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Title: Numerical solution of a Fredholm integral equation of the second kind
related to induction heating

Author: Josef Rak

Department: Department of Numerical Mathematics

Supervisor: Doc. RNDr. Josef Kofroň, CSc, Department of Numerical
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Introduction

This thesis deals with solution of a Fredholm integral equation of the second kind
with a singular kernel function. The kernel has a special type of singularity called
diagonal singularity. Many numerical methods were developed for solving integral
equations of the second kind. In this thesis is examined application of collocation
and modified Nyström method. The main goal of this thesis is the proof of
convergence, error estimation of modified Nyström method and comparing error
behavior of both methods in case of diagonal singular kernel function.

Fredholm integral equations of the second kind describe many physical
problems. One example is the integral equation for computation of the eddy
currents of density in induction heating problem, which are needed to compute
the specific Joule losses in the heated body (explained in [9]). The Joule losses
are necessary for calculating temperature distribution in the body.

Another purpose of this thesis is the proof of existence and uniqueness of the
solution of the eddy currents of density, applying collocation and Nyström method
for the induction heating problem, showing its convergence and computation of
illustrative example.
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1. Induction heating model
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Figure 1.1: Heated body and coil.

A bounded metal body Ω1 with a Lipschitz-continuous boundary is heated
by external electromagnetic field produced by inductor Ω2 (see fig. 1.1). The
inductor is formed by a conductor of general shape and position that carries
harmonic current. Due to absence of ferromagnetic parts all electromagnetic
quantities may be expressed in terms of their phasors.

The derivation of mathematical model was showed in [9]. Let us here rewrite
most important facts. Let’s choose a point x = (x1, x2, x3) within the metal

body. Phasor
−→
A of the potential

−−→
A(x) at this point is given by superposition

of two components generated by the field current Iext in the inductor
−−−→
A(sx) and

eddy currents of density Jeddy produced within the body
−−−→
A(tx). The symbol

t = (t1, t2, t3) means another point in the body (different from x)
and s = (s1, s2, s3) is a point at the inductor.

−−→
A(x) =

−−−→
A(tx) +

−−−→
A(sx), (1.1)

where

−−−→
A(sx) =

µ0Iext
4π

∫
Ω2

dl(s)√
(x1 − s1)2 + (x2 − s2)2 + (x3 − s3)2

,

−−−→
A(tx) =

µ0

4π

∫
Ω1

Jeddy(t)√
(x1 − t1)2 + (x2 − t2)2 + (x3 − t3)2

dt1dt2dt3.

Here µ0 is the permeability of vacuum, dl(s) a length element of the inductor.
All remaining quantities follow from fig. 1. For future use let us sign

r(x, t) =
√

(x1 − t1)2 + (x2 − t2)2 + (x3 − t3)2

and
r(x, s) =

√
(x1 − s1)2 + (x2 − s2)2 + (x3 − s3)2.
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The Maxwell equations [8] yield that

rotE = −∂B

∂t
(1.2)

and
div(B) = 0 (1.3)

where E is called electric field intensity and B is called magnetic induction.
Operators rot and div for F = (Fx1 , Fx2 , Fx3) expressed in cartesian coordinates
are

rotF = ∇× F =

(
∂Fx3

∂x2

− ∂Fx2

∂x3

,
∂Fx1

∂x3

− ∂Fx3

∂x1

,
∂Fx2

∂x1

− ∂Fx1

∂x2

)
and

div F = ∇ · F =
∂Fx1

∂x1

+
∂Fx2

∂x2

+
∂Fx3

∂x3

.

Due to (1.3) we can use that
B = rotA

and by (1.2) we have

rotE = −∂rotA

∂t
. (1.4)

Interchanging the order of operators rot and ∂/∂t in (1.4) (this can be done,
because all derivations exist) we have

rot(E +
∂A

∂t
) = 0. (1.5)

This means that

E +
∂A

∂t

is a gradient of a potential function. We can use scalar potential φ (for details
see [8]) to rewrite (1.5) into the form

E = −grad(φ)− ∂A

∂t
. (1.6)

Applying (1.6) to body that is not connected to any external source of voltage
we have that

grad(φ) = 0.

Then
E = −ιωA

where ω denotes angular frequency of the field current and ι is complex unit.
Jeddy = γE, where γ denotes the temperature dependent electrical conductivity
of the metal. From this we have

−−→
A(x) =

ι

ωγ
Jeddy(x). (1.7)

Substituting (1.7) to (1.1) we obtain Fredholm integral equation for Jeddy:

ιJeddy(x)− κ(x)

∫
Ω1

Jeddy(t)

r(x, t)
dt1dt2dt3 = κ(x)Iext

∫
Ω2

dl(s)

r(x, s)
(1.8)
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where

κ(x) =
ωγ(T (x))µ0

4π
. (1.9)

For each bounded and continuous temperature distribution T , κ(x) is a real,
positive, bounded and continuous function. It holds

0 < κd ≤ κ(x) ≤ κu <∞, for all x ∈ Ω1. (1.10)

Since Jeddy is a phasor

Jeddy = (Jeddy,x1 , Jeddy,x2 , Jeddy,x3)

we can rewrite (1.8) into three complex integral equations

ιJeddy,x1(x)− κ(x)

∫
Ω1

Jeddy,x1(t)

r(x, t)
dt1dt2dt3 = κ(x)Iext

∫
Ω2

dl(s).ex1

r(x, s)
(1.11)

ιJeddy,x2(x)− κ(x)

∫
Ω1

Jeddy,x2(t)

r(x, t)
dt1dt2dt3 = κ(x)Iext

∫
Ω2

dl(s).ex2

r(x, s)
(1.12)

ιJeddy,x3(x)− κ(x)

∫
Ω1

Jeddy,x3(t)

r(x, t)
dt1dt2dt3 = κ(x)Iext

∫
Ω2

dl(s).ex3

r(x, s)
(1.13)

where ex1 is unite vector ex1 = (1, 0, 0), ex2 is unite vector ex2 = (0, 1, 0) and ex3

is unite vector ex3 = (0, 0, 1).
Since equations (1.11), (1.12) and (1.13) have only change in index we will

work only on equation (1.11). With the notation

F (x) = κ(x)

∫
Ω2

dl(s).ex1

r(x, s)
(1.14)

the equation (1.11) has the form

ιJeddy,x1(x)− κ(x)

∫
Ω1

Jeddy,x1(t)

r(x, t)
dt1dt2dt3 = IextF (x). (1.15)

Jeddy,x1 : Ω1 ⊂ R3 → C is a complex function of real variable. Then Jeddy,x1 can
be rewritten to

Jeddy,x1(x) = JR(x) + ιJI(x) (1.16)

where
JR(x) = ReJeddy,x1(x)

and
JI(x) = ImJeddy,x1(x).

Iext is a complex number. Then we can define

IR = Re(Iext), II = Im(Iext).
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From the definition of κ(x) we have that F (x) defined by (1.14) is a real function.
With this notation we can rewrite (1.15) into

ι(JR(x) + ιJI(x))− κ(x)

∫
Ω1

JR(t) + ιJI(t)

r(x, t)
dt1dt2dt3 = (IR + ιII)F (x). (1.17)

By splitting complex equation (1.17) into two real equations we have

JR(x)− κ(x)

∫
Ω1

JI(t)

r(x, t)
dt = IIF (x),

−JI(x)− κ(x)

∫
Ω1

JR(t)

r(x, t)
dt = IRF (x). (1.18)

Real equations (1.18) are equivalent to complex equation (1.15).
The specific Joule losses which are needed to compute temperature

distribution are given by

ωJ(x) =
1

γ
Je(x)Je(x) (1.19)

where

Je(x) =
√

[ReJeddy,x1(x)]
2 + [ReJeddy,x2(x)]

2 + [ReJeddy,x3(x)]
2+

+ι
√
[ImJeddy,x1(x)]

2 + [ImJeddy,x2(x)]
2 + [ImJeddy,x3(x)]

2

and Je(x) is complex conjugate to Je(x).
In following text we will show existence and uniqueness of (1.15) and derive

numerical schemes.
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2. Basics of functional analysis

Before showing existence and uniqueness of solution of (1.15) let us remember
some basic facts from functional analysis. They can be found in many literature
for example in [1].

2.1 Normed linear and Banach spaces

Normed linear and Banach spaces are the standard setting for studying and
solving a large proportion of the problems in integral equations. In this section,
we gather some important facts and describe most important Banach spaces.

Definition 2.1 (Norm). Let V be a vector space over the body K, where K = R
or C. Norm is a function ∥.∥ defined from V to R with following properties

1. ∥v∥ ≥ 0 for all v ∈ V

2. ∥v∥ = 0 if and only if v = 0

3. ∥αv∥ = |α|∥v∥ for all v ∈ V and α ∈ K

4. ∥u+ v∥ ≤ ∥u∥+ ∥v∥ for all u, v ∈ V

Definition 2.2 (Normed linear space). Let X be a vector space and let ∥.∥ be
norm on X . Then (X , ∥.∥) is called a normed linear space.

Definition 2.3 (Cauchy sequence). Let X be a normed linear space. A sequence
{xn} ⊂ X is called Cauchy if

∀ε>0∃N>0∀n,m>N ∥xn − xm∥ < ε.

Definition 2.4 (Banach space). Let X be a normed linear space. X is called
Banach space if every Cauchy sequence from X converges.

Now let’s write some examples of Banach spaces. Proof that spaces below
with appropriate norm are Banach spaces can be found for example in [1]. Let
D ⊂ Rn be closed and bounded set. First example is space C(D) - a space of
continuous functions on D with the ∥.∥∞ norm defined as

∥f∥∞ = max
x∈D
|f(x)|. (2.1)

Another example is space L∞(D). Let v be a Lebesgue measurable function
on D. For later we will write measurable instead of Lebesgue measurable. Let’s
define a class

[v] = {w,w is measurable on D and v = w(a.e.)}. (2.2)

The symbol (a.e.) means almost everywhere. Note that Lebesgue integrals of
elements of class [v] are identical. To define upper bound for functions v from
class [v] is used essential supremum.

ess sup
x∈D

v(x) = inf{C ∈ R : v(x) ≤ C for almost every x ∈ D}. (2.3)
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From the definition it is clear that

ess sup
x∈D

v(x) ≤ sup
x∈D

v(x). (2.4)

For a measurable function v on D we can define a norm

∥v∥L∞(D) = ess sup
x∈D
|v(x)|. (2.5)

This norm is known as essential supremum norm. The space L∞(D) is then
defined by

L∞(D) = {[v], v is measurable on D and ∥v∥L∞(D) <∞}. (2.6)

To handle with essential supremum is needed following inequality, which can be
derived from Hölder’s inequality.

Proposition 2.1. Let ∫
D

|g(t)|dt <∞

and let f ∈ L∞(D). Then∫
D

|f(t)g(t)dt| ≤ ∥f∥ L∞
(D)

∫
D

|g(t)|dt.

Proof. It follows immediately from Hölder’s inequality which can be found for
example in [2].

2.2 Linear operators

Integral equations can be described by linear operators. To examine the
theoretical solvability of a mathematical problem, to develop numerical methods
for its solution and to prove convergence of numerical solution, we must know
additional properties about the operators involved in our problem. In this section
let’s write some known important facts.

Definition 2.5 (Operator). Let V and W be sets. Operator T from V to W is a
rule that assigns to each element in a subset of V an unique element in W. The
domain D(T ) of operator T is the subset of V, where T is defined. The range
R(T ) of operator T is defined as following set

R(T ) = {w ∈ W , ∃v ∈ D(T ), w = T v}.

The null set of operator T is defined as

N (T ) = {v ∈ V , T (v) = 0}.

From now assume that for operator T : V → W is D(T ) = V, unless it is
stated to be otherwise.
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Definition 2.6 (One-to-one operator). Let T be an operator from a set V to
a set W. Operator T is one-to-one (also called injective) if for all v1, v2 ∈ V it
holds

v1 ̸= v2 ⇒ T (v1) ̸= T (v2).

Definition 2.7 (Surjective Operator). Let T be an operator from a set V to
a set W. Operator T is surjective if

R(T ) =W .

Definition 2.8 (Bijective Operator). Let T be an operator from a set V to a set
W. Operator T is bijective (also called bijection) if it is one-to-one and surjective.

When operator is bijective we can define inverse operator.

Definition 2.9 (Inverse operator). Let V and W be sets. Let operator
T : V → W be bijective. Then operator T −1 :W → V defined as

v = T −1(w)⇔ w = T (v)

is an inverse of operator T . If operator T is one-to-one we can define inverse
T −1 from R(T ) ⊂ W to V.

Definition 2.10 (Identical operator). Let V be a set. The identical operator I
is defined by

Iy = y for all y ∈ V .

Definition 2.11 (Continuous Operator). Let T be an operator from V to W,
where V and W are normed linear spaces. Operator T is continuous at v ∈ D(T )
if

{vn} ⊂ D(T ) and vn → v in V ⇒ T (vn)→ T (v) in W .

Operator T is continuous if it is continuous at all v ∈ D(T ).

Definition 2.12 (Bounded Operator). Let V and W be normed linear spaces.
Operator T from V toW is bounded if for any 0 < r <∞ there exists 0 < R <∞
such that

v ∈ D(T ) and ∥v∥V ≤ r ⇒ ∥T (v)∥W ≤ R.

Definition 2.13 (Linear Operator). Let K be R or C. Let T be an operator from
V to W with D(T ) = V, where V and W are vector spaces. Operator T : V → W
is linear operator if

T (v1 + v2) = T (v1) + T (v2),∀v1,v2∈V

and
T (αv) = αT (v),∀v∈V,α∈K.

For linear operators we will write T v instead of T (v).

For linear operator T : V → W the null set N (T ) is a subspace of V .
If operator is one-to-one we have following corollary.
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Corollary 2.2. Let V and W be normed linear spaces. Let T be continuous
linear operator from V to W. Then T is one-to-one if and only if N (T ) = {0}.

Definition 2.14 (Operator Norm). Let T : V → W be continuous linear
operator. The norm is defined by

∥T ∥V,W = sup
0̸=v∈V

∥T v∥W
∥v∥V

or equivalently
∥T ∥V,W = sup

v∈V,∥v∥V=1

∥T v∥W .

Theorem 2.3. Let V ,W be normed linear spaces and let T : V → W be linear
operator. Then T is continuous if and only if it is bounded.

Definition 2.15 (Finite-rank operator). Let V and W be normed linear spaces.
The linear operator T : V → W is a finite-rank operator if R(T ) is finite
dimensional.

Now let’s formulate one important theorem used in numerical analysis. The
theorem is used when we want to analyze the solvability of problems that are
“close” to another problem known to be uniquely solvable. The proof of the
theorem can be found for example in [1] and also in many other books.

Theorem 2.4 (Geometric series theorem). Let X be a Banach space and let
T : X → X be a continuous linear operator such that ∥T ∥ < 1. Then operator
I − T is invertible and

(I − T )−1 =
∞∑
n=0

T n. (2.7)

At the end of this section let us write two important theorems for a sequence
of operators. They can be found for example in [1].

Theorem 2.5 (Principle of uniform boundedness). Let Tn be a sequence of
bounded linear operators from a Banach space X to a normed linear space Y.
Assume

lim
n→∞

Tny

exists in Y for every y ∈ X . Then

sup
n
∥Tn∥ ≤ T <∞. (2.8)

Theorem 2.6 (Banach-Steinhaus theorem). Let X be Banach space and let Y be
normed linear space. Let {Tn} be a sequence of continuous linear operators from
X to Y such that

lim
n→∞

Tny

exists for all y ∈ X and let
T y = lim

n→∞
Tny.

Then T is continuous linear operator from X to Y.
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2.3 Compact operators

When a vector space V is finite-dimensional, the equation

Ay = f

has a well-developed solvability theory. To extend these results to infinite-
dimensional spaces, it is used theory of compact operators.

Definition 2.16 (Compact set). Let S be a subset of a vector space V. S is
compact if every sequence {xj} ⊂ S contains a subsequence {xjk} that converges
to some x ∈ S.

Definition 2.17 (Compact operator). Let X and Y be normed linear spaces
and let T : X → Y be a linear operator. T is compact operator if the set
{T y, ∥y∥X ≤ 1} has compact closure in Y. It means that for every bounded
sequence {yk} ⊂ X , the sequence {T yk} contains a subsequence which converges
in Y.

Now let’s describe properties of compact operators. The proof of following
theorems can be found in [1] and in many other literature of functional analysis.

Theorem 2.7. Let X and Y be normed linear spaces. Let operator T : X → Y
be a bounded, linear and finite-rank operator. Then T is compact operator.

Theorem 2.8. Let X , Y and Z be normed linear spaces. Let T : X → Y and
S : Y → Z be continuous linear operators. Let either T or S be compact operator.
Then operator ST is compact operator from X to Z.

Theorem 2.9. Let X be normed linear space and let Y be Banach space. Let
T : X → Y be a continuous linear operator. Let {Tn} be a sequence of compact
linear operators from X to Y such that Tn → T . Then T is compact operator.

Corollary 2.10. Let X be normed linear space and let Y be Banach space. Let
linear operator T : X → Y be a limit of finite rank operators. Then T is compact
operator.

For characterization of compact operators on C(D) we need to characterize
compact sets on C(D). This is done by Arzela - Ascoli theorem. From now let
r(x, y) denote Euclidean distance between x and y.

Definition 2.18 (Uniformly bounded function). A family of functions F ⊂ C(D)
is uniformly bounded if there is a number M <∞ such that

|f(x)| ≤M, ∀f∈F∀x∈D.

Definition 2.19 (Equicontinuous function). A family of functions F ⊂ C(D) is
equicontinuous on D if

∀ϵ>0∃δ>0, ∀x,x′∈D r(x, x′) < δ ⇒ |f(x)− f(x′)| < ϵ, ∀f∈F .

Theorem 2.11 (Arzela - Ascoli). Let S ⊂ C(D) and let D be closed and bounded
set. Suppose that functions from S are uniformly bounded and equicontinuous.
Then S is compact in C(D).
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This theoretical theorem makes characterization of compact integral operators
on C(D). Important conditions for compactness of operator T were showed in [3]
in the following theorem.

Theorem 2.12. Let D ⊂ Rn be closed and bounded set. Assume that operator
T of the form

T y(x) =
∫
D

k(x, t)y(t)dt (2.9)

satisfies following conditions:

max
x∈D

∫
D

|k(x, t)|dt ≤M1 <∞ (2.10)

and
lim
h→0

ω(h) = 0 (2.11)

where

ω(h) ≡ sup
x,x′∈D,r(x,x′)≤h

∫
D

|k(x, t)− k(x′, t)|dt. (2.12)

Then T : C(D)→ C(D) is compact operator.

To prove compactness of given integral operator we need to verify conditions
(2.10) and (2.11). By following lemmas we will describe classes of functions that
satisfy these conditions. Proof of following lemmas can be found in [4].

Lemma 2.13. Let D ⊂ Rn be closed and bounded set and let integral operator T
be of the form

T y(x) =
∫
D

k(x, t)y(t)dt

where k(x, t) is continuous function. Then T : C(D)→ C(D) is compact operator.

Thus, integral operator T is compact for all continuous kernel functions.
Other generalization for non-continuous functions can be done by using theorem
2.9.

Lemma 2.14. Let D ⊂ Rn be closed and bounded set. Assume integral operator
T : C(D)→ C(D) of the form

T y(x) =
∫
D

k(x, t)y(t)dt

and assume that there we can define a sequence of continuous functions kn(x, t)
such that

max
x∈D

∫
D

|k(x, t)− kn(x, t)|dt→ 0. (2.13)

Then T is compact linear operator on C(D).
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2.4 Collectively compact operators

Now we will describe important group of operators in approximation theory. Let
X be a Banach space and let T : X → X . The theoretical solution of

T y = f

involves operator approximation by a sequence of operators {Tn, n ≥ 1} such that
the equation

Tnyn = f

can be solved by some means (for example system of linear equations). We want
to show that approximation yn converges to y. There are two kind of operator
convergence. Pointwise convergence Tn → T , which means that for each y ∈ X

∥Tny − T y∥X → 0, as n→∞

and norm convergence, which means that

∥Tn − T ∥ → 0, as n→∞.

where ∥.∥ is an operator norm. The norm convergence is equivalent to

sup
y∈X

∥y∥X=1

∥Tny − T y∥X → 0, as n→∞.

From above we can see that operators Tn converge to operator T in norm if the
sequence Tny converges to T y uniformly for all y ∈ X .

The sequence of operators converges pointwise rather than norm. To
compensate the discrepancy between the pointwise and norm convergence can
be used theory of collectively compact operators described by Anselone in [5].

Definition 2.20 (Colectivelly compact operators). Let X be a Banach space. Let
{Tn, n ≥ 1} be a family of linear operators on X into X . Assume that the set

S = {Tny, n ≥ 1, ∥y∥ ≤ 1}

has compact closure in X . Then {Tn, n ≥ 1} is called collectively compact family
of operators on X .

Most important properties of collectively compact operators related to integral
equations of the second kind are summarized in following theorem

Theorem 2.15. Let X be a Banach space and let T be a linear operator defined
on X into X . Assume that {Tn, n ≥ 1} is collectively compact family of operators
on X . Finally assume that

Tny → T y as n→∞ for all y ∈ X . (2.14)

Then T is compact operator, for any compact operator M : X → X it holds

∥(T − Tn)M∥→ 0 as n→∞ (2.15)

and
∥(T − Tn)Tn∥ → 0 as n→∞ (2.16)

Proof. Proof can be found in chapter 1 in [5] - proposition 1.8 and corollary
1.9.
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2.5 Metric spaces and totally bounded sets

Another relation between pointwise and uniform convergence is described for
special sets in metric spaces. Let us write here some basic facts of metric spaces.
Definitions and properties can be found for example in [11].

Definition 2.21 (Metric space). A metric space is an ordered pair (M,d) where
M is a set and d is a function M × M → R called metric such that for any
x, y, z ∈M holds:

1. d(x, y) ≥ 0

2. d(x, y) = 0 if and only if x = y

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

A metric space M is called complete if every Cauchy sequence in M converges in
M .

From the definition of metric 2.21 and norm 2.1 we can see that every normed
linear space is a metric space - we can define d(x, y) = ∥x− y∥. Let’s define open
ball in M

Br(x) = {y ∈M,d(x, y) < r}. (2.17)

Definition 2.22 (Totally bounded set). Let (M,d) be a metric space and let
A ⊂ M . A is totally bounded if for any real number ε > 0 there exists a ε-mesh
{a1, ..., am} ⊂ A such that

A ⊂
m∪
j=1

Bε(aj).

Definition 2.23 (Relatively compact). Let (M,d) be a metric space and let
A ⊂M . A is relatively compact if it has compact closure (i.e. A is compact).

Properties of totally bounded set is given by following theorem. A similar
theorem can be found in [5].

Theorem 2.16. Let X ,Y be Banach spaces. Let T be bounded linear operator
defined from X to Y and let {Tn, n ≥ 1} be a sequence of bounded linear operators
defined from X to Y. Assume that for all y ∈ X the sequence Tny converges to
T y. Let S ⊂ X be totally bounded set. Then

sup
y∈S
∥Tny − T y∥Y → 0 as n→∞. (2.18)

Proof. Take ε > 0. Since S is totally bounded set there exist y1, ..., ym ∈ S such
that

sup
y∈S
∥y − ys∥X ≤

ε

2(∥Tn∥+ ∥T ∥)
, (2.19)

where
s = arg min

j=1,...,m
∥y − yj∥X
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and argmin is the argument of minimum. Since Tny → T y for each y we have
that there exists n0 such that for n ≥ n0

∥(Tn − T )yj∥Y <
ε

2
, for all j = 1, ...,m.

From here and (2.19)

sup
y∈S
∥(Tn − T )y∥Y ≤ sup

y∈S
∥(Tn − T )(y − ys)∥Y + ∥(Tn − T )ys∥Y ≤

≤ ∥(Tn − T )∥ sup
y∈S
∥(y − ys)∥X + ∥(Tn − T )ys∥Y ≤ ε.

The last theorem shows that pointwise convergence Tn → T is uniform on
totally bounded set. Every Banach space is complete metric space. In complete
metric spaces the the terms totally bounded set and relative compact set coincide.
The relatively compact sets are described by Arzela-Ascoli theorem 2.11. Hence
we have following corollary.

Corollary 2.17. Let T be bounded linear operator defined from space C(D) to
Banach space Y and let {Tn, n ≥ 1} be a sequence of bounded linear operators
defined from space C(D) to Banach space Y. Assume that for all y ∈ C(D) the
sequence Tny converges to T y. Let the functions from S ⊂ C(D) be equicontinuous
and uniformly bounded. Then

sup
y∈S
∥Tny − T y∥Y → 0 as n→∞. (2.20)

2.6 Eigenvalues and invertibility of operator

(λI − T )
In this chapter we will show conditions needed for existence of operator

(λI − T )−1.

This operator relates to integral equation of the second kind. First way is to use
geometric series theorem 2.4. We obtain following proposition. The proof can be
found in [4].

Proposition 2.18 (Inverse Theorem proposition). Let X be a Banach space and
let T : X → X be continuous linear operator. Assume that

1

|λ|
∥T ∥ < 1. (2.21)

Then (λI − T ) has inverse, which means that (λI − T )−1 : X → X is a bounded
linear operator.

To use this proposition is needed the bound of operator T . Other way to show
existence of inverse is to use Fredholm alternative theorem.
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Definition 2.24 (Eigenvalue). Let X be a normed linear and let T : X → X be
continuous linear operator. Then λ is eigenvalue of T if there exists some y ̸= 0
such that

T y = λy. (2.22)

It means that operator λI − T is not one-to-one. All vectors y satisfying (2.22)
are eigenvectors appropriate to eigenvalue λ.

In finite dimensional spaces is linear operator one-to-one if and only if it is
surjective. In infinite spaces we need following theorem.

Theorem 2.19 (Fredholm alternative). Let X be a Banach space, let T : X → X
be compact linear operator and let λ ̸= 0. Then either the equation (λI−T )y = 0
has a non-trivial solution, or the equation (λI − T )y = f has a solution for all
f . In such case the operator (λI − T ) has a bounded inverse.

The last theorem gives us important condition for invertibility of (λI − T ).

Proposition 2.20. Let X be a Banach space and let T : X → X be compact
linear operator. Assume that λ ̸= 0 is not eigenvalue of operator T . Then
(λI − T ) has bounded inverse.

Proof. By the last theorem is (λI − T ) is invertible if λ ̸= 0 is not eigenvalue of
T .
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3. Existence and uniqueness of
solution of induction heating
model

Now we can use theory written in previous chapter to prove existence and
uniqueness of solution of integral equation (1.15). First we need to rewrite (1.15)
into an operator form. By multiplying (1.15) with −ι we obtain

Jeddy,x1(x) + ικ(x)

∫
Ω1

Jeddy,x1(t)

r(x, t)
dt1dt2dt3 = −ιIextF (x).

Hence

Jeddy,x1(x)−κ(x)
∫
Ω1

−ι[Re(Jeddy,x1)(t) + ιIm(Jeddy,x1)(t)]

r(x, t)
dt1dt2dt3 = −ιIextF (x).

If we define
F̃ (x) = −ιIextF (x) (3.1)

we can rewrite (1.15) into an operator form

(I −K)Jeddy,x1 = F̃ (3.2)

where operator K is defined by

KJeddy,x1(x) = κ(x)

∫
Ω1

−ιRe(Jeddy,x1)(t) + Im(Jeddy,x1)(t)

r(x, t)
dt (3.3)

and where F̃ is defined in (3.1). We need to show that operator K is compact
linear operator on space C(Ω1) and 1 is not its eigenvalue. First let’s prove
following lemma.

Lemma 3.1. Let x = (x1, x2, x3) ∈ R3. Let BR(x) be a ball with its center at
point x and radius R. Note that Br(x) is defined as

BR(x) = {t = (t1, t2, t3) ∈ R3, (x1 − t1)
2 + (x2 − t2)

2 + (x3 − t3)
2 ≤ R2}. (3.4)

Then

IR(x) =

∫
BR(x)

1

r(x, t)
dt = 2πR2. (3.5)

Proof. Let’s make a transformation to the sphere coordinates

ϕ : (ρ, ϕ, θ)→ (t1, t2, t3)

t1 = x1 + ρ sin(θ) cos(φ)

t2 = x2 + ρ sin(θ) sin(φ)

t3 = x3 + ρ cos(θ)
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ρ ∈ [0, r], φ ∈ [0, 2π), θ ∈ [0, π].

Note that ρ = r(x, t). The Jacobian of this transformation is

Jϕ = ρ2 sin(θ).

By substitution theorem A-5 we obtain

IR(x) =

∫
BR(x)

1

r(x, t)
dt1dt2dt3 =

∫ R

0

∫ 2π

0

∫ π

0

ρ sin θdθdφdρ =

= 2π

∫ R

0

∫ π

0

ρ sin θdθdρ = 2π

∫ R

0

ρdρ

∫ π

0

sinθdθ = 2πR2.

Corollary 3.2. There exists a constant C1 <∞ such that

max
x∈Ω1

∫
Ω1

1

r(x, t)
dt ≤ C1. (3.6)

Proof. Let us define
d(Ω1) = max

x,t∈Ω1

r(x, t). (3.7)

Since Ω1 is closed and bounded set it is d(Ω1) < ∞. In fact d(Ω1) is a diameter
of Ω1. For each x ∈ Ω1 is

Ω1 ⊂ Bd(Ω1)(x). (3.8)

By lemma 3.1 and (3.8) we have∫
Ω1

1

r(x, t)
dt ≤

∫
Bd(Ω1)

(x)

1

r(x, t)
dt = 2πd(Ω1)

2 <∞.

Hence
C1 = 2πd(Ω1)

2.

Now let’s prove that our operator fromK defined by (3.3) is compact operator.

Theorem 3.3. Let Ω1 ⊂ R3 be closed and bounded set. Operator K defined by
the formula

KJeddy,x1(x) = κ(x)

∫
Ω1

−ιRe(Jeddy,x1)(t) + Im(Jeddy,x1)(t)

r(x, t)
dt (3.9)

is compact operator on C(Ω1).

Proof. Let’s define following operators: K1 : C(Ω1) → C(Ω1), M1 : C(Ω1) →
C(Ω1) and N : C(Ω1)→ C(Ω1).

K1 : K1y(x) =

∫
Ω1

y(t)

r(x, t)
dt (3.10)

M1 :M1y(x) = κ(x)y(x) (3.11)
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N : N y(x) = Im(y(x))− ιRe(y(x)). (3.12)

Then
Ky(x) =M1K1N y(x).

By corollary 3.2 is function
1

r(x, t)

integrable for all x ∈ Ω1 and K1 is linear operator. By corollary 3.2 we have

∥K1y∥∞ ≤ ∥y∥∞ max
x∈Ω1

∫
Ω1

1

r(x, t)
dt ≤ C1∥y∥∞ <∞

and K1 is bounded operator. By theorem 2.3 is K1 continuous linear operator.
To prove compactness of K1 we will use lemma 2.14. We need to fulfill condition
(2.13). Let us define approximation of r(x, t) by continuous function

rn(x, t) =

{
rn(x, t) = r(x, t), when r(x, t) ≥ 1

n

rn(x, t) =
1
n
, when r(x, t) < 1

n
.

(3.13)

It is easy to see that

rn(x, t) ≥ r(x, t), for all n and x, t ∈ R3

and
1

rn(x, t)
≤ 1

r(x, t)
, for all n and x, t ∈ R3.

Hence ∫
Ω1

∣∣∣∣ 1

r(x, t)
− 1

rn(x, t)

∣∣∣∣ dt = ∫
Ω1

(
1

r(x, t)
− 1

rn(x, t)

)
dt =

=

∫
Ω1∩Bn−1(x)

(
1

r(x, t)
− 1

rn(x, t)

)
dt ≤

∫
Bn−1 (x)

(
1

r(x, t)
− 1

rn(x, t)

)
dt =

∫
Bn−1 (x)

1

r(x, t)
dt−

∫
Bn−1

ndt = In−1(x)− 4

3
π

(
1

n

)3

n = 2π
1

n2
− 4

3
π
1

n2
=

2π

3n2

where Bn−1(x) is defined by (3.4) and In−1(x) by 3.5 in lemma 3.1. Hence

max
x∈Ω1

∫
Ω1

∣∣∣∣ 1

r(x, t)
− 1

rn(x, t)

∣∣∣∣ dt ≤ 2π

3n2
→ 0 as n→∞. (3.14)

By theorem 2.14 is K1 compact operator on C(Ω1). It’s easy to see that operator
M1 is a linear operator.

∥M1y∥∞ = max
x∈Ω1

|κ(x)y(x)| (3.15)

From (1.10)
|κ(x)| < κu <∞, for all x ∈ Ω1. (3.16)

From (3.16) and (3.15) is
∥M1y∥∞ ≤ κu∥y∥∞
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and M1 is bounded linear operator. By theorem 2.3 is M1 continuous linear
operator. By theorem 2.8 is operator M1K1 compact operator on C(Ω1). For
future use let’s define operator

M =M1K1.

