
Charles University in Prague
Faculty of Mathematics and Physics

MASTER THESIS

Soběslav Benda

Vzájemný převod mezi XSEM PSM
diagramy a jazykem Schematron

Department of Software Engineering
Malostranské náměst́ı 25
Prague, Czech Republic

Supervisor: RNDr. Jakub Kĺımek

Branch I2: Software Systems

2012

I would like to thank to my supervisor Jakub Kĺımek for his suggestions,
thorough notes and text corrections. I am also grateful to Rick Jelliffe for
answering questions regarding Schematron.

I hereby declare that I have written this thesis on my own and using exclu-
sively the cited sources. I authorize the Charles University in Prague to lend
this document to other institutions and individuals for academic or research
purposes.

In Prague on April 13, 2012 Soběslav Benda

2

Contents

1 Introduction 7
1.1 Motivation . 8
1.2 Aim of this thesis . 10
1.3 Outline . 10

2 Conceptual model for XML 11
2.1 PIM schema . 12

2.1.1 Components . 12
2.1.2 PIM formalism . 13

2.2 PSM schema . 13
2.2.1 Components . 14
2.2.2 PSM formalism . 16
2.2.3 Semantic views . 18

2.3 Use cases . 21
2.3.1 Forward-engineering 21
2.3.2 Reverse-engineering 21

2.4 Implementations . 22
2.4.1 XCase . 22
2.4.2 eXolutio . 22

3 Schematron 24
3.1 Schematron schema . 25

3.1.1 Core constructs . 25
3.1.2 Underlaying query language 27
3.1.3 Ancillary constructs 27
3.1.4 Validation . 30

3.2 Implementations . 31
3.2.1 XSLT validation . 31
3.2.2 Special libraries . 32

3.3 Schematron properties . 32
3.3.1 Platform independence 32
3.3.2 Expressive power . 32
3.3.3 Validation diagnostics 36

3

3.3.4 Validation workflows 37
3.3.5 Validation performance 38

4 Related work 39
4.1 Translations between PSM schemas and XML schemas . . . 39
4.2 Translations among XML schemas 40

4.2.1 From XSD to Schematron 41
4.2.2 From Schematron to XSD 43

5 From PSM to Schematron 47
5.1 Overall view of the translation 48

5.1.1 Additional functions 49
5.1.2 Preconditions . 50

5.2 Allowed root element names 50
5.2.1 Absorbing pattern 50
5.2.2 Pattern for allowed root elements 51

5.3 Allowed names . 52
5.3.1 Pattern for allowed element names 52
5.3.2 Pattern for allowed attribute names 53

5.4 Allowed contexts . 53
5.4.1 Paths overview . 54
5.4.2 Paths construction 56
5.4.3 Pattern for allowed element contexts 61
5.4.4 Pattern for allowed attribute contexts 61

5.5 Required structural constraints 62
5.5.1 Conditional pattern 62
5.5.2 Boolean expressions overview 64
5.5.3 From complex content to boolean expression 65
5.5.4 From boolean expression to CNF 71
5.5.5 Patterns for structural constraints 71

5.6 Required sibling relationships 73
5.6.1 Automatons overview 73
5.6.2 From complex content to regular expression 74
5.6.3 From regular expression to DFA 77
5.6.4 From DFA to Schematron 78
5.6.5 Pattern for required sibling relationships 78

5.7 Required text restrictions 78
5.8 Conclusions . 79

5.8.1 Numeric constrains 79
5.8.2 Main contributions 80

4

6 Implementation 82
6.1 User’s view . 82
6.2 Programmer’s view . 83

7 From Schematron to PSM 85
7.1 Translating Schematron-ish grammars 87
7.2 Translating Schematron . 88

7.2.1 Preprocessing . 88
7.2.2 Analysis of patterns 89
7.2.3 Analysis of rules . 90

7.3 Conclusions . 92

8 Conclusions 93
8.1 Future work . 94

8.1.1 From PSM to Schematron 94
8.1.2 From Schematron to PSM 95

9 CD contents 96

Bibliography 97

A Schematron schemas 101
A.1 Validation diagnostics (Example 3.10) 101
A.2 Allowed contexts (Example 5.8) 103
A.3 Structural constraints (Example 5.20) 105
A.4 Sibling relationships (Example 5.25) 106
A.5 Open schemas (Example 5.26) 108

B Schematron data types 111
B.1 Strings . 111
B.2 Booleans . 112
B.3 Real numbers . 112
B.4 Integers . 112

5

Název práce: Vzájemný převod mezi XSEM PSM diagramy a jazykem Schema-
tron
Autor: Soběslav Benda
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. Jakub Kĺımek

Abstrakt: V předložené práci studujeme možnosti v oblasti automatické kon-
strukce Schematron schémat z konceptuálńıho modelu pro XML a možnosti
reverzńıho inženýrstv́ı Schematron schémat. Práce uvád́ı čtenáře do kon-
ceptuálńıch schémat pro XML a do validace XML dokument̊u založené na
pravidlech. Existuj́ıćı techniky pro vzájemné převody mezi jazyky pro popis
XML schémat a konceptuálńım modelem jsou také zahrnuty. Hlavńı část́ı
práce je návrh a implementace nové metody pro odvozováńı schémat v jazyce
Schematron z konceptuálńıch schémat pro XML. Tato metoda umožňuje
źıskat schémata pro XML, která v některých ohledech předč́ı možnosti jiných
populárńıch jazyk̊u pro popis XML schémat. V práci je dále diskutována
problematika reverzńıho inženýrstv́ı schémat v jazyce Schematron a jsou
ukázány možnosti v této oblasti poskytuj́ıćı základ pro daľśı výzkum.

Kĺıčová slova: XML, konceptuálńı modelováńı, Schematron, překlad

Title: Mutual conversion between XSEM PSM diagrams and Schematron
language
Author: Soběslav Benda
Department: Department of Software Engineering
Supervisor: RNDr. Jakub Kĺımek

Abstract: In the present work we study possibilities in the area of automatic
construction of Schematron schemas from a conceptual model for XML and
possibilities in reverse-engineering of Schematron schemas. The work intro-
duces the reader to conceptual schemas for XML and to rule-based valida-
tion of XML documents. Existing techniques for mutual conversions between
XML schema languages and conceptual model are also included. The main
part of the work is a design and implementation of a new method for de-
riving Schematron schemas from conceptual schemas for XML. This method
allows to get XML schemas, which in some respects outperforms the possibil-
ities of other popular schema languages. The work also discusses the issue of
Schematron schema reverse-engineering and shows possibilities in the area
and establishing basis for further research.

Keywords: XML, conceptual modeling, Schematron, translation

6

Chapter 1

Introduction

At present time, the eXtensible Markup Language (XML) [34] finds its appli-
cation in solving many problems in practice. One of the typical applications
is a platform independent data exchange between software components, e.g.
loosely coupled services. These services communicate using XML messages
that contain structured data. Before messages can be exchanged, communi-
cation partners must agree on the used XML formats, i.e. how the exchanged
XML documents may be formatted.

A specification of an XML format is an XML schema - a collection of
rules, which corresponding XML documents must satisfy. For schemas, spe-
cial programs called validators that can automatically verify the validity of
XML documents against schemas are constructed. They check whether a
document complies to the rules specified in the schema. We call this pro-
cess XML document validation. There is a number of declarative languages
called XML schema languages used for description of schemas. The aim of
these languages is to simplify the creation, maintenance, readability and
portability of schemas.

The popular and standardized schema languages are Document Type
Definition (DTD) [34], W3C XML Schema Definition Language (XSD) [7]
and REgular LAnguage for XML Next Generation (Relax NG) [10]. These
languages have differences in some features, e.g. expressive power, syntax
complexity, object-oriented design, etc. A common feature of these languages
is their formal background which is a Regular Tree Grammar (RTG) [23].
RTG determines the maximum expressive power and gives instructions for
the construction of validators. Commonly, we call these languages grammar-
based schema languages or grammars for short.

However, it is possible to express XML schemas in other languages that
are not based on RTG. An example of such language is Schematron [8], which
was also standardized. Briefly, Schematron allows description of a schema
using an XML Path Language (XPath) [11] conditions, that are evaluated
over a given XML document during validation. This option brings interesting

7

consequences for the validation of XML documents.
Presently, advanced approaches to the design of XML schemas are also

being examined. One possible approach is a Platform-Specific Model (PSM)
- a part of a conceptual model for XML [28]. PSM allows to create and edit
XML formats via user-friendly diagrams. These diagrams allow to visual-
ize XML schemas in a human understandable form and also allow mapping
to a non-hierarchical Platform-Independent conceptual Model (PIM), e.g.
a schema of a company information domain. This mapping provides many
advantages, such as maintenance of links between concepts from conceptual
model and their representations in XML formats. PSM schema can be auto-
matically converted to XML schema language. In reverse, an existing XML
schema can be automatically converted to PSM schema for visualization
and then it can be semi-automatically mapped to the PIM schema of the
conceptual model. [15].

Schematron may be used as an XML schema language. Therefore, auto-
matic conversion between Schematron schemas and PSM schemas and vice
versa may be found.

1.1 Motivation

Grammar-based schemas are popular because they allow to describe the
schema with user-understandable declarations which allow to easily express
the structure of an XML element, i.e. which child elements it can have, how
these elements are arranged, etc. Furthemore, there exist efficient validation
algorithms [23] that facilitate the construction of special validators. When
using grammars, we can however encounter several practical drawbacks. The
main drawback is the result of the validation. Grammar validation is based
on the assumtion that the validator output is only true or false, resp. valid or
invalid. If the document is invalid, we are naturaly wondering what is wrong
with the document. Some validators return built-in error messages. However,
these messages are often incomprehensible, misleading and do not provide
quality diagnostics [24], so often it is not possible to pass them directly to a
user interface.

Schematron is often referred to as a language for description of integrity
constraints [23]. But it seems that using Schematron, it is possible to describe
most if not all constraints that can be expressed by grammars. Moreover, it
is possible to describe a lots kinds of details and other structural constraints
that we can not express using grammars.

We are motivated to use Schematron validation, rather than grammar-
based validation (e.g. using XSD) due to following reasons:

• We can describe restrictions which can not be expressed using XSD,
e.g. choices among attributes.

8

• For validation of XML documents a specific validator is not needed,
it is sufficient to have an eXtensible Stylesheet Language Transfor-
mations (XSLT) [9] processor which is implemented in many software
environments such as web browsers.

• On the Schematron schema level it is possible to specify what mes-
sages a validator returns. This feature allows to customize messages
according to the modeled domain or to localize them to the user’s
native language, so it is possible to pass validator results to the user
interface.

• Grammar validation process is usually interrupted when the valida-
tor detects a problem in the given XML document. Validation using
Schematron allows to return as much information as possible about
what is wrong in the document.

• Schematron is an open-by-default schema, which allows the implemen-
tation of a weaker form of validation and design of other kinds of XML
formats, unlike rigorous grammars.

• Schematron provides phases mechanism that allows to organize schema
into multiple parts and to give the user an option to choose which
parts of the schema have to be used for validation. The use of this
mechanism has the potential for many practical cases, e.g. when a
schema has multiple versions.

• There are other advantages when using Schematron. Briefly, the pos-
siblity of specification of multiple XML structures in a single schema,
excellent support for XML namespaces, reporting of the occurrence of
optional elements and attributes, etc.

Some commercial sources [13] report that based on the above mentioned
reasons, some customers require their implementation using Schematron val-
idation only, rather than using XSD.

The main disadvantage of Schematron schemas is their verbosity and
complexity, because they usually consist of a large number of groups of
XPath expressions, that are mutually complementary, i.e. we need multi-
ple XPath expressions to express what one construct in grammar-based
languages expresses. This can cause incomprehensible schemas and errors
during maintenance in practice.

For these reasons, we are interested in designing methods for an au-
tomatic construction of Schematron schemas from PSM schemas and vice
versa.

9

1.2 Aim of this thesis

A PSM schema models XML formats in a user-friendly way with possible
links to a conceptual model. Schematron is a low-level validation language
use of which is in some respects more convenient than using grammar-based
schemas like XSD. For these reasons, we present methods for automatic
conversion of PSM schemas to Schematron schemas. Since Schematron does
not have an underlying formalism that would allow to prove its expressive
power, the conversion is not as obvious as the PSM to XSD conversion, be-
cause Schematron is completely different. Moreover, the area of Schematron
schemas generation is not so much explored. The first aim of this thesis is
to research basic methods for generating Schematron schemas from PSM
schemas.

In reverse, we investigate the possibilities of automatic construction of
PSM schemas from existing Schematron schemas so we can present the XML
schema described in Schematron in a user-friendly way with the possibility
of creating links to the platform-independent schema. Therefore, the second
aim of this thesis is to research basic methods for reverse-engineering of PSM
schemas from XML schemas written in Schematron.

1.3 Outline

The rest of this thesis is organized as follows. In Chapter 2, we specify Con-
ceptual model for XML and its implementations. In Chapter 3, we specify
Schematron schema and its implementations. We also compare Schematron
with other schema languages. In Chapter 4, we discuss the related work by
surveying approaches in the area. In Chapter 5, we present a method for
automatic conversion of PSM schemas to Schematron schemas. We provide
the ideas, design and algorithms in a form of pseudo-code. In Chapter 6, we
describe our prototype implementation. In Chapter 7, we discuss a methods
for translating Schematron schemas to PSM schemas. Finally, Chapter 8
concludes and provides future direction of research in the area.

10

Chapter 2

Conceptual model for XML

A conceptual model for XML is based on an idea of designing XML schemas
from a conceptual schema and respects terminology and principles of Model-
Driven Architecture (MDA) [22]. It is composed from two interconnected lev-
els: Platform-Independent Model (PIM) and Platform-Specific Model (PSM).
A PIM schema models real-world concepts and relationships between them
and describes the problem domain in a technology-independent way. A PSM
schema models an XML format specification. Concepts present in the XML
format are mapped to the concepts in the PIM schema. Multiple PSM
schemas can be mapped to a single PIM schema. The advantages are clear.
The same concepts can be represented in different formats differently, yet
they are still linked to the same concept in the PIM schema. The links be-
tween the levels allow people (potentially without advanced technical skills)
to understand the semantics behind XML documents. Another advantage is
for example a possibility of automatic propagation of changes between the
levels [27]. Using a PSM schema, we can also specify implementation details
and translate modeled information into a specific XML schema language. In
reverse, from the information represented in the XML schema language, we
can create a PSM schema and integrate it to a conceptual model [17][14],
i.e. map existing XML formats to a PIM schema.

The first version of this model called XSEM was designed in 2008 by
Martin Nečaský [25]. In 2011 the second version [28] was specified. This
version has a formal background, which allows to prove important properties
like expressive power of PSM. In this work, we deal only with this second
version and in this chapter we take over a lot of concepts and definitions
from [28].

This chapter is organized as follows. In Section 2.1, we define a PIM
schema. In Section 2.2, we define a PSM schema and introduce semantic
views. Finally, In Sections 2.3 and 2.4, we describe use cases and implemen-
tations of this conceptual model.

11

2.1 PIM schema

A visualization of a PIM schema is a Unified Modeling Language (UML)
class diagram [30] with some simplifications, e.g. we ignore class operations
because they are not relevant to conceptual modeling of XML. Using UML
constructs like classes, attributes and associations, we can model real-world
concepts and relationships between them. A PIM schema is shown in a non-
hierarchical layout.

Example 2.1. A sample PIM diagram is in Figure 2.1. It models the domain
of purchasing.

Figure 2.1: PIM schema example

2.1.1 Components

A PIM schema contains only three types of components: classes, attributes
and associations.

Class

A PIM class models a real-world concept and it is the basic construct of PIM.
Class C has a name and it can have attributes. Classes can be connected
through associations. For example, in Figure 2.1, there are following classes:
CItem, CPurchase, CStatus, CCustomer and CAddress.

Attribute

A PIM attribute models characteristic or property of the real-world concept
and it belongs to a PIM class. Attribute A has a name, data type and
cardinality. For example, in Figure 2.1, the class CCustomer has the following
attributes: Alogin, Aname, Aphone and Ae-mail.

12

Association

A PIM association models relationship between the real-world concepts and
it connects PIM classes. Association R has cardinality in its two ends and
can have a name. In each end of the association there can be just one class.
For example, in Figure 2.1, the association Rordered says that the customer
made the purchase. The cardinality of its ends specify that a particular
customer has made zero or more purchase orders and a given purchase order
was made by just one customer (if the cardinality is 1..1, it is not displayed).

2.1.2 PIM formalism

Now we introduce PIM schemas formally by Definition 2.1. The definition
is borrowed from [28].

Definition 2.1. A PIM schema is a 9-tuple S = (Sc, Sa, Sr, Se, name,
type, class, participant, card), where:

• Sc is a set of classes in S.

• Sa is a set of attributes in S.

• Sr is a set of binary associations in S. Se is a set of association ends
in S. A binary association is a set R = (E1, E2), where E1, E2 ∈ Se

and E1 6= E2. For any two associations R1, R2 ∈ Sr it must hold that
R1 ∩R2 6= ∅ ⇒ R1 = R2.

• name : assings a name to each class, attribute and association.

• type : assings a data type to each attribute.

• class : assings a class to each attribute.

• participant : assings a class to each association end.

• card : assings a cardinality to each attribute and association end.

The graph (Sc, Sr) with classes as nodes and associations as edges is an
undirected graph.

2.2 PSM schema

A visualization of a PSM schema is also a UML class diagram. Using UML
constructs like classes, attributes and associations, we can model XML ele-
ments, XML attributes and relationships among them. PSM extends UML

13

class diagrams with additional constructs using UML stereotypes, which al-
lows better support for XML modeling. These constructs are represented by
special icons for better clarity. For example, we need a choice among XML
elements. We can assign a special stereotype to a UML class and create a
new construct, which represents a choice content model. This class can be
shown by a special icon. A PSM schema is shown in a tree layout because
it reflects the hierarchical structure of XML data.

Example 2.2. A sample PSM diagram is in Figure 2.2. One of the corre-
sponding XML instances of this modeled XML format is in Figure 2.3.

Figure 2.2: PSM schema example

2.2.1 Components

A PSM schema contains basic UML components like the PIM, but there are
also additional ones for XML specific features. A PSM schema’s shape is a
forest.

Class

A PSM class models XML element content. Class C ′ has a name and it
can have attributes and child associations in its content. For example, in
Figure 2.2, there are following classes: C ′PurchaseSchema, C

′
Purchase, C

′
Item, etc.

14

<purchase date="27.02.2012" version="1">

<item code="A101" tester="SB"/>

<item code="A105">

<amount>2</amount>

<price>120.00</amount>

</item>

<item code="A102" tester="JK"/>

<customer name="Ralls, Kim">

<phone>+420111222333</phone>

<bill-to>

<street>Langgt 23</street>

<city>4000 Stavanger</city>

</bill-to>

<ship-to>

<street>Growler 9</street>

<city>59 Silemore</city>

</ship-to>

</customer>

</purchase>

Figure 2.3: XML document example

The classes are not the only type of nodes in a PSM forest, but only
classes can be root nodes or leaf nodes. The class has at most one parent
association. Every PSM schema has one special root class called schema
class. In Figure 2.2, there is just one root class C ′PurchaseSchema, so it is the
schema class.

The PSM class C ′ can be a structural representative of another class C ′.
The content of modeled by C ′ is extended by the content modeled by class
C ′. It means, that there can be some shared content in a model and recur-
sion is supported. The structural representatives are displayed in blue color
with names of represented classes. For example, in Figure 2.2, C ′ShipToAddress

and C ′BillToAddress are structural representatives of C ′Address. In other words,
C ′Address has structural representans C ′ShipToAddress and C ′BillToAddress.

Attribute

A PSM attribute belongs to a PSM class. Attribute A′ has a name, cardi-
nality, data type and XML form. XML form determines, how an atrribute is
represented in an XML format, i.e. an XML attribute or an XML element.
The name of an attribute is displayed with prefix @ if it is an XML attribute.
For example, in Figure 2.2, the class C ′Customer has the following attributes:

15

A′name, A
′
phone and A′e−mail.

