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Introduction

Stochastic differential equations in separable Hilbert spaces where the dri-

ving process is a fractional Brownian motion, are intensively studied in

recent years. Nowadays, stochastic calculus is developed enough to face

obstacles which are caused by integrators which are not semimartingales.

Linear and semilinear stochastic equations with an additive fractional

Brownian motion with Hurst parameter H > 1/2 were studied in [11], [14].

In [27] linear stochastic evolution equations with a multiplicative fractional

Brownian motion are considered. In [17] it is shown that under usual dis-

sipativity conditions linear and semilinear equations with an additive frac-

tional noise form random dynamical systems. Weak and mild solutions to

semilinear equations with a multiplicative fractional noise are studied in

[12].

It is well known that the one-dimensional stochastic bilinear equation

dXt = A(t)Xt dt+BXt dWt,

X0 = x,

(1)

where A ∈ C([0, T ]), B, x ∈ R and {Wt, t ≥ 0} is a standard Wiener process,

has a unique solution

Xt = exp

{
BWt +

∫ t

0

A(r) dr − 1

2
B2t

}
x, t ∈ [0, T ],

called geometric Brownian motion. An analogous formula can be obtained

when one considers the equation (1) in a separable Hilbert space V . Linear
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operators {A(t), t ∈ [0, T ]} and B in V are typically densely defined and

closed such that B generates a strongly continuous group {SB(u), u ∈ R}

on V , the equation

d

dt
y =

(
A(t)− 1

2
B2
)
y, y(s) = x,

admits the classical solution UW = {UW (t, s)x, 0 ≤ s ≤ t ≤ T} and the

stochastic integral is understood in the Itô sense. The solution to the equa-

tion (1) can be found in the form

Xt = SB(Wt)UW (t, 0)x, t ∈ [0, T ],

(see Chapter 6 in [8]) under the essential assumption that SB and A(t) are

commuting operators. Note that this requirement is already necessary in

finite dimensional state space.

Using these ideas an explicit formula for a solution to more general

equation

dXt = A(t)Xt dt+BXt dBH
t ,

X0 = x ∈ V,
(2)

is given in [10] where the integrator {BH
t , t ≥ 0} is a one-dimensional frac-

tional Brownian motion with Hurst parameter H > 1/2. This process is a

standard Wiener process for H = 1/2. The process defined as

Xt = SB(BH
t )U(t, 0)x, t ∈ [0, T ], (3)

is the solution mentioned above, where U = {U(t, s)x, 0 ≤ s ≤ t ≤ T} is

a strongly continuous evolution system on V associated with operators

{A(t)−Ht2H−1B2, t ∈ [0, T ]} (4)

and the stochastic integral is interpreted in the Skorokhod sense. Notice that

UW is a one-parametric system whenever A is independent of t contrary to

the system U which is always two-parametric.
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The extension of results from [10] to the case H < 1/2 is contained in

paper [24]. Comparing to the regular case H > 1/2 two major obstacles

have to be overcome. First, stochastic integration is much more difficult

for H < 1/2. Secondly, the function t 7→ Ht2H−1 blows up as t → 0+ if

H < 1/2, so that it is not obvious, whether system (4) still generates an

evolution system. Hence, it is not possible to apply the Itô formula to (3)

directly and one has to resort to a suitable approximation procedure.

The results about the existence of a solution for the regular case con-

tained in [10] and analogous results for H < 1/2 (previously published by

the author in [24]) are described in Chapter 2, Theorem 2.4 and Theo-

rem 2.6, respectively.

Chapter 3 is devoted to variants of examples which were originally dis-

cussed in [22], [23], [10], [24] and [25].

The second part of the work deals with a nonlinear equation

dXt = AXt dt+ F (t,Xt) dt+BXt dBH
t , X0 = x ∈ V, (5)

where F : [0, T ] × V → V is a measurable function and H > 1/2. This

problem was suggested by S. Bonaccorsi who studied a similar equation in

the Wiener case (cf. [5]).

First define

UY (t, s)x = SB(BH
t −BH

s )U(t− s, 0)x, 0 ≤ s ≤ t ≤ T.

It is shown in Chapter 4 (Theorem 4.2) that {UY (t, s)x, s ≤ t ≤ T} is

a solution to the equation

dYt = AYt dt+BYt dBH
t , t > s, Ys = x,

starting from any time s ∈ [0, T ].

Chapter 5 is devoted to the case when the drift part need not be linear.

It may be shown that the equation

y(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F
(
r, y(r)

)
dr, t ∈ [0, T ],
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has a solution {Xt, t ∈ [0, T ]} (Theorem 5.1) and try to find out whether

this solution satisfies equation (5). This procedure gives a positive answer

in the Wiener case as it was shown by S. Bonaccorsi [5]. But in a fractional

case, apparently, this is possible only for F independent of a space variable

(Theorem 5.4). Nevertheless, one can show that the ”correct” equation

which {Xt, t ∈ [0, T ]} solves, is

Xt = x+

∫ t

0

AXr dr +

∫ t

0

F (r,Xr) dr +

∫ t

0

BXr dBH
r

+

∫ t

0

αH

∫ T

0

∫ t

r

|v − w|2H−2BUY (v, r)F ′x(r,Xr)D
H
wXr dw dv dr

(Theorem 5.8).
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Chapter 1

Preliminaries

Let (Ω,F ,P ) be a complete probability space. A stochastic process BH =

{BH
t , t ∈ [0, T ]} is said to be a fractional Brownian motion with Hurst

parameter H ∈ (0, 1) if it is a real-valued centered Gaussian process with

the covariance function given by

E [BH
t B

H
s ] =

1

2

(
s2H + t2H − |s− t|2H

)
, s, t ≥ 0.

Note that

E
[
(BH

t −BH
s )2
]

= |t− s|2H , t, s ≥ 0,

thus by the Kolmogorov continuity criterion there exists a version of BH

with Hölder continuous trajectories of order δ, δ < H.

Define

KH(t, s) =
CH

H − 1
2

[(
t

s

)H− 1
2

(t− s)H−
1
2

−
(
H − 1

2

)
s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2 du

]
I{s<t},

where

CH =


√

H(2H−1)

B(2−2H,H− 1
2)

, H > 1
2
,(

H − 1
2

)√
2H

(1−2H)B(1−2H,H+ 1
2)

, H < 1
2
,
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and B(a, b) =
∫ 1

0
ua−1(1 − u)b−1 du, a > 0, b > 0, denotes Beta function.

The process BH has an integral representation (see e.g. [9])

BH
t =

∫ t

0

KH(t, s) dWs, t ≥ 0, (1.1)

where W = {Wt, t ≥ 0} is a Wiener process on (Ω,F ,P ).

Denote by E the set of real-valued step functions on the interval [0, T ],

i.e. each ϕ ∈ E has a form

ϕ =
N−1∑
k=0

ak I(tk,tk+1], (1.2)

for some N ∈ N, 0 = t0 < t1 < . . . < tN = T , ak ∈ R, k = 0, . . . , N . The

integral of a function ϕ ∈ E of the form (1.2) with respect to a fractional

Brownian motion is defined as

I(ϕ) ≡
∫ T

0

ϕ(s) dBH
s :=

N−1∑
k=0

ak
(
BH(tk+1)−BH(tk)

)
.

Define a linear operator K∗H : E → L2
(
[0, T ]

)
by(

K∗Hϕ
)
(t) := KH(T, t)ϕ(T )−

∫ T

t

(
ϕ(s)−ϕ(t)

)∂KH

∂s
(s, t) ds, ϕ ∈ E , t ∈ [0, T ].

It follows (see [1])

E
〈∫ T

0

ϕ(s) dBH
s ,

∫ T

0

ψ(s) dBH
s

〉
R

=
〈
K∗H(ϕ),K∗H(ψ)

〉
L2([0,T ])

=: 〈ϕ, ψ〉H

for all ϕ, ψ ∈ E .

Let (H, 〈 . , . 〉H) be the Hilbert space defined as the completion of E with

respect to the scalar product 〈 . , . 〉H. Denote ‖ . ‖H the norm in H as-

sociated with 〈 . , . 〉H. The operator K∗H provides an isometry between

spaces (H, ‖ . ‖H) and L2
(
Ω
)
. Since E is dense in H the operator I can be

uniquely extended on the whole H (the standard notation I(ϕ) = BH(ϕ) =∫ T
0
ϕ(r) dBH

r is also used).

The process W = {Wt, 0 ≤ t ≤ T} defined by

Wt =

∫ T

0

(
K∗H
)−1

(I(0,t])(s) dBH
s , t ∈ [0, T ],

is a Wiener proces and with this choice of W , the representation (1.1) holds

(cf. [19]).
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1.1 Skorokhod integral for H > 1/2

In this section the Skorokhod-type integral with respect to the fractional

Brownian motion with Hurst parameter H > 1/2 is constructed.

Let S be a set of smooth cylindrical random variables of the form

F = f
(
BH(ϕ1), . . . , BH(ϕn)

)
, (1.3)

where n ≥ 1, f ∈ C∞b (Rn) (f and all its partial derivatives are bounded) and

ϕi ∈ H, i = 1, . . . , n. The derivative operator (Malliavin derivative)

of a smooth cylindrical random variable F of the form (1.3) is an H-valued

random variable

DHF =
n∑
i=1

∂f

∂xi
(BH(ϕ1), . . . , BH(ϕn))ϕi.

The derivative operator DH is closable from Lp(Ω) into Lp(Ω;H) for any

p ∈ [1,+∞). Let D1,p
H be the Sobolev space obtained as a closure of S with

respect to the norm

‖F‖1,p :=
(
E
[
|F |p

]
+ E

[
‖DHF‖pH

])1/p

for any p ∈ [1,+∞). Similarly, given a Hilbert space Ṽ ⊂ H denote by

D1,p
H (Ṽ ) the corresponding Sobolev space of Ṽ -valued random variables.

Definition 1.1 The divergence operator (Skorokhod integral) δH :

Dom δH → L2(Ω) is defined as the adjoint operator of the derivative ope-

rator DH : L2(Ω) → L2(Ω;H), i.e. for any u ∈ Dom δH the duality

relationship

E
[
FδH(u)

]
= E

[
〈DHF, u〉H

]
holds for any F ∈ D1,2

H .

A random variable u ∈ L2(Ω;H) belongs to the domain Dom δH if there

exists a constant cu < +∞ depending only on u such that∣∣E [〈DHF, u〉H
]∣∣ ≤ cu‖F‖L2(Ω)

for any F ∈ S.
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The useful facts listed below can be found e.g. in [19]. Let |H| ⊂ H be

a linear space of measurable functions ϕ on [0, T ] such that

‖ϕ‖2
|H| = αH

∫ T

0

∫ T

0

|ϕ(r)||ϕ(s)||r − s|2H−2 dr ds < +∞,

where αH = H(2H−1). Then E is dense in |H| and (|H|, ‖ . ‖|H|) is a Banach

space. Moreover,

L2([0, T ]) ⊂ L1/H([0, T ]) ⊂ |H| ⊂ H,

thus there exists a constant Ke < +∞ such that

‖K∗H(ϕ)‖L2([0,T ]) = ‖ϕ‖H ≤ Ke‖ϕ‖L2([0,T ]) (1.4)

for any ϕ ∈ H. Note that

D1,2
H (|H|) ⊂ D1,2

H (H) ⊂ Dom δH (1.5)

and for some constant C̃H,2 < +∞

E
[
δ2
H(u)

]
≤ C̃H,2

(
E
[
‖u‖2

|H|
]

+ E
[
‖DHu‖2

|H|⊗|H|
])
, u ∈ D1,2

H (|H|),

where D1,p
H (|H|)

(
p ∈ (1,+∞)

)
contains processes u ∈ D1,p

H (H) such that

u ∈ |H|, DHu ∈ |H| ⊗ |H| P - a.s. and

E
[
‖u‖p|H|

]
+ E

[
‖DHu‖p|H|⊗|H|

]
< +∞.

The normed linear space
(
|H|⊗|H|, ‖ . ‖|H|⊗|H|

)
is defined in a similar way as

(|H|, ‖ . ‖|H|) (for a precise definition see e.g. [19]). Hence, for some constant

CH,2 < +∞

E
[
δ2
H(u)

]
≤ CH,2

(
E
[
‖u‖2

L1/H([0,T ])

]
+ E

[
‖DHu‖2

L1/H([0,T ]2)

])
, u ∈ D1,2

H (|H|).

(1.6)

Recall that there is a one to one correspondence between fractional Brow-

nian motion BH and Wiener process W via operator K∗H . Similar relation

is valid for derivative and divergence operators, i.e.
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(i) for any F ∈ D1,2
W

K∗H(DHF ) = DWF,

where DW denotes the derivative operator with respect to W and D1,2
W

the corresponding Sobolev space,

(ii) Dom δW = K∗H(Dom δH) and

δH(u) = δW (K∗Hu) (1.7)

for any u ∈ Dom δH , where δW denotes the divergence operator with

respect to W .

1.2 Skorokhod integral for H < 1/2

In the case H < 1/2 the operator δH may be constructed in the same way

as in the case H > 1/2. However, as it is shown in [6], the space H is too

small to include trajectories of the process {BH
t , t ∈ [0, T ]} for H ≤ 1/4.

Hence, it is necessary to extend domain Dom δH and divergence operator δH

to processes whose trajectories need not to be in H. The results originaly

coming from [6] are described.

Denote by K∗,aH the adjoint operator of the operator K∗H in L2([0, T ])

which has a form(
K∗,aH f

)
(s) =

CH
H − 1

2

Γ
(
H +

1

2

)
s

1
2
−HD

1
2
−H

0+

(
(K∗Hf) 1

2
−H
)
(s),

where g 1
2
−H(r) = r

1
2
−Hg(r) and

D
1
2
−H

0+ g(x) =
1

Γ
(
H + 1

2

) ( g(x)

x
1
2
−H

+
(1

2
−H

)∫ x

0

g(x)− g(y)

(x− y)−
1
2
−H

dy

)
.