To verify compactness of K =MN we will use theorem 2.8. We need to show that
N is continuous linear operator. For the linearity let’s choose some y2, y2 ∈ C(Ω1)
and λ ∈ C.

y1 = a1 + ιb1

y2 = a2 + ιb2

λ = λ1 + ιλ2

where a1, b1, a2 and b2 are real functions and λ1, λ2 ∈ R

N (y1 + y2) = N (a1 + ιb1 + a2 + ιb2) = −ι(a1 + a2) + b1 + b2 =

= (−ιa1 + b1) + (−ιa2 + b2) = N (a1 + ιb1) +N (a2 + ιb2) = N (y1) +N (y2)

and

N (λy1) = N [(λ1 + ιλ2)(a1 + ιb1)] = N [λ1a1 − λ2b1 + ι(λ1b1 + λ2a1)]

= −ι(λ1a1 − λ2b1) + (λ1b1 + λ2a1) = −ιλ1a1 + ιλ2b1 + λ1b1 + λ2a1

= (−ιλ1a1 + λ1b1) + (ιλ2b1 + λ2a1) = λ1(b1 − ιa1) + ιλ2(b1 − ιa1) =

= (λ1 + ιλ2)(b1 − ιa1) = λN (a1 + ιb1) = λN y1

and we have shown that N is linear operator. For continuity of operator N we
will show that N is bounded and use theorem 2.3. Let’s choose y ∈ C(Ω1). Then

∥N y∥∞ = max
x∈Ω1

| − ιRey(x) + Imy(x)| ≤ 2max
x∈Ω1

|y(x)| ≤ 2∥y∥∞.

Hence N is continuous linear operator and by theorem 2.8 is K =MN compact
operator.

Now its time to prove that 1 is not eigenvalue of operator K. In this case it
can be done with using inner product.

Definition 3.1 (Inner product). Let V be a vector space. Inner product is a
function (., .) : V × V → K, K = R or C with following properties

1. (x, x) ≥ 0, (x, x) = 0 if and only if x = 0

2. (x, y) = (y, x)

3. (λx, y) = λ(x, y), (x, λy) = λ(x, y)

4. (x+ y, z) = (x, z) + (y, z) and (x, y + z) = (x, y) + (x, z)

x, y, z ∈ V and λ ∈ K. The space V with inner product is called inner product
space. For v ∈ V

∥v∥ =
√

(v, v). (3.17)

In literature [1] is proved that (3.17) is norm.
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Theorem 3.4 (Weighted inner product). Let γ(t) be positive, piecewise
continuous function defined on whole D. Then

(f, g)γ =

∫
D

γ(t)f(t)g(t)dt (3.18)

is an inner product on C(D).

Proof. The proof can be found in many books of functional analysis for example
in [1].

Definition 3.2. The inner product defined in (3.18) is called γ-weighted inner
product.

Definition 3.3 (Antisymmetric operator). Let D ⊂ Rn be closed and bounded
set. Operator K : C(D) → C(D) is antisymmetric in respect to γ-weighted
inner product if there exists positive, bounded and piecewise continuous function
γ defined on whole D such that

(Ky1, y2)γ = −(y1,Ky2)γ, for all y1, y2 ∈ C(D). (3.19)

(., .)γ denotes γ-weighted inner product defined in (3.18).

Theorem 3.5. Let operator K : C(D) → C(D) be antisymmetric operator in
respect to γ-weighted inner product. Let λ be eigenvalue of K. Then

Reλ = 0.

Proof. Let K be an antisymmetric operator and let λ be its eigenvalue and let
u ̸= 0 be appropriate eigenvector. Then using properties of inner product we
have

0 = (u,Ku)γ + (Ku, u)γ = (u, λu)γ + (λu, u)γ = (λ+ λ)(u, u)γ

Since (u, u)γ ̸= 0 we get λ+ λ = 0. This implies that Reλ = 0.

Theorem 3.6. Operator K from (3.9) is an antisymmetric operator in respect
to 1/κ-weighted inner product.

Proof. From (1.10)

0 <
1

κu

≤ 1

κ(x)
≤ 1

κd

<∞, for all x ∈ Ω1

and
1

κ(x)

is positive, bounded and piecewise continuous function on Ω1. So we can define
(1/κ)-weighted inner product. First let’s show that for real functions u, v ∈ C(Ω1)
is

M = (u,Mv) 1
κ
− (Mu, v) 1

κ
= 0, whereM =M1K1. (3.20)

(u,Mv) 1
κ
− (Mu, v) 1

κ
=

∫
Ω1

1

κ(t)
u(t)Mv(t)dt−

∫
Ω1

1

κ(τ)
Mu(τ)v(τ)dτ =
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=

∫
Ω1

1

κ(t)
κ(t)u(t)

∫
Ω1

v(τ)

r(t, τ)
dτdt−

∫
Ω1

1

κ(τ)
κ(τ)

∫
Ω1

u(t)

r(t, τ)
dtv(τ)dτ =

=

∫
Ω1

∫
Ω1

u(t)v(τ)

r(τ, t)
dτdt−

∫
Ω1

∫
Ω1

u(t)v(τ)

r(t, τ)
dtdτ. (3.21)

For second integral we have by (3.6) in corollary 3.2∫
Ω1

∫
Ω1

∣∣∣∣u(t)v(τ)r(t, τ)

∣∣∣∣ dtdτ ≤ ∥u∥∞∥v∥∞ ∫
Ω1

∫
Ω1

1

r(t, τ)
dtdτ ≤

≤ ∥u∥∞∥v∥∞
∫
Ω1

(
max
τ∈Ω1

∫
Ω1

1

r(t, τ)
dt

)
dτ =

= ∥u∥∞∥v∥∞
(
max
τ∈Ω1

∫
Ω1

1

r(t, τ)
dt

)∫
Ω1

dτ = ∥u∥∞∥v∥∞C1

∫
Ω1

1dτ <∞.

So the order of integration in the second integral in (3.21) can be changed by
Fubini’s theorem A-3 and we have M = 0. Now let’s verify (3.19). First write
complex function y1 and y2 onto the form

y1(x) = u1(x) + ιv1(x)

and
y2(x) = u2(x) + ιv2(x).

From
K =MN

we have

(Ky1, y2) 1
κ
= (M(−ιu1 + v1), u2 + ιv2) 1

κ
= (−ιMu1 +Mv1, u2 + ιv2) 1

κ
=

= −ι(Mu1, u2) 1
κ
− ι(Mv1, v2) 1

κ
+ (Mv1, u2) 1

κ
− (Mu1, v2) 1

κ
(3.22)

(y1,Ky2) 1
κ
= (u1 + ιv1,M(−ιu2 + v2)) 1

κ
= (u1 + ιv1,−ιMu2 +Mv2) 1

κ
=

= ι(u1,Mu2) 1
κ
+ ι(v1,Mv2) 1

κ
− (v1,Mu2) 1

κ
+ (u1,Mv2) 1

κ
. (3.23)

By (3.20), (3.22) and (3.23) is

(Ky1, y2) 1
κ
+ (y1,Ky2) 1

κ
= 0,

(3.19) holds and the proof is complete.

By the last theorem is operator K antisymmetric with respect to the
1/κ-weighted inner product. According to theorem 3.5 number 1 is not eigenvalue
of operator K. Since K is compact operator, we have by proposition 2.20 that
operator I −K is invertible on space C(Ω1) and (1.15) is solvable on space C(Ω1).
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4. Integral equation of the second
kind with diagonal singularity

Now we will research for solution of more general integral equation of the second
kind of the following form

λy(x)−
∫
D

k(x, t)y(t)dt = f(x), x ∈ D,λ ̸= 0. (4.1)

where D ⊂ Rm (m ≥ 1) is closed, bounded and connected set. A set is connected
if it is not a subset of a disjoint union of two open sets. The assumption for
the set D is not restrictive. In the definition of the original problem (1.15) is D
substituted with Ω1. Ω1 is a metal body. Metal body should be closed, bounded
and connected set.

Assume that the kernel function k(x, t) is singular when x = t. This type of
singularity is called diagonal singularity. As we saw existence of solution is done
by operator calculus. Operator calculus is also used in proof of convergence of
numerical methods. The equation (4.1) can be rewritten into operator form:

(λI − K)y = f (4.2)

where integral operator K is defined by

Ky(x) =
∫
D

k(x, t)y(t)dt. (4.3)

The integral operator K is assumed to be compact on C(D). Assume that (4.1)
has for every f(x) unique solution. It means that λ ̸= 0 is not eigenvalue of
operator K.

Many methods were developed for integral equations of the second kind.
Almost all of them are described in [3]. First kind of methods are degenerate
kernel methods. The idea is to approximate the kernel function. Other methods
are called projection methods. The equation (4.1) is solved approximately. The
idea is to choose a finite dimensional family of functions that contains a function
yn close to the exact solution y. There are various senses in which yn can be said
to ”satisfy approximately”. We obtain different methods. The most popular of
these are collocation methods and Galerkin methods. These methods lead to a
solution of a system of linear equations. In this thesis we will examine collocation
methods.

Other way is to substitute the integral by a numerical integration rule. Such
methods are called Nyström methods. Original Nyström method is not suitable
for solution of equations with diagonal singular kernel. However there are some
modifications of the original method which can be used. These methods also lead
to a solution of a system of linear equations.
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5. Collocation methods

5.1 General theory

Let us choose a sequence of finite dimensional subspaces Xn ⊂ C(D). Let Xn have
a basis {ϕ1, ..., ϕn}. We will find approximate solution yn ∈ Xn of the form

yn(x) =
n∑

j=1

cjϕj(x). (5.1)

By substituting yn defined in (5.1) into (4.1) we obtain

n∑
j=1

cj

[
λϕj(x)−

∫
D

k(x, t)ϕj(t)dt

]
= f(x).

Now let’s define residual by

rn =
n∑

j=1

cj

[
λϕj(x)−

∫
D

k(x, t)ϕj(t)dt

]
− f(x). (5.2)

In operator form
rn = (λI − K)yn − f.

Now let’s pick up distinct approximation points x1, ..., xn ∈ D. Since want the
solution to be exact at the approximation points we get

rn(xi) = 0, i = 1, .., n. (5.3)

This leads to the problem to find c1, ..., cn as a solution of linear system

n∑
j=1

cj

[
λϕj(xi)−

∫
D

k(xi, t)ϕj(t)dt

]
= f(xi), i = 1, ..., n. (5.4)

To write (5.4) into more abstract form let’s define projection operator. Let’s
define Pny to be an element of Xn that interpolates y at the approximation
points {x1, ..., xn} as

Pny(x) =
n∑

j=1

cjϕj(x) (5.5)

where coefficients cj are determined as solution of system of linear equations

n∑
j=1

cjϕj(xi) = y(xi), i = 1, ..., n.

The system has unique solution if

det [ϕj(xi)]
n
k,i=1 ̸= 0. (5.6)
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Therefor (5.6) is assumed to be satisfied in this chapter and whenever the
collocation method is discussed. Projection operator Pn maps C(D) onto Xn

and
Pny = y, y ∈ Xn.

This implies that P2
n = Pn and

∥Pn∥ = ∥P2
n∥ ≤ ∥Pn∥2

and
∥Pn∥ ≥ 1. (5.7)

Note that
Pnz = 0 if and only if z(xi) = 0, i = 1, ..., n.

With the definition of projection operator the condition (5.3) can be can be now
rewritten as

Pnrn = 0 (5.8)

or equivalently as
Pn(λI − K)yn = Pnf, yn ∈ Xn. (5.9)

Form (5.9) is not suitable for for error analysis. If yn is a solution of (5.9), then
(5.9) is equivalent to the expression

(λI − PnK)yn = Pnf. (5.10)

Now let’s formulate theorem from [4], which give us relation between (4.2) and
(5.10).

Theorem 5.1. Let X be a Banach space. Assume that operator K : X → X is
bounded and assume that operator λI − K is a bijection on X (it means that λ
is not eigenvalue of operator K). Further assume that

lim
n→∞

∥K − PnK∥ = 0. (5.11)

Then operators (λI − PnK)−1 exist mapping X onto X for all sufficiently large
n ≥ N and are uniformly bounded:

sup
n≥N
∥(λI − PnK)−1∥ < CN <∞. (5.12)

For the solution of equations (λI − K)y = f and (λI − PnK)yn = Pnf we have

y − yn = λ(λI − PnK)−1(y − Pny) for all n ≥ N (5.13)

and

|λ|
∥λI − PnK∥

∥y − Pny∥ ≤ ∥y − yn∥ ≤ |λ|∥(λI − PnK)−1∥∥y −Pny∥. (5.14)

Moreover, yn converges to y if and only if Pny converges to y. If the convergence
occurs then ∥y − yn∥ and ∥Pny − y∥ converges by the same speed.
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Proof. From the identity

λI −PnK = λI −K+(K−PnK) = (λI −K)(I+(λI −K)−1(K−PnK)) (5.15)

we get that if the operator (λI − PnK)−1 exists, is bounded and has following
form:

(λI − PnK)−1 = (I + (λI − K)−1(K − PnK))−1(λI − K)−1. (5.16)

Since λI − K is a bijection on X operator (λI − K)−1 exists. To show existence
of (λI − PnK)−1 we need to show that operator

L = (I + (λI − K)−1(K − PnK))−1 (5.17)

exists and is bounded. By assumption (5.11) we can choose sufficiently large N
such that

εN = sup
n≥N
∥K − PnK∥ <

1

∥(λI − K)−1∥
. (5.18)

Then
∥(λI − K)−1(K − PnK)∥ < 1, n ≥ N

and by inverse theorem proposition 2.18 operator L exists and is bounded. Hence
operator (λI − PnK)−1 exists and is continuous for all n ≥ N . First let’s bound
∥L∥.

∥L∥ = ∥(I+(λI −K)−1(K−PnK))−1∥ = ∥
∞∑
n=0

[(−1)n(λI −K)−1(K−PnK)]n∥ ≤

≤
∞∑
n=0

(∥(λI − K)−1∥∥(K − PnK)∥)n =
1

1− ∥(λI − K)−1∥∥(K − PnK)∥
.

By (5.18) and (5.16) we get

∥(λI − PnK)−1∥ ≤ ∥(λI − K)−1∥
1− εN∥(λI − K)−1∥

= CN , n ≥ N (5.19)

where
CN → ∥(λI − K)−1∥ as N →∞

and we have proved (5.12). To proof (5.13) let’s apply Pn to the equation
(λI − K)y = f :

Pn(λI − K)y = Pnf

λPny − PnKy = Pnf

λPny − λy + λy − PnKy = Pnf

λy − PnKy = Pnf − λPny + λy

(λI − PnK)y = Pnf + λ(y − Pny). (5.20)

For yn we have equation (5.10). Subtracting equation (5.10) from the equation
(5.20) we get

(λI − PnK)y − (λI − PnK)yn = Pnf + λ(y − Pny)−Pnf
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(λI − PnK)(y − yn) = λ(y − Pny). (5.21)

By applying (λI − PnK)−1 we have

y − yn = λ(λI − PnK)−1(y − Pny), for n ≥ N

and we have proved (5.13). The upper bound in (5.14) follows immediately from
(5.13). For the lower bound in (5.14) let’s use (5.21). Taking norms we have

|λ|∥y − Pny∥ ≤ ∥λI − PnK∥∥y − yn∥. (5.22)

By dividing (5.22) with ∥λI − PnK∥ we have proved (5.14). For lower bound
uniform in n note that for n ≥ N

∥λI − PnK∥ ≤ ∥λI − K∥+ ∥K − PnK∥ ≤ ∥λI − K∥+ εN .

The inequality (5.14) can be replaced by

|λ|
∥λI − K∥+ εN

∥y −Pny∥ ≤ ∥y − yn∥ ≤ |λ|CN∥y − Pny∥, n ≥ N (5.23)

where
CN → ∥(λI − K)−1∥, as N →∞.

This shows that yn converges to y if and only if Pny converges to y for all
y ∈ C(D). If the convergence occurs, then ∥y−yn∥ converges by the same speed as
∥y−Pny∥. One way on finding numerical solution is to decompose the integration
region into elements and approximate function y by low degree polynomial.

5.2 Convergence condition

The theorem 5.1 has important condition (5.11). One way is to prove it directly.
But in several cases it is not necessarily. Sufficient condition assuring (5.11) is
released by following lemma.

Lemma 5.2. Let X be a Banach space and let {Pn} be a family of bounded
projections on X satisfying

Pnu→ u as n→∞ for all u ∈ X . (5.24)

If the operator K : X → X is compact operator then it holds

∥K − PnK∥ → 0 as n→∞. (5.25)

Proof. From the definition of operator norm we have

∥K − PnK∥ = sup
∥u∥≤1

∥Ku− PnKu∥ = sup
z∈K(U)

∥z − Pnz∥,

where
K(U) = {Ku, ∥u∥ ≤ 1}.

Since K is compact operator is the set K(U) relatively compact. Since X is
Banach space is K(U) totally bounded set. Therefore by assumption (5.24) and
theorem 2.16 with T = I and Tn = Pn we get

sup
z∈K(U)

∥z − Pnz∥ → 0 as n→∞

and the proof is complete.
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5.3 Piecewise constant collocation

In case of multidimensional problem is sometimes needed to use piecewise
constant collocation. Suppose that we have a family {D1, ..., Dn} of disjoint
nonempty connected sets such that ∪ni=1Di = D. Connected set means that
it cannot be represented as the union of two or more disjoint nonempty open
subsets. For each Di let’s choose an approximation point xi at the interior of Di.
Now we can approximate y(x) by yn(x), where

yn(x) = ỹi, for x ∈ Di.

Note that the basis functions in this case are the characteristic functions
{χDi

, ..., χDn} defined as

χDi
(x) =

{
1 when x ∈ Di

0 when x /∈ Di.
(5.26)

In this case for all i χDi
/∈ C(D). For simplicity let’s use notation χDi

= χi. The
approximation yn is of the form

yn(x) =
n∑

i=1

χi(x)ỹi. (5.27)

Note that for the basis functions defined by (5.26) and the approximation points
xi ∈ D it holds

χi(xj) = δij (5.28)

where δij is Kronecker delta. The approximation yn restricted to Di is constant
function. Hence it is uniform continuous (each Di is closed and bounded set).

Problem is to choose a space for error analysis. We need suitable Banach
space that carries piecewise continuous functions. One way is to use space L∞(D).
Problem is that in space L∞(D) is y(xi) not well defined. One way to define it is
showed in [7]. Let rewrite here some important facts. Let’s define space C(D) to
be closed subspace of L∞(D) that consists of functions that are almost everywhere
equal to an element of C(D). The norm in C(D) is the essential supremum norm
defined in (2.5). The point evaluation functional is then defined by

δa(f) = f(a), a ∈ D, f ∈ C(D) (5.29)

where f(a) is defined by taking the representative function f ∈ C(D) to be
continuous. δa is bounded linear functional on C(D) with norm ∥δa∥ = 1. The
functional δa is needed to be extended to functional da defined on the whole space
L∞(D) with property

da(f) = δa(f) = f(a), when f ∈ C(D) (5.30)

and with norm the ∥da∥ = 1. This can be done by following theorem, which is
proved in almost every literature of functional analysis, for example in [1].

Theorem 5.3 (Hahn-Banach Theorem). Let K denote R or C. Let V0 be a
subspace of a normed linear space V, and let l : V0 → K be linear and bounded.
Then there exists an extension l̂ ∈ V of l such that

l̂(v) = l(v), for all v ∈ V0
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and
∥l∥ = ∥l̂∥.

Let’s note one important fact. If V0 is not dense in V the extension need not
to be unique. By theorem 5.3 we may extend functional δa from C(D) to L∞(D).
The main goal of [7] are following two theorems.

Theorem 5.4. Let f ∈ L∞(D). Assume that m ≤ f(x) ≤ M for all x in a
neighbourhood of a ∈ D. Then it holds

m ≤ da(f) ≤M.

Theorem 5.5. Let f ∈ L∞(D). Assume that a ∈ D is a point of continuity of
f . Then

1. da(f) = f(a)

2. dt(f)→ f(a) as t→ a.

Now we can define projection operator Pn by

Pny(x) = dxi
(y) when x ∈ Di. (5.31)

or equivalently with the basis function

Pny(x) =
n∑

i=1

χi(x)dxi
(y). (5.32)

The domain of Pn is now L∞(D). Let xi ∈ Di be approximation point. From
(5.28) we have that

P2
ny(x) =

n∑
j=1

χj(x)
n∑

i=1

χi(xj)dxi
(y) =

n∑
j=1

χj(x)dxj
(y)

and
P2

n = Pn. (5.33)

Because the norm ∥dxi
∥ = 1 we have

∥Pn∥ = ess sup
t∈D

n∑
i=1

|χi(t)| = 1. (5.34)

From (5.34) and (5.33) is Pn bounded projection.
Then we assumed that xi is in the interior ofDi. Hence xi is point of continuity

of χi and yn. From theorem 5.5 we have that

Pny(x) = dxi
(y) = y(xi) when x ∈ Di (5.35)

and hence

Pny(x) =
n∑

i=1

χi(x)y(xi). (5.36)

29



Now we can put ci = ỹi and ϕi = χi into (5.4) and (5.1). We get

n∑
j=1

ỹj

[
λχj(xi)−

∫
D

k(xi, t)χj(t)dt

]
= f(xi), i = 1, ..., n

and

λỹi −
n∑

j=1

ỹj

∫
Dj

k(xi, t)dt = f(xi), i = 1, ..., n. (5.37)

The approximate solution is

yn(x) =
n∑

j=1

ỹjχj(x). (5.38)

Let’s define
ρi = max

x,t∈Di

r(x, t). (5.39)

It is the diameter of Di. Let
τn = max

i=1,...,n
ρi. (5.40)

Assume that
τn → 0 as n→∞. (5.41)

We want to proof that yn from (5.38) is good approximation of the exact solution
y. We will use theorem 5.1 with space X = L∞(D). We need to fulfill condition
(5.11). It can be done by following lemma.

Lemma 5.6. Let operator K : L∞(D) → C(D) be compact operator. Let
projection Pn on L∞(D) be defined as in (5.31), where approximation points xi

are in the interior of Di. Then if (5.41) is then

lim
n→∞

∥K − PnK∥ = 0.

Proof. Let us take z ∈ C(D). Since the approximation points xi are in the interior
of Di is every xi a point of continuity of χi and from (5.35) we have

∥Pnz − z∥∞ = max
x∈D
|Pnz(x)− z(x)| =

= max
i=1,...,n

sup
x∈Di

|Pnz(x)− z(x)| = max
i=1,...,n

sup
x∈Di

|z(xi)− z(x)| ≤

≤ max
i=1,...,n

sup
x,t∈Di

|z(t)− z(x)| ≤ sup
r(x,t)≤τn

|z(t)− z(x)| → 0 as n→∞ (5.42)

by (5.41). Let’s define K(Y ) as

K(Y ) = {Ky, ∥y∥L∞(D) ≤ 1}.

Since K : L∞(D)→ C(D) is compact operator, is the set K(Y ) ⊂ C(D) relatively
compact and hence totally bounded. From (5.42) and totally boundedness of
K(Y ) we have

∥K−PnK∥ = sup
∥y∥L∞(D)≤1

∥Ky−PnKy∥L∞(D) = sup
z∈K(Y )

∥z−Pnz∥∞ → 0 as n→∞.
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The error estimate of ∥yn − y∥ depends of the estimate of ∥Pny − y∥. When
y is continuous function we have following corollary.

Corollary 5.7. Let {D1, ..., Dn} be a family of disjoint non-empty sets such that∪n
i=1Di = D and let the approximation points be at the interior of Di. Let Pn be

defined in (5.31). Let y ∈ C(D) and τn be defined as in (5.40). Then

∥Pny − y∥∞ ≤ sup
r(x,t)≤τn

|y(t)− y(x)|. (5.43)

Proof. Follows immediately from (5.42).

Now we need to define class of operators of the form (4.3), which are compact
as operators from L∞(D) into C(D). First let us write basic proposition. It is
a generalization of theorem 2.12 and lemmas 2.13 and 2.14.

Proposition 5.8. Let operator K : L∞(D)→ L∞(D) be of the form as (4.3) and
satisfy one of the following conditions:

(a) the function k(x, t) satisfies (2.10) and (2.11)

(b) the function k(x, t) ∈ C(D)× C(D)

(c) there exists continuous approximation of kernel function kn(x, t) such that
(2.13) holds

Then R(K) ⊂ C(D) and K is compact operator from L∞(D) to C(D).

Proof. First let us prove (a). By proposition 2.1 we have

|Ky(x)−Ky(x′)| =
∣∣∣∣∫

D

[k(x, t)− k(x′, t)]y(t)

∣∣∣∣ ≤
≤ ∥y∥L∞(D)

∫
D

|k(x, t)− k(x′, t)|dt. (5.44)

First let us show that R(K) ⊂ C(D). Let us take y ∈ L∞(D) and ε > 0. From
(2.11) there exists δ1 > 0 such that for all x, x′ ∈ D satisfying r(x, x′) < δ1 it
holds ∫

D

|k(x, t)− k(x′, t)|dt ≤ ε

∥y∥L∞(D)

.

From this and (5.44) we have for x, x′ ∈ D

r(x, x′) < δ1 ⇒ |Ky(x)−Ky(x′)| ≤ ε,

Ky ∈ C(D) and R(K) ⊂ C(D). Now consider the set

S = {Ky, y ∈ L∞(D), ∥y∥L∞(D) ≤ 1}.

Let us take ε > 0. From (2.11) we have that there exists δ2 such that for all
x, x′ ∈ D satisfying r(x, x′) < δ2 we have∫

D

|k(x, t)− k(x′, t)|dt ≤ ε.
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From here and (5.44) we have for x, x′ ∈ D

r(x, x′) < δ2 ⇒ |Ky(x)−Ky(x′)| ≤ ε

for all y ∈ L∞(D) such that ∥y∥L∞(D) ≤ 1 and S is equicontinuous. From
proposition 2.1 and (2.10) it follows

|Ky(x)| ≤
∫
D

|k(x, t)y(t)|dt ≤ ∥y∥L∞(D)

∫
D

|k(x, t)|dt ≤

≤ max
x∈D

∫
D

|k(x, t)|dt ≤M1 <∞

and S is uniformly bounded. By Arzela-Ascoli theorem 2.11 is S compact and K
is compact operator.

Now let us show that (b)⇒ (a). Since k(x, t) is continuous function, function
|k(x, t)| is also continuous. D is closed, bounded set. Hence

|D| =
∫
D

1dt ≤ ∞

and
max
x,t∈D

|k(x, t)| ≤M <∞.

From here

max
x∈D

∫
D

|k(x, t)|dt ≤M

∫
D

1dt = M |D| <∞

and we have proved (2.10) with M1 = M |D|. Let us take ε > 0. Since D is
closed and bounded set then k(x, t) is uniformly continuous on D×D. From the
uniform continuity there exists δ3 > 0 such that for all x, x′, t ∈ D

r(x, x′) < δ3 ⇒ |k(x, t)− k(x′, t)| < ε

|D|

and hence
r(x, x′) < δ3 ⇒ sup

x,x′,t∈D
r(x,x′)<δ3

|k(x, t)− k(x′, t)| < ε

|D|
.

From here

sup
x,x′∈D,

r(x,x′)<δ3

∫
D

|k(x, t)− k(x′, t)|dt ≤ sup
t,x,x′∈D,
r(x,x′)<δ3

|k(x, t)− k(x′, t)||D| ≤ ε

and (2.11) follows.
Now assume that (c) is satisfied. Let’s define the operator

Kny(x) =

∫
D

kn(x, t)y(t)dt.

Since kn(x, t) is continuous function Kn is compact operator from L∞(D) to C(D)
due to (b). From proposition 2.1 and (2.13) we get

∥(K −Kn)y∥∞ = max
x∈D

∣∣∣∣∫
D

[k(x, t)− kn(x, t)]y(t)dt

∣∣∣∣ ≤
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≤ ∥y∥L∞(D)max
x∈D

∫
D

|k(x, t)− kn(x, t)|dt→ 0 as n→∞ (5.45)

and
lim
n→∞

Kny = Ky for all y ∈ L∞(D).

By Banach-Steinhaus theorem 2.6 is K continuous linear operator from L∞(D)
to C(D). From (2.13) we have

∥K − Kn∥ ≤ max
x∈D

∫
D

|k(x, t)− kn(x, t)|dt→ 0 as n→∞

and Kn → K. From here and theorem 2.9 is K compact operator from L∞(D) to
C(D).
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6. Nyström method

The Nyström method is based on the approximation of the integral by numerical
integration rule Qn: ∫

D

v(x)dx ≈ Qnv =
n∑

j=1

ωn,jv(xn,j) (6.1)

where xn,j are called the node points and satisfy

xn,j ∈ D.

In the following we will write ωj instead of ωn,j and xj instead of xn,j. Here the
integration rule can’t be applied directly to (4.1) because the kernel function
k(x, t) was assumed to be singular when x = t. There are two ways to deal with
such singularity. In both cases k(x, t) is approximated by bounded kernel function
kn(x, t), n = 1, 2, ..., which coincide with k(x, t) outside certain neighborhood of
x = t. More details about construction of function kn(x, t) will be given in the
next section. First way is to change kernel function. If we use function kn(x, t)
instead of k(x, t) and use numerical integration rule we get:[

λyn(x)−
n∑

j=1

ωjkn(x, xj)yn(xj)

]
= f(x). (6.2)

Now we can run x over the node points and we get system of linear equations for
approximate solution yn(xi)[

λy(xi)−
n∑

j=1

ωjkn(xi, xj)y(xj)

]
= f(xi), i = 1, ..., n (6.3)

The numerical solution yn of modified Nyström method 1 is obtained by
interpolation formula

yn(x) =
1

λ

[
f(x) +

n∑
j=1

ωjkn(x, xj)yn(xj)

]
. (6.4)

Other way is to weaken the singularity by following steps. First let’s rewrite
(4.1) onto the form as in [2].[

λ−
∫
D

k(x, t)dt

]
y(x)−

∫
D

k(x, t) [y(t)− y(x)] dt = f(x) (6.5)

By changing kn and k in the second integral on the right hand side of (6.5) and
using numerical integration rule we obtain[

λ−
∫
D

k(x, t)dt

]
ỹn(x)−

n∑
j=1

ωjkn(x, xj)[ỹn(xj)− ỹn(x)] = f(x). (6.6)

Now let’s run x through the node points and we get system of linear equations
for ỹn(xi)
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[
λ+

n∑
j=1,j ̸=i

ωjkn(xi, xj)−
∫
D

k(xi, t)dt

]
ỹn(xi)−

n∑
j=1,j ̸=i

ωjkn(xi, xj)ỹn(xj) = f(xi)

(6.7)
The numerical solution of modified Nyström method 2 is obtained by
interpolation formula

ỹn(x) =
f(x) +

∑n
j=1 ωjkn(x, xj)ỹn(xj)

λ+
∑n

j=1 ωjkn(x, xj)−
∫
D
k(x, t)dt

. (6.8)

The integral can be calculated analytically or by some special numerical
integration rule.

6.1 Integration rule and kernel function

conditions

In this section we first need to define bounded approximation kn(x, t). To do it
we need to make more assumption to the original kernel function k(x, t). Let
r(x, t) be the Euclidean distance of points x, t ∈ D defined by

r(x, t) =

√√√√ m∑
j=1

|xi − ti|2. (6.9)

In the case of D ⊂ R is
r(x, t) = |x− t|, (6.10)

in the case of D ⊂ R2 is

r(x, t) =
√
(x1 − t1)2 + (x2 − t2)2 (6.11)

and in the case of D ⊂ R3 is

r(x, t) =
√
(x1 − t1)2 + (x2 − t2)2 + (x3 − t3)2. (6.12)

Let
RD = max

x,t∈D
r(x, t).

Assume that there exists function h ∈ C(D × D) and positive non-increasing
function g ∈ C(0,∞) satisfying

lim
t→0+

g(t) =∞, (6.13)

such that the kernel function is of the form

k(x, t) = g(r(x, t))h(x, t). (6.14)

Note that this is a special case of diagonal singularity defined in the chapter 4.
In case of collocation methods this specification is not needed. However error
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analysis of Nyström method cannot be done without it. In case of the original
integral equation describing induction heating is g(u) = 1/u and h(x, t) = −ικ(x).

