık and Roub́ıček, 2012)
where also heuristics on the proof were given – the ideas in (Benešová, Kruž́ık and
Roub́ıček, 2012) were inspired by (Roub́ıček, 2010) exploiting a technique developed
by Boccardo and Gallouët (Boccardo et al., 1997; Boccardo and Galloët, 1989). Recall
also that in the proof we will use C as a generic constant independent of τ , ε.

Proof Lemma 5.10. For the sake of clarity, let us divide the proof into several steps.

Step 1: Using (5.63) and (5.58)
Let us estimate the left-hand side of (a slight modification of) (5.63)19

∫
Ω
C|∇ȳε,τ (tk)|p+

ε

2
|∇2ȳε,τ (tk)|2 dx+εVar|·|(∇ȳε,τ ; Ω× [0, tk])− C

≤ Gε(tk, ȳε,τ (tk), λ̄ε,τ (tk))+εVar|·|(∇ȳε,τ ,Ω× [0, tk])

≤
∫ tk

0

(
[Gε]

′
t(t, ȳε,τ (t−τ))+

∫
Ω
Q′

κ
(
λ̄ε,τ−L(∇ȳε,τ (t−τ))

)
·
.
λε,τ

)
dx dt+ C

≤
∫ tk

0

∫
Ω
C|∇ȳδ,τ |p+κQλ̄ε,τQ

.
λε,τ−|Q′

κ
(
L(∇ȳε,τ (t−τ))

)
| |
.
λε,τ | dx dt+ C,

≤
∫ tk

0

∫
Ω
C|∇ȳδ,τ |p+κQλ̄ε,τQ

.
λε,τ+

α

3q
|
.
λε,τ | dxdt+ C; (5.77)

where we exploited the Hölder’s and Young’s inequality; for the term |Q′
κ
(
L(∇ȳε,τ (t−τ))

)
|

we used (A3) and (A2) was exploited in [Gε]
′
t(t, ȳδ,τ (t−τ)).20

19Obtained by exploiting (5.62) from 1 . . . k instead of 1 . . . N (as in the case of (5.63)) to get

Gε(tk,ȳε,τ (tk), λ̄ε,τ (tk))+εVar|·|(∇ȳε,τ ; Ω× [0, tk]) ≤ Gε(0, ȳε,τ (0), λ̄ε,τ (0))

+

∫ tk

0

(
[Gε]

′
t(t, ȳε,τ (t−τ))+

∫
Ω

Q′
κ
(
λ̄ε,τ (t)−L(∇ȳε,τ (t−τ))

)
·
.
λε,τ (t) dx

)
dt.

20Note that the term [Gε]
′
t(t, ȳε,τ (t−τ)) =

∫
Ω

.
f(t)ȳε,τ (t−τ) dx+

∫
ΓN

.
g(t)ȳε,τ (t−τ) dS may be esti-

mated, using (A3) combined with the Hölder’s and Young’s inequality, as follows (for simplicity we

demonstrate the procedure only for
∫
Ω

.
f(t)ȳε,τ (t−τ) dx, for

∫
ΓN

.
g(t)ȳε,τ (t−τ) dS we would proceed

analogously):
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Next, using vε,τ = 0 in (a slight modification of) (5.58) 21 leads, when recalling
definition (5.2), to

∫ tk

0

∫
Ω
δ∗S(
.
λε,τ ) +

α

q
|
.
λε,τ |q dxdt+

κ
2
∥Qλ̄ε,τ (tk)∥2L2(Ω;RM+1) +

∫
Ω
τ |λ̄ε,τ (tk)|2q dx

≤
∫ tk

0

∫
Ω

(
κ|QL(∇ȳε,τ (t− τ))| |Q

.
λε,τ |+|Θ(wε,τ )− θtr| |⃗a| |

.
λε,τ | dx

)
dt

+ ∥Qλ̄ε,τ (0)∥2L2(Ω;RM+1) +

∫
Ω
τ |λ̄ε,τ (0)|2q dx

≤
∫ tk

0

∫
Ω

(
α

6qcem
∥Q
.
λε,τ∥q+C|Θ(wε,τ )− θtr|q

′
+
α

6q
|
.
λε,τ |q dx

)
dt+ C

≤
∫ tk

0

∫
Ω
C|wε,τ |+

α

3q
|
.
λε,τ |q dxdt+ τ∥λ0,τ∥2qL2q(Ω;RM+1)

+ C, (5.78)

by first exploiting the discrete chain rule22 and subsequently applying the Young’s

inequality to the terms κ|QL(∇ȳε,τ (t − τ))| |Q
.
λε,τ | as well as |Θ(wε,τ ) − θtr||⃗a||

.
λε,τ |.

Further, we estimated κ|QL(∇ȳε,τ (t − τ))| ≤ C (due to (A3)) and, as q ≥ 2 we

may write
∫
Ω |Q

.
λε,τ | dx ≤ cem∥

.
λε,τ∥qLq(Ω;RM+1)

, with some constant cem. Eventually,

|Θ(wε,τ )|q
′ ≤ C(1 + |wε,τ |q

′/ω) ≤ C(1 + |wε,τ |) due to assumption (A4) and q′/ω < 1.

Step 2: Using the enthalpy equation (5.76)

∣∣∣ ∫ tk

0

∫
Ω

.
f(t)ȳε,τ (t−τ) dx

∣∣∣ ≤ ∫ tk

0

∥
.
f(t)∥

Lp∗′ (Ω;Rd)
∥ȳε,τ (t−τ)∥W1,p(Ω;Rd) dt

≤ C

∫ tk

0

∥
.
f(t)∥p

′

Lp∗′ (Ω;Rd)
dt+

∫ tk

0

∥ȳε,τ (t−τ)∥pW1,p(Ω;Rd)
dt

= C

∫ tk

0

∥
.
f(t)∥p

′

Lp∗′ (Ω;Rd)
dt+

∫ tk

τ

∥ȳε,τ (t−τ)∥pW1,p(Ω;Rd)
dt+τ∥y0ε,τ∥pW1,p(Ω;Rd)

= C

∫ tk

0

∥
.
f(t)∥p

′

Lp∗′ (Ω;Rd)
dt+

∫ tk−τ

0

∥ȳε,τ (t)∥pW1,p(Ω;Rd)
dt+τ∥y0ε,τ∥pW1,p(Ω;Rd)

≤ C

∫ tk

0

∥f(t)∥p
′

Lp∗′ (Ω;Rd)
dt+

∫ tk

0

∥ȳε,τ (t)∥pW1,p(Ω;Rd)
dt+τ∥y0ε,τ∥pW1,p(Ω;Rd)

≤ C
(
1 +

∫ tk

0

∥ȳε,τ (t)∥pW1,p(Ω;Rd)
dt
)
≤ C

(
1 +

∫ tk

0

∫
Ω

|∇ȳε,τ (t)|p dt
)
,

where, in the last line, we exploited assumption (A2) on f and (5.40d) for y0ε,τ .
21Ones again, we use sum the partial derivatives with respect to λ of the cost function in (5.40a),

being equal to 0, only from 1 to k instead of N to get∫ tk

0

∫
Ω

ρq(
.
λε,τ ) dx dt ≤

∫ tk

0

∫
Ω

Q′
κ
(
λ̄ε,τ−L(∇ȳε,τ )

)
·(vε,τ−

.
λε,τ ) + ρq(vε,τ ) dx dt

+

∫ tk

0

∫
Ω

(Θ(wε,τ (t))−θtr)⃗a·(vε,τ−
.
λε,τ )+2qτ |λ̄ε,τ |2q−2λ̄ε,τ (vε,τ−

.
λε,τ ) dx dt.

22Indeed, by the convexity and due to definition (5.2), we may rewrite

κ
2
∥Qλ̄ε,τ (0)∥2L2(Ω;RM+1) −

κ
2
∥Qλ̄ε,τ (tk)∥2L2(Ω;RM+1) dx ≥ −

∫ tk

0

∫
Ω

Q′
κ(
.
λε,τ )·

.
λε,τ dt∫

Ω

|λ̄ε,τ (0)|2q −
∫
Ω

|λ̄ε,τ (tk)|2q dx ≥ −2q

∫ tk

0

∫
Ω

.
λε,τ λ̄ε,τ |λ̄ε,τ |2q−2 dx dt.
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In this step, we test (a modification of) (5.76)23 by 1 to get∫ tk

0

∫
Ω

.
wε,τ dxdt ≤

∫ tk

0

(∫
Ω

.
wε,τ dx+

∫
Γ
b̄ε,τΘ(w̄ε,τ ) dS

)
dt

≤
∫ tk

0

(∫
Ω
δ∗S(
.
λε,τ )+α|

.
λε,τ |q+ε|

.
yε,τ |+|Θ(w̄ε,τ )||⃗a||

.
λε,τ |+

∫
Γ
|θ̄ext,τ | dx

)
dt

≤
∫ tk

0

∫
Ω
2α|
.
λε,τ |q+C|w̄ε,τ | dxdt+εVar|·|(∇ȳε,τ ; Ω× [0, tk])+C (5.79)

where we estimated the term |Θ(w̄ε,τ )||⃗a||
.
λε,τ | similarly as in Step 1 and inserted the

identity εVar|·|(∇ȳε,τ , [0, tk]) =
∫ tk
0

∫
Ω ε|

.
yε,τ | dxdt.

Multiplying (5.79) by 1/(12q) and adding to (5.78) and (5.77) gives∫ tk

0

∫
Ω

α

6q
|
.
λε,τ |q dx dt+

∫
Ω
τ |λ̄ε,τ (tk)|2q+

∫
Ω
C|∇ȳε,τ (tk)|p+

ε

2
|∇2ȳε,τ (tk)|2 dx

+
ε

12q
Var|·|(∇ȳε,τ , [0, tk]) +

∫
Ω
|w̄ε,τ (tk)| dx

≤ C

(
1 +

∫ tk

0

∫
Ω
|w̄ε,τ |+ |∇ȳε,τ |p dx dt

)
, (5.80)

i.e. we got (5.46)-(5.49) by exploiting the discrete Gronwall inequality (Roub́ıček, 2005).

Step 3: Estimation of ∇w̄τ

In this step we prove (5.50). To this end, let us test (5.76) by η(w̄τ ) where η(w) =
1− 1

(1+w)a with a > 0, which, due to the non-negativity of the enthalpy is a legal test.
Notice that due to the discrete chain rule, relying on the convexity of η̃, we have that∫

Ω
η̃(T )− η̃(0) dx =

∫
Q

d

dt
η̃(w̄ε,τ ) dx dt ≤

∫
Q

.
wε,τη(w̄ε,τ ) dxdt,

where η̃ denotes the primitive function of η such that η̃(0) = 0. Realize also that due
to the fact that η(w) ≥ 0 also η̃(T ) ≥ 0 and hence we may write

κ0a

∫
Q

|∇w̄ε,τ |2

(1+w̄)1+a
dxdt = κ0

∫
Q
|∇w̄ε,τ |2η′(w̄ε,τ ) dxdt

≤
∫
Q
K∇w̄ε,τ ·∇w̄ε,τη

′(w̄ε,τ ) dxdt =

∫
Q
K∇w̄ε,τ ·∇η(w̄ε,τ ) dxdt

≤
∫
Ω
η̃(wε,τ (T )) dx+

∫
Q
K∇w̄ε,τ ·∇η(w̄ε,τ ) dx dt+

∫
Σ
b̄ε,τΘ(w̄ε,τ )η(w̄ε,τ ) dS dt

=

∫
Σ
b̄ε,τ θ̄ext,ε,τη(w̄ε,τ ) dS dt+

∫
Ω
η̃(w0) dx

+

∫
Q
(ϱq(

.
λε,τ ) + Θ(w̄ε,τ )⃗a·

.
λε,τ + ϵ|∇.yε,τ |)η(w̄ε,τ ) dxdt

≤ C + ∥r̄ε,τ∥L1(Q) (5.81)

23As above, we sum (5.40b) from 1 to k instead of N to get

−
∫ tk

0

(∫
Ω

.
wε,τ

.
φ+K(λ̄ε,τ , w̄ε,τ )∇w̄ε,τ∇φ̄dx+

∫
Γ

b̄ε,τΘ(w̄ε,τ )φ̄dS
)
dt

=

∫ tk

0

(∫
Ω

(
ϱq(
.
λε,τ )+ε|

.
yε,τ |

)
φ̄+Θ(w̄ε,τ )⃗a·

.
λε,τ φ̄ dx+

∫
Γ

b̄τ θ̄ext,τ φ̄ dS
)
dt.
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with the shorthand notation K = K(λ̄ε,τ , w̄ε,τ ) and where we used the obvious bound
|η(w̄τ )| ≤ 1 and abbreviated

r̄ε,τ := ϱq(
.
λε,τ ) + ϵ|∇.yε,τ |+Θ(w̄ε,τ )⃗a·

.
λε,τ .

Note that r̄ε,τ is bounded due to (5.46)-(5.49) by following the procedure in Step 1 and

Step 2. Thus, (5.81) yields
∫
Q

|∇w̄τ |2
(1+w̄)1+a dxdt bounded. Combining it with (5.49) like in

(Boccardo et al., 1997; Boccardo and Galloët, 1989), cf. also (Roub́ıček, 2010, Formulae
(4.29)-(4.33)), we obtain (5.50).

Step 4: “Dual” estimate for the time derivative:
Notice that

∥∥ .wε,τ

∥∥
M([0,T ],W 1,∞(Ω)∗)

=

N∑
k=1

sup
v∈W 1,∞,(Ω), ∥v∥≤1

∫
Ω

wk
ε,τ−wk−1

ε,τ

τ
v dx

=
N∑
k=1

sup
v∈W 1,∞(Ω), ∥v∥≤1

∫
Ω

(
−K(λkε,τ , w

k
ε,τ )∇wk

ε,τ ·∇v + δ∗S(
.
λε,τ (tk))v + ϵ|

.
λε,τ (tk)|qv

+Θ(wk )⃗a·
.
λε,τ (tk)v

)
dx+

∫
Γ
(b̄ε,τ θ̄ext,ε,τ − b̄ε,τΘ(wk

ε,τ ))v dS

≤ sup
ṽ∈C([0,T ],W 1,∞(Ω)), ∥v∥≤1

∫
Q

(
−K(λ̄ε,τ , w̄ε,τ )∇w̄ε,τ ·∇ṽ + δ∗S(

.
λε,τ )ṽ

+ ϵ|
.
λε,τ |qṽΘ(w̄ε,τ )⃗a·

.
λε,τ ṽ

)
dx+

∫
Γ
(b̄ε,τ θ̄ext,ε,τ − b̄ε,τΘ(w̄ε,τ ))ṽ dS dt.

Now, because of all the preceding steps, we may use the Hölder’s/Young’s inequality
for all terms on the right-hand side to get estimate (5.51).

5.4.3 Convergence towards the mesoscopic model

Once the existence of microscopic solutions has established, we are in the position to
prove the main theorem of this Subsection:

Theorem 5.12 (Reaching mesoscopic solutions). Let (A1)–(A7) hold and let (yε, λε, wε)
be any weak solution to the microscopic system (5.28) together with initial conditions
(5.29) in accord with Definition 5.7 satisfying also (5.35)–(5.39). Let also the initial con-
ditions (5.29) be compatible with (5.18) in the sense that λ0,ε→λ0 strongly in Lq(Ω),
w0,ε→w0 strongly in L1(Ω) and ∇y0,ε generates the family {[ν0]x}x∈Ω when ε→0.

1. Then there exist (y, ν, λ, w) ∈ B([0, T ];W 1,p(Ω;Rd))× (G p
ΓD

(Ω;Rd×d))[0,T ]×
W 1,q([0, T ];Lq(Ω;RM+1))× Lr([0, T ];W 1,r(Ω)) and a sequence ε→ 0 such that

λε → λ in W 1,q(0, T ;Lq(Ω;RM+1)), (5.82)

λε(t)⇀ λ(t) in Lq(Ω;RM+1) for all t ∈ [0, T ], (5.83)

wε ⇀ w in Lr([0, T ];W 1,r(Ω)), r < d+2
d+1 (5.84)

wε → w in Ls(Q), s <
d+2

d
. (5.85)

Moreover, for each t ∈ [0, T ], there exists a subsequence εk(t) such that ∇yεk(t)(t)
generates a family of gradient Young measures {νx(t)}x∈Ω and yεk(t)(t)⇀ y(t) in

W 1,p(Ω;Rd).
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2. At least one cluster point (y, ν, λ, w) obtained in this way is a weak solution of
(5.17) in accord with Definition 5.4, and thus, in particular, such solutions do
exist.

Proof. The proof was given (Benešová and Roub́ıček, 2012) (obtained within the work
on this thesis) – we reprint it here for the readers’ convenience – and is similar to
the convergence part of proof Proposition 5.9. However; it is rather peculiar to find
a cluster-point (y, ν, λ, w) that fulfills (5.23) – the main difficulty is due to the term∫ T
0

∫
ΩQ′

κ(λ−L •ν)·(v−
.
λ) dx dt. In particular, it is non-trivial to assure measurability

of the integrand since ν(t) (as obtained in point 1 of Theorem 5.12) needs not be
measurable itself.

Therefore, we use (5.31), to reformulate (5.33) into a yet weaker form, which we call
the reformulated microscopic flow-rule. In this weaker form, a part of the problematic

term, namely
∫ T
0 Q′

κ(λ−L •ν)·
.
λ dxdt, is not present anymore (cf. Step 1 ). Neverthe-

less, the second part
∫ T
0 Q′

κ(λ−L •ν)·v dxdt cannot be removed, so the measurability

problem is not solved just by this reformulation.

Hence, we use a technique based on Fatou’s lemma (Dal Maso et al., 2005; Francfort
and Mielke, 2006) to select a cluster point for which the above integral makes sense;
note however that we can only show that the whole above integrand is measurable, not
the cluster point itself (cf. Step 2 ).

For lucidity, let us again divide the proof into several steps.

Step 1: Selection of subsequences, reformulated flow-rule and limit passage in it
By the same procedure as in Step 3 of the proof Proposition 5.9 we can, owing to
(5.35)–(5.39), find a subsequence of ε’s (not relabeled) and (λ,w) such that

λε
∗
⇀ λ in W 1,q([0, T ];Lq(Ω;RM+1)) (5.86)

and (5.83) - (5.85) hold; note that (5.85) also assures that Θ(wε) → Θ(w) in Lq′(Q).24

Next, let us reformulate the flow-rule (5.33) into a weaker form using the mechanical
energy inequality (5.31).25 To do so, let us first abbreviate

Gε(T ) = Gε(T, yε(T ), λε(T )) and Gε(0) = Gε(0, yε(0), λε(0)).

Thus, we recall that (5.31) states that

−
∫
Q
Pκ(λε,∇yε)

.
λε dxdt = Gε(0)−εVar|·|(∇yε; Ω× [0, T ])−Gε(T )+

∫ T

0
[G′

ε]t(t, yε(t)) dt.

By plugging this into (5.33), we get the following reformulated flow rule:∫
Q
ρq(
.
λε) dxdt ≤

∫
Q
ρq(v) + (Θ(wε)−θtr)(v−

.
λε)+Pκ(λε,∇yε)v dxdt

+Gε(0)−εVar|·|(∇yε; Ω×[0, T ])−Gε(T )+

∫ T

0
[Gε]

′
t(t, yε(t)) dt. (5.87)

Let us now pass to the limit ε→ 0 in (5.87). Here, the terms
∫
Q Pκ(λε,∇yε)v dxdt

and [Gε]
′
t(t, yε(t)) turn out to be the most difficult ones because a-priori estimate (5.35)

24Indeed, thanks to the growth condition |Θ(w)| ≤ C(1 + |w|1/ω) and ω > q′ (cf. assumption (A4)),

we have that |Θ(w)| ≤ C(1 + |w|1/ω) ≤ C(1 + |w|1/q
′
). Hence, applying the continuity of Nemytskii

mapping induced by Θ, we have the claim.
25We use this procedure to cope with the aforementioned problems with measurability of∫ T

0

∫
Ω
Q′

κ(λ−L • ν)·(v−
.
λ) dx dt.
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directly implies only yε
∗
⇀ y in L∞([0, T ];W 1,p(Ω;Rd)) which would not be sufficient for

the limit passage due to involved the non-linearities. We shall circumpass this problem
using a trick inspired by (Dal Maso et al., 2005) or (Francfort and Mielke, 2006, Section
3, Step 2).

First, however, we establish the convergence of all other terms. Using weak lower
semi-continuity properties for the convex term ρq on the left-hand side of (5.87), we

get that
∫
Q ρq(

.
λ) dx dt ≤ lim infε→0

∫
Q ρq(

.
λε) dx dt, similarly as in Step 4 of the proof

Proposition 5.9. On the right-hand side of (5.87), we can use that Θ(wε) → Θ(w)

in Lq′(Q) (established in Step 1) to pass to the limit in
∫
QΘ((wε)−θtr)(v−

.
λε) dxdt.

Moreover, εVar|·|(∇yε; Ω×[0, T ]) is non-negative and can be omitted. Eventually, as
Gε(0) and Gε(T ) are bounded sequences of numbers, we may assume that limε→0Gε(0)
and limε→0Gε(T ) exist – for if they did not, we could always find a sub-sequence of ε
in which the convergences would hold and then work only with this subsequence. We
shall identify these limits in Step 2.