Content model

A PSM content model helps with the modeling of XML formats. Content
model M ′ has parent association and associations in its content. There are
three types of content models: sequence, choice and set. Content models are
displayed as small rounded rectangles with ..., |, {}, for sequence, choice and
set, respectively. In Figure 2.2, there are two content models: Mchoice and
Mset.

Association

A PSM association connects PSM classes and PSM content models. Associ-
ation R′ can have a name and has cardinality in its end. In each end of the
association there can be just one PSM class or just one PSM content model.
For example, in Figure 2.2, there are following associations: Rpurchase, Ritem,
RPurchaseSchema→Address, etc.

2.2.2 PSM formalism

Now we introduce PSM schemas formally by Definition 2.2. The definition
is borrowed from [28], but we provide slightly modified version for our pur-
poses.

Definition 2.2. A PSM schema is a 18-tuple S ′ = (S ′c, S
′
a, S ′r, S

′
e, S

′
m,

C ′S′, name′, type′, class′, xform′, participant′, card′, cmtype′, attributes′,
content′, repr′, aparent′, representants′), where:

• S ′c is a set of classes in S ′.

• S ′a is a set of attributes in S ′.

• S ′m is a set of content models in S ′.

• S ′r is a set of directed binary associations in S ′. S ′e is a set of associ-
ation ends in S ′. A directed binary association is a pair R′ = (E ′1, E

′
2),

where E ′1, E ′2 ∈ S ′e and E ′1 6= E ′2. For any two associations R′1, R
′
2 ∈ S ′r

it must hold that R′1 ∩R′2 6= ∅ ⇒ R′1 = R′2.

• C ′S′ ∈ S ′c is a class called schema class of S ′.

• name′ : assings a name to each class, attribute and association. If
association R′ has an empty name, then name′(R′) = λ and we say
that R′ is unnamed.

16

• type′ : assings a data type to each attribute.

• class′ : assings a class to each attribute.

• participant′ : assings a class or content model to each association end.
For R′ = (E ′1, E

′
2) where X ′ = participant′(E ′1), we call X ′ parent of

R′ and Y ′ = participant′(E ′2) we call Y ′ child of R′. We also use
functions: parent′(R′) = X ′, resp. child′(R′) = Y ′.

• xform′ : assings an XML form to each attribute. It specifies the XML
representation of an attribute A′ using an XML element declaration
with a simple content xform′(A′) = e or an XML attribute declaration
xform′(A′) = a, respectively.

• card′ : assings a cardinality N..M to each attribute and association.
The function lower′ assings N , resp. the function upper′ assings M to
each attribute and association.

• cmtype′ : assings a content model type to each content model M ′. We
distinguish 3 types: cmtype′(M ′) ∈ {sequence, choice, set}.

• attribute′ : assings an ordered sequence of distinct attributes to each
class.

• content′ : assings an ordered sequence of distinct associations to each
class or content model.

• repr′ : assings a class C ′ to another class C ′ where C ′ is called struc-
tural representative of C ′. Neither C ′, nor C ′ can be the schema class.
We call C ′ represented class.

• aparent′: assigns an association R′ to each class or content model X ′

where child′(R′) = X ′.

• representants′: assings a set of structural representatives to each class.

The graph (S ′c∪S ′m, S ′r) with classes and content models as nodes and associ-
ations as directed edges must be a directed forest with one of its trees rooted
in the schema class C ′S′.

We will use this formalism for introduction of translation methods. For
lighter explanation, see Example 2.3.

Example 2.3. All the following examples are valid in Figure 2.2:

• name′(R′purchase) = purchase

• name′(R′PurchaseSchema→Address) = λ

17

• type′(A′version) = int

• class′(A′version) = C ′Purchase

• child′(R′purchase) = C ′Purchase

• xform′(A′date) = a

• xform′(A′street) = e

• card′(R′item) = 1..∗

• attribute′(C ′Purchase) = {A′date, A′version}

• content′(M ′
set) = {R′ship-to, R′bill-to}

• repr′(C ′ShipToAddress) = C ′Address

• aparent′(C ′Purchase) = R′purchase

• representants′(C ′Address) = {C ′ShipToAddress, C
′
BillToAddress}

2.2.3 Semantic views

We can see a PSM schema semantics from more perspectives. The article [28]
shows two main perspectives: conceptual and grammatical.

Conceptual perspective

From the conceptual point of view, a PSM schema is mapped to a part of
a PIM schema. PSM classes, attributes and associations may be mapped to
PIM classes, attributes and associations. In other words, the mapping spec-
ifies the semantics of the PSM schema (modeled XML format) in terms of
the PIM schema. The PSM-specific constructs: schema class, content models
and their types, XML form, ordering on attributes of a class and associa-
tions with the class as their parent, and structural representatives have no
meaning from the conceptual perspective.

We do not specify this mapping formally in this thesis, because it is not
important for this work. At least we demonstrate it intuitively in Exam-
ple 2.4) with our PIM and PSM schemas in Figures 2.1 and 2.2.

Example 2.4. For example, the PSM class C ′Customer is mapped to PIM
class CCustomer. Similary, the PSM attribute A′name of C ′Customer is mapped
to PIM attribute Aname of CCustomer and the PSM association R′ship-to is
mapped to PIM association Rship-to. There are also components which are
not mapped, for example PSM attribute A′tester of C ′ItemTester is not mapped.
These components have no semantics in the sense of PIM schema, but they
are necessary for modeled XML format.

18

Grammatical perspective

From the grammatical point of view, a PSM schema models a regular tree
grammar (see Definition 2.3).

Definition 2.3. A RTG is a 4-tuple G = (N , T , S, P), where:

• N is a finite set of non-terminals. A non-terminal represents an XML
element or an XML attribute declaration.

• T is a finite set of terminals. A terminal represents a name of an
XML element or an XML attribute.

• S ⊆ N is a set of initial non-terminals. An initial non-terminal rep-
resents a declaration of a root XML element.

• P is a set of rewriting rules, which represent grammatical infrastruc-
ture. These rules are in one of the following forms:

– Z→ @t[D], where Z ∈ N , t ∈ T and D is a data type. Z is called
XML attribute declaration.

– Z → t[D], where Z ∈ N , t ∈ T and D is a data type. Z is called
XML element declaration with a simple content.

– Z → t[re], where Z ∈ N , t ∈ T and re is a regular expression
over N . Z is called XML element declaration with a complex
content.

A regular expression re on the right-hand side of the rewriting rules in
Definition 2.3 is a general regular expression with numeric intervals and
content model SET, which represents all permutations of members of SET.

We do not describe formally mapping of a PSM schema to regular tree
grammar (see description in article [28]), at least we less formally provide
mapping rules:

1. Only a child class of the schema class may model an initial non-termial,
when its parent association is named and it has cardinality 1..1.

2. An attribute may model only an XML attribute declaration or an XML
element declaration with a simple content, i.e. simple element.

3. A class may model only an XML element declaration with a complex
content, i.e. complex element if it is a child of a named association.

4. A regular expression of the XML element declaration must correspond
to the content of class. If the class is not a child of a named association,
it does not model any non-terminal, because it only represents a part
of a modeled content.

19

Example 2.5. The PSM schema in Figure 2.2 models the following regular
tree grammar.

• N = {PURCHASE,DATE,VERSION,ITEM,CUSTOMER,CODE,AMOUNT,
PRICE,TESTER,NAME,PHONE,E-MAIL,SHIP-TO,BILL-TO,STREET,

CITY,GPS}

• T = {date,version,item,customer,code,amount,price,tester,
name,e-mail,ship-to,bill-to,street,city,gps}

• S = {PURCHASE}

• P = {

– PURCHASE → purchase[DATE,VERSION,ITEM 1..*,

CUSTOMER],

– DATE → @date[],

– VERSION → @version[int],

– ITEM → item[CODE,((AMOUNT,PRICE)|TESTER)],

– CUSTOMER → customer[NAME,PHONE 1..3,E-MAIL 0..1,

{SHIP-TO,BILL-TO 0..2}],
– CODE → @code[ID],

– AMOUNT → amount[int],

– PRICE → price[double],

– TESTER → @tester[],

– NAME → @name[],

– PHONE → phone[],

– E-MAIL → e-mail[],

– SHIP-TO → ship-to[STREET,CITY,GPS],

– BILL-TO → bill-to[STREET,CITY],

– STREET → street[],

– CITY → city[],

– GPS → gps[]

}

The article [23] provides description of grammatical interpretation against
a regular tree grammar, i.e. algorithms for validation of XML documents
against grammatical structural constraints and also it proves that popular

20

languages like DTD, XSD and Relax NG are other representations of reg-
ular tree grammar, resp. its restricted subclasses. The article [28] provides
formally description of mutual conversion between a PSM schema and a
RTG, so we can translate PSM schema to these schema languages under
certain assumptions (e.g. DTD does not support numeric intervals in com-
plex elements, XSD does not support choices among attributes, etc.). The
used translation method is not important, but the produced schema must
accept the same language (class of XML documents) as a modeled regular
tree grammar, resp. its subclass.

2.3 Use cases

In this section, we describe two main use cases of the system, which im-
plements introduced conceptual model. From a designer point of view, we
can classify two approaches to this system. It is forward-engineering and
reverse-engineering.

2.3.1 Forward-engineering

Firstly, the designer analyzes the problem domain and creates a PIM schema,
which can be agreeded by involved stake-holders. Secondly, the designer
analyzes required XML formats which will be applied for representation of
PIM concepts and create corresponding PSM schemas. Then, the designer
identifies the corresponding part of the PIM schema and creates a PSM
schema which is mapped to the PIM schema by the used tool during the
creation process. Finally, the PSM schema is automatically translated into
a selected XML schema language.

Note that we are interested in this work only with the last step of this
process, i.e. translation information form PSM schema to XML schema lan-
guage.

2.3.2 Reverse-engineering

Firstly, we have XML schemas written in some schema language. Secondly,
we want to integrate XML formats described by these schemas into our
solution, because we want to create PSM schemas visualization of XML
schemas and potentially map information to existing or new PIM schema.
In this case the XML schema is automatically converted to a corresponding
PSM schema, i.e. the PSM schema is constructed from the XML schema.
Then, we can map the PSM schema to the PIM schema using semi-automatic
methods.

21

Note that in this work, we are only interested in the step where we con-
struct PSM schema from the given XML schema written in certain schema
language.

2.4 Implementations

The introduced conceptual model for XML has also implementations, which
are continuously built to prove the new models and algorithms. Presently,
there are two tools: XCase - Tool for XML Data Modeling and eXolutio -
XML Data Modeling and Evolution Tool.

2.4.1 XCase

The first tool which utilizes the first version of this conceptual model is called
XCase1, which is available to the community as a free open-source software.
XCase contains a full-fledged UML editor with extended constructs for XML
data modeling. This is the first tool for conceptual modeling of XML with
introduced possibilities, i.e. mapping of an XML format specification to a
conceptual schema.

User work is organized into projects, where each project has a PIM
schema and several PSM schemas for creating and editing XML format
specifications. XCase enables translation from a PSM schema into an XSD
schema. Reverse-engineering of existing XSD schemas into PSM schemas
have been also implemented. XCase is also known for its independency on
XML schema languages, but PSM schemas mostly resemble XSD schemas,
resp. their UML visualisations.

2.4.2 eXolutio

The second tool is based on the first ideas of XCase implementation, but
it is complete updated for the last version of introduced conceptual model.
This tool is called eXolutio2 and it is developed as the smart client like
XCase, but also as the web application. This tool is fully compliant with
the formal definitions presented in Definitions 2.1 and 2.2 and it also pro-
vides better possibilities for changes and their propagations between PIM
and PSM schemas, XML schema evolution, integration and XML document
generation and revalidation.

Presently, the tool provides translation from a PSM schema into an XSD
schema and translation from a PSM schema into a RTG. However, it is
implemented that we can translate a PSM schema into a RTG, so we can

1http://xcase.codeplex.com/
2http://exolutio.com

22

http://xcase.codeplex.com/
http://exolutio.com

generate XML schemas described in various (grammar-based) schema lan-
guages under certain assumptions.

From the programmer’s point of view, it is easy to use eXolutio’s loosely
coupled constructs (e.g. PSM schema representation) and extend the system
with other functionalities.

Note that all PIM and PSM diagrams presented in this work are created
using eXolutio tool.

23

Chapter 3

Schematron

Schematron is a declarative language which represents a class of computer
languages called rule-based XML schema languages. These languages are not
based on construction of grammatical infrastructure but on a lower-level
approach which allows to describe constraints using rules that resemble if-
then-else statements. These languages have the finest granularity of control
over how an instance document may look like [36]. We can see constructs of
other schema languages as a syntactical sugar of certain sets of rule-based
conditions.

Example 3.1. Consider a specification of a complex element using DTD
declaration <!ELEMENT purchase (item+,customer?)>. In Schematron, it
is possible to describe this semantics and cover valid instances using various
intuitive conditions, for example: If purchase element exists, the element
can only have an item and a customer elements as children and an item

element has at least one occurrence and a customer element has zero or one
occurrence. If a customer element exists as a child element of a purchase

element, then the customer element has no following sibling elements.

Schematron was designed in 1999 by Rick Jelliffe. This language was
standardized in 2005 as ISO Schematron [8]. In this work, we deal only with
this version, because previous versions of Schematron (1.X) are now marked
as obsolete.

Schematron is not a standalone language. It is a general framework which
allows to organize conditions which are evaluated over the given documents.
These conditions are described using an underlaying XML query language.
The result of validation is a report which contains information about evalu-
ation of these conditions. In this work, we deal only with the default imple-
mentation - XPath query language.

In this chapter, we describe Schematron and its properties relevant for
this work. It is organized as follows. In Section 3.1, we specify syntax and se-
mantics of Schematron schemas. In Section 3.2, we describe existing Schema-

24

tron implementations. Finally, we compare Schematron properties with other
schema languages in Section 3.3.

3.1 Schematron schema

Schematron is an XML-based language, so every valid schema is a well-
formed XML document. Schematron provides relatively small amount of
elements and attributes for schema description. In this work, we deal espe-
cially with a subset (see Figure 3.1) of ISO Schematron grammar.

<!ELEMENT schema (pattern+)>

<!ELEMENT pattern (rule*)>

<!ELEMENT rule (assert|report)+>

<!ELEMENT assert #PCDATA>

<!ELEMENT report #PCDATA>

<!ATTLIST rule context CDATA #REQUIRED>

<!ATTLIST assert test CDATA #REQUIRED>

<!ATTLIST report test CDATA #REQUIRED>

Figure 3.1: DTD representation of the grammar of Schematron

This minimal grammar is important for XML document validation. There
are some other constructs in the Schematron specification which improve
schemas and validation results, but most of them we can resolve before
validation and translate them into equivalent constructs that respect this
minimal grammar. Moreover, some of these constructs are implementation
dependent, e.g. on the used underlaying query language.

3.1.1 Core constructs

In this section, we describe core constructs from grammar in Figure 3.1.

Schema

The root element of every schema is a schema element introducing the re-
quired XML namespace: http://purl.oclc.org/dsdl/schematron.

Pattern

A pattern is a basic building stone for expressing an ordered collection of
Schematron conditions. Conditions are ordered in XML document order. A
pattern is represented using a pattern element.

25

Rule

A rule is a Schematron condition which allows to specify a selection of some
nodes from a given document and evaluation of some predicates in the con-
texts of these nodes. A rule is represented using a rule element with a
required context attribute used for an expression in the underlaying query
language. The value of the context attribute is commonly called path. Pred-
icates are specified using a collection of assertions.

Assertion

An assertion is a predicate which can be positive or negative. An assertion
is represented using the assert and report elements. Both elements have a
required test attribute for specification of a predicate using the underlay-
ing query language. Both elements also have a text content called natural-
assertion. Natural-assertion is a message in a natural language, which a
validator can return in the validation report.

A positive predicate is represented using an assert element and if it is
evaluated as false, we say that the assert is violated and the document is
invalid.

Example 3.2. A pattern in Figure 3.2 selects all triangle elements from a
document. In a context of every triangle element a positive predicate spec-
ified with expression count(vertex)=3 is evaluated. If the given triangle

<pattern>

<rule context="triangle">

<assert test="count(vertex)=3">

The element ’triangle’ should have 3 ’vertex’ elements.

</assert>

</rule>

</pattern>

Figure 3.2: Schematron pattern

has for example four child vertex elements, then the predicate will be false
and the following message will be reported: The element ’triangle’ should
have 3 ’vertex’ elements.

The negative predicate is represented using a report element and if it
is evaluated as true, we say that the report is active and natural-assertion
will be reported. Schematron is not only a validation language. It is a more
general, Schematron is an XML reporting language [32] where one type of
reporting message is an error message.

26

3.1.2 Underlaying query language

The underlaying query language is very important because it is used in
the context and test attributes, so it considerably influences the expres-
siveness of Schematron. The default implementation is XPath 1.0, resp. ex-
tended XPath version for XSLT 1.0 [9]. But for example XQuery [33] or
JavaScript [3] are also interesting candidates.

In this work, we deal only with XPath 1.0 [11], because evaluation of
XPath 1.0 expressions (the implementation of select() and evaluate()

functions in Algorithm 3.1) is supported in many software environments.
Sample XPath expressions are in Figure 3.2. Note that the triangle ex-
pression is the shortcut for the //triangle XPath expression.

In some cases, we discuss interesting possibilities of XPath 2.0 [1], resp.
extended XPath version for XSLT 2.0 [20].

3.1.3 Ancillary constructs

In this section, we describe some other selected constructs, beacuse we also
discuss possibilities of Schematron schemas for practical purposes in this
thesis.

Identifier

Schematron allows to use certain metadata for introduced constructs. We
need such metadata for constructs introduced in this section, e.g. abstract
patterns, phases, etc. Identifiers allow to unique identification of a pattern
inside a schema, resp. a rule inside the pattern, etc. An identifier is repre-
sented using an id attribute.

There is another useful construct, which can be used to assign special
semantics to Schematron constructs. This is a role attribute.

Example 3.3. As an example, consider a pattern in Figure 3.3. There are
better possibilities for validation results or automatic processing of Schema-
tron schemas.

<pattern id="check_purchase" role="required_elements">

...

</pattern>

Figure 3.3: Schematron metadata

27

Diagnostic

A natural-language message giving more specific details concerning a failed
assertion, such as found versus expected values and repair hints. A diagnostic
is represented using a diagnostic element with required id attribute and
text content with a message. Diagnostics are organized in diagnostics ele-
ment as a child of a schema element. Diagnostics are referenced by assertions
using a diagnostics attribute. For example see Section 3.3.3.

Natural-assertion substitution

We can use these constructs in natural-assertions (content of assertions or
diagnostics) for clearer result in validation reports. An element name is sub-
stituted by name of a context node. An element value-of is substituted by
value found or calculed using expression in a required select attribute. This
expression is also written in an underlaying query language. For example of
using name element see Figure 3.4, for other examples see Section 3.3.3.

Abstract rule

Abstract rules provide a mechanism for reducing schema size. An abstract
rule can be invoked by other rules belonging to the same pattern.

Example 3.4. There is an example of an abstract rule declaration in Fig-
ure 3.4. This abstract rule is invoked for all street and city elements in
the given document.

<pattern>

<rule abstract="true" id="childless">

<assert test="count(*)=0">

The element ’<name/>’ should not contain any elements.

</assert>

</rule>

<rule context="street">

<extends rule="childless"/>

</rule>

<rule context="city">

<extends rule="childless"/>

</rule>

</pattern>

Figure 3.4: Schematron abstract rule

28

Named variable

A variable is substituted into assertion tests and other expressions before
expression is evaluated. The variable is represented using a let element as
child of schema, phase, pattern or rule. If the variable is a child of a rule,
the variable is calculated in scope of the current rule and context. Otherwise,
the variable is calculated within the context of the instance document root.
For example see Figure 3.5.

Phase

Phases allow to organize patterns into identified parts. Every Schematron
schema has one default phase, which includes all patterns. Before validation,
it can be determined which phase is used, resp. which patterns are activated.
This selected phase is called an active-phase. A phase is represented using a
phase element as child of schema with an id attribute for unique identifica-
tion of a phase in the scope of a schema. One phase has an arbitrary count
of active elements. Element active refers to a pattern using a pattern

attribute. For example see Figure 3.3.4.