Now let’s define bounded kernel approximation k(x, t). Assume that µn is
decreasing positive sequence such that

lim
n→∞

µn = 0. (6.15)

Then kernel function can be approximated by function

kn(x, t) = gµn(r(x, t))h(x, t), (6.16)

where

gµn(u) =

{
g(u), if u ≥ µn

g(µn), if u < µn.
(6.17)

Since g ∈ C(0,∞) was positive non-increasing function gµn ∈ C[0,∞) is also
positive and non-increasing function for all n. Detailed assumption on sequence
µn will be given later. Note that approximation (6.16) is bounded approximation
of original k(x, t). More properties are given by following lemma.

Lemma 6.1. For functions defined above the following properties are valid

r(x, t) > 0 for all x, t ∈ D (6.18)

0 ≤ gµn(r(x, t)) ≤ g(r(x, t)) for all x, t ∈ D (6.19)

if n ≥ m⇒ gµn(r(x, t)) ≥ gµm(r(x, t)) for all x, t ∈ D. (6.20)

kn(x, t) = k(x, t), when r(x, t) ≥ µn. (6.21)

Proof. All items follow immediately from the definitions (6.16) and (6.17).

Since h(x, t) is continuous function on D×D where D is closed and bounded
set we have

max
x,t∈D

|h(x, t)| ≤M <∞. (6.22)

Now let’s formulate important conditions to the kernel function and numerical
integration rule.

Assume that the numerical integration rule is convergent for all continuous
functions. It means that for all v ∈ C(D) it holds

lim
n→∞

Qnv = lim
n→∞

n∑
j=1

ωjv(xj) =

∫
D

v(t)dt. (6.23)

Assume that the weights of numerical integration rule Qn are positive, which
means that

ωj > 0, for all j = 1, ..., n. (6.24)

Let’s define
ωn = max

j=1,...,n
ωj. (6.25)

For the sequence µn assume that

µm
n ≥ ρmωn, (6.26)
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where 0 < ρ <∞ and that there exists µ <∞ such that

g(µn)ωn ≤ µ for all n. (6.27)

Also assume that exists cD <∞ such that

max
x∈D

∫
{t,r(x,t)<RD}

g(r(x, t))dt ≤ cD, (6.28)

assume that

lim
ν→0

max
x∈D

∫
{t,r(x,t)<ν}

g(r(x, t))dt = 0. (6.29)

Finally assume that there exists constants c <∞ such that for all positive, non-
increasing function z ∈ C[0,∞) and x ∈ D it holds∑

j,r(x,xj)≤ξ

ωjz(r(x, xj)) ≤ c

[
z(0)ωn +

∫
{t,r(x,t)≤ξ}

z(r(x, t))dt

]
. (6.30)

The last conditions seem to be very restrictive, however in next chapter we will
see that it is satisfied for compound numerical integration rules. Very important
is also to find the sequence µn.

Proposition 6.2. For operator K defined by (4.3) it holds

∥K∥ ≤MCD (6.31)

Proof. Let us take y ∈ C(D) such that ∥y∥∞ = 1. Then by (6.28) we have

∥K∥ ≤ max
x∈D

∫
D

|h(x, t)g(r(x, t))|dt ≤M max
x∈D

∫
{t,r(x,t)≤RD}

g(r(x, t))dt ≤MCD.

At the end of this section let’s write one important application of principal of
uniform boundedness 2.5.

Proposition 6.3. Let Qn be numerical integration rule that converges for all
continuous function and satisfies (6.24). Then

sup
n

n∑
j=1

ωj ≤ cI <∞. (6.32)

Proof. Let’s apply theorem 2.5. The spaces are X = Y = C(D) and Tn = Qn.
Since the numerical integration rule converges for all continuous functions we
have by (6.23) that the limit Qny exists for all y ∈ C(D). Let’s take y ∈ C(D)
such that ∥y∥∞ = 1. Then by (2.8) in theorem 2.5 we have

sup
n
∥Qn∥∞ = sup

n

n∑
j=1

ωj ≤ T <∞.

Hence cI = T .
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6.2 Convergence of Nyström method

We need to show that (6.2) and (6.6) is a good approximation of (4.1). We will
use operator calculus. Let’s define operator Kn : C(D)→ C(D).

Kny(x) =
n∑

j=1

ωjkn(x, xj)y(xj) (6.33)

where kn is defined in (6.16). We can see that Kn is for each n compact linear
operator (it is continuous linear operator of finite rank). From equation (6.2) and
definition (6.33) we obtain operator form of Nyström method 1:

(λI − Kn)yn = f. (6.34)

For rewriting (6.6) into operator form we need to define another operator

K̃n : C(D)→ C(D)

K̃ny(x) =
n∑

j=1

ωjkn(x, xj)[y(xj)− y(x)] +

∫
D

k(x, t)y(x)dt. (6.35)

Then operator form of Nyström method 2 - equation (6.6) is

(λI − K̃n)ỹn = f. (6.36)

First let’s prove existence of (λI−Kn)
−1 for enough large n. We will use following

theorem. It is modified version of theorem 4.1.1 from [3].

Theorem 6.4. Let X be a Banach space, let operators S, T be bounded on X .
For given λ ̸= 0 let’s assume that λI − T is a bijection on X (which means
(λI − T )−1 exists, is bounded and R(λI − T ) = X ).
If

∥(T − S)S∥ < |λ|
∥(λI − T )−1∥

(6.37)

then (λI − S)−1 : R(λI − S)→ X exists, is bounded and

∥(λI − S)−1∥ ≤ 1 + ∥(λI − T )−1∥∥S∥
|λ| − ∥(λI − T )−1∥∥(T − S)S∥

. (6.38)

Let f ∈ R(λI − S). Let y be solution of (λI − T )y = f and let z be solution of
(λI − S)z = f . Then it holds

∥y − z∥X ≤ ∥(λI − S)−1∥∥T y − Sy∥X . (6.39)

If S is compact operator then R(λI − S) = X .

Proof. (λI − T ) has inverse by assumption. The inverse can be written in the
form:

(λI − T )−1 =
1

λ
[I + (λI − T )−1T ].

This can be verified by identities

1

λ
[I + (λI − T )−1T ] = 1

λ
[(λI − T )−1(λI − T ) + (λI − T )−1T ] =
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=
1

λ
(λI − T )−1[λI − T + T ].

Consider the approximation

1

λ
[I + (λI − T )−1S]. (6.40)

Now let’s check (6.40).

1

λ
[I+(λI −T )−1S](λI −S) = 1

λ
[(λI −T )−1(λI −T )+(λI −T )−1S](λI −S) =

=
1

λ
(λI − T )−1(λI − T + S)(λI − S) =

= (λI − T )−1(λI − T + S)− 1

λ
(λI − T )−1(λI − T + S)S =

= (λI−T )−1(λI−T )+(λI−T )−1S+1

λ
(λI−T )−1(T −S)S−1

λ
(λI−T )−1(λI)S =

= I + (λI − T )−1S +
1

λ
(λI − T )−1(T − S)S − (λI − T )−1S

from this we get

1

λ
[I + (λI − T )−1S](λI − S) = I + 1

λ
(λI − T )−1(T − S)S. (6.41)

By assumption (6.37)∥∥∥∥1λ(λI − T )−1(T − S)S
∥∥∥∥ ≤ 1

|λ|
∥(λI − T )−1∥∥(T − S)S∥ < 1, (6.42)

by proposition 2.18 is the right hand side of (6.41) invertible and therefore it
holds∥∥∥∥∥
[
I + 1

λ
(λI − T )−1(T − S)S

]−1
∥∥∥∥∥ =

∥∥∥∥∥
∞∑
n=0

(−1)n
[
1

λ
(λI − T )−1(T − S)S

]n∥∥∥∥∥ ≤
≤

∞∑
n=0

∥∥∥∥[1λ(λI − T )−1(T − S)S
]n∥∥∥∥ ≤ ∞∑

n=0

∥∥∥∥1λ(λI − T )−1(T − S)S
∥∥∥∥n ≤

≤
∞∑
n=0

(∥∥∥∥1λ(λI − T )−1

∥∥∥∥ ∥(T − S)S∥)n

=

=
1

1− 1
|λ|∥(λI − T )−1∥∥(T − S)S∥

. (6.43)

Since the hand right side of (6.41) is invertible the left hand side is also
invertible. This implies that (λI −S) is one-to-one. Otherwise the left hand side
would not be invertible. So inverse operator (λI − S)−1 exists as operator from
R(λI − S)→ X . Let’s multiply (6.41) by (λI − S)−1 from right

1

λ
(I + (λI − T )−1S) =

[
I + 1

λ
(λI − T )−1(T − S)S

]
(λI − S)−1
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and since the right hand side of (6.41) is invertible we get

(λI − S)−1 =

[
I + 1

λ
(λI − T )−1(T − S)S

]−1 [
1

λ
(I + (λI − T )−1S)

]
. (6.44)

Now from (6.44) and the bound (6.43) we can derive

∥(λI − S)−1∥ ≤
∥ 1
λ
(I + (λI − T )−1S)∥

1− 1
|λ|∥(λI − T )−1∥∥(T − S)S∥

=

=

1
|λ|∥(I + (λI − T )−1S∥

1− 1
|λ|∥(λI − T )−1∥∥(T − S)S∥

≤

≤ 1 + ∥(λI − T )−1∥∥S∥
|λ| − ∥(λI − T )−1∥∥(T − S)S∥

(6.45)

and we have proved bound (6.38). For (6.39) let’s take some f ∈ R(λI − S).
Equation (λ− T )y = f can be rewritten as

(λI − S)y + (S − T )y = f

(λI − S)y = f + (T − S)y. (6.46)

Since (λI −S)z = f let’s subtract (λI −S)z from left hand side of (6.46) and f
from the right hand side. We obtain

(λI − S)y − (λI − S)z = f + (T − S)y − f

(λI − S)(y − z) = (T − S)y. (6.47)

From invertibility of λI − S we have

(y − z) = (λI − S)−1(T − S)y

By using norm we have error bound (6.39).
If S is compact operator we have by Fredholm alternative theorem that λI−S

is bijection from X to X . Hence (λI −S)−1 exists as operator from X to X .

We want to use theorem 6.4 with S = Kn and T = K. Operator K was
assumed to be a compact operator. Compact operators are bounded. We need
to verify (6.37) and uniform boundedness of operators Kn. We will use theory of
collectively compact operator approximation. First let us define a set Wm as

Wm = {Kny, y ∈ C(D), ∥y∥∞ ≤ 1, n ≥ m} (6.48)

and prove next lemmas.

Lemma 6.5. Let ξ ∈ (0, RD), let µn be positive decreasing sequence that converges
to 0. Let the numerical integration rule and the sequence µn satisfy (6.26), (6.27)
and (6.30). Then it holds

max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) ≤ c

(
1 +

1

Cmρm

)
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt

(6.49)

40



for all n such that µn < ξ, where c is constant from (6.30), ρ from (6.26) and

Cm =
π

n
2

Γ
(
n
2
+ 1
) (6.50)

where Γ is the Gamma function.

Proof. gµn is for all n continuous, positive non-increasing function. By applying
(6.30) we get

max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) ≤ c

[
ωngµn(0) + max

x∈D

∫
{t,r(x,t)<ξ}

gµn(r(x, t))dt

]
≤

≤ c

[
ωngµn(0) + max

x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt

]
. (6.51)

Let’s take some x ∈ D. Then for all ν it holds∫
{t,r(x,t)<ν}

1dt = Cmν
m. (6.52)

From (6.26) we have (note that m = 1, 2, ...)

ωn ≤
µm
n

ρm
(6.53)

From the boundedness of g(µn)ωn - prop. (6.27), (6.25), (6.53) and (6.52) we get

gµn(0)ωn = g(µn)ωn ≤ g(µn)
µm
n

ρm
= g(µn)

µm
n Cm

ρmCm

=

=
1

Cmρm

∫
{t,r(x,t)<µn}

g(µn)dt ≤
1

Cmρm
max
x∈D

∫
{t,r(x,t)<µn}

g(r(x, t))dt ≤

≤ 1

Cmρm
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt

and (6.49) holds.

Lemma 6.6. Let operator Kn be defined as in (6.33), where kn is defined by
(6.16) and where µn is positive decreasing sequence such that (6.15) holds. Under
assumption (6.22), (6.23), (6.24), (6.26), (6.27), (6.28), (6.29) and (6.30) there
exist n0 such that is Wn0 uniformly bounded.

Proof. Let us take some y ∈ C(D) such that ∥y∥∞ ≤ 1 and ξ ∈ (0, RD). From
(6.15) it follows that there exists n0 such that if n ≥ n0 is

µn < ξ. (6.54)

By (6.22) and (6.16) there exists M <∞ such that

∥Kny∥∞ = max
x∈D

∣∣∣∣∣
n∑

j=1

ωjh(x, xj)gµn(r(x, xj))y(xj)

∣∣∣∣∣ ≤
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≤M max
x∈D

n∑
j=1

|ωjgµn(r(x, xj))|.

Function g was assumed to be positive function and for the weights of numerical
integration rule we assumed in (6.24) that ωj > 0. Hence

∥Kny∥∞ ≤M max
x∈D

n∑
j=1

ωjgµn(r(x, xj)). (6.55)

Now let’s split the sum into two parts. We get

max
x∈D

n∑
j=1

ωjgµn(r(x, xj)) ≤

≤

max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) + max
x∈D

∑
j,r(x,xj)≥ξ

ωjgµn(r(x, xj))

 . (6.56)

Since g is non-increasing function we have

g(ξ) ≥ gµn(r(x, t)) when r(x, t) ≥ ξ. (6.57)

From (6.23) and (6.24) we can use proposition 6.3. For the right sum in (6.56)
we get by (6.57)

max
x∈D

∑
j,r(x,xj)≥ξ

ωjgµn(r(x, xj)) ≤ max
x,t∈D

r(x,t)≥ξ

g(r(x, t))
∑

j,r(x,xj)≥ξ

ωj ≤

≤ g(ξ)
∑

j,r(x,xj)≥ξ

ωj ≤ g(ξ)
n∑

j=1

ωj ≤ g(ξ)cI (6.58)

where cI is defined by (6.32) in proposition 6.3. From (6.30) and (6.49) from
lemma 6.5 (we can us the lemma - all assumptions are satisfied) we have for the
left sum in (6.56) if n ≥ n0 that

max
x∈D

∑
j,r(x,xj)<ξ

gµn(r(x, xj)) ≤

≤ c

[
1 +

1

Cmρm

]
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt ≤

≤ c

[
1 +

1

Cmρm

]
max
x∈D

∫
{t,r(x,t)<RD}

g(r(x, t))dt.

Hence by (6.28) is

max
x∈D

∑
j,r(x,xj)<ξ

gµn(r(x, xj)) ≤ c

[
1 +

1

Cmρm

]
cD (6.59)
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and from (6.56), (6.58), (6.59) we have

max
x∈D

n∑
j=1

ωjgµn(r(x, xj)) ≤ C (6.60)

where

C = max

{
cIg(ξ), c

[
1 +

1

Cmρm

]
cD

}
. (6.61)

Since g ∈ C[ξ, RD] g(ξ) <∞. Constant C <∞ is independent to x and n so we
have from (6.55)

∥Kny∥∞ ≤MC <∞, for n ≥ n0 (6.62)

and Wn0 is uniformly bounded.

Corollary 6.7. Under the assumptions of last the lemma 6.6 we have that there
exits n0 and constant C independent to n such that for all n ≥ n0 for the operator
Kn the following inequality is valid

∥Kn∥ ≤MC (6.63)

and Kn is bounded operator.

Proof. Follows immediately from (6.62).

Lemma 6.8. Let operator Kn be defined as in (6.33) where kn is defined by
(6.16) and where µn is positive decreasing sequence such that (6.15) holds. Under
assumption (6.22), (6.23), (6.24), (6.26), (6.27), (6.28), (6.29) and (6.30) is W1

equicontinuous.

Proof. Let us take some y ∈ C(D) such that ∥y∥∞ ≤ 1 and some ε > 0. By (6.29)
there exists ξ > 0 such that

max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt <
ε

24cM
(
1 + 1

Cmρm

) (6.64)

where M is defined by (6.22), c by (6.30), ρ in (6.26) and Cm was defined in
lemma 6.5. From the uniform continuity of h(x, t) on D ×D we have that there
exists δ1 > 0 such that

for all t, x, x′ ∈ D, r(x, x′) < δ1 ⇒ |h(x′, t)− h(x, t)| < ε

2C

where C is defined by (6.61). Hence

for all x, x′ ∈ D, r(x, x′) < δ1 ⇒ max
t∈D
|h(x′, t)− h(x, t)| < ε

2C
. (6.65)

Function g is uniformly continuous on [ξ, RD] and we have that there exists δ2 > 0
such that

for all u, u′ ∈ [ξ, RD], |u− u′| < δ2 ⇒ |g(u′)− g(u)| < ε

12cIM
(6.66)
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where cI is defined by (6.32) in proposition 6.3 and M is defined in (6.22). From
triangular inequality we have

|r(x, t)− r(x′, t)| ≤ r(x, x′).

From here and (6.66) we have

for all t, x, x′ ∈ D if r(x, t) ≥ ξ, r(x′, t) ≥ ξ, r(x, x′) < δ2 ⇒

⇒ |g(r(x, t))− g(r(x′, t))| < ε

12cIM

and hence
for all x, x′ ∈ D if r(x, x′) < δ2 ⇒

⇒ max
t∈D,r(x,t)≥ξ,

r(x′,t)≥ξ

|g(r(x, t))− g(r(x′, t))| < ε

12cIM
. (6.67)

Now let us take x, x′ ∈ D such that r(x, x′) < δ2 and t ∈ D such that
r(x, t) ≥ ξ and r(x′, t) < ξ. Then

r(x, t) > r(x′, t)

and by triangular inequality we get

|r(x, t)− r(x′, t)| = r(x, t)− r(x′, t) ≤ r(x, x′).

Hence
r(x, t)− ξ + ξ − r(x′, t) ≤ r(x, x′)

r(x, t)− ξ ≤ r(x, x′) + r(x′, t)− ξ.

Since r(x′, t) < ξ we have that r(x′, t)− ξ < 0 and

r(x, t)− ξ ≤ r(x, x′).

From here and (6.66) we obtain that

for all x, x′, t ∈ D, if r(x, t) ≥ ξ, r(x′, t) < ξ and r(x, x′) < δ2 ⇒

⇒ |g(ξ)− g(r(x, t))| < ε

12cIM

and hence
for all x, x′ ∈ D if r(x, x′) < δ2 ⇒

⇒ max
t∈D,r(x′,t)<ξ,

r(x,t)≥ξ

|g(ξ)− g(r(x, t))| < ε

12cIM
. (6.68)

Let us take x, x′ ∈ D such that r(x, x′) < δ = min{δ1, δ2}. By (6.65) we have

|Kny(x
′)−Kny(x)| =

=

∣∣∣∣∣
n∑

j=1

ωj [gµn(r(x
′, xj))h(x

′, xj)− gµn(r(x, xj))h(x, xj)] y(xj)

∣∣∣∣∣ ≤
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∣∣∣∣∣
n∑

j=1

ωjgµn(r(x
′, xj)) [h(x

′, xj)− h(x, xj)] y(xj)

∣∣∣∣∣+
+

∣∣∣∣∣
n∑

j=1

ωj [gµn(r(x
′, xj))− gµn(r(x, xj))]h(x, xj)y(xj)

∣∣∣∣∣ ≤
≤ ε

2C

∣∣∣∣∣
n∑

j=1

ωjgµn(r(x
′, xj))

∣∣∣∣∣+
+M [K1(x, x

′) +K2(x, x
′) +K3(x, x

′) +K4(x, x
′)] (6.69)

where K1, K2, K3 and K4 are defined as

K1(x, x
′) =

∑
j,r(x,xj)<ξ,
r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))| ,

K2(x, x
′) =

∑
j,r(x,xj)≥ξ,
r(x′,xj)≥ξ

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))| ,

K3(x, x
′) =

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))|

and

K4(x, x
′) =

∑
j,r(x,xj)<ξ,
r(x′,xj)≥ξ

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))| .

Now let us assume that µn < ξ. For K1 we have by (6.30) and (6.49) from
proposition 6.5

K1(x, x
′) ≤

∑
j,r(x′,xj)<ξ

ωjgµn(r(x
′, xj)) +

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) ≤

≤ 2max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) ≤

≤ 2c

[
1 +

1

Cmρm

]
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt.

From here by (6.64) we get

K1(x, x
′) ≤ 2c

[
1 +

1

Cmρm

]
ε

24cM
(
1 + 1

Cmρm

) ≤ ε

12M
. (6.70)

For K2 we have by (6.67) and (6.32)

K2(x, x
′) ≤ max

t∈D,r(x,t)≥ξ,
r(x′,t)≥ξ

|g(r(x′, t))− g(r(x, t))|
n∑

j=1

ωj ≤
εcI

12cIM
=

ε

12M
. (6.71)
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For K3 we have from (6.30), (6.26) and (6.25)

K3(x, x
′) ≤

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− g(ξ)|+

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− gµn(r(x, xj))| ≤

≤
∑

j,r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− g(ξ)|+

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− g(r(x, xj))| ≤

≤
∑

j,r(x′,xj)<ξ

ωjgµn(r(x
′, xj))+

∑
j,r(x′,xj)<ξ

ωjg(ξ)+
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− g(r(x, xj))| ≤

≤ 2
∑

j,r(x′,xj)<ξ

ωjgµn(r(x
′, xj)) +

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− g(r(x, xj))| ≤

≤ 2max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) +
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− g(r(x, xj))| ≤

≤ 2c

[
1 +

1

Cmρm

]
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt+ max
t∈D,r(x,t)≥ξ
r(x′,t)<ξ

|g(ξ)− g(r(x, t))|
n∑

j=1

ωj.

From here, (6.64) and (6.68) we have

K3(x, x
′) ≤ 2c

[
1 +

1

Cmρm

]
ε

24cM
(
1 + 1

Cmρm

) +
ε

12cIM
cI =

ε

6M
. (6.72)

Since K4(x, x
′) = K3(x

′, x) we have by the same way

K4(x, x
′) ≤ ε

6M
. (6.73)

From (6.69), (6.70), (6.71), (6.72) and (6.73) we have that for all ε > 0 there
exists δ = min{δ1, δ2} such that for all x, x′ ∈ D it holds

r(x, x′) < δ ⇒ |Kny(x
′)−Kny(x)| ≤ ε.

Now assume that µn ≥ ξ. Note that

gµn(r(x, t)) = g(µn) if r(x, t) ≤ µn. (6.74)

For K1 we have by (6.74)

K1(x, x
′) =

∑
j,r(x,xj)<ξ,
r(x′,xj)<ξ

ωj |g(µn)− g(µn)| = 0. (6.75)
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For K2 we have by (6.67) and (6.32)

K2(x, x
′) =

∑
j,ξ≤r(x,xj)<µn,
ξ≤r(x′,xj)<µn

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))|+

+
∑

j,r(x,xj)≥µn,
r(x′,xj)≥µn

ωj |gµn(r(x
′, xj))− gµn(r(x, xj))| =

=
∑

j,ξ≤r(x,xj)<µn,
ξ≤r(x′,xj)<µn

ωj |g(µn)− g(µn)|+
∑

j,r(x,xj)≥µn,
r(x′,xj)≥µn

ωj |g(r(x′, xj))− g(r(x, xj))| =

=
∑

j,r(x,xj)≥µn,
r(x′,xj)≥µn

ωj |g(r(x′, xj))− g(r(x, xj))| ≤

≤ max
t∈D,r(x,t)≥ξ,

r(x′,t)≥ξ

|g(r(x′, t))− g(r(x, t))|
n∑

j=1

ωj ≤
εcI

12cIM
=

ε

12M
. (6.76)

For K3 we have by (6.30), (6.26) and (6.25)

K3(x, x
′) ≤

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− gµn(ξ)|+

+
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(ξ)− gµn(r(x, xj))| ≤

≤
∑

j,r(x′,xj)<ξ

ωj |gµn(r(x
′, xj))− gµn(ξ)|+

∑
j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(ξ)− gµn(r(x, xj))| =

=
∑

j,r(x′,xj)<ξ

ωj |g(µn)− g(µn)|+
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |gµn(ξ)− gµn(r(x, xj))| =

=
∑

j,ξ≤r(x,xj)<µn,
r(x′,xj)<ξ

ωj |gµn(ξ)− gµn(r(x, xj))|+
∑

j,r(x,xj)≥µn,
r(x′,xj)<ξ

ωj |gµn(ξ)− gµn(r(x, xj))| =

=
∑

j,ξ≤r(x,xj)<µn,
r(x′,xj)<ξ

ωj |g(µn)− g(µn)|+
∑

j,r(x,xj)≥µn,
r(x′,xj)<ξ

ωj |g(µn)− g(r(x, xj))| =

=
∑

j,r(x,xj)≥µn,
r(x′,xj)<ξ

ωj [g(µn)− g(r(x, xj))] ≤
∑

j,r(x,xj)≥µn,
r(x′,xj)<ξ

ωj [g(ξ)− g(r(x, xj))] ≤
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≤
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj [g(ξ)− g(r(x, xj))] =
∑

j,r(x,xj)≥ξ,
r(x′,xj)<ξ

ωj |g(ξ)− g(r(x, xj))| ≤

≤ max
t∈D,r(x,t)≥ξ
r(x′,t)<ξ

|g(ξ)− g(r(x, t))|
n∑

j=1

ωj.

From here, (6.64), and (6.68) we have

K3(x, x
′) ≤ ε

12cIM
cI =

ε

12M
. (6.77)

Since K4(x, x
′) = K3(x

′, x) we have by the same way

K4(x, x
′) ≤ ε

12M
. (6.78)

From (6.69), (6.75), (6.76), (6.77) and (6.78) we have that for all ε > 0 there
exists δ = min{δ1, δ2} such that for all x, x′ ∈ D

r(x, x′) < δ ⇒ |Kny(x
′)−Kny(x)| ≤

3ε

4
≤ ε.

Hence W1 is equicontinuous.

Now it remains to prove that for each y ∈ C(D) the sequence Kny converges
to Ky. Before doing it let us define gξ as

gξ(u) =

{
g(u) when u ≥ ξ
g(ξ) when u < ξ.

(6.79)

For all ξ > 0 is g(ξ) continuous function.

Proposition 6.9. Let y ∈ C(D). Then for all ξ > 0 it holds

max
x∈D
|Kny(x)−Ky(x)| ≤ L1(ξ, n, y) + L2(ξ, n, y) + L3(ξ, y) (6.80)

where

L1(ξ, n, y) = max
x∈D

∣∣∣∣∣
n∑

j=1

ωjh(x, xj)gξ(r(x, xj))y(xj)−
∫
D

h(x, t)gξ(r(x, t))y(t)dt

∣∣∣∣∣ ,

L2(ξ, n, y) = max
x∈D

∣∣∣∣∣
n∑

j=1

ωjh(x, xj)gµn(r(x, xj))y(xj)−
n∑

j=1

ωjh(x, xj)gξ(r(x, xj))y(xj)

∣∣∣∣∣
and

L3(ξ, y) = max
x∈D

∣∣∣∣∫
D

h(x, t)gξ(r(x, t))y(t)dt−
∫
D

h(x, t)g(r(x, t))y(t)dt

∣∣∣∣ .
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Proof. Follows immediately from the definition ofK, Kn and triangular inequality.

Lemma 6.10. Let the numerical integration rule Qn satisfy (6.23) and (6.24).
Then for all ξ > 0 and y ∈ C(D) it holds

lim
n→∞

L1(ξ, n, y) = 0, (6.81)

Proof. Let us take ξ > 0, y ∈ C(D) and let Qn be the numerical integration rule.
Let us define Q as

Qu =

∫
D

u(t)dt.

Then
L1(ξ, n, y) = max

x∈D
|Qnvx −Qvx|

where
vx(t) = h(x, t)gξ(r(x, t))y(t).

From (6.23) we have for each u ∈ C(D)

|Qnu−Qu| → 0 as n→∞.

Let us define a set S as
S = {vx, x ∈ D}

and let us show that functions from S are uniformly bounded and equicontinuous.
From

max
x,t∈D

vx(t) ≤Mg(ξ)∥y∥∞

we have that S is uniformly bounded. Now let us show that S is equicontinuous.
Let us take ε > 0. From the uniform continuity of y on D we have that there
exists δ1 > 0 such that

for all t, t′ ∈ D if r(t, t′) < δ1 ⇒ |y(t)− y(t′)| < ε

3Mg(ξ)
. (6.82)

From the uniform continuity of h on D×D we have that there exist δ2 such that

for all t, t′, x ∈ D if r(t, t′) < δ2 ⇒ |h(x, t)− h(x, t′)| < ε

3g(ξ)∥y∥∞

and hence

for all t, t′ ∈ D if r(t, t′) < δ2 ⇒ max
x∈D
|h(x, t)− h(x, t′)| < ε

3g(ξ)∥y∥∞
. (6.83)

From here and uniform continuity of gξ on [0, RD] we have that there exists δ3
such that

for all u, u′ ∈ [0, RD], |u− u′| < δ3 ⇒ |g(u)− g(u′)| < 3M∥y∥∞.

From here and triangular inequality

|r(x, t)− r(x, t′)| ≤ r(t, t′) for each x, t, t′ ∈ D
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we get

for all t, t′, x ∈ D if r(t, t′) < δ3 ⇒ |gξ(r(x, t))− gξ(r(x, t
′))| < ε

3M∥y∥∞

and hence

for all t, t′ ∈ D if r(t, t′) < δ3 ⇒ max
x∈D
|gξ(r(x, t))− gξ(r(x, t

′))| < ε

3M∥y∥∞
.

(6.84)
From (6.82), (6.83) and (6.84) we have for all t, t′ ∈ D such that r(t, t′) < δ =
min{δ1, δ2, δ3}

|vx(t)− vx(t
′)| ≤ |h(x, t)gξ(r(x, t))y(t)− h(x, t′)gξ(r(x, t

′))y(t′)| ≤
≤ |h(x, t)gξ(r(x, t))y(t)− h(x, t′)gξ(r(x, t))y(t)|+
+ |h(x, t′)gξ(r(x, t))y(t)− h(x, t′)gξ(r(x, t))y(t

′)|+
+ |h(x, t′)gξ(r(x, t))y(t′)− h(x, t′)gξ(r(x, t

′))y(t′)| ≤
≤ ∥y∥∞g(ξ)max

x∈D
|h(x, t)− h(x, t′)|+Mg(ξ)|y(t)− y(t′)|+

+ M∥y∥∞ max
x∈D
|gξ(r(x, t))− gξ(r(x, t

′))| ≤ ε

and S is equicontinuous. From corollary 2.17 for T = Q and Tn = Qn we have

sup
u∈S
|Qnu−Qu| = max

x∈D
|Qnvx −Qvx| → 0 as n→∞

and lemma follows.

Lemma 6.11. Let operator K be defined as in (4.3) and let operator Kn be defined
as in (6.33), where kn is defined by (6.16) and where µn is positive decreasing
sequence such that (6.15) holds. Finally assume that (6.22), (6.23), (6.24), (6.26),
(6.27) and (6.29) hold. Also assume that there exists constant c such that (6.30)
holds for all z ∈ C[0,∞). Then for all y ∈ C(D)

Kny → Ky as n→∞. (6.85)

Proof. Let us take y ∈ C(D) and ε > 0. Then by (6.29) there exists ξ > 0 such
that

max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt <
ε

4M∥y∥∞
(
c+ 1 + c

Cmρm

) . (6.86)

Let us take such ξ. Let L1, L2 and L3 be defined as in proposition 6.9. By (6.81)
in lemma 6.10 there exists n1 such that if n ≥ n1 is

L1(ξ, n, y) ≤
ε

2
. (6.87)

By (6.15) there exists n2 such that if n ≥ n2 is µn < ξ. Let’s take n ≥ n2. Then

g(r(x, t)) ≥ gµn(r(x, t)) ≥ gξ(r(x, t)). (6.88)

Since
gµn(r(x, xj)) = gξ(r(x, xj)) if r(x, xj) ≥ ξ
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we have for L2(ξ, n, y) by (6.49) and (6.88)

L2(ξ, n, y) ≤ max
x∈D

∑
j,r(x,xj)<ξ

ωj|h(x, xj)||gµn(r(x, xj))− gξ(r(x, xj))||y(xj)| ≤

≤M∥y∥∞

max
x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) + max
x∈D

∑
j,r(x,xj)<ξ

ωjgξ(r(x, xj))

 ≤
≤ 2M∥y∥∞ max

x∈D

∑
j,r(x,xj)<ξ

ωjgµn(r(x, xj)) ≤

≤ 2M∥y∥∞c

(
1 +

1

Cmρm

)
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt. (6.89)

Since
gξ(r(x, t)) = g(r(x, t)) if r(x, t) ≥ ξ

we have for L3(ξ, y)

L3(ξ, y) ≤M∥y∥∞ max
x∈D

∫
D

|gξ(r(x, t))− g(r(x, t))|dt =

= M∥y∥∞ max
x∈D

∫
{t,r(x,t)<ξ}

|gξ(r(x, t))− g(r(x, t))|dt ≤

≤ 2M∥y∥∞ max
x∈D

∫
{t,r(x,t)<ξ}

|g(r(x, t))|dt. (6.90)

From (6.86), (6.89) and (6.90) if n ≥ n2 is

L2(ξ, n) + L3(ξ) ≤ 2M∥y∥∞
(
1 + c+

c

Cmρm

)
max
x∈D

∫
{t,r(x,t)<ξ}

g(r(x, t))dt ≤ ε

2
.