Let us choose a fixed test function v ∈ V, where V is a countable dense subset
of Lq([0, T ];Lq(Ω;RM+1)) and turn to the difficult terms

∫
Q Pκ(λε,∇yε)v dx dt and

[Gε]
′
t(t, yε(t)). We define the functions Lv, dependent on the choice of the test function

v, and F by

Lv(t) = lim sup
ε→0

∫
Ω
Pκ(λε(t),∇yε(t))v(t) dx, F(t) = lim sup

ε→0
[Gε]

′
t(t, yε(t)). (5.88)

Since
∫
Ω Pκ(λε(t),∇yε(t))v(t) dx as well as [Gε]

′
t(t, yε(t)) are bounded from above by

measurable functions, thanks to estimates (5.35) and (5.36), Fatou’s lemma gives that
both Lv and F are measurable and

lim sup
ε→0

∫
Q
Pκ(λε,∇yε)v dx dt ≤

∫ T

0
Lv dt, lim sup

ε→0

∫ T

0
[Gε]

′
t(t, yε(t)) dt ≤

∫ T

0
F dt.

Plugging the above estimates into (5.87) leads to∫
Q
ρq(
.
λ) dx dt ≤ lim inf

ε→0

∫
Q
ρq(
.
λε) dxdt

≤ lim inf
ε→0

∫ T

0

(
[Gε]

′
t(t, yε)+

∫
Ω
Pκ(λε,∇yε)v+(Θ(wε)−θtr)(v−

.
λε)+ρq(v) dx

)
dt

+Gε(0)−εVar|·|(∇yε; [0, T ])−Gε(T )

≤ lim sup
ε→0

∫ T

0

(
[Gε]

′
t(t, yε)+

∫
Ω
Pκ(λε,∇yε)v+(Θ(wε)−θtr)(v−

.
λε)+ρq(v) dx

)
dt

+Gε(0)−Gε(T )

≤
∫ T

0
Lv+F dt+

∫
Q
(Θ(w)−θtr)(v−

.
λ)+ρq(v) dx dt+ lim

ε→0
Gε(0)− lim

ε→0
Gε(T ). (5.89)

Now we take t ∈ [0, T ] arbitrary but fixed. Then, for any v ∈ V , we may find a
t-dependent subsequence of ε’s, denoted as εk(t,v), such that

Lv(t) = lim
εk(t,v)→0

∫
Ω
Pκ(λεk(t,v)(t),∇yεk(t,v)(t))v(t) dx, (5.90)

F(t) = lim
εk(t,v)→0

[Gε]
′
t(t, yεk(t,v)(t)). (5.91)

By a diagonal selection, we can find a further (still time-dependent) subsequence labeled
εk(t), such that (5.90)–(5.91) hold even for all v from the countable set V.

Using the second estimate in (5.35) we may again select a subsequence of εk(t) (not

relabeled) such that yεk(t)(t) ⇀ y(t) weakly in W 1,p(Ω;Rd) and ∇yεk(t) generates a
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family of Young measures ν(t) ∈ G p
ΓD

(Ω;Rd×d) with id •νx(t) = ∇y(x, t) a.e. on Ω.

Then, because L is bounded, L(∇yεk(t)(t)) → L •ν(t) weakly* in L∞(Ω). Combining

this with (5.83) and (5.2), gives that Pκ(λε(t),∇yε(t)) → Q′
κ(λ(t)−L •ν(t)) in L2(Ω).

Therefore, (5.90) and (5.91) yield

Lv(t) = lim
εk(t)→0

∫
Ω
Pκ(λεk(t)(t),∇yεk(t)(t))v(t) dx =

∫
Ω
Q′

κ(λ(t)−L •ν(t))v(t) dx,

F(t) = lim
εk(t)→0

[Gε]
′
t(t, yεk(t)(t)) =

∫
Ω
f(t)·y(t) dx+

∫
ΓN

g(t)·y(t) dS,

for all v ∈ V. This holds even for all t ∈ [0, T ], since t, chosen above, was arbitrary.
Inserting this into (5.89) finally leads to∫

Q
ρq(
.
λ) dxdt ≤

∫ T

0

∫
Ω

(
Q′

κ(λ−L •ν)v+f ·y dx+
∫
ΓN

g·y dS
)
dt

+ lim
ε→0

Gε(0)− lim
ε→0

Gε(T )+

∫
Q
(Θ(w)−θtr)(v−

.
λ)+ρq(v) dx dt. (5.92)

for all v ∈ V. This can be extended for any v ∈ Lq(Q) by continuity. Note that the mea-
surability of Q′

κ(λ−L •ν)v is guaranteed for any v ∈ Lq(Q;RM+1) since for a.e. x ∈ Ω

and a.e. t ∈ [0, T ]Q′
κ(λ(x, t)−L •νx(t))v(x, t) is the limit ofQ′

κ(λ(x, t)−L •νx(t))vk(x, t)

with vk ∈ V.
Step 2: Limiting the minimization principle
In this step we show that (5.22) holds. To shorten the notation, we first introduce, in
analogy to the microscopic case (5.32), the mechanical part of the Gibbs free energy :

G(t, y, ν, λ) =

∫
Ω
ϕ1 •ν−f(t)·y dx−

∫
ΓN

g(t)·y dS+Qκ(λ−L •ν); (5.93)

with this notation, (5.22) is equivalent to

G(t, y(t), ν(t), λ(t)) ≤ G(t, ỹ, ν̃, λ(t))

for any couple (ỹ, ν̃) ∈ W 1,p(Ω;Rd) × G p
ΓD

(Ω;Rd×d) such that ∇ỹ(x) = id • ν̃x for a.a.

x ∈ Ω and all t ∈ [0, T ].
Again, we take some t ∈ [0, T ] arbitrary but fixed. Since the specific stored en-

ergy is bounded from below (cf. assumption (A1)) we have that
∫
Ω ϕ1 •ν(t) dx ≤

lim infεk(t)→0

∫
Ω ϕ1(∇yεk(t)(t)) dx, cf. (Pedregal, 1997). Moreover, by exploiting the min-

imization principle (5.30)26, we may write

G(t, y(t),ν(t), λ(t)) ≤ lim inf
εk(t)→0

Gεk(t)(t, yεk(t)(t), λεk(t)(t))

≤ lim inf
εk(t)→0

Gεk(t)(t, ỹ, λεk(t)(t))+

∫
Ω
εk(t)|∇ỹ−∇yεk(t)(t)| dx

=

∫
Ω
ϕ1(∇ỹ(t))−f(t)·ỹ dx+Qκ(λ(t)−L(∇ỹ))−

∫
ΓN

g(t)·ỹ dS, (5.94)

for any ỹ ∈ W 2,2(Ω;Rd). In the last equality, we used that ∇yεk(t)(t) is bounded in

L1(Ω;Rd×d) independently of ε (cf. (5.35), line 2) and hence
∫
Ω εk(t)|∇ỹ−∇yεk(t)(t)| dx→

0 as ε→ 0. Realizing that W 2,2(Ω;Rd) is dense in W 1,p(Ω;Rd), from (5.94) we have

26Although we proceed here analogously to the proof Proposition 4.1, for clarity, a detailed proof is
given here, too.
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G(t, y(t), ν(t), λ(t)) ≤
∫
Ω
ϕ1(∇ỹ)−f(t)·ỹ dx+Qκ(L(λ(t)−∇ỹ))−

∫
ΓN

g(t)·ỹ dS, (5.95)

even for any ỹ ∈W 1,p(Ω;Rd).
Take any ν̂ ∈ G p

ΓD
(Ω;Rd×d) and its generating sequence {ŷk}∞k=1 such that {|∇ŷk|p}∞k=1

is equi-integrable; recall, from Chapter 2, that taking such an equi-integrable generat-
ing sequence implies that ϕ1(∇ỹ)⇀ ϕ1 •ν in L1(Ω), even though ϕ1 is of p-growth. We

now plug ŷk into (5.95) in place of ỹ, and let k → ∞ to obtain

G(t, y(t), ν(t), λ(t)) ≤
∫
Ω
ϕ1 • ν̂−f(t)·ŷ dx+Qκ(λ(t)−L • ν̂)−

∫
ΓN

g(t)·ŷ dS = G(t, ŷ, ν̂, λ(t)),

with ŷ the weak limit of {ŷk}∞k=1 inW
1,p(Ω;Rd) giving the desired minimization princi-

ple (5.22). Note that, for (ŷ, ν̂) = (y(t), ν(t)), this procedure also givesG(t, y(t), ν(t), λ(t))
= limεk(t)→0Gεk(t)(t, yεk(t)(t), λεk(t)(t)), which in particular means that{

G(0) ≡ G(0, y(0), ν(0), λ(0)) = limε→0Gε(0),

G(T ) ≡ G(T, y(T ), ν(T ), λ(T )) = limε→0Gε(T ).
(5.96)

Step 3: Reverse energy inequality, strong convergence of
.
λ, back to the original flow-rule

As a corollary of the minimization principle (5.22), we can prove, analogously to Step
6 of the proof Proposition 5.9 the following the mechanic energy inequality

G(0)−G(T )+

∫ T

0
G′

t(t, y(t)) dt ≤ −
∫
Q
Qκ(λ−L •ν)

.
λ dx dt. (5.97)

Indeed, any partition 0 = tβ0 < tβ1 < . . . < tβk = T with maxi=1,...,k(t
β
i −t

β
i−1) ≤ β of

the interval [0, T ], it holds that

G(tβi−1,y(t
β
i−1), ν(t

β
i−1), λ(t

β
i−1)) ≤ G(tβi−1, y(t

β
i ), ν(t

β
i ), λ(t

β
i−1))

= G(tβi , y(t
β
i ), ν(t

β
i ), λ(t

β
i ))−

∫ tβi

tβi−1

G′
t(t, y(t

β
i ))+⟨G′

λ(ν(t
β
i ), λ(t)),

.
λ(t)⟩dt

where the first inequality is due to (5.22) and where we used that G′
t is independent

of ν and λ while G′
λ is independent of t and y. Summing this expression for i = 1, ..., k

leads to

G(T )−G(0) ≥
k∑

i=1

∫ tβi

tβi−1

G′
t(t, y(t

β
i )) +

∫
Ω
Q′

κ(λ(t)−L •ν(tβi ))
.
λ(t) dt

=

k∑
i=1

∫ tβi

tβi−1

(∫
Ω
Q′

κ(λ(t)−λ(t
β
i ))·

.
λ(t)︸ ︷︷ ︸

=S1

+Q′
κ(λ(t

β
i )− L •ν(tβi ))·

.
λ(tβi )︸ ︷︷ ︸

=S2

dx

+

∫
Ω
Q′

κ(λ(t
β
i )−L •ν(tβi ))·(

.
λ(t)−

.
λ(tβi ))︸ ︷︷ ︸

=S3

dx+G′
t(t, y(t

β
i ))︸ ︷︷ ︸

=S4

)
dt, (5.98)

where we can pass to the limit in S1, S2, S3 and S4 the same way as in (5.72), (5.71),
(5.73) and (5.70), respectively to obtain (5.97).

Let us now exploit (5.97) to prove that
.
λε →

.
λ strongly in Lq(Q;RM+1); analogously

to Step 5 of the proof Proposition 5.9. To this end, let us first approximate
.
λ by some

{λ′j}j∈N ⊂ V with V the dense countable subset of Lq(Q;RM+1) used already in Step 1,
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i.e. λ′j →
.
λ in Lq(Q) as j → ∞. Such an approximation shall be needed since, following

Step 1, we only know that lim supε→0

∫
Q Pκ(λε,∇yε)v dx ≤

∫
QQ′

κ(λ−L •ν)v dx for

v ∈ V; hence we can assure this inequality for v = λ′j but not for v =
.
λ.

As in Step 5 of the proof Proposition 5.9, we test the reformulated microscopic
flow-rule (5.87), here once again rewritten using the convexity of |·|q, by v =λ′j . This
yields

∫
Q
δ∗S(
.
λε) dxdt ≤

∫ T

0

(
[Gε]

′
t(t, yε)+

∫
Ω
Pκ(λε,∇yε)λ′j+α|

.
λε|q−2

.
λε(λ

′
j−
.
λε)

+(Θ(wε)−θtr)(λ′j−
.
λε)+δ

∗
S(λ

′
j) dx

)
dt−Gε(T ) +Gε(0). (5.99)

Symmetrically, we test (5.92) (the reformulated limited flow-rule; here again rewritten

using the convexity of |·|q and also (5.96)) by v =
.
λε to get

∫
Q
δ∗S(
.
λ) dx dt ≤

∫ T

0

(
G′

t(t, y) +

∫
Ω
Q′

κ(λ−L •ν)
.
λε+α|

.
λ|q−2

.
λ(
.
λε−

.
λ)

+(Θ(w)−θtr)(
.
λε−

.
λ)+δ∗S(

.
λε) dx

)
dt−G(T ) +G(0). (5.100)

Add (5.99) and (5.100) and apply lim supε→0 to get

α lim
ε→0

(
∥
.
λε∥q−1

Lq(Q)−∥
.
λ∥q−1

Lq(Q)

)(
∥
.
λε∥Lq(Q)−∥

.
λ∥Lq(Q)

)
≤ lim sup

ε→0
α

∫
Q

(
|
.
λε|q−2

.
λε−|

.
λ|q−2

.
λ
)
·(
.
λε−

.
λ) dxdt

≤ lim sup
ε→0

(
G(0)−G(T )+Gε(0)−Gε(T )︸ ︷︷ ︸

(I)

+

∫ T

0
G′

t(t, y)+ [Gε]
′
t(t, yε)︸ ︷︷ ︸
(II)

+

∫
Ω
α |
.
λε|q−2

.
λε(λ

′
j−
.
λ)︸ ︷︷ ︸

(III)

+δ∗S(λ
′
j)−δ∗S(

.
λ) dx+Pκ(λε,∇yε)(λ′j)︸ ︷︷ ︸

(IV)

+Q′
κ(λ−L •ν)

.
λε︸ ︷︷ ︸

(V)

+(Θ(wε)−θtr)(λ′j−
.
λε)+(Θ(w)−θtr)(

.
λε−

.
λ)︸ ︷︷ ︸

(VI)

dx dt

)

≤ C∥λ′j−
.
λ∥Lq(Q)+

∫
Q
δ∗S(λ

′
j)−δ∗S(

.
λ)+(Θ(w)−θtr)(λ′j−

.
λ) dx dt

+

∫ T

0

(∫
Ω
Q′

κ(λ−L •ν)(λ′j+
.
λ) dx+2G′

t(t, y)

)
dt− 2G(T ) + 2G(0). (5.101)

We used in (5.101) that Term (I) converges to G(T )+G(0) by Step 2, cf. (5.96) whereas
Term (II) is, owing to Step 1, bounded from above by G′

t(t, y). Further we exploited

for Term (III) that
.
λε is bounded in Lq(Q;RM+1). The limsup of Term (IV) is, by

Step 1, bounded from above by
∫
ΩQ′

κ(λ−L •ν)λ′j dx; for Term (V) we used only the

weak convergence of
.
λε in Lq(Q;RM+1). For Term (VI) we again exploited the weak

convergence of
.
λε in Lq(Q;RM+1) and the fact that Θ(wε) → Θ(w) strongly in Lq′(Q)

(cf. Step 1 ). Letting now j → ∞ leads to
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α lim
ε→0

(
∥
.
λε∥q−1

Lq(Q)−∥
.
λ∥q−1

Lq(Q)

)(
∥
.
λε∥Lq(Q)−∥

.
λ∥Lq(Q)

)
≤ lim

j→∞

(
C∥λ′j−

.
λ∥LQ(Q)+

∫
Q
δ∗S(λ

′
j)−δ∗S(

.
λ)+(Θ(w)−θtr)(λ′j−

.
λ) dxdt

+

∫ T

0

(∫
Ω
Q′

κ(λ−L •ν)(λ′j+
.
λ) dx+2G′

t(t, y)

)
dt−2G(T )+2G(0)

)
≤ 2

(∫ T

0

(∫
Ω
Q′

κ(λ−L •ν)
.
λdx+G′

t(t, y)

)
dt−G(T )+G(0)

)
≤ 0,

by (5.97). Hence, we obtained ∥
.
λε∥Lq(Q) → ∥

.
λ∥Lq(Q), and from (5.86) by the uniform

convexity of the norm of Lq(Q), we obtain
.
λε →

.
λ strongly, i.e. (5.82).

Finally, notice that plugging (5.97) into (5.92) indeed gives (5.17b)

Step 4: Limiting the enthalpy equation
In order to pass to the limit ε → 0 in the enthalpy equation (5.34), we first show that
ε
∫
Q̄ ζHε( dxdt) converges to 0; recall that Hε is the measure defined by prescribing its

values on every closed set A = [t1, t2]×B, where B ⊂ Ω is a Borel set as

Hε(A) = Var|·|(∇yε;B × [t1, t2])

i.e. we just need to show that limε→0 εVar|·|(∇yε; Ω×[0, T ]) = 0 since this implies
ε
∫
Q̄ ζHε( dxdt) → 0.

To this end, we exploit the mechanical energy equality (5.31) and have that

lim sup
ε→0

εVar|·|(∇yε; Ω×[0, T ]) ≤ lim sup
ε→0

(
−Gε(T )+Gε(0)

+

∫ T

0
⟨[Gε]

′
λ(yε(t), λε(t)),

.
λε⟩+[Gε]

′
t(t, yε(t)) dt

)
. (5.102)

To pass to the limit on the right-hand side, we rewrite ⟨[Gε]
′
λ(yε(t), λε(t)),

.
λε⟩ =

⟨[Gε]
′
λ(yε(t), λε(t)),

.
λ⟩ + ⟨[Gε]

′
λ(yε(t), λε(t)),

.
λε−

.
λ⟩; note that for the first term we get

by Step 1 lim supε→0

∫ T
0 ⟨[Gε]

′
λ(yε(t), λε(t)),

.
λ⟩dt ≤

∫ T
0 ⟨[G]′λ(y(t), λ(t)),

.
λ⟩dt while the

second term converges to 0 in L1([0, T ]) owing to Step 3. Using once again the procedure
of Step 1 for the term [Gε]

′
t(t, yε(t)) and exploiting also (5.96) we arrive at

lim sup
ε→0

εVar|·|(∇yε;Ω×[0, T ]) ≤ G(0)+

∫ T

0
⟨[G]′λ(ν(t), λ(t)),

.
λ⟩+[G]′t(t, y(t)) dt−G(T ) ≤ 0,

where the last inequality is due to (5.97). The passage in all other terms follows Step 7
in the proof Proposition 5.9.

5.5 Proof Theorem 5.6 via time-discretization

Although we have already proved Theorem 5.6 in the last section, here we present
a different proof based on time-discretization. This is essential since such a type of
proof provides instructions how to construct numerical schemes in order to guarantee
convergence of discrete solutions to continuous ones.

When proving that time-discrete solution converge to (some) weak solutions of
(5.17), we combine the arguments from the proof Proposition 5.9 and Theorem 5.12; in
particular we exploit the ideas of Proposition 5.9 for a-priori estimates and some parts of
the convergence argument, the procedure from the proof Theorem 5.12 is, on the other

hand, useful to select subsequences in such a manner that
∫ T
0

∫
Ω⟨Q

′
κ(λ−L •ν), v−

.
λ⟩ dxdt

is meaningful.
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5.5.1 Discretization by Rothe’s method

Let us start by introducing a uniform partition 0 = t0 < t1 < t2 . . . tN = T with
(ti − ti−1) = τ for i = 1 . . . N of the time-interval [0, T ]. Then, we discretize (5.17) by
the backwards Euler method.

Hence, we call the quadruple (ykτ , ν
k
τ , λ

k
τ , w

k
τ ) ∈W 1,p

ΓD
(Ω;Rd)× G

p

ΓD
(Ω;Rd×d)×

L2q(Ω;RM+1)×W 1,2(Ω) the discrete weak solution of (5.17) time-level k, k = 1 . . . T/τ ,
if it satisfies:
1.The minimization problem for λ with given λk−1

τ , wk−1
τ , yk−1

τ and νk−1
τ :

Minimize G(kτ, yk−1
τ , νk−1

τ , λ,Θ(wk−1
τ )) + τ

∫
Ω
|λ|2q + ρq

(λ−λk−1
τ

τ

)
dx

subject to λ ∈ L2q(Ω;RM+1),

 (5.103a)

with G from (5.6).
2.The minimization problem for (y, ν) with given λkτ :

Minimize G(kτ, y, ν, λkτ )

subject to (y, ν) ∈W 1,p(Ω;Rd)× G p
ΓD

(Ω;Rd×d)

such that ∇y = id •ν a.e. on Ω.

 (5.103b)

with G the mechanical part of G defined in (5.93),

3.The enthalpy equation: For all φ ∈W 1,2(Ω)∫
Ω

wk
τ−wk−1

τ

τ
φ+K(λkτ , w

k
τ )∇wk

τ ·∇φ dx+

∫
Γ
bkτΘ(wk

τ )φ dS =

∫
Γ
bkτθ

k
ext,τφ dS

+

∫
Ω
ϱ
(λkτ−λk−1

τ

τ

)
φ+Θ(wk

τ )⃗a·
λk−λk−1

τ
φ dx. (5.103c)

4.For k = 0 the initial conditions in the following sense

ν0τ = ν0, λ0τ = λ0,τ , w0
τ = w0,τ on Ω. (5.103d)

Where, in (5.103d), we denoted by λ0,τ ∈ L2q(Ω;RM+1) and w0,τ ∈ L2(Ω), respec-
tively, suitable approximation of the original initial conditions λ0 ∈ Lq(Ω;RM+1) and
w0 ∈ L1(Ω) defined analogously to (5.41) and (5.42).

Again, as in (5.40a), we have added the regularization term τ |λ|2q to minimization
problem (5.103a) to assure enough integrability of the right-hand side of the discrete
enthalpy equation 5.103c to prove existence of solutions to it. Again, this regularization
term converges to 0 as τ → 0.

Remark 5.13 (On the choice of altering minimization in (5.103)). When comparing
(5.103) to (5.40) on can observe that, while in (5.40) we obtain the discrete vector of
volume fraction and the discrete microstructure from one minimization principle, in
(5.103) we first obtain λkτ using νk−1

τ in (5.103a) and only subsequently νkτ through
(5.103b).

The definition (5.103) is indeed carefully devised in order to assure that in the

discrete flow-rule (5.111) (below) the term Q′
κ(λ̄τ−L •ντ )·(vτ −

.
λτ ) will be present

instead of the term Q′
κ(λ̄τ−L • ν̄τ )·(vτ −

.
λτ ) which we would get from a combined

minimization principle. This will allow us to reformulate the discrete flow-rule (5.111)
with the help of the discrete mechanic energy inequality (5.112), which is will be crucial
step in the proof Theorem 5.15 below; recall that a similar reformulation was also used
in the proof Theorem 5.12.
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5.5.2 Existence of discrete solutions, a-priori estimates

Lemma 5.14. Let (A1)-(A7) hold and let also w0
τ ≥ 0. Then there exists a discrete

weak solution of (5.17a) in the sense of (5.103)such that wk
τ ≥ 0 for all k = 1 . . . T/τ .