Abstract pattern

Abstract patterns allow a common definition mechanism for structures which
use different names and paths, but which are the same otherwise.

Example 3.5. There is an example of an abstract pattern declaration in
Figure 3.5. This pattern is a specification of int data type, which can be
generally used for restrictions of attribute value and simple element content.

<pattern abstract="true" id="data_type_int">

<rule context="$context">

<let name="num" value="number(normalize-space(.))"/>

<assert test="floor($num)=ceiling($num)"/>

<assert test="2147483648>$num"/>

<assert test="$num>=-2147483648"/>

</rule>

</pattern>

Figure 3.5: Schematron abstract pattern

We can parametrize this abstract pattern in different instances. For ex-
ample, in Figure 3.6 are two instances for attribute value and element text
restrictions.

29

<pattern is-a="data_type_int" id="data_type_@version">

<param name="context" value="/purchase/@version"/>

</pattern>

<pattern is-a="data_type_int" id="data_type_amount">

<param name="context" value="/purchase/item/amount"/>

</pattern>

Figure 3.6: Schematron abstract pattern instances

3.1.4 Validation

To simplify the specification of semantics, we describe the validation of XML
document D.

We can divide the validation process into two steps. In the first step, the
schema is translated to a schema Ssch respecting the grammar in Figure 3.1,
i.e. abstract rules and abstract patterns are resolved, non-active patterns are
removed, etc. In the second step, we can apply Algorithm 3.1. D is validated

Algorithm 3.1 Schematron validation

1: for all pattern in Ssch do
2: for all rule in pattern do
3: for all node in D.select(context expression of rule) do
4: if node is not visited in pattern then
5: for all assert in rule do
6: if node.evaluate(test expression of assert) is false then
7: writeline(natural-assertion of assert);
8: D is invalid;
9: end if

10: end for
11: for all report in rule do
12: if node.evaluate(test expression of report) is true then
13: writeline(natural-assertion of report);
14: end if
15: end for
16: Mark node as visited in pattern;
17: end if
18: end for
19: end for
20: end for

using Ssch as follows: For each rule in each pattern a set of XML nodes is
selected using the D.select() function and the expression specified in the

30

context attribute. Then assertions are tested - the predicates specified in
test attributes are evaluated using the node.evaluate() function (in the node
context) except for nodes which have already been tested in previous rules in
the current pattern. If a positive predicate is evaluated as false, D is invalid.

3.2 Implementations

An implementation of Schematron validation is very simple in general, be-
cause it is based on already implemented XML technologies.

3.2.1 XSLT validation

For this approach, we only need an XSLT processor and a predefined XSLT
script1. The script translates the given Schematron schema to another XSLT
script which is used for the actual XML document validation, resp. trans-
formation. During the validation, a given XML document is transformed
into another XML document. This document is the result of the valida-
tion and may be formatted using standard Schematron Validation Report
Language (SVRL) [8], which provides rich information about the validation
process, e.g. XPaths for elements which violated assertions. Validation using
XSLT is demonstrated in Figure 3.7.

Figure 3.7: XSLT validation process

1http://www.schematron.com/tmp/iso-schematron-xslt1.zip

31

http://www.schematron.com/tmp/iso-schematron-xslt1.zip

3.2.2 Special libraries

Another approach is to use a special (platform-dependent) library. Some li-
braries2 only wrap the described XSLT validation. However, there are other
implementations not based on XSLT. These libraries are based on the eval-
uation of XPath expressions, e.g. using Algorithm 3.1. This allows to adapt
the validation for special requirements or possibilities of a target platform.
For example, we have implemented C# [21] validator called SchemaTron [4]
providing excellent performance for XML content-based message routing in-
side an intermediate service.

3.3 Schematron properties

In this section, we describe selected properties of Schematron schemas in the
context of conceptual modeling of XML and compare them with grammar-
based schemas. We mostly consider XSD 1.0 as a representant of grammars
because it is used as a schema language in existing implementations of the
introduced conceptual model [28]. The possibilities of XSD 1.1 [35] assertions
are also considered.

3.3.1 Platform independence

Schematron is based on standard XML technologies, which are commonly
implemented in many software environments, e.g. XSLT processor is natively
implemented in web browsers3. For these reasons, we can see Schematron as
a platform independent XML schema language, because we do not need a
specific validator. Moreover, unification of transformation and validation of
XML documents looks like good software engineering practice.

This property may be interesting for conceptual modeling of schemas.
We can design schemas using a user-friendly model and translate modeled
information to platform-independent executable code for XML documents
validation.

3.3.2 Expressive power

Presently, there is no formal framework [18] which could capture the broad
set of posibilities of Schematron conditions.

The authors of [19] provide some basic expressive possibilities of Schema-
tron, compare it with other schema languages and show on examples that
Schematron has an excellent expressive power and in this regard it belongs

2http://www.probatron.org/
3http://www.w3schools.com/xsl/xsl_browsers.asp

32

http://www.probatron.org/
http://www.w3schools.com/xsl/xsl_browsers.asp

(e.g. with XSD) into the top class of XML schema languages. The authors
describe, that we can specify for example: parent-child relationships, se-
quences, choices among elements and attributes, unordered sets, min and
max occurences, etc. Moreover, we can specify many XML formats, which
can not be expressed using grammars, for example conditional definitions or
detailed integrity constraints, etc.

However, there is not any precise generalization of Schematron rules
which would provide a clever mapping of regular tree grammar into Schema-
tron rules (and vice versa), but experiments show [13] that it is possible to
describe many instances of grammars in Schematron, even in diverse ways.

Example 3.6. For example, we need to describe sequences of child elements.
Consider a complex element contacts with content described in a classical
grammars way using regular expression (name,phone,e-mail). When we
are thinking in grammars, we would like to write something like in Fig-
ure 3.8. Unfortunately, XPath 1.0 does not support regular expressions, so

<rule context="contacts">

<assert test="(name,phone,e-mail)"/>

</rule>

Figure 3.8: XPath with regular expressions

an assertion predicate is invalid. Note, that we will show some possibilities
of XSLT 2.0 expressions which provide support for regular expressions in
Chapter 4.

The authors show a sample similar to Figure 3.9 which can be used for
expressing this semantics in a Schematron-ish way and de facto represent
same constraints as the regular expression.

Example 3.7. An example of a representation of the regular expression
from 3.8 in a Schematron-ish way.

<rule context="contacts">

<assert test="*[1][self::name]"/>

<assert test="*[2][self::phone]"/>

<assert test="*[3][self::e-mail]"/>

<assert test="not(*[4])"/>

</rule>

Figure 3.9: Schematron ordered sequence

33

However, the rule in Figure 3.9 is not general instruction to cover con-
straints, resp. semantics of regular expressions. It covers only sequences with
just one occurence for each element in a content. Let us discuss much more
complex cases, which we can easy describe with the XSD sequence construct.

Example 3.8. Consider content ((name,phone 2..5,e-mail) 3..9). In
Schematron, this is not obvious, but it is also possible. In Figure 3.10, there
are two rules which cover semantics of phone element occurences, where:

• The first rule selects the first phone in a sequence of phone elements
and tests that the count of following phone siblings is between 1..4.
This covers occurences of phone in consecutive sequences of 2..5.

• The second rule verifies that the total count of phone elements is in
{x ∈ N;x = a · b ∧ (a, b) ∈ {2, 5} × {3, 9}}, i.e. the total count is a
member of the set, which is constructed using product of components
of pairs of cartesian product of sets {2, 5} and {3, 9}.

We do not show another required restrictions, e.g. for name and e-mail

elements, because these are more intuitive.
Note that we used inline substitutions F, P and X only for code size re-

duction in this work.

• F := following-sibling,

• P := preceding-sibling

• X := count(F::phone[count(P::name)=$seq-index])

<rule context="contacts/phone[not(P::*[1][self::phone])]">

<let name="seq-index" value="count(P::name)"/>

<let name="next-phones" value="X"/>

<assert test="$next-phones>=1 and 4>=$next-phones"/>

</rule>

<rule context="contacts">

<let name="total-p" value="count(phone)"/>

<assert test="$total-p=2*3 or $total-p=2*4 or ... "/>

</rule>

Figure 3.10: Ordered sequence with intervals example (I)

The introduced example 3.8 showed that there are some techniques,
which can be used to cover regular expression sequences with intervals. But,
these techniques are based on intuitive approach for specific instances. For

34

example, we have used the fact, that the element name can be used as an
anchor to select a sequence of phone elements. Let us consider an another
example 3.9.

Example 3.9. Consider content ((name 0..3,phone 2..5) 3..9). We
can use for example the rules demonstrated in Figure 3.11. The semantics
is described using natural-assertions.

Note that we used inline substitutions F, P, S and X only for code size
reduction in this work.

• F := following-sibling

• P := preceding-sibling

• S := self

• X := F::*[1][S::name][F::*[1][S::name][F::*[1][S::name]]]

<rule context="contacts">

<let name="total-p" value="count(phone)"/>

<assert test="$total-p=2*3 or $total-p=2*4 or ...">

There should be {2,5}*{3,9} ’phone’ elements.

</assert>

<assert test="27>=count(name)">

There should be no more than 27 ’<name/>’ elements.

</assert>

</rule>

<rule context="contacts/name">

<assert test="not(X)">

The element ’

<name/>

’ never appears in consecutive sequences of more than 3.

</assert>

</rule>

<rule context="contacts/phone">

<assert test="F::phone or P::phone">

The element ’<name/>’ is never alone.

</assert>

</rule>

Figure 3.11: Ordered sequence with intervals example (II)

35

It may be difficult to cover some grammatical instances. Moreover, in-
troduced examples lead to code explosions of schemas, e.g. testing of total
count of element occurrences. Later in this thesis, we show, that there can be
some generalizations of Schematron rules, which can be used for Schematron
schema inference and which cover a lot of XML formats in practice.

We will deal with Schematron expressive power in the rest of this thesis.
For our work in the context of the introduced conceptual model is interesting,
that there are possibilities that PSM schema and Schematron schema can
express in a natural way, for example: choices among attributes, choices
among attributes and elements, improvement of limited XSD construct ALL
for unordered sets, etc. These possibilities may be useful in practice, more
than the introduced (theoretical) samples, that we can easy express using
XSD. Furthermore, we will show later in this thesis, that we can use another
approach for designing XML formats, where grammar-based schemas are not
workable, i.e. we can not validate XML documents.

3.3.3 Validation diagnostics

One of the major drawbacks of grammars are the results of the validation and
that the validator usually stops when it detects an error in the document.
According to used implementation of validator, a message is returned to
inform the user about what is wrong in the document. This article [24]
describes differencies between quality of grammar and Schematron validation
results.

Example 3.10. Let us to show an experiment with a simple XSD schema
(see Figure 3.12), built-in validator of .NET Framework4 and some invalid
XML documents (see Figure 3.13 and 3.14).

<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="person">

<complexType>

<sequence>

<element name="name" type="string"/>

</sequence>

</complexType>

</element>

</schema>

Figure 3.12: XSD schema example

4http://msdn.microsoft.com/cs-cz/library/ms162371.aspx

36

http://msdn.microsoft.com/cs-cz/library/ms162371.aspx

<person><name>SB</name><name>SB</name></person>

Figure 3.13: XSD schema example

<x><person><name>SB</name><name>JK</name></person></x>

Figure 3.14: XSD schema example

When the document in Figure 3.13 was validated against an XSD schema,
the following message was reported: The element ’person’ has invalid child
element ’name’. This information is not very good, especially, when we con-
sider the more complex XML structures. When we validated the document
in Figure 3.14 against the XSD schema, the following message was reported:
The ’x’ element is not declared. Validator interrupted its work because error
is detected in the document. Usually, we want to get as much information
as possible about what is wrong in the document.

We described equivalent schema in Schematron (see Appendix A.1) and
we validated the document in Figure 3.14 against this schema. The XSLT
validator returned the following messages: The ’x’ element is not allowed
as the root element. The ’x’ element is not allowed in the document. The
’person’ element should have just one element ’name’. with associated diag-
nostic: The person has ’2’ names.

Schematron allows to specify quality validation diagnostics. Moreover,
we can for example translate these messages into the Czech language on
the schema level and put them into the user interface. This feature allows
to improve schemas generated from the conceptual model, beacuse we can
potentially design not only schemas, but also validator messages on the PSM
schema level. These messages and diagnostics may be potentially adapted to
business domain or other user requirements.

The disadvantage of these features can be considered as a potential ex-
plosion of error messages that validator returns. However, it depends on how
the schema is designed (what kinds of information we want) and also it may
depend on the implementation of the validator (for example, SchemaTron
validator described in Section 3.2 allows to interrupt the validation process
when the first assert is violated). Generally, it is possible to use the mech-
anism of phases and the user can choose what information are currently in
his interest.

3.3.4 Validation workflows

Schematron provides a mechanism of phases, which allows to divide a schema
into multiple parts. Before validation, it can be determined which patterns

37

will be used. This mechanism allows to implement multiple workflows of
XML document validation, e.g. progressive validation. For example, in the
first phase, we can validate allowed elements declared in the schema. If the
document is valid in the first phase, we can validate required elements in
the second phase, etc.

Example 3.11. Let us consider another example. We can validate (see Fig-
ure 3.15) only required elements, because it is not important when the docu-
ment has another elements (not declared in the schema).

<phase id="required_elements">

<active pattern="check_required_elements"/>

</phase>

<phase id="all">

<active pattern="check_allowed_elements"/>

<active pattern="check_required_elements"/>

</phase>

<pattern id="check_required_elements">

...

</pattern>

<pattern id="check_allowed_elements">

...

</pattern>

Figure 3.15: Demonstration of Schematron phases

3.3.5 Validation performance

Grammar-based schemas have theoretical foundations that give guidance to
the design of effective validators. Briefly, the given document is traversed
in the depth-first manner and regular expressions converted from grammar
declarations are evaluated. The time complexity of these algorithms is linear
to the size of documents [23]. From this perspective, the advantage is also
that the validator stops when it detects the first error in the document.

Intuitively, the validation using Schematron depends on the number of
underlaying query expressions used within Schematron conditions and on
their forms, so the time complexity may be worse for some cases.

Theoretical analysis of Schematron validation time complexity is of the
scope of this thesis but our basic experiments show that Schematron valida-
tors are well optimized [4].

38

Chapter 4

Related work

To our best knowledge, there are no concepts or implementations of mutual
conversion between conceptual schemas for XML and Schematron schemas.
However, PSM schema improvements of introduced conceptual model are
under research, e.g. the support for Object Constraint Language (OCL) [31]
and its translation to Schematron for the specification of integrity con-
straints. In this case, Schematron is used as a complement of grammar-based
schemas. It is possible to design more layers for validation process, because
Schematron is open-by-default schema language. We do not deal with that
approach in this work, because we would like to find translation of a PSM
schema to a pure Schematron schema. In other words, we would like to repre-
sent structural constraints (modeled by PSM schema) into Schematron con-
ditions. Schematron patterns for integrity constraints generated from OCL
may be potentially merged with our Schematron schemas.

In this chapter, we provide an overview of existing translations among
XML schema languages and between PSM schemas and XML schema lan-
guages. This chapter is organized as follows. In Section 4.1, we introduce
sources, which are interested in translations between PSM schemas and
XML schema languages. In Section 4.2, we introduce sources, which are
interested in translations among XML schema languages. We describe ex-
isting translations between XSD schemas and Schematron schemas in more
detail, because it is the most relevant related work for this thesis.

4.1 Translations between PSM schemas and

XML schemas

From the grammatical perspective, a (normalized) PSM schema models a
regular tree grammar [28]. The article [28] provides formal description of
mutual translation between PSM schemas and regular tree grammars.

The author of [25] provides formal description of translation from a PSM

39

schema to an XSD schema and in the article [26] describes reverse approach.
The comparison of generally known methods of reverse-engineering of

XML schemas to a conceptual model are described in [16]. Some of these
translations were also implemented in XCase and eXolutio tools (see Sec-
tion 2.4).

However, translation of a PSM schema into a grammar-based schema
or construction of a PSM schema from a grammar-based schema are rela-
tively straightforward, because there exists obvious mapping between PSM
constructs and grammar-based constructs. For example, consider XSD con-
structs, i.e. PSM classes are mapped to XSD element declarations, complex
types, groups, PSM content models (sequence, choice and set) are mapped
to XSD content models (sequence, choice and all), etc. These translations
are direct.

4.2 Translations among XML schemas

A lot of work has been done in the area of translations among XML schema
languages in general. For example, the work [29] offers a lot of informa-
tion about XML schema languages, existing translations among schema lan-
guages, etc.

In the borrowed Figure 4.1, there are presented existing translations
(green arrows) and translations contributed by the work (black arrows) be-
tween DTD, XSD, Relax NG (RNG), RTG and other schema languages.

Figure 4.1: Translations among XML schema languages

The author also briefly discusses translating Schematron to other schema
languages, but without any examples or algorithms. Author introduces this
fact: ”A correct translation of Schematron must preserve the language ac-
cepted by a given schema. The target language of any such translation has
great implications on how difficult it is to achieve such a correct translation.”

40

The author also classifies schema languages to grammar-based schema
languages, rule-based schema languages and schema languages with closed
or open content models. The translation may be effective when the target
schema language is rule-based with open content models, because it corre-
sponds to Schematron. The translation is very difficult or impossible, when
we use grammar-based schema language with closed content models as a
target language, naturally. Translating grammars to Schematron is not de-
scribed.

To our best knowledge, a little work has been done in the area of trans-
lations between Schematron and other XML schema languages. Fortunately,
there exist certain sources not based on academic research which provide
some basic ideas and techniques for translation of grammar-based schemas
to Schematron schemas and vice versa. In Section 4.2.1 we describe transla-
tion from an XSD schema to a Schematron schema and in Section 4.2.2 we
describe reverse approach.

4.2.1 From XSD to Schematron

The most work in this area has been done by Rick Jelliffe and his company
Topologi1. They have implemented XSD to Schematron converter, because
their customers preferred Schematron diagnostics rather than XSD valida-
tion. The result of the implementation is an open-source XSLT 2.0 script2,
which allows to translate a subset of a given XSD schema to a Schematron
schema. The generated schemas are called Schematron-ish grammars.

In general, the translation from XSD to Schematron may be an inter-
esting approach to designing low-level Schematron schemas [24]. The de-
signer makes human understandable XSD declarations and gets Schema-
tron schema with human understandable validation diagnostics. Schema-
tron schema may be optimized in some semi-automatic ways, for example,
we can add constraints that can not be expressed by grammars, we can add
natural-assertions and diagnostics, we can organize patterns into phases, etc.
A practical problem of this technique may be the merging of changes made in
XSD schemas because it requires some merging algorithms of a regenerated
Schematron schema with an existing one.

The associated tutorial [13] provides some design decisions made while
designing the translation and some interesting techniques of mapping XSD
constructs to Schematron.

1http://www.topologi.com/
2http://www.schematron.com/resource/XSD2SCH-2010-03-11.zip

41

http://www.topologi.com/
http://www.schematron.com/resource/XSD2SCH-2010-03-11.zip

XSD to Schematron converter

In this section, we discuss selected properties of the XSD to Schematron con-
verter. The converter has XSD schema on the input and generates Schema-
tron schema based on XSLT 2.0 expressions on the output. The disadvantage
of using XSLT 2.0 is the lack of software support at present time. The major
advantage is a support of data types for attribute values and simple element
contents, because we can use XSD built-in simple types in XSLT 2.0 expres-
sions.

Example 4.1. If we want to validate that a value of an attribute is a valid
dateTime, we can use the test . castable as xs:dateTime. For each sim-
ple XSD data type the converter generates corresponding abstract rule. The

<rule abstract="true" id="xsd-datatype-dateTime">

<assert test=". castable as xsd:dateTime"/>

</rule>

Figure 4.2: XSD data types in XSLT 2.0 expressions

abstract rule may be invoked in different contexts (attributes, simple ele-
ments) in the same pattern.