(6.91)
From (6.91), (6.80) and (6.87) we have that if n ≥ max{n1, n2} is

max
x∈D
|Kny(x)−Ky(x)| ≤ ε

and (6.85) holds.

Now let us formulate main theorem about convergence of Nyström method 1.

Theorem 6.12. Let µn be decreasing positive sequence such that (6.15) holds.
Let operator K be defined by (4.3) and operators Kn by (6.33). Assume that the
numerical integration rule is convergent for all continuous function and satisfies
(6.24). Also assume that (6.22), (6.26), (6.27), (6.28) and (6.29) hold and assume
that there exists a constant c < ∞ such that (6.30) holds for all non-increasing
function z ∈ C[0,∞). Further assume that λ ̸= 0 is not eigenvalue of operator
K. Then there exists N1 such that for all n ≥ N1 the inverse (λI − Kn)

−1 exists
and is bounded by

∥(λI − Kn)
−1∥ ≤ 1 + ∥(λI − K)−1∥∥Kn∥

|λ| − ∥(λI − K)−1∥∥(K −Kn)Kn∥
≤ cN1 <∞. (6.92)

Let y ∈ C(D) be solution of (λI − K)y = f and let yn be solution of
(λI − Kn)yn = f . Then for all n ≥ N1

∥y − yn∥∞ ≤ ∥(λI − Kn)
−1∥∥Ky −Kny∥∞. (6.93)

51



Proof. Since the numerical integration rule converges for all continuous function
the (6.23) holds. Operator K is bounded by proposition 6.2. From lemmas 6.6
and 6.8 there exists n0 such that Wn0 uniformly bounded and equicontinuous.
From uniform boundedness of Wn0 we have that operators Kn are uniformly
bounded if n ≥ n0. By Arzela-Ascoli theorem is W n0 compact in C(D). By
lemma 6.11 Kny → Ky for all y ∈ C(D). Hence Kn is a family of collectively
compact operators and by theorem 2.15

∥(K −Kn)Kn∥ → 0 as n→∞ (6.94)

and there exists N1 such that for n ≥ N1

∥(K −Kn)Kn∥ ≤
|λ|

∥(λI − K)−1∥

holds. Then by theorem 6.4 operators (λI −Kn)
−1 exists and (6.92) holds for all

n ≥ N1 = max{n0, N1}. By applying (6.39) with y, z = yn, S = Kn and T = K
(6.93) follows for n ≥ N1.

The last theorem shows that the speed of convergence of yn to y is the same as
the speed of convergence of ∥Ky−Kny∥∞. The convergence of ∥Ky−Kny∥∞ → 0
was proved in lemma 6.11. Now it’s time to show convergence of the method 2.
First let us prove one lemma.

Lemma 6.13. Let operator Kn : C(D) → C(D) be defined as in (6.33) and let

operator K̃n : C(D)→ C(D) be defined as in (6.35). Then

K̃n = Kn − (Knu−Ku)I (6.95)

where u(x) = 1 for all x ∈ D and

lim
n→∞

∥(K − K̃n)K̃n∥ = 0. (6.96)

Proof. From (6.33) and (6.35) is

K̃ny(x)−Kny(x) =
n∑

j=1

ωjkn(x, xj)[y(xj)− y(x)]+

+

∫
D

k(x, t)y(x)dt−
n∑

j=1

ωjkn(x, xj)y(xj) = y(x)

[∫
D

k(x, t)dt−
n∑

j=1

ωjkn(x, xj)

]
=

= y(x)

[∫
D

k(x, t)u(t)dt−
n∑

j=1

ωjkn(x, xj)u(xj)

]
= (Ku−Knu)(x).y(x)

and (6.95) follows. For (6.96) let us define operator Jn as

Jn = (Knu−Ku)I. (6.97)

∥Jn∥ = ∥Knu−Ku∥ → 0 as n→∞ (6.98)
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by lemma 6.11, where we put y ≡ u. Now

(K − K̃n)K̃n = (K −Kn + Jn)(Kn − Jn) =

= (K −Kn)Kn − (K −Kn)Jn + JnKn − J 2
n .

Hence by (6.31) in proposition 6.2, (6.63) in corollary 6.7, (6.94) and (6.98) we
have

∥(K − K̃n)K̃n∥ ≤ ∥(K −Kn)Kn∥+ ∥Jn∥(∥K∥+ ∥2Kn∥) + ∥Jn∥2 ≤

≤ ∥(K −Kn)Kn∥+MCD∥Jn∥+ 2MC∥Jn∥+ ∥Jn∥2 → 0 as n→∞.

From above we can see that operator K̃n is not compact operator. We can use
theorem 6.4 for T = K and S = K̃n but the existence the of solution of (6.36) is
not guaranteed for all f ∈ C(D). However in the proof of following theorem we

will see that compactness of K̃n is not needed. First from lemma 6.11 and (6.95)
we get for all y ∈ C(D)

∥Ky − K̃ny∥∞ = ∥Ky −Kny + (Knu−Ku).Iy∥∞ ≤

≤ ∥Ky −Kny∥∞ + ∥(Knu−Ku)∥∞∥y∥∞ → 0 as n→∞

where I is identical operator and u(x) = 1. So we can write following corollary.

Corollary 6.14. Under assumptions of lemma 6.11 we have that for all y ∈ C(D)

∥Ky − K̃ny∥∞ → 0 as n→∞.

All about the convergence of Nyström method 2 is written in the following
theorem.

Theorem 6.15. Let D ⊂ Rn be closed and bounded set. Let µn be decreasing
positive sequence that (6.15) holds. Let operator K be defined by (4.3) and

operators K̃n by (6.35). Assume that the numerical integration rule is convergent
for all continuous function and satisfies (6.24). Also assume that (6.26), (6.27),
(6.28) and (6.29) hold and that there exists a constant c < ∞ such that (6.30)
holds. Further assume that λ ̸= 0 is not eigenvalue of operator K. Then there
exists N2 such that for all n ≥ N2 the inverse (λI − K̃n)

−1 exists and is bounded
by

∥(λI − K̃n)
−1∥ ≤ 1 + ∥(λI − K)−1∥∥K̃n∥

|λ| − ∥(λI − K)−1∥∥(K − K̃n)K̃n∥
≤ cN2 <∞. (6.99)

Let y ∈ C(D) be solution of (λI − K)y = f and let ỹn be solution of

(λI − K̃n)ỹn = f . Then for all n ≥ N2

∥y − ỹn∥∞ ≤ ∥(λI − K̃n)
−1∥∥Ky − K̃ny∥∞. (6.100)
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Proof. Since the numerical integration rule converges for all continuous function
the (6.23) holds. Let use theorem 6.4 for operators

T = K and S = K̃n.

We need to fulfill (6.37) in theorem 6.4. From (6.96) in lemma 6.13 there exists
N2 such that

∥(K − K̃n)K̃n∥ <
|λ|

∥(λI − K)−1∥
for n ≥ nN2

(6.101)

and we have satisfied (6.37). By theorem 6.4 operator (λI − K̃n)
−1

exists as bounded operator from R(λI − K̃n) into C(D). Estimate (6.99)
follows immediately from (6.38) by theorem 6.4. Now we will prove that

R(λI − K̃n) = C(D). We will use following identity.

λI − K̃n = [I − Kn(λI − K̃n +Kn)
−1](λI − K̃n +Kn). (6.102)

From (6.95), (6.97) and (6.98) we have

∥K̃n −Kn∥ = ∥Jn∥ → 0 as n→∞

and there exists n0 such that for all n ≥ n0 is

∥K̃n −Kn∥ < |λ|

and by proposition 2.18 exists (λI − K̃n + Kn)
−1 as as bijection from C(D) to

C(D) for n ≥ n0. Now let us take N2 = max{n0, N2}. Since the left hand side of
(6.102) is invertible then the right hand side is also invertible. From this operator

[I − Kn(λI − K̃n + Kn)
−1] is one-to-one, because otherwise the right hand side

of (6.102) would not be invertible. Since Kn(λI − K̃n + Kn)
−1 is compact

operator it follows from Fredholm alternative theorem 2.19 that the operator
[I − Kn(λI − K̃n +Kn)

−1]−1 exists from C(D) into C(D). From this and (6.102)
we get

(λI − K̃n)
−1 = (λI − K̃n +Kn)

−1[I − Kn(λI − K̃n +Kn)
−1]−1. (6.103)

Both operators on the right hand side of (6.103) exist as operators from C(D) to
C(D). Hence

R(λI − K̃n) = R[I − Kn(λI − K̃n +Kn)
−1](λI − K̃n +Kn) = C(D)

and operator (λI − K̃n)
−1 exists as operator from C(D) to C(D). By applying

(6.39) with y, z = ỹn, S = K̃n and T = K (6.100) follows for n ≥ N2.

We have showed convergence for both methods. From theorems 6.12 resp. 6.15
we have that error of both methods depends on ∥Kny−Ky∥∞ resp. ∥K̃ny−Ky∥∞.
We can also see that the error depends on two factors. The first one is the
numerical integration rule error and the second factor is kind of singularity of the
kernel function g. In case of Nyström method 2 the singular factor is weakened
by y(t) − y(x) and can be simplified for a special class of functions form C(D)
and special type of kernel singular factor g. Detailed error bounds depend on the
kernel function and the numerical integrations rule. All will be given in the next
chapters.
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7. Special Numerical integration
rules

To use of the Nyström method 1 and Nyström method 2 we need numerical
integration rule that satisfies conditions (6.23), (6.24) and (6.30). In this chapter
we will introduce such rules.

7.1 One dimensional case

In this section let D = [a, b]. We will take a special class of numerical integration
rules. First assume that

a ≤ x1 < x2 < ... < xn−1 < xn ≤ b. (7.1)

Assume that there exists c1 such that for all n ∈ N it holds

max{ωj, ωj−1} ≤ c1(xj − xj−1) for j = 2, ..., n. (7.2)

We need to show that numerical integration rule that satisfies (6.23), (6.24)
and (7.2) also satisfies condition (6.30). All is done by following lemmas.

Lemma 7.1. Let [a, b] be bounded interval and let [ã, b̃] ⊂ [a, b]. Assume that
v is Riemann integrable function on [a, b], which is positive and non-increasing

on [ã, b̃] and equals to zero on [a, b]\ [ã, b̃]. Assume that the numerical integration
rule Qn converges for all continuous functions on [a, b] and satisfies conditions
(6.24), (7.1) and (7.2). Then

n∑
j=1

ωjv(xj) ≤ ωnv(ã) + c1

∫ b̃

ã

v(t)dt. (7.3)

Proof. Let xj be the node points of the numerical integration rule that satisfy
(7.1). Let us define i1 and i2 as

i1 = min{j, xj ≥ ã}

i2 = max{j, xj ≤ b̃}.

and numbers aj

aj =

{
xj if j ̸= i1
ã if j = i1.

From the definition of xj and aj it holds

xi1 ≥ ai1 = ã. (7.4)

Since v is non-increasing on [ã, b̃] we have

v(xi1) ≤ v(ai1) = v(ã). (7.5)
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From (7.2), (7.4) and (7.5) we have

n∑
j=1

ωjv(xj) =
∑

j,xj∈[ã,̃b]

ωjv(xj) =

i2∑
j=i1

ωjv(xj) = ωi1v(xi1) +

i2∑
j=i1+1

ωjv(xj) ≤

≤ ωnv(ã) + c1

i2∑
j=i1+1

(xj − xj−1)v(xj) =

= ωnv(ã) + c1(xi1+1 − xi1)v(xi1+1) + c1

i2∑
j=i1+2

(aj − aj−1)v(aj) ≤

≤ ωnv(ã) + c1(ai1+1 − ai1)v(ai+1) + c1

i2∑
j=i1+2

(aj − aj−1)v(aj) =

= ωnv(ã) + c1

i2∑
i=i1+1

(aj − aj−1)v(aj). (7.6)

Points ai1 , ..., ai2 define a partition for interval P of interval [ã, xi2 ]

P = {ã = ai1 < ai1+1 < ... < ai2 = xi2}.

Since v is non-increasing the sum on the right hand side of (7.6) can be rewritten
as

i2∑
j=i1+1

(aj − aj−1)v(aj) =

i2∑
i=i1+1

[aj − aj−1] min
x∈[aj−1,aj ]

v(x) =

=

i2∑
j=i1+1

[aj − aj−1] inf
x∈[aj−1,aj ]

v(x) = s(v, P )

where s(v, P ) is the lower Riemann sum defined in A-4. Since v(x) is Riemann
integrable on [a, b] it is also Riemann integrable on [ã, xi2 ]. From the definition
of Riemann integral A-5 is

i2∑
i=i1+1

(aj − aj−1)v(aj) = s(v, P ) ≤ sup
P

s(v, P ) =

∫ xi2

ã

v(t)dt ≤
∫ b̃

ã

v(t)dt

and the proof is complete.

Lemma 7.2. Let [a, b] be bounded interval and let [ã, b̃] ⊂ [a, b]. Assume that
v is Riemann integrable function on [a, b], which is positive and non-decreasing

on [ã, b̃] and equals to zero on [a, b]\ [ã, b̃]. Assume that the numerical integration
rule Qn converges for all continuous functions on [a, b] and satisfies conditions
(6.24), (7.1) and (7.2). Then

n∑
j=1

ωjv(xj) ≤ ωnv(̃b) + c1

∫ b̃

ã

v(t)dt. (7.7)
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Proof. Let xj be node the points of the numerical integration rule that satisfy
(7.1). Let us define i1 and i2 as

i1 = min{j, xj ≥ ã}

i2 = max{j, xj ≤ b̃}

and numbers aj

aj =

{
xj if j ̸= i2
b̃ if j = i2.

From the definition of xj and aj it holds

xi2 ≤ ai2 = b̃. (7.8)

Since v is non-decreasing on [ã, b̃] we get

v(xi2) ≤ v(ai2) = v(̃b). (7.9)

From (7.2) we get
ωj ≤ c1(xj+1 − xj), j = 1, ..., n− 1.

From here and (7.8) and (7.9) we have

n∑
j=1

ωjv(xj) =
∑

j,xj∈[ã,̃b]

ωjv(xj) =

i2∑
j=i1

ωjv(xj) =

i2−1∑
j=i1

ωjv(xj) + ωi2v(xi2) ≤

≤ c1

i2−1∑
j=i1

(xj+1 − xj)v(xj) + ωnv(̃b) =

= c1

i2−2∑
j=i1

(aj+1 − aj)v(aj) + c1(xi2 − xi2−1)v(xi2−1) + ωnv(̃b) ≤

≤ c1

i2−2∑
j=i1

(aj+1 − aj)v(aj) + c1(ai2 − ai2−1)v(ai2−1) + ωnv(̃b) =

= c1

i2−1∑
i=i1

(aj+1 − aj)v(aj) + ωnv(̃b). (7.10)

Points ai1 , ..., ai2 define a partition for interval P of interval [xi1 , b̃]

P = {xi1 = ai1 < ai1+1 < ... < ai2 = b̃}.

Since v is non-decreasing the sum on the right hand side of (7.10) can be rewritten
as

i2−1∑
j=i1

(aj+1 − aj)v(aj) =

i2−1∑
i=i1

[aj+1 − aj] min
x∈[aj ,aj+1]

v(x) =

=

i2−1∑
j=i1

[aj+1 − aj] inf
x∈[aj ,aj+1]

v(x) = s(v, P )
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where s(v, P ) is the lower Riemann sum defined in A-4. Since v(x) is Riemann

integrable on [a, b] it is also Riemann integrable on [xi1 , b̃]. From the definition of
Riemann integral A-5 is

i2−1∑
i=i1

(aj+1 − aj)v(aj) = s(v, P ) ≤ sup
P

s(v, P ) =

∫ b̃

xi1

v(t)dt ≤
∫ b̃

ã

v(t)dt

and the proof is complete.

Lemma 7.3. Let [a, b] be bounded interval. Assume that z is non-increasing,
Riemann integrable function on [0,∞) that satisfy z(x) ≥ 0 for every x. Assume
that the numerical integration rule Qn converges for all continuous functions and
satisfies conditions (6.24) and (7.2). Then for all x ∈ [a, b] it holds∑

j,|x−xj |<ξ

ωjz(|x− xj|) ≤ 2ωnz(0) + c1

∫
{t,|x−t|<ξ}

z(|x− t|)dt (7.11)

for all non-increasing function z ∈ C[0,∞) and (6.30) is satisfied with
c = max{c1, 2}.

Proof. Let us take x ∈ [a, b] and ξ > 0. Let us define

aξ = max{a, x− ξ}

and
bξ = min{b, x+ ξ}.

Then
x− ξ ≤ aξ (7.12)

and
bξ ≤ x+ ξ. (7.13)

Let us define function v1 as

v1(t) =

{
0 if t /∈ [aξ, x]
z(x− t) if t ∈ [aξ, x].

(7.14)

Then v1 is non-decreasing on [aξ, x]. From here and by (7.7) in lemma 7.2, (7.12)
and (7.14) we get ∑

j,xj∈[x−ξ,x]

ωjz(x− xj) =
∑

j,xj∈[aξ,x]

ωjv1(xj) =

=
n∑

j=1

ωjv1(xj) ≤ ωnv1(x) + c1

∫ x

aξ

v1(t)dt = ωnz(0) + c1

∫ x

aξ

z(x− t)dt ≤

≤ ωnz(0) + c1

∫ x

x−ξ

z(x− t)dt. (7.15)

Let us define function v2 as

v2(t) =

{
z(t− x) if t ∈ [x, bξ]
0 if t /∈ [x, bξ].

(7.16)
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Then v2 is non-increasing on [x, bξ]. From here and by (7.3) in lemma 7.1, (7.13)
and (7.16) we get ∑

j,xj∈[x,x+ξ]

ωjz(xj − x) =
∑

j,xj∈[x,bξ]

ωjv2(xj) =

=
n∑

j=1

ωjv2(xj) ≤ ωnv2(x) + c1

∫ bξ

x

v2(t)dt = ωnz(0) + c1

∫ bξ

x

z(t− x)dt ≤

= ωnz(0) + c1

∫ x+ξ

x

z(t− x)dt. (7.17)

From (7.15) and (7.17) we get∑
j,|x−xj |<ξ

ωjz(|x− xj|) ≤
∑

j,|x−xj |≤ξ

ωjz(|x− xj|) =

=
∑

j,xj∈[x,x−ξ]

ωjz(x− t) +
∑

j,xj∈[x,x−ξ]

ωjz(t− x) ≤

≤ 2ωnz(0) + c1

∫ x+ξ

x

z(t− x)dt+ c1

∫ x

x−ξ

z(x− t)dt =

= 2ωnz(0) + c1

∫ x+ξ

x−ξ

z(|x− t|)dt

and (7.11) follows for all x ∈ [a, b]. Hence (6.30) follows for c = max{c1, 2}

Now let us introduce some numerical integration rules.

Definition 7.1 (Midpoint integration rule). Let f be Riemann integrable function
on [a, b]. The midpoint integration rule is defined by∫ b

a

f(x)dx ≈ (b− a)f

(
a+ b

2

)
. (7.18)

The compound midpoint integration rule QM,n is defined by∫ b

a

f(x)dx ≈ QM,nf =
n∑

j=1

b− a

n
f(xj) (7.19)

where

xj = a+ j
b− a

n
− b− a

2n
, j = 1, ..., n. (7.20)

Definition 7.2 (Simpson integration rule). Let f be Riemann integrable function
on [a, b]. The Simpson integration rule is defined by∫ b

a

f(x)dx ≈ b− a

6

(
f(a) + 4f(

a+ b

2
) + f(b)

)
. (7.21)

The compound Simpson integration rule QS,n (n odd) is defined by∫ b

a

f(x) dx ≈ QS,nf =
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=
b− a

3(n− 1)

[
f(x1) + 4

(n−1)/2∑
j=1

f(x2j) + 2

(n−3)/2∑
j=1

f(x2j+1) + f(xn)

]
(7.22)

where

xj = a+ (j − 1)
b− a

n− 1
, j = 1, ..., n. (7.23)

Corollary 7.4. Let

h =
b− a

n− 1
.

Then

QS,n =

(n−1)/2∑
j=1

2h

6
[f(x2j−1) + 4f(x2j) + f(x2j+1)] .

Proof. Follows immediately from (7.21), (7.22) and (7.23).

Lemma 7.5. Compound midpoint rule satisfies condition (7.2) with constant
c1 = (b− a).

Proof. From (7.19) and (7.20) for every j = 1, ..., n− 1 it holds for all j = 2, ..., n

ωj = ωj−1 =
b− a

n
= xj − xj−1.

Hence (7.2) is satisfied with c1 = 1.

Lemma 7.6. Compound Simpson rule satisfies condition (7.2) with constant c1 =
4/3.

Proof. From (7.22) and (7.23) for every j = 2, ..., n is

ωj, ωj−1 ≤ max{ωj, j = 1, ..., n} = 4

3

b− a

n− 1
=

4

3
[xj − xj−1] .

Hence (7.2) is satisfied with c1 = 4/3.

Numerical integration rules errors are described in many various sources.
Let us formulate estimate for compound midpoint and compound Simpson rule.
Proofs of following two theorem can be found for example in [10].

Theorem 7.7. Assume that f ∈ C2(a, b). Then for the midpoint rule integration
error it holds∣∣∣∣∫ b

a

f(x)dx− (b− a)f(
a+ b

2
)

∣∣∣∣ ≤ (b− a)3

24
max
ξ∈[a,b]

|f ′′(ξ)|. (7.24)

Theorem 7.8. Assume that f ∈ C4(a, b). Then for the Simpson rule integration
error it holds∣∣∣∣∫ b

a

f(x)dx− b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)∣∣∣∣ ≤ (b− a)5

2880
max
ξ∈[a,b]

|f (4)(ξ)|.

(7.25)

Last two theorems give error estimates. Error depends on the length of
integration interval. In case that the function is only continuous, the best possible
error bound depends on the modulus of continuity [10].
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7.2 Integration rule in higher dimensions

In previous section we proved that the numerical integration rule in one
dimensional case satisfied (6.30) under assumption (7.2). But in case of
multidimensional problem we can not find similar condition. In the following two
theorems we will see that for a special numerical integration rules the condition
(6.30) can be satisfied.

Definition 7.3. Let the D = {(x1, x2), a ≤ x1 ≤ b, c ≤ x2 ≤ d} be rectangle and
let v ∈ C(D). The mid-rectangle integration rule is defined by

Cm(v) = (b− a)(d− c)v

(
a+ b

2
,
c+ d

2

)
. (7.26)

Let the rectangle D be partitioned by n1n2 subrectangles (n1 in x1 direction and
n2 in x2 direction). Let

h1 =
b− a

n1

(7.27)

and

h2 =
d− c

n2

. (7.28)

The compound mid-rectangular integration rule is defined as

Cn1n2
m (v) =

n1∑
k=1

n2∑
l=1

ωv (xk, xl) , (7.29)

where
ω = h1h2,

xk = a+ kh1 −
h1

2
, k = 1, ..., n1 (7.30)

and

xl = c+ lh2 −
h2

2
, l = 1, ..., n2. (7.31)

Theorem 7.9. Let z ∈ C[0,∞) be non-increasing function. Let the numerical
integration rule be the compound mid-rectangular rule and assume that there exists
1 ≤ α <∞ such that

h1 = αh2 (7.32)

where h1 and h2 are defined by (7.27) resp. (7.28). Then there exists constant c
such that (6.30) is satisfied.

Proof. Let us define ball

Bx = {t ∈ R2, r(x, t) < ξ}

and subrectangles Dij as

Dij =

{
(x′

1, x
′
2), xi −

h1

2
≤ x′

1 ≤ xi +
h1

2
, xj −

h2

2
≤ x′

2 ≤ xj +
h2

2

}
.
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Let us choose point x = (x̂1, x̂2) ∈ D. Then there exist p, q such that x ∈ Dpq.
If p and q are not unique we can take any of them. To simplify notation let us
define function

zx(t) = z(r(x, t))

and
xkl = (xk, xl), k = 1, ..., n1, l = 1, ..., n2.

Now let us define points

xkl =



(
xk − h1

2
, xl − h2

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2(

xk +
h1

2
, xl − h2

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2(

xk +
h1

2
, xl +

h2

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1(

xk − h1

2
, xl +

h2

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1(

x̂1, xl − h2

2

)
, k = p, l = q + 1, ..., n2(

xk +
h1

2
, x̂2

)
, k = 1, ...p− 1, l = q(

x̂1, xl +
h2

2

)
, k = p, l = 1, ..., q − 1(

xk − h1

2
, x̂2

)
, k = p+ 1, ..., n1, l = q.

The relation between points xkl and xkl is shown on the figure 7.1. The blue

Figure 7.1: Point x, points xkl, points xkl, and sums C̃i

points are xkl and the red points are xkl. From their definition it holds

r(x, xkl) ≥ r(x, xkl) for all k = 1, ..., n1, l = 1, ..., n2

and since z is non-increasing we have

z(r(x, xkl)) ≤ z(r(x, xkl)) for all k = 1, ..., n1, l = 1, ..., n2. (7.33)
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Now let us define points

xkl =



(
xk +

h1

2
, xl +

h2

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2(

xk − h1

2
, xl +

h2

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2(

xk − h1

2
, xl − h2

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1(

xk +
h1

2
, xl − h2

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1(

xk − h1

2
, xl +

h2

2

)
, k = p, l = q + 1, ..., n2, x̂1 > xp(

xk +
h1

2
, xl +

h2

2

)
, k = p, l = q + 1, ..., n2, x̂1 ≤ xp(

xk − h1

2
, xl − h2

2

)
, k = 1, ...p− 1, l = q, x̂2 > xq(

xk − h1

2
, xl +

h2

2

)
, k = 1, ...p− 1, l = q, x̂2 ≤ xq(

xk − h1

2
, xl − h2

2

)
, k = p, l = 1, ..., q − 1, x̂1 > xp(

xk +
h1

2
, xl − h2

2

)
, k = p, l = 1, ..., q − 1, x̂1 ≤ xp(

xk +
h1

2
, xl − h2

2

)
, k = p+ 1, ..., n1, l = q, x̂2 > xq(

xk +
h1

2
, xl +

h2

2

)
, k = p+ 1, ..., n1, l = q, x̂2 ≤ xq.

The relation between points xkl and xkl is shown on the figure 7.2. The blue

Figure 7.2: Point x, points xkl, points xkl, and sums C̃i

points are xkl and the green points are xkl. From their definition it holds

r(x, xkl) ≤ r(x, xkl) for all k = 1, ..., n1, l = 1, ..., n2

and since z is non-increasing it holds:

z(r(x, xkl)) ≥ z(r(x, xkl)) for all k = 1, ..., n1, l = 1, ..., n2. (7.34)

From figure 7.2 we can se that

r(x, xkl)) = sup
t∈Dkl

r(x, t) for all k = 1, ..., n1, l = 1, ..., n2 (7.35)
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and hence

z(r(x, xkl) = inf
t∈Dkl

z(r(x, t)) for all k = 1, ..., n1, l = 1, ..., n2. (7.36)

Let us define
C̃1(zx) =

∑
k=p+1,...,n1
l=q+1,...,n2

r(x,xkl)<ξ

ωzx(xkl),

C̃2(zx) =
∑

k=1,...,p−1
l=q+1,...,n2

r(x,xkl)<ξ

ωzx(xkl),

C̃3(zx) =
∑

k=1,...,p−1
l=1,...,q−1
r(x,xkl)<ξ

ωzx(xkl),

C̃4(zx) =
∑

k=p+1,...,n1
l=1,...,q−1
r(x,xkl)<ξ

ωzx(xkl),

C̃5(zx) =
∑

l=q+1,...,n2

r(x,xpl)<ξ

ωzx(xpl),

C̃6(zx) =
∑

k=1,...,p−1
r(x,xkq)<ξ

ωzx(xkq),

C̃7(zx) =
∑

l=1,...,q−1
r(x,xpl)<ξ

ωzx(xpl)

and
C̃8(zx) =

∑
k=p+1,...,n1

r(x,xkq)<ξ

ωzx(xkq).

Then

∑
k=1,...,n1
l=1,...,n2

r(x,xkl)<ξ

ωzx(xkl) =
8∑

i=1

C̃i(zx) + ωz(r(x, xpq)) ≤
8∑

i=1

C̃i(zx) + ωz(0). (7.37)

Let us define
D1 =

∪
k=p+1,...,n1−1
l=q+1,...,n2−1
r(x,xk+1,l+1)<ξ

Dkl.

Since

xk+1,l+1 = xk,l for all k = p+ 1, ..., n1 − 1, l = q + 1, ..., n2 − 1
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we get from (7.36)

C̃1(zx) ≤
∑

k=p+1,...,n1
l=q+1,...,n2

r(x,xkl)<ξ

ωzx(xkl) ≤ C̃5(zx) + C̃8(zx) +
∑

k=p+2,...,n1
l=q+2,...,n2

r(x,xkl)<ξ

ωzx(xkl) =

= C̃5(zx) + C̃8(zx) +
∑

k=p+1,...,n1−1
l=q+1,...,n2−1
r(x,xk+1,l+1)<ξ

ωzx(xk+1,l+1) =

= C̃5(zx) + C̃8(zx) +
∑

k=p+1,...,n1−1
l=q+1,...,n2−1
r(x,xk+1,l+1)<ξ

ωzx(xk,l) ≤

≤ C̃5(zx) + C̃8(zx) +

∫
D1

ωzx(t)dt. (7.38)

Let us define
D2 =

∪
k=2,...,p−1

l=q+1,...,n2−1
r(x,xk−1,l+1)<ξ

Dkl.

Since
xk−1,l+1 = xk,l for all k = 2, ..., p− 1, l = q + 1, ..., n2 − 1

we get from (7.36)

C̃2(zx) ≤
∑

k=1,...,p−1
l=q+1,...,n2

r(x,xkl)<ξ

ωzx(xkl) ≤ C̃5(zx) + C̃6(zx) +
∑

k=1,...,p−2
l=q+2,...,n2

r(x,xkl)<ξ

ωzx(xkl) =

= C̃5(zx) + C̃6(zx) +
∑

k=2,...,p−1
l=q+1,...,n2−1
r(x,xk−1,l+1)<ξ

ωzx(xk−1,l+1) =

= C̃5(zx) + C̃6(zx) +
∑

k=2,...,p−1
l=q+1,...,n2−1
r(x,xk−1,l+1)<ξ

ωzx(xk,l) ≤

≤ C̃5(zx) + C̃6(zx) +

∫
D2

ωzx(t)dt. (7.39)

Let us define
D3 =

∪
k=2,...,p−1
l=2,...,q−1

r(x,xk−1,l−1)<ξ

Dkl.

Since
xk−1,l−1 = xk,l for all k = 1, ..., p− 1, l = 2, ..., q − 1

we get from (7.36)

C̃3(zx) ≤
∑

k=1,...,p−1
l=1,...,q−1
r(x,xkl)<ξ

ωzx(xkl) ≤ C̃6(zx) + C̃7(zx) +
∑

k=1,...,p−2
l=1,...,q−2
r(x,xkl)<ξ

ωzx(xkl) =
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= C̃6(zx) + C̃7(zx) +
∑

k=2,...,p−1
l=2,...,q−1

r(x,xk−1,l−1)<ξ

ωzx(xk−1,l−1) =

= C̃6(zx) + C̃7(zx) +
∑

k=2,...,p−1
l=2,...,p−1

r(x,xk−1,l−1)<ξ

ωzx(xk,l) ≤

≤ C̃6(zx) + C̃7(zx) +

∫
D3

ωzx(t)dt. (7.40)

Let us define
D4 =

∪
k=p+1,...,n1−1

l=2,...,q−1
r(x,xk+1,l−1)<ξ

Dkl.