Moreover, the piecewise constant/affine interpolants of these discrete weak solutions
defined as [

ȳτ , ν̄τ , λ̄τ , w̄τ

]
(t) =

(
ykτ , ν

k
τ , λ

k
τ , w

k
τ

)
,[

λτ , wτ

]
(t) =

t− (k−1)τ

τ

(
λkτ , w

k
τ

)
+
kτ − t

τ

(
λk−1
τ , wk−1

τ

)
,

for (k−1)τ < t ≤ kτ and k = 1, ..., T/τ , satisfy the following bounds:

sup
t∈[0,T ]

∫
Ω
|·|p • ν̄τ dx ≤ C, (5.104)∥∥.λτ∥∥Lq(Q;RM+1)

≤ C, (5.105)∥∥λ̄τ∥∥L∞([0,T ];L2q(Ω;RM+1))
≤ Cτ−1/2q, (5.106)∥∥w̄τ

∥∥
L∞([0,T ];L1(Ω))

≤ C, (5.107)∥∥∇w̄τ

∥∥
Lr(Q;Rd)

≤ Cr with any 1 ≤ r <
d+2

d+1
, (5.108)∥∥ .wτ

∥∥
M([0,T ];W 1,∞(Ω)∗)

≤ C. (5.109)

Let us point out, that the generic constant C in (5.104)-(5.109) does not depend
on τ . Also, within the proof, we shall use the notion of “retarded” enthalpy and mi-
crostructure piecewise constant interpolant wτ , ντ defined by

[wτ (t), ντ (t)] := [wk−1
τ , νk−1

τ ] for (k−1)τ < t ≤ kτ , k = 1, ..., T/τ . (5.110)

Proof. Similarly as (5.40), we devised also (5.103) in such a way that (5.103a) is decou-
pled from (5.103b) as well as (5.103c). Therefore, we first show existence of solutions to
(5.103a). To do so, we proceed by the direct method (cf. e.g. (Dacorogna, 1989) or the
beginning of Section 2.2) relying on convexity of G in λ and convexity of the dissipation
potential as well as in the regularization term τ∥λ|2q.

For (5.103b) we proceed by the direct method, too. Indeed, any minimizing sequence
{[ykτ ]j , [νkτ ]j}j∈N of the cost functional in (5.103b) satisfies that

∫
Ω |·|p • [νkτ ]j dx ≤ C

and hence converges [νkτ ]j weakly* in L∞
w (Ω;M(Rd×d)) to some νkτ and (having the

constrain ∇[ykτ ]j = id • [νkτ ]j a.e. on Ω in mind) [ykτ ]j converges to some ykτ weakly

in W 1,p
ΓD

(Ω;RM+1); the limits satisfy that ∇ykτ = id •νkτ a.e. on Ω. Moreover, again

thanks to the bound
∫
Ω |·|p • [νkτ ]j dx ≤ C νkτ is also a gradient Young measure owing to

Theorem 2.14. Exploiting the weak lower semi-continuity of our cost functional (proved
similarly as Lemma 2.11) gives that νkτ is indeed the minimizer of (5.103b).

The existence of solutions to (5.103c) and the fact that wk
τ ≥ 0 is proved analogously

to Step 1 in the proof Proposition 5.9.
As to the a-priori estimates (5.104)-(5.109), notice that the sub-differential of the

cost function in (5.103a) with respect to λ has to be zero at λkτ at each time level l.
Summing these conditions up to some k and denoting tk = kτ leads to∫ tk

0

∫
Ω
ρq(
.
λτ ) dxdt ≤

∫ tk

0

∫
Ω

(
Q′

κ(λ̄τ−L •ντ )·(vτ−
.
λτ )

+
(
Θ(wτ )− θtr

)
a⃗·(vτ−

.
λτ ) + 2qτ |λ̄τ |2q−2λ̄τ (vτ−

.
λτ ) + ρq(vτ )

)
dxdt, (5.111)
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where vτ is an arbitrary test function such that vτ (·, x) is piecewise constant on the
intervals (tj−1, tj ] and vτ (tj , ·) ∈ L2q(Ω;RM+1) for every j.

Further, we deduce a mechanic energy inequality as in (5.63); i.e. we test (5.103b)
by ντ as in (5.62)

G(tk, ν̄τ (tk), λ̄τ (tk)) ≤ G(tk, ντ (tk), λ̄τ (tk)),

rewrite the right-hand side using convexity of G in λ

G(tk,ντ (tk), λ̄τ (tk)) ≤ G(tk−1, ντ (tk), λ̄τ (tk−1))

+

∫ tk

tk−1

G′
t(t, ντ (tk))+

∫
Ω
Q′

κ(λ̄τ (t)−L •ντ (tk))·
.
λτ (t) dxdt

and sum from 1 . . . k to obtain

G(tk,ν̄τ (tk), λ̄τ (tk)) ≤ G(0, ν̄τ (0), λ̄τ (0))

+

∫ tk

0
G′

t(t, ντ (tk))+

∫
Ω
Q′

κ(λ̄τ (t)−L •ντ (tk))·
.
λτ (t) dxdt. (5.112)

Finally, summing the discrete version of the enthalpy equation (5.103c) from 1 to k
leads to∫ tk

0

(∫
Ω

.
wτφ+K(λ̄τ , w̄τ )∇w̄τ ·∇φ dx+

∫
Γ
b̄τΘ(w̄τ )φdS

)
dt

=

∫ tk

0

(∫
Ω
(ϱq(

.
λτ ) + Θ(w̄τ )⃗a·

.
λτ )φ dx+

∫
Γ
b̄τ θ̄ext,τφ dS

)
dt, (5.113)

where φ is an arbitrary test function, such that φ(·, x) is piecewise constant on the
intervals (tj−1, tj ] and φ(tj , ·) ∈W 1,2(Ω) for every j.

In order to obtain (5.104)-(5.109) from (5.111), (5.112) and (5.113), we mimic the
proof Lemma 5.10, i.e. we combine (5.112) with the result of the test of (5.111) by 0
and the result of the test of (5.113) by 1 to obtain (5.104)-(5.107) as in Step 1 and
Step 2 of the proof Lemma 5.10. Subsequently, we test (5.113) by 1− 1

(1+w̄τ )a
to obtain

(5.108); while (5.109) is got from (5.113) itself.

5.5.3 Convergence towards the continuous case

Theorem 5.15 (Convergence for τ → 0). Let the assumptions (A1)-(A7) hold. Then
there exist (y, ν, λ, w) ∈ B([0, T ];W 1,p

ΓD
(Ω;Rd))× (G p

ΓD
(Ω;Rd×d))[0,T ]×

W 1,q([0, T ];Lq(Ω;RM+1))× Lr([0, T ];W 1,r(Ω)) and a sequence τ → 0 such that

λ̄τ
∗
⇀ λ in L∞([0, T ];Lq(Ω,RM+1)) (5.114)

λ̄τ (t)⇀ λ(t) ∀t ∈ [0, T ] in Lq(Ω;RM+1), (5.115)
.
λτ →

.
λ in Lq(Q;RM+1), (5.116)

w̄τ ⇀ w Lr([0, T ];W 1,r(Ω)), r < d+2
d+1 and w̄τ → w in L1(Q), (5.117)

with (λτ , wτ ) the piecewise affine interpolants and (λ̄τ , w̄τ ) the piecewise constant in-
terpolants defined in Lemma 5.14.
Moreover, for each t ∈ [0, T ] there exists a subsequence τk(t) such that

ȳτk(t)(t)
∗
⇀ y(t) in W 1,p(Ω;Rd) ν̄τk(t)(t)

∗
⇀ ν(t) in L∞

w (Ω;M(Rd×d)), (5.118)

such that ∇y(x) = id •νx for a.a. x ∈ Ω; note that again (ȳτ , ν̄τ ) were defined in Lemma
5.14.

At least one cluster point (y, ν, λ, w) obtained in this way is then a weak solution of
(5.17) in accord with Definition 5.4.
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Proof. As already mentioned, the proof combines arguments from Steps 4-7 from the
proof Proposition 5.14 and of Theorem 5.12. For clarity, let us divide it into several
steps:

Step 1: Selection of subsequences, reformulating and limiting the flow-rule
Exploiting the a-priori estimates (5.105)-(5.109) we choose, analogously to Step 3 of the
proof Proposition 5.9, a subsequence of τ ’s (not relabeled) such that (5.114), (5.115),
(5.117) and

.
λτ

∗
⇀
.
λ in Lq(Q;RM+1), (5.119)

hold. Also, as in Step 1 of Theorem 5.12, Θ(w̄τ ) → Θ(w) in Lq′(Q) and, due to (5.109),
Θ(wτ ) → Θ(w) in Lq′(Q), too.

Following Step 1 of the proof Theorem 5.12, we reformulate (5.111) using (5.112) in-
to a yet weaker form to (partially) cope with the problem of measurability of

∫
ΩQ′

κ(λ(t)−
L •ν(t))·(v(t)−

.
λ) dx.

To do so, let us first abbreviate

Gτ (T ) := G(T, ȳτ (T ), (T )ν̄τ (T ), λ̄τ (T )),

Gτ (0) := G(0, ȳτ (0), ν̄τ (0), λ̄τ (0));

with this notation, plugging (5.112) into (5.111)27 yields the following reformulated flow
rule:∫
Ω
|λ̄τ (T )|2q dx+

∫
Q
ρq(
.
λτ ) dxdt ≤

∫
Ω
|λ0,τ |2q dx+

∫
Q
Q′

κ(λ̄τ−L •ντ )·vτ dxdt+
∫ T

0
G′

t(t, ντ ) dt

+

∫
Q

(
ρq(vτ )+(Θ(wτ )−θtr)⃗a·(vτ−

.
λτ )+2qτ |λτ |2q−2λ̄τ ·vτ

)
dxdt+Gτ (0)−Gτ (T ).

(5.120)

we further, relying on the linearity of Q′
κ (see (5.2)), rewrite (5.120) as∫

Ω
|λ̄τ (T )|2q dx+

∫
Q
ρq(
.
λτ ) dxdt ≤

∫
Ω
|λ0,τ |2q dx+

∫
Q
Q′

κ(λ̄τ−L • ν̄τ )·vτ dx dt+
∫ T

0
G′

t(t, ν̄τ ) dt

+

∫
Q

(
ρq(vτ )+(Θ(wτ )−θtr)⃗a·(vτ−

.
λτ )+2qτ |λτ |2q−2λ̄τ ·vτ

)
dxdt∫

Q
Q′

κ(L • ν̄τ−L •ντ )·vτ+
∫ T

0
G′

t(t, ντ )−G′
t(t, ν̄τ ) dtGτ (0)−Gτ (T ). (5.121)

just to make the limit passage below easier.

Let us now pass to the limit τ → 0 in (5.121). As in Step 1 of the proof Theorem 5.12,
we choose a test function v ∈ V, where V is a countable dense subset of Lq(Q;RM+1),
considered fixed at the moment. Further consider its piecewise constant approximations
vτ such that vτ → v strongly on Lq(Q;Rd+1) such that ∥vτ∥L2q(Q;Rd+1) ≤ Cτ−1/(2q+1)

and moreover vτ (t) → v(t) strongly in Lq(Ω;Rd+1) for a.a. t ∈ [0, T ].

Using weak lower semi-continuity properties (see also Step 4 in the proof Proposition

5.9), we get that
∫
Q ρq(

.
λ) dxdt ≤ lim infτ→0

∫
Ω τ |λ̄τ (T )|

2q dx+
∫
Q ρq(

.
λτ ) dx dt.

On the right-hand side of (5.121), we use, as in Step 4 in the proof Proposition 5.9

that Θ(wτ ) → Θ(w) in Lq′(Q) to pass to the limit in
∫
Q(Θ(wτ )−θtr)⃗a·(vτ−

.
λτ ) dxdt.

Moreover, due to the controlled blow-up of λ0,τ the term τ
∫
Ω |λ0,τ |2q dx converges to

0. Also the term 2qτ |λ̄τ |2q−2λ̄τvτ can be pushed to zero thanks to (5.106) and the

27We use both integrated to T ; i.e. k = N in (5.112) and (5.111).
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blow-up for vτ specified above that allow us to estimate
∫
Q 2qτ |λ̄τ |2q−2λ̄τvτ | dxdt ≤

2qτ∥λ̄τ∥2q−1
L2q(Q;Rd+1)

∥vτ∥L2q(Q;Rd+1) ≤ Cτ
1

4q2+2q . Eventually, since Gτ (0) and Gτ (T ) are

bounded sequences of numbers, we assume that limτ→0Gτ (0) and limτ→0Gτ (T ) exist
– if they did not, we could always find a sub-sequence of τ such that they existed.

Next let us show that the term
∫ T
0 κ(L • ν̄τ−L •ντ )·(vτ ⟩⟩) converges to 0 if τ →

0. To this point it suffices to prove that (L • ν̄τ−L •ντ ) converges weakly to 0 in

L2([0, T ];L2(Ω;RM+1)). To see this, take the test functions ξ[kτ,lτ ]g(x), k, l > 0 (ξA
being here the characteristic function of the set A, i.e. ξ is 1 in A and 0 elsewhere,
and g ∈ L2(Ω;RM+1) arbitrary) which are dense in L2(Q;RM+1) and compute (by
substitution)∣∣∣∣ ∫

Q
(L • ν̄τ − L •ντ )ξ[kτ,lτ ]g dx dt

∣∣∣∣
=

∣∣∣∣ ∫ lτ

kτ

∫
Ω
(L • ν̄τ (t))g dxdt−

∫ (l−1)τ

(k−1)τ

∫
Ω
(L • ν̄τ (t))g dxdt

∣∣∣∣
=

∣∣∣∣ ∫ lτ

kτ

∫
Ω
(L • ν̄τ (t))g dxdt−

∫ lτ

kτ
(

∫
Ω
L • ν̄τ (t))g dx dt

−
∫ kτ

(k−1)τ

∫
Ω
(L • ν̄τ (t))g dxdt+

∫ lτ

(l−1)τ

∫
Ω
(L • ν̄τ (t))g dxdt

∣∣∣∣
= τ

∣∣∣ ∫
Ω
(L • ν̄τ (kτ) + L • ν̄τ (lτ))g dx

∣∣∣ ≤ τ |Ω| → 0. (5.122)

Similarly, the term
∫ T
0 G′

t(t, ντ (t)) dt−G′
t(t, ν̄τ (t)) dt =

∫ T
0

( ∫
Ω f(yτ−ȳτ ) dx+

∫
ΓN

(g(y
τ
−

ȳτ )) dS
)
dt converges to 0. Indeed, one only needs to show that (y

τ
− ȳτ ) → 0 weakly

in Lp([0, T ];W 1,p(Ω;Rd)). However, thanks to the zero Dirichlet boundary condition
on ΓD, it is enough to show that (∇y

τ
−∇ȳτ ) = (id •ντ − id • ν̄τ ) converges weakly to

0 in Lp(Q;Rd×d); for this we proceed as in (5.122) and realize that
∣∣ ∫

Ω(id • ν̄τ (kτ) +

id • ν̄τ (lτ))g dx
∣∣ ≤ C (where C is independent of k, l and τ) thanks to (5.104).

Therefore, similarly as in Step 1 of the proof Theorem 5.12, the most problematic
terms on the right-hand-side of the flow rule are Q′

κ(λ−L • ν̄τ )·vτ and [G]′t(t, ν̄τ (t)); we

circumpass the problems by exploiting the same procedure as in as in Step 1 of the
proof Theorem 5.12 inspired by (Dal Maso et al., 2005; Francfort and Mielke, 2006).
Hence, we define L̄v(t) dependent on the choice of the test function v as well as the
function F̄(t) through

L̄v(t) = lim sup
τ→0

∫
Ω
Q′

κ(λ̄τ (t)−L • ν̄τ (t))·v(t) dx, F̄(t) = lim sup
τ→0

[G]′t(t, ν̄τ (t)). (5.123)

Thanks to Fatou’s lemma28, L̄v(t), F̄(t) are measurable and

lim sup
τ→0

∫ T

0

∫
Ω
Q′

κ(λ̄τ−L • ν̄τ )·vτ dx dt

≤ lim sup
τ→0

∫
Q
Q′

κ(λ̄τ−L • ν̄τ )·v dx+ lim sup
τ→0

∫
Q
Q′

κ(λ̄τ−L • ν̄τ )·(vτ−v) ≤
∫ T

0
L̄v dt,

lim sup
τ→0

∫ T

0
[G]′t(t, ν̄τ (t)) ≤

∫ T

0
F̄ dt,

where we used thatQ′
κ(λ̄τ−L • ν̄τ ) is uniformly bounded in L∞([0, T ], L2(Ω,RM+1)) (cf.

(5.104), (5.105)) and vτ → v strongly in Lq(Q;RM+1). Hence we may apply lim infτ→0

28More information on the applicability of Fatou’s lemma can be found in the text below (5.88).
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to both sides of (5.121) and use the for the right-hand-side the “lim inf ≤ lim sup”
inequality to get∫ T

0

∫
Ω
ρq(
.
λ) ≤

∫ T

0
L̄v+F̄ dt+

∫ T

0

∫
Ω
(Θ(w)−θtr)⃗a·(v−

.
λ)+δ∗S(v)+

α

q
|v|q dxdt

+ lim
τ→0

Gτ (0)− lim
τ→0

Gτ (T ), (5.124)

Fix some time t ∈ [0, T ]. Then for any v ∈ V we may find a time-dependent sub-
sequence of τ ’s denoted τk(t,v) , such that29

L̄v(t) = lim
τk(t,v)→0

∫
Ω
Q′

κ(λ̄τk(t,v)
−L • ν̄τk(t,v)

)· dx (5.125)

F(t) = lim
τk(t,v)→0

[G]′t(t, ν̄τk(t,v)
(t)) = lim

τk(t,v)→0

∫
Ω

.
f(t)ȳτk(t,v) (t)

dx+

∫
ΓN

.
g(t)ȳτk(t,v) (t)

dS.

(5.126)

By diagonal selection find a further subsequence labeled τk(t), such that (5.125) - (5.126)
hold even for all v ∈ V.

Using the second estimate in (5.104) we may again select a subsequence of τk(t)’s

(not relabeled) such that ντk(t) converges weakly* to ν(t) in L∞
w (Ω;M(Rd×d)), note

that (5.104) also guarantees that the limit ν(t) ∈ G p
ΓD

(Ω;Rd×d) and, combined with

(A3), that L • ν̄τk(t)(t) → L •ν(t) weakly in L2(Ω;RM+1).

Therefore (5.125) and (5.126) yield

L̄v(t) =

∫
Ω
Q′

κ(λ(t)−L •ν(t))·v(t),

F(t) =

∫
Ω
f(t)·y(t) dx+

∫
ΓN

g(t)·y(t) dS,

for all v ∈ V.
This allows us to rewrite (5.124) for all v ∈ V as∫ T

0

∫
Ω
ρq(
.
λ) dxdt ≤

∫ T

0

∫
Ω
Q′

κ(λ−L •ν)·v+
∫
Ω
f ·y dx+

∫
ΓN

g·y dS dt

+

∫
Q
(Θ(w)−θtr)⃗a·(v−

.
λ)+ρq(v)+ lim

τ→0
Gτ (0)− lim

τ→0
Gτ (T ) dxdt. (5.127)

This can be generalized to all ṽ ∈ Lq(Q;RM+1) by a density argument as in Step 1 of
the proof Theorem 5.12.

Step 2: Limiting the minimization principle, energy inequality, back to original flow-
rule
Let t ∈ [0, T ] be still fixed. Let us, moreover, denote tτk(t) = l·τk(t), where l = mins∈N{t ≤
sT/τk(t)}. Then due to the coercivity of the stored energy (cf. (A1)) and a lower semi-
continuity property analogousto Lemma 2.11 we may write30

G(t, y(t), ν(t), λ(t)) ≤ lim inf
τk(t)→0

G(tτk(t) , ȳτk(t)(t).ν̄τk(t)(t), λ̄τk(t)(t))

≤ lim inf
τk(t)→0

G(tτk(t) , ỹ, ν̃, λ̄τk(t)(t)) = G(t, ỹ, ν̃, λ(t)). (5.128)

for any pair (ỹ, ν̃) ∈W 1,p
ΓD

(Ω;Rd)×G p
ΓD

(Ω;Rd×d) such that ∇ỹ = id •ν a.e. on Ω, which

gives the desired minimization principle (5.22).

29This is analogousto the procedure of (5.90)-(5.91).
30For more details, we refer also to Step 2 of the proof Theorem 5.12.
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Note that, we also get that G(t, ν(t), λ(t)) = limτk(t)→0G(t, ν̄τk(t)(t), λ̄τk(t)(t)) by this
procedure; in particular, this means that

G(0) ≡ G(0, ν(0), λ(0)) = limτ→0Gτ (0),
G(T ) ≡ G(T, ν(T ), λ(T )) = limτ→0Gτ (T ).

}
(5.129)

Note that, once we obtained (5.22), we also got (5.97) by Step 3 of the proof
Theorem 5.12, which, in turn, yields (5.23) from (5.127).

Step 3: Strong convergence of
.
λ and convergence in the enthalpy equation

To prove (5.116), we combine the arguments from Step 5 of the proof Proposition
(5.9) and Step 3 of the proof Theorem 5.12. Hence, we test the discrete flow rule (cf.

5.121, rewritten using convexity of |·|q) by
.
λS,τ,k with

.
λS,τ,k being a piecewise constant

approximation of the function
.
λk such that

.
λS,τ,k →

.
λk strongly in Lq(Q;RM+1) and

moreover ∥
.
λS,τ,k∥L2q(Q;RM+1) ≤ Cτ−1/(2q+1).