Define the space

K =
(
(K∗H)−1(K∗,aH )−1

)
(L2([0, T ]))

(compare with H = (K∗H)−1(L2([0, T ]))). Let SK be a set of smooth cylin-

drical random variables of the form (1.3) where ϕi ∈ K, i = 1, . . . , n.
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Definition 1.2 A random variable u ∈ L2
(
Ω;L2([0, T ])

)
belongs to the ex-

tended domain of divergence operator Dom∗δH if there exists a random

variable δH(u) ∈ L2(Ω) such that∫ T

0

E
[
u(t)

(
K∗,aH K

∗
H

)
(DHF )(t)

]
dt = E

[
δH(u)F

]
for any F ∈ SK.

Note that δH : Dom∗δH → ∪p>1L
p(Ω) is unique determined and linear.

Moreover,

(i) Dom δH ⊂ Dom∗δH and extended divergence operator δH restricted

to Dom δH coincides with the divergence operator,

(ii) Dom δH = Dom∗δH ∩
(
∪p>1 L

p(Ω;H)
)
,

(iii) extended divergence operator δH is closed in the following sense. Let

p ∈ (1,+∞], q ∈
(
2/(1 + 2H),+∞

]
and {uk, k ∈ N} be a sequence in

Dom∗δH ∩ Lp
(
Ω;Lq([0, T ])

)
, u ∈ Lp

(
Ω;Lq([0, T ])

)
, such that

lim
k→+∞

uk = u in Lp
(
Ω;Lq([0, T ])

)
.

If there exists p̂ ∈ (1,+∞] and X ∈ Lp̂(Ω) such that

lim
k→+∞

δH(uk) = X in Lp̂(Ω)

then u ∈ Dom∗δH and δH(u) = X.

In what follows the notation

δH(u) =

∫ T

0

u(s) dBH
s

is used more often. The indefinite Skorokhod integral is defined as∫ t

0

u(s) dBH
s =

∫ T

0

u(s)I(0,t](s) dBH
s = δH(uI(0,t]).

Notice that the same construction of the integral remains valid for the

integrands with values in a separable Hilbert space V .
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Chapter 2

Stochastic bilinear equation

The aim of this chaper is to show that the stochastic differential equation

dXt = A(t)Xt dt+BXt dBH
t ,

X0 = x0,

(2.1)

in a separable Hilbert space V on the fixed finite interval [0, T ] has a solution

in a sense which will be specified later.

The driving process {BH
t , t ≥ 0} is a one-dimensional fractional Brownian

motion with Hurst parameter H ∈ (0, 1) on a complete probability space

(Ω,F ,P), {A(t), t ∈ [0, T ]} is the system of linear operators on V satisfying

(A1) for all t ∈ [0, T ] the operators A(t) are closed and densely defined with

the domain D := Dom(A(t)) independent of t,

(A2) the resolvent set contains all λ ∈ C such that Re(λ) ≥ ω for some fixed

ω ∈ R and for some constant M > 0 independent of t the resolvent

R(λ,A(t)) satisfies

‖R(λ,A(t))‖L(V ) ≤
M

|λ− ω|+ 1

for all λ ∈ C, Re(λ) ≥ ω, t ∈ [0, T ],

(A3) there exist constants L > 0 and 0 < γ ≤ 1 such that

‖A(t)− A(s)‖L(D;V ) ≤ L|t− s|γ, s, t ∈ [0, T ],
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where the space D is equipped with the graph norm generated by the

operator A(0)− ωI, i.e. ‖x‖V + ‖(A(0)− ωI)x‖V .

The linear operator B on V is

(B2) closed and densely defined and generates a strongly continuous group

{SB(u), u ∈ R} on V ,

and x0 ∈ V is a deterministic initial value.

The stochastic integral is understood in the Skorokhod sense (see [6] or

Section 1.2).

The conditions (A1), (A2), (A3) imply that the system of operators

{A(t), t∈ [0, T ]} generates a strongly continuous evolution system {UA(t, s),

0 ≤ s ≤ t ≤ T} satisfying (see e.g. [26], Theorem 5.2.1.)

Im(UA(t, s)) ⊂ D, (2.2)

‖UA(t, s)‖L(V ) ≤ C, (2.3)∥∥∥ ∂
∂t
UA(t, s)

∥∥∥
L(V )

= ‖A(t)UA(t, s)‖L(V ) ≤
C

t− s
, (2.4)

‖A(t)UA(t, s)(A(s)− ωI)−1‖L(V ) ≤ C (2.5)

for some constant C > 0 and any 0 ≤ s < t ≤ T .

The condition (B2) ensures the existence of constants MB ≥ 1, ωB ≥ 0 such

that the inequality

‖SB(u)‖L(V ) ≤MB exp{ωB|u|} (2.6)

holds for each u ∈ R.

The description of results contained in [10] (H > 1/2) and author’s pa-

per [24] (H < 1/2) is given now. It is shown that the process {Xt, t ∈ [0, T ]}

defined as

Xt = SB(BH
t )U(t, 0)x0, 0 ≤ t ≤ T,

is a solution to the equation (2.1), where {U(t, 0), 0 ≤ t ≤ T} is a system of

linear bounded operators on V associated with operators {A(t), t ∈ [0, T ]}

and B.
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2.1 Deterministic system

In this section the construction of the system of operators {U(t, 0), 0 ≤ t ≤

T} is outlined, that are contained in a formula for a solution.

In the case H > 1/2 define the operators Ā(t) : D → V as

Ā(t) = A(t)−Ht2H−1B2

for any t ∈ [0, T ]. It is possible to show that the system {Ā(t), t ∈ [0, T ]}

satisfies (under some assumptions) (A1), (A2) and (A3). Therefore it gene-

rates a strongly continuous evolution system {U(t, s), 0 ≤ s ≤ t ≤ T} on V

(e.g. [26]).

If one wants to follow the idea in the case H < 1/2 it is necessary

to approximate the operators {Ā(t), 0 < t ≤ T}, because the function

t 7→ Ht2H−1 blows up as t→ 0+ for H < 1/2. Let us define for any n ∈ N

the system of operators An(t) : D → V

An(t) = A(t)−Hun(t)B2, t ∈ [0, T ],

where {un, n ∈ N} is a sequence approximating the function

u(t) = t2H−1, t > 0,

defined as

un(t) =


t2H−1 , t > 1

n
,(

1
n

)2H−1
, 0 ≤ t ≤ 1

n
.

This sequence {un, n ∈ N} has the following properties

(U1) un is Lipschitz continuous on the interval [0, T ] for all n ∈ N,

(U2) un converges to u in the space L1([0, T ]),

(U3) 0 ≤ un(t) ≤ u(t) for any t > 0 and n ∈ N.
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Proposition 2.1 Assume that the conditions (A1), (A2), (A3) are satisfied

for the system {A(t), t ∈ [0, T ]}. Let B : Dom(B)→ V be a linear densely

defined operator such that B2 is closed and

Dom(B2) ⊃ Dom
(
(−A(0))α

)
(2.7)

for some α ∈ (0, 1). Then the conditions (A1), (A2), (A3) are satisfied

for the system

H > 1/2. {Ā(t), t ∈ [0, T ]} which generates a strongly continous evolution sys-

tem {U(t, s), 0 ≤ s ≤ t ≤ T} on V ,

H < 1/2. {An(t), t ∈ [0, T ]} (for any fixed n ∈ N) which generates a strongly

continuous evolution system {Un(t, s), 0 ≤ s ≤ t ≤ T} on V .

Proof See [10] for the case H > 1/2. The proof in the case H < 1/2 published

by the author in [24] is given.

The assumption (A3) is equivalent to

∥∥(A(t)− A(s)
)
A−1(0)

∥∥
L(V )
≤ L|t− s|γ (2.8)

which implies that there exists a constant C0 > 0 independent of t such

that

‖A(0)x‖V ≤ C0‖A(t)x‖V (2.9)

for all t ∈ [0, T ] and x ∈ D.

Indeed, (2.8) is equivalent to

∥∥A(0)
(
A−1(t)− A−1(s)

)∥∥
L(V )
≤ L̃|t− s|γ

for some constants L̃ > 0 and 0 < γ ≤ 1 (see [7], p. 32). Hence for s = 0

‖A(0)A−1(t)− I‖L(V ) ≤ L̃T γ, 0 ≤ t ≤ T,

holds, so that

‖A(0)A−1(t)‖L(V ) ≤ 1 + L̃T γ, 0 ≤ t ≤ T,

17



which is equivalent to (2.9).

Now applying (2.9) and (A2) it follows

‖A(0)R(λ,A(t))x‖V ≤ C0‖A(t)R(λ,A(t))x‖V ≤ C0

(
M(1 + ω) + 1

)
‖x‖V
(2.10)

for any x ∈ V and λ ∈ C, Re(λ) ≥ ω. By the Corollary 2.6.11 from [20]

there exists a constant CA(0) > 0 depending on A(0) such that for any

ρ > 0 and x ∈ V

‖B2R(λ,A(t))x‖V ≤ CA(0)

[
ρα‖R(λ,A(t))x‖V + ρα−1‖A(0)R(λ,A(t))‖V

]
.

Using (A2) and (2.10)

‖B2R(λ,A(t))x‖V ≤ CA(0)

[
ρα

M

1 + |λ− ω|
‖x‖V

+ ρα−1C0

(
M(1 + ω) + 1

)
‖x‖V

]
.

Thus

‖Hun(t)B2R(λ,A(t))‖L(V ) ≤ H‖un‖C([0,T ])CA(0)

[
ρα

M

1 + |λ− ω|

+ ρα−1C0

(
M(1 + ω) + 1

)]
.

For ρ > 0 enough large

H‖un‖C([0,T ])CA(0)ρ
α−1C0

(
M(1 + ω) + 1

)
<

1

2
,

hence

‖Hun(t)B2R(λ,A(t))‖L(V ) ≤ H‖un‖C([0,T ])CA(0)ρ
α M

1 + |λ− ω|
+

1

2
.

Choosing some ω1 ≥ ω such that for all λ ∈ C, Re(λ) ≥ ω1 and

2H‖un‖C([0,T ])CA(0)ρ
αM − 1 + ω < Re(λ)

the inequality

‖Hun(t)B2R(λ,A(t))‖L(V ) ≤ K < 1

18



holds for all t ∈ [0, T ], where K > 0 is a constant strictly smaller than 1.

Therefore

‖R(λ,An(t))‖L(V ) = ‖(λI − A(t) +Hun(t)B2)−1‖L(V )

=
∥∥[I(λI − A(t)) +Hun(t)B2R(λ,A(t))(λI − A(t))

]−1∥∥
L(V )

=
∥∥∥{[I +Hun(t)B2R(λ,A(t))

]
(λI − A(t))

}−1∥∥∥
L(V )

=
∥∥∥R(λ,A(t))

[
I −

(
−Hun(t)B2R(λ,A(t))

)]−1∥∥∥
L(V )

≤ M

1 + |λ− ω|
× 1

1−K
× 1 + |λ− ω1|

1 + |λ− ω1|

≤ M

1−K
× 1

1 + |λ− ω1|

×
(

1

1 + |λ− ω|
+
|λ− ω|

1 + |λ− ω|
+
|ω − ω1|

1 + |λ− ω|

)
≤ M(2 + |ω1 − ω|)

1−K
× 1

1 + |λ− ω1|

which is (A2) for the system of operators {An(t), t ∈ [0, T ]}.

From (A3) and (U1)

‖A(t)− A(s)‖L(D;V ) ≤ L|t− s|γ,

|un(t)− un(s)| ≤ Lu|t− s|γ

is obtained for some constants L,Lu > 0. Note that the norm ‖x‖V +

‖(An(t)− ω1I)x‖V is dominated by the norm ‖x‖D, so that

‖An(t)− An(s)‖L(D;V ) ≤ ‖A(t)− A(s)‖L(D;V )

+H|un(t)− un(s)|‖B2‖L(D;V )

≤ L|t− s|γ +HLu|t− s|γ‖B2‖L(D;V ) ≤ LAn|t− s|γ

holds for some constant 0 < LAn< +∞ because the operatorsB2A−1(0) ∈

L(V ) by the closed graph theorem. Hence (A3) is satisfied for the system

of operators {An(t), t ∈ [0, T ]}.

Q.E.D.
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Remark In the case H > 1/2 one can directly assume that {Ā(t), t ∈ [0, T ]}

generates a strongly continuous evolution system {U(t, s), 0 ≤ s ≤ t ≤ T}

on V .

Since {Un(t, s), 0 ≤ s ≤ t ≤ T} is a strongly continuous evolution system

for any n ∈ N it satisfies the equations

∂

∂t
Un(t, s)x =

(
A(t)−Hun(t)B2

)
Un(t, s)x, Un(s, s)x = x,

and

Un(t, s)x = UA(t, s)x−
∫ t

s

Hun(r)UA(t, r)B2Un(r, s)x dr

for any x ∈ V and 0 ≤ s ≤ t ≤ T .

Corollary 2.2 Consider the case H < 1/2. Suppose that the assumptions of

Proposition 2.1 are satisfied and for some constants CA > 0, 0 < β < 2H,

‖UA(t, s)B2‖L(V ) ≤
CA

(t− s)β
, 0 ≤ s < t ≤ T. (2.11)

Then for any x ∈ V there exists a constant KU > 0 depending only on

H,A,B and T such that

sup
{
‖Un(t, 0)x‖V ; n ∈ N, 0 ≤ t ≤ T

}
≤ KU‖x‖V . (2.12)

Moreover, the convergence

‖Un( . , 0)x− U( . , 0)x‖C([0,T ];V )−−−−−−−−→n→+∞ 0 (2.13)

holds for any x ∈ V where {U(t, 0)x, 0 ≤ t ≤ T} is a unique continuous

solution to the equation

y(t) = UA(t, 0)x−
∫ t

0

Hr2H−1UA(t, r)B2y(r) dr (2.14)

on the interval [0, T ].

The set C([0, T ];V ) denotes the space of all continous functions from

[0, T ] to V .
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Proof The assertion is published in [24] (Proposition 2.2 and 2.3). Fix x ∈ V .