Since
xk+1,l−1 = xk,l for all k = p+ 1, ..., n1 − 1, l = 2, ..., q − 1

we get from (7.36)

C̃4(zx) ≤
∑

k=p+1,...,n1
l=1,...,q−1
r(x,xkl)<ξ

ωzx(xkl) ≤ C̃7(zx) + C̃8(zx) +
∑

k=p+2,...,n1
l=1,...,q−2
r(x,xkl)<ξ

ωzx(xkl) =

= C̃7(zx) + C̃8(zx) +
∑

k=p+1,...,n1−1
l=2,...,q−1

r(x,xk+1,l−1)<ξ

ωzx(xk+1,l−1) =

= C̃7(zx) + C̃8(zx) +
∑

k=p+1,...,n1−1
l=2,...,q−1

r(x,xk+1,l−1)<ξ

ωzx(xk,l) ≤

≤ C̃7(zx) + C̃8(zx) +

∫
D4

ωzx(t)dt. (7.41)

From (7.37), (7.38), (7.39), (7.40) and (7.41) we get

∑
k=1,...,n1
l=1,...,n2

r(x,xkl)<ξ

ωzx(xkl) ≤ ωz(0) +
4∑

i=1

∫
Di

zx(t)dt+ 3
8∑

i=5

C̃i(zx). (7.42)

To bound C̃5, C̃6, C̃7 and C̃8 we need to derive several inequalities. Let us define

γ =

[
α2 − 1

2

]
+ 1 (7.43)

where [] denotes the whole part of number. Let i = 0, 1, ... Then from (7.43)

α2 − 1

2
≤ γ ≤ γ + i.

Hence
α2 − 1 ≤ 2(γ + i)
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α2 − 1 + (γ + i)2 ≤ (γ + i)2 + 2(γ + i)

α2 + (γ + i)2 ≤ (γ + i)2 + 2(γ + i) + 1

α2 + (γ + i)2 ≤ (γ + i+ 1)2

α2h2
2 + (γ + i)2h2

2 ≤ (γ + i+ 1)2h2
2√

h2
1 + (γ + i)2h2

2 ≤ (γ + i+ 1)h2√
h2
1 + (γ + i)2h2

2 + r(x, xp,q+1) ≤ (γ + i+ 1)h2 + r(x, xp,q+1).

Since (γ + i+ 1)h2 = r(xp,q+1, xp,q+2+γ+i) we get√
h2
1 + (γ + i)2h2

2+r(x, xp,q+1) ≤ r(xp,q+1, xp,q+2+γ+i)+r(x, xp,q+1) = r(x, xp,q+2+γ+i).

Since

r(xp,q+1, xp,q+γ+i) ≤
√

h2
1 + (γ + i)2h2

2

we get by triangular inequality

r(x, xp,q+γ+i) ≤ r(x, xp,q+2+γ+i), i = 0, 1, ... . (7.44)

By similar way we get

r(x, xp,q−γ−i) ≤ r(x, xp,q−2−γ−i), i = 0, 1, ... . (7.45)

From (7.32) is h2 ≤ h1. Now let us prove

h2
2 + (i+ 1)2h2

1 ≤ (i+ 2)2h2
1, i = 0, 1, ... . (7.46)

Since

(i+ 2)2h2
1 − (i+ 1)2h2

1 − h2
2 = 2(i+ 1)h2

1 + (h1 − h2)(h1 + h2) ≥ 0

is (7.46) proved. Hence√
h2
2 + (i+ 1)2h2

1 + r(x, xp+1,q) ≤ (i+ 2)h1 + r(x, xp+1,q) = r(x, xp+3+i,q).

Since

r(xp+1,q, xp+i+1,q) ≤
√
ξ2 + (i+ 1)2h2

1

we get by triangular inequality

r(x, xp+i+1,q) ≤ r(x, xp+3+i,q), i = 0, 1, ... . (7.47)

By similar way we get

r(x, xp−i−1,q) ≤ r(x, xp−3−i,q), i = 0, 1, ... . (7.48)

Now we can define numbers

n1 = max
k=p+1,...,n1

r(x, xkq) < ξ,
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n1 = min
k=1,...,p−1

r(x, xkq) < ξ,

n2 = max
l=q+1,...,n2

r(x, xpl) < ξ,

and
n2 = min

l=1,...,q−1
r(x, xpl) < ξ.

Let us define

D5 =

n2−2∪
l=q+1

Dpl.

From (7.33), (7.36) and (7.44) we get

C̃5(zx) ≤
n2∑

l=q+1

ωzx(xpl) ≤

≤ (γ + 1)ωz(0) +

n2∑
l=q+2+γ

ωzx(xpl) ≤ (γ + 1)ωz(0) +

n2−2∑
l=q+γ

ωzx(xpl) ≤

≤ (γ + 1)ωz(0) +

∫
∪n2−2

l=q+γ Dpl

zx(t)dt ≤ (γ + 1)ωz(0) +

∫
D5

zx(t)dt. (7.49)

Let us define

D7 =

q−1∪
l=n2+2

Dpl.

From (7.33), (7.36) and (7.45) we get

C̃7(zx) ≤
q−1∑
l=n2

ωzx(xpl) ≤

≤ (γ + 1)ωz(0) +

q−2−γ∑
l=n2

ωzx(xpl) ≤ (γ + 1)ωz(0) +

q−γ∑
l=n2+2

ωzx(xpl) ≤

≤ (γ + 1)ωz(0) +

∫
∪q−γ

l=n2+2 Dpl

zx(t)dt ≤ (γ + 1)ωz(0) +

∫
D7

zx(t)dt. (7.50)

Let us define

D8 =

n1−2∪
k=p+1

Dkq.

From (7.33), (7.36) and (7.47) we get

C̃8(zx) ≤
n1∑

k=p+1

ωzx(xkq) ≤

≤ 2ωz(0) +

n1∑
k=p+3

ωzx(xkq) ≤ 2ωz(0) +

n1−2∑
k=p+1

ωzx(xkq) ≤

68



≤ 2ωz(0) +

∫
D8

zx(t)dt. (7.51)

Let us define

D6 =

p−1∪
k=n1+2

Dkq.

From (7.33), (7.36) and (7.48) we get

C̃6(zx) ≤
p−1∑
k=n1

ωzx(xkq) ≤

≤ 2ωz(0) +

p−3∑
k=n1

ωzx(xkq) ≤ 2ωz(0) +

p−1∑
k=n1+2

ωzx(xkq) ≤

≤ 2ωz(0) +

∫
D6

zx(t)dt. (7.52)

From (7.42), (7.49), (7.50), (7.51) and (7.52)

∑
k=1,...,n1
l=1,...,n2

r(x,xkl)<ξ

ωzx(xkl) ≤ ωz(0) +
4∑

i=1

∫
Di

zx(t)dt+ 6(3 + γ)ωz(0) + 3
8∑

i=5

∫
Di

zx(t)dt ≤

≤ ωz(0) (6γ + 19) + 3
8∑

i=1

∫
Di

zx(t)dt. (7.53)

From the definition od Di it holds

Di ⊂ Bx, i = 1, ..., 8

and (6.30) holds with c = 6γ + 19.

The assumption (7.32) is only technical. A similar theorem can be formulated
in case of

h2 = αh1.

Definition 7.4. Let the D = {(x1, x2, x3), a ≤ x1 ≤ b, c ≤ x2 ≤ d, e ≤ x3 ≤ f}
be cuboid and let v ∈ C(D). The mid-cuboid integration rule is defined by

Cm(v) = (b− a)(d− c)(f − e)v

(
a+ b

2
,
c+ d

2
,
e+ f

2

)
. (7.54)

Let the cuboid D be partitioned by n1n2n3 subcuboides (n1 in x1 direction, n2 in
x2 direction and n3 in x3 direction). Let

h1 =
b− a

n1

, (7.55)

h2 =
d− c

n2

(7.56)
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and

h3 =
f − e

n3

. (7.57)

The compound mid-cuboid integration rule is defined as

Cn1n2n3
m (v) =

n1∑
k=1

n2∑
l=1

n3∑
m=1

ωv (xk, xl, xm) (7.58)

where
ω = h1h2h3,

xk = a+ kh1 −
h1

2
, k = 1, ..., n1, (7.59)

xl = c+ lh2 −
h2

2
, l = 1, ..., n2 (7.60)

and

xm = e+mh3 −
h3

2
,m = 1, ..., n3. (7.61)

Theorem 7.10. Let z ∈ C[0,∞) be non-increasing function. Let the numerical
integration rule be the compound mid-cuboid rule and assume there exists
1 ≤ β ≤ α <∞ such that

h1 = αh3, (7.62)

h2 = βh3, (7.63)

where h1, h2 and h3 are defined by (7.55) resp. (7.56), (7.57). Then there exists
constant c such that (6.30) is satisfied.

Proof. Let us also define a ball

Bx = {t ⊂ R3, r(x, t) < ξ}

and sub-cuboides Dij as

Dklm =

{
(x′

1, x
′
2, x

′
3), xk −

h1

2
≤ x′

1 ≤ xk +
h1

2
, xl −

h2

2
≤ x′

2 ≤ xl +
h2

2
,

xm −
h3

2
≤ x′

3 ≤ xm +
h3

2

}
.

Let us choose point x = (x̂1, x̂2, x̂3) ∈ D. Then there exist p, q, s such that
x ∈ Dpqs. If the p, q and s are not unique we can take any of them. To simplify
notation let us define function

zx(t) = z(r(x, t))

and
xklm = (xk, xl, xm), k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3.
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Now let us define points

xklm =



(
xk − h1

2 , xl − h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = s+ 1, ..., n3(

xk + h1

2 , xl − h2

2 , xs − h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = s+ 1, ..., n3(

xk + h1

2 , xl +
h2

2 , xs − h3

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1,m = s+ 1, ..., n3(

xk − h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = s+ 1, ..., n3(

xk − h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = 1, ..., s− 1(

xk + h1

2 , xl − h2

2 , xs +
h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = 1, ..., s− 1(

xk + h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1,m = 1, ..., s− 1(

xk − h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = 1, ..., s− 1(

x̂1, x̂2, xm − h3

2

)
, k = p, l = q,m = s+ 1, ..., n3(

x̂1, x̂2, xm + h3

2

)
, k = p, l = q,m = 1, ..., s− 1(

x̂1, xl − h2

2 , x̂3

)
, k = p, l = q + 1, ..., n2,m = s(

x̂1, xl +
h2

2 , x̂3

)
, k = p, l = 1, ..., q − 1,m = s(

xk − h1

2 , x̂2, x̂3

)
, k = p+ 1, ..., n1, l = q,m = s(

xk + h1

2 , x̂2, x̂3

)
, k = 1, ..., p− 1, l = q,m = s(

xk − h1

2 , xl − h2

2 , x̂3

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = s(

xk + h1

2 , xl − h2

2 , x̂3

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = s(

xk + h1

2 , xl +
h2

2 , x̂3

)
, k = 1, ..., p− 1, l = 1, ..., q − 1,m = s(

xk − h1

2 , xl +
h2

2 , x̂3

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = s(

xk − h1

2 , x̂2, xm − h3

2

)
, k = p+ 1, ..., n1, l = q,m = s+ 1, ..., n3(

xk + h1

2 , x̂2, xm − h3

2

)
, k = 1, ..., p− 1, l = q,m = s+ 1, ..., n3(

xk + h1

2 , x̂2, xm + h3

2

)
, k = 1, ..., p− 1, l = q,m = 1, ..., s− 1(

xk − h1

2 , x̂2, xm + h3

2

)
, k = p+ 1, ..., n1, l = q,m = 1, ..., s− 1(

x̂1, xl − h2

2 , xm − h3

2

)
, k = p, l = q + 1, ..., n2,m = s+ 1, ..., n3(

x̂1, xl +
h2

2 , xm − h3

2

)
, k = p, l = 1, ..., q − 1,m = s+ 1, ..., n3(

x̂1, xl +
h2

2 , xm + h3

2

)
, k = p, l = 1, ..., q − 1,m = 1, ..., s− 1(

x̂1, xl − h2

2 , xm + h3

2

)
, k = p, l = q + 1, ..., n2,m = 1, ..., s− 1.

The relation between points xklm and xklm is similar as in the previous theorem.
From their definition it holds

r(x, xklm) ≥ r(x, xklm) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3

and since z is non-increasing we have

z(r(x, xklm)) ≤ z(r(x, xklm)) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., s.
(7.64)
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Now let us define points

xklm =



(
xk + h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = s+ 1, ..., n3(

xk − h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = s+ 1, ..., n3(

xk − h1

2 , xl − h2

2 , xs +
h3

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1,m = s+ 1, ..., n3(

xk + h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = s+ 1, ..., n3(

xk + h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = 1, ..., s− 1(

xk − h1

2 , xl +
h2

2 , xs − h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = 1, ..., s− 1(

xk − h1

2 , xl − h2

2 , xs − h3

2

)
, k = 1, ...p− 1, l = 1, ..., q − 1,m = 1, ..., s− 1(

xk + h1

2 , xl − h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = 1, ..., s− 1(

xk + h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p, l = q, x̂1 < xp, x̂2 < xq,m = s+ 1, ..., n3(

xk − h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p, l = q, x̂1 ≥ xp, x̂2 < xq,m = s+ 1, ..., n3(

xk + h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p, l = q, x̂1 < xp, x̂2 ≥ xq,m = s+ 1, ..., n3(

xk − h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p, l = q, x̂1 ≥ xp, x̂2 ≥ xq,m = s+ 1, ..., n3(

xk + h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p, l = q, x̂1 < xp, x̂2 < xq,m = 1, ..., s− 1(

xk − h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p, l = q, x̂1 ≥ xp, x̂2 < xq,m = 1, ..., s− 1(

xk + h1

2 , xl − h2

2 , xs − h3

2

)
, k = p, l = q, x̂1 < xp, x̂2 ≥ xq,m = 1, ..., s− 1(

xk − h1

2 , xl − h2

2 , xs − h3

2

)
, k = p, l = q, x̂1 ≥ xp, x̂2 ≥ xq,m = 1, ..., s− 1(

xk + h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p, l = q + 1, ..., n2,m = s, x̂1 < xp, x̂3 < xs(

xk − h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p, l = q + 1, ..., n2,m = s, x̂1 ≥ xp, x̂3 < xs(

xk + h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p, l = q + 1, ..., n2,m = s, x̂1 < xp, x̂3 ≥ xs(

xk − h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p, l = q + 1, ..., n2,m = s, x̂1 ≥ xp, x̂3 ≥ xs(

xk + h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p, l = 1, ..., q − 1,m = s, x̂1 < xp, x̂3 < xs(

xk − h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p, l = 1, ..., q − 1,m = s, x̂1 ≥ xp, x̂3 < xs(

xk + h1

2 , xl − h2

2 , xs − h3

2

)
, k = p, l = 1, ..., q − 1,m = s, x̂1 < xp, x̂3 ≥ xs(

xk − h1

2 , xl − h2

2 , xs − h3

2

)
, k = p, l = 1, ..., q − 1,m = s, x̂1 ≥ xp, x̂3 ≥ xs(

xk + h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = q,m = s, x̂2 < xq, x̂3 < xs(

xk + h1

2 , xl +
h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = q,m = s, x̂2 < xq, x̂3 ≥ xs(

xk + h1

2 , xl − h2

2 , xs +
h3

2

)
, k = p+ 1, ..., n1, l = q,m = s, x̂2 ≥ xq, x̂3 < xs(

xk + h1

2 , xl − h2

2 , xs − h3

2

)
, k = p+ 1, ..., n1, l = q,m = s, x̂2 ≥ xq, x̂3 ≥ xs(

xk − h1

2 , xl +
h2

2 , xs +
h3

2

)
, k = 1, ..., p− 1, l = q,m = s, x̂2 < xq, x̂3 < xs(

xk − h1

2 , xl +
h2

2 , xs − h3

2

)
, k = 1, ..., p− 1, l = q,m = s, x̂2 < xq, x̂3 ≥ xs(

xk − h1

2 , xl − h2

2 , xs +
h3

2

)
, k = 1, ..., p− 1, l = q,m = s, x̂2 ≥ xq, x̂3 < xs(

xk − h1

2 , xl − h2

2 , xs − h3

2

)
, k = 1, ..., p− 1, l = q,m = s, x̂2 ≥ xq, x̂3 ≥ xs(

xk + h1

2 , xl +
h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = s, x̂3 < xs(

xk − h1

2 , xl +
h2

2 , xm + h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = s, x̂3 < xs(

xk − h1

2 , xl − h2

2 , xm + h3

2

)
, k = 1, ..., p− 1, l = 1, ..., q − 1,m = s, x̂3 < xs(

xk + h1

2 , xl − h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = s, x̂3 < xs(

xk + h1

2 , xl +
h2

2 , xm − h3

2

)
, k = p+ 1, ..., n1, l = q + 1, ..., n2,m = s, x̂3 ≥ xs(

xk − h1

2 , xl +
h2

2 , xm − h3

2

)
, k = 1, ..., p− 1, l = q + 1, ..., n2,m = s, x̂3 ≥ xs(

xk − h1

2 , xl − h2

2 , xm − h3

2

)
, k = 1, ..., p− 1, l = 1, ..., q − 1,m = s, x̂3 ≥ xs(

xk + h1

2 , xl − h2

2 , xm − h3

2

)
, k = p+ 1, ..., n1, l = 1, ..., q − 1,m = s, x̂3 ≥ xs(

xk + h1

2 , xl +
h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = q,m = s+ 1, ..., n3, x̂2 < xq(

xk − h1

2 , xl +
h2

2 , xm + h3

2

)
, k = 1, ..., p− 1, l = q,m = s+ 1, ..., n3, x̂2 < xq(

xk − h1

2 , xl +
h2

2 , xm − h3

2

)
, k = 1, ..., p− 1, l = q,m = 1, ..., s− 1, x̂2 < xq(

xk + h1

2 , xl +
h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = q,m = 1, ..., s− 1, x̂2 < xq(

xk + h1

2 , xl − h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = q,m = s+ 1, ..., n3, x̂2 ≥ xq(

xk − h1

2 , xl − h2

2 , xm + h3

2

)
, k = 1, ..., p− 1, l = q,m = s+ 1, ..., n3, x̂2 ≥ xq(

xk − h1

2 , xl − h2

2 , xm − h3

2

)
, k = 1, ..., p− 1, l = q,m = 1, ..., s− 1, x̂2 ≥ xq(

xk + h1

2 , xl − h2

2 , xm + h3

2

)
, k = p+ 1, ..., n1, l = q,m = 1, ..., s− 1, x̂2 ≥ xq(

xk + h1

2 , xl +
h2

2 , xm + h3

2

)
, k = p, l = q + 1, ..., n2,m = s+ 1, ..., n3, x̂1 < xp(

xk + h1

2 , xl − h2

2 , xm + h3

2

)
, k = p, l = 1, ..., q − 1,m = s+ 1, ..., n3, x̂1 < xp(

xk + h1

2 , xl − h2

2 , xm − h3

2

)
, k = p, l = 1, ..., q − 1,m = 1, ..., s− 1, x̂1 < xp(

xk + h1

2 , xl +
h2

2 , xm − h3

2

)
, k = p, l = q + 1, ..., n2,m = 1, ..., s− 1, x̂1 < xp(

xk − h1

2 , xl +
h2

2 , xm + h3

2

)
, k = p, l = q + 1, ..., n2,m = s+ 1, ..., n3, x̂1 ≥ xp(

xk − h1

2 , xl − h2

2 , xm + h3

2

)
, k = p, l = 1, ..., q − 1,m = s+ 1, ..., n3, x̂1 ≥ xp(

xk − h1

2 , xl − h2

2 , xm − h3

2

)
, k = p, l = 1, ..., q − 1,m = 1, ..., s− 1, x̂1 ≥ xp(

xk − h1

2 , xl +
h2

2 , xm − h3

2

)
, k = p, l = q + 1, ..., n2,m = 1, ..., s− 1, x̂1 ≥ xp.
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The relation between points xklm and xklm is the same as in previous theorem.
From their definition it holds

r(x, xklm) ≤ r(x, xklm) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3

and since z is non-increasing it holds:

z(r(x, xklm)) ≥ z(r(x, xklm)) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3.
(7.65)

As in the previous theorem we get

r(x, xklm)) = sup
t∈Dklm

r(x, t) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3 (7.66)

and hence

z(r(x, xklm)) = inf
t∈Dklm

z(r(x, t)) for all k = 1, ..., n1, l = 1, ..., n2,m = 1, ..., n3.

(7.67)
As in previous theorem let us define

C̃1(zx) =
∑

k=p+1,...,n1
l=q+1,...,n2
m=s+1,...,n3

r(x,xklm)<ξ

ωzx(xklm),

C̃2(zx) =
∑

k=1,...,p−1
l=q+1,...,n2
m=s+1,...,n3

r(x,xklm)<ξ

ωzx(xklm),

C̃3(zx) =
∑

k=1,...,p−1
l=1,...,q−1

m=s+1,...,n3

r(x,xklm)<ξ

ωzx(xklm),

C̃4(zx) =
∑

k=p+1,...,n1
l=1,...,q−1

m=s+1,...,n3

r(x,xklm)<ξ

ωzx(xklm),

C̃5(zx) =
∑

k=p+1,...,n1
l=q+1,...,n2
m=1,...,s−1
r(x,xklm)<ξ

ωzx(xklm),

C̃6(zx) =
∑

k=1,...,p−1
l=q+1,...,n2
m=1,...,s−1
r(x,xklm)<ξ

ωzx(xklm),

C̃7(zx) =
∑

k=1,...,p−1
l=1,...,q−1
m=1,...,s−1
r(x,xklm)<ξ

ωzx(xklm),

73



C̃8(zx) =
∑

k=p+1,...,n1
l=1,...,q−1
m=1,...,s−1
r(x,xklm)<ξ

ωzx(xklm),

C̃9(zx) =
∑

m=s+1,...,n3

r(x,xpqm)<ξ

ωzx(xpqm),

C̃10(zx) =
∑

m=1,...,s−1
r(x,xpqm)<ξ

ωzx(xpqm),

C̃11(zx) =
∑

l=q+1,...,n2

r(x,xpls)<ξ

ωzx(xpls),

C̃12(zx) =
∑

l=1,...,q−1
r(x,xpls)<ξ

ωzx(xpls),

C̃13(zx) =
∑

k=p+1,...,n1

r(x,xkqs)<ξ

ωzx(xkqs),

C̃14(zx) =
∑

k=1,...,p−1
r(x,xkqs)<ξ

ωzx(xkqs),

C̃15(zx) =
∑

k=p+1,...,n1
l=q+1,...,n2

r(x,xkls)<ξ

ωzx(xkls),

C̃16(zx) =
∑

k=1,...,p−1
l=q+1,...,n2

r(x,xkls)<ξ

ωzx(xkls),

C̃17(zx) =
∑

k=1,...,p−1
l=1,...,q−1
r(x,xkls)<ξ

ωzx(xkls),

C̃18(zx) =
∑

k=p+1,...,n1
l=1,...,q−1
r(x,xkls)<ξ

ωzx(xkls),

C̃19(zx) =
∑

k=p+1,...,n1
m=s+1,...,n3

r(x,xkqm)<ξ

ωzx(xkqm),

C̃20(zx) =
∑

k=1,...,p−1
m=s+1,...,n3

r(x,xkqm)<ξ

ωzx(xkqm),

C̃21(zx) =
∑

k=1,...,p−1
m=1,...,s−1
r(x,xkqm)<ξ

ωzx(xkqm),
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C̃22(zx) =
∑

k=p+1,...,n1
m=1,...,s−1
r(x,xkqm)<ξ

ωzx(xkqm),

C̃23(zx) =
∑

l=q+1,...,n2
m=s+1,...,n3

r(x,xplm)<ξ

ωzx(xplm),

C̃24(zx) =
∑

l=1,...,q−1
m=s+1,...,n3

r(x,xplm)<ξ

ωzx(xplm),

C̃25(zx) =
∑

l=1,...,q−1
m=1,...,s−1
r(x,xplm)<ξ

ωzx(xplm)

and
C̃26(zx) =

∑
l=q+1,...,n2
m=1,...,s−1
r(x,xplm)<ξ

ωzx(xplm).

Then

∑
k=1,...,n1
l=1,...,n2
m=1,...,n3

r(x,xklm)<ξ

ωzx(xklm) =
26∑
i=1

C̃i(zx) + ωz(r(x, xpqs)) ≤
26∑
i=1

C̃i(zx) + ωz(0). (7.68)

Let us define
D1 =

∪
k=p+1,...,n1−1
l=q+1,...,n2−1
m=s+1,...,n3−1

r(x,xk+1,l+1,m+1)<ξ

Dklm,

D2 =
∪

k=2,...,q−1
l=q+1,...,n2−1
m=s+1,...,n3−1

r(x,xk−1,l+1,m+1)<ξ

Dklm,

D3 =
∪

k=2,...,p−1
l=2,...,q−1

m=s+1,...,n3−1
r(x,xk−1,l−1,m+1)<ξ

Dklm,

D4 =
∪

k=p+1,...,n1−1
l=2,...,q−1

m=s+1,...,n3−1
r(x,xk+1,l−1,m+1)<ξ

Dklm,

D5 =
∪

k=p+1,...,n1−1
l=q+1,...,n2−1
m=2,...,s−1

r(x,xk+1,l+1,s−1)<ξ

Dklm,
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D5 =
∪

k=2,...,q−1
l=q+1,...,n2−1
m=2,...,s−1

r(x,xk−1,l+1,s−1)<ξ

Dklm,

D7 =
∪

k=2,...,p−1
l=2,...,q−1
m=2,...,s−1

r(x,xk−1,l−1,s−1)<ξ

Dklm

and
D8 =

∪
k=p+1,...,n1−1

l=2,...,q−1
m=2,...,s−1

r(x,xk+1,l−1,s−1)<ξ

Dklm.

By similar way as proving (7.42) in previous theorem we get from (7.68)

∑
k=1,...,n1
l=1,...,n2
m=1,...,n3

r(x,xkl)<ξ

ωzx(xklm) ≤ ωz(0) +
8∑

i=1

∑
klm

xklm∈Di

ωzx(xklm) + 3
26∑

i=15

C̃i(zx) +
14∑
i=9

C̃i(zx) ≤

≤ ωz(0) +
8∑

i=1

∫
Di

zx(t)dt+ 3
26∑

i=15

C̃i(zx) +
14∑
i=9

C̃i(zx). (7.69)

To bound C̃9 − C̃14 we need to derive several inequalites. Let us define

γ1 =

[
α2 − 1

2

]
+ 1, (7.70)

γ2 =

[
β2 − 1

2

]
+ 1 (7.71)

γ3 =

[
α2

β2 − 1

2

]
+ 1 (7.72)

where [] denotes the whole part of number. Note that

γ1, γ2, γ3 ≥ 1.

Let i = 0, 1, ... Then from (7.70) and (7.71)

α2 − 1

2
+

β2 − 1

2
≤ γ1 + γ2 ≤ γ1 + γ2 + i.

Hence
α2 − 1 + β2 − 1 ≤ 2(γ1 + γ2 + i)

α2 + β2 ≤ 2(γ1 + γ2 + i) + 2 ≤ 4(γ1 + γ2 + i) + 4

α2 + β2 + (γ1 + γ2 + i)2 ≤ (γ1 + γ2 + i)2 + 4(γ1 + γ2 + i) + 4

α2 + β2 + (γ1 + γ2 + i)2 ≤ (γ1 + γ2 + i+ 2)2
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α2h2
3 + β2h2

3 + (γ1 + γ2 + i)2h2
3 ≤ (γ1 + γ2 + i+ 2)2h2

3.

From here we get√
h2
1 + h2

2 + (γ1 + γ2 + i)2h2
3 ≤ (γ1 + γ2 + i+ 2)h3 = r(xp,q,s+1, xp,q,s+γ1+γ2+i+3)

and √
h2
1 + h2

2 + (γ1 + γ2 + i)2h2
3 + r(x, xp,q,s+1) ≤

≤ r(xp,q,s+1, xp,q,s+γ1+γ2+i+3) + r(x, xp,q,s+1) = r(x, xp,q,s+γ1+γ2+i+3).

Since

r(xp,q,s+γ1+γ2+i, xp,q,s+1) ≤
√

h2
1 + h2

2 + (γ1 + γ2 + i)2h2
3

we get by triangular inequality

r(xp,q,s+γ1+γ2+i, x) ≤ r(x, xp,q,s+γ1+γ2+i+3), i = 0, 1, ... . (7.73)

By similar way we get

r(xp,q,s−γ1−γ2−i, x) ≤ r(x, xp,q,s−γ1−γ2−i−3), i = 0, 1, ... . (7.74)

From (7.32) is h3 ≤ h2 ≤ h1. Now let us prove

h2
3 + h2

2 + (i+ 1)2h2
1 ≤ (i+ 2)2h2

1, i = 1, 2, ... . (7.75)

Since

(i+ 2)2h2
1 − (i+ 1)2h2

1 − h2
2 − h2

3 = 2(i+ 1)h2
1 + h2

1 − h3
2 − h2

3 ≥

≥ 2h2
1 − h2

2 − h2
3 = (h1 − h2)(h1 + h2) + (h1 + h3)(h1 − h3) ≥ 0

and (7.75) is proved. From

r(xp+1,qs, xp+i+1,qs) ≤
√

h2
3 + h2

2 + (i+ 1)2h2
1 ≤ (i+ 2)h1, i = 0, 1, ...

we get

r(xp+1,qs, xp+i+1,qs) + r(x, xp+1,qs) ≤ (i+ 2)h1 + r(x, xp+1,qs) = r(x, xp+3+i,qs)

and by triangular inequality we get

r(x, xp+i+1,qs) ≤ r(x, xp+3+i,qs), i = 0, 1, ... . (7.76)

By similar way we get

r(x, xp−i−1,qs) ≤ r(x, xp−3−i,qs), i = 0, 1, ... . (7.77)

Now let us prove

(γ3 + i+ 1)2 + 1 ≤ (γ3 + i+ 2)2, i = 0, 1, ... . (7.78)

Since

(γ3+ i+2)2− (γ3+ i+1)2−1 = (γ3+ i+1)2+2(γ3+ i+1)+1− (γ3+ i+1)2−1 =
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= 2(γ3 + i+ 1) > 0

and (7.78) is proved. Then from

h1 =
α

β
h2

and (7.72) we get
α2

β2 − 1

2
≤ γ3 + i, i = 0, 1, ...

α2

β2
− 1 ≤ 2(γ3 + i), i = 0, 1, ...

α2

β2
+ (γ3 + i)2 ≤ (γ3 + i)2 + 2(γ3 + i) + 1, i = 0, 1, ...

α2

β2
+ (γ3 + i)2 ≤ (γ3 + i+ 1)2, i = 0, 1, ...

α2

β2
h2
2 + (γ3 + i)2h2

2 ≤ (γ3 + i+ 1)2h2
2, i = 0, 1, ...

h2
1 + (γ3 + i)2h2

2 ≤ (γ3 + i+ 1)2h2
2, i = 0, 1, ...

By (7.78)

h2
1 + (γ3 + i)2h2

2 + h2
3 ≤ (γ3 + i+ 1)2h2

2 + h2
3 ≤ (γ3 + i+ 2)2h2, i = 0, 1, ...

and hence by the same way as in the previous theorem

r(x, xp,q+1,s) +
√

h2
1 + (γ3 + i)2h2

2 + h2
3 ≤

≤ (γ3 + i+ 2)h2 + r(x, xp,q+1,s) = r(xp,q+1,s, xp,q+3+γ3+i,s) + r(x, xp,q+1,s) =

= r(x, xp,q+3+γ3+i,s), i = 0, 1, ... .

Since r(xp,q+1,s, xp,q+γ3+i,s) ≤
√

h2
1 + (γ3 + i)2h2

2 + h2
3 we get by triangular

inequality
r(x, xp,q+γ3+i,s) ≤ r(x, xp,q+3+γ3+i,s), i = 0, 1, ... (7.79)

and by similar way we get

r(x, xp,q−γ3−i,s) ≤ r(x, xp,q−3−γ3−i,s), i = 0, 1, ... . (7.80)

Let us define numbers

n1 = max
k=p+1,...,n1

r(x, xkqs) < ξ,

n1 = min
k=1,...,p−1

r(x, xkqs) < ξ,

n2 = max
l=q+1,...,n2

r(x, xpls) < ξ,

n2 = min
l=1,...,q−1

r(x, xpls) < ξ,
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n3 = max
m=s+1,...,n3

r(x, xpqm) < ξ,

and
n3 = min

m=1,...,s−1
r(x, xpqm) < ξ.

Let us define

D9 =

n3−3∪
m=s+1

Dpqm.

From (7.64), (7.67) and (7.73) we get

C̃9(zx) ≤
n3∑

m=s+1

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

n3∑
m=s+3+γ1+γ2

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

n3−3∑
m=s+γ1+γ2

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

∫
∪n3−3

m=s+γ1+γ2
Dpqm

zx(t)dt ≤

≤ (γ1 + γ2 + 2)ωz(0) +

∫
D9

zx(t)dt. (7.81)

Let us define

D10 =
s−1∪

m=n3+3

Dpqm.