.
λk, on the other hand, is a function in V

such that
.
λk →

.
λ in Lq(Q;RM+1) when k → ∞.31; the outlined test gives

∫
Ω
|λ̄τ (T )|2q dx+

∫
Q
δ∗S(
.
λτ ) dxdt ≤ Gτ (0)−G(T )+

∫
Ω
|λ̄0,τ |2q dx+

∫
Q
δ∗S(
.
λS,τ,k) dxdt

+

∫
Q
α|
.
λτ |q−2

.
λτ ·(

.
λS,τ,k−

.
λτ )+(Θ(wτ )−θtr)⃗a·(

.
λS,τ,k−

.
λτ )+2qτ |λ̄τ |2q−2λ̄τ ·

.
λS,τ,k dxdt

+

∫
Q
Q′

κ(λ̄τ−L • ν̄τ )·
.
λS,τ,k+

∫ T

0
G′

t(t, ȳτ (t)) dt

+

∫
Q
Q′

κ(L • ν̄τ−L •ντ )·
.
λS,τ,k dxdt+

∫ T

0

(
G′

t(t, yτ (t))−G′
t(t, ȳτ (t))

)
dt (5.130)

Symmetrically test (5.127) (the reformulated limited flow-rule; here again rewritten
using the convexity of |·|q), with limits of the mechanic part of the Gibbs free energy

in the initial and final time identified by means of (5.129), by
.
λτ to get

∫
Q
δ∗S(
.
λ) dxdt ≤ G(0)−G(T )+

∫
Q
δ∗S(
.
λτ )+α|

.
λ|q−2

.
λ(
.
λτ−

.
λ) dxdt∫

Q
Q′

κ(λ−L • ν)·
.
λτ+(Θ(w)−θtr)⃗a·(

.
λτ−

.
λ) dxdt+

∫ T

0
G′

t(t, y) dt (5.131)

Add (5.130) and (5.131) and apply lim supτ→0 to get

31Note that we need to test the discrete flow-rule by a piecewise constant function and hence cannot

use directly
.
λ. However, we neither can use directly the approximation of

.
λ since we will need to exploit

(5.123) which holds only for functions in a countable dense subset of Lq(Ω;RM+1) in which
.
λ does not

need to lie. Hence we first approximate
.
λ by functions from this countable subset and subsequently

find piecewise constant approximations of these functions.
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α lim
τ→0

(
∥
.
λτ∥q−1

Lq(Q;RM+1)
− ∥

.
λ∥q−1

Lq(Q;RM+1)

)(
∥
.
λτ∥Lq(Q;RM+1) − ∥

.
λ∥Lq(Q;RM+1)

)
≤ lim

τ→0
α

∫
Q

(
|
.
λτ |q−2

.
λτ − |

.
λ|q−2

.
λ
)
·(
.
λτ −

.
λ) dxdt

≤ lim
k→∞

lim sup
τ→0

(
G(0)−G(T ) +Gτ (0)−Gτ (T )︸ ︷︷ ︸

(I)

+

∫ T

0
G′

t(t, ȳτ )︸ ︷︷ ︸
(II)

+G′
t(t, y) dt

+

∫
Q
α|
.
λτ |q−2

.
λτ (

.
λS,τ,k −

.
λ) + δ∗S(

.
λS,τ,k)− δ∗S(

.
λ)︸ ︷︷ ︸

(III)

dxdt

+

∫
Q
Q′

κ(λ̄τ−L • ν̄τ )·
.
λS,τ,k︸ ︷︷ ︸

(IV)

+Q′
κ(L • ν̄τ−L •ντ )·

.
λS,τ,k︸ ︷︷ ︸

(V)

+κ
⟨⟨
λ−L •ν,

.
λτ
⟩⟩︸ ︷︷ ︸

(VI)

dxdt

+

∫ T

0

∫
Ω
(Θ(wτ )−θtr)⃗a·(

.
λS,τ,k−

.
λτ )+(Θ(w)−θtr)⃗a·(

.
λτ−

.
λ)︸ ︷︷ ︸

(VII)

dx+(G′
t(t, τ )−G′

t(t, ȳτ ))︸ ︷︷ ︸
(VIII)

dt

)

≤ lim
k→∞

(
C∥
.
λk−

.
λ∥LQ(Q;RM+1)+

∫
Q
δ∗S(
.
λk)−δ∗S(

.
λ)+(Θ(w)−θtr)⃗a·(

.
λk−

.
λ) dxdt

+

∫
Q
Q′

κ(λ−L •ν)·(
.
λk+

.
λ)+

∫ T

0
2G′

t(t, ν) dt−2G(T )+2G(0)

)
≤2
(∫ T

0
Q′

κ(λ−L •ν)·
.
λ+G′

t(t, y) dt−G(T )+G(0)
)
≤ 0, (5.132)

i.e. (5.116) after exploiting the uniform convexity of Lq(Q;RM+1).32

Note that we usedm in (5.132), (5.129) for Term (I), the procedure from Step 1
for Term (II) and Term(IV), (5.122) and 5.119 for Term (V) and Term(VIII), and the
strong convergence of w̄τ (cf. Step 1 ) for all other terms.

The limit passage in the discrete enthalpy equation (5.103c) is done by the same
means as in Step 4 of the proof Theorem 5.12 – in fact, it is even easier here since we
do not have to cope with the dissipated heat due to pinning effects as when transiting
from the microscopic case.

32See also Step 5 of the proof Proposition 5.9 for details.
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Chapter 6

Refinements in the analysis of
thermally coupled model in the
convex case

After having analyzed, in Chapter 5, thermally coupled model for single crystalline
SMAs (5.17), let us illustrate in this chapter how the analysis can be simplified in
the convexcase and, also, to which extent it can be refined; note that the convex case
corresponds to the situation in which we would allow ν in (5.6) or (5.17a) to range
not only over the set of Lp-gradient Young measures but over the set of all Lp Young
measures.

While for mesoscopic models of SMAs in the large deformation setting the convex
setting leads to severe under-relaxation, for some special loading type of so-called anti-
plane shear (see e.g. (Roub́ıček, 2000) or (Rieger and Zimmer, 2005) where a similar
model has been analyzed in the 1-D case) or, in the very special case, of considering
fixed volume fraction and small strain setting it was be proved that the quasiconvex
envelope of the Helmholtz free energy is actually convex (Govindjee et al., 2002; Kohn,
1991) – in those situations the results from this chapter represent a correct relaxation.

Also, practically the same system as obtained in (6.1) below1 finds its application
when describing the ferro/paramagnetic transition in micromagnetism; this was actu-
ally done in (Benešová, Kruž́ık and Roub́ıček, 2012).

As announced, in this section, we illustrate that Theorem 5.15 can be slightly refined
in the convex case; cf. Remark 6.6. Moreover, in the convex case, we can pass to the
limit κ → ∞ in the penalized problem (albeit the obtain weak formulation is very
weak) – this presents a justification for the introduction of a penalty causing only a
small mismatch between λ and L • ν, i.e. the phase field and the vector of volume
fractions calculated from the microstructure, in Section 5.1.1.

6.1 Strong and weak formulation in the convex case

Since the convex case is understood to have rather an illustrative character within this
thesis, we make the simplifying assumption that the volume force f and the surface
force g in (5.6) are equal to 0. Then the relaxed Gibbs free energy GC reads as

GC(ν, λ, θ) =

∫
Ω
ψ̃0 •ν+Q′

κ(λ− L •ν)+ϕ0(θ)+(θ − θtr)⃗a·λ dx;

the dissipation potential from (5.9) stays unchanged.

1The system (6.1) is analogous to (5.17) only the convexity has been exploited.
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Let us therefore define the convex equivalent of (5.17) in strong form as2

minimize GC(ν, λκ, θκ)
subject to ν ∈Y p(Ω;Rd×d) with (λκ, θκ) fixed,

}
for t∈ [0, T ], (6.1a)

∂δ∗S(
.
λκ)+α|

.
λκ|q−2

.
λκ+Θ(wκ )⃗a ∋ θtra⃗−κQ∗Q(λκ−L •νκ) in Q, (6.1b)

.
wκ−div(K(λκ, wκ)∇wκ) = δ∗S(

.
λκ)+α|

.
λκ|q+Θ(wκ )⃗a·

.
λκ in Q, (6.1c)(

K(λκ, wκ)∇wκ
)
·n+bΘ(wκ) = bθext on Σ; (6.1d)

where, as already announced, the minimization in (6.1a) is performed over the convex
set Yp(Ω;Rd×d). Note that, within this chapter, we shall use the index “κ” for solutions
of thermally coupled system featuring the penalization term Qκ(·) to emphasize their
dependence of the choice of κ is this term. The motivation behind this is that, contrary
to e.g. Chapter 5, we do not consider κ fixed throughout the chapter but shall pass
here with κ → ∞ in Section 6.3.

Remark 6.1. Note that, since we neglected volume and surface forces, the unrelaxed
Gibbs free energy would depend only on the matrix F such that F = ∇y (and not
directly on y). The idea behind convex relaxation is then to “forget about the constraint
that F = ∇y, i.e. that it is the generalized gradient to some function in Lp(Ω;Rd)”,
and rather consider F as an arbitrary function in Lp(Ω;Rd×d); which of course is not
always appropriate as highlighted above.

Naturally, then, Dirichlet boundary conditions cannot be imposed – even before we
could not impose Dirichlet boundary conditions on ν nor ∇y and “the original deforma-
tion y” is now forgotten, Therefore, the specimen can only be loaded (and consequently
deformed) by applying heat flux.

As already in the non-convex case, we augment the system (6.1) with initial condi-
tions 5.18

νκ(0, ·) = ν0, λκ(0, ·) = λ0, wκ(0, ·) = w0 = ĉv(θ0) on Ω; (6.2)

for simplification we assume the initial data to be independent of κ.
Analogously as in Definition 5.4, we define weak solutions to (6.1) (with fixed κ):

Definition 6.2. We shall call the triple (νκ, λκ, wκ) ∈ (Y p(Ω;Rd×d))[0,T ]

×W 1,q([0, T ];Lq(Ω;RM+1))× (L1([0, T ];W 1,1(Ω))∩W 1,1([0, T ];W 1,∞(Ω)∗)) a weak so-
lution of (6.1) with initial condition (6.2) if it satisfies
1.The minimization principle

GC(νκ, λκ(t), wκ(t)) ≤ GC(ν̃, λκ(t), wκ(t)), (6.3)

for any ν̃ ∈ Y p(Ω;Rd×d) and all t ∈ [0, T ].
2.The flow rule (5.23) with (ν, λ, w) replaced by (νκ, λκ, wκ).

3.The enthalpy equation∫
Q
K(λκ, wκ)∇w·∇ζ−wκ

.
ζ dx dt+

∫
Ω
wκ(T )ζ(T ) dx+

∫
Σ
bΘ(wκ)ζ dS dt =

∫
Ω
w0ζ(0) dx

+

∫
Σ
bθextζ dS dt+

∫
Q

(
δ∗S(
.
λκ)+α|

.
λκ|q+

(
Θ(wκ)−θtr

)
a⃗·
.
λκ

)
ζ dxdt, (6.4)

for any ζ ∈ C1(Q̄).3

4.The remaining initial conditions in (6.2): νκ(0, ·) = ν0 and λκ(0, ·) = λ0 in Ω.

2Here already the enthalpy transformation has been performed.
3Note that this definition of very weak solutions to (6.1c)-(6.1d) is slightly stronger than the one
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6.2 Existence analysis in the convex case

Since the convex system (6.1) is rather a simplification of the system in (5.17) it can be
expected that existence of solutions can be proved in the convex case, too; the following
theorem specifies this statement.

Theorem 6.3. 4 Let (A1), (A3)-(A7) hold, κ be fixed. Then at least one weak solution
(νκ, λκ, wκ) to the problem (6.1) in accord with Definition 6.2 does exist. Moreover,
some of these solutions satisfy also

sup
t∈[0,T ]

∫
Ω|·|

p •νκ dx ≤ C, (6.5)

sup
t∈[0,T ]

Qκ(λκ − L •νκ) ≤ C (6.6)∥∥.λκ∥∥Lq(Q;RM+1)
≤ C, (6.7)∥∥wκ

∥∥
L∞([0,T ];L1(Ω))

≤ C, (6.8)∥∥∇wκ
∥∥
Lr(Q;Rd)

≤ Cr with any 1 ≤ r <
d+2

d+1
, (6.9)∥∥ .wκ

∥∥
M([0,T ];W 1,∞(Ω)∗)

≤ C. (6.10)

for some constant C independent of κ.

To prove Theorem 6.3, we follow the procedure of the proof Proposition 5.9 and
discretize the system (6.1) by the backward Euler method, with (6.3) and (5.23)
expressed by one time-incremental minimization problem (6.11)5; we call the triple
(νkκ,τ , λ

k
κ,τ , w

k
κ,τ ) ∈ Yp(Ω;Rd×d) × L2q(Ω;RM+1) ×W 1,2(Ω), the discrete weak solution

of (6.1) at time-level k, k = 1 . . . T/τ , if it solves:

Minimize GC(kτ, ν, λ,Θ(wk−1
κ,τ )) + τ

∫
Ω
|λ|2q + ρq

(λ−λk−1
κ,τ
τ

)
dx

subject to (ν, λ) ∈ Y p(Ω;Rd×d)× L2q(Ω;Rd+1).

 (6.11)

and∫
Ω

wk
κ,τ−wk−1

κ,τ
τ

φ+K(λkκ,τ , w
k
κ,τ )∇wk

κ,τ∇φdx+

∫
Γ
bkτΘ(wk

κ,τ )φdS

=

∫
Ω
ϱq

(λkκ,τ−λk−1
κ,τ

τ

)
φ dx+

∫
Ω
Θ(wk

κ,τ )·
(λkκ,τ−λk−1

κ,τ
τ

)
φ dx+

∫
Γ
θextφdS (6.12)

for all φ ∈W 1,2(Ω;R). The initial conditions are satisfied in the sense that

ν0κ,τ = ν0 λ0κ,τ = λ0,τ w0
κ,τ = w0,τ for a.a. x ∈ Ω, (6.13)

where λ0,τ , w0,τ are suitable approximations of the original initial data in (6.2); they
are constructed the same way as in (5.41) and (5.42).

given in (5.24); in particular, the term
∫
Ω
wκ(T )ζ(T ) dx is included and ζ(T ) needs not be 0. We can

afford to include this term, since we will be able to prove that there exist weak solutions to (6.1) such
that w ∈W 1,1([0, T ];W 1,∞(Ω)∗). In fact, we could have included this term in (5.24) as well, but it has
been omitted for simplicity. In the convex case, on the other hand, it will be handy to keep this term
as it will help us to establish the energy equality in Remark 6.7 that, in turn, will be used in Section
6.3.

4The proof Theorem 6.3 was essential given in (Benešová, Kruž́ık and Roub́ıček, 2012), we follow
this work here. However, we pay more attention to the a-priori estimates to obtain (6.5)-(6.10), which
was not done in (Benešová, Kruž́ık and Roub́ıček, 2012).

5Due to convexity we can indeed use one joint minimization problem like in the proof Proposition
5.9 and do not need two minimization problems like in the proof exposed in Section 5.5.
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Proposition 6.4. Let (A1), (A3)-(A7) hold, κ be fixed and let also w0
κ,τ ≥ 0. Then

there exists a discrete weak solution of (6.1) satisfying (6.11)-(6.12) such that wk
κ,τ ≥ 0

for all k = 1 . . . T/τ .

Moreover, the piecewise constant/affine interpolants of these discrete weak solutions
defined as[

ν̄κ,τ , λ̄κ,τ , w̄κ,τ
]
(t) =

(
νkκ,τ , λ

k
κ,τ , w

k
κ,τ
)
,[

λκ,τ , wκ,τ
]
(t) =

t− (k−1)τ

τ

(
λkκ,τ , w

k
κ,τ
)
+
kτ − t

τ

(
λk−1
κ,τ , w

k−1
κ,τ
)
,

for (k−1)τ < t ≤ kτ and k = 1, ..., T/τ , satisfy the following bounds:

sup
t∈[0,T ]

∫
Ω|·|

p • ν̄κ,τ dx ≤ C, (6.14)

sup
t∈[0,T ]

Qκ(λ̄κ,τ − L • ν̄κ,τ ) ≤ C (6.15)∥∥.λκ,τ∥∥Lq(Q;RM+1)
≤ C, (6.16)∥∥λ̄κ,τ∥∥L∞([0,T ];L2q(Ω;RM+1))

≤ Cτ−1/2q, (6.17)∥∥w̄κ,τ
∥∥
L∞([0,T ];L1(Ω))

≤ C, (6.18)∥∥∇w̄κ,τ
∥∥
Lr(Q;Rd)

≤ Cr with any 1 ≤ r <
d+2

d+1
, (6.19)∥∥ .wκ,τ

∥∥
M([0,T ];W 1,∞(Ω)∗)

≤ C, (6.20)

with C independent of τ and κ.

Also, within the proof, we shall use the notion of “retarded” interpolants wκ,τ , νκ,τ
defined analogously to (5.110).

Proof. Similarly, as in (5.40), also in the convex case the discrete formulation is devised
in such a way that (6.11) is decoupled from (6.12). Therefore, we first show existence of
solutions to (6.12) – as in Proposition 5.9 or Lemma 5.14 we employ the direct method
and the convexity of the cost function from(6.11) in λ as well as ν.6

Let us now prove the apriori estimates (6.14)-(6.20); to do so, we mimic the proce-
dure of the proof Lemma 5.10. Indeed, we just have to slightly alter Step 1 and Step
2 of the proof Lemma 5.10 to get (6.14)-(6.18); having these estimates at our disposal,
we can then show (6.19) and (6.20) exactly as in Step 3 and Step 4 in the proof Lemma
5.10, respectively.

Therefore, let us show that (6.14)-(6.18) uniformly in κ and τ . Similarly as when
deriving (5.112), we may obtain the following energy inequality7∫

Ω
ϕ1 • ν̄κ,τ (tk) dx+Qκ

(
λ̄κ,τ (tk)− L • ν̄κ,τ (tk)

)
≤
∫
Ω
ϕ1 •ν0 dx+

∫ tk

0

∫
Ω
Q′

κ
(
λ̄κ,τ − L • ν̄κ,τ

)
·
.
λκ,τ dxdt. (6.21)

Also, as in (5.58), we may derive the discrete flow-rule by setting the partial sub-
differential with respect to λ of the cost function in (6.11) at λlτ to zero and summing

6Cf. also the proof Lemma 5.14 for more details on how to handle the Young measure.
7I.e. we need to test (6.11) in the l-th step by (νl−1

κ,τ , λ
l
κ,τ ) and sum from 1 to k.
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from 1 to k; i.e. we have∫ tk

0

∫
Ω
ρq(
.
λκ,τ ) dxdt ≤

∫ tk

0

∫
Ω

(
Q′

κ(λ̄κ,τ−L • ν̄κ,τ )·(vκ,τ−
.
λκ,τ )+ρq(vκ,τ

+
(
Θ(wκ,τ )−θtr

)
a⃗·(vκ,τ−

.
λκ,τ )+2qτ |λ̄κ,τ |2q−2λ̄κ,τ (vκ,τ−

.
λκ,τ ))

)
dxdt, (6.22)

where vκ,τ is an arbitrary test function such that vκ,τ (·, x) is piecewise constant on the
intervals (tj−1, tj ] and vκ,τ (tj , ·) ∈ L2q(Ω;Rd+1) for every j. Further, setting vκ,τ = 0
and employing the discrete chain rule as in (5.47) gives∫ tk

0

∫
Ω
ρq(
.
λκ,τ ) dxdt+ 2qτ

∫
Ω
|λ̄κ,τ (tk)|2q dx ≤

∫ tk

0

∫
Ω

(
Q′

κ
(
λ̄κ,τ−L • ν̄κ,τ

)
·(−

.
λκ,τ )

+
(
Θ(wκ,τ )− θtr

)
a⃗·(−

.
λκ,τ )

)
dxdt+ 2qτ

∫
Ω
|λ̄κ,τ (0)|2q, (6.23)

Now adding (6.23) and (6.21) gives the following inequality∫
Ω
ϕ1 • ν̄κ,τ (tk)+2qτ |λ̄κ,τ (tk)|2q dx+Qκ(λ̄κ,τ (tk)− L • ν̄κ,τ (tk)) +

∫ tk

0

∫
Ω
ρq(
.
λκ,τ ) dx dt

≤
∫
Ω
ϕ1 • ν̄0 + 2qτ

∫
Ω
|λ̄κ,τ (0)|2q dy

∫ tk

0

∫
Ω

(
Θ(wκ,τ )− θtr

)
a⃗·(−

.
λκ,τ ) dx dt,

which, after using the Young inequality as in (5.47), leads to∫
Ω
ϕ1 • ν̄κ,τ (tk)+2qτ |λ̄κ,τ (tk)|2q dx+Qκ(λ̄κ,τ (tk)− L • ν̄κ,τ (tk))+

∫ tk

0

∫
Ω
ρq(
.
λκ,τ ) dxdt

≤ C

∫ tk

0

∫
Ω
|wκ,τ | dxdt+ C, (6.24)

with C independent of κ and τ.

Finally, summing the discrete version of the enthalpy equation (6.12) from 0 to k
leads, similarly as when obtaining (5.76), to∫ tk

0

(∫
Ω

( .
wκ,τφ+K(λ̄κ,τ , w̄κ,τ )∇w̄κ,τ ·∇φ

)
dx+

∫
Γ
b̄κ,τΘ(w̄κ,τ )φdS

)
dt

=

∫ tk

0

(∫
Ω

(
ϱq(
.
λκ,τ ) + Θ(w̄κ,τ )⃗a·

.
λκ,τ

)
φdx+

∫
Γ
b̄κ,τ θ̄ext,τφdS

)
dt, (6.25)

where φ is an arbitrary test function, such that φ(·, x) is piecewise constant on the
intervals (tj−1, tj ] and φ(tj , ·) ∈ H1(Ω) for every j. In the same spirit as in (5.79), we
test equation (6.25) by 1 and estimate the right-hand side by exploiting the Young
inequality to get∫ tk

0

∫
Ω

.
wκ,τ (t, x) dx+

∫
Γ
b̄κ,τΘ(w̄κ,τ ) dS dt ≤

∫
Q
2α|
.
λκ,τ |q + C|w̄κ,τ |dxdt.

Multiplying this by α/(8q) and adding to (6.24) already yields (6.14)–(6.18) by the
usage of the discrete Gronwall inequality; note that these estimates are indeed uniform
in κ.