For any n ∈ N and t ∈ [0, T ] using (2.3), (U3) and (2.11)

‖Un(t, 0)x‖V ≤ ‖UA(t, 0)x‖V +
∥∥∥∫ t

0

Hun(r)UA(t, r)B2Un(r, 0)x dr
∥∥∥
V

≤ C‖x‖V +HCA

∫ t

0

r2H−1

(t− r)β
‖Un(r, 0)x‖V dr

holds. The generalized Gronwall inequality (see [15], Lemma 7.1.2) yields

‖Un(t, 0)x‖V ≤ KU‖x‖V

for some finite constant KU > 0 independent of n, t and (2.12) follows.

The solution {U(t, 0)x, 0 ≤ t ≤ T} to the equation (2.14) can be obtained

by the Banach fixed-point theorem. Define

(
Φ(y)

)
(t) = UA(t, 0)x−

∫ t

0

Hr2H−1UA(t, r)B2y(r) dr

and show that Φ : C([0, T ];V )→ C([0, T ];V ) is a continuous and contrac-

tion mapping. Take y ∈ C([0, T ];V ) and t1, t2 ∈ [0, T ], t1 < t2. Then

∥∥(Φ(y)
)
(t2)−

(
Φ(y)

)
(t1)
∥∥
V
≤ ‖UA(t2, 0)x− UA(t1, 0)x‖V

+
∥∥∥∫ t2

0

Hr2H−1UA(t2, r)B
2y(r) dr−

∫ t1

0

Hr2H−1UA(t1, r)B
2y(r) dr

∥∥∥
V

≤ ‖UA(t2, 0)x− UA(t1, 0)x‖V

+
∥∥∥∫ t1

0

Hr2H−1
(
UA(t2, r)− UA(t1, r)

)
B2y(r) dr

∥∥∥
V

+
∥∥∥∫ t2

t1

Hr2H−1UA(t2, r)B
2y(r) dr

∥∥∥
V

= T1 + T2 + T3.

Since for any fixed s ∈ [0, T ] the function t 7→ UA(t, s)x is continuous on

the interval [s, T ] for any x ∈ V

T1 = ‖UA(t2, 0)x− UA(t1, 0)x‖V −→ 0

holds as t2 → t1+ or t1 → t2− and for any fixed 0 < r < t1∥∥Hr2H−1
(
UA(t2, r)− UA(t1, r)

)
B2y(r)

∥∥
V
−→ 0
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as t2 → t1+ or t1 → t2−. By (2.11)∥∥∥∫ t1

0

Hr2H−1
(
UA(t2, r)− UA(t1, r)

)
B2y(r) dr

∥∥∥
V

≤ H‖y‖C([0,T ];V )

∫ t1

0

r2H−1
[
‖UA(t2, r)B

2‖L(V ) + ‖UA(t1, r)B
2‖L(V )

]
dr

≤ H‖y‖C([0,T ];V )CA

∫ t1

0

[
r2H−1

(t2 − r)β
+

r2H−1

(t1 − r)β

]
dr

≤ 2H‖y‖C([0,T ];V )CA

∫ t1

0

r2H−1

(t1 − r)β
dr

= 2H‖y‖C([0,T ];V )CAt
2H−β
1

∫ 1

0

r2H−1(1− r)−β dr

≤ 2H‖y‖C([0,T ];V )CAT
2H−βB(2H, 1− β) < +∞,

hence

T2 =
∥∥∥∫ t1

0

Hr2H−1
(
UA(t2, r)− UA(t1, r)

)
B2y(r) dr

∥∥∥
V
−→ 0

as t2 → t1+ or t1 → t2− by the Lebesgue dominated convergence theorem.

By (2.11) it follows

T3 =
∥∥∥∫ t2

t1

Hr2H−1UA(t2, r)B
2y(r) dr

∥∥∥
V

≤ H‖y‖C([0,T ];V )CA

∫ t2

t1

r2H−1

(t2 − r)β
dr

= H‖y‖C([0,T ];V )CAt
2H−β
2

∫ 1

t1
t2

r2H−1(1− r)−β dr −→ 0

as t2 → t1+ or t1 → t2−. Therefore∥∥(Φ(y)
)
(t2)−

(
Φ(y)

)
(t1)
∥∥
V
−→ 0

as t2 → t1+ or t1 → t2− and the function t 7→
(
Φ(y)

)
(t) is continuous on

[0, T ] for any y ∈ C([0, T ];V ).

For any y1, y2 ∈ C([0, T ];V ), t ∈ [0, T ] and T > 0 small enough there

exists a constant 0 < LT < 1 depending only on A,B, T,H such that∥∥(Φ(y2)
)
(t)−

(
Φ(y1)

)
(t)
∥∥
V

=
∥∥∥∫ t

0

Hr2H−1UA(t, r)B2
(
y2(r)− y1(r)

)
dr
∥∥∥
V

≤ H‖y1 − y2‖C([0,T ];V )CA

∫ t

0

r2H−1

(t− r)β
dr

≤ H‖y1 − y2‖C([0,T ];V )CAT
2H−βB(2H, 1− β) ≤ LT‖y1 − y2‖C([0,T ];V )
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holds and Φ is a contraction. Hence, by the Banach fixed-point theorem

there exists a unique solution to the equation (2.14) for T enough small.

Applying standard methods a unique continuous solution {U(t, 0)x, t ∈

[0, T ]} to (2.14) for any T > 0 can be obtained.

The convergence (2.13) can be proved in a similar way as (2.12). Using

(2.12) and (2.11)

‖Un(t, 0)x− U(t, 0)x‖V

=
∥∥∥∫ t

0

Hun(r)UA(t, r)B2Un(r, 0)x dr

−
∫ t

0

Hr2H−1UA(t, r)B2U(r, 0)x dr
∥∥∥
V

≤
∥∥∥∫ t

0

H
(
un(r)− r2H−1

)
UA(t, r)B2Un(r, 0)x dr

∥∥∥
V

+
∥∥∥∫ t

0

Hr2H−1UA(t, r)B2
(
Un(r, 0)x− U(r, 0)x

)
dr
∥∥∥
V

≤ HCAKU‖x‖V
∫ t

0

r2H−1 − un(r)

(t− r)β
dr

+HCA

∫ t

0

r2H−1

(t− r)β
‖Un(r, 0)x− U(r, 0)x‖V dr

follows for any x ∈ V and t ∈ [0, T ]. By the definition of {un, n ∈ N} the

inequality ∫ t

0

r2H−1 − un(r)

(t− r)β
dr ≤

(
1

n

)2H−β

B(2H, 1− β)

is obtained and hence

‖Un(t, 0)x− U(t, 0)x‖V

≤ HCAKU‖x‖V
(

1

n

)2H−β

B(2H, 1− β)

+HCA

∫ t

0

r2H−1

(t− r)β
‖Un(r, 0)x− U(r, 0)x‖V dr.

Using again the generalized Gronwall inequality ([15], Lemma 7.1.2)

‖Un(t, 0)x− U(t, 0)x‖V ≤ HCAKU‖x‖V B(2H, 1− β)

(
1

n

)2H−β

KT ,
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where 0 < KT < +∞ is a constant independent of n, t, therefore

‖Un( . , 0)x− U( . , 0)x‖C([0,T ];V )−−−−−−−−→n→+∞ 0.

Q.E.D.

2.2 The concept of solution

In this section the concept of a solution to infinite-dimensional equations

with unbounded operators is introduced. As it is usual in an infinite dimen-

sion three notions of the solution are given.

Let A∗(t) be the adjoint operator to the operator A(t) for each t ∈

[0, T ]. Assume that the domain Dom(A∗(t)) = D∗ of the operator A∗(t) is

independent of t. Moreover, suppose that

(B1) D∗ ⊂ Dom((B∗)2).

Definition 2.3 A
(
B([0, T ])⊗F

)
-measurable stochastic process {Xt, t∈ [0, T ]}

is said to be

(I) a strong solution to the equation (2.1) if Xt ∈ D P - a.s. for all

t ∈ [0, T ] and

Xt = x0 +

∫ t

0

A(r)Xr dr +

∫ t

0

BXr dBH
r P - a.s.

for all t ∈ [0, T ],

(II) a weak solution to the equation (2.1) if for any y ∈ D∗

〈Xt, y〉V = 〈x0, y〉V +

∫ t

0

〈Xr, A
∗(r)y〉V dr +

∫ t

0

〈Xr, B
∗y〉V dBH

r

P - a.s. for all t ∈ [0, T ],

(III) a mild solution to the equation (2.1) if

Xt = UA(t, 0)x0 +

∫ t

0

UA(t, r)BXr dBH
r P - a.s.

for all t ∈ [0, T ],
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where the integrals in (I), (II) and (III) have to be well-defined.

While in a one-dimensional case the notion of strong and weak solution

coincides it may not be true in an infinite-dimensional case.

2.3 Existence of solution

In this section the main results of the work about the existence of a solution

to the equation (2.1) are contained.

The following commutativity condition (AB) is essential for the results given

below.

(AB) The operators A(t) and {SB(u), u ∈ R} commute on the domain D

for all t ∈ [0, T ].

2.3.1 Case H > 1/2

Theorem 2.4 Assume that {A(t), t ∈ [0, T ]} and B are linear operators on

V satisfying (A1), (A2), (A3) and (B1), (B2). Moreover, assume (2.7)

and (AB). If

(i) x0 ∈ D then {Xt, t ∈ [0, T ]} given by

Xt = SB(BH
t )U(t, 0)x0, 0 ≤ t ≤ T, (2.15)

is a strong solution to the equation

dXt = A(t)Xt dt+BXt dBH
t ,

X0 = x0,

(2.16)

(ii) x0 ∈ V and for some constant C∗0 > 0 independent of t

‖A∗(t)x‖V ≤ C∗0‖A∗(0)x‖V , t ∈ [0, T ], (2.17)

holds for each x ∈ D∗ then the process {Xt, t ∈ [0, T ]} is a weak

solution to the equation (2.16).
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(iii) x0 ∈ V and B ∈ L(V ) then {Xt, t ∈ [0, T ]} is a mild solution

to (2.16).

Proof See [10] or slight modification of the proof in the case H < 1/2.

Q.E.D.

2.3.2 Case H < 1/2

This case is more complicated because it is necessary to aproximate the

candidate for the solution {Xt, t ∈ [0, T ]}. It turns out that the appropriate

approximating processes {Xn
t , t ∈ [0, T ]}, n ∈ N, are defined as

Xn
t = SB(BH

t )Un(t, 0)x0, t ∈ [0, T ].

Proposition 2.5 Assume that {A(t), t ∈ [0, T ]} and B are linear operators

on V satisfying (A1), (A2), (A3) and (B1), (B2). Moreover, assume (2.7),

(2.11) and (AB). If

(i) x0 ∈ D then the process {Xn
t , t ∈ [0, T ]} is a strong solution to the

equation

dXn
t =

(
A(t) +H

(
t2H−1 − un(t)

)
B2
)
Xn
t dt+BXn

t dBH
t ,

Xn
0 = x0,

(2.18)

(ii) x0 ∈ V and (2.17) then the process {Xt, t ∈ [0, T ]} is a weak solu-

tion to the equation (2.18).

Proof The proof published by the author in [24] is given for the convenience of

the reader. Fix y ∈ Dom((B∗)2). The idea is to apply the one-dimensional

Itô formula for a fractional Brownian motion (see [6], Corollary 4.8) to

the function

f(t, x) :=
〈
SB(x)Un(t, 0)x0, y

〉
V

=
〈
Un(t, 0)x0, S

∗
B(x)y

〉
V
, t ≥ 0, x ∈ R.
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Clearly, f ∈ C1,2([0, T ]× R),

∂

∂t
f(t, x) =

〈
(A(t)−Hun(t)B2)Un(t, 0)x0, S

∗
B(x)y

〉
V
,

∂

∂x
f(t, x) =

〈
Un(t, 0)x0, S

∗
B(x)B∗y

〉
V
,

∂2

∂x2
f(t, x) =

〈
Un(t, 0)x0, S

∗
B(x)(B∗)2y

〉
V
.

For applicability of the Itô formula it is necessary to check that for some

constants 0 < Cf , 0 < λ < 1/4T 2H

max

{∣∣∣ ∂
∂t
f(t, x)

∣∣∣, ∣∣∣ ∂2

∂x2
f(t, x)

∣∣∣} ≤ Cfe
λx2 , t ∈ [0, T ], x ∈ R.

Note that for any fixed b ∈ R there exists a constant Cb ≥ 0 such that

exp{bx} ≤ exp{Cb + λx2}, x ∈ R.

By (2.5) for {An(t), t ∈ [0, T ]} and (2.6)∣∣∣ ∂
∂t
f(t, x)

∣∣∣ =
∣∣∣〈(A(t)−Hun(t)B2)Un(t, 0)x0, S

∗
B(x)y

〉
V

∣∣∣
≤
∣∣∣〈(A(t)−Hun(t)B2)Un(t, 0)(A(0)−Hun(0)B2)−1(A(0)

−Hun(0)B2)x0, S
∗
B(x)y

〉
V

∣∣∣
≤ C‖(A(0)−Hun(0)B2)x0‖VMB exp{ωB|x|}‖y‖V ≤ Cfe

λx2

and by (2.12) and (2.6)∣∣∣ ∂2

∂x2
f(t, x)

∣∣∣ =
〈
Un(t, 0)x0, S

∗
B(x)(B∗)2y

〉
V

≤ ‖Un(t, 0)x0‖V ‖S∗B(x)(B∗)2y‖V

≤ KU‖x0‖VMB exp{ωB|x|}‖(B∗)2y‖V ≤ Cfe
λx2 .