The author also introduces another advantage of XSLT 2.0. It is possible
to use regular expressions in Schematron assertions (see Example 4.2).

Example 4.2. Consider the element x with the content described using the
regular expression (a+,b,c*). The variable grammar in Figure 4.3 has a

<pattern>

<rule context="x">

<let name="grammar" value="a+ b c*" />

<let name="content" value="string-join(for $e in *

return local-name($e), ’ ’)" />

<assert test="matches($content,$grammar)"/>

</rule>

</pattern>

Figure 4.3: XSLT 2.0 regular expressions

regular expression. The variable contents is a string made from all the
names of the child elements of the element x. The predicate is created using
the function matches.

42

The possibility of implementation of regular grammars in Schematron
has interesting consequences as we can see Schematron also as the grammar-
based schema language without references or declarations to subgrammars
for contents, unlike grammatical infrastructure of regular tree grammars.
The disadvantage of this approach are also poor-quality validation diagnos-
tics, so it is the reason why the authors did not implement this approach
into the XSD to Schematron converter.

The XSD to Schematron converter allows to translate only a subset of
XSD to Schematron, resp. special XSD cases. We do not describe transla-
tion algorithm nor the design of the resulting schemas in detail, because
a lot of steps are XSD-specific, the translation is not based on theoreti-
cal background and there is not a description of what subset of XSD the
translation covers. Probably, it is based only on requirements of a specific
project where the converter was used. For example, the translation pre-
sumes that XSD declares only unique names for elements and attributes,
only simple sequences of regular expressions are translated, cardinalities are
not supported, etc. There is a comment about approximate coverage of XSD
by authors: ”Content model validation is implemented by a series of finer
sieves, which combine to provide most of the capabilities of a full grammar
checker. If a grammar has repeated particules or complex nested occurrence
constraints, there may be some false positives where our sieves are not fine
enough, however there are never false negatives.”

We do not build our translation algorithm in Chapter 5 on the XSD to
Schematron converter, but we only use similar approach to check allowed el-
ement names and allowed attribute names inside validated XML documents.

4.2.2 From Schematron to XSD

The tutorial [12] provides very basic ideas for translation of Schematron
schemas to XSD schemas. There is no specific design proven by implemen-
tation, but it provides certain concepts.

The motivation for implementation is to allow people to move between
technologies with minimal disruption. For example, someone decides to use
Schematron in his information system in order to obtain better validation
results. Later, the requirement comes that they need to create XSD schemas,
because a new communication partner requires that, for some reason.

The author mentions the fact, that Schematron is more powerful and
more general than XSD and uses different abstractions, e.g. phases, pat-
terns, etc. Moreover, Schematron is open-by-default schema language, so it
is not possible to convert every arbitrary Schematron schema into a useful
XSD schema. The author mentions two approaches, which can be combined.
The first approach is based on creating an own schema language (written in
Schematron), so the translation is based on the Schematron schema meta-

43

data and certain assumptions, which allow to implement direct translation.
The second approach is based on the brute-force pattern matching method.

Schematron-metadata based translation

This approach is based on the assumption that we know the structure of
Schematron schemas which consist of declarations that provide the metadata
needed to allow an effective transformation into XSD schema. In other words,
we have a suitable XML schema language written in Schematron with our
own syntax rules for subset of Schematron and XPath expressions. For the
design of such declarations ancillary constructs, e.g. abstract patterns, may
be used.

Example 4.3. Consider an abstract pattern that resembles XSD attribute-
Group in Figure 4.4. This declaration can be easily converted to a correspond-
ing XSD construct (see Figure 4.5). We use a role attribute to determine
what XSD construct should be created, we use an id attribute for a name
of the XSD attributeGroup, we know that assertion tests, resp. their XPath
expressions are attribute names and we know that a required attribute is
represented using an assert and an optional attribute is represented using a
report.

<pattern abstract="true" id="ComAtts" role="attributeGroup">

<rule context="$context">

<assert test="@login"/>

<assert test="@name"/>

<report test="@email"/>

</rule>

</pattern>

<pattern is-a="ComAtts" id="Customer_Ref_CommonAttributes">

<param name="context" value="//customer"/>

</pattern>

Figure 4.4: Schematron attributeGroup

The suggested approach would make the conversion easy, but it is re-
strictive, because it can be used only for schemas, which were created with
the assumption that they will be processed in this way. On the other hand,
it looks like this approach may be sufficient and reasonable solution for im-
plementation of translation of subsets of Schematron into some other tech-
nologies in practice.

44

<attributeGroup name="ComAtts">

<attribute name="login" type="string" use="required"/>

<attribute name="name" type="string" use="required"/>

<attribute name="email" type="string" use="optional"/>

</attribteGroup>

Figure 4.5: XSD attributeGroup

Unfortunately, no specific design of such schemas or translation algo-
rithm has been established, so there is the question of possibility to cover
more complex cases. Furthermore, we can discuss for example, what kinds
of natural-assertions establish such design.

Brute-force pattern matching

This method is based on a catalog of templates (interesting for grammars)
which can be matched in the rule contexts and assertion tests of Schema-
tron patterns. In this way we can obtain different kinds of information from
the Schematron schema and in the second step we can generate an XSD
schema. In fact, this method is a generalization of introduced approach in
Section 4.2.2, but we restrict only XPath expression forms.

Example 4.4. Templates from that catalog may be matched with Schema-
tron conditions in Figure 4.4. We obtain information such as: XML docu-
ment can contain a book element with closed content for title and author

elements. The occurence of author and title elements is just one.

<rule context="book">

<assert test="count(*)=count(title|autor)"/>

</rule>

<rule context="book">

<assert test="count(title)=1"/>

</rule>

<rule context="book">

<assert test="count(author)=1"/>

</rule>

Figure 4.6: Schematron templates

If we do not find some more information in the schema that would tighten
up the information already obtained, then we generate the best corresponding
XSD construct (see Figure 4.7).

45

<group name="book">

<all>

<element name="title" type="string"/>

<element name="author" type="string"/>

</all>

</group>

Figure 4.7: Generated XSD all

The example 4.4 demonstrates that it is possible to identify some cases
in Schematron schemas that can be mapped to XSD constructs. However,
it may not be possible to achieve equivalent semantics, resp. XML docu-
ment validation for many cases. The chance that XSD schema is workable
is determined by amount of information provided by Schematron schema.

Unfortunately, there is no algorithm or complex catalog of such templates
(the author recommends using of templates from schemas generated by XSD
to Schematron converter introduced in Section 4.2.1).

46

Chapter 5

From PSM to Schematron

A PSM schema models a grammar-based XML format specification with
possible mapping of PIM concepts. It is based on specific constructs for
XML data modeling in UML class diagrams. For various practical purposes,
we need to translate modeled information into different technologies, for
example, we can generate:

• corresponding C# classes, which will be automatically deserialized
from incomming XML messages in our application1,

• sample XML documents for testing,

• implementation of specific validator or certain executable code (e.g.
grammar-based schema language, script, etc.) which is used for XML
documents validation,

• etc.

In this thesis, we are interested in XML documents validation and schema
languages. It is easy to translate the PSM schema to an XSD schema, because
there exists obvious mapping between these languages. The XSD schema
has good portability, contains relatively understandable declarations when
somebody wants to read automatically generated code (we presume that
users read XML format specifications using PSM schemas). XSD has also
object-oriented features and provides usefull metadata for effective trans-
lations into other technologies. However, validation using XSD has several
limitations, e.g. poor-quality validation diagnostics. Consider that we want
to use XSD validation for an XML file, which is used for configuration of our
application. When the user forgets to declare a certain element in the XML
document, he will want to see, what is wrong ideally in his native language.
Unfortunately, we can not change these XSD restrictions.

1XML Schema Definition Tool (xsd.exe) provides such translation from an XSD
schema: http://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx

47

http://msdn.microsoft.com/en-us/library/x6c1kb0s.aspx

We need not describe XML schemas only using XSD and interpret them
using existing validators, but we can use for example selected imperative
programming language, e.g. C#. This option may be useful in practice,
because we can derive a special implementation of validator from the PSM
schema, which will be tailored to exactly what we need and we can integrate
these constructs into our application. In general, the main disadvantage of
this approach is a platform dependent code and problem of portability.

Another option is to use Schematron validation language, which is for its
generality, power, platform-independency, etc. another interesting candidate
to state as a schema language generated from the conceptual model for XML.

All generated constructs of the introduced technologies must have the
same property for XML documents validation, i.e. they must accept the same
class of languages (XML documents) as the modeled regular tree grammar,
resp. its subclass when the technology has weaker expressivity, because PSM
is natively designed for grammar-based XML format specification. In other
words, a PSM schema models a regular tree grammar, so the validator must
verify the same grammatical structural constraints during validation of XML
documents.

There are several theoretical and practical problems, that we must con-
sider when we want to provide design and solution for the translation of a
PSM schema to a Schematron schema. Firstly, we must find certain gen-
eralizations in the broad set of possibilities of Schematron structural con-
straints, so we can generate rules automatically. We haven’t got syntactical
suger like XSD sequence or choice constructs, resp. regular expressions in
general. Schematron rules must cover grammatical interpretation, resp. same
structural constraints. In other words, we must find a mapping of PSM con-
structs to Schematron rules so the resulting schema receives the same class
of languages as the corresponding regular tree grammar, resp. its subclass.
Secondly, we must provide some reasonable schema design, which allows
to use the already introduced Schematron benefits, i.e. quality validation
diagnostics, phases, etc.

In this chapter, we describe our design for this translation. This chapter
is organized as follows. In Section 5.1, we describe overall view of the trans-
lation algorithm, which generate Schematron schemas from PSM schemas.
In the rest of this chapter, we describe the steps of the translation in details.
Section 5.8 concludes and provides final discussion about the translation.

5.1 Overall view of the translation

The translation algorithm (see Algorithm 5.1) is fully automatic. It has a
PSM schema on the input and it gradually builds a Schematron schema on
the output. The generated schema covers grammatical structural constraints

48

in our design manner. The generated schema is composed from more pat-
terns, which cover structural constraints when they are evaluated together.
Moreover, we need not evaluate all patterns in the schema, but we can eval-
uate patterns which are in our current interest. It brings some benefits,
because we can design another kind of XML formats. We show these possi-
bilities in Section 5.8. We call the produced schemas PSM Schematron-ish
grammars.

Algorithm 5.1 Overall view of the translation algorithm

1: <schema xmlns="http://purl.oclc.org/dsdl/schematron">

2: Generate allowed root element names (Section 5.2);
3: Generate allowed names (Section 5.3);
4: Generate allowed contexts (Section 5.4);
5: Generate required structural constraints (Section 5.5);
6: Generate required sibling relationships (Section 5.6);
7: Generate required text restrictions (Section 5.7);
8: </schema>

Let us take a look at Algorithm 5.1. In the first step (line 2), we gener-
ate Schematron pattern for XML elements, which are allowed inside valid
XML documents as root elements. Similary, we generate patterns for allowed
names of XML elements and XML attributes in the next step on line 3 and
in the next step (line 4), we produce patterns for allowed contexts, i.e. paths
where names of elements (and attributes) may be. We call the generated
patterns absorbing patterns and we describe them later in this chapter. The
patterns for validation of required complex element structures are produced
in the steps on lines 5 and 6. These patterns are more difficult, because
we must generate interpretation of regular expressions to obtain equivalent
semantics of regular grammars. We call these patterns conditional patterns
and we also describe them later in this chapter. In the last step (line 7), the
patterns for text restrictions, resp. validation of attribute values and simple
element contents are produced.

5.1.1 Additional functions

The order of steps of the proposed algorithm is not important, but the
steps require some extensions for PSM schemas. For example, we need to
have a function, which gets the path (described using XPath) for each XML
attribute and XML element declared in the PSM schema. These functions
must be adapted to Schematron translation, so we present them as parts
of the translation. We introduce these functions during this chapter, only
where it is necessary.

49

5.1.2 Preconditions

We also verify preconditions over the PSM schema needed for efficient Schema-
tron translation. These preconditions must be satisfied on the given PSM
schema, so the algorithm generates correct Schematron schema. We also
introduce these restrictions during this chapter, only for steps where it is
necessary.

5.2 Allowed root element names

In this section, we analyze and provide construction of the pattern for check-
ing allowed root elements of validated XML documents.

There are several possibilities how we can specify allowed root elements
or allowed elements in general. However, we would like to have such valida-
tion which returns a name of the root element which is not allowed in the
document, resp. the element is not declared in the schema.

5.2.1 Absorbing pattern

Before introducing of an algorithm, we define a very useful kind of a Schema-
tron pattern (see Definition 5.1).

Definition 5.1. An absorbing pattern is a Schematron pattern for an or-
dered set of paths P , where the last rule is called global and it contains the
* wildcard somewhere in its path and no previous rules use wildcards. This
pattern is generated using an Algorithm 5.2.

Algorithm 5.2 Generate absorbing pattern for paths P with global *
1: <pattern role="absorbing-pattern">

2: for all p ∈ P do
3: <rule context="p">
4: <assert test="true()"/>

5: </rule>

6: end for
7: <rule context="*" role="global">

8: <assert test="false()"/>

9: </rule>

10: </pattern>

The absorbing pattern allows to absorb elements (or attributes) speci-
fied by paths. The assert on line 4 in Algorithm 5.2 is never violated, so the
natural-assertion is not needed. There can be also the report element with

50

predicate true() and natural-assertion with substitution <name/>, which al-
lows to report allowed root element name, which is in a validated document.
The last rule on line 7 is activated for all elements (or attributes), which were
not selected in previous rules. The natural-assertion in the assert element
of the last rule may contain substitution <name/>, which allows a clearer
validation report.

Example 5.1. As an example, consider the set of paths P , which contains
paths for all allowed root elements /request and /response. We gener-
ate the absorbing pattern in Figure 5.1. When the validated document has

<pattern id="allowed-root-elements" role="absorbing-pattern">

<rule context="/request">

<assert test="true()"/>

</rule>

<rule context="/response">

<assert test="true()"/>

</rule>

<rule context="/*">

<assert test="false()">

The element ’<name/>’ is not

declared in the schema as the root element.

</assert>

</rule>

</pattern>

Figure 5.1: Absorbing pattern example

request or response element as the root, the element is absorbed. When
the document has for example the x root element, the document is invalid
and the following message is reported: The element ’x’ is not declared in the
schema as the root element.

5.2.2 Pattern for allowed root elements

In the first step on line 2 in Algorithm 5.1, we generate an absorbing pattern
for checking allowed root elements using Algorithm 5.3.

On line 4 in Algorithm 5.3, we generate the set P of all paths for allowed
root elements. The path is produced using concatenation (concat function)
of the character / and a name of an association, which is in content of
schema class, it has a name, its child is a class and its cardinality is 1..1. It
corresponds to terminals on the right-hand side of the grammar rewriting
rules for initial non-terminals in Section 2.2.3. In the last step (line 7), the
absorbing pattern is produced for P with the global /* path.

51

Algorithm 5.3 Generate allowed root elements

1: Let P be an empty set of paths;
2: for all R′ ∈ content′(C ′S′) do
3: if name′(R′) 6= λ and child′(R′) ∈ S ′c and card′(R′) = 1..1 then
4: Add concat(’/’, name′(R′)) into P ;
5: end if
6: end for
7: Generate absorbing pattern for P with global /*;

When the constructed P is empty, the absorbing pattern has only one
rule, i.e. global. This means that no XML document is valid againts the
schema (if the absorbing pattern is activated at validation).

5.3 Allowed names

In this section, we generate two absorbing patterns for checking all allowed
element names and all allowed attribute names for the step on line 3 in
Algorithm 5.1. The approach is very similar to generation of allowed root
element names, because we also generate absorbing patterns.

5.3.1 Pattern for allowed element names

Production of pattern for checking allowed XML elements inside validated
documents is in Algorithm 5.4.

Algorithm 5.4 Generate pattern for allowed element names

1: Let P be an empty set of paths;
2: for all R′ ∈ S ′r do
3: if name′(R′) 6= λ and child′(R′) ∈ S ′c then
4: Add name′(R′) into P ;
5: end if
6: end for
7: for all A′ ∈ S ′a do
8: if xform(A′) = e then
9: Add name′(A′) into P ;

10: end if
11: end for
12: Generate absorbing pattern for P with global *;

Let us take a look at Algorithm 5.4. On lines 4 and 9 we produce the set
P of all paths for allowed element names. On line 4 we produce names of
all complex elements, i.e. names of named associatons which have classes as

52

child. On line 9 we produce names of all attributes where their XML forms
represent element. In the last step on line 11 the absorbing pattern for P
with global * is generated.

The generated pattern has also precise semantics with quality valida-
tion report, because it absorbs all XML element names from the validated
XML document (note that the path element-name is equivalent to XPath
expression //element-name). When there are some other elements, they are
absorbed using global rule of absorbing pattern and assert is violated with
some message similar to the message in Example 5.1.

5.3.2 Pattern for allowed attribute names

Now we introduce an algorithm for production of pattern for checking al-
lowed XML attributes inside validated documents (see Algorithm 5.5). It is
also very similar to previous algorithms.

Algorithm 5.5 Generate pattern for allowed attribute names

1: Let P be an empty set of paths;
2: for all A′ ∈ S ′a do
3: if xform′(A′) = a then
4: Add concat(’@’, name′(A′)) into P ;
5: end if
6: end for
7: Generate absorbing pattern for P with global @*;

In the step on line 4 we produce paths P for all attribute names where
their XML forms represent XML attributes. In the last step on line 7 the
absorbing pattern for P with global @* is produced.

5.4 Allowed contexts

In the previous section, we generated patterns for checking allowed names
inside validated documents. It provides basic diagnostics of the validated
XML document, but it does not say anything about what names are allowed
inside a specific element. Now we introduce stricter patterns for checking
allowed contexts, resp. paths inside documents. We also generate absorbing
patterns, but we need more sophisticated paths, because we absorb only
element and attribute names in the declared contexts, so the other names
(contexts) break validity.

53

5.4.1 Paths overview

In this section, we discuss a problem with paths, because we need to provide
a certain design for the rest of the translation. Schematron paths are very
important for expressivity of the resulting schemas, so we need a good design.
We remind that a path is described using an XPath expression to select some
nodes from the validated XML document. When nodes are selected, we can
evaluate assertions, i.e. certain XPath predicates in the context of these
nodes.

In general, we have two approaches to how we can describe paths, i.e.
absolute paths, for example /book/author/name or relative paths for example
name, resp. //name in words of XPath.

Example 5.2. Consider the PSM schema in Figure 5.2. The element name
is used in different contexts with different structures. If we want to validate
the structure of element name in Schematron we must select this element
and evaluate certain predicates. We can not use the defaulting relative path,
i.e. //name, because it selects all occurences of the element name in the
document. For validation of simple element name declared in C ′Book we use

Figure 5.2: PSM book schema

/book/name path. For validation of complex element used in C ′Author we use
/book/author/name path.

If we want to design schemas more powerful than DTD, i.e. local regular
tree grammars [23], we need absolute paths to select nodes from documents.
However, relative paths are also important for example to design recursive
declarations. Let us consider other sample PSM schemas in Figure 5.3. The
samples demonstrate usage of special cases of structural representants.

Example 5.3. In Figure 5.3(a), the element city is used in different struc-
tures. We will show later in this chapter that it is important to evaluate
the right predicates in the context of nodes according to the structure in
which they occur, because we need completely different view on the PSM

54

Schematron-ish grammars, than when we are thinking in grammars. The el-
ement city in the class C ′ShipToAddress has an intermediate follower gps ele-
ment and in the class C ′BillToAddress it has no following elements. We must use
absolute paths /customer/ship-to/city and /customer/bill-to/city

to select these elements. We see that one element declaration can require
more paths.