Proposition 6.5 (Convergence for τ → 0). Let the assumptions (A1), (A3)-(A7) hold,
κ be fixed. Then there exist (νκ, λκ, wκ) ∈ (Y p(Ω;Rd×d))[0,T ]×W 1,q([0, T ];Lq(Ω;RM+1))

99



×Lr([0, T ];W 1,r(Ω)) and a sequence τ → 0 such that

λ̄κ,τ
∗
⇀ λκ in L∞([0, T ];Lq(Ω,RM+1)) (6.26)

λ̄κ,τ (t)⇀ λκ(t) ∀t ∈ [0, T ] in Lq(Ω;RM+1), (6.27)
.
λκ,τ →

.
λκ in Lq(Q;RM+1), (6.28)

w̄κ,τ ⇀ wκ Lr([0, T ];W 1,r(Ω)), r < d+2
d+1 and w̄κ,τ → wκ in L1(Q), (6.29)

with (λκ,τ , wκ,τ ) the piecewise affine interpolants and (λ̄κ,τ , w̄κ,τ ) the piecewise constant
interpolants defined in Lemma 6.4.
Moreover, for each t ∈ [0, T ] there exists a subsequence τk(t) such that

ν̄κ,τk(t)(t)
∗
⇀ ν(t) in L∞

w (Ω;M(Rd)), (6.30)

with ν̄κ,τ defined again in Lemma 6.4.
Every cluster point (νκ, λκ, wκ) obtained in this way is then is a weak solution of

(6.1) in accord with Definition 6.2 and satisfies (6.7)-(6.10).

Remark 6.6. Note that the statement of Proposition 6.5 is indeed stronger than the
statements of related Theorem 5.15 – while in Proposition 6.5 we claim that every
cluster point of discrete solutions to (6.1) solves (6.1) weakly, in Theorem 5.15 we
could prove an analogous statement only for some cluster points.

The reason is that in the convex case the vector of volume fraction L •ν will be, for

each λ, uniquely defined – this will help us to resolve the problems with measurability

of Q′
κ(λκ −L •νκ)·(v−

.
λκ) encountered in the proof Theorem 5.15 in a more straight-

forward way than in the mentioned proofs. In particular, we need not to reformulate
the discrete flow-rule (6.22) as in Step 1 of the proof Theorem 5.15, nor shall we employ
Fatou’s lemma.

Recall, that in order to perform the mentioned reformulation of the flow-rule, we
needed to discretize the non-convex system (5.22) – (5.23) by two minimization prob-
lems; in the convex case, where there is no need to reformulate the flow-rule, only one
joint minimization problem (6.11) suffices.

Proof. For clarity, let us divide the proof into several steps.

Step 1: Selection of subsequences, limit passage in the minimization principle for νκ
analogously to Step 3 of the proof Proposition 5.9, we find, owing to (6.16)-(6.20), a
subsequence of τ ’s (not relabeled) such that (6.26), (6.27), (6.29) and

.
λκ,τ

∗
⇀
.
λκ in Lq(Q;RM+1), (6.31)

hold. Also, as in Step 1 of Theorem 5.12, Θ(w̄κ,τ ) → Θ(wκ) in Lq′(Q) and, due to
(5.109), Θ(wκ,τ ) → Θ(wκ) in L

q′(Q), too. Furthermore, due to a-priori estimate (6.20),
we may also employ Helly’s selection principle (cf. e.g. (Francfort and Mielke, 2006;
Mielke and Theil, 2004)) to get even that

w̄κ,τ (t)⇀ wκ(t) for all t ∈ [0, T ] weakly in W 1,r(Ω). (6.32)

At last, due to (6.14) and (A3), there exists a Ξ ∈ L2(Q;Rd+1) such that

L • ν̄κ,τ ⇀ Ξ in L2(Q;Rd+1). (6.33)

Let us fix some t ∈ [0, T ]. Exploiting again (5.104), select a subsequence of τ ’s
labeled τk(t)

8 such that ν̄κ,τk(t)(t) ⇀ νκ(t) in L∞
w (Ω;M(Rd)); due (5.104) ν(t) ∈

8As indicated by the index k = k(t), this selection may depend on time t.
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Yp(Ω;Rd×d)9. Since L is bounded (cf. (A3)), it holds also that L • ν̄κ,τk(t)(t)⇀ L •νκ(t)

in L2(Ω;Rd+1); realize that this does not imply that L •νκ = Ξ.

Due to the weak lower semi-continuity of the norms any selected cluster point
(νκ, λκ, νκ) preserves the bounds (6.7)-(6.10).

As to establishing (6.3), note that a direct consequence of (6.11) is the discrete
minimization principle that reads as∫
Ω
ϕ1 • ν̄κ,τk(t)(t) dx+Qκ

(
λ̄κ,τk(t)(t)−L • ν̄κ,τk(t)(t)

)
≤
∫
Ω
ϕ1 • ν̂ dx+Qκ

(
λ̄κ,τk(t)(t)−L • ν̂

)
(6.34)

for any ν̂ ∈ Y p(Ω;Rd×d). By applying lim infτk(t)→0 on both sides, we indeed get

(6.11)10.

Furthermore, due to the convexity of Young measures and the strict convexity of
Qκ(·)11, L •νκ, with νκ some solutions of (6.3) corresponding to the already selected

λκ = λκ(t), is determined uniquely although the minimizer νκ itself does not need to
be.12

In turn it means that L • ν̄κ,τ (t) ⇀ L •νκ(t) in L2(Ω;Rd+1) same sub-sequence of

τ ’s for which (6.26), (6.27), (6.29) and (6.31) hold; in particular this subsequence is
not time-dependent. Hence, by usage of the Lebesgue dominated convergence theorem,
L •νκ(t) = Ξ(t) and thus L •νκ is measurable.

Step 2: Limit passage in the flow-rule and strong convergence of
.
λκ,τ

Having selected subsequences and having established (6.3), we shall pass to the limit
lim infτ→0 in the discrete flow-rule (6.22). As already in the proof Theorem 5.12 and

Theorem 5.15, we expect the most difficulties in the termQ′
κ
(
λ̄κ,τ−L • ν̄κ,τ )·(vκ,τ−

.
λκ,τ )

since in all other terms in (6.22) we can pass to the limit the same way as in Step 4 of
the proof Proposition 5.9.

However, in the convex case, finding limτ→0Q′
κ
(
λ̄κ,τ−L • ν̄κ,τ )·(vτ−

.
λτ ) is straight-

forward because we know that L • ν̄κ,τ (t)⇀ L •νκ(t) weakly in L2(Ω;RM+1) for some a

subsequence of τ ’s independent of t13 and hence, as Qκ(·) is compact (cf. (5.2), (5.3)),
we get

lim
τ→0

Q′
κ
(
λ̄κ,τ (t)−L • ν̄κ,τ (t))·(vκ,τ (t)−

.
λκ,τ (t)) = Q′

κ
(
λκ(t)−L •νκ(t))·(v(t)−λκ(t)),

(6.35)
for all t ∈ [0, T ]; hence, we are entitled to use Lebesgue’s dominated convergence the-
orem (note that the sequence is actually dominated by constant owing to estimates

(6.14)–(6.16)) to get that Q′
κ
(
λ̄κ,τ−L • ν̄κ,τ )·(vκ,τ−

.
λκ,τ ) → Q′

κ
(
λκ−L •νκ)·(v−λκ) in

L1([0, T ]). Combining all above said, we get (5.23). Furthermore, we show (6.28) by

9This can be shown e.g. thanks to Proposition 2.10.
10We proceed analogously to Step 2 in Theorem 5.12.
11Recall, that due to its definition in (5.2), Qκ(·) is essentially quadratic.
12To see this, suppose that there existed two solutions of (6.3) [νκ ]1 and [νκ ]2 such that L • [νκ ]1 ̸=

L • [νκ ]2. Then, due the strict convexity of Qκ(·) it held for νκ = 1
2
[νκ ]1 +

1
2
[νκ ]2 ∈ Yp(Ω;Rd×d)∫

Ω

ϕ1νκ dx+Qκ(λ(t)− L • νκ) <
1

2

(∫
Ω

ϕ1[νκ ]1 dx+Qκ(λ(t)−L • [νκ ]1)
)

+
1

2

(∫
Ω

ϕ1[νκ ]2 dx+Qκ(λ(t)−L • [νκ ]2)
)
,

which yields a contradiction, since the expression on the right-hand side is equal to the minimum of∫
Ω
ϕ1ν̃ dx+Qκ(λ(t)− L • ν̃) over all ν̃ ∈ Yp(Ω;Rd×d).
13Recall that we were not able to get an analogous statement in the non-convex case.
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mimicking the procedure of Step 5 in the proof Proposition 5.9 – i.e. we test (6.22) re-

formulated using the convexity of |·|q by
.
λS,κ,τ , a piecewise constant approximation

of the function
.
λκ such that

.
λS,κ,τ →

.
λκ strongly in Lq(Q;RM+1) and moreover

∥
.
λS,κ,τ∥L2q(Q;RM+1) ≤ Cτ−1/(2q+1), further we test (5.23) by

.
λκ,τ and add the two

obtained inequalities. When passing to the limit τ → 0, we rely on (6.35).

Step 3: Enthalpy equation:
For limit passage in the discrete enthalpy equation, we first perform by-parts integration
in (6.12) to get

−
∫ T

0

(∫
Ω
w̄κ,τ

.
φ+K(λ̄κ,τ , w̄κ,τ )∇w̄κ,τ∇φ̄dx+

∫
Γ
b̄τΘ(w̄κ,τ )φ̄dS

)
dt+

∫
Ω
w̄κ,τ (T )φ̄(T )

=

∫
Ω
w̄κ,τ (0)φ̄(0) dx+

∫ tk

0

(∫
Ω

(
ϱq(
.
λκ,τ )+Θ(w̄κ,τ )⃗a·

.
λκ,τ

)
φ̄ dx+

∫
Γ
b̄τ θ̄ext,τ φ̄ dS

)
dt,

for all φ̄ piecewise constant on the intervals (tj−1, tj ] such that, for any j, φ̄(tj , ·) ∈
W 1,2(Ω) and φ piecewise linear on the intervals (tj−1, tj ], such that φ̄(tj , ·) = φ(tj , ·).

Then, we proceed analogously to Step 7 of the proof Proposition 5.9; only for the
term

∫
Ω w̄κ,τ (T )φ̄(T ) dx we exploit (6.32).

Remark 6.7 (Total energy balance). Let us note that, by a similar technique as in Step
6, we can establish, from (6.11), the mechanic energy equality that reads as14∫

Ω
ϕ1 •νκ(T ) dx+Qκ

(
λκ(T )− L •νκ(T ))

=

∫
Ω
ϕ1 •ν0 dx+Qκ

(
λ0 − L •ν0) +

∫
Q
Q′

κ(λκ − L •νκ)·
.
λκ dx dt. (6.36)

Furthermore, let us rewrite the flow-rule (5.23) using convexity of |·|q as∫
Q

(
Θ(w)κ−θtr

)
a⃗·
(
v−
.
λκ
)
+δ∗S(v)+Q′

κ
(
λκ−L •νκ

)
·(v−

.
λκ)+α|

.
λ|q−2

.
λ·(v−

.
λ) dxdt

≥
∫
Q
δ∗S(
.
λκ) dxdt;

testing this by 0 and also by 2
.
λ gives, relying on one-homogeneity of δ∗S(·)∫

Q
δ∗S(
.
λκ)+α|

.
λκ|q+

(
Θ(wκ)−θtr

)
a⃗·
.
λκ dxdt+

= −
∫
Q
Q′

κ
(
λκ−L •νκ

)
·
.
λκ dxdt

= −
∫
Ω
ϕ1 •νκ(T ) dx−Qκ

(
λκ(T )− L •νκ(T ))+

∫
Ω
ϕ1 •ν0 dx+Qκ

(
λ0 − L •ν0),

14The mentioned technique relies on approximating the Lebesgue integral by Riemann sums. In
particular, we introduce a partition of the interval [0, T ] 0 = tβ0 ≤ tβ1 ≤ tβ2 . . . t

β
N(β) = T with

maxi=1...N(β)(ti + ti−1) = β and exploit in each point (6.11) two times. First, we use (6.11) at the

time-step tβk and test it by νκ(t
β
k−1), secondly we test (6.11) at the time-step tβk−1 by νκ(t

β
k). Then, we

sum both obtained inequalities from 1 to N(β) and pass to the limit β → 0 exploiting (Dal Maso et al.,
2005, Lemma 4.12).
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where in the last equality we exploited (6.36). Finally, plugging this expression into the
weak enthalpy equation tested (6.4) by 1∫

Ω
wκ(T ) dx+

∫
Σ
bΘ(wκ) dS dt−

∫
Ω
w0 dx−

∫
Σ
bθext dS dt

+

∫
Q

(
δ∗S(
.
λκ)+α|

.
λκ|q+Θ(wκ )⃗a·

.
λκ

)
dxdt,

yields the total energy balance∫
Ω
wκ(T ) dx+

∫
Σ
bΘ(wκ) dS dt−

∫
Ω
w0 dx−

∫
Σ
bθext dS dt−

∫
Q
θtra⃗·

.
λκ

=

∫
Ω
−ϕ1 •νκ(T )+ϕ1 •ν0 dx−Qκ

(
λκ(T )−L •νκ(T ))+Qκ

(
λ0−L •ν0). (6.37)

We shall exploit this balance in Section 6.3 below.

6.3 The limit κ → ∞
In the convex case, we can justify the penalty approach from Section 5.1.1, i.e. we can
show that, if κ → ∞, (weak) solutions the system (6.1) converge to (very weak)15

solutions of the following system:

minimize

∫
Ω
ϕ1 •ν dx

subject to ν ∈Y p(Ω;Rd×d) such that L •ν = λ

with (λ, θ) fixed solutions of (6.38b), (6.38c),

 for a.a. t∈ [0, T ], (6.38a)

∂δ∗S(
.
λ) + ∂δ{λ=L • ν}(λ)+α|

.
λ|q−2

.
λ+Θ(w)⃗a ∋ θtra⃗ in Q, (6.38b)

.
w−div(K(λ,w)∇w) = δ∗S(

.
λ)+α|

.
λ|q+Θ(w)

.
λ in Q, (6.38c)(

K(λ,w)∇w
)
·n+bΘ(w) = bθext on Σ. (6.38d)

The system is completed by initial conditions (6.2) that, however, are compatible in the
sense that λ0 = L •ν0.

In (6.38), contrary to (5.17) or (5.28), λ plays not the role of a phase-field anymore
– since we are able to to prove that λ = L •ν and not just λ ∼ L •ν, λ indeed now

corresponds to the vector of volume fractions stemming from microstructure.

Remark 6.8. Note that (6.38a) is weaker than the corresponding minimization problem
including the penalty (6.1a) – indeed in (6.1a) we need the solution to be a minimizer for
all t ∈ [0, T ], in (6.38a) this is required only for a.a. t. This is due to the fact that in the
proof Theorem 6.13 (below) we will only be able to show that Qκ(λκ(t)−L •νκ(t)) → 0

only for a.a. t ∈ [0, T ].

For simplicity, we shall assume, within this subsection, that q = 2 and prescribe
a specific form for the penalty functional Qκ, namely we set Q = ∇∆−1 in (5.2)

which makes
( ∫

Ω |Q ·|2
)1/2

an equivalent norm in H−1(Ω;RM+1) (Benešová, Kruž́ık
and Roub́ıček, 2012). We shall also use the following abbreviation for the scalar product
for a, b ∈ H−1(Ω;RM+1) ⟨⟨

a, b
⟩⟩
=

∫
Ω
(Qa)·(Qb) dx; (6.39)

15We use here the adjective “very weak” in order to emphasize that the devised weak formulation of
(6.38a) in Definition 6.9 will be even weaker than the one in Definition 6.2 for 6.1a.
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note that with this notation, owing to (5.2), (5.3),∫
Ω
Q′

κ(a)·bdx = κ
⟨⟨
a, b
⟩⟩
.

First, let us give a weak formulation; an essential difference to the penalized situation
is that now (6.38b) is a doubly nonlinear problem. Finding weak formulations of such
kind of problems is usually not trivial, here we rely on the reformulation of the flow
rule the using mechanic energy (in)equality as in Step 1 of the proof Theorem 5.12 and
combine the standard definitions for both sub-differentials.

Definition 6.9. We shall call the triple (ν, λ, w) ∈ (Y p(Ω;Rd×d))[0,T ]×
W 1,q([0, T ];Lq(Ω;RM+1)) × L1([0, T ];W 1,1(Ω)) such that λ = L •ν for a.a. t ∈ [0, T ]

and a.e. on Ω a weak solution of (6.1a) with initial condition (6.2) if it satisfies:

1.The minimization principle∫
Ω
ϕ1 •ν dx ≤

∫
Ω
ϕ1 • ν̃ dx (6.40)

for any ν̃ ∈ Y p(Ω;Rd×d) such that λ = L • ν̃ and a.a. t ∈ [0, T ] and for t = T .

2.The flow rule∫
Q
ρq(
.
λ) dx ≤

∫ T

0

⟨⟨
s, v
⟩⟩
+

∫
Q
(Θ(w)−θtr)⃗a·(v−

.
λ) dxdt

+

∫
Q
ρq(v) dx dt−

∫
Ω

(
ϕ1 •ν(T )−ϕ1 •ν0

)
dx ∀v ∈ L2(Q;RM+1) (6.41)

with s ∈ L2([0, T ];H−1(Ω;RM+1)) defined through

0

∫ T

0
≥
⟨⟨
s, v−λ

⟩⟩
dt ∀ v ∈ L2(Q;RM+1) such that v(t, x) = L •νx(t)

for a.a. t ∈ [0, T ] a.e. on Ω. (6.42)

3.The enthalpy inequality∫
Q
K(λ,w)∇w·∇ζ−w

.
ζ dxdt+

∫
Σ
bΘ(w)ζ dS dt+

∫
Ω
w(T )ζ(T )−

∫
Ω
w0ζ(0) dx

≥
∫
Σ
bθextζ dS dt+

∫
Q

(
δ∗S(
.
λ)+α|

.
λ|q+Θ(w)⃗a·

.
λ
)
ζ dxdt, (6.43)

for any ζ ∈ C1(Q̄) such that ζ ≥ 0 on Q̄.

4.The the total energy balance:∫
Ω
w(T ) dx+

∫
Σ
bΘ(w) dS dt+

∫
Ω
−ϕ1 •ν(T )−

∫
Q
θtra⃗·

.
λdx dt

=

∫
Ω
w0 dx+

∫
Σ
bθext dS dt

∫
Ω
ϕ1 •ν0 dx. (6.44)

5.The remaining initial conditions: ν(0, ·) = ν0 and λ(0, ·) = λ0; compatible in the
sense that λ0 = L •ν0.
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Remark 6.10 (Selectivity). Note that the Definition 6.9 is in the flow-rule and the
enthalpy inequality weaker than its penalised counterpart in Definition 6.2. As far as
the flow-rule is concerned, we can recover an equivalent of (5.23) from (6.41) if the
mechanic energy equality∫

Ω
ϕ1 •ν(T ) dx−

∫
Ω
ϕ1 •ν0 dx =

∫ T

0

⟨⟨
s,
.
λ
⟩⟩
dt,

could be shown for any s satisfying (6.42) 16 – this can be done if λ and ν are smooth.
Indeed, if the vector (ν, λ) belonged to some W 1,2([0, T ],B), with B such that its dual
is a separable Banach space, the mechanic energy equality is readily got by exploiting a
variant of the chain rule for non-smooth functions (Visintin, 1996, Proposition 4.11)17

for the function F (ν(t), λ(t)) =
∫
Ω ϕ1 •ν(t)+δ{v=0}(λ(t)−L •ν(t)) dx+δYp(Ω;Rd×d)(ν(t))

with its sub-differential (U(t) in Theorem 6.11) (0, s). Note that 0 ∈ ∂νF (ν(t), λ(t))
due to the fact that ν solves (6.40).

As far as the enthalpy inequality is concerned, we demand an enthalpy inequality
to be satisfied together with the total energy balance – this is inspired by the notion of
so-called entropy solutions well known e.g. in the context of the Navier-Stokes-Fourier
system (see e.g. (Feireisl and Novotný, 2009)). Again, if the mechanical energy equality
is satisfied and if (w, λ) are smooth we can recover the equality (6.43) . 18

16Note that to recover (5.23), we just need to plug the mechanic energy equality into (6.41).
17For the readers convenience, we re-state the Proposition here

Proposition 6.11 ((Visintin, 1996, Proposition 4.11)). Assume that F : B → R ∪ {+∞}, where B
is such that its dual is a separable Banach space, is lower-semicontinuous and convex. Further, let
u ∈W 1,2([0, T ],B) and let U ∈ L2([0, T ],B′) be such that

U(t) ∈ ∂F (u(t)) for a.a. t ∈ [0, T ].

Then
d

dt
F (u(t)) = ⟨U(t),

.
u(t)⟩ for a.a. t ∈ [0, T ].

18If (w, λ) are smooth, we recover from (6.43) the following strong system

.
w−div(K(λ,w)∇w) ≥ δ∗S(

.
λ)+α|

.
λ|q+Θ(w)

.
λ in Q, (6.45)(

K(λ,w)∇w
)
·n+bΘ(w) ≥ bθext on Σ. (6.46)

Indeed, to get (6.45) we use the divergence theorem as well by parts integration in (6.43) and choose
ζ such that suppζ(t) ⊂ int(Ω) for all t ∈ [0, T ]; this yields∫

Q

( .
w−div(K(λ,w)∇w) ≥ δ∗S(

.
λ)+α|

.
λ|q

)
ζ dx dt ≥ 0,

which, since
.
w−div(K(λ,w)∇w) ≥ δ∗S(

.
λ)+α|

.
λ|q is smooth, can be fulfilled if and only if (6.45) holds.

For the boundary condition we proceed anallogically; only we chose ζ = 0 on Ωβ ⊂ int(Ω) such that
|Ω \ Ωβ | ≤ β and pass with β → 0.