Now, Corollary 4.8 from [6] has a form

f(t, BH
t ) = f(0, BH

0 ) +

∫ t

0

∂

∂r
f(r, BH

r ) dr +

∫ t

0

∂

∂x
f(r, BH

r ) dBH
r

+

∫ t

0

Hr2H−1 ∂
2

∂x2
f(r, BH

r ) dr
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P - a.s. for all t ∈ [0, T ], so that

〈Xn
t , y〉V = 〈x0, y〉V +

∫ t

0

〈
(A(r)−Hun(r)B2)Un(r, 0)x0, S

∗
B(BH

r )y〉V dr

+

∫ t

0

〈
BSB(BH

r )Un(r, 0)x0, y
〉
V

dBH
r

+

∫ t

0

〈
Hr2H−1B2SB(BH

r )Un(r, 0)x0, y
〉
V

dr P - a.s.

for all t ∈ [0, T ]. Using the commutativity assumption (AB)

〈Xn
t , y〉V = 〈x0, y〉V +

∫ t

0

〈A(r)Xn
r , y〉V dr +

∫ t

0

〈BXn
r , y〉V dBH

r

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
B2Xn

r , y
〉
V

dr P - a.s.

holds for all t ∈ [0, T ] and y ∈ Dom((B∗)2). Taking a countable subset

of Dom((B∗)2) dense in V it can be obtained that the process {Xn
t , t ∈

[0, T ]} is D-valued and it is a strong solution to the equation (2.18).

Let x0 ∈ V . To prove the second part take a sequence {xk, k ∈ N}

in D converging to x0 in V and consider the approximating processes

{Y k
t , t ∈ [0, T ]}, k ∈ N, of the process {Xn

t , t ∈ [0, T ]} defined as

Y k
t = SB(BH

t )Un(t, 0)xk.

By the previous part of the proof it is known that {Y k
t , t ∈ [0, T ]} is

a strong solution to the equation (2.18) with the initial value Y k
0 = xk

and for each y ∈ D∗

〈Y k
t , y〉V = 〈xk, y〉V +

∫ t

0

〈Y k
r , A

∗(r)y〉V dr +

∫ t

0

〈Y k
r , B

∗y〉V dBH
r (2.19)

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
Y k
r , (B

∗)2y
〉
V

dr P - a.s.

for all t ∈ [0, T ].

The aim is to pass to the limit in the equation (2.19) in the space L2(Ω)

for any fixed t ∈ [0, T ], y ∈ D∗ and to use the closedness of the Skorokhod

integral.

By the Fernique theorem (see [13]) it is well-known that

E
[

exp
{
ζ sup{|BH

t |; t ∈ [0, T ]}
}]

< +∞ (2.20)
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for any constant ζ > 0.

Using (2.6), (2.20) and (2.12)

E
∣∣〈Y k

t , y〉V − 〈Xn
t , y〉V

∣∣2 = E
∣∣〈Y k

t −Xn
t , y〉V

∣∣2
= E

∣∣∣〈SB(BH
t )Un(t, 0)(xk − x0), y

〉
V

∣∣∣2
≤M2

BE
[

exp
{

2ωB sup{|BH
r |; r ∈ [0, T ]}

}]
K2
U‖y‖2

V ‖xk − x0‖2
V
−−−−−−−−→
k→+∞ 0,

(2.21)

E
∣∣〈xk, y〉V − 〈x0, y〉V

∣∣2 = 〈xk − x0, y〉2V ≤ ‖y‖2
V ‖xk − x0‖2

V
−−−−−−−−→
k→+∞ 0,

by (2.17)

E
∣∣∣ ∫ t

0

〈(
Y k
r −Xn

r

)
, A∗(r)y

〉
V

dr
∣∣∣2

= E
∣∣∣ ∫ t

0

〈(
SB(BH

t )Un(t, 0)(xk − x0)
)
, A∗(r)y

〉
V

dr
∣∣∣2

≤M2
BE
[

exp
{

2ωB sup{|BH
r |; r ∈ [0, T ]}

}]
×K2

UT
2‖xk − x0‖2

V (C∗0)2‖A∗(0)y‖2
V
−−−−−−−−→
k→+∞ 0,

and by (U3)

E
∣∣∣ ∫ t

0

〈
H(r2H−1 − un(r))(Y k

r −Xn
r ), (B∗)2y

〉
V

dr
∣∣∣2

= E
∣∣∣ ∫ t

0

〈
H(r2H−1 − un(r))SB(BH

t )Un(t, 0)(xk − x0), (B∗)2y
〉
V

dr
∣∣∣2

≤M2
BE
[

exp
{

2ωB sup{|BH
r |; r ∈ [0, T ]}

}]
×K2

UT
4H‖xk − x0‖2

V ‖(B∗)2y‖2
V
−−−−−−−−→
k→+∞ 0.

Therefore it is possible to pass to the limit in the equation (2.19) in the

space L2(Ω) and there exists a random variable Y
(n,y)
t such that∫ t

0

〈Y k
r , B

∗y〉V dBH
r
−−−−−−−−→
n→+∞ Y

(n,y)
t in L2(Ω).

Analogously to (2.21) it follows∫ t

0

E
∣∣〈Y k

r , B
∗y〉V − 〈Xn

r , B
∗y〉V

∣∣2 dr−−−−−−−−→
k→+∞ 0
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and

{〈Y k
r , B

∗y〉V , r ∈ [0, t]}, {〈Xn
r , B

∗y〉V , r ∈ [0, t]} ∈ L2
(
Ω;L2([0, t])

)
for any k ∈ N. The Itô formula yields that {〈Y k

r , B
∗y〉V , r ∈ [0, t]}

is Skorokhod integrable with respect to the fractional Brownian mo-

tion. Hence by the closedness of the Skorokhod integral the process

{〈Xn
r , B

∗y〉V , r ∈ [0, t]} is Skorokhod integrable with respect to the frac-

tional Brownian motion and

Y
(n,y)
t =

∫ t

0

〈Xn
r , B

∗y〉V dBH
r P - a.s.

(see [6], Remark 3.4.2, or Section 1.2) for any t ∈ [0, T ]. Therefore the

process {Xn
t , t ∈ [0, T ]} is a weak solution to the equation (2.18).

Q.E.D.

In the case H < 1/2 the singularity of the system of operators {A(t)−

Ht2H−1B2, t ∈ (0, T ]} at zero (and hence the lack of information about the

system {U(t, 0), t ∈ [0, T ]}) admits only the weak solution.

Theorem 2.6 Suppose that the assumptions of Proposition 2.5 hold. Then

for each x0 ∈ V the process {Xt, t ∈ [0, T ]} defined by (2.15) is a weak

solution to the equation (2.16).

Proof The proof is similar to the last part of the proof of Proposition 2.5. The

first step is to pass to the limit in the equation

〈Xn
t , y〉V = 〈x0, y〉V +

∫ t

0

〈Xn
r , A

∗(r)y〉V dr +

∫ t

0

〈Xn
r , B

∗y〉V dBH
r

+

∫ t

0

〈
H
(
r2H−1 − un(r)

)
Xn
r , (B

∗)2y
〉
V

dr

in the space L2
(
Ω
)

for any fixed t ∈ [0, T ] and any fixed y ∈ D∗. Let

Yy(t) be the limit∫ t

0

〈Xn
r , B

∗y〉V dBH
r
−−−−−−−−→
n→+∞ Yy(t) in L2(Ω).
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The second step is to identify the limit Yy(t) as the Skorokhod integral∫ t
0
〈Xr, B

∗y〉V dBH
r applying the closedness of Skorokhod integral. For

detailed proof see [24].

Q.E.D.

31



Chapter 3

Examples

This chapter is focused on examples which can be covered by Theorem 2.4

and Theorem 2.6.

Example 3.1 Consider the one-dimensional equation

dXt = a(t)Xtdt+ bXtdB
H
t ,

X0 = x0,

(3.1)

where a ∈ C([0, T ]) is a function, 0 6= b ∈ R is a constant and x0 ∈ R.

Then the process {Xt, t ∈ [0, T ]} defined as

Xt = exp
{
bBH

t +

∫ t

0

(
a(r)−Hb2r2H−1

)
dr
}
x0

= exp
{
bBH

t +

∫ t

0

a(r) dr − 1

2
b2t2H

}
x0

is a strong solution to the equation (3.1). In this case the three notions of

solution coincide. The results contained in this example are well-known

for the Wiener case H = 1/2, can be easily obtained from [10] for H > 1/2

and are described in the previous author’s paper [22] for H < 1/2.

Using Law of Iterated Logarithm for a fractional Brownian motion (e.g.

[3])

lim sup
t→+∞

BH
t

tH
√

log log t
= CH P - a.s.
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and

lim inf
t→+∞

BH
t

tH
√

log log t
= −CH P - a.s.,

where CH > 0 is a constant independent of ω ∈ Ω, the limit behaviour of

the solution {Xt, t ∈ [0, T ]} can be studied.

For the simplicity let a ≡ a(t), t ∈ [0, T ], be independent of t. Then the

solution is given by a formula

Xt = exp
{
bBH

t +
(
at− 1

2
b2t2H

)}
x0, t ∈ [0, T ].

Without loss of generality assume that b > 0 and x0 > 0. Then

H > 1
2
. Xt−−−−−−−−→t→+∞ 0 P - a.s.,

H < 1
2
. if a > 0 then Xt−−−−−−−−→t→+∞ +∞ P - a.s.,

if a ≤ 0 then Xt−−−−−−−−→t→+∞ 0 P - a.s.,

H = 1
2
. if a < 1

2
b2 then Xt−−−−−−−−→t→+∞ 0 P - a.s.,

if a > 1
2
b2 then Xt−−−−−−−−→t→+∞ +∞ P - a.s.,

if a = 1
2
b2 then

lim sup
t→+∞

Xt = +∞ P - a.s. and lim inf
t→+∞

Xt = 0 P - a.s.

4

Example 3.2 Let

dXt = AXtdt+BXtdB
H
t ,

X0 = x0,

be the equation in a separable Hilbert space V with A and B which are

supposed to be linear bounded operators on V . This case was studied in

the previous author’s paper [23] for H < 1/2. Nevertheless, this equation

can be covered by more general Theorems 2.4 and 2.6. The solution

{Xt, t ∈ [0, T ]} defined as

Xt = SB(BH
t )U(t, 0)x0, t ∈ [0, T ],
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is strong and weak. Moreover, for H ≥ 1/2 the solution is also mild.

4

Example 3.3 Consider the stochastic equation

dXt = AXt dt+ bXt dBH
t ,

X0 = x0,

in a separable Hilbert space V , where the linear closed and densely defined

operator A generates a strongly continuous semigroup {SA(t), t ∈ [0, T ]}

on V and b ∈ R is a nonzero deterministic constant. Then there exists

a weak solution {Xt, t ∈ [0, T ]} (the case H = 1/2 is omitted) for any

0 < T < +∞ which has a form

Xt = exp

{
bBH

t −
1

2
b2t2H

}
SA(t)x0, t ∈ [0, T ].

Using Law of Iterated Logarithm similar to the Example 3.1 yields

lim
t→+∞

‖Xt‖V = 0 P - a.s.

in the case H > 1/2 with the rate of convergence which is faster than

exponential, namely there exist constants C1(ω) depending on ω ∈ Ω and

c2 > 0 such that

‖X(t, ω)‖V ≤ C1(ω) exp{−c2t
2H}‖x0‖V , t→∞,

because 2H > 1.

The case H < 1/2 is more complicated. Under the above assumptions

nothing can be said about limit behaviour of the solution. Some more

restrictive conditions on {SA(t), t ∈ [0, T ]} have to be given. For instance,

suppose that {SA(t), t ∈ [0, T ]} is an exponentially stable semigroup, i.e.

for some constants M ≥ 1, ω > 0, the inequality

‖SA(t)‖L(V ) ≤Me−ωt
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holds for each t ∈ (0,+∞). Then ‖Xt‖V → 0 as t → +∞ for P - almost

all ω ∈ Ω and the solution is pathwise exponentially stable.

An example of this situation is a Dirichlet problem for the stochastic

fractional heat equation, i.e. the equation described formally as

∂y

∂t
(t, x) = ∆y(t, x) + by(t, x)

dBH
t

dt
, (t, x) ∈ R+ ×O,

y(t, x) = 0, (t, x) ∈ R+ × ∂O,

where ∆ denotes the Laplace operator and O ⊂ Rd is a bounded domain

with smooth boundary. Set A := ∆ with the domain Dom(A) = H2(O)∩

H1
0 (O). Then the strongly continuous semigroup {SA(t), t ∈ [0, T ]} asso-

ciated with A is exponentially stable.

The Neumann problem for the heat equation, i.e.

∂y

∂t
(t, x) = ∆y(t, x) + by(t, x)

dBH
t

dt
, (t, x) ∈ R+ ×O,

∂y

∂ν
(t, x) = 0, (t, x) ∈ R+ × ∂O,

is more interesting. Consider the Laplace operator ∆ = A with the do-

main Dom(A) = {ϕ ∈ H2(O); ∂ϕ
∂ν

= 0}, where O ⊂ Rd is a bounded

domain with smooth boundary and ν is a normal vector to the boundary

∂O. Then the strongly continuous semigroup {SA(t), t ∈ [0, T ]} associ-

ated with operator A is a contraction, i.e.

‖SA(t)‖L(V ) ≤ 1, t ∈ [0, T ].

Therefore the stability of the solution with the rate of convergence which

is slower than exponential is obtained, i.e. there exist constants C1 ≡

C1(ω) depending on ω ∈ Ω and c2 > 0 such that

‖X(t)‖V ≤ C1 exp{−c2t
2H}‖x0‖V , t→∞,

because 2H < 1.

Moreover, for initial values x0 which are constant functions on O more

can be said. Since constant functions are eigenfunctions of the operator
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SA(t) for any t it is obtained using Law of Iterated Logarithm that there

exists a constant c > 0 depending on ω ∈ Ω such that

‖Xt‖V = exp

{
bBH

t −
1

2
b2t2H

}
‖x0‖V

≥ exp{−bctH
√

log log t− 1

2
b2t2H}‖x0‖V

as t→ +∞, hence there exist constants C3 ≡ C3(ω) depending on ω ∈ Ω

and c4 > 0 such that

‖Xt‖V ≥ C3 exp{−c4t
2H}‖x0‖V , t→ +∞,

so that the convergence rate is sharp.

This example was originally described in [25].