(a) Customer schema (b) BinTree schema

Figure 5.3: PSM schemas with structural representants

Example 5.4. A sample representation of binary tree is demonstred in Fig-
ure 5.3(b). It shows a recursion as a special case of structural represen-
tatives. We can not use absolute paths, naturally. In this case, the rela-
tive path is required, for example /root-node//node. The element data

is also recursive content. It can be selected using /root-node/data and
/root-node//node/data in this case. This example is trivial, but in gen-
eral, recursion also complicates the design of paths, resp. schemas. Con-
sider that element node has some descendant element node with different
structure, for example /root-node//node/desc/node. If we use the path
/root-node//node, the all occurences of the element node are selected in
the context of root-node element. However, when we consider the seman-
tics of Schematron pattern, i.e. an ordered collection of rules, we can select
/root-node//node/desc/node in the first rule and /root-node//node in
the second rule, so the second rule selects only the node elements which were
not be selected (absorbed) in the first rule. It gives an instruction for design
of paths.

There is also a possibility to use predicates in paths. We do not deal with
predicates for nodes selection, because we would like to design Schematron
schema as simple as possible, but powerfull, naturally. However, predicates
also allow to improve expressivity of resulting schemas. At least, we show
some demonstration in Example 5.5.

55

Example 5.5. Consider the PSM schema in Figure 5.4. The element name
is used in the same complex content with different structures. For selection
of the first occurence we can use for example /person/name[1] path with
the predicate. For selection of the second occurence we can use for example
/person/name[2] or /person/name[not(following-sibling::*)], etc.

Figure 5.4: PSM person schema

However, we do not deal with these kinds of complex elements (Exam-
ple 5.5) in the translation algorithm. These cases are excluded using the first
precondition on PSM schema (see Definition 5.2).

Definition 5.2. Let S ′ be a PSM schema. We will call SORE precondition
an assumption on S ′, that every complex element has content described using
Single Occurrence Regular Expression, i.e. every element (or attribute) name
can occur at most once in this regular expression.

We accept this assumption, because every SORE is deterministic (or one-
unambiguous) as required by the XML specification and more than 99% of
the regular expressions in practical schemas are SOREs [5]. For instance,
((a|b),c 0..*,d 0..1) 0..3 is SORE while a(a|b) 0..* is not as a oc-
currs twice. Moreover, this assumption simplifies the translation, resp. design
of paths.

5.4.2 Paths construction

In this section we provide certain design and construction of paths for a
PSM schema (see Algorithm 5.6). The main idea is as follows. For each
XML element and XML attribute declaration, we produce all possible paths
(line 4 and 11), resp. contexts where they can be. Every created path is
associated with a PSM component, i.e. a complex element, a simple element
or an attribute declaration and the pairs are placed into the global set of

56

paths Gp (line 6 and 13). In the next step, we perform sorting of Gp (line
16) members. The resulting ordered set Gp = {(X ′, p); X ′ ∈ (S ′r ∪ S ′a) and
p is path} is used for generation of Schematron rules in order of this set in
the rest of the translation.

Algorithm 5.6 Construction of Gp

1: Let Gp be an empty set of 2-tuples (X ′, p);
2: for all R′ ∈ S ′r do
3: if name′(R′) 6= λ and child′(R′) ∈ S ′c then
4: Create all paths P for R′;
5: for all p ∈ P do
6: Add (R′, p) into Gp;
7: end for
8: end if
9: end for

10: for all A′ ∈ S ′a do
11: Create all paths P for A′;
12: for all p ∈ P do
13: Add (A′, p) into Gp;
14: end for
15: end for
16: Sort Gp;

Now we describe details of the Algorithm 5.6. Firstly, we need to create
all paths for a given XML element or XML attribute declaration. Let us
mark the declaration, resp. the given PSM component X ′ ∈ (S ′a ∪ S ′r). We
build an ancestor tree of achievable PSM components for X ′. Algorithm 5.7
has X ′ on the input and it produces a tree T , which represents all achievable
ancestor PSM components of X ′ in the PSM schema.

In the first step (lines 1, 2 and 3) in Algorithm 5.7, we initialize a stack
for tree building and push the new node which represents X ′ on the stack. In
the second step (line 4) we gradually build the tree using traversing the PSM
schema to root classes. We pop the current node from the stack, i.e. cnode
and we determine what action should be performed for PSM component (we
marked this component as Y ′), represented by the current node. When the
component represents association Y ′ ∈ S ′r, content model Y ′ ∈ S ′m, attribute
Y ′ ∈ S ′a, respectively (line 6), we create a new child node of the current node,
which represents parent′(Y ′), aparent′(Y ′), class(Y ′), respectively (line 7)
and push the node on the stack (line 8). When the component Y ′ represents
schema class (line 10), we mark the current node as leaf (line 11). When
the component Y ′ represents class (line 13), it is a little more complicated,
because we need to resolve potentially recursive declarations, resp. infinite
loops for the algorithm. For each structural representant of Y ′ (line 14)

57

we push on the stack a new child node (line 17 and 18) which represents
C ′ ∈ representants′(Y ′) only when we did not resolve Y ′ and C ′ is some
previous step in building of the tree for the component X ′. If we resolved
Y ′ and C ′ is some previous step, we can mark current node as recursive
(line 20), because the content of class Y ′ is used in recursive declaration.
When a class Y ′ has a parent association, i.e. aparent′(Y ′) 6= λ, we create
a new child node and push it on the stack (line 24 and 25). When the stack
on line 4 is empty, tree T is builded.

Algorithm 5.7 Build tree T of achievable ancestors for X ′

1: Let S be an empty stack of nodes;
2: Create root node of T represents X ′;
3: Push node on S;
4: while S is not empty do
5: Pop cnode from S;
6: if cnode represents Y ′ ∈ S ′r, Y ′ ∈ S ′m, Y ′ ∈ S ′a then
7: New child node represents parent′(Y ′), aparent′(Y ′), class(Y ′);
8: Push node on S;
9: else

10: if cnode represents Y ′ = C ′S′ then
11: Mark cnode as leaf;
12: else
13: if cnode represents Y ′ ∈ S ′c then
14: for all C ′ ∈ representants′(Y ′) do
15: if Y ′ and C ′ is not resolved for X ′ then
16: Mark Y ′ and C ′ as resolved for X ′;
17: New child node represents C ′;
18: Push node on S;
19: else
20: Mark cnode as recursive;
21: end if
22: end for
23: if aparent′(Y ′) 6= λ then
24: New child node represents aparent′(Y ′);
25: Push node on S;
26: end if
27: end if
28: end if
29: end if
30: end while

When we have tree T , we can translate all its paths form leaf nodes
to root node into Schematron paths, i.e. XPath expressions. Consider that

58

we have marked nodes as leafs in Algorithm 5.7, only for schema class C ′S′ ,
because we do not translate declarations, which do not have the schema class
as an ancestor and they do not have structural representants. We translate
all other declarations.

When we are producing the XPath expression, we start on the leaf node
and we build XPath expression from obtained information on the path to
root node, i.e. representation of X ′. Some nodes on the path contribute with
information to the XPath expression, some do not. We can describe the
construction of the XPath expression using following rules:

• When the parent of a leaf node is a named association with a class as
a child, we have absolute path, i.e. it starts with / step, else we have
relative path, i.e. it starts with a XPath context directly.

• Nodes which represent classes marked as recursive produce recursive
steps, i.e. //, else the steps / are produced. A path with a recursive
step we call recursive path, i.e. it is an absolute or relative path, which
has // somewhere in its content.

• Nodes which represent named association with class as a child or nodes
which represent attribute produce XPath context, i.e. element-name
for XML element, resp. @attribute-name for XML attribute.

Example 5.6. Let us to show what the proposed function for creating paths
of a given declaration returns. In Figure 5.2:

• association R′author produces /book/author

• attribute A′name produces /book/name

• association R′name produces /book/author/name

• attribute A′firstname produces /book/author/name/@firstname

In Figure 5.3(a):

• attribute A′street produces:

– /customer/ship-to/street

– /customer/bill-to/street

– street

In Figure 5.3(b):

• attribute A′data produces:

– /root-node//data

59

– /root-node//node/data

• association R′node produces:

– /root-node/node

– /root-node//node/node

Let us to briefly discuss the path street for attribute A′street. We extend
the semantics of PSM with possibilities to use validation in Schematron nat-
ural approach for these kinds of declarations, i.e. the declaration is not in
absolute context. It means that the street element can be selected from any
occurrence inside the validated document. We will discuss this possibility
later in this chapter (see Section 5.8), because we can use that for design-
ing another kind of XML formats (when we use phases), which do not have
meaning from grammatical point of view, but it is natural for Schematron.

We can presume that we have the set Gp for all declarations in the
PSM schema. For each (X ′, p) ∈ Gp must hold, that p is unique, because it
corresponds to SORE precondition in Definition 5.2.

The last step (line 16) in Algorithm 5.6 provides certain sorting of mem-
bers in Gp. The order may be important (as indicated in Example 5.4) for
node selections, when we have recursions or relative paths. We sort members
in Gp using following rules:

• The absolute paths without recursions are the first and their order is
not important.

• The absolute paths with recursions are the second and they are ordered
using the number of their steps which determines priority, i.e. the
longest path is the first.

• The relative paths are the third and they are ordered using the number
of their steps which determines priority, i.e. the longest path is the first.

The proposed ordering is based on the fact, that the longest paths are
more accurate for nodes selection as we demonstrated in Example 5.4.

Example 5.7. As an example, consider the ordered Gp for members in
Example 5.6. The set has following members:

1. (R′author, /book/author)

2. (A′name, /book/name)

3. (R′name, /book/author/name)

4. (A′firstname, /book/author/name/@firstname)

60

5. (A′street, /customer/ship-to/street)

6. (A′street, /customer/bill-to/street)

7. (R′node, /root-node/node)

8. (R′node, /root-node//node/node)

9. (A′data, /root-node//node/data)

10. (A′data, /root-node//data)

11. (A′street, street)

5.4.3 Pattern for allowed element contexts

Now we can produce patterns for allowed contexts in Algorithm 5.1 on line 4.
We generate the pattern for allowed element contexts (see Algorithm 5.8).

Algorithm 5.8 Generate pattern for allowed element contexts

1: Let P be an empty set of paths;
2: for all (X ′, p) ∈ Gp do
3: if X ′ ∈ S ′r then
4: Add p into P ;
5: else
6: if xform(X ′) = e then
7: Add p into P ;
8: end if
9: end if

10: end for
11: Generate absorbing pattern for P with global *;

In Algorithm 5.8, we go through all members of the ordered set Gp and
produce set of paths P only for complex element names (line 4) and simple
element names (line 7). In the last step on line 11 we produce the absorbing
pattern for P with global *.

Example 5.8. As an example see Figure 2.2 and generated pattern in Ap-
pendix A.2.

5.4.4 Pattern for allowed attribute contexts

Similary, we produce the pattern for allowed attribute contexts (see Algo-
rithm 5.9).

61

Algorithm 5.9 Generate pattern for allowed attribute contexts

1: Let P be an empty set of paths;
2: for all (X ′, p) ∈ Gp do
3: if X ′ ∈ S ′a then
4: if xform(X ′) = a then
5: Add p into P ;
6: end if
7: end if
8: end for
9: Generate absorbing pattern for P with global @*;

In Algorithm 5.9, we go through all members of the ordered set Gp and
produce the set of paths P only for attributes (line 5). In the last step on
line 9 we produce the absorbing pattern for P with global @*.

The produced patterns have precise semantics. They absorb all allowed
contexts inside validated documents. For elements and attributes which are
not in allowed contexts and therefore break validity, we can create natural-
assertions with elements <name/> and <value-of select="name(..)"/>

for clearer diagnostics. The path to a node which viloated an assertion may
be also useful in SVRL report. The patterns also have disadvantages in some
cases, because they potentially produce explosion of natural-assertions (see
Example 5.9).

Example 5.9. Consider that we have only absolute paths, for example /x,
/x/a, /x/a/b, /x/a/b/c and we validate a document with root element
q. Any elements and attributes from the validated document are not in al-
lowed contexts. For the larger invalid XML document there is an explosion of
natural-assertions. However, it is a natural property of Schematron schemas,
which may be desirable in some cases and not in other ones.

5.5 Required structural constraints

In the previous sections, we generated absorbing patterns for weak validation
of XML documents. These patterns said what is allowed inside the docu-
ments. Now we are dealing with stricter restrictions, which say, what the
given document must satisfy. In other words, we need to say for example,
what child elements the given complex element must have.

5.5.1 Conditional pattern

First of all, we specify another Schematron pattern, which we call conditional
pattern (see Definition 5.3).

62

Definition 5.3. A conditional pattern is a Schematron pattern for a set of
pairs E = {(p,A); where p is a path and A is a set of predicates}. Evaluation
of a rule which does not break validity usually enforces evaluation of other
rules. The pattern is generated using Algorithm 5.10.

Algorithm 5.10 Generate conditional pattern for E
1: <pattern role="conditional-pattern">

2: for all (p,A) ∈ E do
3: <rule context="p">
4: for all a ∈ A do
5: <assert test="a"/>
6: end for
7: </rule>

8: end for
9: </pattern>

In Algorithm 5.10, we produce common Schematron pattern, which has
rules with paths and each rule has several assertions. Let us to explain
an interesting property: Evaluation of a rule which does not break validity
usually enforces evaluation of other rules (see Example 5.10).

Example 5.10. Consider the PSM schema in Figure 5.3(a). The root el-
ement customer must have a ship-to element and the ship-to element
must have a street element and the street must not have any element.
We can generate conditional pattern in Figure 5.5. The pattern resembles

<pattern role="conditional-pattern">

<rule context="/customer">

<assert test="count(ship-to)=1"/>

</rule>

<rule context="/customer/ship-to">

<assert test="count(street)=1"/>

</rule>

<rule context="/customer/ship-to/street">

<assert test="count(*)=0"/>

</rule>

</pattern>

Figure 5.5: Conditional pattern example

an collection of if-then conditions, because it says: If the customer element
exists in the document as a root, it must hold that it has a ship-to child
element. If the ship-to element exists in the document as a child of the

63

customer element, it must hold that it has a street child element, etc. The
example demonstrates, that we can create such pattern with chained rules.

For production of such conditional patterns, we need to analyze specifica-
tions of complex element contents. The complex element declared in a PSM
schema is precisely specified using a regular expression (see Section 2.2.3), so
we need analyze such regular expressions and translate them into Schema-
tron predicates, resp. conditional patterns. As we can see in Section 3.3.2 it
may be relatively complicated for certain cases. However, we need general-
izations, because we want a general algorithm.

The main idea is as follows. We translate a regular expression, resp. parts
of its semantics into more conditional patterns. These patterns cover the
same semantics as the regular expression, when they are evaluated together.

5.5.2 Boolean expressions overview

In this section we deal only with a part of the regular expression semantics,
which cover required parent-child and parent-attribute relationships, but
it also contains choices among attributes or choices among attributes and
elements. The main idea is as follows. We translate a given regular expression
into a boolean expression, which can be evaluated in the context of selected
complex element and which specifies what child elements and attributes the
parent element must have.

Example 5.11. As an example, consider a regular expression which specifies
the complex element item in Figure 2.2. This expression has the following
form (@code,(amount,price)|@tester). We translate this expression into
expression @code and ((amount and price and count(@tester)=0) or

(count(amount|price)=0 and @tester)), so we can represent this XPath
predicate in Schematron assertion in Figure 5.6.

<pattern role="conditional-pattern">

<rule context="/purchase/item">

<assert test="@code and ((amount and price and

count(@tester)=0) or (count(amount|price)=0 and @tester))"/>

</rule>

</pattern>

Figure 5.6: Boolean expression example

We can find certain mapping of regular expressions to boolean expres-
sions, which cover part of their semantics. Other parts will be described later
in this chapter (see Section 5.6). The predicate in Figure 5.6 is correct, but

64

it is not so good from Schematron-ish point of view, because it resembles
grammars and their poor diagnostics, i.e. if the predicate is evaluate as false,
we would like to know, what is wrong, for example the code attribute is not
present, etc.

Another idea is to translate boolean expression into logic equivalent Con-
junctive Normal Form (CNF), i.e. conjunction of clauses, where a clause is
a disjunction of literals, so we can represent boolean expression in a more
Schematron-ish way.

Example 5.12. In this example, we translate the boolean expression in Fig-
ure 5.6 into logic equivalent form (see Figure 5.7) The rule has equivalent

<pattern role="conditional-pattern">

<rule context="/purchase/item">

<assert test="@code"/>

<assert test="amount or @tester"/>

<assert test="price or @tester"/>

<assert test="count(@tester)=0 or count(amount|price)=0"/>

<assert test="price or count(amount|price)=0"/>

<assert test="amount or count(amount|price)=0"/>

</rule>

</pattern>

Figure 5.7: Boolean expression in CNF example

semantics, because the assert element in the rule represents one clause, i.e.
disjunction of literals and the rule is composed from conjuction of assert
elements.

We have better possibilities to create natural-assertions when we trans-
late boolean expression into CNF and also we can divide predicates into
more patterns, for example one pattern represents conditions only for el-
ements (e.g. price or count(amount|price)=0) and another represents
conditions for attributes (e.g. @code) and their relationships with elements
(e.g. count(@tester)=0 or count(amount|price)=0).

Before placing an algorithm, we need to provide solution for translation
of regular expression into boolean expression. Then, we also need to translate
boolean expression into CNF.

5.5.3 From complex content to boolean expression

In this section we translate specification of a complex element content into a
boolean expression. In other words, we translate regular expression modeled
by complex element declaration, i.e. named association R′ with class as a

65

child into representation of a boolean expression, which can be placed into
Schematron.

First of all, we describe an additional PSM function descendants′. It is
the function which has association R′ on the input and 3-tuple (V ′c , V ′s , V ′a)
on the output, where V ′c is a set of complex element declarations, V ′s is a set
of simple element declarations and V ′a is a set of attribute declarations. The
function constructs sets of XML attribute and XML element declarations in
the context of R′ of the current complex element, i.e. it returns all descendant
declarations in the current complex content.

Example 5.13. All following examples are valid in Figure 5.3(a):

• descendants′(R′customer) = ({R′ship-to, Rbill-to}, ∅, ∅)

• descendants′(R′ship-to) = (∅, {A′street, A′city, A′gps}, ∅)

• descendants′(R′CustomerSchema→Address) = (∅, {A′street, A′city}, ∅)

Now we introduce a function be′ which takes named association R′ with
class as a child on the input and outputs a boolean expression. We do not
specify the function procedurally in a form of pseudo-code. Instead, we spec-
ify its formal semantics by rewriting rules. The formal semantics of be′ ex-
ploits function rw and auxiliary functions rwAtt and rwChoice. Function
rw, where be′(R′) = rw(child′(R′)) takes a PSM component on the input
and rewrites it into a part of boolean expression. The function rwAtt takes a
PSM attribute on the input and rewrites it into a part of boolean expression.
The function rwChoice takes a PSM content model choice on the input and
rewrites it into a part of boolean expression.

C ′ ∈ S ′c, (A′1, ..., A′n) = attributes′(C ′), (R′1, ..., R
′
m) = content′(C ′)

(rw(repr′(C ′)) ∧ rw(A′1) ∧ ... ∧ rw(A′n) ∧ rw(R′1) ∧ ... ∧ rw(R′m))

Figure 5.8: Class rewriting rule of rw

A′ ∈ S ′a, lower′(A′) = 0

(rwAtt(A′) ∨ count(rwAtt(A′)) = 0)

Figure 5.9: Optional attribute rewriting rule of rw

A′ ∈ S ′a, lower′(A′) > 0

(rwAtt(A′))

Figure 5.10: Required attribute rewriting rule of rw

66

When function rw has class C ′ on the input (see Figure 5.8), its content
is rewritten into logical conjunctions. If C ′ is a structural representative,
represented class is rewritten, i.e. rw(repr′(C ′)). Then attributes and asso-
ciations in the content of C ′ are rewritten.

When function rw has an optional attribute A′ on the input (see Fig-
ure 5.9), it is rewritten into logical disjunction, e.g (@a or count(@a)=0).
The rule uses function rwAtt for rewritting a PSM attribute into XML at-
tribute or XML element representation (see Figures 5.11 and 5.12). When
function rw has required attribute A′ on the input (see Figure 5.10), it is
rewritten using function rwAtt.