From (7.64), (7.67) and (7.74) we get

C̃10(zx) ≤
s−1∑

m=n3

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

s−3−γ1−γ2∑
m=n3

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

s−γ1−γ2∑
m=n3+3

ωzx(xpqm) ≤

≤ (γ1 + γ2 + 2)ωz(0) +

∫
∪s−γ1−γ2

m=n3+3 Dpqm

zx(t)dt ≤

≤ (γ1 + γ2 + 2)ωz(0) +

∫
D10

zx(t)dt. (7.82)

Let us define

D11 =

n2−3∪
l=q+1

Dpls.
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From (7.64), (7.67) and (7.79) we get

C̃11(zx) ≤
n2∑

l=q+1

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

n2∑
l=q+3+γ3

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

n2−3∑
l=q+γ3

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

∫
∪n2−3

l=q+γ3
Dpls

zx(t)dt ≤

≤ (γ3 + 2)ωz(0) +

∫
D11

zx(t)dt. (7.83)

Let us define

D12 =

q−1∪
l=n2+3

Dpls.

From (7.64), (7.67) and (7.80) we get

C̃12(zx) ≤
q−1∑
l=n2

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

q−3−γ3∑
l=n2

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

q−γ3∑
l=n2+3

ωzx(xpls) ≤

≤ (γ3 + 2)ωz(0) +

∫
∪q−γ3

l=n2+3 Dpls

zx(t)dt ≤

≤ (γ3 + 2)ωz(0) +

∫
D12

zx(t)dt. (7.84)

Let us define

D13 =

n1−2∪
k=p+1

Dkqs.

From (7.64), (7.67) and (7.76)

C̃13(zx) ≤
n1∑

k=p+1

ωzx(xkqs) ≤

≤ 2ωz(0) +

n1∑
k=p+3

ωzx(xkqs) ≤ 2ωz(0) +

n1−2∑
k=p+1

ωzx(xkqs) ≤
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≤ 2ωz(0) +

∫
D8

zx(t)dt. (7.85)

Let us define

D14 =

p−1∪
k=n1+2

Dkqs.

From (7.64), (7.67) and (7.77)

C̃14(zx) ≤
p−1∑
k=n1

ωzx(xkqs) ≤

≤ 2ωz(0) +

p−2∑
k=n1

ωzx(xkqs) ≤ 2ωz(0) +

p−1∑
k=n1+2

ωzx(xkqs) ≤

≤ 2ωz(0) +

∫
D14

zx(t)dt. (7.86)

From (7.81), (7.82), (7.83), (7.84), (7.85) and (7.86) we get

14∑
i=9

C̃i(zx) ≤ γ1ωz(0) +
14∑
i=9

∫
Di

zx(t)dt (7.87)

where
γ1 = 12 + 2γ1 + 2γ2 + 2γ3. (7.88)

Now we need to estimate C̃15, ..., C̃26. Here the situation is different that in
previous theorem. From (7.72) we get for i = 0, 1, ...

α2

β2 − 1

2
≤ γ3 ≤ γ3 + i

α2

β2
− 1 ≤ 2(γ3 + i)

α2

β2
+ (γ3 + i)2 ≤ (γ3 + i)2 + 2(γ3 + i) + 1

α2

β2
+ (γ3 + i)2 ≤ (γ3 + i+ 1)2

h2
1 + (γ3 + i)2h2

2 ≤ (γ3 + i+ 1)2h2
2.

Now let us define

ξ2 = xq +
h2

2
− x̂2

and

ξ3 = xs +
h3

2
− x̂3.

Then for j = 0, 1, ... we get

h2
1 + (γ3 + i)2h2

2 + [(j + 1)h3 + ξ3]
2 ≤ (γ3 + i+ 1)2h2

2 + [(j + 1)h3 + ξ3]
2
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h2
1 + (γ3 + i)2h2

2 + 2(γ3 + i)h2ξ2 + ξ22 + [(j + 1)h3 + ξ3]
2 ≤

≤ (γ3 + i+ 1)2h2
2 + 2(γ3 + i)h2ξ2 + ξ22 + [(j + 1)h3 + ξ3]

2 ≤

≤ (γ3 + i+ 1)2h2
2 + 2(γ3 + i+ 1)h2ξ2 + ξ22 + [(j + 1)h3 + ξ3]

2

and

r(x, xp,q+γ3+i,s+j+1)
2 ≤ h2

1 + [(γ3 + i)h2 + ξ2]
2 + [(j + 1)h3 + ξ3]

2 ≤

≤ [(γ3 + i+ 1)h2 + ξ2]
2 + [(j + 1)h3 + ξ3]

2.

Since r(x, xp,q+2+γ3+i,s+j+2) =
√

[(γ3 + i+ 1)h2 + ξ2]2 + [(j + 1)h3 + ξ3]2 we get

r(x, xp,q+γ3+i,s+j+1) ≤ r(x, xp,q+2+γ3+i,s+j+2), i, j = 0, 1, ... (7.89)

By similar way (with different definition of ξ2 and ξ3) we get

r(x, xp,q−γ3−i,s−j−1) ≤ r(x, xp,q−2−γ3−i,s−j−2), i, j = 0, 1, ..., (7.90)

r(x, xp,q+γ3+i,s−j−1) ≤ r(x, xp,q+2+γ3+i,s−j−2), , i, j = 0, 1, ... (7.91)

and
r(x, xp,q−γ3−i,s+j+1) ≤ r(x, xp,q−2−γ3−i,s+j+2), i, j = 0, 1, ... (7.92)

Now let us define

ξ1 = xp +
h1

2
− x̂1.

Then from (7.71) we get for j = 0, 1, ...

β2 − 1

2
≤ γ2 ≤ γ2 + j

β2 − 1 ≤ 2(γ2 + j)

β2 + (γ2 + j)2 ≤ (γ2 + j)2 + 2(γ2 + j) + 1 = (γ2 + j + 1)2

h2
2 + (γ2 + j)2h3

3 ≤ (γ2 + j + 1)2h2
3.

For i, j = 0, 1, ... we get

[(i+ 1)h1 + ξ1]
2 + h2

2 + (γ2 + j)2h3
3 ≤ [(i+ 1)h1 + ξ1]

2 + (γ2 + j + 1)2h2
3

[(i+ 1)h1 + ξ1]
2 + h2

2 + (γ2 + j)2h3
3 + 2h3(γ2 + j)ξ3 + ξ23 ≤

≤ [(i+ 1)h1 + ξ1]
2 + (γ2 + j + 1)2h2

3 + 2h3(γ2 + j)ξ3 + ξ23 ≤

≤ [(i+ 1)h1 + ξ1]
2 + (γ2 + j + 1)2h2

3 + 2h3(γ2 + j + 1)ξ3 + ξ23

and

r(x, xp+i+1,q,s+γ2+j)
2 ≤ [(i+ 1)h1 + ξ1]

2 + h2
2 + [(γ2 + j)h3 + ξ3]

2 ≤

≤ [(i+ 1)h1 + ξ1]
2 + [(γ2 + j + 1)h3 + ξ3]

2.
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Since r(x, xp+i+2,q,s+γ2+2+j) =
√

[(i+ 1)h1 + ξ1]2 + [(γ2 + j + 1)h3 + ξ3]2 we get

r(x, xp+i+1,q,s+γ2+j)) ≤ r(x, xp+i+2,q,s+γ2+2+j), i, j = 0, 1, ... . (7.93)

By similar way (with different definition of ξ1 and ξ3) we get

r(x, xp−i−1,q,s−γ2−j)) ≤ r(x, xp−i−2,q,s−γ2−2−j), i, j = 0, 1, ..., (7.94)

r(x, xp−i−1,q,s+γ2+j)) ≤ r(x, xp−i−2,q,s+γ2+2+j), i, j = 0, 1, ... (7.95)

and
r(x, xp+i+1,q,s−γ2−j)) ≤ r(x, xp+i+2,q,s−γ2−2−j)i, j = 0, 1, ... . (7.96)

Let i, j = 0, 1, .... From

r(x, xp+i+1,q+j+1,s)
2 ≤ [(i+ 1)h1 + ξ1]

2 + [(j + 1)h2 + ξ2]
2 + h3

3 ≤

≤ [(i+ 1)h1 + ξ1]
2 + [(j + 1)h2 + ξ2]

2 + h2
2 ≤

≤ [(i+ 1)h1 + ξ1]
2 + [(j + 1)h2 + ξ2]

2 + 2[(j + 1)h2 + ξ2]h2 + h2
2 =

= [(i+ 1)h1 + ξ1]
2 + [(j + 2)h2 + ξ2]

2.

Since r(x, xp+i+2,q+j+3,s) =
√

[(i+ 1)h1 + ξ1]2 + [(j + 2)h2 + ξ2]2 we get

r(x, xp+i+1,q+j+1,s) ≤ r(x, xp+i+2,q+j+3,s), i, j = 0, 1, ... . (7.97)

By similar way (with different definition of ξ1 and ξ2) we get

r(x, xp−i−1,q−j−1,s) ≤ r(x, xp−i−2,q−j−3,s), i, j = 0, 1, ..., (7.98)

r(x, xp−i−1,q+j+1,s) ≤ r(x, xp−i−2,q+j+3,s), i, j = 0, 1, ... (7.99)

and
r(x, xp+i+1,q+j+1,s) ≤ r(x, xp+i+2,q−j−3,s)i, j = 0, 1, ... . (7.100)

Let us define
D15 =

∪
k=p+1,...,n1−1
l=q+1,...,n2−2

r(x,xk+1,l+2,s)<ξ

Dkls,

D16 =
∪

k=2,...,p−1
l=q+1,...,n2−2

r(x,xk−1,l+2,s)<ξ

Dkls,

D17 =
∪

k=2,...,p−1
l=3,...,q−1

r(x,xk−1,l−2,ls)<ξ

Dkls

and
D18 =

∪
k=p+1,...,n1−1

l=3,...,q−1
r(x,xk+1,l−2,s)<ξ

Dkls.

Since z is non-increasing we get from the definition of xklm, xklm and (7.97)
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C̃15(zx) =
∑

k=p+1,...,n1

r(x,xk,q+1,s)<ξ

ωzx(xk,q+1,s) +
∑

k=p+1,...,n1

r(x,xk,q+2,s)<ξ

ωzx(xk,q+2,s)+

+
∑

l=q+1,...,n2

r(x,xp+1,l,s)<ξ

ωzx(xp+1,l,s) +
∑

k=p+2,...,n1
l=q+3,...,n2

r(x,xkls)<ξ

ωzx(xkls) ≤

≤ 2
∑

k=p+1,...,n1

r(x,xkqs)<ξ

ωzx(xkqs) +
∑

l=q+1,...,n2

r(x,xpls)<ξ

ωzx(xpls)+

+
∑

k=p+2,...,n1
l=q+3,...,n2

r(x,xkls)<ξ

ωzx(xkls) ≤ 2C̃13(zx) + C̃11(zx) +
∑

k=p+2,...,n1
l=q+3,...,n2

r(x,xkls)<ξ

ωzx(xkls) =

= 2C̃13(zx) + C̃11(zx) +
∑

k=p+1,...,n1−1
l=q+1,...,n2−2

r(x,xk+1,l+2,s)<ξ

ωzx(xk+1,q+2,s) ≤

≤ 2C̃13(zx) + C̃11(zx) +
∑

k=p+1,...,n1−1
l=q+1,...,n2−2

r(x,xk+1,l+2,s)<ξ

ωzx(xkls) ≤

= 2C̃13(zx) + C̃11(zx) +

∫
D15

z(t)dt. (7.101)

Analogously using (7.98), (7.99) and (7.100) we get

C̃16(zx) ≤ 2C̃14(zx) + C̃11(zx) +

∫
D16

z(t)dt, (7.102)

C̃17(zx) ≤ 2C̃14(zx) + C̃12(zx) +

∫
D17

z(t)dt (7.103)

and

C̃18(zx) ≤ 2C̃13(zx) + C̃12(zx) +

∫
D18

z(t)dt. (7.104)

From (7.101), (7.102), (7.103) and (7.104) we get

18∑
j=15

C̃j(zx) ≤ 2C̃11(zx)+2C̃12(zx)+4C̃13(zx)+4C̃14(zx)+
18∑

j=15

∫
Dj

z(t)dt. (7.105)

Let us define
D19 =

∪
k=p+1,...,n1−1
m=s+1,...,n3−2

r(x,xk+1,q,m+2)<ξ

Dkqm,

D20 =
∪

k=2,...,p−1
m=s+1,...,n3−2

r(x,xk−1,q,m+2)<ξ

Dkqm,
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D21 =
∪

k=2,...,p−1
m=3,...,s−1

r(x,xk−1,q,m−2)<ξ

Dkqm

and
D22 =

∪
k=p+1,...,n1−1
m=3,...,s−1

r(x,xk+1,q,m−2)<ξ

Dkqm.

From (7.93) we get

C̃19(zx) =
∑

k=p+1,...,n1

r(x,xk,q,s+1)<ξ

ωzx(xk,q,s+1) + ...+
∑

k=p+1,...,n1

r(x,xk,q,s+γ2+1)<ξ

ωzx(xk,q,s+γ2+1)

+
∑

m=s+1,...,n3

r(x,xp+1,q,m)<ξ

ωzx(xp+1,q,m) +
∑

k=p+2,...,n1
m=s+2+γ2,...,n3

r(x,xkqm)<ξ

ωzx(xkqm) ≤

≤ (1 + γ2)
∑

k=p+1,...,n1

r(x,xkqs)<ξ

ωzx(xkqs) +
∑

m=s+1,...,n3

r(x,xpqm)<ξ

ωzx(xpqm)+

+
∑

k=p+2,...,n1
m=s+2+γ2,...,n3

r(x,xkqm)<ξ

ωzx(xkqm) ≤ (1+ γ2)C̃13(zx) + C̃9(zx) +
∑

k=p+2,...,n1
m=s+2+γ2,...,n3

r(x,xkqm)<ξ

ωzx(xkqm) =

= (1 + γ2)C̃13(zx) + C̃9(zx) +
∑

k=p+1,...,n1−1
m=s+γ2,...,n3−2
r(x,xk+1,q,m+2)<ξ

ωzx(xk+1,q,m+2) ≤

≤ (1 + γ3)C̃13(zx) + C̃9(zx) +
∑

k=p+1,...,n1−1
m=s+1,...,n3−2
r(x,xk+1,q,s+2)<ξ

ωzx(xkqm) ≤

= (1 + γ2)C̃13(zx) + C̃9(zx) +

∫
D19

z(t)dt. (7.106)

Analogously using (7.94), (7.95) and (7.96) we get

C̃16(zx) ≤ (1 + γ2)C̃14(zx) + C̃9(zx) +

∫
D16

z(t)dt, (7.107)

C̃17(zx) ≤ (1 + γ2)C̃14(zx) + C̃10(zx) +

∫
D17

z(t)dt (7.108)

and

C̃18(zx) ≤ (1 + γ2)C̃13(zx) + C̃10(zx) +

∫
D18

z(t)dt. (7.109)

From (7.106), (7.107), (7.108) and (7.109) we get

22∑
j=19

C̃j(zx) ≤ 2C̃9(zx)+2C̃10(zx)+2(γ2+1)C̃13(zx)+2(γ2+1)C̃14(zx)+
22∑

j=19

∫
Dj

z(t)dt.

(7.110)
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Finally let us define

D23 =
∪

l=q+1,...,n2−2
m=s+1,...,n3−1

r(x,xp,l+2,m+1)<ξ

Dplm,

D24 =
∪

l=3,...,q−1
m=s+1,...,n3−2

r(x,xp,l−2,m+1)<ξ

Dplm,

D25 =
∪

l=3,...,q−1
m=2,...,s−1

r(x,xp,l−2,m−1)<ξ

Dplm

and
D26 =

∪
l=q+1,...,n2−2
m=2,...,s−1

r(x,xp,l+2,m−1)<ξ

Dplm.

From (7.89) we get

C̃23(zx) =
∑

m=s+1,...,n3

r(x,xp,q+1,m)<ξ

ωzx(xp,q+1,m) + ...+
∑

m=s+1,...,n3

r(x,xp,q+γ3+1,m)<ξ

ωzx(xp,q+γ3+1,m)

+
∑

l=q+1,...,n2

r(x,xp,l,s+1)<ξ

ωzx(xp,l,s+1) +
∑

l=q+γ3+2,...,n2
m=s+2,...,n3

r(x,xplm)<ξ

ωzx(xplm) ≤

≤ (1 + γ3)
∑

m=s+1,...,n3

r(x,xpqm)<ξ

ωzx(xpqm) +
∑

l=q+1,...,n2

r(x,xpls)<ξ

ωzx(xpls)+

+
∑

l=q+2+γ3,...,n2
m=s+2,...,n3

r(x,xplm)<ξ

ωzx(xplm) ≤ (1 + γ3)C̃9(zx) + C̃11(zx) +
∑

l=q+2+γ3,...,n2
m=s+2,...,n3

r(x,xplm)<ξ

ωzx(xplm) =

= (1 + γ3)C̃9(zx) + C̃11(zx) +
∑

l=q+γ3,...,n2−2
m=q+1,...,n3−1

r(x,xp,l+2,m+1)<ξ

ωzx(xp,l+2,m+1) ≤

≤ (1 + γ3)C̃9(zx) + C̃11(zx) +
∑

l=q+1,...,n2−2
m=s+1,...,n3−1

r(x,xp,l+2,m+1)<ξ

ωzx(xplm) ≤

= (1 + γ3)C̃9(zx) + C̃11(zx) +

∫
D23

z(t)dt. (7.111)

Analogously from (7.90), (7.91) and (7.92) we get

C̃24(zx) ≤ (1 + γ3)C̃10(zx) + C̃11(zx) +

∫
D24

z(t)dt, (7.112)
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C̃25(zx) ≤ (1 + γ3)C̃10(zx) + C̃12(zx) +

∫
D25

z(t)dt (7.113)

and

C̃26(zx) ≤ (1 + γ3)C̃9(zx) + C̃12(zx) +

∫
D26

z(t)dt. (7.114)

From (7.111), (7.112), (7.113) and (7.114) we get

26∑
j=23

C̃j(zx) ≤ 2(1+γ3)C̃9(zx)+2(1+γ3)C̃10(zx)+2C̃11(zx)+2C̃12(zx)+
26∑

j=23

∫
Dj

z(t)dt.

(7.115)
From (7.105), (7.110) and (7.115) we get

26∑
j=15

C̃j(zx) ≤ 2(γ3 + 2)C̃9(zx) + 2(γ3 + 2)C̃10(zx)+

+4C̃11(zx) + 4C̃12(zx) + 2(γ2 + 3)C̃13(zx) + 2(γ2 + 3)C̃14(zx) +
26∑

j=15

∫
Dj

z(t)dt ≤

≤ γ2

13∑
j=9

C̃j(zx) +
26∑

j=15

∫
Dj

z(t)dt, (7.116)

where
γ2 = max{2(γ3 + 2), 2(γ2 + 3), 4}.

From (7.69), (7.87) and (7.116) is (6.30) with c = max{γ1(γ2 + 4), γ2 + 3}.

Also here assumptions (7.62) and (7.63) are only technical. A similar theorem
can be proved for every compound mid-cuboid integration rule. So we found
integration rules for D ⊂ R2 resp. R3 that satisfy (6.30). As we will see in the
next chapter the integration rule does not need to have high degree of precision
because the one of the error factors is the singularity.

87



8. Example in one dimensional
case

To verify theory of collocation methods and two Nyström methods described in
previous chapters let us make numerical tests on a simple integral equation

y(x)−
∫ 1

0

y(t)

|x− t|γ
dt = f(x) (8.1)

where γ ∈ (0, 1). To show that (8.1) has a unique solution for all f(x) we need
to show that the operator

Ky(x) =
∫ 1

0

y(t)

|x− t|γ
dt (8.2)

is compact on C[0, 1] and λ = 1 is not eigenvalue of operator K.

Theorem 8.1. Operator K defined in (8.2) is compact operator on C[0, 1].

Proof. The kernel function of operator K is defined by

k(x, t) = |x− t|−γ. (8.3)

We will use lemma 2.14. We need to construct approximation to kernel function
kn(x, t). Let

kn(x, t) =

{
|x− t|−γ, |x− t| ≥ 1

n

nγ, |x− t| < 1
n
.

(8.4)

Note that
kn(x, t) ≤ k(x, t), for all x, t ∈ [0, 1] (8.5)

and

kn(x, t) = k(x, t), if |x− t| ≥ 1

n
. (8.6)

We need to fulfill (2.13). By (8.4), (8.5) and (8.6) we get∫ 1

0

|k(x, t)− kn(x, t)|dt =
∫ 1

0

(k(x, t)− kn(x, t)) dt =

=

∫
{t,t∈[0,1],|x−t|< 1

n}

(
|x− t|−γ − nγ

)
dt ≤

∫
{t,|x−t|< 1

n}

(
|x− t|−γ − nγ

)
dt =

=

∫ x

x− 1
n

[
(x− t)−γ − nγ

]
dt+

∫ x+ 1
n

x

[
(−x+ t)−γ − nγ

]
dt.

Let’s make following transformation

r = t− x.

Then for the first integral we have∫ x

x− 1
n

[
(x− t)−γ − nγ

]
dt =

∫ 0

− 1
n

[
(−r)−γ − nγ

]
dr =
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=

∫ 0

− 1
n

(−r)−γdr −
∫ 0

− 1
n

nγdr =

=

[
(−r)(−γ+1)

γ − 1

]0
r=− 1

n

− nγ [r]0r=− 1
n
= 0−

(
1
n

)1−γ

γ − 1
− nγ

[
0−

(
− 1

n

)]
=

=

(
1
n

)1−γ

1− γ
− nγ 1

n
=

1

(1− γ)n1−γ
− 1

n1−γ

and for the second integral we have∫ x+ 1
n

x

[
(−x+ t)−γ − nγ

]
dt =

∫ 1
n

0

(
r−γ − nγ

)
dr =

=

[
r(−γ+1)

−γ + 1

]r= 1
n

0

− nγ [r]
r= 1

n
0 =

(
1
n

)1−γ

1− γ
− nγ 1

n
=

1

(1− γ)n1−γ
− 1

n1−γ
.

Hence ∫ 1

0

|k(x, t)− kn(x, t)|dt = 2

[
1

(1− γ)n1−γ
− 1

n1−γ

]
=

=
2

1− γ

γ

n1−γ
→ 0 as n→∞ (8.7)

and by theorem 2.14 is K compact integral operator.

We will solve equation (4.1) with parameter γ = 1/2. We will show error
behavior of collocation and Nyström methods. They all lead to solving a system
of linear equations. The system will be solved by Gauss elimination. The columns
labeled ”Ratio” give the ratio of successive errors. All results are calculated
with Maple [13] with library Int1D (attachment no. 1). Maple is also used for
calculation of integrals and Gauss elimination.

8.1 Collocation method

8.1.1 Piecewise constant collocation

Firstly let us solve equation (4.1) with parameter γ = 1/2 by piecewise constant
collocation method. If we define approximation kn by the same way as in the
proof of previous theorem - (8.4) we have by (8.7) and proposition 5.8 item (c)
that operator K defined by (8.2) is compact operator from L∞[0, 1] into C[0, 1].
The sets Di are defined by

Di =

{
[(i− 1)h, ih) , when i = 1, ..., n− 1
[(i− 1)h, ih] , when i = n

(8.8)

where

h =
1

n

and the approximation points are

xi =
h

2
+ (i− 1)h, i = 1, ..., n. (8.9)
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Since the approximation points xi are at the interior of Di we have by (5.43) in
the corollary 5.7 for y ∈ C[0, 1] (note that τn = h)

∥Pny − y∥∞ ≤ sup
x,t∈[0,1]
|x−t|<h

|y(t)− y(x)| (8.10)

where projection Pn is defined by (5.31). The error estimate is given by theorem
5.1. The speed of convergence of the approximate solution is the same as the
speed of convergence ∥Pny − y∥∞. In the first example let’s choose

f(x) = x2 − (
16

15
x2
√
x+

16

15
x2
√
1− x+

8

15
x
√
1− x+

2

5

√
1− x).

The exact solution is y(x) = x2. Let y be the exact solution and let yn be
approximate solution obtained by piecewise constant collocation. Tables 8.1 and
8.2 show numerical solution yn(x) and error at the approximation points.

5 approximation points
x y(x) yn(x) |y(x)− yn(x)|
0,1 0,0100000 -0,0486860 0,0586860
0,3 0,0900000 0,0772023 0,0127977
0,5 0,2500000 0,2999383 0,0499383
0,7 0,4900000 0,5355457 0,0455457
0,9 0,8100000 0,7870752 0,0229248

Table 8.1: Piecewise constant collocation, exact solution x2, 5 approximation
points

10 approximation points
x y(x) yn(x) |y(x)− yn(x)|

0,05000000 0,0025000 -0,0130852 0,0155852
0,15000000 0,0225000 0,0066933 0,0158068
0,25000000 0,0625000 0,0530598 0,0094402
0,35000000 0,1225000 0,1231183 0,0006183
0,45000000 0,2025000 0,2129520 0,0104520
0,55000000 0,3025000 0,3188175 0,0163175
0,65000000 0,4225000 0,4384674 0,0159674
0,75000000 0,5625000 0,5719405 0,0094405
0,85000000 0,7225000 0,7214450 0,0010550
0.95000000 0,9025000 0,8898013 0,0126987

Table 8.2: Piecewise constant collocation, exact solution x2, 10 approximation
points

Since the solution y(x) is Lipschitz-continuous function on [0, 1] from here and
(8.10) we have that there exists constant L <∞ such that

∥Pny − y∥∞ ≤ sup
x,t∈[0,1],|x−t|<h

L|x− t| ≤ Lh.
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So the error should decrease by a factor approximately 2 whenever n is doubled.
Table 8.3 shows error development. From the table 8.3 we can see that the error

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,0586860 - 40 0,0015759 3,01
10 0,0163175 3,60 80 0,0005093 3,09
20 0,0047499 3,43 160 0,0001650 3,09

Table 8.3: Piecewise constant collocation, exact solution x2, error development

behavior is even better. In other examples of piecewise constant collocation we
will only show error development table.

Now let us choose f(x) such that the exact solution is y(x) = ex. Table 8.4
shows error development.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,0664882 - 40 0,0017259 3,26
10 0,0206985 3,21 80 0,0005929 2,91
20 0,0056190 3,63 160 0,0002002 2,96

Table 8.4: Piecewise constant collocation, exact solution ex, error development

Also here the function y(x) is Lipschitz-continuous on [0, 1] so the error should
decrease by a factor approximately 2 whenever n is doubled. Table 8.4 shows that
theory is consistent to the example. Also here the error behavior is better. In the
last example let us choose f(x) such that the exact solution is y(x) =

√
x. Table

8.5 shows error development.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,0665780 - 40 0,0046562 2,18
10 0,0259178 2,57 80 0,0021031 2,21
20 0,0101622 2,55 160 0,0009614 2,19

Table 8.5: Piecewise constant collocation, exact solution
√
x, error development

The function
√
x is Hölder continuous function (see definition A-2) with

constant α = 1/2 and A = 1. Hence by (A-2) and (5.43) in corollary 5.7 we
have that

∥Pny − y∥∞ ≤ sup
x,t∈[0,1],|x−t|<h

√
|x− t| ≤

√
h.

So the error should decrease by factor approximately
√
2 ≈ 1.41 when n is

doubled. From the table 8.5 we can see that also here the theory is consistent to
the example.

8.1.2 Piecewise linear collocation

Now let’s try piecewise linear collocation method for (8.1). First let us remember
some important properties of approximation theory.
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Theorem 8.2 (Lagrange interpolation). Let f be continuous function defined on
closed interval [a, b]. Let

a ≤ x0 < x1 < ... < xn ≤ b

be interpolation points. Let’s define polynomial

pn(x) =
n∑

i=0

f(xi)ϕi(x) where ϕi(x) =
n∏

j=0,j ̸=i

x− xj

xi − xj

. (8.11)

pn is called Lagrange interpolation polynomial and satisfies

f(xi) = pn(xi), for all i = 0, ..., n. (8.12)

The functions ϕi satisfy
ϕi(xj) = δij (8.13)

where δij is Kronecker delta. If f ∈ Cn+1[a, b] then there exists ξ ∈ [a, b] such that

f(x)− pn(x) =
ωn(x)

(n+ 1)!
f (n+1)(ξ), where ωn =

n∏
i=0

(x− xi). (8.14)

Now let’s make piecewise linear approximation of y on interval [0, 1]. Lets
define

h =
1

n
(8.15)

and the approximation points xj as

xj = a+ jh where j = 0, 1, ..., n. (8.16)

Let us define functions li as

l0(x) =

{
x1−x
h

when x ∈ [x0, x1]
0 when x /∈ [x0, x1]

ln(x) =

{
x−xn−1

h
when x ∈ [xn−1, xn]

0 when x /∈ [xn−1, xn]

li(x) =

{
0, when x /∈ [xi−1, xi+1]

1− |x−xi|
h

, when x ∈ [xi−1, xi+1]
for i = 1, ..., n− 1. (8.17)

Functions defined above satisfy

li(xj) = δij (8.18)

where δ is Kronecker delta function. The piecewise linear interpolation is then
given by projection operator

Pny(x) = yn(x) =
n∑

i=0

y(xi)li(x). (8.19)

Properties of piecewise linear interpolation is given by following lemma:
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Lemma 8.3. Approximation (8.19) satisfies for all x ∈ [0, 1]

∥y(x)− yn(x)∥∞ ≤ ω(y, h) (8.20)

where ω(y, h) is modulus of continuity defined as (A-1) in appendix.
If f ∈ C1([0, 1]) then it holds

|y(x)− yn(x)| ≤
h

2
∥y′∥∞. (8.21)

If f ∈ C2([0, 1]) then it holds

|y(x)− yn(x)| ≤
h2

8
∥y′′∥∞. (8.22)

Proof. If x is an approximation point the proof is trivial because at the collocation
function coincide with the approximation. Let us find error for fixed x ∈ (0, 1)
which is not approximation point. Then there exists i such that x ∈ (xi−1, xi).
For such x is (8.19) equivalent to

yn(x) = y(xi−1)li−1(x) + y(xi)li(x) =

=
1

h
[(xi − x)y(xi−1) + (x− xi−1)y(xi)] for i = 0, ..., n. (8.23)

Hence
yn(x)− y(x) =

1

h
[(xi − x)y(xi−1) + (x− xi−1)y(xi)]− y(x)

xi − x+ x− xi−1

h
=

=
1

h
[(xi − x)(y(xi−1)− y(x)) + (x− xi−1)(y(xi)− y(x))]

and

|yn(x)− y(x)| ≤ 1

h
|xi − x|.|y(xi−1)− y(x)|+ 1

h
|x− xi−1|.|y(xi)− y(x)| ≤

≤ 1

h
|xi − x| max

x,t∈[xi−1,xi]
|y(x)− y(t)|+ 1

h
|x− xi−1| max

x,t∈[xi−1,xi]
|y(x)− y(t)| ≤

≤ 1

h
|xi − x|ω(y, h) + 1

h
|x− xi−1|ω(y, h) =

=
1

h
(xi − x)ω(y, h) +

1

h
(x− xi−1)ω(y, h) = ω(y, h).

To prove (8.21) from mean value theorem we get for ξ1 ∈ (xi−1, xi)

y′(ξ1) =
y(x)− y(xi−1)

x− xi−1

and hence
y(xi−1) = y(x)− y′(ξ1)(x− xi−1). (8.24)

From mean value theorem for ξ2 ∈ (x, xi) we have

y′(ξ2) =
y(xi)− y(x)

xi − x
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and hence
y(xi) = y(x) + y′(ξ2)(xi − x). (8.25)

From (8.24), (8.25) and (8.23) we get

y(x)− yn(x) =

y(x)− xi − x

h
y(x)− (x− xi−1)(xi − x)

h
(y′(ξ2)− y′(ξ1))−

x− xi−1

h
y(x)

and hence

|yn(x)− y(x)| ≤ ∥y′∥∞
2(x− xi−1)(xi − x)

h
.

If we put u = x− xi−1 we get

|yn(x)− y(x)| ≤ ∥y′∥∞
2|(u)(h− u)|

h
≤ h

2
∥y′∥∞

where we have used

2|u(h− u)| ≤ h2

2
for u ∈ [0, h], h > 0 (8.26)

and the proof of (8.21) is complete. yn defined by (8.23) is Lagrange interpolant
of y on [xi−1, xi] and from (8.14) in theorem 8.2 it holds for error

y(x)− yn(x) =
(x− xi)(x− xi−1)

2
y′′(ξ), ξ ∈ [xi−1, xi].

If we put u = x− xi−i we get

yn(x)− y(x) =
(h− u)u

2
y′′(ξ), ξ ∈ [xi−1, xi].

From here and (8.26) it holds

|yn(x)− y(x)| ≤ h2

8
∥y′′∥∞

and the proof is complete.