4

Example 3.4 Consider the stochastic parabolic equation of the second order

∂u

∂t
(t, x) = L(t, x)u+ bu(t, x)

dBH

dt
, (3.2)

u(0, x) = x0(x), x ∈ O

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂O,

where O ⊂ Rd is a bounded domain with the boundary of class C2,

b ∈ R \ {0} and

L(t, x)u = a0(t, x)u(t, x) +
d∑
i=1

ai(t, x)
∂u

∂xi
(t, x) +

d∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj
(t, x)

is a uniformly strongly elliptic operator on O, i.e. there exists a constant

ϑ > 0 such that
d∑

i,j=1

aij(t, x)ζiζj > ϑ‖ζ‖2
Rd

for all (t, x) ∈ [0, T ]× Ō and 0 6= ζ = (ζ1, . . . , ζd) ∈ Rd.

Suppose that the functions a0(t, . ), ai(t, . ), aij(t, . ) ∈ C∞(Ō) and for

some constants M > 0, 0 < γ < 1

sup
x∈O
{|a0(t, x)−a0(s, x)|, |ai(t, x)−ai(s, x)|, |aij(t, x)−aij(s, x)|} ≤M |t−s|γ
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holds for any s, t ∈ [0, T ], i, j = 1, . . . , d.

Equation (3.2) can be rewritten in the form (2.1), where V = L2(O),

(
A(t)u

)
(x) = L(t, x)u,

with Dom(A(t)) = D = H2(O) ∩H1
0 (O) and B = bI ∈ L(V ).

In this case the assumptions (A1), (A2), (A3) are satisfied (cf. Theorem

3.8.3, [26]). The adjoint operator A∗(t) has the same form as the opera-

tor A(t) only with other coefficients. Hence Dom(A∗(t)) = D∗ = D =

Dom(A(t)) is independent of t. Also conditions (B1), (B2), (2.11), (AB)

and (2.7) are trivially satisfied. In the case H > 1/2 using Theorem 2.4 it

can be concluded that there exists a mild solution to the equation (3.2) for

any x0 ∈ V and if x0 ∈ D then the solution is also strong. Moreover, if it is

assumed (2.17) the solution is weak for any x0 ∈ V in both cases H > 1/2

and H < 1/2 applying Theorem 2.4 and Theorem 2.6, respectively.

4

Example 3.5 Consider the equation

∂u

∂t
(t, x) = −∂

4u

∂x4
(t, x)− αu(t, x) +

∂u

∂x
(t, x)

dBH

dt
, (3.3)

u(0, x) = x0(x),

in the weighted space V = L2
ρ(R) with the weight e−ρ|x|, x ∈ R, and some

fixed positive constant ρ, where (t, x) ∈ R+ × R. The operator

A = − ∂4

∂x4
− αI

defined on the domain D = Dom(A) = W 4,2(R) generates a strongly

continuous semigroup {SA(t), t ∈ [0, T ]} on V which is exponentially

stable for any fixed α > 0 (see e.g. [21]). The operator B = ∂
∂x

with

the domain Dom(B) = W 1,2(R) generates a strongly continuous group

{SB(t), t ∈ R} on V which is a shift operator

(
SB(t)u

)
(x) = u(t+ x), t, x ∈ R.
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Moreover, D = D∗ = Dom(A∗), Dom(B2) = Dom((B∗)2) = W 2,2(R) and

SB(t) commute with A on D for each t ∈ [0, T ].

H > 1/2. The operators{
Ā(t) = − ∂4

∂x4
− αI −Ht2H−1 ∂

2

∂x2
, t ∈ [0, T ]

}
are strongly elliptic and generate a strongly continuous evolution

system {U(t, s), 0 ≤ s ≤ t ≤ T}. Thus there exists a strong (if

x0 ∈ D) and weak (if x0 ∈ V ) solution to the equation (3.3).

H < 1/2. The operators{
An(t) = − ∂4

∂x4
− αI −Hun(t)

∂2

∂x2
, t ∈ [0, T ]

}
are strongly elliptic and generate a strongly continuous evolution

system {Un(t, s), 0 ≤ s ≤ t ≤ T}.

It remains to show (2.11), i.e. for some constants CA > 0, 0 < β <

2H

‖SA(t)B2‖L(V ) ≤
CA
tβ
, t ∈ (0, T ].

In fact

‖SA(t)B2‖L(V ) ≤
CA
t1/2

, t ∈ (0, T ],

holds (for technical detailes see [24]). Hence the condition 1/2 < 2H

can be satisfied only for H > 1/4. Therefore, under this hypothesis

H > 1/4 the equation (3.3) has a weak solution for any initial value

x0 ∈ V .

4
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Chapter 4

Random evolution system

In this chapter the result from Chapter 2 is extended to obtain a random

two-parameter evolution system representing the solution with general ini-

tial time. Only the case H > 1/2 is studied.

Consider the stochastic equation

dYt = AYt dt+BYt dBH
t , t > s,

Ys = x,

(4.1)

where the solution can start from any fixed time s ∈ [0, T ]. The aim of this

chapter is to show that the equation (4.1) has a weak solution {UY (t, s)x, s ≤

t ≤ T} given by a formula

UY (t, s)x = SB(BH
t −BH

s )U(t− s, 0)x, s ≤ t ≤ T, (4.2)

for any initial value x ∈ V . Note that {U(t, s), 0 ≤ s ≤ t ≤ T} is a strongly

continuous evolution system associated with operators {A−Ht2H−1B2, t ∈

[0, T ]} and {SB(u), u ∈ R} is a strongly continuous group associated with

operator B satisfying conditions from Chapter 2.

The suitable version of Itô formula will be used.

Lemma 4.1 Let s ∈ [0, T ], f ∈ C1,2([s, T ] × R) and u = {ut, t ∈ [0, T ]} be

a process in D2,2(|H|) such that {Xt =
∫ t

0
ur dBH

r , t ∈ [0, T ]} is P - a.s.
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continuous. Assume that ‖u‖L2(Ω) ∈ H. Then the following formula

f(t,Xt) = f(s,Xs) +

∫ t

s

∂

∂r
f(r,Xr) dr +

∫ t

s

∂

∂x
f(r,Xr) dBH

r

+ αH

∫ t

s

∂2

∂x2
f(r,Xr)ur

×
(∫ T

0

|r − w|2H−2
(∫ r

s

DH
w uσ dBH

σ

)
dw

)
dr

+ αH

∫ t

s

∂2

∂x2
f(r,Xr)ur

(∫ r

s

uw(r − w)2H−2 dw
)

dr

holds P - a.s. for any t ∈ [s, T ].

Proof Basically, the lemma is proved in [2], Theorem 8. Nevertheless, in [2]

the function f does not depend on time and the starting point is zero. The

version with f dependent on time can be obtained by standard methods.

The possibility to start from a nonzero point s ∈ [0, T ] can be checked by

passing through the proof of Theorem 8.

Q.E.D.

Theorem 4.2 The process {UY (t, s)x, s ≤ t ≤ T} is a weak solution to the

equation (4.1) for any fixed x ∈ V and s ∈ [0, T ] under the assumptions

of Theorem 2.4 on the existence of a weak solution.

Proof First assume that x ∈ D, fix ζ ∈ Dom((B∗)2) and set

f(t, y) =
〈
U(t− s, 0)x, S∗B(y)ζ

〉
V
, s ≤ t ≤ T, y ∈ R.

Clearly, f ∈ C1,2([s, T ]× R) and

∂

∂t
f(t, y) =

〈
(A−H(t− s)2H−1B2)U(t− s, 0)x, S∗B(y)ζ

〉
V
,

∂

∂y
f(t, y) =

〈
U(t− s, 0)x, S∗B(y)B∗ζ

〉
V
,

∂2

∂y2
f(t, y) =

〈
U(t− s, 0)x, S∗B(y)(B∗)2ζ

〉
V
.

Since

BH
t −BH

s =

∫ t

s

1 dBH
r ,
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the integrand satisfies the conditions of Lemma 4.1. Therefore

〈UY (t, s)x, ζ〉V = f(t, BH
t −BH

s ) = f(s, BH
s −BH

s )

+

∫ t

s

∂

∂r
f(r, BH

r −BH
s ) dr +

∫ t

s

∂

∂y
f(r, BH

r −BH
s ) dBH

r

+ αH

∫ t

s

∫ r

s

(r − u)2H−2 du
∂2

∂y2
f(r, BH

r −BH
s ) dr

= 〈x, ζ〉V

+

∫ t

s

〈
(A−H(r − s)2H−1B2)U(r − s, 0)x, S∗B(BH

r −BH
s )ζ〉V dr

+

∫ t

s

〈
SB(BH

r −BH
s )U(r − s, 0)x,B∗ζ

〉
V

dBH
r

+

∫ t

s

〈
H(r − s)2H−1SB(BH

r −BH
s )U(r − s, 0)x, (B∗)2ζ

〉
V

dr

holds P - a.s. for any s ≤ t ≤ T by Lemma 4.1. The commutativity

assumption (AB) yields

〈UY (t, s)x, ζ〉V = 〈x, ζ〉V +

∫ t

s

〈
AUY (r, s)x, ζ〉V dr

+

∫ t

s

〈
BUY (r, s)x, ζ

〉
V

dBH
r P - a.s.

for any s ≤ t ≤ T , hence {UY (t, s)x, s ≤ t ≤ T} is a strong solution to

the equation (4.1).

Finally, assume that x ∈ V and let {xk, k ∈ N} ⊂ D be a sequence

converging to x in V . To get a weak solution it sufficies to pass to the

limit in the equation

〈UY (t, s)xk, ζ〉V = 〈xk, ζ〉V +

∫ t

s

〈UY (r, s)xk, A
∗ζ〉V dr

+

∫ t

s

〈UY (r, s)xk, B
∗ζ〉V dBH

r

in L2(Ω) and to use the closedness of the Skorokhod integral as in the

proof of Proposition 2.5.

Q.E.D.

Remark The system {UY (t, s), 0 ≤ s ≤ t ≤ T} is not a random continuous

evolution system because it does not possess the standard composition

property.
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Chapter 5

Nonlinear equation

This chapter is devoted to equations with a nonlinear perturbation of a drift

part.

Let {UY (t, s), 0 ≤ s ≤ t ≤ T} be the system of operators defined as

UY (t, s)x := SB(BH
t −BH

s )U(t− s, 0)x, x ∈ V,

where {U(t, s), 0 ≤ s ≤ t ≤ T} is a strongly continuous evolution system

associated with operators {A−Ht2H−1B2, t ∈ [0, T ]} and {SB(u), u ∈ R} is

a strongly continuous group associated with operatorB satisfying conditions

from Chapter 2. Note that in Chapter 4 it has been shown that for any

fixed s ∈ [0, T ] the process {UY (t, s)x, s ≤ t ≤ T} is a weak solution to the

equation

dYt = AYt dt+BYt dBH
t , t > s,

Ys = x ∈ V.
(5.1)

Denote by CU > 0 a constant such that

‖U(t, s)‖L(V ) ≤ CU , 0 ≤ s ≤ t ≤ T. (5.2)

Theorem 5.1 Let F : [0, T ]× V → V be a measurable function satisfying

(i)F there exists a function L̄ ∈ L1([0, T ]) such that

‖F (t, x)− F (t, y)‖V ≤ L̄(t)‖x− y‖V , x, y ∈ V, t ∈ [0, T ].
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(ii)F for some function K̄ ∈ L1([0, T ])

‖F (t, 0)‖V ≤ K̄(t), t ∈ [0, T ].

Then the equation

y(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F
(
r, y(r)

)
dr (5.3)

has a unique solution in the space C([0, T ];V ) for a.e. ω ∈ Ω and any

initial value x ∈ V .

Remark (i) In the Wiener case H = 1/2 the solution to the equation (5.3)

is the so-called mild solution to the equation

dXt = AXt dt+ F (t,Xt) dt+BXt dWt,

X0 = x ∈ V,

(cf. [5]).

(ii) The assumptions (i)F and (ii)F imply that there exists a function

C̄ ∈ L1([0, T ])

‖F (t, x)‖V ≤ C̄(t)(1 + ‖x‖V ), x ∈ V, t ∈ [0, T ]. (5.4)

Proof Fix x ∈ V and show that the mapping

(
K(y)

)
(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F
(
r, y(r)

)
dr

is continuous from C([0, T ];V ) into C([0, T ];V ) and that K is a contraction

mapping.

Take y ∈ C([0, T ];V ) and t, s ∈ [0, T ]. Then

∥∥(K(y)
)
(t)−

(
K(y)

)
(s)
∥∥
V
≤ ‖UY (t, 0)x− UY (s, 0)x‖V

+
∥∥∥∫ t

0

UY (t, r)F
(
r, y(r)

)
dr −

∫ s

0

UY (s, r)F
(
r, y(r)

)
dr
∥∥∥
V

= I1 + I2.

43



Note that applying (2.6) and continuity of trajectories of {BH
t , t ∈ [0, T ]}

supt∈[0,T ] ‖SB(BH
t (ω))‖L(V ) ≤MB exp{ωB‖BH(ω)‖C([0,T ])} ≤ CB(ω)

sups,t∈[0,T ]

∥∥SB(BH
t (ω)−BH

s (ω)
)∥∥
L(V )
≤MB exp{2ωB‖BH(ω)‖C([0,T ])}

≤ CB(ω)

(5.5)

hold for some constant 0 < CB(ω) < +∞ depending on ω ∈ Ω.

Since strongly continuous groups and evolution systems are continuous

for any fixed element in V it follows

I1 = ‖UY (t, 0)x− UY (s, 0)x‖V ≤
∥∥(SB(BH

t )− SB(BH
s )
)
U(t, 0)x

∥∥
V

+
∥∥SB(BH

s )
(
U(t, 0)− U(s, 0)

)
x
∥∥
V

≤
∥∥(SB(BH

t )− SB(BH
s )
)
U(t, 0)x

∥∥
V

+ CB(ω)
∥∥(U(t, 0)− U(s, 0)

)
x
∥∥
V
−−−−−−−−→
s→t 0.