A′ ∈ S ′a, xfrom′(A′) = a

(@name′(A′))

Figure 5.11: Attribute rewriting rule of rwAtt

A′ ∈ S ′a, xfrom′(A′) = e

(name′(A′))

Figure 5.12: Simple element rewriting rule of rwAtt

Example 5.14. As an example consider C ′ShipToAddress in Figure 5.3(a) and
C ′Name in Figure 5.2. We translate the first class into the following part
of boolean expression (street and city and gps) and the second into
(@firstname and @surname).

R′ ∈ S ′r, lower′(R′) = 0, (name′(R′) = λ ∨ child′(R′) /∈ S ′c)
(rw(child′(R′)) ∨ count(descendents′(R′)) = 0)

Figure 5.13: Optional association rewriting rule of rw

R′ ∈ S ′r, lower′(R′) > 0, (name′(R′) = λ ∨ child′(R′) /∈ S ′c)
(rw(child′(R′))

Figure 5.14: Required association rewriting rule of rw

When function rw has optional association R′ which is not a complex
element declaration on the input (see Figure 5.13), it is rewritten into logical
disjunction. Note that we used overloaded version of function descendants′,

67

because we need to translate all declarations, i.e. the resulting 3-tuple (V ′c ,
V ′s , V ′a), into a content of XPath function count(...)=0. More formally
V ′c = (R′1, ..., R

′
m), V ′s = (X ′1, ..., X

′
n), V ′a = (A′1, ..., A

′
k) are translated into the

following content name′(R′1)| ... |name′(R′m)| ... |name′(X ′1)| ... |name′(X ′n)|
... |@name′(A′1)| ... |@name′(A′k), where | is a union operator of XPath. When
function rw has required association R′, which is not a complex element
declaration, on the input (see Figure 5.14), a child of the association is
rewritten.

R′ ∈ S ′r, lower′(R′) = 0, name′(R′) 6= λ, child′(R′) ∈ S ′c
(name′(R′) ∨ count(name′(R′)) = 0)

Figure 5.15: Optional named association rewriting rule of rw

R′ ∈ S ′r, lower′(R′) > 0, name′(R′) 6= λ, child′(R′) ∈ S ′c
(name′(R′))

Figure 5.16: Required named association rewriting rule of rw

When function rw has optional association R′ which is a complex ele-
ment declaration on the input (see Figure 5.15), it is rewritten into a logical
disjunction of XML element names. When function rw has required asso-
ciation R′ which is a complex element declaration (see Figure 5.16), it is
rewritten into XML element name.

M ′ ∈ S ′m, cmtype′(M ′) = sequence, (R′1, ..., R
′
n) = content′(M ′)

(rw(R′1) ∧ ... ∧ rw(R′n))

Figure 5.17: Sequence rewriting rule of rw

M ′ ∈ S ′m, cmtype′(M ′) = set, (R′1, ..., R
′
n) = content′(M ′)

(rw(R′1) ∧ ... ∧ rw(R′n))

Figure 5.18: Set rewriting rule of rw

M ′ ∈ S ′m, cmtype′(M ′) = choice

(rwChoice(M ′))

Figure 5.19: Choice rewriting rule of rw

When function rw has sequence content model M ′ on the input (see

68

Figure 5.17), its content is rewritten into logical conjunctions. When function
rw has a content model M ′ set on the input (see Figure 5.18), its content
is also rewritten into logical conjunctions. Sequence and set content models
have the same semantics from boolean expressions point of view, because
sequence (a,b) is equivalent to {a,b}, i.e. (a and b).

When function rw has choice content model M ′ on the input (see Fig-
ure 5.19), it is rewritten using function rwChoice.

When function rwChoice has content model M ′ on the input without
XML attribute declarations in its context, i.e. descendents′(aparent′(M ′)) =
(V ′c , V ′s , V ′a), where |V ′a| = 0 , the content of M ′ is rewritten into disjuntions
(see Figure 5.20). We can not presume exclusive disjunction between ele-
ments in boolean expressions, because it is not possible to check choices
among elements using boolean expressions.

Example 5.15. As an example, consider regular expression ((a|b)+). We
can not translate the expression into bool expression ((a and count(b)=0)

or (count(a)=0 and b)), naturally. However, we can translate the expres-
sion into (a or b).

M ′ ∈ S ′m, (R′1, ..., R′n) = content′(M ′), descendants′(aparent′(M ′)), |V ′a| = 0

(rw(R′1) ∨ ... ∨ rw(R′n))

Figure 5.20: Choice without attributes rewriting rule of rwChoice

M ′ ∈ S ′m, (R′1, ..., R′n) = content′(M ′), descendants′(aparent′(M ′)), |V ′a| > 0

(
∨n

i=1 (rw(R′i) ∧ count(
⋃n

j 6=i rwChoiceNegation(R′j)) = 0))

Figure 5.21: Choice with attributes rewriting rule of rwChoice

R′ ∈ S ′r, name′(R′) 6= λ, child′(R′) ∈ S ′c
name′(R′)

Figure 5.22: Named association rewriting rule of rwChoiceNegation

R′ ∈ S ′r, (name′(R′) = λ ∨ child′(R′) /∈ S ′c)
descendants′(R′)

Figure 5.23: Association rewriting rule of rwChoiceNegation

We check choices among attributes and choices among attributes and
elements using boolean expressions (see Figure 5.21), resp. we generate ex-
clusive disjunctions for content model choice. Note that we used another

69

function rwChoiceNegation which allows to translate declarations into the
content of count, similary like in Figure 5.13.

Example 5.16. As an example, consider regular expression (a|@b|@c). We
translate this expression into boolean expression ((a and count(@b|@c)=0)

or (@b and count(a|@c)=0) or (@c and count(a|@b)=0)).

The rule in Figure 5.21 is correct in general, when we accept another
PSM precondition (see Definition 5.4).

Definition 5.4. Let S ′ be a PSM schema. We will call attribute cardinal-
ities precondition an assumption on S ′ saying ∀A′ ∈ S ′a, xform

′(A′) =a,
must hold that card′(A′) = 0..1 or card′(A′) = 1..1 and A′ is descendant
of associations R′ ∈ S ′r, (name

′(R′) = λ ∨ child′(R′) /∈ S ′c) in the complex
content, where card′(R′) = 0..1 or card′(R′) = 1..1.

Example 5.17. All following examples are regular expressions which satisfy
precondition 5.4:

• (@a,@b,(@c|(d,e,f)))

• (@a 0..1,@b,(@c 0..1 |(d,e,f)))

• (@a 0..1,@b,(@c 0..1 |(d,e,f)) 0..1)

All following examples are regular expressions which do not satisfy 5.4:

• (@a 1..*,@b,(@c|(d,e,f)))

• (@a 0..1,@b,(@c|(d,e,f)) 0..3)

Let us to provide another example, which demonstrates how the trans-
lation from regular expressions to boolean expression works (see Exam-
ple 5.18).

Example 5.18. All following examples are valid translations of regular ex-
pression (right-hand side) to boolean expression (left-hand side):

• (@a,b) → (@a and b)

• (@a 0..1,b 0..1) → ((@a or count(@a)=0) and

(b or count(b)=0))

• (@a 0..1,b 0..1) 0..1 → (((@a or count(@a)=0) and

(b or count(b)=0)) or count(@a|b)=0)

• (@a|b) 0..1 → (((@a and count(b)=0) or

(count(@a)=0 and b)) or count(@a|b)=0)

70

• (a,b,c) 1..* → (a and b and c)

• (a,b,c) 0..* → ((a and b and c) or count(a|b|c)=0)

• (a|b|c) 1..3 → (a or b or c)

• {a,b,c} 0..2 → ((a and b and c) or count(a|b|c)=0)

5.5.4 From boolean expression to CNF

Now we have a boolean expression derived from a complex element decla-
ration. This expression is composed only of brackets, conjunctions ∧, dis-
junctions ∨ and literals (name or count(...)=0 used as a negation). We
can translate such expression into logic equivalent conjunctive normal form
using the following rules:

• (A ∧B) ∨ C → (A ∨ C) ∧ (B ∨ C)

• C ∨ (A ∧B)→ (C ∨ A) ∧ (C ∨B)

We do not show an algorithm, because the translation of a boolean ex-
pression into a CNF is a routine problem. Briefly, we can represent expression
in a postfix notation, build a binary tree without brackets and we can apply
rewriting rules on the tree. Then, we can translate clauses with disjunctions
of literals into Schematron predicates. CNF may contain dead clauses (see
Example 5.19) and may be optimized, i.e. the dead clauses are removed.

Example 5.19. Consider regular expression (@a|@b). We translate this ex-
pression into boolean expression ((@a and count(@b)=0) or (count(@a)=0

and @b)). Then, we translate boolean expression into conjunctive normal
form, i.e. ((@a or @b) and (count(@a)=0 or count(@b)=0) and (@a or

count(@a)=0) and (@b or count(@b)=0)). There are two dead clauses
(@a or count(@a)=0), (@b or count(@b)=0), because they are allways
true.

We mark the function, which translates a boolean expression into a col-
lection of clauses with disjuntions of literals as cnf , e.g. cnf((a and b) or

c)) = {(a or c), (b or c)}.

5.5.5 Patterns for structural constraints

In this section we generate two conditional patterns for checking structural
constrains as a part of Algorithm 5.1 in the step on line 5. One of the
generated patterns checks required parent-child relationships, another pat-
tern checks required parent-attribute relationships and other relationships

71

of attributes and elements (predicates for choices among attributes and ele-
ments). There can be also other distributions of conditions into patterns, for
example, everything may be inside one pattern, but we believe that our dis-
tribution provides flexible solution, because we can check required elements
only, resp. required attributes only.

Let us take a look at Algorithm 5.11 for production of patterns for struc-
tural constraints based on boolean expressions.

Algorithm 5.11 Generate patterns for structural constrains

1: Let E1 be an empty set of pairs (p,Ae);
2: Let E2 be an empty set of pairs (p,Aa);
3: for all (X ′, p) ∈ Gp do
4: if X ′ ∈ S ′r then
5: Let Ae be an empty set of predicates;
6: Let Aa be an empty set of predicates;
7: for all Y ∈ cnf(be′(X ′)) do
8: if Y has only elements in its literals then
9: Add Y into Ae;

10: else
11: Add Y into Aa;
12: end if
13: end for
14: if Ae is not empty then
15: Add (p,Ae) into E1;
16: end if
17: if Aa is not empty then
18: Add (p,Aa) into E2;
19: end if
20: end if
21: end for
22: Generate conditional pattern for E1;
23: Generate conditional pattern for E2;

Firstly, we initialize two empty sets of pairs (p,Ae) (line 1), resp. (p,Aa)
(line 2), where p is a path andAe is a set of associated predicates for elements,
Aa is a set of associated predicates for attributes and relations with elements.
Then, we go through pairs (X ′, p) ∈ Gp and when X ′ is a complex element
declaration, we initialize new sets Ae and Aa (lines 5 and 6) and translate X ′

into boolean expression and the boolean expression into conjunctive normal
form (line 7). Then, we go through obtained predicates and when predicate
(marked as Y) has only elements in its literals we add it into Ae, else we
add it into Aa. Then, if Ae, resp. Aa is not empty, we add the pair (p,Ae),
resp. (p,Aa) into E1 (line 15), resp. E2 (line 18). In the last step (lines 22

72

and 23), we generate conditional patterns for E1, E2, respectively.
We have created two patterns, which cover certain structural constrains

of modeled complex contents.

Example 5.20. As an example see Figure 2.2 and produced patterns in
Appendix A.3.

5.6 Required sibling relationships

In the previous section we generated structural constraints using boolean
expressions, which allow to validate parent-child relationships. So far we did
not deal with an arrangement of child elements inside parent element. In
this section, we deal with these constraints.

We do not deal with the arrangement of XML attributes, because it is
not typical for XML format specifications, resp. schema languages. In other
words, XML attributes ordering is not important. Note that Schematron
has also possibilities for implementation of such constraints. In this section
we deal only with XML elements ordering, but it implicitly provides other
complementary structural constraints which we can not cover using boolean
expressions.

5.6.1 Automatons overview

In this section, we describe our approach based on the backgroud theory
of regular expressions. The main idea is as follows. We build a finite state
automaton for a given regular expression, because we can translate every
regular expression into a finite state automaton. We deal only with SORE
regular expressions so we can build the deterministic SORE automaton,
where every name of XML element is assigned to at most one inner state and
it has one initial and one final state. Then we translate information obtained
from this structure into Schematron conditions (see Example 5.21).

Example 5.21. Consider content (title?,name,(phone|e-mail)+). We
can represent the regular expression using the SORE automaton in Fig-
ure 5.24. Then we can generate Schematron rules (see Figure 5.25) which
represent such automaton in Schematron.

Note that we use F := following-sibling substitution only for code
size reduction in this work. The first rule represents the initial state of the
automaton and says what elements can be at the first position in the content.
Other rules represent if-then conditions, i.e. if title element exists, it has a
name follower. If name element exists, it has a phone or an e-mail followers.
If phone element exists, it has the phone element or the e-mail element
followers or no following-sibling elements.

73

Figure 5.24: SORE automaton example

The proposed approach is possible in general, because we represent tran-
sition function of the automaton using conditional pattern. Furthermore, we
cover a lot of semantics, i.e. the order of XML elements (sequences, choices
among elements) and also cardinalities zero or one (0..1, resp. ?), just one
(1..1), zero or more (0..*, resp. Kleene star *), one or more (1..*, resp. Kleene
cross +). We can also provide clear natural-assertions and diagnostics.

There are also, unfortunately, the problems and the exceptions. Firstly,
we can not cover numeric intervals of regular expressions using this approach
(it is possible to create automaton with numeric intervals, but it is not
possible in Schematron). We need another approach for numeric constraints
in general. Secondly, regular expressions modeled by a PSM schema are
mixed from attributes and elements. We need to translate a complex content
specification into an equivalent regular (sub)expression, which represents
only names of XML elements. A PSM content model SET also complicates
construction of the algorithm.

5.6.2 From complex content to regular expression

In this section, we translate a given complex content specification (modeled
regular expression) into another regular expression, which can be used for
construction of SORE automaton.

First of all, we resolve the problem with the content model SET. We
can not translate this content model into equivalent choices among permu-
tations of sequences, e.g. {a, b} = ((a, b)|(b, a)), because it violates SORE
precondition. Instead, we identify content model SET as an inner state of the
automaton and we accept another PSM precondition (see Definition 5.5).

Definition 5.5. Let S ′ be a PSM schema. We will call SET precondition
an assumption on S ′, that for each content model SET must hold, that it has

74

<rule context="context">

<assert test="*[1][self::title or self::name]"/>

</rule>

<rule context="context/title">

<assert test="F::*[1][self::name]"/>

</rule>

<rule context="context/name">

<assert test="F::*[1][self::phone or self::e-mail]"/>

</rule>

<rule context="context/phone">

<assert test="F::*[1][self::phone or self::e-mail] or

not(F::*)"/>

</rule>

<rule context="context/e-mail">

<assert test="F::*[1][self::phone or self::e-mail] or

not(F::*)"/>

</rule>

Figure 5.25: Automaton in Schematron

named associations with classes as child in its content and the content model
is descendant of associations R′ ∈ S ′r, (name′(R′) = λ ∨ child′(R′) /∈ S ′c) in
the complex content, where card′(R′) = 0..1 or card′(R′) = 1..1.

The restriction (Defintion 5.5) for content model SET is similar to re-
striction of XSD construct ALL, but we provide some improvements (see
Example 5.22). Moreover, it may be possible to weak the SET precondition,
but there are potentially problems with consecutive sequences of elements
and its composition in complex regular expressions. We consider SORE pre-
condition as a reasonable compromise for practical XML formats.

Example 5.22. All following examples of regular expressions satisfy SET
precondition:

• {a, b, c}

• {a 0..*, b, c}

• {a 0..*, b, c} 0..1

• (x, y+, {a 0..*, b, c} 0..1)

All following examples of regular expressions violate SET precondition:

• (x, y, {a, b, c}) 1..*

75

• {(a | b), c}

Now we can introduce the function re′ for translating content specifica-
tion into regular expression without attributes. The function re′ has named
association R′ with class as a child on the input and outputs regular expres-
sion.

We do not specify the function procedurally in a form of pseudo-code.
Instead, we specify its formal semantics by rewriting rules. The formal se-
mantics of re′ exploits function rew. The function rew, where re′(R′) =
rew(child′(R′)) takes a PSM component as an input and rewrites it into a
part of regular expression.

C ′ ∈ S ′c, (A′1, ..., A′n) = attributes′(C ′), (R′1, ..., R
′
m) = content′(C ′)

(rew(repr′(C ′)), rew(A′1), ..., rew(A′n), rew(R′1), ..., rew(R′m))

Figure 5.26: Class rewriting rule of rew

A′ ∈ S ′a, xfrom′(A′) = e

((name′(A′))card′(A′))

Figure 5.27: Simple element rewriting rule of rew

R′ ∈ S ′r, name′(R′) 6= λ, child′(R′) ∈ S ′c
((name′(R′))card′(R′))

Figure 5.28: Complex element rewriting rule of rew

R′ ∈ S ′r, (name′(R′) = λ ∨ child′(R′) /∈ S ′c)
((child(R′))card′(R′))

Figure 5.29: Association rewriting rule of rew

When function rew has class C ′ on the input (see Figure 5.26), its content
is rewritten into sequence of expressions. If C ′ is a structural representative,
represented class is rewritten, i.e. rew(repr′(C ′)). Then attributes and asso-
ciations in the content of C ′ are rewritten.

When function rew has attribute A′ which represents XML element on
the input (see Figure 5.27), its name is rewritten into regular expression.
When function rew has named association R′ with class as a child on the
input (see Figure 5.28), its name is also rewritten into regular expression.
When function rew has other associations on the input (see Figure 5.29),
their children are rewritten.

76

Note that we use overloaded version of function card′, which returns the
following characters ?, *, + as cardinalities.

Example 5.23. As an example see Figure 2.2. Class C ′Purchase is rewritten
into (item+,customer) regular expression. Class C ′Customer is rewritten into
(name+,e-mail?,...) regular expression.

M ′ ∈ S ′m, cmtype′(M ′) = sequence, (R′1, ..., R
′
n) = content′(M ′)

(rew(R′1), ..., rew(R′n))

Figure 5.30: Sequence rewriting rule of rew

M ′ ∈ S ′m, cmtype′(M ′) = set, (R′1, ..., R
′
n) = content′(M ′)

((name′(R′1))card
′(R′1)...(name

′(R′n))card′(R′n))

Figure 5.31: Set rewriting rule of rew

When function rew has sequence content model M ′ on the input (see
Figure 5.30), its content is rewritten into sequence of expressions. When
function rew has set content model M ′ on the input (see Figure 5.31), its
content is rewritten into one token as the regular expression literal.

M ′ ∈ S ′m, cmtype′(M ′) = choice, (R′1, ..., R
′
n) = content′(M ′)

((rew(R′1)|...|rew(R′n))rewAddCard((R′1, ..., R
′
n))

Figure 5.32: Choice rewriting rule of rew

When function rew has choice content model M ′ on the input (see Fig-
ure 5.32), its content is rewritten into choices of expressions. We used another
special function rewAddCard which returns the cardinality ?, when for at
least one R′i ∈ content′(M ′) holds that descendants′(R′i) = (V ′c , V ′s , V ′a),
|V ′c ∪ V ′s | = 0. For lighter explanation, see Example 5.24.

Example 5.24. For example content model M ′
choice in Figure 2.2 models

(amount,price)|@tester regular expression. We can not translate this ex-
pression into (amount,price), because it is not subexpression. We translate
regular expression into (amount,price)?.

5.6.3 From regular expression to DFA

Now we have a regular expression derived from a complex element decla-
ration using additional PSM function re′. We can build deterministic finite

77

automaton (DFA) for this regular expression. We do not show an algorithm,
because it is a routine problem, which is formally described in many sources,
e.g. the authors of the book [2] describes this construction. Briefly, we can
build non-deterministic finite automaton (NFA) for a given regular epxres-
sion. Then we can convert NFA into DFA using algorithm called Subset
construction.