Now, if the inequality in (6.45) was strict on some set A ⊂ Q of positive measure, this would give
that ∫

Q

.
w−div(K(λ,w)∇w) dx dt >

∫
Q

δ∗S(
.
λ)+α|

.
λ|q+Θ(w)

.
λ dx dt,

and, owing to the boundary condition, we would get that∫
Ω

w(T ) dx+

∫
Σ

bΘ(w) dS dt−
∫
Ω

w0 dx−
∫
Σ

bθext dS dt >

∫
Q

δ∗S(
.
λ)+α|

.
λ|q+Θ(w)

.
λdx dt.

Furthermore, when combining this with the expression∫
Q

δ∗S(
.
λ)+α|

.
λ|q+

(
Θ(w)−θtr

)
a⃗·
.
λ dx dt = −

∫
Ω

ϕ1 • ν(T )−ϕ1 • ν0 dx,

that is obtained from (6.41), provided the mechanic energy equality is satisfied, similarly as in Remark
6.7, gives is a contradiction to (6.44).
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Remark 6.12 (Defect measures). Let us note that one of the main reasons why we
cannot prove indeed an equality in (6.43) is the lack of strong compactness of the

sequence {
.
λκ} in Lq(Q;RM+1) as κ → ∞; this lack of strong compactness is directly

connected to the fact that we cannot prove the mechanic energy equality in the limit
problem.

However, we could prove equality in the sense of measures, i.e. we could find a

measure µ0, such that δ∗S(
.
λκ) + α|

.
λκ|2

∗
⇀ µ0 in M(Q)∫

Q
K(λ,w)∇w·∇ζ−w

.
ζ dxdt+

∫
Σ
bΘ(w)ζ dS dt+

∫
Ω
w(T )ζ(T )−

∫
Ω
w0ζ(0) dx

= +

∫
Σ
bθextζ dS dt+

∫
Q
ζ dµ+

∫
Q

(
δ∗S(
.
λ) + α|

.
λ|2+

(
Θ(w)−θtr

)
a⃗·
.
λ
)
ζ dxdt,

with

µ = µ0 − (δ∗S(
.
λ) + α|

.
λ|2) dxdt, 19

where µ is referred to as defect measure (cf. e.g. (Feireisl, 2004; Naumann, 2006)),
because it measures the difference between the obtained measure and the (rate of)
dissipation due to phase transition. As already pointed out in Remark 6.10, if the
obtained solutions were smooth the defect measure vanished.

Let us just note that a similar lack of compactness was also observed when passing
from adhesive to brittle delamination in thermo-elastic case in (Rossi and Thomas,
2012); there also the concept of having only an enthalpy inequality or employing defect
measures had to be used.

Let us now formulate the main theorem of this subsection.

Theorem 6.13. Let the assumptions (A1), (A3)-(A7) be satisfied and λ0 = L •ν0.

Denote for any κ > 0 (νκ, λκ, wκ) ∈ (Y p(Ω;Rd×d))[0,T ] ×W 1,q([0, T ];Lq(Ω))
×L1([0, T ];W 1,1(Ω)) any weak solution to (6.1) obtained in Theorem 6.3 and let T be
a generic final time. Then there exists a not-relabeled subsequence of κ → ∞ such that

λκ
∗
⇀ λ in L∞([0, T ];Lq(Ω,RM+1)) (6.47)

λ̄κ(t)⇀ λ(t) ∀t ∈ [0, T ] in Lq(Ω;RM+1), (6.48)
.
λκ ⇀

.
λ in Lq(Q;RM+1), (6.49)

wκ ⇀ w Lr([0, T ];W 1,r(Ω)), r < d+2
d+1 and wκ → w in L1(Q), (6.50)

Moreover, for each t ∈ [0, T ] there exists a subsequence κk(t) such that

ν̄κk(t)
(t)

∗
⇀ ν(t) in L∞

w (Ω;M(Rd×d)). (6.51)

Every (ν, λ, w) obtained in this way is then a weak solution of (6.38) in the sense of
Definition 6.9.

Proof. 20 For clarity, let us divide the proof into several steps.

Step 1: A-priori estimates, selection of subsequences:
First of all, recall that we established, already in Theorem 6.3, that (νκ, λκ, wκ) satisfy
the bounds (6.5) - (6.10).

19By “dx dt” we abbreviate the Lebesgue measure on Ω× [0, T ].
20We give here a detailed proof in full-length, however a heuristic sketch of some ideas of this proof

is given already in (Benešová, Kruž́ık and Roub́ıček, 2012).
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Let us now even (slightly) enhance (6.6) by exploiting the weak flow-rule for the

penalized system (5.23); let us choose v =
.
λ− ṽ with some ṽ ∈ L2(Q;RM+1) such that

∥ṽ∥L2(Q;RM+1) = 1 to get21∫ T

0
κ
⟨⟨
λκ − L •νκ, ṽ

⟩⟩
dt ≤

∫
Q

(
Θ(wκ)−θtr

)
a⃗·(−ṽ)+ρ2(

.
λκ − ṽ)− ρ2(

.
λκ) dxdt.

≤
∫
Q

∣∣Θ(wκ)−θtr
∣∣ |⃗a| |ṽ|+ |ρ2(

.
λκ)|+ |ρ2(

.
λκ − ṽ)| dxdt

≤ C

∫
Q
|wκ|+ |

.
λκ|2 + |ṽ|2 dxdt

where the inequality on the last line is got by Young’s inequalities similarly as in
e.g. Step 1 of the proof Lemma 5.10. Further, we realize that the last line is even
bounded by a constant independent of κ through (6.8) and (6.7). Therefore,

∫ T
0 κ⟨⟨λκ−

L •νκ, ṽ⟩⟩dt ≤ C; repeating the same procedure with v =
.
λκ+ṽ gives that −

∫ T
0 κ⟨⟨λκ−

L •νκ, ṽ⟩⟩dt ≤ C and thus ∫ T

0
κ
∣∣∣⟨⟨λκ − L •νκ, ṽ

⟩⟩∣∣∣dt ≤ C, (6.52)

for any ṽ ∈ L2(Q;RM+1) such that ∥v∥L2(Q;Rd+1) ≤ 1, i.e.

κ∥λκ − L •νκ∥L2([0,T ];H−1(Ω;RM+1)) ≤ C, (6.53)

with some C independent of κ.
Choosing, in (6.52), ṽ(x, t) = Ξ(t)ṽS(x) with Ξ(t) ∈ L∞([0, T ]) such that |Ξ(t)| ≤

1 for a.a. t ∈ [0, T ] and ṽS ∈ L2(Ω;Rd+1) such that ∥ṽS∥L2(Ω;RM+1) ≤ 1, leads to
{|κ⟨⟨λκ(t)− L •νκ(t), ṽS⟩⟩|}κ>0 is bounded for a.a. t ∈ [0, T ]. This in turn means that

κ∥λκ(t)− L •νκ(t)∥H−1(Ω;RM+1) ≤ C for a.a. t ∈ [0, T ]. (6.54)

Let us point out that (6.54) indeed improves (6.6) for a.a. t ∈ [0, T ], because, for q = 2
and our specific choice of Q, (6.6) assures only that ∥λκ(t)−L •νκ(t)∥H−1(Ω;RM+1) scales

with the power κ−1/2 while (6.54) gives a scaling of the power κ−1.
Relying on these a-priori estimates, we choose a subsequence of κ is such that

(6.47)-(6.50) hold.22 Moreover, as in Step 1 of the proof Proposition 6.5, we employ
Helly’s selection principle to get

wκ(t)⇀ w(t) for all t ∈ [0, T ] weakly in W 1,r(Ω). (6.55)

Furthermore, owing to (6.53), we may find s ∈ L2([0, T ];H−1(Ω;RM+1)) and (if
necessary) extract a further subsequence of κ’s (not relabeled) such that

κ(λκ − L •νκ)⇀ s weakly in L2([0, T ];H−1(Ω;RM+1)). (6.56)

Also, as
∫
Ω ϕ1 •ν(T ) dx+Qκ(λκ(T )− L •νκ(T )) is , due to (6.5) and (6.6), a bounded

sequence of numbers we may choose that subsequence of κ’s in such a way that

E = lim
κ→∞

(∫
Ω
ϕ1 •ν(T ) dxQκ(λκ(T )− L •νκ(T )),

)
(6.57)

21Note that we already used that q = 2 and the specific chosen form of Q.
22Note that we can employ, to this end, the same selection principles as in Step 3 of the proof

Proposition 5.9.
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for some E ∈ R.
Finally, let us fix some time t ∈ [0, T ] such that the bound in (6.54) holds.23 Then,

based on (6.5), we select a t-dependent subsequence of κ’s denoted κk(t) such that

νκk(t)
(t)

∗
⇀ ν(t) weakly* in L∞

w (Ω;M(Rd×d)), (6.58)

with ν(t) in Yp(Ω;Rd×d), i.e. we got (6.51). Similarly as in Step 1 of the proof Propo-
sition 6.5, (6.58) yields that L •νκk(t)

(t) → L •ν(t) weakly in L2(Ω;RM+1) and thus

strongly in H−1(Ω;RM+1).
Exploiting the strong convergence of L •νκk(t)

(t) → L •ν(t) and also λκk(t)
(t) →

λ(t)24 in H−1(Ω;RM+1) and the a-priori estimate (6.54) we get that for the limits

λ(x, t) = L •νx(t) for a.a. t ∈ [0, T ], a.e. on Ω.25 (6.59)

Thus, the limit of L •νκk(t)
(t) is, for a given λ obtained above, again determined uniquely

and hence L •νκ(t)⇀ L •ν(t) weakly in L2(Ω;RM+1). By the Lebesgue dominated con-

vergence theorem, we even get that L •νκ → L •ν strongly in L2([0, T ];H−1(Ω;RM+1)).

Step 2: Limit passage in the minimization principle (6.3)
Let t ∈ [0, T ] be still fixed and chosen such that the bound in (6.54) holds. By means
of exploiting the lower semi-continuity of

∫
Ω ϕ1 •ν dx, as e.g. already in Step 1 of the

proof Theorem 5.15, one gets that∫
Ω
ϕ1 •ν dx ≤ lim inf

κk(t)→∞

∫
Ω
ϕ1 •νκk(t)

dx

≤ lim inf
κk(t)→∞

∫
Ω
ϕ1 •νκk(t)

dx+
κk(t)

2
∥λκk(t)

−L •νκk(t)
∥2H−1(Ω;RM+1). (6.60)

Further, we have realize that, due to the convexity, any solution of (6.3) νκ, solves also
the following problem (for the fixed t)26

minimize

∫
Ω
ϕ1 •ν dx+κ

⟨⟨
λκ(t)−L •νκ, λκ(t)−L •ν

⟩⟩
subject to ν∈Y p(Ω;Rd×d) and νκ solution to (6.3).

 (6.61)

Now we return to (6.60) (and use that κk(t)/2 ≤ κk(t)) but, instead of exploiting
that νκk(t)

solves (6.3), we use that it solves (6.61) and get

lim inf
κk(t)→∞

∫
Ω
ϕ •νκk(t)

dx+
κk(t)

2
∥λκk(t)

−L •νκk(t)
∥2H−1(Ω;RM+1)

= lim inf
κk(t)→∞

∫
Ω
ϕ •νκk(t)

dx+κk(t)

⟨⟨
λκk(t)

−L •νκk(t)
, λκk(t)

−L •νκk(t)

⟩⟩
≤ lim inf

κk(t)→∞

∫
Ω
ϕ • ν̂ dx+κk(t)

⟨⟨
λκk(t)

−L •νκk(t)
, λκk(t)

−L • ν̂
⟩⟩

23Recall, that the mentioned bound holds for a.a. t ∈ [0, T ].
24This is a direct consequence of (6.47) combined with (6.2) and the compact embedding

L2(Ω;RM+1)
c
↪→ H−1(Ω;RM+1).

25In particular, we also got that L • ν is measurable.
26Note that exploiting just (6.3) on the right hand side of (6.60) is not sufficient. Indeed, if we

estimated the right-hand side of (6.60) as lim infκk(t)→∞
∫
Ω
ϕ1 • ν̂ dx+

κk(t)

2
∥λκk(t)

−L • ν̂∥2H−1(Ω;RM+1)

with some arbitrary ν̂ ∈ Yp(Ω;Rd×d)(thanks to (6.3)), it would seem logical to take ν̂ such that λ(t) =
L•ν̂; then, the penalization term on the right-hand side would become κk(t)∥λκk(t)

(t)−λ(t)∥2H−1(Ω;Rd+1).

However, although we know that ∥λκk(t)
(t) − λ(t)∥2H−1(Ω;Rd+1) converges to 0 as κk(t) → ∞, this no

longer needs to hold if the term is multiplied by κk(t).
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for all ν̂ ∈ Y p(Ω;Rd×d) such that λ = L • ν̂. Now we exploit our special choice of t for

which we know that κk(t)∥λκk(t)
(t)−L •νκk(t)

(t)∥H−1(Ω;Rd+1) is bounded and λκk(t)
(t) →

λ(t) strongly in H−1(Ω;Rd+1), which makes the penalization term vanish. Hence we
establish the converged minimization principle (6.40).

Let us note that the above procedures also gives that E =
∫
Ω ϕ1 •ν(T ) dx, similarly

as we got (5.96) in Step 2 of the proof Theorem 5.12.27

Step 3: Reformulating the flow-rule and passing to the limit in it
Recall that the penalized flow-rule (5.23)28 stated that for v ∈ Lq(Q;RM+1)∫

Q

(
Θ(wκ)−θtr

)
a⃗·
(
v−
.
λκ
)
+ρq(v) dxdt+

∫ T

0

⟨⟨
sκ, v −

.
λκ
⟩⟩
dt ≥

∫
Q
ρq(
.
λκ) dxdt,

where we denoted sκ = κ(λκ − L •νκ). Furthermore, since the functional Qκ(·) is

convex, sκ has to fulfill∫ T

0

⟨⟨
sκ, vκ − λκ

⟩⟩
dt ≤

∫ T

0
Qκ(vκ − L •νκ)−Qκ(λκ − L •νκ) dt, (6.62)

for all vκ ∈ L2(Q;RM+1). Even, demanding (6.62) is equivalent to saying that sκ =
κ(λκ − L •νκ).

Further, let us plug (6.36) with λ0 = L •ν0 into (5.23) to obtain∫
Q

(
Θ(wκ)−θtr

)
a⃗·
(
v−
.
λκ
)
+ρq(v) dxdt+

∫ T

0

⟨⟨
sκ, v

⟩⟩
dt−Qκ(λκ(T )−L •νκ(T ))−∫

Ω
ϕ1 •νκ(T )−ϕ1 •ν0 dx ≥

∫
Q
ρq(
.
λκ) dx dt. (6.63)

Applying lim infκ→∞ on the right-hand side of (6.63) as well as limκ→∞ on the left-
hand side of (6.63) and using (6.56) together with the same ideas as in Step 4 of the
proof Proposition 5.9 leads to:

∫
Q
ρq(
.
λ) dxdt ≤ lim inf

κ→∞

∫
Q
ρq(
.
λκ) dxdt

≤ lim inf
κ→∞

(∫
Q

(
Θ(wκ)−θtr

)
a⃗·
(
v−
.
λκ
)
+ρq(v) dxdt+

∫ T

0

⟨⟨
sκ, v

⟩⟩
dt

−Qκ(λκ(T )−L •νκ(T ))−
∫
Ω
ϕ1 •νκ(T )−ϕ1 •ν0 dx

)
=

∫
Q

(
Θ(w)−θtr

)
a⃗·
(
v−
.
λ
)
+ρq(v) dxdt+

∫ T

0

⟨⟨
s, v
⟩⟩
dt−E +

∫
Ω
ϕ1 •ν0 dx

=

∫
Q

(
Θ(w)−θtr

)
a⃗·
(
v−
.
λ
)
+ρq(v) dxdt+

∫ T

0

⟨⟨
s, v
⟩⟩
dt

−
∫
Ω
ϕ1 •ν(T )−ϕ1 •ν0 dx, (6.64)

i.e. we passed to the limit in the reformulated flow-rule and have obtained 6.41.
Further, let us pass to the limit in (6.62). To this end, we realize that Qκ(λκ −

L •νκ) ≥ 0 and thus, from (6.62),∫ T

0

⟨⟨
sκ, vκ−λκ

⟩⟩
dt ≤

∫ T

0
Qκ(vκ−L •νκ)−Qκ(λκ−L •νκ) dt ≤

∫ T

0
Qκ(vκ−L •νκ) dt.

27Since T is a generic final time, we may chose it in such a manner that (6.53) holds.
28Here already rewritten using our specific form of Qκ and q = 2.
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Let us choose vκ = L •νκ + v−L •ν with any v ∈ LQ;RM+1
such that v(x, t) = L •νx(t)

for a.a. t ∈ [0, T ], a.e on Ω. Then vκ → v strongly in L2([0, T ];H−1(Ω;RM+1)) thanks
to the ideas exposed in the last paragraph of Step 1. Furthermore, with this choice,∫ T
0 Qκ(vκ−L •νκ) dt = 0 identically and thus applying limκ→∞ gives∫ T

0

⟨⟨
sκ, vκ−λκ

⟩⟩
dt ≤ 0 for all v ∈ L2(Q;RM+1)

such that v(x, t) = L •νx(t) for a.a. t ∈ [0, T ], a.e on Ω,

i.e. we got (6.42).

Step 4: Total energy equality
In this step we deduce that the total energy is also conserved in the case when the
limit κ → ∞ has is been applied.

To this end, we exploit that we know, from Step 1 and Step 2, that Qκ(λκ−L •νκ)+∫
Ω ϕ1 •νκ(T ) →

∫
Ω ϕ1 •ν(T ) and the assumtion that λ0 = L •ν0. Thus, the right-hand

side of (6.37) converges to the right-hand side of (6.44) if κ → ∞.
On the left-hand side, we exploit the Aubin-Lions theorem and interpolation as in

Step 7 of the proof Proposition 5.9 to get that, for any δ > 0 small, the traces of wκ con-
verge strongly in L(d+2)/(d+1)−δ([0, T ];L(d2+d−2)/(d2−2)−δ(Γ)) to the traces of w; thus,∫
Σ bΘ(wκ) dS dt→

∫
Σ bΘ(w) dS dt. Next, we employ (6.55) to get that

∫
Ωwκ(T ) dx→∫

Ωw(T ) dx and, finally, (6.49) to get that
∫
Q θtra⃗·

.
λκ dxdt→

∫
Q θtra⃗·

.
λκ dxdt as κ → ∞.

Hence, also the left-hand side of (6.37) converges to the left-hand side of (6.44).

Step 5: Enthalpy inequality
At last, we pass to the limit κ → ∞ in (6.4) to obtain (6.43). To this goal, we only
need to show that∫

Q
(δ∗S(

.
λ) + α|

.
λ|2)ζ dxdt ≤ lim inf

κ→∞

∫
Q
(δ∗S(

.
λκ) + α|

.
λκ|2)ζ dx dt,

for any ζ ∈ C1(Q̄) such that ζ ≥ 0; all other terms in (6.4) can be handled analogously
to Step 4. Let us take any smooth ζ and approximate it by piecewise constant functions
ζk such that

ζk = Ai on Qi,

with Qi pairwise disjoint and Q =
∪

iQi; then ζk → ζ strongly (and also independently
of κ); Ai ≥ 0 since ζ ≥ 0. Then∫

Q
(δ∗S(

.
λκ) + α|

.
λκ|2)ζk dxdt =

∑
i

Ai

∫
Qi

(δ∗S(
.
λκ) + α|

.
λκ|2) dx dt.

Exploiting now weak lower semicontinuity due to (6.49) gives∑
i

Ai

∫
Qi

(δ∗S(
.
λ) + α|

.
λ|2) dx dt ≤

∑
i

Ai lim inf
κ→∞

∫
Qi

(δ∗S(
.
λκ) + α|

.
λκ|2) dxdt

≤ lim inf
κ→∞

(∑
i

Ai

∫
Qi

(δ∗S(
.
λκ) + α|

.
λκ|2) dx dt

)
;

and passing with k → ∞ gives the claim.
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Chapter 7

Numerical implementation of
thermally coupled model

Providing a numerical implementation of the proposed models is important in order
to demonstrate quantitatively or at least qualitatively their predictive capabilities and,
if possible, compare the results to experiments or theoretical predictions. Later, if the
numerical implementation of the model gives satisfactory results, the implementation
can be used to predict responses of the specimen in situations in which an experimental
study would be expensive or even impossible.

Within this chapter, we provide details on numerical implementation of thermo-
mechanically coupled model devised in Chapter 5 based on the existence proof via
time-discretization presented in Section 5.5. To this end, we present details on the used
spatial discretization and implementation of the discrete problem in Section 7.1; here-
in we us ideas from the works (Arndt et al., 2006; Kruž́ık, 1998; Kruž́ık et al., 2005;
Roub́ıček et al., 2007) and others.1 In Section 7.2, we outline the most important dif-
ficulties connected with the numerical solution of the governing equations (5.17) and
propose some strategies to improve computations. Let us note that Section 7.2 is based
on results already published in (Benešová, 2011a).

Finally, in Section 7.3, we present results of a calculation, performed within the
numerical implementation presented here, for the double-well problem; these calcula-
tions were not published before. We chose the double well problem because, in spite
of its simplicity, one can demonstrate a lot of the important predictive capabilities of
the model on it. Nevertheless, a huge drawback of the double well-problem is that it
cannot be related to any SMA material; performing calculations with relevant physical
data thus remains as a challenge for the future.

Although the importance of fast and robust and also easy-to-use numerical imple-
mentations is undeniable, within this thesis we focused rather on model development
and the study of existence of solutions to it. This justifies the restriction to the double
well problem or very simple meshing. Nevertheless, due to the necessity to properly
approximate gradient Young measures, the non-convexity and the non-smoothness of
the problem, obtaining even the presented results is lengthy and requires care, e.g.
in the choice of initial conditions, efficient minimization algorithms, and also a lot of
programming work.

1The numerical implementation presented within this chapter has been “from scratch” programmed
within this thesis building upon the results from (Benešová, 2008); however, several external routines
are exploited e.g. for solving algebraic systems and some minimization problems. While the obtained
code is then easily adjustable at any point, in future it would be advantageous to connect the obtained
code with freely and/or commercially available programs to allow for e.g. automatic meshing and mesh
refinement, optimized storage, automatic differentiation etc.
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7.1 Details on discretization and implementation

Clearly, in order to devise a numerical implementation of thermally coupled model
(5.17) one has to introduce a discretization of the time-interval [0, T ] and also a spatial
discretization of the reference domain Ω.