Now, let t > s. It follows

I2 =
∥∥∥∫ t

0

UY (t, r)F
(
r, y(r)

)
dr −

∫ s

0

UY (s, r)F
(
r, y(r)

)
dr
∥∥∥
V

≤
∥∥∥∫ s

0

(
UY (t, r)− UY (s, r)

)
F
(
r, y(r)

)
dr
∥∥∥
V

+
∥∥∥∫ t

s

UY (t, r)F
(
r, y(r)

)
dr
∥∥∥
V

= J1 + J2.

Using (5.5), (5.2) and (5.4)

J2 =
∥∥∥∫ t

s

UY (t, r)F
(
r, y(r)

)
dr
∥∥∥
V

≤
∫ t

s

CU‖SB(BH
t −BH

r )‖L(V )

∥∥F(r, y(r)
)∥∥

V
dr

≤ CUCB(ω)(1 + ‖y‖C([0,T ];V ))

∫ t

s

C̄(r) dr −→ 0

as s→ t− or t→ s+.
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Also

J1 =
∥∥∥∫ s

0

(
UY (t, r)− UY (s, r)

)
F
(
r, y(r)

)
dr
∥∥∥
V

≤
∥∥∥∫ s

0

(
SB(BH

t −BH
r )− SB(BH

s −BH
r )
)
U(t− r, 0)F

(
r, y(r)

)
dr
∥∥∥
V

+
∥∥∥∫ s

0

SB(BH
s −BH

r )
(
U(t− r, 0)− U(s− r, 0)

)
F
(
r, y(r)

)
dr
∥∥∥
V

= K1 +K2.

Since for any fixed 0 ≤ r ≤ s

∥∥(U(t− r, 0)− U(s− r, 0)
)
F
(
r, y(r)

)∥∥
V
−→ 0

as s→ t− or t→ s+ and by (5.2)∫ s

0

∥∥(U(t− r, 0)− U(s− r, 0)
)
F
(
r, y(r)

)∥∥
V

dr

≤ 2CU

∫ s

0

∥∥F(r, y(r)
)∥∥

V
dr

≤ 2CU(1 + ‖y‖C([0,T ];V ))

∫ s

0

C̄(r) dr < +∞,

the convergence

K2 =
∥∥∥∫ s

0

SB(BH
s −BH

r )
(
U(t− r, 0)− U(s− r, 0)

)
F
(
r, y(r)

)
dr
∥∥∥
V

≤ CB(ω)

∫ s

0

∥∥(U(t− r, 0)− U(s− r, 0)
)
F
(
r, y(r)

)∥∥
V

dr −→ 0

is obtained as s→ t− or t→ s+ by the Lebesgue dominated convergence

theorem. Note that the set

K :=
{
ȳ ∈ V ;∃ 0 ≤ s1 ≤ t1 ≤ T

ȳ =

∫ s1

0

SB(−BH
r )U(t1 − r, 0)F

(
r, y(r)

)
dr
}

is compact as a continuous image of a compact set and

lim
t→s

sup
z∈K

∥∥(SB(BH
t )− SB(BH

s )
)
z
∥∥
V

= 0.
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Therefore

K1 =
∥∥∥∫ s

0

(
SB(BH

t −BH
r )− SB(BH

s −BH
r )
)
U(t− r, 0)F

(
r, y(r)

)
dr
∥∥∥
V

=
∥∥∥(SB(BH

t )− SB(BH
s )
) ∫ s

0

SB(−BH
r )U(t− r, 0)F

(
r, y(r)

)
dr
∥∥∥
V

≤ sup
z∈K

∥∥(SB(BH
t )− SB(BH

s )
)
z
∥∥
V
−→ 0

as s→ t− or t→ s+. Thus∥∥(K(y)
)
(t)−

(
K(y)

)
(s)
∥∥
V
−→ 0

as s → t− or t → s+ and the function t 7→
(
K(y)

)
(t) is continuous on

the interval [0, T ] for any y ∈ C([0, T ];V ).

For any y1, y2 ∈ C([0, T ];V ), t ∈ [0, T ] and T > 0 small enough there

exists a constant 0 < LT < 1 such that∥∥(K(y1)
)
(t)−

(
K(y2)

)
(t)
∥∥
V

=∥∥∥∫ t

0

UY (t, r)
(
F
(
r, y1(r)

)
− F

(
r, y2(r)

))
dr
∥∥∥
V

=

≤ CB(ω)CU

∫ t

0

∥∥(F(r, y1(r)
)
− F

(
r, y2(r)

))∥∥
V

dr

≤ CB(ω)CU‖y1 − y2‖C([0,T ];V )

∫ T

0

L̄(r) dr ≤ LT‖y1 − y2‖C([0,T ];V )

holds so that K is a contraction mapping. Hence, by the Banach fixed-

point theorem there exists a unique solution to the equation (5.3) for T

small enough. Applying standard methods a unique continuous solution

to (5.3) for any T > 0 can be obtained.

Q.E.D.

A slight extension of the definition of a weak solution to the linear case

is necessary. Consider an equation with a nonlinear perturbation of a drift

part

dXt = AXt dt+ F (t,Xt) dt+BXt dBH
t ,

X0 = x ∈ V.
(5.6)

46



Definition 5.2 A
(
B([0, T ])⊗F

)
-measurable process {Xt, t ∈ [0, T ]} is said

to be a weak solution to the equation (5.6) if for any y ∈ D∗

〈Xt, y〉V = 〈x, y〉V +

∫ t

0

〈Xr, A
∗y〉V dr +

∫ t

0

〈F (r,Xr), y〉V dr

+

∫ t

0

〈Xr, B
∗y〉V dBH

r

P - a.s. for all t ∈ [0, T ], where the integrals have to be well-defined.

The aim of the next theorem is to check that the solution {Xt, t ∈ [0, T ]}

to the equation

y(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F (r) dr

stated in Theorem 5.1 is a weak solution under the additional assumption

that the coefficient F does not depend on the space variable. The main idea

is to use standard and stochastic Fubini theorem for the Skorokhod integral

stated in [16], Lemma 2.10, or [18], Exercise 3.2.8.

Lemma 5.3 Consider a random field {u(t, x), t ∈ [0, T ], x ∈ G}, where G ⊂ R

is a bounded set, such that

(i)W u ∈ L2(Ω× [0, T ]×G),

(ii)W u( . , x) ∈ Dom δW for a.e. x ∈ G,

(iii)W E
[∫

G

(∫ T
0
u(t, x) dWt

)2

dx

]
< +∞.

Then the process
{∫

G
u(t, x) dx, t ∈ [0, T ]

}
∈ Dom δW and∫ T

0

(∫
G

u(t, x) dx

)
dWt =

∫
G

(∫ T

0

u(t, x) dWt

)
dx.

Due to the relationship between Skorokhod integral with respect to Wiener

process and fractional Brownian motion (see (1.7) or [19] for more detailes)

(ii)W, (iii)W are equivalent to

(ii)H uH( . , x) ∈ Dom δH for a.e. x ∈ G,
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(iii)H E
[∫

G

(∫ T
0
uH(t, x) dBH

t

)2

dx

]
< +∞,

respectively, where uH(t, x) =
(
K∗H
)−1(

u( . , x)
)
(t), t ∈ [0, T ]. The conclu-

sion of Lemma 5.3 can be reformulated in the following way. The process{∫
G
uH(t, x) dx, t ∈ [0, T ]

}
∈ Dom δH and∫ T

0

(∫
G

uH(t, x) dx

)
dBH

t =

∫
G

(∫ T

0

uH(t, x) dBH
t

)
dx.

Theorem 5.4 Assume that the measurable function F : [0, T ] → V is in-

dependent of a space variable and ‖F‖V ∈ L2([0, T ]). Then the unique

continuous solution {Xt, t ∈ [0, T ]} to the equation

y(t) = UY (t, 0)x+

∫ t

0

UY (t, r)F (r) dr (5.7)

stated in Theorem 5.1 is a weak solution to the equation

dXt = AXt dt+ F (t) dt+BXt dBH
t ,

X0 = x ∈ V.
(5.8)

The proof of the theorem is based on the following lemma.

Lemma 5.5 The equalities∫ t

0

∫ r

0

〈
UY (r, v)F (v), A∗ζ

〉
V

dv dr =

∫ t

0

∫ t

v

〈
UY (r, v)F (v), A∗ζ

〉
V

dr dv

(5.9)

and∫ t

0

∫ r

0

〈
UY (r, v)F (v), B∗ζ

〉
V

dv dBH
r =

∫ t

0

∫ t

v

〈
UY (r, v)F (v), B∗ζ

〉
V

dBH
r dv

hold P - a.s. for any t ∈ [0, T ] and fixed ζ ∈ D∗.

Proof It is necessary to verify the assumptions of standard and stochastic Fu-

bini theorem.
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Notice that the Fernique theorem (see [13]) yields that there exists a ran-

dom variable CBH (ω) such that CBH ∈ Lq(Ω) for any q ∈ [1,+∞) and

MB exp{lωB‖BH(ω)‖C([0,T ])} ≤ CBH (ω), ω ∈ Ω, l = 1, 2. (5.10)

Since by (5.10) and (5.2)∫ t

0

∫ r

0

∣∣〈UY (r, v)F (v), A∗ζ
〉
V

∣∣ dv dr

≤
∫ T

0

∫ T

0

CBH (ω)CU‖F (v)‖V ‖A∗ζ‖V dv dr

≤ K(ω)

∫ T

0

‖F (v)‖V dv < +∞

for a.e. ω ∈ Ω, (5.9) follows by the standard Fubini theorem.

Denote

uH(r, s) =
〈
UY (r, s)F (s), B∗ζ

〉
V
, 0 ≤ s ≤ r ≤ t,

u(r, s) =
(
K∗HuH( . , s)

)
(r), 0 ≤ s ≤ r ≤ t,

and verify that (i)W, (ii)H and (iii)H hold for the corresponding processes.

First show that u ∈ L2([0, t]2 × Ω). Using (1.4)

E
[∫ t

0

∫ t

0

u2(r, s) dr ds

]
≤ KeE

[∫ t

0

∫ t

0

u2
H(r, s) dr ds

]
≤ KeE

[∫ t

0

∫ t

0

(
CBH (ω)CU‖F (s)‖V ‖B∗ζ‖V

)2
dr ds

]
< +∞,

and (i)W follows. To prove (ii)H it sufficies to show (in the view of (1.5))

that uH( . , s) ∈ D1,2
H (|H|) for a.e. s ∈ [0, t] which is true whenever

max

{
sup
r∈[0,t]

E
[
u2
H(r, s)

]
, sup
r∈[0,t]

sup
v∈[0,t]

E
[
(DH

v uH(r, s))2
]}

< +∞ (5.11)

for a.e. s ∈ [0, t]. Since

DH
v uH(r, s) =

〈
UY (r, s)F (s), (B∗)2ζ

〉
V
I(s,r](v)

the inequalities

sup
r∈[0,t]

sup
v∈[0,t]

E
[
(DH

v uH(r, s))2
]

≤ sup
r∈[0,t]

E
[(
CBH (ω)CU‖F (s)‖V ‖(B∗)2ζ‖V

)2]
= K‖F (s)‖2

V < +∞
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and

sup
r∈[0,t]

E
[
u2
H(r, s)

]
≤ E

[
(CBH (ω)CU‖F (s)‖V ‖B∗ζ‖V )2

]
≤ K‖F (s)‖2

V < +∞

hold for a.e. s ∈ [0, t] which completes the proof of (5.11).

Finally, applying the estimate on the Skorokhod integral (1.6) and the

previous part of the proof of (5.11)

E
[∫ t

0

(∫ t

0

uH(r, s) dBH
r

)2

ds

]
=

∫ t

0

E
[(∫ t

0

uH(r, s) dBH
r

)2
]

ds

≤ CH,2

∫ t

0

(
E
[
‖uH( . , s)‖2

L2([0,t])

]
+ E

[
‖DHuH( . , s)‖2

L2([0,t]2)

])
ds

≤ CH,2

∫ t

0

(t+ t2)K‖F (s)‖2
V ds < +∞

and (iii)H follows.

Q.E.D.

Proof of Theorem 5.4 Fix ζ ∈ D∗. It sufficies to show

〈Xt, ζ〉V = 〈x, ζ〉V +

∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈F (r), ζ〉V dr

+

∫ t

0

〈Xr, B
∗ζ〉V dBH

r P - a.s.

for all t ∈ [0, T ].

Since {Xt, t ∈ [0, T ]} satisfies (5.7) and {UY (t, s)x, s ≤ t ≤ T} is a weak

solution to the equation (5.1)∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r =

∫ t

0

〈
UY (r, 0)x,A∗ζ

〉
V

dr

+

∫ t

0

∫ r

0

〈
UY (r, v)F (v), A∗ζ

〉
V

dv dr +

∫ t

0

〈
UY (r, 0)x,B∗ζ

〉
V

dBH
r

+

∫ t

0

∫ r

0

〈
UY (r, v)F (v), B∗ζ

〉
V

dv dBH
r

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V +

∫ t

0

∫ t

v

〈
UY (r, v)F (v), A∗ζ

〉
V

dr dv

+

∫ t

0

∫ t

v

〈
UY (r, v)F (v), B∗ζ

〉
V

dBH
r dv P - a.s.
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holds for any t ∈ [0, T ], where in the last equality Lemma 5.5 is used.

Applying again that {UY (t, s)x, s ≤ t ≤ T} is a weak solution to the

equation (5.1)∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r = 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V

+

∫ t

0

〈
UY (t, v)F (v), ζ

〉
V

dv −
∫ t

0

〈F (v), ζ〉V dv

= 〈Xt, ζ〉V − 〈x, ζ〉V −
∫ t

0

〈F (v), ζ〉V dv P - a.s.

is obtained for any t ∈ [0, T ] and the conclusion follows.

Q.E.D.

The next example is a counterexample that the solution to the equa-

tion (5.3) need not be a weak solution to the equation (5.6) if the function

F depends on the solution.

Example 5.6 Consider a one-dimensional equation

dXt = aXt dt+ bXt dBH
t , X0 = 1, (5.12)

where a, b ∈ R are nonzero constants. In the previous notation, the

equation (5.12) takes a form

dXt = F (t,Xt) dt+BXt dBH
t , X0 = 1,

where F (t, x) = ax, A = 0 and B = bI.