5.6.4 From DFA to Schematron

Now we can presume that we can build the DFA for each complex element
declaration, resp. named association with class as a child. We also need
to translate obtained information into Schematron rules. We produce for
each complex element and for elements in its content a set of predicates.
These predicates are composed from following-sibling XPath axes. We
do not show a formal description of this translation, because it is simple and
indicated in Example 5.21.

5.6.5 Pattern for required sibling relationships

Now we generate conditional pattern for obtained predicates for the step on
line 6 in Algorithm 5.1. We do not show an algorithm, because it is very
similar to previous concepts. Instead, see Example 5.25.

Example 5.25. As an example see Figure 2.2 and generated pattern in
Appendix A.4.

5.7 Required text restrictions

In this section we produce the last patterns of the proposed translation. We
are also interested in validation of data types for simple element contents
and attribute values. The supported set of data types for PSM attributes
is implementation dependent. The system eXolutio provides XSD built-in
simple data types.

Schematron does not provide built-in data types in default. However, we
can create a lot of data types specifications using XPath expressions placed
into abstract rules or patterns (see our design in Appendix B). To our best
knowledge, we can not describe e.g. date data type, because we do not have
necessary equipment, e.g. regular expressions. Schematron over XPath 1.0
is worse than XSD in this practical aspect, but Schematron over XSLT 2.0
provides same data types as XSD language (see Section 4.2.1).

Definition 5.6. Let S ′ be a PSM schema. We will call data types precon-
diton an assumption on S ′, that each data type used in S ′ has corresponding
declaration in Appendix B.

78

In the step on line 7 of Algorithm 5.1 we generate three patterns for
data types validation. We do not describe algorithms in a form of pseudo-
code, because it is simple. Briefly, every produced pattern has used abstract
rules specifications from Appendix B and rules for corresponding paths with
abstract rule extensions, i.e. the element <extends/>. The first pattern is
used only for validation of complex elements text restrictions, i.e. we use
emptyString data type (see Figure B.1). The second pattern is used for
validation of simple element contents and the last is used for validation of
attribute values.

5.8 Conclusions

In this chapter, we began with an introduction to the problem of automatic
construction of Schematron schemas from PSM schemas. The translation
is not simple, because we have completely different models. However, we
showed that Schematron is very powerfull language so it can express a lot
of grammatical structural constrains.

We started with production of absorbing patterns, which allow to validate
allowed occurrences of XML elements and XML attributes inside validated
XML documents. Then we produced conditional patterns for validation of
required grammatical structural constraints, resp. we analyzed some parts
of regular expressions which can be represented in Schematron. Then we
generated patterns for validation of data types for simple element contents
and attribute values.

The proposed concepts are proved by prototype implementation in eXo-
lutio tool (see Chapter 6).

5.8.1 Numeric constrains

Schematron is also very powerfull for expressing numeric constraints, resp.
numeric intervals of regular expressions, but the proposed translation algo-
rithm does not deal with such constraints, so it is the last PSM precondition.

We do not deal with numeric constraints, because it is very complicated,
may be impossible in general. We showed some researched techniques in
Section 3.3.2, e.g. testing of total count of elements using cartesian prod-
ucts, but there are code explosions. Moreover, the introduced techniques did
not show general approach, but it is based on the special cases of regular
expressions.

It is very difficult to say if is possible to translate every regular expression
(with intervals) into Schematron rules. Naturally, it is also possible to declare
certain preconditions and translate only a subset of regular expressions which
also covers a lot of XML formats in practice.

79

5.8.2 Main contributions

The main benefits of the proposed translation are as follows:

• We can generate platform independent script for XML documents val-
idation, which can be used in many software environments.

• The generated schemas allow to specify validation quality diagnostics
and clear validation results.

• We provide choices among attributes, choices among attributes and
elements.

• There are better possibilities for unordered content models.

• We can use the mechanism of phases and validate only such restric-
tions which are in our current interest. Moreover, we can design, resp.
validate another kind of XML formats (see Example 5.26).

Open XML schemas

In this section, we describe some extensions of the PSM grammatical per-
spective. First of all, let us consider an Example 5.26.

Example 5.26. The PSM schema in Figure 5.33 does not have meaning
from the grammatical point of view, resp. the schema is not normalized [28].
When we generate the XSD schema from this PSM schema, the produced
XML schema is not workable, i.e. we can not use this schema for XML
document validation, because it is composed only from XSD complexTypes.

Figure 5.33: Open PSM schema example

We are motivated to designing such schemas in Figure 5.33, because the
complex element purchase-request or purchase-response may be used
as the content in some wrapping XML format, e.g. a body of the transport

80

protocol SOAP [6]. If we need to validate the body of such SOAP message, we
can design such PSM schema and generate Schematron schema, which allows
to validate such SOAP documents, because we can select all occurences
of purchase-request and purchase-response elements anywere inside a
document and evaluate predicates over these elements.

The corresponding Schematron schema to Figure 5.33 (without patterns
for validation of data types) is introduced in Appendix A.5. The proposed
construction of paths allows to implement the introduced approach, when
we use the phases mechanism, i.e. we can perform only patterns for required
structural and sibling constrains.

Another approach is to parameterize the translation. For example, we
will generate only conditional patterns or we will generate absorbing patterns
with the report element, instead the assert element in global rules.

81

Chapter 6

Implementation

In this chapter we describe our prototype C# implementation of the pro-
posed PSM to Schematron translation. The PSM to Schematron translator
represents full implementation of the PSM to Schematron translation and
proves concepts introduced in Chapter 5. The translator is implemend as an
extension of the tool eXolutio (see Section 2.4) and is on the attached CD
(see Chapter 9).

6.1 User’s view

From the user’s point of view, we can see this feature on the Translation
tab, when a PSM schema is selected in an eXolutio project.

The new feature is integrated under a new button with the icon of
Schematron mascot1 and with the following label Generate Schematron-
ish grammars (see Figure 6.1). There is also another icon for generation of
Schematron schemas, but it is a production of Schematron patterns gener-
ated from OCL introduced in Chapter 4 and it is not related to this work.

When we press the button for Schematron-ish grammars, the PSM schema
is translated into Schematron schema document (see Figure 6.2) in a stan-
dard eXolutio way. The user can save the generated Schematron schema in
the filesystem and also he can validate the produced schema against the
grammar of ISO Schematron.

At the bottom of the window in Figure 6.2, we can see error and warning
log messages produced by the translation, which inform the user of what
is wrong with the PSM schema. For example, unsupported data type is
generated or PSM schema does not satisfy preconditions required by this
translation, so the produced XML schema is not correct.

The translation does not produce natural-assertions, diagnostics and
phases, but the schema can be extended manually for these benefits. Pro-

1http://www.topologi.com/products/validator/doc/about3.html

82

http://www.topologi.com/products/validator/doc/about3.html

Figure 6.1: Schematron-ish grammars in eXolutio

duced Schematron schemas are designed for these cases, e.g. rules are or-
ganized into patterns for phases, patterns are designed for quality natural-
assertions, etc.

Note that sample Schematron schemas generated from PSM schemas are
also on the attached CD.

6.2 Programmer’s view

From the programmer’s point of view, the translator is implemented as .NET
Framework 4.0 DLL assembly (Psm2SchTranslator.dll). The assembly only
uses eXolutio object representation of a PSM schema and standard con-
structs from .NET Framework class library.

The main classes are PsmVerifier and PsmTranslator. The first class
represents implementation of the verification of PSM schema preconditions
for effective Schematron translation. It has a PSM schema on the input
and collection of log messages on the output. The second class represents
implementation of the translation. It has a PSM schema on the input and
Schematron XML document on the output.

The steps of the translation are organized into classes, which represent

83

algorithms and used data structures.

Figure 6.2: Generated Schematron schema

84

Chapter 7

From Schematron to PSM

In this chapter, we would like to design a method for construction of a PSM
schema from an XML schema described in Schematron. We are motivated
for implementation, because we can visualise XML schemas using human
understandable diagrams and we can map concepts from XML format spec-
ification to a conceptual schema and manage links between concepts and
their XML representations.

In the previous chapter, we introduced the method, which can be used
as the translation of a PSM schema into a Schematron schema. The gen-
erated schema contains structural constraints, which cover parts of regular
tree grammar semantics. In this chapter, we are interested in the reverse
approach. First of all, we consider the fact that the translation is not possi-
ble in general, because Schematron is more general than PSM schema (see
Example 7.1).

Example 7.1. Consider small Schematron schema in Figure 7.1. PSM
schema does not provide constructs, which can be used for expressing such
structural constraints.

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

<pattern>

<rule context="order[not(@tester)]">

<assert test="count(item)=count(price)"/>

</rule>

<rule context="item">

<assert test="not(order)"/>

</rule>

</pattern>

</schema>

Figure 7.1: Schematron schema example

85

A PSM schema models a regular tree grammar, i.e. rigorous XML format
specification using relatively small amount of structural constrains, when we
compare grammars and Schematron expressive possibilities. It is relatively
easy to translate an XSD schema into a PSM schema or into other technolo-
gies, because XML schema description is formed from strongly structured
data and other useful metadata. Moreover, XSD constructs correspond to
PSM schema constructs.

In general, translating Schematron schemas into closed grammar-based
XML format specifications is not possible, because Schematron has the fol-
lowing properties:

• Schematron allows to specify XML formats, where is allowed every-
thing which is not explicitly prohibited by the given schema, i.e. Schema-
tron is open-by-default schema language (see Example 7.1).

• Schematron allows to specify many structural constraints and other
details, which can not be expressed using grammar-based schemas (see
Example 7.1).

• Schematron is a rule-based XML schema language with different ab-
stractions than grammar-based schemas (see Section 3.1).

• Schematron mostly resembles a simple validation script, which does
not presume any other machine processing (see Appendix A and Schema-
tron schemas semantics in Section 3.1.4).

• Schematron is very diverse so it is very difficult to recognize expressed
semantics by machine (see examples in Section 3.3.2). It other words,
it does not provide useful metadata which would allow effective trans-
lations.

We have completely different models for different purposes in general and
we can not change the semantics of Schematron schemas or it is not possible
to construct approximate PSM schemas, because XML schema is accurate
XML format specification. The possibility of constructing a PSM schema
from a Schematron schema is determined by the amount of information
provided by Schematron schema.

For these reasons, we can say that the translation is negative. However,
it is possible to declare a lot of preconditions about translated Schematron
schemas, e.g. what paths are allowed, what predicates are allowed, etc. We do
not provide detailed translation algorithm in this chapter. Instead, we deal
with possible approaches, which can be used for translating Schematron.

In Section 7.1, we discuss translation of a specific subset of Schematron
with our syntax rules. In Section 7.2, we discuss possibilities of Schematron
schema code analysis for detection of grammatical structural constraints in

86

general. Section 7.3 concludes and provides final discussion about possibili-
ties in this area.

7.1 Translating Schematron-ish grammars

In this section, we present a possible approach for translating Schematron
schemas, which represent grammatical constraints.

The main idea is based on the approach described in Section 4.2.2. We
will translate only a subset of Schematron (and XPath) language into a PSM
schema. Schematron-ish grammars described in Chapter 5 can be used as this
subset, because we designed a de facto own XML schema language described
using Schematron, resp. based on Schematron and it is also designed with
the prerequisites of the translation, i.e. patterns are decorated using useful
metadata, so we can recognize their semantics. In fact, we can create a
grammar for this subset of Schematron (and XPath), so we can validate
the given schema before translation. Now the translation of XML schemas
written in Schematron is comparable with translating grammar-based XML
schemas to PSM schemas.

In other words, we can see Schematron as the underlaying framework,
which allows to create own XML schema languages. When we consider the
fact, that there are not some standardized schema languages described in
Schematron, we do not have much possibilities than using Schematron-ish
grammars. Moreover, there is an interesting question - how many practical
XML schemas written in Schematron describe grammatical structural con-
straints, if there are any? It is difficult to answer this question, but it seems
that Schematron is mostly applied as the language for validation of integrity
constraints for weak points of grammars.

The proposed Schematron-ish grammars can provide relatively simple
processing of Schematron schemas. For example, we know, which patterns
are absorbing, we know, which rules are global, we know, which patterns are
conditional for description of elements order, we know the syntax rules of
allowed XPath expressions, we know their semantics, etc. However, transla-
tion can not be direct, because we need to recognize constraints from the
schema and build some helpful representation, because Schematron has dif-
ferent abstractions than PSM schemas, e.g. paths, predicates, patterns, etc.
Then we can build the PSM schema. The last step is not so interesting,
because we can use as the representation a regular tree grammar or some
its graph representation and we can use the algorithm (or another similar)
described in [28] (the function rtg-2-psm).

This approach may be useful in practice. We can implement various
translations of Schematron-based schema languages for specific systems or
applications. In general, it does not comprise arbitrary Schematron schemas,

87

naturally. We do not describe any such translation in this thesis, because
it does not provide new concepts. Instead, we deal with a little general
approach in the following section.

7.2 Translating Schematron

In this section, we show basic concepts in the area of Schematron schemas
reverse-engineering. We are interested in grammatical structural constraints,
i.e. we would like to find described tree grammars with regular expressions
in a given Schematron schema. The translation of Schematron to PSM may
have the following steps:

1. Schematron schema preprocessing

2. Brute-force patterns matching

3. PSM schema construction

In particular, we are focused on the first and the second step, when we
get information from Schematron schema for some grammatical representa-
tion. First of all, we translate a Schematron schema into another equivalent
Schematron schema (Section 7.2.1) without loss of semantics. In the sec-
ond step (Section 7.2.2), we analyze Schematron patterns and their rules
(Section 7.2.3), so we get different kinds of information from the schema.
This step has various relations on the output. For example, what elements
are root elements, what elements are declared in the schema, what parent-
child relationships are declared in the schema, what sibling relationships
are declared in the schema, etc. In the last step, we presume that we have
certain representation of a regular tree grammar builded using introduced
relationships, so we can build the corresponding PSM schema.

7.2.1 Preprocessing

In this section, we briefly describe preprocessing of a given Schematron
schema. This step is relatively simple and it was also applied in Section 3.1.4
to simplification of the specification of Schematron schema semantics. This
step is also implemented in existing validators1, because it simplifies con-
struction of validation algorithms.

We need to perform the following transformation steps:

• All abstract patterns are resolved by replacing parameter references
with actual parameter values in all enclosed attributes that contain
queries. The resulting schema does not contain the following XPaths
//sch:pattern[@abstract=’true’] and //sch:pattern[@is-a].

1SchemaTron validator on the attached CD (see Chapter 9) has the preprocessor.

88

• All abstract rules are resolved by replacing the extends elements with
the contents of the abstract rules identified. The resulting schema does
not contain the following XPaths //sch:rule[@abstract=’true’]

and //sch:extends.

• All ancillary constructs are removed, e.g. phases, diagnostics, docu-
mentation, etc.

We presume, that the output of this step is another Schematron schema
Ssch which accepts the same class of languages and it respects the minimal
grammar of Schematron in Figure 3.1. We can perform this translation step,
because the target grammar-based XML schema language (e.g. PSM) does
not provide constructs for representation of Schematron abstractions.

7.2.2 Analysis of patterns

A pattern is a basic Schematron unit, which allows to provide some useful
information about described XML format, so we need to start with analysis
of a pattern.

It requires implementation of parsing of XPath expressions in rule con-
texts (and also assertion tests). We presume that we can parse XPath ex-
pression, i.e. for the given expression we can build its syntax tree. Our ex-
periments show that XPathParser library2 provides a suitable solution.

The first information that we can recognize is that Schematron schema
is closed or open for all XML elements and XML attributes, i.e. we can try
to recognize that the pattern is absorbing.

Example 7.2. For example, we can get information, if the schema is closed
for all elements, i.e. a pattern has a final rule with just the wildcard * (and no
previous rules use wildcards) and an assert element with a test of false()
(see Figure 7.2).

<pattern>

<rule context="x1|x2|...|xN">

<assert test="true()"/>

</rule>

<rule context="*">

<assert test="false()"/>

</rule>

</pattern>

Figure 7.2: Absorbing pattern for closed elements

2http://xpathparser.codeplex.com/

89

http://xpathparser.codeplex.com/

There is also possible to get information about closed root elements (pat-
tern in Schematron-ish grammars) or closed content models of specific ele-
ments (see Example 7.3).

Example 7.3. This example demonstrates another pattern (see Figure 7.3),
which specifies closed content model of some complex element x.

<pattern>

<rule context="/x/x1|/x/x2|...|/x/xN">

<assert test="true()"/>

</rule>

<rule context="/x/*">

<assert test="false()"/>

</rule>

</pattern>

Figure 7.3: Absorbing pattern for closed elements of the element

There is a lot of possible cases of absorbing patterns. However, absorb-
ing patterns may be resolved. We can create a catalog of known templates
and match the schema against the catalog. For non-absorbing patterns, the
semantics of patterns, i.e. an ordered collection of rules for nodes selections
is not usually important (see Example 7.4).

Example 7.4. The pattern in Figure 7.4 absorbs all elements with the child
element item. Then, all occurrences of order elements are selected. We do
not know, that an element order has the child element item.

<pattern>

<rule context="*[item]">

...

</rule>

<rule context="order">

...

</rule>

</pattern>

Figure 7.4: Ordered collection of rules

7.2.3 Analysis of rules

In this section, we discuss analysis of a Schematron rules, resp. just one
rule. This method is also based on a catalog of templates which can be

90

matched in the rule contexts and assertion tests. We show some samples of
such templates, which we do not provide in Schematron-ish grammars.

<rule context="/">

<assert test="x1 or ... or xN"/>

</rule>

Figure 7.5: Root elements (I)

<rule context="x">

<assert test="not(parent::*)"/>

</rule>

Figure 7.6: Root elements (II)

<rule context="x">

<assert test="count(*)=count(x1|...|xN)"/>

</rule>

Figure 7.7: Closed content model

<rule context="x">

<assert test="count(x1)=1"/>

</rule>

Figure 7.8: Parent-child relationships

<rule context="x">

<assert test="preceding-sibling::*[1][self::y]"/>

</rule>

Figure 7.9: Sibling relationship: x is a follower of y

We can extend the grammar of Schematron-ish grammars about such
templates and many others and recognize these information from Schema-
tron rules. Then we need to represent obtainted information in some struc-
ture and generate corresponding PSM schema. Moreover, we can design
framework with support for expansion of such known templates. This frame-
work allows to matching templates from the catalog against the Schematron
schema.

91

7.3 Conclusions

In this chapter, we discussed some basis for this translation. In general, the
translation is not possible. However, we can try to recognize grammatical
structural constraints from schemas using brute-force method and the cata-
log of known templates. The approach may be based on the framework with
support for expansion of such known templates. We also need to known,
what we will do with the rule, which does not matched any template. For
example, we can ignore such rules.

The potential of the method is not obvious in practice, because it is not
clear whether Schematron is used for description of structural constraints.

92

Chapter 8

Conclusions

In this thesis, we began with an introduction to the problem of mutual
conversion between Schematron schemas and PSM schemas. In the first di-
rection, we explored the area of Schematron and Schematron schemas gener-
ation. We showed that Schematron is general and powerful language, which
can be used as fully-fledged XML schema language. Moreover, Schematron
provides features, which improve XML documents validation and allow to
design other kinds of XML formats. Automatic construction of Schematron
schemas, which describe grammatical structural constraints is not obvious,
but it is possible. In the second direction, we showed that both models are
completely different and translation of Schematron schema to a PSM schema
is not possible in general, but it is possible for special cases.

We began with our motivation to implementations of translations in
Chapter 1. We introduced advanced approaches to the design of XML schemas
and we also introduced interesting Schematron properties.

In Chapter 2 we described a conceptual model for XML and we spec-
ified its formalism. We described that PSM schema models a regular tree
grammar, resp. it is a grammar-based XML format specification.

In Chapter 3 we described Schematron schema language from syntactical
and semantical points of view. We discussed its properties in more details,
because the area of Schematron, e.g. expressive power, practical advantages,
etc. is not so much explored.

A breaf introduction to existing translations among XML schema lan-
guages and between PSM schemas and XML schema languages followed in
Chapter 4. We described that there is a relatively small amount of sources
which cover this area.