Now let us use approximation yn defined in (8.19). The system of equations
defined by (5.4) for (8.1) becomes:

yn(xi)−
n∑

j=0

yn(xj)

∫ 1

0

k(xi, t)lj(t)dt = f(xi), i = 0, ..., n

and after simplifications we finally get

yn(xi)−
n∑

j=0

y(xj)ϕj(xi) = f(xi) (8.27)

where

ϕ0(xi) =
1

h

∫ x1

x0

k(xi, t)(x1 − t)dt

ϕj(xi) =
1

h

∫ xj

xj−1

k(xi, t)(t− xj−1))dt+
1

h

∫ xj+1

xj

k(xi, t)(xj+1 − t)dt, j = 1, ..., n− 1

ϕn(xi) =
1

h

∫ xn

xn−1

k(xi, t)(t− xn−1)dt. (8.28)
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In order to apply theorem 5.1 we need to satisfy (5.11). We will use lemma 5.2.
The projection Pn is defined by Pny = yn. From lemma 8.3 we have

∥Pny − y∥ ≤ ω(y, h).

Since y ∈ C[0, 1] it holds from the definition of the modulus of continuity that

ω(y, h)→ 0 as h→ 0

and since n → ∞ we have that h → 0. Hence the (5.24) is satisfied for all
x ∈ [0, 1] and by lemma 5.2 we have satisfied (5.11).

In the first example let’s choose

f(x) = x2 − (
16

15
x2
√
x+

16

15
x2
√
1− x+

8

15
x
√
1− x+

2

5

√
1− x).

The exact solution is y(x) = x2. Tables 8.6 and 8.7 show numerical solution yn(x)
and error at the approximation points, table 8.8 error development.

5 approximation points
x y(x) yn(x) |y(x)− yn(x)|
0,0 0,0000000 -0,0054518 0,0054518
0,25 0,0625000 0,0478201 0,0146799
0,50 0,2500000 0,2292963 0,0207037
0,75 0,5625000 0,5478200 0,0146800
1,00 1.0000000 0,9945482 0,0054518

Table 8.6: Piecewise linear collocation, exact solution x2, 5 approximation points

10 approximation points
x y(x) yn(x) |y(x)− yn(x)|
0 0,0000000 -0,0009781 0,0009789

0,11111111 0,2345679 0,0108997 0,0014460
0,22222222 0,4938272 0,0468316 0,0025511
0,33333333 0,1111111 0,1073395 0,0037717
0,44444444 0,1975309 0,1929765 0,0045543
0,55555555 0,3086420 0,3040876 0,0045543
0,66666666 0,4444444 0,4406728 0,0037717
0,77777777 0,6049383 0,6023872 0,0025511
0,88888888 0,7901235 0,7886775 0,0014460
1,00000000 1,0000000 0,9990210 0,0009790

Table 8.7: Piecewise linear collocation, exact solution x2, 10 approximation points

Since the solution y(x) = x2 ∈ C2[0, 1] we have by (8.22) that the error should
decrease by factor approximately 4 when n is doubled. From the table 8.8 we can
see that the theory is consistent to the example. In another examples only error
development tables will be shown.
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nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,0207037 - 40 0,0002984 3,92
10 0,0045543 4,54 80 0,0000766 3,90
20 0,0011694 3,89 160 0,0000179 4,20

Table 8.8: Piecewise linear collocation, exact solution x2, error development

In the second example let us choose f(x) such that the exact solution is
y(x) = ex. Table 8.9 shows error development.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,0490883 - 40 0,0003671 3,98
10 0,0061967 7,92 80 0,0000951 3,86
20 0,0014616 4,23 160 0,0000221 4,30

Table 8.9: Piecewise linear collocation, exact solution ex, error development

Since the solution y(x) = ex ∈ C2[0, 1] we have by (8.22) that the error should
decrease by factor approximately 4 when n is doubled. From the table 8.9 we can
see that also here the theory is consistent to the example.

For the last example let us choose f(x) such that the exact solution is y(x) =√
x. Table 8.10 shows error development.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio
5 0,4046966 - 40 0,0126216 2,55
10 0,0802910 5,04 80 0,0060760 2,08
20 0,0322054 2,49 160 0,0029034 2,10

Table 8.10: Piecewise linear collocation, exact solution
√
x, error development

The solution y(x) =
√
x ∈ C[0, 1] but not in C1[0, 1]. The function

√
x

is Hölder continuous function (see definition A-2) with constant α = 1/2 and
A = 1. Hence by (A-2), (8.20) and (A-1) the error should decrease by factor
approximately

√
2 ≈ 1.41 when n is doubled. From the table 8.10 we can see

that also here the theory is consistent to the example.

8.2 Nyström method

In this section we will use Nyström method to find numerical solution of (8.1).
The kernel function

k(x, t) = |x− t|−γ, for γ ∈ (0, 1) (8.29)

is of the form as in (6.14) with h(x, t) ≡ 1, r(x, t) = |x− t|. The singular factor
- function g is of the following form:

g(u) = u−γ. (8.30)
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Function g is positive non-increasing and continuous function on (0,∞). We
need to define sequence µn and choose numerical integration rule. Let us define
a sequence

µn =
1

n
(8.31)

and let us choose the compound midpoint integration rule. We need to show that
the behavior of both Nyström methods is consistent to the theory. For the error
estimation we have following lemma.

Lemma 8.4. Let operator K be defined as in (4.3), where the kernel function k
is of the form (6.14) with with h(x, t) = 1 and g(u) = u−γ. Let µn be defined by
(8.31), kn as (6.16), operator Kn as (6.33). Let y be the solution of (8.1). Let
the numerical integration rule be compound midpoint rule. Then there exists N1

and cN1 <∞ such that for the solution of Nyström method 1 yn it holds

∥y − yn∥∞ ≤ cN1∥Ky −Kny∥∞ when n ≥ N1 (8.32)

and there exist N2 and cN2 <∞ such that for the solution of Nyström method 2
ỹn it holds

∥y − ỹn∥∞ ≤ cN2∥Ky − K̃ny∥∞ when n ≥ N2. (8.33)

Proof. The compound midpoint rule converges for all continuous functions - see
[10] chapter 2.4 (Compound rules) and hence the rule satisfies (6.23). From lemma
7.5 the rule satisfies (7.2) with c1 = 1. Hence by lemma 7.3 is (6.30) satisfied.
From definition 7.1 is ωn = 1/n. Hence (6.26) is satisfied with ρ = 1. For γ from
(8.1) was assumed that γ ∈ (0, 1). Hence

g(µn)ωn ≤
nγ

n
=

1

n1−γ
≤ 1

and (6.27) is also satisfied. For (6.28) and (6.29) with transformation v = t − x
we get ∫

{t,r(x,t)<τ}
g(r(x, t))dt =

∫
{t,r(x,t)<τ}

(|x− t|)−γdt =

=

∫
{t,t∈(x,x+τ)}

(t− x)−γdt+

∫
{t,t∈(x−τ,x]}

(x− t)−γdt =

=

∫ τ

0

v−γdv +

∫ 0

−τ

(−v)−γdv = 2

∫ τ

0

v−γdv =
2

1− γ
τ 1−γ. (8.34)

Since right hand side of (8.34) is independent to x (6.28) and (6.29) immediately
follows. Inequalities (8.32), (8.33) and existence of yn and ỹn for all sufficiently
large n follows from theorems 6.12 and 6.15.

The last lemma give us that the speed of convergence of yn (resp. ỹn) to y is

the same as the speed of convergence of ∥Kny−Ky∥∞ (resp. ∥K̃ny−Ky∥∞). This
means that error depends on the solution y and the numerical integration rule.
In following two subsections we well give numerical examples of both Nyström
methods with compound midpoint rule.
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8.2.1 Nyström method 1

The speed of convergence of Nyström method 1 with compound midpoint is
described by following theorem.

Theorem 8.5. Let y be the solution of (8.1). Let yn be the solution of Nyström
method 1 where the numerical integration rule is compound midpoint rule and kn
is defined by (8.4). Then for sufficiently large n there exists cM such that it holds

∥y − yn∥∞ ≤
2

1− γ
ω

(
y,

1

n

)
+

cM
n1−γ

(8.35)

where ω is the modulus of continuity.

Proof. For the compound midpoint rule on [0, 1] we have that

ωj =
1

n
, j = 1, ..., n

and

xj =
j

n
− 1

2n
, j = 1, ..., n.

Let us take x ∈ [0, 1] and n. Then there exist l such that

x ∈
[
xl −

1

2n
, xl +

1

2n

]
.

Let us take such l. Note that there is one special case when x is between two
node points. Then there exist two such l. We can take anyone of them. Let us
define

a = max

{
0, xl −

3

2n

}
and

b = min

{
1, xl +

3

2n

}
.

Then
kn(x, t) = k(x, t) when t ∈ [0, a] or t ∈ [b, 1]

and
|Kny(x)−Ky(x)| =

=

∣∣∣∣∣
n∑

j=1

1

n
y(xj)kn(x, xj)−

∫ 1

0

|x− t|−γy(t)dt

∣∣∣∣∣ ≤ E1(x) + E2(x) + E3(x), (8.36)

where kn is defined by (8.4),

E1(x) =

∣∣∣∣∣∣
∑

j,xj∈[0,a]

1

n
(x− xj)

−γy(xj)−
∫ a

0

(x− t)−γy(t)dt

∣∣∣∣∣∣ ,
E2(x) =

∣∣∣∣∣∣
∑

j,xj∈[b,1]

1

n
(xj − x)−γy(xj)−

∫ 1

b

(t− x)−γy(t)dt

∣∣∣∣∣∣ ,
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and

E3(x) =

∣∣∣∣∣∣
∑

j,xj∈[a,b]

1

n
kn(x, xj)y(xj)−

∫ b

a

|x− t|−γy(t)dt

∣∣∣∣∣∣ .
From (A-3) in theorem A-1 we have that for each j there exist ξj ∈ [xj− 1

2n
, xj+

1
2n
]

such that

E1(x) =

∣∣∣∣∣∣
∑

j,xj∈[0,a]

1

n
(x− xj)

−γy(xj)−
∑

j,xj∈[0,a]

∫ xj+
1
2n

xj− 1
2n

(x− t)−γy(t)dt

∣∣∣∣∣∣ ≤
≤

∑
j,xj∈[0,a]

∣∣∣∣∣ 1n(x− xj)
−γy(xj)−

∫ xj+
1
2n

xj− 1
2n

(x− t)−γy(t)dt

∣∣∣∣∣ =
=

∑
j,xj∈[0,a]

∣∣∣∣∣1n(x− xj)
−γy(xj)− y(ξj)

∫ xj+
1
2n

xj− 1
2n

(x− t)−γdt

∣∣∣∣∣ ≤
≤

∑
j,xj∈[0,a]

∣∣∣∣ 1n(x− xj)
−γy(xj)−

1

n
(x− xj)

−γy(ξj)

∣∣∣∣+
+

∑
j,xj∈[0,a]

∣∣∣∣∣ 1n(x− xj)
−γy(ξj)− y(ξj)

∫ xj+
1
2n

xj− 1
2n

(x− t)−γdt

∣∣∣∣∣ ≤
≤ ω

(
y,

1

n

) ∑
j,xj∈[0,a]

(x− xj)
−γ

n
+∥y∥∞

∑
j,xj∈[0,a]

∣∣∣∣∣(x− xj)
−γ

n
−
∫ xj+

1
2n

xj− 1
2n

(x− t)−γdt

∣∣∣∣∣ .
(8.37)

Since (x−t)−γ ∈ C2[0, a] we have from (7.24) in 7.7 for each j such that xj ∈ [0, a]∣∣∣∣∣(x− xj)
−γ

n
−
∫ xj+

1
2n

xj− 1
2n

(x− t)−γdt

∣∣∣∣∣ ≤ γ(1 + γ)

24n3

[
(l − j − 1)

n

]−2−γ

.

Hence∑
j,xj∈[0,a]

∣∣∣∣∣1n(x− xj)
−γ −

∫ xj+
1
2n

xj− 1
2n

(x− t)−γdt

∣∣∣∣∣ ≤ γ(1 + γ)

24n1−γ

∑
j,xj∈[0,a]

[
1

l − j − 1

]2+γ

=

=
γ(1 + γ)

24n1−γ

l−2∑
j=1

[
1

l − j − 1

]2+γ

≤ γ(1 + γ)

24n1−γ

l−2∑
j=1

[
1

l − j − 1

]2
=

=
γ(1 + γ)

24n1−γ

[
1

(l − 2)2
+

1

(l − 3)2
+ ...+

1

12

]
≤

≤ γ(1 + γ)

24n1−γ

∞∑
j=1

1

j2
≤ γ(1 + γ)

24n1−γ

π2

6
. (8.38)

By (A-4) in theorem A-2 we have

∑
j,xj∈[0,a]

(x− xj)
−γ

n
=

l−2∑
j=1

(x− xj)
−γ

n
≤

l−2∑
j=1

(xl−1 − xj)
−γ

n
=
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=
l−2∑
j=1

1

n

nγ

(l − j − 1)γ
=

1

n1−γ

[
1

(l − 2)γ
+

1

(l − 1)γ
+ ...+

1

1γ

]
≤

≤ 1

n1−γ

n∑
j=1

1

jγ
≤ 1

nγ−1

∫ n

0

dt

tγ
=

1

n1−γ

n1−γ

1− γ
=

1

1− γ
. (8.39)

From (8.37), (8.38) and (8.39) we get

E1(x) ≤ ω

(
y,

1

n

)
1

1− γ
+ ∥y∥∞

π2γ(γ + 1)

144n1−γ
. (8.40)

From (A-3) in theorem A-1 we have that for each j there exist ξj ∈ [xj −
1
2n
, xj +

1
2n
] such that

E2(x) =

∣∣∣∣∣∣
∑

j,xj∈[b,1]

1

n
(xj − x)−γy(xj)−

∑
j,xj∈[b,1]

∫ xj+
1
2n

xj− 1
2n

(t− x)−γy(t)dt

∣∣∣∣∣∣ ≤
≤

∑
j,xj∈[b,1]

∣∣∣∣∣ 1n(xj − x)−γy(xj)−
∫ xj+

1
2n

xj− 1
2n

(t− x)−γy(t)dt

∣∣∣∣∣ =
=

∑
j,xj∈[b,1]

∣∣∣∣∣ 1n(xj − x)−γy(xj)− y(ξj)

∫ xj+
1
2n

xj− 1
2n

(t− x)−γdt

∣∣∣∣∣ ≤
≤

∑
j,xj∈[b,1]

∣∣∣∣ 1n(xj − x)−γy(xj)−
1

n
(xj − x)−γy(ξj)

∣∣∣∣+
+

∑
j,xj∈[b,1]

∣∣∣∣∣ 1n(xj − x)−γy(ξj)− y(ξj)

∫ xj+
1
2n

xj− 1
2n

(t− x)−γdt

∣∣∣∣∣ ≤
≤ ω

(
y,

1

n

) ∑
j,xj∈[b,1]

(xj − x)−γ

n
+∥y∥∞

∑
j,xj∈[0,a]

∣∣∣∣∣(xj − x)−γ

n
−
∫ xj+

1
2n

xj− 1
2n

(t− x)−γdt

∣∣∣∣∣ .
(8.41)

Since (t−x)−γ ∈ C2[b, 1] we have from (7.24) in 7.7 for each j such that xj ∈ [b, 1]∣∣∣∣∣(xj − x)−γ

n
−
∫ xj+

1
2n

xj− 1
2n

(t− x)−γdt

∣∣∣∣∣ ≤ γ(1 + γ)

24n3

[
(j − l − 1)

n

]−2−γ

.

Hence∑
j,xj∈[b,1]

∣∣∣∣∣1n(xj − x)−γ −
∫ xj+

1
2n

xj− 1
2n

(t− x)−γdt

∣∣∣∣∣ ≤ γ(1 + γ)

24n1−γ

∑
j,xj∈[b,1]

[
1

j − l − 1

]2+γ

=

=
γ(1 + γ)

24n1−γ

n∑
j=l+2

[
1

j − l − 1

]2+γ

≤ γ(1 + γ)

24n1−γ

n∑
j=l+2

[
1

j − l − 1

]2
=

=
γ(1 + γ)

24n1−γ

[
1

12
+

1

22
+ ...+

1

(n− l − 1)2

]
≤
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≤ γ(1 + γ)

24n1−γ

∞∑
j=1

1

j2
≤ γ(1 + γ)

24n1−γ

π2

6
. (8.42)

By (A-4) in theorem A-2 we have

∑
j,xj∈[b,1]

(xj − x)−γ

n
=

n∑
j=l+1

(xj − x)−γ

n
≤

n∑
j=l+2

(xj − xl+1)
−γ

n
=

=
n∑

j=l+2

1

n

nγ

(j − l − 1)γ
=

1

n1−γ

[
1

(1)γ
+

1

(2)γ
+ ...+

1

(n− l − 1)γ

]
≤

≤ 1

n1−γ

n∑
j=1

1

jγ
≤ 1

n1−γ

∫ n

0

dt

tγ
=

1

n1−γ

n1−γ

1− γ
=

1

1− γ
. (8.43)

From (8.41), (8.42) and (8.43) we get

E2(x) ≤ ω

(
y,

1

n

)
1

1− γ
+ ∥y∥∞

π2γ(γ + 1)

144n1−γ
. (8.44)

Let

z(r) =

{
r−γ if r ≥ 1

n

nγ if r < 1
n
.

Since z is continuous and non-increasing function on [0,∞), by (7.11) in lemma
7.3, lemma 7.5 and (8.34) we get

E3(x) ≤
∑

j,|x−xj |≤ 2
n

|ωjz(|x− xj|)y(xj)|+
∫
{t,|x−t|< 2

n
}
|x− t|−γ|y(t)|dt ≤

≤ 2∥y∥∞

(
1

n1−γ
+

∫
{t,|x−t|< 2

n
}
|x− t|−γdt

)
≤

≤ 2∥y∥∞
(

1

n1−γ
+

2

1− γ

21−γ

n1−γ

)
. (8.45)

From (6.93) in theorem 6.12, (8.40), (8.44) and (8.45) inequality (8.35) follows
with

CM = 2∥(λI − Kn)
−1∥∥y∥∞

[
π2γ(γ + 1)

144
+ 1 +

22−γ

1− γ

]
. (8.46)

Corollary 8.6. Under assumption of theorem 8.5 for sufficiently large n there
exists CM such that for the solution of the Nyström method 2 ỹn we have

∥y − ỹn∥∞ ≤
2

1− γ
ω

(
y,

1

n

)
+

2cM
n1−γ

. (8.47)

Proof. Follows from the proof of previous theorem with function y(x) − y(t)
instead of y(t).
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Let us choose γ = 1/2 as in case of collocation method. In first example let’s
choose

f(x) = x− (
4

3
x
√
x+

4

3
x
√
1− x+

2

3

√
1− x).

The exact solution is y(x) = x. Since

ω

(
x,

1

n

)
=

1

n

we have from the bound (8.35) in theorem 8.5 that the ration should be√
2 ≈ 1, 41. Tables 8.11 and 8.12 show numerical solution yn(x), table 8.13

error behavior.

x y(x) yn(x) |y(x)− yn(x)|
0,1 0,1 1,0290752 0,9290752
0,3 0,3 1,1409041 0,8409041
0,5 0,5 1,0718740 0,5718740
0,7 0,7 0,9261074 0,2261074
0,9 0,9 0,8124308 0,0875692

Table 8.11: Nyström method 1, exact solution x, 5 node points

x y(x) yn(x) |y(x)− yn(x)|
0,05 0,01 0,7898022 0,7398022
0,15 0,15 0,9289965 0,7789965
0,25 0,25 0,9718612 0,7218612
0,35 0,35 0,9497689 0,5997689
0,45 0,45 0,8828211 0,4328211
0,55 0,55 0,7897835 0,2397835
0,65 0,65 0,6899107 0,0399107
0,75 0,75 0,6035352 0,1464648
0,85 0,85 0,5536158 0,2963842
0,95 0,95 0,5772388 0,3727612

Table 8.12: Nyström method 1, exact solution x, 10 node points

nodes ∥y(x)− yn(x)∥∞ rn nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,9290752 - 160 1,2387265 3,50
10 0,7789965 1,19 320 0,4556743 2,72
20 0,8032121 1,03 640 0,2457405 1,85
40 1,0995873 0,71 1280 0,1508253 1,63
80 4,3409017 0,25 2560 0,0984279 1,53

Table 8.13: Nyström method 1, exact solution x, error development
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From the first point of view the scheme does’n seem to converge anymore.
However we can see that the method correspondents with theory if the number
of node points is 640 and more. The same situation is if we take f(x) such that
the exact solution is

y(x) =
√
x.

Since
√
x is Hölder continuous with α = 1/2 we have

ω

(√
x,

1

n

)
=

1√
n

and from the bound (8.35) in theorem 8.5 that the ration should be
√
2 ≈ 1, 41.

Tables 8.14 and 8.15 show numerical solution yn(x), table 8.16 error behavior.

x y(x) yn(x) |y(x)− yn(x)|
0,1 0,3162278 1,3209227 1,0046948
0,3 0,5477226 1.4715382 0,9238157
0,5 0,7071068 1.4318693 0,7247625
0,7 0,8366600 1.2971632 0,4605032
0,9 0,9486833 1.1437625 0,1950792

Table 8.14: Nyström method 1, exact solution
√
x, 5 node points

x y(x) yn(x) |y(x)− yn(x)|
0,05 0,2236068 0,9810204 0,7574136
0,15 0,3872983 1.1496600 0,7623617
0,25 0,5000000 1.2093524 0,7093524
0,35 0,5916080 1.2051308 0,6135228
0,45 0,6708204 1.1578175 0,4869971
0,55 0,7416198 1.0833584 0,3417386
0,65 0,8062258 0.9965144 0,1902886
0,75 0,8660254 0.9120142 0,0459888
0,85 0,9219544 0.8458348 0,0761197
0,95 0,9746794 0.8236537 0,1510257

Table 8.15: Nyström method 1, exact solution
√
x, 10 node points

nodes ∥y(x)− yn(x)∥∞ rn nodes ∥y(x)− yn(x)∥∞ Ratio

5 1,0046949 - 160 1,000474 0,93
10 0,7623617 1,31 320 0,379390 2,64
20 0,7285222 1,04 640 0,208483 1,82
40 0,9254966 0,79 1280 0,129346 1,61
80 0,9254966 1,00 2560 0,084869 1,52

Table 8.16: Nyström method 1, exact solution
√
x, error development
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We can see that this method is not useable because large number of nodes is
needed.

8.2.2 Nyström method 2

Now let’s test Nyström method 2. For the speed of convergence we have corollary
8.6. But its result is very pessimistic. To get better result we need to make more
assumption on the solution y.

Theorem 8.7. Let y ∈ C2[0, 1] be the solution of (8.1). Let ỹn be the solution of
Nyström method 2, where the numerical integration rule is compound midpoint
rule and kn is defined by (8.4). Then for sufficiently large n there exists cM̃ such
that it holds

∥y − ỹn∥∞ ≤
CM̃

n2−γ
. (8.48)

Proof. Let us define numbers a, b, l by the same way as in the beginning of the
proof of the theorem 8.5. Then

kn(x, t) = k(x, t) when t ∈ [0, a] or t ∈ [b, 1]

and ∣∣∣K̃ny(x)−Ky(x)
∣∣∣ =

=

∣∣∣∣∣
n∑

j=1

1

n
[y(xj)− y(x)]kn(x, xj)−

∫ 1

0

|x− t|−γ[y(t)− y(x)]dt

∣∣∣∣∣ ≤
≤ Ẽ1(x) + Ẽ2(x) + Ẽ3(x) (8.49)

where kn is defined by (8.4),

Ẽ1(x) =

∣∣∣∣∣∣
∑

j,xj∈[0,a]

1

n
(x− xj)

−γ[y(xj)− y(x)]−
∫ a

0

(x− t)−γ[y(t)− y(x)]dt

∣∣∣∣∣∣ ,
Ẽ2(x) =

∣∣∣∣∣∣
∑

j,xj∈[b,1]

1

n
(xj − x)−γ[y(xj)− y(x)]−

∫ 1

b

(t− x)−γ[y(t)− y(x)]dt

∣∣∣∣∣∣ ,
and

Ẽ3(x) =

∣∣∣∣∣∣
∑

j,xj∈[a,b]

1

n
kn(x, xj)[y(xj)− y(x)]−

∫ b

a

k(x, t)[y(t)− y(x)]dt

∣∣∣∣∣∣ .
From y(t) ∈ C2[0, 1] we have that (x − t)−γ[y(x) − y(t)] ∈ C2[0, a] and from

the mean value theorem we get

|y(x)− y(t)| ≤ |x− t|∥y′∥∞. (8.50)

For future use let us define for each j intervals

Ij =

[
xj −

1

2n
, xj +

1

2n

]
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and a constant
c̃ = ∥y′∥∞ [γ(γ + 1) + 2γ] .

From (8.50), (7.24) in theorem 7.7 and (A-4) in theorem A-2 we have

Ẽ1(x) =

∣∣∣∣∣∣
∑

j,xj∈[0,a]

1

n
(x− xj)

−γ[y(xj)− y(x)]−
∑

j,xj∈[0,a]

∫
Ij

(x− t)−γ[y(t)− y(x)]dt

∣∣∣∣∣∣ ≤

≤
∑

j,xj∈[0,a]

∣∣∣∣∣ 1n(x− xj)
−γ[y(xj)− y(x)]−

∫
Ij

(x− t)−γ[y(t)− y(x)]dt

∣∣∣∣∣ ≤
≤

∑
j,xj∈[0,a]

1

24n3
max
ξj∈Ij

∣∣γ(γ + 1)(x− ξj)
−2−γ[y(ξj)− y(x)]+

+2y′(ξj)γ(x− ξj)
−1−γ + y′′(ξj)(x− ξj)

−γ
∣∣ ≤

≤
∑

j,xj∈[0,a]

1

24n3
max
ξj∈Ij

[
γ(γ + 1)(x− ξj)

−2−γ∥y′∥∞(x− ξj) + 2∥y′∥∞γ(x− ξj)
−1−γ

]
+

+
∑

j,xj∈[0,a]

1

24n3
max
ξj∈Ij

[|y′′(ξj)|(x− ξj)
−γ] ≤

≤ c̃

24n3

∑
j,xj∈[0,a]

max
ξj∈Ij

(x− ξj)
−1−γ +

∥y′′∥∞
24n3

∑
j,xj∈[0,a]

max
ξj∈Ij

(x− ξj)
−γ ≤

≤ c̃

24n3

∑
j,xj∈[0,a]

[
l − j − 1

n

]−1−γ

+
∥y′′∥∞
24n3

∑
j,xj∈[0,a]

[
l − j − 1

n

]−γ

=

=
c̃

24n2−γ

l−2∑
j=1

[
1

l − j − 1

]1+γ

+
∥y′′∥∞
24n3−γ

l−2∑
j=1

[
1

l − j − 1

]γ
=

=
c̃

24n2−γ

[
1

(l − 2)1+γ
+

1

(l − 3)1+γ
+ ...+

1

11+γ

]
+

+
∥y′′∥∞
24n3−γ

[
1

(l − 2)γ
+

1

(l − 3)γ
+ ...+

1

1γ

]
≤

≤ c̃

24n2−γ

(
1 +

∞∑
j=2

1

j1+γ

)
+
∥y′′∥∞
24n3−γ

n∑
j=1

1

jγ
≤

≤ c̃

24n2−γ

(
1 +

∫ ∞

1

dt

t1+γ

)
+
∥y′′∥∞
24n3−γ

∫ n

0

dt

tγ
=

=
c̃

24n2−γ

(
1 +

1

γ

)
+
∥y′′∥∞
24n3−γ

(1− γ)n1−γ =
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=
c̃

24n2−γ

(
1 +

1

γ

)
+
∥y′′∥∞
24n2

(1− γ). (8.51)

By the same way for Ẽ2 we have from (8.50), (7.24) in theorem 7.7 and (A-4) in
theorem A-2

Ẽ2(x) =

∣∣∣∣∣∣
∑

j,xj∈[b,1]

1

n
(xj − x)−γ[y(xj)− y(x)]−

∑
j,xj∈[b,1]

∫
Ij

(t− x)−γ[y(t)− y(x)]dt

∣∣∣∣∣∣ ≤

≤
∑

j,xj∈[b,1]

∣∣∣∣∣1n(xj − x)−γ[y(xj)− y(x)]−
∫
Ij

(t− x)−γ[y(t)− y(x)]dt

∣∣∣∣∣ ≤
≤

∑
j,xj∈[b,1]

1

24n3
max
ξj∈Ij

∣∣γ(γ + 1)(ξj − x)−2−γ[y(ξj)− y(x)]−

−2y′(ξj)γ(ξj − x)−1−γ + y′′(ξj)(ξj − x)−γ
∣∣ ≤

≤
∑

j,xj∈[b,1]

1

24n3
max
ξj∈Ij

[
γ(γ + 1)(ξj − x)−2−γ∥y′∥∞(ξj − x) + 2∥y′∥∞γ(ξj − x)−1−γ

]
+

+
∑

j,xj∈[b,1]

1

24n3
max
ξj∈Ij

[|y′′(ξj)|(ξj − x)−γ] ≤

≤ c̃

24n3

∑
j,xj∈[b,1]

max
ξj∈Ij

(ξj − x)−1−γ +
∥y′′∥∞
24n3

∑
j,xj∈[b,1]

max
ξj∈Ij

(ξj − x)−γ ≤

≤ c̃

24n3

∑
j,xj∈[b,1]

[
j − l − 1

n

]−1−γ

+
∥y′′∥∞
24n3

∑
j,xj∈[b,1]

[
j − l − 1

n

]−γ

=

=
c̃

24n2−γ

n∑
j=l+2

[
1

j − l − 1

]1+γ

+
∥y′′∥∞
24n3−γ

n∑
j=l+2

[
1

j − l − 1

]γ
=

=
c̃

24n2−γ

[
1

11+γ
+

1

21+γ
+ ...+

1

(n− l − 1)1+γ

]
+

+
∥y′′∥∞
24n3−γ

[
1

1γ
+

1

2γ
+ ...+

1

(n− l − 1)γ

]
≤

≤ c̃

24n2−γ

(
1 +

∞∑
j=2

1

j1+γ

)
+
∥y′′∥∞
24n3−γ

n∑
j=1

1

jγ
≤

≤ c̃

24n2−γ

(
1 +

∫ ∞

1

dt

t1+γ

)
+
∥y′′∥∞
24n3−γ

∫ n

0

dt

tγ
=

=
c̃

24n2−γ

(
1 +

1

γ

)
+
∥y′′∥∞
24n3−γ

(1− γ)n1−γ =
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=
c̃

24n2−γ

(
1 +

1

γ

)
+
∥y′′∥∞
24n2

(1− γ). (8.52)

We need to bound Ẽ3. From (8.4) is

kn(x, t) ≤ nγ for all x, t ∈ [0, 1]. (8.53)

From the definition of a and b it holds

max
xi∈[a,b]

|xi − x| ≤ 3

2n
. (8.54)

Since in [a, b] are maximal three nodes we have from (8.53), (8.54) and (8.50) we
get ∑

j,xj∈[a,b]

∣∣∣∣ 1nkn(x, xj)[y(xj)− y(x)]

∣∣∣∣ ≤ 1

n1−γ

∑
j,xj∈[a,b]

|y(xj)− y(x)| ≤

≤ ∥y∥∞
n1−γ

∑
xj∈[a,b]

|xj − x| ≤ 3∥y′∥∞
n1−γ

max
xj∈[a,b]

|xj − x| ≤ 9∥y′∥∞
2n2−γ

. (8.55)

(8.50) also implies∫ b

a

|k(x, t)[y(t)− y(x)]| dt =
∫ b

a

∣∣x− t|−γ|y(t)− y(x)|
∣∣ dt ≤

≤ ∥y′∥∞
∫ b

a

|x− t|1−γdt = ∥y′∥∞
(∫ x

a

(x− t)1−γdt+

∫ b

x

(t− x)1−γdt

)
≤

≤ ∥y′∥∞

(∫ x

x− 2
n

(x− t)1−γdt+

∫ x+ 2
n

x

(t− x)1−γdt

)
=

= 2∥y′∥∞
∫ 2

n

0

r1−γdr =
2∥y′∥∞22−γ

n2−γ(2− γ))
. (8.56)

From (8.55) and (8.56) we get

Ẽ3(x) ≤
∑

j,xj∈[a,b]

∣∣∣∣1nkn(x, xj)[y(xj)− y(x)]

∣∣∣∣+ ∫ b

a

|k(x, t)[y(t)− y(x)]| dt ≤

≤ ∥y
′∥∞

n2−γ
c̃3 (8.57)

where

c̃3 =
9

2
+

23−γ

2− γ
.

From (8.49), (8.51), (8.52) and (8.57) theorem follows with

CM̃ =
1

12

[
c̃+

c̃

γ
+ ∥y′′∥∞ (1− γ)

]
+ c̃3∥y′∥∞.
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Let’s choose five different functions f(x). From (8.48) in theorem 8.7 the ratio
should be

√
23 ≈ 2, 83 for all solutions y ∈ C2[0, 1]. In first example let’s choose

f(x) = x− (
4

3
x
√
x+

4

3
x
√
1− x+

2

3

√
1− x).