Define a system {ŪY (t, s), 0 ≤ s ≤ t ≤ T} as

ŪY (t, s) = SB(BH
t −BH

s )U(t, s)

= exp

{
b(BH

t −BH
s )− 1

2
b2
(
t2H − s2H

)}
, 0 ≤ s ≤ t ≤ T.

The aim is to show that the unique continuous solution to the equation

y(t) = ŪY (t, 0) +

∫ t

0

ŪY (t, r)F (r, y(r)) dr (5.13)
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is also strong solution to the equation (5.12). Note that in a one-dimen-

sional case the notion of weak and strong solution coincides.

In fact Theorem 2.4 yields the formula

Xt = exp

{
bBH

t −
1

2
b2t2H + at

}
, t ∈ [0, T ],

for a solution to the equation (5.12), therefore

ŪY (t, 0) +

∫ t

0

ŪY (t, r)F (r,Xr) dr

= ŪY (t, 0) +

∫ t

0

exp

{
b(BH

t −BH
r )− 1

2
b2
(
t2H − r2H

)}
aXr dr

= exp

{
bBH

t −
1

2
b2t2H

}
+

∫ t

0

a exp

{
bBH

t −
1

2
b2t2H + ar

}
dr

= exp

{
bBH

t −
1

2
b2t2H

}
+ exp

{
bBH

t −
1

2
b2t2H

}
(eat − 1)

= exp

{
bBH

t −
1

2
b2t2H + at

}
= Xt,

i.e. {Xt, t ∈ [0, T ]} is a solution to the equation (5.13). By the uniqueness

the solution to (5.13) is strong.

The same computations with {UY (t, s), 0 ≤ s ≤ t ≤ T} give that the

strong solution {Xt, t ∈ [0, T ]} is NOT a solution to the equation (5.3).

Nevertheless, we are not able to prove the uniqueness of the solution

to the equation (5.12) so that we do not know whether another strong

solution satisfies (5.3).

4

Remark Let the assumptions of Theorem 2.4 be satisfied. Then the system

{ŪY (t, s), 0 ≤ s ≤ t ≤ T} defined as

ŪY (t, s)x = SB(BH
t −BH

s )U(t, s)x, x ∈ V, 0 ≤ s ≤ t ≤ T,

is a weak solution to the equation

dYt = A(t)Yt dt+H
(
(t− s)2H−1 − t2H−1

)
B2Yt dt+BYt dBH

t , t > s,

Ys = x.
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This result can be obtained in the same way as Theorem 4.2. Moreover,

this system has a composition property unlike {UY (t, s), 0 ≤ s ≤ t ≤ T}.

Let {Xn
t , t ∈ [0, T ]}, n ∈ N, be the Picard approximations of the solution

{Xt, t ∈ [0, T ]} to the equation (5.1) obtained from the proof of the Banach

fixed-point theorem, i.e.

X0
t ≡ x, t ∈ [0, T ],

Xn
t = UY (t, 0)x+

∫ t

0

UY (t, r)F
(
r,Xn−1

r

)
dr, t ∈ [0, T ]. (5.14)

Proposition 5.7 Let the assumptions of Theorem 5.1 be satisfied. Moreover,

assume that the function F is Fréchet differentiable with respect to the

space variable for any time t ∈ [0, T ] and that there exists a function

C ∈ L2([0, T ]) such that

max{‖F (t, x)‖V , ‖F ′x(t, x)‖} ≤ C(t), t ∈ [0, T ], (5.15)

and B ∈ L(V ). Then Xn ∈ D1,p
H (|H|) for any p ∈ [1,+∞) and fixed

n ∈ N, i.e. Xn is Skorokhod integrable for any n ∈ N.

Proof It sufficies to check as in the proof of Lemma 5.5

max

{
sup
t∈[0,T ]

E ‖Xn
t ‖

p
V , sup

t∈[0,T ]

sup
v∈[0,T ]

E ‖DH
v X

n
t ‖

p
V

}
< +∞, p ∈ [1,+∞),

for any fixed n ∈ N.

Fix p ∈ [1,+∞). By (5.15), (5.2) and (5.10)

sup
t∈[0,T ]

E ‖Xn
t ‖

p
V

≤ K sup
t∈[0,T ]

{
E
[
‖UY (t, 0)x‖pV +

(∫ t

0

‖UY (t, s)F (s,Xn−1
s )‖V ds

)p]}
≤ K sup

t∈[0,T ]

{
E
[
(CBH (ω)CU‖x‖V )p +

(∫ t

0

CBH (ω)CUC(s) ds
)p}

< +∞.

The proof of the finiteness of the second term is done by induction. First

note that

DH
v X

1
t = BUY (t, 0)xI(0,t](v) +

∫ t

0

BUY (t, s)F (s, x)I(s,t](v) ds
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and

sup
t∈[0,T ]

sup
v∈[0,T ]

E ‖DH
v X

1
t ‖

p
V ≤ KE

[
(‖B‖L(V )CBH (ω)CU‖x‖V )p

]
+KE

[(
‖B‖L(V )CBH (ω)CU

∫ T

0

C(s) ds
)p]

< +∞.

Assume that there exists a constant 0 < C
(p)
n−1 < +∞ such that

sup
t∈[0,T ]

sup
v∈[0,T ]

E ‖DH
v X

n−1
t ‖pV ≤ C

(p)
n−1

holds for any p ∈ [1,+∞) and fixed n− 1. Then

DH
v X

n
t = BUY (t, 0)xI(0,t](v) +

∫ t

0

BUY (t, s)F (s,Xn−1
s )I(s,t](v) ds

+

∫ t

0

UY (t, s)F ′x(s,X
n−1
s )DH

v X
n−1
s ds

and

sup
t∈[0,T ]

sup
v∈[0,T ]

E ‖DH
v X

n
t ‖

p
V ≤ KE

[
(‖B‖L(V )CBH (ω)CU‖x‖V )p

]
+KE

[(
‖B‖L(V )CBH (ω)CU

∫ T

0

C(s) ds
)p]

+K sup
v∈[0,T ]

E
[(
CBH (ω)CU

∫ T

0

C(s)‖DH
v X

n−1
s ‖V ds

)p]
< +∞,

because the third term

K sup
v∈[0,T ]

E
[(
CBH (ω)CU

∫ T

0

C(s)‖DH
v X

n−1
s ‖V ds

)p]
≤ K̃

(
E
[
C2p
BH (ω)

])1/2
(∫ T

0

C2(s) ds
)p/2(

C
(2p)
n−1

)1/2
< +∞

applying the induction assumption.

Q.E.D.

There is a natural question whether the solution to the equation (5.3)

is a weak one to some equation. By Proposition 5.7 the Piccard approxi-

mations {Xn
t , t ∈ [0, T ]} are in D1,p

H (|H|) for any p ∈ [1,+∞) and any fixed

n ∈ N. But we are not able to prove that {DHXn, n ∈ N} are uniformly
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bounded (in n) in Lp(Ω × [0, T ]2;V ) thus it is not possible to show that

X ∈ D1,p
H (|H|) by the closedness of Malliavin derivative which is essential in

solving the stated question.

Another way how to try to solve the problem is to find an equation to

which {Xn
t , t ∈ [0, T ]} is a weak solution for any fixed n ∈ N and pass to

the limit in a suitable sense. From the proof of the next theorem it is clear

that one would have to pass in the weak formulation for approximations

to the limit in the Skorokhod integral and in the integral with integrand

containing the Malliavin derivative of the Piccard approximation. This

seems to be very difficult. Therefore the additional assumptions are required

on {Xt, t ∈ [0, T ]}.

Theorem 5.8 Let the assumptions of Theorem 5.1 hold and {Xt, t ∈ [0, T ]}

be the solution to the equation (5.3) such that there exists a constant

CX < +∞

max

{
sup
t∈[0,T ]

E ‖Xt‖4
V , sup

t∈[0,T ]

sup
v∈[0,T ]

E ‖DH
v Xt‖4

V

}
≤ CX . (5.16)

In addition, let F be Fréchet differentiable with respect to the space vari-

able for any time t ∈ [0, T ]. Suppose that there exists a function C ∈

L4([0, T ]) such that (5.15) holds. Then {Xt, t ∈ [0, T ]} is a solution to

the integral equation

Xt = x+

∫ t

0

AXr dr +

∫ t

0

F (r,Xr) dr +

∫ t

0

BXr dBH
r

+

∫ t

0

αH

∫ T

0

∫ t

r

|v − w|2H−2BUY (v, r)F ′x(r,Xr)D
H
wXr dw dv dr

in a weak sense, i.e. for any y ∈ D∗

〈Xt, y〉V = 〈x, y〉V +

∫ t

0

〈Xr, A
∗y〉V dr +

∫ t

0

〈F (r,Xr), y〉V dr

+

∫ t

0

〈Xr, B
∗y〉V dBH

r

+

∫ t

0

αH

∫ T

0

∫ t

r

|v − w|2H−2
〈
UY (v, r)F ′x(r,Xr)D

H
wXr, B

∗y
〉
V

dw dv dr

P - a.s. for all t ∈ [0, T ].
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Remark The condition (5.16) implies that X ∈ D1,4
H (|H|).

The proof of the theorem requires some technical lemmas.

Lemma 5.9 The equalities∫ t

0

∫ r

0

〈
UY (r, v)F (v,Xv), A

∗ζ
〉
V

dv dr

=

∫ t

0

∫ t

v

〈
UY (r, v)F (v,Xv), A

∗ζ
〉
V

dr dv P - a.s. (5.17)

and ∫ t

0

∫ r

0

〈
UY (r, v)F (v,Xv), B

∗ζ
〉
V

dv dBH
r

=

∫ t

0

∫ t

v

〈
UY (r, v)F (v,Xv), B

∗ζ
〉
V

dBH
r dv P - a.s.

hold for any t ∈ [0, T ] and fixed ζ ∈ D∗.

Proof The assumptions of Fubini theorem’s need to be verified. Since∫ t

0

∫ r

0

∣∣〈UY (r, v)F (v,Xv), A
∗ζ
〉
V

∣∣ dv dr

≤
∫ T

0

∫ T

0

CBH (ω)CU‖F (v,Xv)‖V ‖A∗ζ‖V dv dr

≤ K(ω)

∫ T

0

C(v) dv < +∞ P - a.s.,

the standard Fubini theorem may be applied to obtain (5.17).

As in the proof of Lemma 5.5 let

uH(r, v) =
〈
UY (r, v)F (v,Xv), B

∗ζ
〉
V
, 0 ≤ v ≤ r ≤ t,

u(r, v) =
(
K∗HuH( . , v)

)
(r), 0 ≤ v ≤ r ≤ t,

and verify that (i)W, (ii)H and (iii)H hold for the corresponding processes.

First show that u ∈ L2([0, t]2 × Ω), i.e.

E
[∫ t

0

∫ t

0

u2(r, v) dr dv

]
≤ KeE

[∫ t

0

∫ t

0

u2
H(r, v) dr dv

]
≤ KeE

[∫ t

0

∫ t

0

(
CBH (ω)CUC(v)‖B∗ζ‖V

)2
dr dv

]
< +∞,
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and (i)W follows. To prove (ii)H it sufficies to show

max

{
sup
r∈[0,t]

E
[
u2
H(r, v)

]
, sup
r∈[0,t]

sup
w∈[0,t]

E
[
(DH

w uH(r, v))2
]}

< +∞ (5.18)

for a.e. v ∈ [0, t]. Applying

DH
w uH(r, v) =

〈
UY (r, v)F (v,Xv), (B

∗)2ζ
〉
V
I(v,r](w)

+
〈
UY (r, v)F ′x(v,Xv)D

H
wXv, B

∗ζ
〉
V
,

using (5.16)

sup
r∈[0,t]

sup
w∈[0,t]

E
[
(DH

w uH(r, v))2
]

≤ K sup
r∈[0,t]

sup
w∈[0,t]

{
E
[(
CBH (ω)CUC(v)‖(B∗)2ζ‖V

)2]
+ E

[(
CBH (ω)CUC(v)‖DH

wXv‖V ‖B∗ζ‖V
)2]}

≤ K̃C2(v)

(
1 +

(
E [C4

BH (ω)]
)1/2

sup
w∈[0,t]

sup
z∈[0,t]

(
E
[
‖DH

wXz‖4
V

])1/2

)
≤ K̄C2(v) < +∞

and

sup
r∈[0,t]

E
[
u2
H(r, v)

]
≤ E

[(
CBH (ω)CUC(v)‖B∗ζ‖V

)2] ≤ K̄C2(v) < +∞

is obtained for a.e. v ∈ [0, t] which completes the proof of (5.18).

Finally, the previous part of the proof of (5.18) yields

E
[∫ t

0

(∫ t

0

uH(r, v) dBH
r

)2

dv

]
=

∫ t

0

E
[(∫ t

0

uH(r, v) dBH
r

)2
]

dv

≤ CH,2

∫ t

0

(
E
[
‖uH( . , v)‖2

L2([0,t])

]
+ E

[
‖DHuH( . , v)‖2

L2([0,t]2)

])
dv

≤ CH,2

∫ t

0

(t+ t2)K̄C2(v) dv < +∞

and (iii)H follows.

Q.E.D.

The second lemma is based on the basic property of the Skorokhod

integral which can be obtained directly from the definition. Let F̃ ∈ D1,2
H and
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u ∈ Dom δH such that F̃ u and F̃ δH(u) + 〈DHF̃ , u〉H are square integrable.

Then F̃ u ∈ Dom δH and

δH(F̃ u) = F̃ δH(u)− 〈DHF̃ , u〉H. (5.19)

Let
{
ei
}+∞
i=1

be an orthonormal basis in V . Fix i ∈ N and set

Fi =
〈
F (v,Xv), ei

〉
V
, ui(r) =

〈
U∗Y (r, v)B∗ζ, ei

〉
V
I(v,t](r), 0 ≤ v ≤ r ≤ T.