As far as the time discretization is concerned, we follow Section 5.5 and introduce a
uniform partition 0 = t0 ≤ t1 ≤ t2 . . . tN = T of the interval [0, T ] such that (ti+1−ti) =
τ for i = 1 . . . N and some τ prescribed by the user of the numerical routine.

For the discretization of the reference domain Ω, we assume that Ω is a polyhedral
domain2 ⊂ R3; we then introduce a triangulation τh of Ω formed by a collection of

tetrahedra that we denote {Ki}P (h)
i=1 .3

7.1.1 Discretization of the relevant function spaces

When devising the time-discrete equivalent of (5.17) in (5.103), we introduced the
time-discrete vector of volume fractions, at time-level k, λkτ ∈ L2q(Ω;RM+1), the dis-
crete enthalpy wk

τ ∈ W 1,2(Ω) and the discrete deformation/microstructure (ykτ , ν
k
τ ) ∈

W 1,p
ΓD

(Ω;R3)×GΓD
(Ω;R3×3).4 We shall approximate the functions spaces in which these

state variables lie by spaces of piecewise affine or piecewise constant functions; in par-
ticular, we introduce λkτ,h as an approximation of λkτ satisfying

λkτ,h ∈ Λτ,h =
{
λ̃ ∈ L∞(Ω;RM+1); such that λ̃|Ki

is constant ∀i = 1 . . . P (h)
}
, (7.1)

the approximative enthalpy wk
τ,h is taken from the space

wk
τ,h ∈ Wτ,h =

{
w̃ ∈ C(Ω̄); such that w̃|Ki

is affine ∀i = 1 . . . P (h)
}
, (7.2)

and, furthermore, the discrete deformation ykτ,h is also assumed to be piecewise affine,
however satisfying the prescribed Dirichlet boundary condition, i.e.

ykτ,h ∈ Yτ,h =
{
u ∈ C(Ω̄;R3), such that u|Ki

is affine, ∀k = 1 . . .M

and u(xB) = xB for all vertices xB for which ΓD ∩ xB ̸= ∅
}
. (7.3)

Thus, it remains to devise a discretization of the space of Young measure GΓD
(Ω;R3×3).

For this, we exploit the ideas of Section 2.3 and approximate the gradient Young mea-
sures by laminates of finite order ℓ, i.e.

νkτ,h ∈ G ℓ
τ,h =

{
ν̃ ∈ L∞(Ω;M(R3×3)) such that ν̃|Ki

=

2ℓ∑
i=1

λiδFiwith (λi, Fi)

satisfying the ℓ-th order laminate condition from Definition 2.15.
}

(7.4)

In the presented implementation, the lamination order ℓ can be chosen arbitrarily; in
practise, however, second order laminates are used at most.5

2If Ω was not polyhedral, we had to approximate it by a polyhedral domain. Clearly, one can
approximate any smooth domain by a polyhedral one as precisely as demanded. Also note that, for
implementation we consider only the case d = 3.

3Though generally we could assume that the triangulation varies from time-step to time-step, in
some cases, as when investigating backtracking algorithms as in Section 7.2, we shall need it to be fixed
for the whole evolution. Thus, for simplicity, we shall adopt the assumption of non-varying triangulation
during evolution everywhere within this chapter.

4Recall that for implementation we limit ourselves to the case d = 3.
5This is due to the fact that laminates observed in nature are mostly of the second order (see e.g.

(Bhattacharya, 2003) or (Otsuka and Ren, 2005)).
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Even though, as we stressed in Chapter 2, the set of laminates does not coincide
with the set of gradient Young measures such an approximation is still justified. Namely,
it can be shown that, with mesh refinement, for any ν ∈ G p

ΓD
(Ω;R3×3), a sequence of

νh ∈ G ℓ
τ,h can be found such that νh

∗
⇀ ν in L∞(Ω;M(R3×3)) (Benešová, 2008).

Note that we did not impose any boundary conditions within the space G ℓ
τ,h; we

shall inforce them by requiring that

∇ykτ,h = id •νkτ,h, (7.5)

everywhere on Ω. This condition, actually, needs only to be satisfied element-wise since
both, ∇ykτ,h and νkτ,h, are piecewise constant.

Remark 7.1 (Compatibility of the spatial discretization). Note that the space Yτ,h is
compatible with G ℓ

τ,h in the sense that Yτ,h contains piecewise affine functions; hence the

gradients of functions in Yk,h are piecewise constant – and so are elements from G ℓ
τ,h.

Thus it is possible to satisfy (7.5) everywhere on Ω. Similarly, Λτ,h contains piece-wise
constant functions, which will allow us to demand λkτ,h ≈ L •νkτ,h.

Remark 7.2 (Degrees of freedom). At first glance, introducing a laminate of the ℓth order
and the deformation on one tetrahedron requires to introduce, as degrees of freedom,
2·ℓ matrices Fi, 2·ℓ coefficients λi and the values of ykτ,h in 4 vertices – hence we would
have 2ℓ× 9 + 2ℓ+ 4 × 3 degrees of freedom on one element. Yet, this calculations did
not take into account that Fi are rank-1 connected, that λi sum up to 1 nor that (7.5)
has to be satisfied.

In order to meet all constrains on Fi and λi, we adopt a recursive tree-like procedure
to define the laminate and the deformation through a minimum number of variables,
cf. e.g. (Kruž́ık, 1998). Let us illustrate this procedure for a laminate of order one, for
order two we refer to Figure 7.1 and higher orders can be constructed analogously. In
the case of a laminate of order one, note that the matrices F1 and F2, forming the rank-
1-partition of the deformation gradient ∇ykτ,h, are fully determined by the deformation

gradient itself, a weight λ and two vectors a and n, i.e.6

F1 = ∇ykτ,h + (1− λ)a⊗ n,

F2 = ∇ykτ,h − λa⊗ n.

Thus, only 2ℓ× 7+4× 3 degrees of freedom per element are needed to specify ykτ,h and

νkτ,h.

Having introduced the spatial discretization, the fully discrete analog of (5.17) reads,
in any time-step tk, as:
Find the a quadruple (ykτ,h, ν

k
τ,h, λ

k
τ,h, w

k
τ,h) ∈ Yτ,h × G ℓ

τ,h × Λτ,h ×Wτ,h satisfying (7.5)
and
1.The minimization problem for λ with given λk−1

τ,h , wk−1
τ,h and νk−1

τ,h :

Minimize G(tk, yk−1
τ,h , ν

k−1
τ,h , λ,Θ(wk−1

τ,h )) + τ

∫
Ω
|λ|2q + ρq

(λ−λk−1
τ,h

τ

)
subject to λ ∈ Λτ,h.

 (7.6a)

with G from (5.6).

2.The minimization problem for (y, ν) with given λkτ,h:

Minimize G(tk, y, ν, λ
k
τ,h)

subject to (y, ν) ∈ Yτ,h × G ℓ
τ,h satisfying (7.5).

}
(7.6b)

6Similar relations hold also for the matrices F12 . . . F22 following Figure 7.1.
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Figure 7.1: The scheme of the rank-1-partition of the deformation in case of a second
order laminate; in the figure we denoted F = ∇ykτ,h.

with G defined in (5.93).

3.The enthalpy equation: For all φ ∈ Wτ,h

∫
Ω

(wk
τ,h−w

k−1
τ,h

τ

)
φ+K(λkτ,h, w

k
τ,h)∇wk

τ,h·∇φ dx+

∫
Γ
bkτ,hΘ(wk

τ,h)φ dS

=

∫
Γ
bkτ,hθ

k
ext,τ,hφ dS +

∫
Ω
ϱq

(λkτ,h−λk−1
τ,h

τ

)
φ+Θ(wk

τ,h)⃗a·
(λkτ,h−λk−1

τ,h

τ

)
φ dx. (7.6c)

with bkτ,h, θ
k
ext,τ,h piecewise affine approximations of bkτ , θ

k
ext,τ , respectively.

Then, the cost functions in (7.6a) and (7.6b) are evaluated using some numerical
quadrature7; i.e. (7.6a) and (7.6b) actually represent minimization problem of two cost
functions Rs → R, where s can take values, depending on the number of elements, of
several tens to several thousands. The cost function involved in (7.6a) is convex and
non-smooth, so local search algorithms can be used. The cost function resulting from
(7.6b) is, on the other hand, non-convex so local methods have the tendency to stay
trapped in local minima – it is therefore better to use a global minimization method ;
those, however, are, except for some special cases, only heuristic with no guarantee of
convergence (e.g (Kennedy and Eberhart, 1995) for particle swarm optimization); we
address this issue more in detail in Section 7.2.

Finally, (7.6c) is solved by introducing a Lagrangean first order basis and applying
the standard procedure of the finite element method.

Remark 7.3 (Replacing (7.6a) and (7.6b) by a single minimization problem). For isother-
mal systems, as presented in Section 4.2, we had only one minimization problem on
the discrete level (4.28). This could inspire us to solve instead of (7.6a) and (7.6b) the

7As G ℓ
τ,h and Λτ,h contain piecewise constant functions, the numerical quadrature of the Helmholtz

free energy and the dissipation potential reduces just to a summation of constant values (multiplied
by the measure of the respective element) over all elements. For the volume force term, we adopt the
simple quadrature ∫

Ω

f(tk, x)y(tk, x) ≈
∑

Ki∈τh

1

4

∑
xj∈Vertices of Ki

f(tk, xj)y(tk, xj);

the surface force usually can be treated as in Remark 7.4.
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following minimization problem

Minimize G(tk, y, ν, λ,Θ(wk−1
τ,h )) + τ

∫
Ω
|λ|2q + ρq

(λ−λk−1
τ,h

τ

)
subject to (y, ν, λ) ∈ Yτ,h × G ℓ

τ,h × Λτ,h,

 (7.7)

i.e. we minimize jointly in (y, ν) and λ. Yet, solving (7.7) is not backed by a convergence
analysis conversely to solving (7.6a) and (7.6b) (except for in the convex case). On the
other hand, it can be simply adapted to solving the isothermal rate-independent case;
hence, in addition to (7.6a) and (7.6b) also (7.7) was implemented in the presented
code and it is up to the user to chose the more suitable minimization routine.

Remark 7.4 (Simplifying the numerical quadrature for constant surface forces). Note
that solving (7.6b) implies evaluating the surface integral

∫
ΓN
g(t)·y dS. This, however,

can be avoided if Ω is a prism and g is a constant surface force that acts only the base
side of Ω – we denote n be the unit normal of this side. Then we may rewrite

g·y = ((g ⊗ n)n)·y,

which, by the usage of the divergence theorem, gives∫
ΓN

g·y dS =

∫
Ω
div
(
((g ⊗ n)n)·y

)
dx =

∫
Ω
(n⊗ g)·∇ydx.

For, y ∈ Yτ,h this reduces to∫
ΓN

g·y dS =
∑

Ki∈τk
|Ki|(n⊗ g)·(∇y(tk,Ki)), (7.8)

where we denoted ∇y(tk,Ki) the value of the deformation gradient on the i-th element
as it is constant element-wise. Thus, in this simplified case the numerical quadrature is
much easier.

Remark 7.5 (Choice of the Gibbs free energy/dissipation potential in the numerics).
As soon as it comes to numerical implementation, a specific form of the Helmholtz free
energy and the dissipation potential has to be prescribed. Within this thesis, we follow
(Kruž́ık et al., 2005) and assume ϕ1 given through

ϕ1(F ) = min
i=1...M+1

ψm

with ψm defined through (4.6) with cmV = 0; in the dissipation potential we choose

δS(
.
λ) = r(

.
λ) with r defined through (4.15).

Finally, we have to prescribe the function L determining the vector of volume frac-
tions. We follow (Kruž́ık et al., 2005; Roub́ıček et al., 2007) and work with the following
form

L(F ) =

{
d(|FFT − UlU

T
l |)∑M+1

k=1 d(|FFT − UkU
T
k |)

}M+1

l=1

, 8 (7.9)

Further, the function d ∈ C(R) is chosen such that outside a sufficiently small interval
[−ϵ, ϵ] it is equal to 0, Further, the norm |·| is the Frobenius norm9 for matrices. Such a
definition of the function L ensures, roughly speaking, that as soon as the deformation
gradient – or rather the matrices forming its rank-1 decomposition in the sense of a
laminate – are near to the well of some variant, volume fractions are assigned to this
variant.

8Recall, that U1 . . . UM are distortion matrices corresponding to the variants of martensite; UM+1

is the distortion matrix of austenite.
9Recall that for a matrix A ∈ R3×3 the Frobenius norm is |A| =

√∑3
i,j=1 a

2
ij where {aij}3i,j=1 are

the elements of the matrix A.
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7.1.2 Used algorithms and notes on implementation

In this section let us give very brief notes on the code that solves the problem (7.6a)-
(7.6c); this code is an extension of the one implemented in (Benešová, 2008) following
the ideas if (Kruž́ık, 1998; Roub́ıček et al., 2007). We also sketch which algorithms have
been implemented.

The code has been written in C++ using the concept of object-oriented program-
ming – to describe it, we are hence entitled to introduce only the most important classes
of the code.

• The class CombinedHeatAndDeformationModel is the main class of the code,
that manages all the classes presented below, used for solving (7.6a) - (7.6c):
It reads in results from the last computational step (if appropriate), boundary
data, material data and sets up the problem by initializing all variables needed
for computation. The class is designed in such a way that only routines of this
class have to be called by the user in the main program – in particular, its routine
SolveTheCombinedSystemAndWriteData solves (7.6a) - (7.6c) and exports results
in VTK-format so that they may be used for visualized in open source programs
such as ParaView or MayAvi. Further, the class provides also routines to solve
only (7.6c) or only (7.6a)-(7.6b). Finally, backtracking (cf. Section 7.2) is also
handled within this class.

• The class IsothermalModel is responsible for solving of (7.6a) - (7.6b), alterna-
tively it can also solve (7.7) which is advantageous when temperature is considered
fixed. It includes built-in functions to perform the rank-1-decomposition of the
deformation gradient (cf. Remark 7.7), calculate the mechanic energy as well as
to minimize it.

• The class HeatEquation is responsible for solving the enthalpy equation (7.6c)
– hence, it sets up the algebraic equation corresponding to this finite element
problem and solves it by exploiting the external routine dgesv from CLAPACK
(downloadable at http://www.netlib.org/clapack).

• The class Mesh reads mesh file given to the code; this has to be provided by an
external meshing program – unfortunately the code is not able to do any meshing
by itself; we use the external package NetGen
(downloadable at http://www.hpfem.jku.at/netgen/).

• The class Material stores all information about the current material, namely the
distortion matrices of each variant, elastic constants, the transformation entropy
and the specific heat capacities. It is able to read in this information from a data
file and save it to appropriate variables.

Besides these main classes the code uses also some helping classes for visualization
and for handling vectors or matrices.

Remark 7.6 (Privacy in classes). Most of the built-in functions as well as variables
of the classes described above are set to be private, which disables the user to alter
them (for variables) or call them (for functions) in the main program. This is done
to assure security as it prevents users from changing accidentally the computation
variables during evaluation.

Remark 7.7 (Implementation of laminates). In the implementation of the rank-1 decom-
position of the deformation gradient we follow the scheme in Figure 7.1 and (Roub́ıček
et al., 2007) which suggest to use the structure of a binary tree. G(tk, y

k
τ,h, ν

k
τ,h, λ

k
τ,h)
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is then evaluated recursively when using the scheme from Lemma 2.8. This recursive
implementation is advantageous, since it allows for usage of laminates of any order –
the order of lamination is chosen at setup of the problem. Moreover, it does not matter
whether the binary tree used is symmetric or non-symmetric.

Remark 7.8 (Minimization algorithms). An important issue is the choice minimization
algorithms for solving (7.6a), (7.6c) or, alternatively, (7.7). Note that this issue is highly
non-trivial because (7.6a) includes a non-smooth (albeit convex) objective and in (7.6c)
(and similarly in (7.7)) a highly non-convex objective is subject to minimization. In
both cases, the number of degrees of freedom can reach up to several thousands even
for coarse meshes. So, the minimization problem combines most of the difficulties in
numerical optimization.

For (7.6a), being convex, local search algorithms can be applied, we use an enhanced
version of L-BFSG (downloadable at http://www.chokkan.org/software/liblbfgs)
that also includes the Orthant-Wise Limited-memory Quasi-Newton algorithm that can
be used for minimizing an objective that is the sum of a smooth convex function and
the absolute value.

For (7.6b) or (7.7), we use either local methods or stochastic as well as population-
based methods; cf. Section 7.2 for details.

7.2 Computation difficulties and optimization

As already indicated, solving (7.6b) or (7.7) is the most difficult task when obtaining
numerical solutions to the system (5.17) (for thermally coupled case) of the system
(4.18)-(4.19) (for the isothermal case). Originally, in (Benešová, 2008) (and also in
previous works as (Kruž́ık, 1998; Kruž́ık et al., 2005; Roub́ıček et al., 2007)) (7.7) was
solved just by a gradient descent method, which, due to the strong non-convexities of
the involved cost functions, led to satisfactory results only for special loading situations
and if special care has been paid to designing initial conditions.

Therefore, already in (Benešová, 2008), some possible strategies were developed to
enhance the search for global minima, these have been further extended within the
work on this thesis. In this section, hence, let us summarize the developed optimization
strategies for the isothermal case, i.e. solving “just” (7.7), and comment which of them
can generalized to thermally coupled case. Let us note that this section is based on
(Benešová, 2011a), elaborated within the work on this thesis.

7.2.1 Comparing (7.7) to other problems exploiting global optimiza-
tion, choice of optimization algorithms

Global optimization plays an important role in a number of applications like in curve
fitting or the famous travelling salesman problem; so, one could try to exploit some
methods proposed in these cases also for the minimization problems considered here.
However, when trying to find discrete solutions to (4.18)-(4.19) through solving (7.7),
we do not have to solve just one minimization problem but rather a sequence of these
problems within which the objective slowly changes; hence, the problems falls within
the class global optimization problems in a dynamic environments with an objective
function that experiences a jump at every time-step. Similarly, solving (7.6b) represents
a sequence of minimization problems with the cost function changing in a jump-like
manner.10 Even in this special class of optimization problems, a large amount of research

10In the isothermal case, the “jump-like character” of the change of the objective function cannot be
avoided, since for continuous time the energetic solution satisfies only the stability condition (and the
energy equality), which does not pose a global optimization problem anymore. In thermally coupled
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has been carried out recently (see e.g. (Blackwell, 2003; Branke, 2002, 2011; Cobb and
Grefenstette, 1993; Grefenstette, 1992) and references therein).

Within the class of global optimization problems in dynamic environments, several
sub-classes can be distinguished depending on how the cost function changes (Tro-
janowski and Michalewicz, 1999)11. The problems (7.7) as well as (7.6b), that need
to be solved here, fall within the category for which changes are non-random but not
predictable12.

For an illustration of the complexity of (7.7), it might be helpful to compare (7.7)
to a standard benchmark in global optimization in dynamic environments, namely
the Moving-peaks problem13; a pronounced difference, making (7.7) (as well as (7.6b))
more complicated, is the size of the state space. While the moving peaks benchmark
supposes that the dimension of the state space is of the order of tens at most, the
dimension of Yk,h × G ℓ

τ,h is typically in the order of hundreds to thousands, depending
on the mesh-size. Further, what makes (7.7) (as well as (7.6b)) especially difficult is
the “path-dependence” i.e. the dependence of the objective function on the previously
found optima. Because of that, the minima of the cost function at time-step k are
directly comparable, only if all preceding states of these two were the same. Such a
situation is not covered by the moving-peaks benchmark nor the problems considered
in the references above.

On the other hand, when solving (7.7) or (7.6b) one can assume that the minimizer
in time-step k qkτ,h = (ykτ,h, ν

k
τ,h, λ

k
τ,h, w

k
τ,h) will lie in some neighbourhood of the solution

from the last step qkτ,h = (ykτ,h, ν
k
τ,h, λ

k
τ,h, w

k
τ,h), in the moving peaks problem, the cost

function can change randomly. Yet, this assumption is rather intuitive, because we were
not able to prove in-time continuity of weak solutions to (5.17) nor (4.18)-(4.19); thus
even large jumps on the discrete setting are, in principle, not excluded.

Even though the minimization problem posed in (7.7) (or (7.6b)) seems to be more
complex than standard global optimization problems solved in dynamic environments,
it is still useful to study the type of minimization algorithms used in literature. It has
been proposed that population-based14 algorithms, altered in some suitable way during
the computation, are especially suitable for this context (see e.g. (Branke, 2002, 2011)).

Thus, we adapted three different minimization routines for solving (7.7) or (7.6b): a
gradient descent algorithm15, the simulated annealing method16 that is stochastic but

case, even in the continuous case (5.22) represents a global optimization problem, however coupled to
other equations.

11In (Trojanowski and Michalewicz, 1999) the author distiguishes between random changes, non-
random changes that are so complex that they cannot be predicted and predictable changes.

12The change of the cost function (7.7) cannot be a-priori determined due to the dissipation term,
the time-dependence of which is unknown prior to evolution. Similarly, when solving (7.6b) the cost
function depends on time also through the prescribed λk

τ,h, which is determined through yet another
minimization problem and influenced by the evolution of the enthalpy that is not known prior to the
start of the evolution

13More information on this benchmark can be found here:
http://people.aifb.kit.edu/jbr/MovPeaks/movpeaks.

14Those are optimization algorithms that work, in each search iteration, with a group of current
solution candidates rather than just one (Onwubolu and Babu, 2004). For example, genetic algorithms
(Goldberg, 1989) or algorithms based on swarm intelligence as stochastic diffusion search (Bishop,
1989) or particle swarm optimization (Kennedy and Eberhart, 1995) fall into this category.

15Following (Benešová, 2008; Kruž́ık et al., 2005; Roub́ıček et al., 2007), we implemented the L-
BFGS-B algorithm (Byrd et al., 1995; Zhu et al., 1997), a limited memory gradients descent algorithm
allowing for bounds. The gradients for this algorithm are provided by automatic differentiation through
the ADOL-C routine (Walther et al., 2003), for more information on automatic differentiation see e.g.
the works (Griewank et al., 2000; Griewank and Walther, 2008) by the authors of ADOL-C.