The exact solution is y(x) = x. Tables 8.17 and 8.18 show numerical solution
yn(x), table 8.19 error behavior.

x y(x) yn(x) |y(x)− yn(x)|
0,1 0,1 0,09664074 0,00335926
0,3 0,3 0,29256321 0,00743679
0,5 0,5 0,50000001 0,00000001
0,7 0,7 0,70743679 0,00743679
0,9 0,9 0,90335924 0,00335924

Table 8.17: Nyström method 2, exact solution x, 5 node points

x y(x) yn(x) |y(x)− yn(x)|
0,05 0,01 0,04976397 0,00023603
0,15 0,15 0,14825262 0,00174739
0,25 0,25 0,24768600 0,00231400
0,35 0,35 0,34809194 0,00190806
0,45 0,45 0,44926656 0,00073344
0,55 0,55 0,55073344 0,00073344
0,65 0,65 0,65190806 0,00190806
0,75 0,75 0,75231400 0,00231400
0,85 0,85 0,85174739 0,00174739
0,95 0,95 0,95023603 0,00023603

Table 8.18: Nyström method 2, exact solution x, 10 node points

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,00743679 - 80 0,00004444 3,84
10 0,00231400 3,21 160 0,00001384 3,21
20 0,00638130 3,63 320 0,00000507 2,73
40 0,00017080 3,74 640 0,00000181 2,80

Table 8.19: Nyström method 2, exact solution x, error development

Let’s now choose

f(x) = x2 − (
16

15
x2
√
x+

16

15
x2
√
1− x+

8

15
x
√
1− x+

2

5

√
1− x)

The exact solution is y(x) = x2. Tables 8.20 and 8.21 show numerical solution
yn(x), table 8.22 error behavior.
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x y(x) yn(x) |y(x)− yn(x)|
0,10 0,01000000 -0,010771 0,020770912
0,30 0,09000000 0,091105 0,001104519
0,50 0,25000000 0,275946 0,025946124
0,70 0,49000000 0,505978 0,015978092
0,90 0,81000000 0,795948 0,014052409

Table 8.20: Nyström method 2, exact solution x2, 5 node points

x y(x) yn(x) |y(x)− yn(x)|
0,05 0,0025 -0,001615225 0,004115225
0,15 0,0225 0,018477734 0,004022266
0,25 0,0625 0,060584529 0,001915471
0,35 0,1225 0,123700923 0,001200923
0,45 0,2025 0,206560107 0,004060107
0,55 0,3025 0,308026989 0,005526989
0,65 0,4225 0,427517047 0,005017047
0,75 0,5625 0,565212522 0,002712522
0,85 0,7225 0,721972503 0,000527497
0,95 0,9025 0,898856838 0,003643162

Table 8.21: Nyström method 2, exact solution x2, 10 node points

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,02595461 - 80 0,00012399 3,11
10 0,00552699 4,69 160 0,00040150 3,09
20 0,00142514 3,89 320 0,00001316 3,05
40 0,00038570 3,69 640 0,00000435 3,03

Table 8.22: Nyström method 2, exact solution x2, error development

In other examples only error development tables will be showed. Let’s now
choose f(x) such that exact solution is y(x) = ex. Table 8.23 show error behavior.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,02306451 - 80 0,00014216 3,08
10 0,00644676 3,58 160 0,00004821 2,95
20 0,00168100 3,83 320 0,00001636 2,95
40 0,00043755 3,84 640 0,00000549 2,98

Table 8.23: Nyström method 2, exact solution ex, error development

From tables 8.19, 8.22 and 8.23 we can see that theory is consistent to the
examples. In last examples let’s choose f(x) such that y ∈ C[0, 1] but y /∈ C1[0, 1].
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Here we have only bound by corollary 8.6, which is very pessimistic and the ratio
is expected to be

√
2 ≈ 1, 41. Table 8.24 shows error development when exact

solution is y(x) =
√
x.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,06566880 - 80 0,00150604 2,18
10 0,02042666 3,21 160 0,00069379 2,17
20 0,00752862 2,71 320 0,00032326 2,15
40 0,00329685 2,28 640 0,00015234 2,12

Table 8.24: Nyström method 2, exact solution
√
x, error development

Table 8.25 shows error development when exact solution is y(x) = 4
√
x. Since

4
√
x is Hölder continuous with constant α = 1/4 the ratio should be approximately

4
√
2 ≈ 1.19.

nodes ∥y(x)− yn(x)∥∞ Ratio nodes ∥y(x)− yn(x)∥∞ Ratio

5 0,09604551 - 80 0,00418252 1,87
10 0,03427357 2,80 160 0,00227937 1,83
20 0,01472064 2,32 320 0,00125873 1,81
40 0,00776413 1,90 640 0,00070393 1,79

Table 8.25: Nyström method 2, exact solution 4
√
x, error development

We can see that corollary has very pessimistic bound. But in contrast to the
Nyström method 1 the number of node points does not need to be so high.

Last question is whether the error development can be improved by taking
more precise integration rule. From the proof of theorem 8.7 the answer should be
no. The reason is the error Ẽ3. It does not depend on the numerical integration
rule and it is O(1/n2−γ). So there is no need to take more good integration rule
than given speed of O(1/n2). To demonstrate this let us use compound Simpson
rule which is of order O(1/n4). We will use same example functions. Instead of
number of nodes we will use the number of cells that are dividing original interval.
Note that in the case of compound midpoint rule the number of nodes equals the
number of cells. Also here we will show only error development tables.

For the first example let’s choose

f(x) = x− (
4

3
x
√
x+

4

3
x
√
1− x+

2

3

√
1− x).

The exact solution is y(x) = x. Table 8.26 shows error evolution.

cells ∥y(x)− yn(x)∥∞ Ratio cells ∥y(x)− yn(x)∥∞ Ratio

5 0,00345657 - 80 0,00004433 2,94
10 0,00115105 3,00 160 0,00001524 2,90
20 0,00038555 2,99 320 0,00000528 2,88
40 0,00013011 2,96 640 0,00000185 2,86

Table 8.26: Nyström method 2, Simpson rule, exact solution x, error development
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For the second example let’s now choose

f(x) = x2 − (
16

15
x2
√
x+

16

15
x2
√
1− x+

8

15
x
√
1− x+

2

5

√
1− x)

The exact solution is y(x) = x2. Table 8.27 shows error evolution.

cells ∥y(x)− yn(x)∥∞ Ratio cells ∥y(x)− yn(x)∥∞ Ratio

5 0,00814766 - 80 0,0000901 2,97
10 0,00254656 3,20 160 0,0000307 2,93
20 0,00081629 3,12 320 0,0000106 2,89
40 0,00026832 3,04 640 0,0000037 2,87

Table 8.27: Nyström method 2, Simpson rule, exact solution x2, error
development

For the third example let’s now choose f(x) such that exact solution is y(x) =
ex. Table 8.28 shows error evolution.

cells ∥y(x)− yn(x)∥∞ Ratio cells ∥y(x)− yn(x)∥∞ Ratio

5 0,01065630 - 80 0,00012186 2,96
10 0,00336930 3,16 160 0,00004168 2,92
20 0,00109000 3,09 320 0,00001439 2,90
40 0,00036147 3,02 640 0,00000503 2,86

Table 8.28: Nyström method 2, Simpson rule, exact solution ex, error
development

From the tables 8.26, 8.27 and 8.28 we can see that the behavior of ratio didn’t
change. For the fourth example Let’s choose f(x) so that the exact solution is
y(x) =

√
x. Table 8.29 shows error evolution.

cells ∥y(x)− yn(x)∥∞ Ratio cells ∥y(x)− yn(x)∥∞ Ratio

5 0,04636450 - 80 0,00242788 2,08
10 0,02197312 2,11 160 0,00117522 2,07
20 0,01051308 2,09 320 0,00057204 2,06
40 0,00504212 2,08 640 0,00027988 2,04

Table 8.29: Nyström method 2, Simpson rule, exact solution
√
x, error

development

For last example let’s choose f(x) so that the exact solution is y(x) = 4
√
x.

Table 8.30 shows error evolution.
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cells ∥y(x)− yn(x)∥∞ Ratio cells ∥y(x)− yn(x)∥∞ Ratio

5 0,15521530 - 80 0,01650029 1,75
10 0,08863859 1,75 160 0,00947577 1,74
20 0,05064411 1,75 320 0,00547279 1,73
40 0,02887358 1,75 640 0,00317827 1,72

Table 8.30: Nyström method 2, Simpson rule, exact solution 4
√
x, error

development

Tables 8.29 and 8.30 show that the error behavior didn’t change by changing
the numerical integration rule.

8.3 Method comparison

As we saw, the Nyström method 1 is not usable. However let us make comparison
of Nyström method 2 with both integration rules and collocation method.
Following three tables compare errors for various functions. n is the number
of cells in case of Nyström method with compound Simpson integration rule,
number of nodes in other cases.

n constant col. linear coll. Nyström - midpoint Nyström - Simpson
10 0,0163175 0,0045543 0,0055269 0,0025466
20 0,0047499 0,0011694 0,0014251 0,0008163
40 0,0015759 0,0002984 0,0003857 0,0002683
80 0,0005093 0,0000766 0,0001230 0,0000901
160 0,0001650 0,0000179 0,0000402 0,0000307

Table 8.31: Exact solution x2, error comparison

n constant col. linear coll. Nyström - midpoint Nyström - Simpson
10 0,0206985 0,0061967 0,0064467 0,0033693
20 0,0056190 0,0014616 0,0016810 0,0010900
40 0,0017259 0,0003671 0,0004375 0,0003615
80 0,0005929 0,0000951 0,0001421 0,0001219
160 0,0002002 0,0000221 0,0000482 0,0000417

Table 8.32: Exact solution ex, error comparison
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n constant col. linear coll. Nyström - midpoint Nyström - Simpson
10 0,0259178 0,0802910 0,0204266 0,0219731
20 0,0101621 0,0322054 0,0075286 0,0105131
40 0,0046562 0,0126216 0,0032969 0,0050421
80 0,0021031 0,0060760 0,0015060 0,0024279
160 0,0009614 0,0029034 0,0006938 0,0011752

Table 8.33: Exact solution
√
x, error comparison

From tables above we can see that when y ∈ C2[0, 1] the best is piecewise linear
collocation. But the Nyström method have also good results. Last table shows
case that function is only continuous. Here the best is the Nyström method with
midpoint rule and the second best is piecewise linear collocation. When using
Simpson rule or piecewise linear collocation the effect of singularity is bigger and
the results are not so good.

Now let us compare methods by computing time for exact solution ex. The
time is measured by Maple [13] on operating system Windows 7 with Inter Core
i5, 4GB ram.

n constant col. linear coll. Nyström - midpoint Nyström - Simpson
10 3,7 6,6 1,6 1,6
20 11,9 26,6 4,5 3,7
40 41,7 120,1 8,9 8,9
80 189,4 688,5 19,8 19,2

Table 8.34: Exact solution ex, computing time (in seconds)

From last table we can see that Nyström method has very low computing time.
The slowest is piecewise linear collocation. The reason is simple. Both methods
generate fully populated matrixes. In case of collocation method all members of
the matrix are integrals which need to be calculated. In case of piecewise linear
collocation the integrals are more complicated than in case of piecewise constant
collocation. However in the Nyström method only diagonal entries of the matrix
are integrals. Since the Nyström method has two error factors - singularity and
the numerical integration rule error there is no need to use too good integration
rule.
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9. Numerical Solution of
Induction Heating Model

In this chapter we will derive numerical model of for solving (1.15). Equation
(1.15) is of the form (4.1) with λ = 1, the kernel function

k(x, t) =
−ικ(x)
r(x, t)

(9.1)

where r(x, t) is the Euclidian distance of x and t and

f(x) = −ιIextF (x).

Assume that Ω1 = {(x1, x2, x3), a ≤ x1 ≤ b, c ≤ x2 ≤ d, e ≤ x3 ≤ f} is cuboid.
We will use piecewise constant collocation and Nyström method 2. The

reason against piecewise linear collocation (or more precise collocation) is large
computing time. The reason against Nyström method 1 is large number of node
points as so much memory usage. All was showed in previous chapter.

9.1 Collocation method

Let us cover Ω1 by n1 sub-cuboides in x1 direction, n2 sub-cuboides in x2 direction
and n3 sub-cuboides in x3 direction. Let

h1 =
b− a

n1

, (9.2)

h2 =
d− c

n2

(9.3)

and

h3 =
f − e

n3

. (9.4)

Let us define collocation points

xk = a+ kh1 −
h1

2
, k = 1, ..., n1, (9.5)

xl = c+ lh2 −
h2

2
, l = 1, ..., n2 (9.6)

and

xm = e+mh3 −
h3

2
,m = 1, ..., n3. (9.7)

The sub-cuboides are for k = 1, ..., n1−1, l = 1, ..., n2−1,m = 1, ..., n3−1 defined
by

Ω1,klm =

{
(x′

1, x
′
2, x

′
3), xk −

h1

2
≤ x′

1 < xk +
h1

2
, xl −

h2

2
≤ x′

2 < xl +
h2

2
,

xm −
h3

2
≤ x′

3 < xm +
h3

2

}
.
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For k = n1, l = n2 and m = n3 the definition is the same as above with ”≤”
instead of ”<” in corresponding variable. Let n = n1n2n3. For j = 1, ..., n let us
define bijection (k, l,m)←→ j

j = k + n1(l − 1) + n1n2(m− 1) (9.8)

for simplification of the text. From (5.37) and (5.38) with y = Jeddy,x1 , yn = J̃n,
ỹi = Ji, λ = 1, D = Ω1, Di = Ω1,i, f(x) = −ιF (x)Iext and the kernel function k

defined as (9.1) we get the piecewise constant collocation J̃n of Jeddy,x1

J̃n(x) =
n∑

i=1

χi(x)Ji (9.9)

where
χi = χΩ1,i

is characteristic function of Ω1,i and Ji is the solution of system of linear equations

Ji + ι
n∑

j=1

κ(xi)Jj

∫
Ω1,j

1

r(xi, t)
dt1dt2dt3 = −ιIextF (xi), i = 1, ..., n. (9.10)

The operator form of (9.10) is

(I − PnK)Jn = PnF̃ (9.11)

where K is defined in (3.3), F̃ is defined by (3.1) and Pn is a projection operator
defined as

Pny(x) = y(xi), x ∈ Ω1,i. (9.12)

Ji is complex number. Let us define for each i = 1, ..., n

J
(R)
i = ReJi and J

(I)
i = ImJi. (9.13)

Then (9.10) is equivalent to

J
(R)
i + ιJ

(I)
i +

n∑
j=1

κ(xi)[ιJ
(R)
j − J

(I)
j ]

∫
Ω1,j

dt1dt2dt3
r(xi, t)

= −ιIextF (xi), i = 1, ..., n.

(9.14)
When rewriting (9.14) into two real equations we get system of linear equations

for J
(R)
i and J

(I)
i :

J
(R)
i −

n∑
j=1

κ(xi)J
(I)
j

∫
Ω1,j

dt1dt2dt3
r(xi, t)

= ImIextF (xi), i = 1, ..., n

−J (I)
i −

n∑
j=1

κ(xi)J
(R)
j

∫
Ω1,j

dt1dt2dt3
r(xi, t)

= ReIextF (xi), i = 1, ..., n. (9.15)

The numerical solution is (9.9) with Ji = J
(R)
i + ιJ

(I)
i . The convergence of the

numerical solution is described by following theorem.

115



Theorem 9.1. Let J̃n be the solution of (9.10) and Jeddy,x1 be solution of (1.15).
Then it holds for all sufficiently large n ≥ N

∥Jeddy,x1 − J̃n∥∞ ≤ CN sup
r(x,t)<τn

|Jeddy,x1(x)− Jeddy,x1(t)| (9.16)

where CN is defined in (5.12) in theorem 5.1 and

τn = max
i=1,...,n

max
x,t∈Ω1,i

r(x, t).

Proof. Let us use theorem 5.1. We need to verify (5.11). First let us prove that
operator K defined by (3.3) is compact operator from L∞(Ω1) to C(Ω1). The
proof is analog to the proof of theorem 3.3. Let us define operators K1 as (3.10),
M1 as (3.11) and N as (3.12). The operator K1 is of the form (4.3) with

k(x, t) =
1

r(x, t)
.

If we define approximation

kn(x, t) =
1

rn(x, t)

where rn is defined by (3.13) we have by (3.14) that (2.13) holds and by
proposition 5.8 that K1 is compact operator from L∞(Ω1) to C(Ω1). It was proved
in theorem 3.3 that operators N and M1 are continuous linear operators from
C(Ω1) to C(Ω1). Since K = NM1K1 is K compact operator from L∞(Ω1) to
C(Ω1). By lemma 5.6

∥K − PnK∥ → 0 as n→∞

and (9.16) follows from (5.43) in corollary 5.7, (5.12) and (5.14) in theorem 5.1

with y = Jeddy,x1 , yn = J̃n and λ = 1.

By the last theorem approximate solution J̃n converges to the exact solution
Jeddy,x1 if the diameter of sub-cuboides goes to zero. Problem to be solved in the
system of linear equations (9.15) is singular integral

I =

∫ h1
2

−h1
2

∫ h2
2

−h2
2

∫ h3
2

−h3
2

dx3dx2dx1√
x2
1 + x2

2 + x2
3

. (9.17)

From the figure 9.1 we can see that the integral can be calculated analytically with

Figure 9.1: Mathematica integral
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software Mathematica [12] and we don’t need to use special numerical integration
rules. For the integral we have

I = 2h2h3 ln

(
h1 +

√
h2
1 + h2

2 + h2
3

)
+ 2h1h3 ln

(
h2 +

√
h2
1 + h2

2 + h2
3

)
+

+2h1h2 ln

(
h3 +

√
h2
1 + h2

2 + h2
3

)
− h2h3 ln(h

2
2 + h2

3)−

−h1h3 ln(h
2
1 + h2

3)− h1h2 ln(h
2
1 + h2

2)−

−h2
2 arctan

h1h3

h2

√
h2
1 + h2

2 + h2
3

− h2
1 arctan

h2h3

h1

√
h2
1 + h2

2 + h2
3

−

− h2
3 arctan

h1h2

h3

√
h2
1 + h2

2 + h2
3

. (9.18)

9.2 Nyström method

Let the numerical integration rule be compound mid-cuboid rule - definition 7.4.
First we need to define kernel approximation kn(x, t). Let

µn =
3

√
ω̃

n
(9.19)

where
ω̃ = (b− a)(d− c)(f − e).

The kernel function k(x, t) is of the form (6.14) with with h(x, t) = −ικ(x) and
g(u) = u−1. By (6.16) with µn defined as (9.19) we get

kn(x, t) =
−ικ(x)
rn(x, t)

(9.20)

where

rn(x, t) =

{
r(x, t) if r(x, t) ≥ µn

µn if r(x, t) < µn
. (9.21)

Let J̃n be Nyström approximation of Jeddy,x1 . From (6.7) with λ = 1,
f(x) = −ιIextF (x), ωj = ω, the kernel function k(x, t) defined as (9.1) and
the approximation kn(x, t) defined as (9.20) we get[

1− ικ(xi)
n∑

j=1,j ̸=i

ω

rn(xi, xj)
+ ικ(xi)

∫
Ω1,j

1

r(xi, t)
dt1dt2dt3

]
J̃n(xi)+

+ ικ(xi)
n∑

j=1,j ̸=i

ω
J̃n(xj)

rn(xi, xj)
= −ιIextF (xi), i = 1, ..., n. (9.22)

J̃n(xi) is complex number. Let us define for each i = 1, ..., n

J̃
(R)
i = ReJ̃n(xi) and J̃

(I)
i = ImJ̃n(xi). (9.23)
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Then (9.22) is equivalent to[
1− ικ(xi)

n∑
j=1,j ̸=i

ω

rn(xi, xj)
+ ικ(xi)

∫
Ω1,j

1

r(xi, t)
dt1dt2dt3

]
(J̃

(R)
i + ιJ̃

(I)
i )+

+ικ(xi)
n∑

j=1,j ̸=i

ω
J̃
(R)
j + ιJ̃

(I)
j

rn(xi, xj)
= −ιIextF (xi), i = 1, ..., n.

When rewriting last equation into two real equations we get system of linear
equations for J̃

(R)
i and J̃

(I)
i

J̃
(R)
i + κ(xi)

[
n∑

j=1,j ̸=i

ω

rn(xi, xj)
−
∫
Ω1

1

r(xi, t)
dt1dt2dt3

]
J̃
(I)
i −

−κ(xi)
n∑

j=1,j ̸=i

ω
J̃
(I)
j

rn(xi, xj)
= ImIextF (xi), i = 1, ..., n

−J̃ (I)
i + κ(xi)

[
n∑

j=1,j ̸=i

ω

rn(xi, xj)
−
∫
Ω1

1

r(xi, t)
dt1dt2dt3

]
J̃
(R)
i −

− κ(xi)
n∑

j=1,j ̸=i

ω
J̃
(R)
j

rn(xi, xj)
= ReIextF (xi), i = 1, ..., n. (9.24)

From the interpolation formula (6.8) we get the numerical solution J̃n

J̃n(x) =
−ιIextF (x)− ικ(x)

∑n
j=1

ω
rn(x,xj)

J̃n(xj)

1− ικ(x)
∑n

j=1
ω

rn(x,xj)
+ ικ(x)

∫
Ω1

1
r(x,t)

dt
, (9.25)

where
J̃n(xi) = J̃

(R)
i + ιJ̃

(I)
i .

The convergence is described by following theorem

Theorem 9.2. Let operator K be defined as in (4.3), where the kernel function
k is of the form (6.14) with with h(x, t) = −ικ(x) and g(u) = u−1, kn as (9.20),
operator Kn as (6.35). Let Jeddy,x1 be the solution of (1.15). Let the numerical
integration rule be compound mid-cuboid rule. Then there exist N and cN < ∞
such that for the solution of Nyström method 2 J̃n it holds

∥Jeddy,x1 − J̃n∥∞ ≤ cN∥KJeddy,x1 − K̃nJeddy,x1∥∞ when n ≥ N. (9.26)

Proof. From the definition of (9.19) is satisfied (6.15). Function κ was assumed to
be bounded and hence |−ικ(x)| is bounded and (6.22) is satisfied. The compound
mid-cuboid integration rule converges for all continuous function (see [10]) and
(6.23) is satisfied. Since ωn = ωj = ω̃/n > 0 for all j = 1, ..., n is (6.24) also
satisfied. Condition (6.26) is satisfied with ρ = 1. Since

g(µn)ωn =
g(µn)ω̃

n
=

ω̃
2
3

n
2
3

≤ ω̃
2
3 for all n

is (6.27) satisfied. From (3.5) in lemma 3.1 follow (6.28) and (6.29). From theorem
7.10 is (6.30) satisfied and by theorem 6.15 (9.26) follows.
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The convergence of ∥KJeddy,x1−K̃nJeddy,x1∥∞ is done by corollary 6.14. Hence

we have that J̃n converges to the exact solution Jeddy,x1 . Also in (9.24) is problem
with computing singular integral. It can be done analytically or with software
Mathematica [12].

9.3 Example of induction heating

A brass cuboid body with the measures 0, 15 × 0, 01 × 0, 01m (see figure 9.2)
is heated with a stationary inductor starting at the room temperature 20◦C.
The inductor has the form of a coil which turns around the heated body in the
x1-direction in 6 loops. Radius of the coil is 0, 015m, exciting current 500A,
frequency 150 kHz. The length of the coil is 0, 15m. The cuboid is partitioned

Figure 9.2: Heating of a brass body, 6 loops, visualization by Maple [13]

by 75 elements in x1 direction, 5 elements in x2 and x3 direction. Figures 9.3 and
9.4 show the specific Joule losses distribution calculated by piecewise constant
collocation and Nyström method with compound mid-cuboid integration rule on
the x1 axes with x2 = −0.004 where the blue color matches x3 = −0.004, the red
color matches x3 = 0 and the black color matches x3 = 0.004.

Computation was made by script heatCol (attachment no. 2) and heatNyst
(attachment no. 3) in Matlab [14]. The reason for choosing Matlab is that Maple
has problems with solution of large matrixes. The integration for computing
F (xi) is done by Matlab method quad. It uses adaptive Simpson quadrature.
The computation of non-singular integrals of the matrix of collocation method is
used simp3D [15]. It uses compound product Simpson integration rule. Matlab
has tool triplequad for computing triple integrals, but it is too slow.

The same situation with x2 = 0 show figures 9.5 resp. 9.6 and the same
situation with x2 = 0.004 show figures 9.7 resp. 9.8.
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Figure 9.3: Brass body, piecewise constant collocation, 6 loops, x2 = −0.004
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Figure 9.4: Brass body, Nyström method, 6 loops, x2 = −0.004
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Figure 9.5: Brass body, piecewise constant collocation, 6 loops, x2 = 0
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Figure 9.6: Brass body, Nyström method, 6 loops, x2 = 0
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Figure 9.7: Brass body, piecewise constant collocation, 6 loops, x2 = 0.004
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Figure 9.8: Brass body, Nyström method, 6 loops, x2 = 0.004
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From the pictures we can see that both methods have similar results. Also the
dependence of distance of the point in the body from the coil is well described by
the pictures above. If we compare computing time on operating system Windows
7 with Inter Core i5, 4GB ram we get approximately 2 minutes for the Nyström
method and approximately 12 minutes for piecewise constant collocation. To see
the dependence of Joule looses and coil structure let us make another example
with one change. The coil turns around the heated body in the x1-direction in 3
loops.

Figure 9.9: Heating of a brass body, 3 loops, visualization by Maple [13]

Figures 9.10 and 9.11 show the specific Joule losses distribution calculated
by piecewise constant collocation and Nyström method with compound mid-
cuboid integration rule on the x1 axes with x2 = −0.004 where the blue color
matches x3 = −0.004, the red color matches x3 = 0 and the black color matches
x3 = 0.004. The same situation with x2 = 0 show figures 9.12 resp. 9.13 and
the same situation with x2 = 0.004 show figures 9.14 resp. 9.15. Also here both
methods have similar results. All important show following figures.
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Figure 9.10: Brass body, piecewise constant collocation, 3 loops, x2 = −0.004
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Figure 9.11: Brass body, Nyström method, 3 loops, x2 = −0.004
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Figure 9.12: Brass body, piecewise constant collocation, 3 loops, x2 = 0
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Figure 9.13: Brass body, Nyström method, 3 loops, x2 = 0
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Figure 9.14: Brass body, piecewise constant collocation, 3 loops, x2 = 0.004
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Figure 9.15: Brass body, Nyström method, 3 loops, x2 = 0.004

126



Conclusion

Now let us make comparison of results in the previous chapters. Both methods
generate fully populated matrixes. This is disadvantage in case of 2D or 3D
problem because of the large memory usage.

The theory of collocation methods have almost no limitations to the domain of
integration and kernel function. Their applying to integral equation of the second
kind with singular kernel generates two problems. First one is the calculation of
singular integral. In one dimensional case it can be done with mathematical
software (in chapter 8 it was Maple). In the situation of more dimensions the
calculation can be a problem. The second problem is computing time. The more
precise collocation generates more time. The reason is simple. Every element of
collocation matrix is an integral. In chapter 8 table 8.34 was showed the time
difference between piecewise constant and piecewise linear collocation. However
from table 8.33 we can see that if the solution has not continuous derivatives the
advantage of precise collocation loses.

The Nyström method 1 was showed to converge but it is not usable. From
tables 8.11 - 8.16 we can see that large number of node points is needed even
in one dimensional case. The Nyström method 2 has big advantage. As we
can see in the table 8.34 it has very short computing time. The reason for it
is simple. Only diagonal elements of the matrix are integrals. Other elements
are very easy to be calculated. First disadvantage of this method is that the
proof of convergence is connected with domain of integration, kernel function
and numerical integration rule. The main problem is to satisfy (6.30). In the
chapter 7 was showed some integration rules that satisfy it. In the chapter 8
was showed that the integration rule does not need to be enough precise due to
singularity of kernel function. Second problem is that the error estimate is very
complicated even in one dimensional case as we saw in chapter 8.

In the chapter 9 were piecewise constant collocation and Nyström method 2
applied to three dimensional problem of induction heating. Both methods have
similar results and the convergence of them is proved. In case of Nyström method
only for cuboid domain with compound mid-cuboid rule but it is not against using
it to more general case.
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Appendix

In this chapter several well known theorems and definitions used in the thesis are
remembered.

Definition A-1 (Modulus of Continuity). Let f be continuous function in closed
and bounded set D. Then the modulus of continuity of f on D is defined by

ω(f, h) = max
x,t∈D

r(x,t)≤h

|f(x)− f(t)| (A-1)

where r(x, t) is Euclidean distance od x and t.

Definition A-2 (Hölder continuous function). A real or complex-valued function
y defined on D is Hölder continuous function if there are nonnegative real
constants A <∞ and α ∈ (0, 1) such that for all x, t ∈ D it holds

|y(t)− y(x)| ≤ A.r(x, t)α. (A-2)

If α = 1 then the function y(x) is called Lipschitz continuous function.

Theorem A-1. Let f ∈ C[a, b] and let g be integrable nonnegative function on
[a, b]. Then there exists ξ ∈ [a, b] such that∫ b

a

f(t)g(t)dt = f(ξ)

∫ b

a

g(t)dt. (A-3)

Theorem A-2. Let f be positive non-increasing function on [0,∞), let
x0 < x1 < ... < xn. Then for the sequence {fk = f(xk)}nk=n0

it holds

n∑
i=n0+1

fi ≤
∫ n

n0

f(t) dt (A-4)

and
n∑

i=n0

fi ≤ fn0 +

∫ n

n0

f(t) dt. (A-5)

Note that if the right hand sides of (A-4) and (A-5) are finite the inequalities
hold also for n =∞.

Definition A-3 (Partition of interval). A partition of an interval [a, b] is finite
set P = {a = x0 < x1 < ... < xn−1 < xn = b}. Each [xi, xi+1] is called
a subinterval of the partition. The norm of a partition is defined by

ν(P ) = max
i=0,...,n−1

(xi+1 − xi).

Definition A-4 (Riemann sums). Let f be bounded function on [a, b] and P is
partition of interval [a, b]. The upper Riemann sum is defined by

S(f, P ) =
n∑

j=1

sup
x∈[xj−1,xj ]

f(x)(xj − xj−1).

The lower Riemann sum is defined by

s(f, P ) =
n∑

j=1

inf
x∈[xj−1,xj ]

f(x)(xj − xj−1).
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Definition A-5 (Riemann integral). Let f be bounded a function on [a, b]. The
upper Riemann integral is defined by∫ b

a

f = inf{S(f, P ), P is partition of [a, b]}.

The lower Riemann integral is defined by∫ b

a

f = sup{s(f, P ), P is partition of [a, b]}

where P is partition of interval [a, b] Function f is Riemann-integrable if∫ b

a

f =

∫ b

a

f.

Riemann integral of function f is then defined by

(R)

∫ b

a

f =

∫ b

a

f.

Theorem A-3 (Fubini’s theorem). Suppose that M ⊂ Rn+k is measurable set.
Let Mx = {y ∈ Rk, [x, y] ∈M} and My = {x ∈ Rn, [x, y] ∈M}. Let∫

M

|f(x, y)|dxdy <∞.

Then for almost all x ∈ Rn the integral∫
Mx

f(x, y)dy

have sense, for almost all y ∈ Rk integral∫
My

f(x, y)dx

have sense and it holds∫
M

f(x, y)dxdy =

∫
Rn

(∫
Mx

f(x, y)dy

)
dx =

∫
Rk

(∫
My

f(x, y)dx

)
dy.

Corollary A-4. Suppose that∫
A

|g(x)|dx <∞ and

∫
B

|h(y)|dy <∞.

If f(x, y) = g(x)h(y) then it holds∫
A

g(x) dx

∫
B

h(y) dy =

∫
A×B

f(x, y) dxdy.

Theorem A-5. Let G ⊂ Rn be open set. Let ϕ : G → Rn be one-to-one and
continuously differentiable. Let the Jacobian matrix of ϕ Jϕ(x) ̸= 0 for all x ∈ G.
Let f be a function defined on ϕ(G). Then it holds∫

ϕ(G)

f(x)dx =

∫
G

f(ϕ(t))|Jϕ(t)|dt

if any of the integrals above exist.
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Attachments

Following applications are attached in the CD contained in this thesis.

1. int1D - Maple library for testing the error behavior of collocation and
Nyström methods described in chapter 4

2. heatCol - Matlab m-file for computation of the specific Joule losses by
piecewise constant collocation

3. heatNyst - Matlab m-file for computation of the specific Joule losses by
Nyström method with compound mid-cuboid numerical integration rule
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