Lemma 5.10 The equality∫ t

v

Fiui(r) dBH
r = Fi

∫ t

v

ui(r) dBH
r

− αH
∫ T

0

∫ t

v

〈
F ′x(v,Xv)D

H
wXv, ei

〉
V
ui(r) dr dw

holds P - a.s. for any 0 ≤ v ≤ t ≤ T , i ∈ N.

Proof Since

DH
w Fi=

〈
F ′x(v,Xv)D

H
wXv, ei

〉
V
, DH

w ui(r)=
〈
U∗Y (r, v)(B∗)2ζ, ei

〉
V
I(v,r](w),

the following estimates

E [F 4
i ] ≤ C4(v) < +∞,

sup
w∈[0,T ]

E
[
|DH

w Fi|2
]
≤ C2(v) sup

w∈[0,T ]

sup
v∈[0,T ]

E ‖DH
wXv‖2

V ≤ CXC
2(v) < +∞,

and

E
[
‖ui‖4

L2([0,T ])

]
≤ K(CU‖B∗ζ‖V )4E [C4

BH (ω)] < +∞,

E
[
‖DHui‖2

L2([0,T ]2)

]
≤ K

(
CU‖(B∗)2ζ‖V

)2E [C2
BH (ω)] < +∞,

hold. Therefore Fi ∈ D1,2
H , ui ∈ D1,2

H (|H|) ⊂ Dom δH and

E [‖Fiui‖2
L2([0,T ])] ≤

(
E [F 4

i ]
)1/2

(
E [‖ui‖4

L2([0,T ])]
)1/2

< +∞,

which implies Fiui ∈ L2(Ω; |H|). Furthermore,

E
[(
FiδH(ui)

)2] ≤ C2(v)E [δ2
H(ui)]

≤ C2(v)CH,2

{
E
[
‖ui‖2

L2([0,T ])

]
+ E

[
‖DHui‖2

L2([0,T ]2)

]}
< +∞
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and

E
[
〈DHFi, ui〉2H

]
= αHE

[(∫ T

0

∫ T

0

|r − w|2H−2(DH
w Fi)ui(r) dr dw

)2
]

≤ αHC
2(v)

(
CU‖B∗ζ‖V

)2
(∫ T

0

∫ T

0

|r − w|2H−2 dr dw
)2

× E
[
C2
BH (ω) sup

w∈[0,T ]

sup
v∈[0,T ]

‖DH
wXv‖2

V

]
≤ KC2(v)

(
E
[
C4
BH (ω)

])1/2
√
CX < +∞,

hence FiδH(ui) + 〈DHFi, ui〉H ∈ L2(Ω) and the assumptions of (5.19) for

Fi and ui are verified. It follows that∫ t

v

Fiui(r) dBH
r = Fi

∫ t

v

ui(r) dBH
r − 〈DHFi, ui〉H

= Fi

∫ t

v

ui(r) dBH
r − αH

∫ T

0

∫ t

v

〈
F ′x(v,Xv)D

H
wXv, ei

〉
V
ui(r) dr dw

P - a.s. for any 0 ≤ v ≤ t ≤ T .

Q.E.D.

The next lemma verifies a limit passage in the Skorokhod integral.

Lemma 5.11 The identity∫ t

v

+∞∑
i=1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dBH
r

=
+∞∑
i=1

∫ t

v

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dBH
r P - a.s.

holds for any 0 ≤ v ≤ t ≤ T and ζ ∈ D∗.

Proof Set

ϕn(r) =
n∑
i=1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V
I(v,t](r), n ∈ N,

ϕ(r) =
+∞∑
i=1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V
I(v,t](r)

=
〈
F (v,Xv), U

∗
Y (r, v)B∗ζ

〉
V
I(v,t](r).
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Then

ϕn−−−−−−−−→n→+∞ ϕ for a.e. (ω, r) ∈ Ω× [0, T ].

Since ϕ ∈ L2
(
Ω× L2([0, T ])

)
and

E
[∫ T

0

(
ϕn(r)− ϕ(r)

)2
dr

]
= E

[∫ T

0

( +∞∑
i=n+1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V
I(v,t](r)

)2

dr

]

≤ E

[∫ T

0

( +∞∑
i=1

〈
F (v,Xv), ei

〉2

V

)( +∞∑
i=1

〈
U∗Y (r, v)B∗ζ, ei

〉2

V

)
dr

]

= E
[∫ T

0

‖F (v,Xv)‖2
V ‖U∗Y (r, v)B∗ζ‖2

V dr

]
≤ C2(v)(CU‖B∗ζ‖V )2TE [C2

BH (ω)] < +∞,

it follows

ϕn−−−−−−−−→n→+∞ ϕ in L2(Ω× [0, T ])

by the Lebesgue dominated convergence theorem.

The proof of Lemma 5.10 yields Fiui ∈ Dom δH for any i ∈ N so that

ϕn ∈ Dom δH . Therefore it sufficies to show that
{∫ T

0
ϕn(r) dBH

r , n ∈ N
}

converges in L2(Ω). This will be proved when one checks that {DHϕn, n ∈

N} is convergent in L2
(
Ω× [0, T ]2

)
because

E
[(∫ T

0

(
ϕn(r)− ϕm(r)

)
dBH

r

)2
]

≤ CH,2
{
E
[
‖ϕn − ϕm‖2

L2([0,T ])

]
+ E

[
‖DH

(
ϕn − ϕm

)
‖2
L2([0,T ]2)

]}
and {ϕn, n ∈ N} is a Cauchy sequence in L2(Ω× [0, T ]).

Note that

DH
w ϕn(r) = DH

w ϕ
1
n(r) +DH

w ϕ
2
n(r)

=
n∑
i=1

〈
F ′x(v,Xv)D

H
wXv, ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V
I(v,t](r)

+
n∑
i=1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)(B∗)2ζ, ei

〉
V
I(v,r](w)
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and

DH
w ϕ

1
n(r)−−−−−−−−→

n→+∞

〈
F ′x(v,Xv)D

H
wXv, U

∗
Y (r, v)B∗ζ

〉
V
I(v,t](r)

DH
w ϕ

2
n(r)−−−−−−−−→

n→+∞

〈
F (v,Xv), U

∗
Y (r, v)(B∗)2ζ

〉
V
I(v,r](w)

almost everywhere on Ω× [0, T ]2. Hence

E
[∫ T

0

∫ T

0

(
DH
w ϕ

1
n(r)

)2
dw dr

]
≤ E

[∫ T

0

∫ T

0

(+∞∑
i=1

〈
F ′x(v,Xv)D

H
wXv, ei

〉2

V

)(+∞∑
i=1

〈
U∗Y (r, v)B∗ζ, ei

〉2

V

)
dw dr

]

= E
[∫ T

0

∫ T

0

∥∥F ′x(v,Xv)D
H
wXv

∥∥2

V

∥∥U∗Y (r, v)B∗ζ
∥∥2

V
dw dr

]
≤ C2(v)

(
CU‖B∗ζ‖V

)2
T 2
√
CX
(
E
[
C4
BH (ω)

])1/2
< +∞

and

E
[∫ T

0

∫ T

0

(
DH
w ϕ

2
n(r)

)2
dw dr

]
≤ E

[∫ T

0

∫ T

0

∥∥F (v,Xv)
∥∥2

V

∥∥U∗Y (r, v)(B∗)2ζ
∥∥2

V
dw dr

]
≤ C2(v)

(
CU‖(B∗)2ζ‖V

)2
T 2E

[
C2
BH (ω)

]
< +∞.

Therefore {DHϕn, n ∈ N} is convergent in L2
(
Ω×[0, T ]2

)
by the Lebesgue

dominated convergence theorem and the assertion follows by the closed-

ness of the Skorokhod integral.

Q.E.D.

In the last lemma Lemma 5.10 and Lemma 5.11 are merged.

Lemma 5.12 Under the assumptions of Theorem 5.8 the equality∫ t

v

〈
F (v,Xv), U

∗
Y (r, v)B∗ζ

〉
V

dBH
r =

〈
F (v,Xv),

∫ t

v

U∗Y (r, v)B∗ζ dBH
r

〉
V

− αH
∫ T

0

∫ t

v

|r − w|2H−2
〈
UY (r, v)F ′(v,Xv)D

H
wXv, B

∗ζ
〉
V

dr dw

holds P - a.s. for any 0 ≤ v ≤ t ≤ T and ζ ∈ D∗.
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Proof Let
{
ei
}+∞
i=1

be an orthonormal basis in V . Using Lemma 5.11 and

Lemma 5.10 it follows∫ t

v

〈
F (v,Xv), U

∗
Y (r, v)B∗ζ

〉
V

dBH
r

=

∫ t

v

+∞∑
i=1

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dBH
r

=
+∞∑
i=1

∫ t

v

〈
F (v,Xv), ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dBH
r

=
+∞∑
i=1

〈
F (v,Xv), ei

〉 ∫ t

v

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dBH
r

− αH
+∞∑
i=1

∫ T

0

∫ t

v

|r − w|2H−2

×
〈
F ′x(v,Xv)D

H
wXv, ei

〉
V

〈
U∗Y (r, v)B∗ζ, ei

〉
V

dr dw

=

〈
F (v,Xv),

∫ t

v

U∗Y (r, v)B∗ζ dBH
r

〉
V

− αH
∫ T

0

∫ t

v

|r − w|2H−2
〈
UY (r, v)F ′x(v,Xv)D

H
wXv, B

∗ζ
〉
V

dr dw

P - a.s. for any 0 ≤ v ≤ t ≤ T .

Q.E.D.

Proof of Theorem 5.8 Fix ζ ∈ D∗. Similarly as in the proof of Theorem 5.4

applying Lemma 5.9 the equality∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V +

∫ t

0

∫ t

v

〈
UY (r, v)F (v,Xv), A

∗ζ
〉
V

dr dv

+

∫ t

0

∫ t

v

〈
UY (r, v)F (v,Xv), B

∗ζ
〉
V

dBH
r dv P - a.s.

is obtained for any t ∈ [0, T ].

Note that {UY (t, s)x, 0 ≤ s ≤ t ≤ T} as a weak solution to the equa-

tion (4.1) satisfies

〈UY (t, v)x, ζ〉V = 〈x, ζ〉V +

〈
x,

∫ t

v

U∗Y (r, v)A∗ζ dr

〉
V

+

〈
x,

∫ t

v

U∗Y (r, v)B∗ζ dBH
r

〉
V

P - a.s.
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for any 0 ≤ v ≤ t ≤ T . By Lemma 5.12 it follows∫ t

0

〈Xr, A
∗ζ〉V dr +

∫ t

0

〈Xr, B
∗ζ〉V dBH

r

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V +

∫ t

0

〈
F (v,Xv),

∫ t

v

U∗Y (r, v)A∗ζ dr

〉
V

dv

+

∫ t

0

〈
F (v,Xv),

∫ t

v

U∗Y (r, v)B∗ζ dBH
r

〉
V

dv

−
∫ t

0

αH

∫ T

0

∫ t

v

|r − w|2H−2
〈
UY (r, v)F ′x(v,Xv)D

H
wXv, B

∗ζ
〉
V

dr dw dv

= 〈UY (t, 0)x, ζ〉V − 〈x, ζ〉V

+

∫ t

0

(〈
UY (t, v)F (v,Xv), ζ

〉
V
− 〈F (v,Xv), ζ〉V

)
dv

−
∫ t

0

αH

∫ T

0

∫ t

v

|r − w|2H−2
〈
UY (r, v)F ′x(v,Xv)D

H
wXv, B

∗ζ
〉
V

dr dw dv

= 〈Xt, ζ〉V − 〈x, ζ〉V −
∫ t

0

〈F (v,Xv), ζ〉V dv

−
∫ t

0

αH

∫ T

0

∫ t

v

|r − w|2H−2
〈
UY (r, v)F ′x(v,Xv)D

H
wXv, B

∗ζ
〉
V

dr dw dv

P - a.s. for any t ∈ [0, T ] and the assertion holds.

Q.E.D.
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Conclusion

Stochastic differential equations with a multiplicative fractional noise in

a separable Hilbert space were studied using the semigroup approach. An

explicit formula for a solution to the linear equation was given. The regular

case H > 1/2 provides all types of solution depending on the choice of initial

value (Theorem 2.4) contrary to the singular case H < 1/2 which admits

only a weak solution (Theorem 2.6). An application of these theorems was

illustrated on several examples in Chapter 3. Moreover, the large time

behaviour of the solution was studied.

While the linear problem is an expected generalization of results ob-

tained in [8] for a Wiener case, the nonlinear perturbation of a drift part

seems to be more complicated and studying of this problem does not give an

expected result inspired by the corresponding equation in [5] with a Wiener

process.

The regular case H > 1/2 and a solution UY to the linear equation

starting from any time (not only from zero), Theorem 4.2, were considered.

Then a ”mild” formulation of the nonlinear problem using this solution

(Theorem 5.1) implies a weak one only for a space independent perturba-

tion (Theorem 5.4). When a space dependent perturbation is assumed, the

”mild” formulation implies an integral weak formulation with added term

(Theorem 5.8).

As it was shown in Example 5.6, if UY is replaced by other family of

operators, the ”mild” formulation implies a weak one for a perturbation
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depending on a solution. Therefore there is a natural question whether it is

possible to find some ”mild” formulation (using some unknown UY ) which

would imply the weak one.
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List of Abbreviations

L(V ) the space of all linear bounded operators from V to V

L(D;V ) the space of all linear bounded operators from D to V

C([0, T ];V ) the space of all continuous functions from the interval

[0, T ] to V

C∞b (Rn) the space of all Rn-valued functions which are bounded

with all their partial derivatives

(−A(0))α the fractional power of the operator − A(0) defined for

any α ∈ (0, 1]

DH derivative operator (Malliavin derivative) with respect

to fractional Brownian motion

D1,p
H the Sobolev space associated with Malliavin derivative

DH(domain of DH), p ≥ 1

DW derivative operator (Malliavin derivative) with respect

to Wiener process

D1,2
W the Sobolev space associated with DW (domain of DW )

Dom δH the domain of the Skorokhod integral with respect to

fractional Brownian motion

Dom δW the domain of the Skorokhod integral with respect to

Wiener process

B(a, b) the Beta function, a > 0, b > 0
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