16Simulated annealing was first proposed in (Černý, 1985; Kirkpatrick et al., 1983) and we imple-
mented a variation of this algorithm that follows the ideas described in the preliminary work, only the
neighborhood determination is altered to suit the given problem. Namely, a state from the neighborhood
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not population based and the population-based particle swarm optimization method17.
As can be seen from calculations in Subsection 7.2.3 the population-based particle
swarm optimization routine outperforms simulated annealing that, again, performs bet-
ter than the local gradient descent.

Remark 7.9 (Tailoring particle swarm optimization to dynamic environments). Let us
note that the population-based particle swarm optimization method has originally been
proposed for minimization in non-changing environments, however extensions exist also
for dynamic environments (e.g. (Blackwell, 2003)). The authors of these generalizations
are generally concerned with the question on how to alter the swarm in every time-
step – two extremal approaches lie at hand: erase all information from all particles
and practically restart the whole minimization ignoring all information obtained about
the shape of the cost function in the last time-step or, on the other hand, keep the
same swarm (with the same history) relying on the idea that the particles will react to
the change of the cost function and find the changed global optimum. While the first
approach is not effective, the second might not work.18 So, in our situation we use some
compromise between the two approaches (however nearer to the first extremum, since
we are unable to estimate how large the change of the cost function will be in every
time-step) through an appropriate choice of the initial guess.

Remark 7.10. Most of the existing, and in particular the three implemented, minimiza-
tion algorithms are iterative and need an initial guess. By an initial guess we mean either
a single state in the state space from which the iteration starts (as for e.g. gradient-
descent, simulated annealing, tabu search) or an initial distribution of particles (as for
e.g. particle swarm, ant-optimization, stochastic diffusion) depending on the selected
minimization method . By choosing the initial guess according to another state in the
state space S (typically a optimum in some time-step) we mean that this initial guess
is equal to S if the minimization method requires a single state as initial guess. If the
method requires an initial distribution of agents, then we choose the positions of all
but one agent randomly in some neighborhood of S. The initial position of one single
agent is then equal to S.

7.2.2 Backtracking and multigrid methods

Recall, that we assume that the spatial-discretization is the same throughout the evo-
lution. Then, from (7.7) if α = 0, i.e. if we are treating the rate-independent case, we
can deduce the following inequalities by the same procedure as when deducing 4.35 in

of a given state is chosen by changing one random component of the state vector.
17The particle swarm optimization method is a heuristic, stochastic, derivative-free global optimization

method. It works iteratively, when in each step it modifies the positions and velocities of current
candidate solutions, referred to as particles, based on their own current position and the positions of
(some) other particles from the swarm. The method has been proposed in (Kennedy and Eberhart,
1995) and has been widely applied since then (see e.g. the monograph (Clerc, 2006)). For our purposes,
we implemented the standard particle swarm optimization (2006) (see http://www.particleswarm.

info/Standard_PSO_2006.) with the change that each particle has knowledge about the best position
found by the whole swarm.

18Usually, one encounters the problem of outdated memory (i.e. the history particles remember is no
longer valid due to the change of the environment) and the problem of lost diversity (i.e. due to the
fact that the swarm has converged all particles have been drown to a small area) (Blackwell, 2003; Hu
and Eberhart, 2002).
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where we shall refer to (7.10) as the lower energy inequality while we shall call (7.11)
the upper energy inequality. Let us note that, whereas an equivalent to (7.11) could be
deduced also from (7.6b), (cf. 5.112); the inequality (7.10) relies on solving (7.7) in the
rate-independent case.

Let us, thus, restrict our attention to the rate-independent case in which we are
searching for solutions to (7.7) – as (7.10)-(7.11) form some zero-order necessary con-
ditions for solutions to (7.7), one can enhance the search for of solutions to (7.7) by
verifying the estimates in every time-step; within this section, we propose a backtracking
strategy based on (7.10) and a combined backtracking and multigrid strategy based on
(7.11). Furthermore, let us stress that, not only this verification enhances optimization,
but it also assures conservation of energy, a fundamental physical principle.

Finally, let us just remark that the backtracking strategy cannot be applied to
the rate-dependent (7.6b) (since an equivalent of (7.10) is missing) while the multigrid
strategy could be used if, of course, backtracking is omitted on both the fine and the
coarse mesh.

The strategy of backtracking has already been used before in the context of rate-
independent processes in (Mielke et al., 2010) in a damage problem. The combined
strategy of backtracking and multigrid, was first presented in (Benešová, 2011a) ob-
tained within the work on this thesis.

Backtracking strategy

From the proof (7.10) (see (Benešová, 2011a; Francfort and Mielke, 2006)), we can
deduce that (7.10) verifies whether the optimum found in the k-th step would not give
a smaller value of the cost function in the (k−1)-th step than the optimum found there;
i.e. it verifies whether the minimization algorithms was not trapped in a local minimum
in the (k−1)-th step which could only be escaped in the k-th step.

For example, suppose that our aim is to minimize the energy19 that initially was a
convex function with one global minimum. In the next time-step a further local mini-
mum emerges, which becomes global in time-step 3 and 4; the situation is schematically
depicted in Figure 7.2. In this Figure, the black dot represents the state found as opti-
mal by a local search algorithm 20 with a choice of initial guesses as chosen according to
the optimum found in the last step, cf. Remark 7.10. Since the algorithm stays trapped
in the local minimum in step 3 and escapes it only in step 4, in step 4 the lower energy
inequality would not be satisfied.

Assume that the initial guess for an (iterative) optimization method is chosen ac-
cording to the optimum from the last step, cf. Remark 7.10. If then the lower energy
inequality is not satisfied, the following strategy of “backtracking” will be used: the al-
gorithm returns to the previous time-step and the initial guess is given to the algorithm
according to the current state qkτ,h – schematically this is shown in Figure 7.3.

19Let us omit the dissipation, for simplicity.
20Even using a population-based algorithm could lead to the same result, if the region in which the
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(a) Situation without backtracking (b) Situation with backtracking

Figure 7.2: Example of an evolution of the energy when the two-sided energy inequal-
ity will not be satisfied, the black dot denotes the state evaluated as optimal by the
algorithm.
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Figure 7.3: A scheme of the strategy of backtracking shown on one specific time-step.
The arrows show the proceeding of the algorithm.

Note that if (7.10) was not at our disposal, we could not decide whether it is sensible
to perform backtracking in the current step. Of course, one could try to backtrack
“preventively” in every time-step, but this would be very ineffective. To this end, let
us also remark that it would not help, if we could establish (an equivalent to) (7.11)
since this inequality is satisfied automatically if the initial guess is chosen according to
the last step’s optimum.

Finally, let us remind the reader that backtracking strategies are well known when
searching for an optimizer of some objective ((Golomb and Baumert, 1965) or e.g.
(Bourdin, 2007; Bourdin et al., 2008)) or more generally when solving computational
problems in which solutions are build incrementally – it was first introduced in (Walker,
1960). In the general setting, a satisfaction criterion is found the partial solution has to
satisfy; the solution vector is then constructed according to this criterion. If there are,
however, no admissible solution in the k-th step satisfying the satisfaction criterion,
one has to backtrack one or several steps and select some components of the partial
solution vector differently to be able to fulfill the satisfaction criterion in the k-th step.
In our case this criterion is (7.10) – in contrast to the general case however, our method
provides a hint on how to construct the preceding states when backtracking is needed;
in the general setting the preceding states are chosen randomly.

initial population is distributed was too small.
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Combined backtracking and multigrid strategy

Particularly on fine meshes, where the number of degrees of freedom of the minimization
algorithm is huge,21 a local search algorithm may escape the “local minimum trap” only
after a very long time (and perhaps never) – in such a case, (7.10) is satisfied until some
local minimum is escaped, so it looses its selectivity.

Moreover, using population-based methods on fine-meshes is very time-consuming,
since the number of particles has to increase with number of degrees of freedom to allow
these methods to effectively search in the state space.

Thus, we propose a straightforward, but effective strategy that can be used to
handle fine meshes – namely, the strategy of successive refinement of meshes referred
to as multigrid strategy, possibly combined with backtracking. This strategy falls into
the category of multilevel methods that were first introduced in the context partial
differential equations (Brandt, 1977), but later also applied to optimization problems
(see e.g. (Hager et al., 2006)), here of course we adapted the strategy to our context.
Let us remark that the multigrid strategy can be applied to the rate-independent case
governed through (7.7) (here it can be combined with backtracking) as well as to the
rate-dependent case governed through (7.6a)-(7.6b) since an equivalent to (7.11) is
available in this case.

To be more specific, the multigrid strategy works as follows: first the simulation is
run on a coarser mesh; the strategy of backtracking is used throughout the calculation,
if appropriate. Then the simulated optimal states are extrapolated to a finer mesh.
Of course, the extrapolation has to suit the numerical discretization, here we, e.g.,
extrapolate piecewise affine variable by affine interpolation whereas piecewise constant
variables are interpolated constantly. The initial guess while running the simulation on
the finer mesh is then given to the algorithm according to this extrapolated state in
each time-step.
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                fine mesh
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       zation in time-step i
   according to the optimum
          from time-step i-1,
                fine mesh

Figure 7.4: A scheme of the multigrid strategy combined with backtracking shown on
one specific time-step. The arrows show the proceeding of the algorithm.

Again, during the second simulation on a finer mesh, the strategy of backtracking
is still used22, however needs a little bit more care because we need to distinguish
between the violation of (7.10) and (7.11). In the former case, we proceed standardly
as before; in the latter case however the current time-step is minimized once again,
but now using an initial guess according to the optimum found in the last step on the

21On the meshes we call fine in this section, the dimension of the state space reaches the order of
thousands, which, for global optimization, is an extremely large state space.

22Clearly, only in the rate-independent setting when (7.10) is at our disposal
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Figure 7.5: A typical landscape of a 2-well potential. Here for simplicity the space R3×3

is shown only one-dimensional

fine discretization – the situation is schematically shown in Figure 7.4. Finally, let us
remark that violation of (7.11) is handled the same way, even if backtracking is not
available.

7.2.3 Computational examples

As already announced in the introduction to this chapter, we test the proposed al-
gorithms on the so-called two-well problem – this corresponds to choosing m = 2 in
Remark 7.5; for illustration, ϕ1 corresponding to this choice is depicted in Figure 7.5.
Following (4.6) and Figure 7.5, we denote the matrices at which the wells of ϕ1 lie as
U1, U2 and assume moreover that U1 and U2 are rank-1 connected, i.e. satisfy 2.27.
Note that the two-well potential is perhaps the simplest representant of a non-convex
Helmholtz free energies used in mesoscopic SMA modelling that still brings most of
the relevant difficulties with it – physically U1 and U2 correspond to two variants of
martensite. Also, let us remind the reader that the calculations here we performed
within the rate-independent setting using (7.7).

The computations are then performed within the code described in Section 7.1, when
choosing the order of lamination ℓ as 1. Finally, we add that the graphs representing
the results have been reprinted from (Benešová, 2011a).

Simulations on a coarse 18-element mesh

To examine the efficiency of the algorithm depicted in Figure 7.3 (and the efficiency
of stochastic and/or population based minimization), we perform the following loading
experiment: we take a, initially stress free, cuboid specimen subject to a volume force
increasing in time, at two opposite faces, however, zero Dirichlet boundary conditions
for the displacement are prescribed. Further, we divide the evolution into 2000 time-
steps and introduce a 18-elements mesh23; in each time-step we prescribe the initial
guess for the used iterative minimization algorithms according to the optimum found
in the last step.

As for minimization algorithms, we compare all three implemented algorithms i.e.
gradient-descent, simulated annealing and particle swarm optimization – we expect that

23This leads to approx. 150 degrees of freedom for minimization.
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the latter two will need less backtracking work, since they have the ability to escape
local minima.

To illustrate the effectiveness of backtracking when using gradient-descent, we give,
in Figure 7.6, a comparison of the gained energy evolution24 in the case when back-
tracking is used as well as in the case when it is not. Clearly, the energy is (more than
1000 times) lower when using the strategy of backtracking compared to the case when
it is not.

Notice that the points where backtracking starts are characterized within the gained
energy evolution (compare Figure 7.6 on the right) by “deep falls” of the gained energy
– these deep falls correspond to escaping of the local minimum trap.

Finally, we add that, due to the large amount of backtracking work, the calculation
of the whole evolution took approximately one week on a ordinary PC.
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Figure 7.6: Comparison of the gained energy evolution on a coarse 18-element mesh
using gradient-descent as minimization algorithm. On the right the strategy of back-
tracking has not been used, on the left it has. In the case when backtracking is used,
we use the name returning point for a point in the calculation in which backtracking
has been yielded; thus, the e.g. the returning point 327 corresponds to the point when
backtracking is used for the 327-th time in the calculation. Note that the scaling of the
y-axis on the left and on the right is different.

Remark 7.11 (Comparison to (Mielke et al., 2010)). As already seen from Figure 7.6,
the number of returns (i.e. the number of times when backtracking is started) in the
presented simulation is huge and reaches more than 1000. This number is especially
striking when compared to the first usage of an algorithm similar to the one depicted
in Figure 7.3 in (Mielke et al., 2010)25, where only one return has been observed.
Also, in (Mielke et al., 2010) the strategy of backtracking has been useful to calculate
the intermediate states between the start of the calculation and the returning point. In
time-steps following this point the calculated states would not be affected by verification
of the two-sided energy inequality and backtracking. Yet, in the case of the two-well
problem, the situation is completely different. Only due to backtracking the algorithm
“gets on the right track” – the results are completely different in all time-steps when
the strategy of back-tracking is used compared to when it is not.

When using simulated annealing as minimization procedure, again a huge amount
of backtracking, namely 660 returns, were needed. Still, in comparison with the case
when using gradient descent for minimization, this amount could be reduced to a half.

24By the gained energy we understand the cost function in (7.7) for some time-step k.
25In (Mielke et al., 2010) also a gradient descent algorithm was used; however, since the cost function

was separately convex an altering directions algorithm due to (Bourdin, 2007; Bourdin et al., 2008)
could be exploited.
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Yet, because one iteration using simulated annealing took longer, it took two weeks on
a usual PC to perform the computation.

Rather then comparing the gained energy evolution in the case when simulated
annealing is used as minimization algorithm (with and without backtracking), we shall
give a comparison of the microstructure26, which we present in Figure 7.9. In this figure
a comparison of the evolution of the volume fraction is shown by the gray-scale of the
specimen; the wireframe on this specimen indicates the used mesh. The microstructure
on two selected elements is shown on two separate cubes; the chosen elements are
indicated by arrows.

Within the simulation using particle swarm optimization, backtracking work could
be significantly lowered, in fact only 50 returns were observed.27 This is demonstrated
also in Figure 7.7 where an evolution of the overall gained energy is presented – we
see that the gained energy value after 80 time-steps when using and when not using
backtracking are much nearer to each other than when using gradient descent. On the
other hand, since one iteration took longer than in the preceding two cases, it took 4-5
days to perform the calculation on an ordinary PC.
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Figure 7.7: Energy evolution using particle swarm optimization. The energy when using
and when not using backtracking is given.

To decide which algorithm is best suited for our purposes, we compare the final28

gained energies in Figure 7.8; it can be clearly seen that while particle swarm optimiza-
tion and simulated annealing lead to practically identical results, they both outperform
the gradient-descent which is, again, connected to their ability to escape from local
minima traps.29

When turning to computation time, particle swarm optimization as minimization
routine yielded the fastest computation, the second fastest was the usage of gradient-
descent and the slowest the usage of simulated annealing. However, as the number of
swarming particles is dependent on the dimension of the state space, for finer meshes

26The evolution of the gained energy is (qualitatively) very similar to the one given for the case
when using gradient descent, and, on the other hand, the evolution of the microstructure when using
simulated annealing is similar to the one when using gradient descent. So, we give each evolution
calculated by a different minimization algorithm.

27A reason for not needing so much backtracking work, is our choice to take the initial position of all
but one particles randomly in every time-step. It is probable that if we chose randomly a smaller part
of the population as in (Hu and Eberhart, 2002), more backtracking work would be required.

28I.e. after all backtracking is completed.
29For the same reason, the amount of backtracking work is lowered.
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Figure 7.8: Comparison of the evolution of the gained energy when using three different
minimization routines.

the calculation using this minimization routine could be very slow – this could be
resolved by implementing a multigrid as in Figure 7.4 using an agent-based method on
the coarse mesh and simulated annealing or gradient-descent on the fine mesh.

Simulations on a fine 144-element mesh

On the fine 144-element mesh30 we exploit the strategy from to Figure 7.4; i.e., we use
the results of the simulation using particle swarm optimization from the calculations on
the 18-element mesh, extrapolated adequately, as initial guesses in a calculation using
the same data as in the previous section but performed on a finer 144-element mesh. For
the sake of verification, we performed the same calculation also in a standard manner
following the algorithm depicted in Figure 7.3 and not using calculations on the coarser
mesh at all. In both cases we used gradient-descent as minimization routine.

A first difference between the two approaches is in computation time: whereas the
simulation using the multigrid strategy took about one day and brought satisfactory
results31 the strategy following just the algorithm depicted in Figure 7.3 was interrupted
after three weeks, still not giving satisfactory results.

Also, Figure 7.10, showing the comparison of the microstructure evolution when the
multigrid strategy has and has not been used, shows the effectiveness of the multigrid
method. Indeed, when not using the multigrid strategy, the phase transition starts at
a later point and does not complete in the two thirds of the specimen until the end
of the loading cycle; in the case when we employed the multigrid strategy the phase
transition did complete.

30The mesh is called fine, since the number of degrees of freedom is 1260, which is a large number
for minimization.

31Here the time needed for the calculation on the coarse mesh is not included; if counted, the com-
putation time is about one week.
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(a) Time-step 0, back-tracking (b) Time-step 0, no back-tracking

(c) Time-step 15, back-tracking (d) Time-step 15, no back-tracking

(e) Time-step 99, back-tracking (f) Time-step 99, no back-tracking

(g) Time-step 660, back-tracking (h) Time-step 660, no back-tracking

Figure 7.9: Comparison of the evolution of volume fractions and microstructure on
a coarse 18-element mesh using simulated annealing as minimization routine. On the
right the strategy of backtracking has not been used, on the left it has.



7.3 Illustration: Computation in thermally case for the
two-well problem

To illustrate, at least qualitatively, the capabilities of the mesoscopic thermally cou-
pled model for SMAs devised within this thesis in Chapter 5 as well as its computer
implementation, we provide in this section computed results for the two-well problem
as already introduced in the beginning of Subsection 7.2.3.

Furthermore, we make the assumption that the phase corresponding to well the U1

is preferred at higher temperatures, while the phase U2 is preferred at lower ones. In
particular, we assume that the phase corresponding to U2 is stable below 10K, while
U1 is stable above this temperature – i.e., in this setup, θtr = 10.32 We chose this setup
since it represents the simplest possible way to simulate the mechanical deformation
due to phase transition that was induced by heat supply.

Let us stress, however, that our setup does not correspond to a crystalline structure
of any SMA-material because in none of the known SMA materials the matrix repre-
senting the austenite phase can be rank-1 connected to the matrix representing some
variant of martensite. Nevertheless, including more wells, which would correspond to
physically relevant cases, bears even more non-convexity than the two-well problem
and requires time-consuming computations and possibly even more optimization than
was done so far. Yet, principally, the developed code presents a good basis to launch
even these lengthy computations. As, in this thesis, emphasis was laid mainly upon the
mathematical analysis of thermally coupled model for SMAs (5.17), we believe that
presenting calculations only for the illustrative two-well problem is sufficient.

During all simulations we solve (7.6a)-(7.6c) with the order of lamination chosen
as 1. To improve the search for global optima of (7.6b) we exploit a particle swarm
optimization algorithm; however, as outlined in Section 7.2, the strategy of backtracking
is not available for this situation. As far as meshing is concerned, we use a coarse mesh
having 18 elements.

We chose, for illustration, a canonical loading experiment in which thermo-mechanical
coupling manifests itself. Initially, the specimen is held at transformation temperature
θtr and consists of a laminate of the phases described by the matrices U1 and U2. In
150 sequential time-steps then a (negative) heat flux is applied on the upper face of
the boundary that gradually cools the specimen from 10K to 9.8K, which forces it to
transform to the phase U2.

The results of the simulation are shown in Figure 7.11; there the same specimen is
shown, with a wireframe representing meshing, two times next to each other – on the
right the specimen is coloured according to the temperature in the specimen, on the left
according to the volume fraction of U1. On the left in the bottom the microstructure
on one chosen element is shown – the selected element is indicated by an arrow.

It can be observed that the negative heat flux cools the upper elements first, so they
transit first into the phase U2 and force a deformation in the upper elements. Ones the
negative heat spreads to the lower elements, these transform as well.

32Of course, the transformation temperatures of common SMAs do not lie so low. However, as
explained below, the two well setup does not correspond to physical SMAs, so we are entitled to choose
any arbitrary value here.



(a) Time-step 0, multigrid (b) Time-step 0, no multigrid

(c) Time-step 30, multigrid (d) Time-step 40, no multigrid

(e) Time-step 40, multigrid (f) Time-step 230, no multigrid

(g) Time-step 130, multigrid (h) Time-step 1200, no multigrid

Figure 7.10: Comparison of the evolution of volume fractions and microstructure on a
fine 144-element mesh. On the right the multigrid strategy has not been used, on the
left it has. Note that the time-steps depicted on left and right are different.



(a) Time-step 0 (b) Time-step 15

(c) Time-step 40 (d) Time-step 50

(e) Time-step 70 (f) Time-step 150

Figure 7.11: Phase transition induced by cooling. Here a negative flux is applied on the
upper face of the specimen that gradually forces a phase transition.
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Sedlák, P., Frost, M., Ben Zineb, T. and Šittner, P. (2010), Thermomechanical models
for NiTi shape memory alloys and their applications, in ‘Proceedings of the ASME
2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems’.
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Šilhavý, M. (1997), The Mechanics and Thermodynamics of Continuous Media, Texts
and Monographs in Physics, Springer.
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