In the second half of this thesis, a new automatic method of generating
Schematron schemas from a conceptual model was introduced (Chapter 5).
We described translation algorithm in details using the PSM formalism. The
proposed translation algorithm produces schemas, which describe grammat-
ical structural constrains for validation of XML documents modeled using

93

PSM schemas. The method is based on analysis of the PSM schema se-
mantics, which is divided and represented using Schematron patterns. The
implementation of the proposed solution is described in Chapter 6. A proto-
type implementation of the proposed translation algorithm was implemented
as an extension of the tool eXolutio. It is available on the attached CD.

We also discussed the problem of translating Schematron into PSM
schema, resp. translating Schematron into grammar-based XML schema lan-
guages in Chapter 5. Translating Schematron into PSM schemas is not pos-
sible in general. However, we showed some special Schematron cases, where
the translation is possible.

8.1 Future work

Mutual conversion between PSM and Schematron is the big area with many
open problems. Since Schematron does not have an underlying formalism
that would allow to prove its expressive power. The biggest subclass of regu-
lar tree grammars, which can be translated into Schematron, is not obvious.
In reverse, the biggest subclass of Schematron (and XPath), which can be
translated into a regular tree grammar, resp. into a PSM schema, is not
obvious.

In this thesis there are some areas that we did not discuss at all or only
a little, because it is out of the scope of this thesis and other more analysis
are needed. We will try to describe them in short in the following sections.

8.1.1 From PSM to Schematron

Generated Schematron schemas represent a special subclass of a regular tree
grammar. The proposed class is described using PSM preconditions. These
preconditions must be satisfied on the given PSM schema, so the algorithm
generates correct Schematron schema. We excluded numeric constraints from
modeled contents using PSM preconditions. We did not deal with numeric
constraints, because it is very complicated, may be impossible in general. We
showed some explored techniques, but there are code explosions. Moreover,
the introduced techniques did not show general approach.

From the practical point of view, we did not solve parameterization of
the translation algorithm. It is possible to extend eXolutio and PSM schema
with translation parameters (e.g. using meta-attributes of UML stereotypes)
supporting already introduced and other practical requirements, e.g. support
for modeling of natural-assertions and diagnostics, support for expansion of
simple data types, support for XML namespaces, etc.

There are also possibilities for schemas optimization, i.e. the count of
used queries, forms of natural-assertions or granularity of patterns for the

94

mechanism of phases.

8.1.2 From Schematron to PSM

We did not discuss certain construction of a PSM schema from a given
Schematron schema, because the proposed approaches are based on more
preconditions on Schematron schema. Instead, we discussed some possibili-
ties which allow to implement translation in future research.

There is also another idea. We can try to desing another PSM schema.
This model will be specific for Schematron schema language or rule-based
XML schema languages in general. It will represent abstractions like phases,
patterns, rules, assertions, etc. Information from representation of Schema-
tron conditions will be mapped into PIM concepts. Then it is possible to
implement effective and direct mutual translations between PSM schemas
and Schematron schemas and map concepts from Schematron schemas into
conceptual schemas. This approach may be also useful for designing of non-
grammar-based XML formats.

95

Chapter 9

CD contents

The attached CD contains the following filesystem structure with the related
artefacts of this work:

• Code - the folder contains source code of the following components:

– eXolutio - represents the used version of the tool eXolutio with
the integrated translation.

– Psm2SchTranslator - represents our prototype implementation
(.NET 4.0 DLL assembly) of the PSM to Schematron translation.

– SchemaTron - represents our native C# implementation (.NET
4.0 DLL assembly) of validator of the ISO Schematron language
over XPath 1.0.

• Exe - the folder contains the installer of the tool eXolutio with the
integrated translation.

• Samples - the folder contains samples of PSM schemas and produced
Schematron schemas.

• thesis.pdf - PDF version of this thesis.

96

Bibliography

[1] A. Berglund and S. Boag and D. Chamberlin and M. F. Fernandez and
M. Kay and J. Robie and J. Siméon. XML Path Language (XPath)
2.0 (Second Edition). W3C, December 2010. http://www.w3.org/TR/
xpath20/.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools (second edition). Addison Wesley, 2007.

[3] B. Eich and C. R. Mckinney. JavaScript Language Specification. Novem-
ber 1996. http://hepunx.rl.ac.uk/~adye/jsspec11/jsrefspe.htm.

[4] S. Benda, B. Zámečńık, M. Cicko, P. Sobotka, T. Kroupa, and
M. Nečaský. SchemaTron - Native C# validator of ISO Schema-
tron language. http://www.assembla.com/spaces/xrouter/

documents/b5mJ6o1cyr4k0TeJe4gwI3/download?filename=

XRouter-docs-en-05-SchemaTron.pdf, September 2011.

[5] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of Concise
DTDs from XML Data. ACM, 2006.

[6] D. Box and D. Ehnebuske and G. Kakivaya and A. Layman and N.
Mendelsohn and H. F. Nielsen and S. Thatte and D. Winer. Simple
Object Access Protocol (SOAP) 1.1. W3C, May 2010. http://www.w3.
org/TR/soap/.

[7] H. S. Thompson and D. Beech and M. Maloney and N. Mendelsohn.
XML Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/TR/xmlschema-1/.

[8] ISO/IEC. Information technology - Document Schema Definition Lan-
guage (DSDL) - Part 3: Rule-based validation – Schematron, June 2006.
http://standards.iso.org/ittf/PubliclyAvailableStandards/

c040833_ISO_IEC_19757-3_2006%28E%29.zip.

[9] J. Clark. XSL Transformations (XSLT) Version 1.0. W3C, November
1999. http://www.w3.org/TR/xslt.

97

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath20/
http://hepunx.rl.ac.uk/~adye/jsspec11/jsrefspe.htm
http://www.assembla.com/spaces/xrouter/documents/b5mJ6o1cyr4k0TeJe4gwI3/download?filename=XRouter-docs-en-05-SchemaTron.pdf
http://www.assembla.com/spaces/xrouter/documents/b5mJ6o1cyr4k0TeJe4gwI3/download?filename=XRouter-docs-en-05-SchemaTron.pdf
http://www.assembla.com/spaces/xrouter/documents/b5mJ6o1cyr4k0TeJe4gwI3/download?filename=XRouter-docs-en-05-SchemaTron.pdf
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/xmlschema-1/
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006%28E%29.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c040833_ISO_IEC_19757-3_2006%28E%29.zip
http://www.w3.org/TR/xslt

[10] J. Clark and M. Makoto. RELAX NG Specification. Oasis, De-
cember 2001. http://www.oasis-open.org/committees/relax-ng/

spec-20011203.html.

[11] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
W3C, November 1999. http://www.w3.org/TR/xpath/.

[12] R. Jelliffe. Converting Schematron to XML Schemas.
http://www.oreillynet.com/xml/blog/2007/11/converting_

schematron_to_xml_s.html, 2007.

[13] R. Jelliffe. Converting XML Schemas to Schematron. http:

//www.oreillynet.com/xml/blog/2007/09/converting_xml_

schemas_to_sche.html, 2007.

[14] J. Kĺımek, I. Mlýnková, and M. Nečaský. A Framework for XML
Schema Integration via Conceptual Model. In WISS ’10: Proc. of the
1st Int. Symp. on Web Intelligent Systems & Services of WISE ’10:
11th Int. Conf. on Web Information System Engineering, Hong Kong,
China, 2010. Springer-Verlag.

[15] J. Kĺımek and M. Nečaský. Integrating XML Schemas for Evolution
of Web Services. In ICWS 2010: Proc. of The 8th Int. Conf. on Web
Services, pages 307–314, Miami, Florida, USA, 2010. IEEE Computer
Society.

[16] J. Kĺımek and M. Nečaský. Reverse-engineering of XML Schemas: A
Survey. Czech Republic, 2010. MATFYZPRESS.

[17] J. Kĺımek and M. Nečaský. Semi-automatic Integration of Web Service
Interfaces. In IEEE International Conference on Web Services (ICWS
2010), pages 307–314, 2010.

[18] A. Kwong and M. Gertz. On Tree Pattern Constraints for XML
Documents. 2006. http://dbs.ifi.uni-heidelberg.de/fileadmin/
publications/2003/on_tree_pattern.pdf.

[19] D. Lee and W. W. Chu. Comparative Analysis of Six XML Schema
Languages. ACM, 2000.

[20] M. Kay. XSL Transformations (XSLT) Version 2.0. W3C, January
2007. http://www.w3.org/TR/xslt20/.

[21] Microsoft. C# Language Specification 4.0, April 2010. http://www.

microsoft.com/download/en/details.aspx?id=7029.

98

http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.w3.org/TR/xpath/
http://www.oreillynet.com/xml/blog/2007/11/converting_schematron_to_xml_s.html
http://www.oreillynet.com/xml/blog/2007/11/converting_schematron_to_xml_s.html
http://www.oreillynet.com/xml/blog/2007/09/converting_xml_schemas_to_sche.html
http://www.oreillynet.com/xml/blog/2007/09/converting_xml_schemas_to_sche.html
http://www.oreillynet.com/xml/blog/2007/09/converting_xml_schemas_to_sche.html
http://dbs.ifi.uni-heidelberg.de/fileadmin/publications/2003/on_tree_pattern.pdf
http://dbs.ifi.uni-heidelberg.de/fileadmin/publications/2003/on_tree_pattern.pdf
http://www.w3.org/TR/xslt20/
http://www.microsoft.com/download/en/details.aspx?id=7029
http://www.microsoft.com/download/en/details.aspx?id=7029

[22] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Manage-
ment Group, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[23] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML
Schema Languages Using Formal Language Theory. http://www.

cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf, November
2005.

[24] P. Nálevka. Grammar vs. Rules. http://petrnalevka.blogspot.com/
2010/05/grammar-vs-rules.html, May 2010.

[25] M. Nečaský. Conceptual Modeling for XML, volume 99 of Dissertations
in Database and Information Systems Series. IOS Press/AKA Verlag,
January 2009.

[26] M. Nečaský. Reverse Engineering of XML Schemas to Conceptual Di-
agrams. In Proceedings of The Sixth Asia-Pacific Conference on Con-
ceptual Modelling, pages 117–128, Wellington, New Zealand, January
2009. Australian Computer Society.

[27] M. Nečaský, J. Kĺımek, J. Malý, and I. Mlýnková. Evolution and
Change Management of XML-based Systems. Journal of Systems and
Software, 85(3):683 – 707, 2012.

[28] M. Nečaský, I. Mlýnková, J. Kĺımek, and J. Malý. When Conceptual
Model Meets Grammar: A Dual Approach to XML Data Modeling.
December 2011.

[29] J. D. Nielsen. Relations Between Schema Languages for XML. Master’s
thesis, University of Aarhus Denmark, 2006.

[30] Object Management Group. UML Infrastructure Specification
2.1.2, November 2007. http://www.omg.org/spec/UML/2.1.2/

Infrastructure/PDF/.

[31] Object Management Group. Object Constraint Language Version 2.2,
February 2010. http://www.omg.org/spec/OCL/2.2/.

[32] U. Ogbuji. A hands-on introduction to Schematron. IBM, 2004.

[33] S. Boag and D. Chamberlin and M. F. Fernandez and D. Florescu and
J. Robie and J. Siméon. XQuery 1.0: An XML Query Language (Second
Edition). W3C, December 2010. http://www.w3.org/TR/xquery/.

[34] T. Bray and J. Paoli and C. M. Sperberg-McQueen and E. Maler
and F. Yergeau. Extensible Markup Language (XML) 1.0 (Fifth
Edition). W3C, November 2008. http://www.w3.org/TR/2008/

REC-xml-20081126/.

99

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf
http://petrnalevka.blogspot.com/2010/05/grammar-vs-rules.html
http://petrnalevka.blogspot.com/2010/05/grammar-vs-rules.html
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF/
http://www.omg.org/spec/OCL/2.2/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/2008/REC-xml-20081126/

[35] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. W3C
XML Schema Definition Language (XSD) 1.1 Part 1: Structures. W3C,
January 2012. http://www.w3.org/TR/xmlschema11-1/.

[36] E. Vlist. XML Schema The W3C’s Object-Oriented Descriptions for
XML. O’Reilly Media, June 2002.

100

http://www.w3.org/TR/xmlschema11-1/

Appendix A

Schematron schemas

Here we introduce large Schematron schemas used in examples of this work.

A.1 Validation diagnostics (Example 3.10)

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

<pattern>

<rule context="person|name">

<assert test="true()"/>

</rule>

<rule context="*">

<assert test="false()">

The ’

<name/>

’ element is not allowed in the document.

</assert>

</rule>

<rule context="@*">

<assert test="false()">

The ’

<name/>

’ attribute is not allowed in the document.

</assert>

</rule>

</pattern>

<pattern>

<rule context="/person">

<assert test="true()"/>

</rule>

<rule context="/*">

101

<assert test="false()">

The ’

<name/>

’ element is not allowed as the root element.

</assert>

</rule>

</pattern>

<pattern>

<rule context="person">

<assert test="count(name)=1" diagnostics="diag_p1">

The ’

<name/>

’ element should have just one element ’name’.

</assert>

</rule>

</pattern>

<diagnostics>

<diagnostic id="diag_p1">

The person has ’

<value-of select="count(name)"/>

’ names.

</diagnostic>

</diagnostics>

</schema>

102

A.2 Allowed contexts (Example 5.8)

<pattern id="allowed_element_contexts">

<rule context="/purchase">

<assert test="true()" />

</rule>

<rule context="/purchase/item">

<assert test="true()" />

</rule>

<rule context="/purchase/customer">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/ship-to">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/bill-to">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/bill-to/street">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/ship-to/street">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/bill-to/city">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/ship-to/city">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/phone">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/e-mail">

<assert test="true()" />

</rule>

<rule context="/purchase/item/amount">

<assert test="true()" />

</rule>

<rule context="/purchase/item/price">

<assert test="true()" />

</rule>

<rule context="/purchase/customer/ship-to/gps">

103

<assert test="true()" />

</rule>

<rule context="city">

<assert test="true()" />

</rule>

<rule context="street">

<assert test="true()" />

</rule>

<rule context="*" role="global">

<assert test="false()">

<name />

</assert>

</rule>

</pattern>

104

A.3 Structural constraints (Example 5.20)

<pattern id="required_parent_child_constraints">

<rule context="/purchase">

<assert test="customer" />

<assert test="item" />

</rule>

<rule context="/purchase/item">

<assert test="price or count(amount|price)=0" />

<assert test="amount or count(amount|price)=0" />

</rule>

<rule context="/purchase/customer">

<assert test="ship-to" />

<assert test="phone" />

</rule>

<rule context="/purchase/customer/ship-to">

<assert test="gps" />

<assert test="city" />

<assert test="street" />

</rule>

<rule context="/purchase/customer/bill-to">

<assert test="city" />

<assert test="street" />

</rule>

</pattern>

<pattern id="required_parent_attribute_constraints">

<rule context="/purchase">

<assert test="@version" />

<assert test="@date" />

</rule>

<rule context="/purchase/item">

<assert test="count(@tester)=0

or count(amount|price)=0" />

<assert test="price or @tester" />

<assert test="amount or @tester" />

<assert test="@code" />

</rule>

<rule context="/purchase/customer">

<assert test="@name" />

</rule>

</pattern>

105

A.4 Sibling relationships (Example 5.25)

<pattern id="required_sibling_relationships">

<rule context="/purchase">

<assert test="*[1][self::item]" />

</rule>

<rule context="/purchase/item">

<assert test="following-sibling::*[1][self::item

or self::customer]" />

<assert test="*[1][self::amount] or count(*)=0" />

</rule>

<rule context="/purchase/customer">

<assert test="not(following-sibling::*)" />

<assert test="*[1][self::phone]" />

</rule>

<rule context="/purchase/item/amount">

<assert test="following-sibling::*[1][self::price]" />

</rule>

<rule context="/purchase/item/price">

<assert test="not(following-sibling::*)" />

</rule>

<rule context="/purchase/customer/phone">

<assert test="following-sibling::*[1][self::phone

or self::e-mail or self::ship-to or self::bill-to]" />

</rule>

<rule context="/purchase/customer/e-mail">

<assert test="following-sibling::*[1][self::ship-to

or self::bill-to]" />

</rule>

<rule context="/purchase/customer/ship-to">

<assert test="following-sibling::*[1][self::bill-to]

or not(following-sibling::*)" />

<assert test="*[1][self::street]" />

</rule>

<rule context="/purchase/customer/bill-to">

<assert test="following-sibling::*[1][self::ship-to

or self::bill-to] or not(following-sibling::*)" />

<assert test="*[1][self::street]" />

</rule>

<rule context="/purchase/customer/ship-to/street">

<assert test="following-sibling::*[1][self::city]" />

</rule>

<rule context="/purchase/customer/ship-to/city">

106

<assert test="following-sibling::*[1][self::gps]" />

</rule>

<rule context="/purchase/customer/ship-to/gps">

<assert test="not(following-sibling::*)" />

</rule>

<rule context="/purchase/customer/bill-to/street">

<assert test="following-sibling::*[1][self::city]" />

</rule>

<rule context="/purchase/customer/bill-to/city">

<assert test="not(following-sibling::*)" />

</rule>

</pattern>

107

A.5 Open schemas (Example 5.26)

<schema xmlns="http://purl.oclc.org/dsdl/schematron">

<pattern id="allowed_root_elements">

<rule context="/*" role="global">

<assert test="false()">

<name />

</assert>

</rule>

</pattern>

<pattern id="allowed_element_names">

<rule context="purchase-request">

<assert test="true()" />

</rule>

<rule context="purchase-response">

<assert test="true()" />

</rule>

<rule context="item">

<assert test="true()" />

</rule>

<rule context="status">

<assert test="true()" />

</rule>

<rule context="*" role="global">

<assert test="false()">

<:name />

</assert>

</rule>

</pattern>

<pattern id="allowed_attribute_names">

<rule context="@num">

<assert test="true()" />

</rule>

<rule context="@*" role="global">

<assert test="false()">

<name />

</assert>

</rule>

</pattern>

<pattern id="allowed_element_contexts">

<rule context="purchase-request/item">

<assert test="true()" />

</rule>

108

<rule context="purchase-response/status">

<assert test="true()" />

</rule>

<rule context="purchase-request">

<assert test="true()" />

</rule>

<rule context="purchase-response">

<assert test="true()" />

</rule>

<rule context="*" role="global">

<assert test="false()">

<name />

</assert>

</rule>

</pattern>

<pattern id="allowed_attribute_contexts">

<rule context="purchase-request/@num">

<assert test="true()" />

</rule>

<rule context="@*" role="global">

<assert test="false()">

<name />

</assert>

</rule>

</pattern>

<pattern id="required_parent_child_constraints">

<rule context="purchase-request">

<assert test="item" />

</rule>

<rule context="purchase-response">

<assert test="status" />

</rule>

</pattern>

<pattern id="required_parent_attribute_constraints">

<rule context="purchase-request">

<assert test="@num" />

</rule>

</pattern>

<pattern id="required_sibling_relationships">

<rule context="purchase-request">

<assert test="*[1][self::item]" />

</rule>

<rule context="purchase-request/item">

109

<assert test="following-sibling::*[1][self::item]

or not(following-sibling::*)" />

</rule>

<rule context="purchase-response">

<assert test="*[1][self::status]" />

</rule>

<rule context="purchase-response/status">

<assert test="not(following-sibling::*)" />

</rule>

</pattern>

</schema>

110

Appendix B

Schematron data types

Here we introduce our proposed Schematron data type declarations for text
contents restrictions. All declarations are represented as abstract rules.

B.1 Strings

<rule id="emptyString" abstract="true">

<assert test="string-length(normalize-space(text()))=0"/>

</rule>

Figure B.1: Empty string data type

<rule id="string" abstract="true">

<let name="str" value="string(text())"/>

<assert test="$str"/>

</rule>

Figure B.2: String data type

<rule id="normalizedString" abstract="true">

<extends rule="string"/>

<let name="nstr" value="normalize-space($str)"/>

<assert test="string-length($str)=string-length($nstr)"/>

</rule>

Figure B.3: Normalized string data type

111

B.2 Booleans

<rule id="boolean" abstract="true">

<extends rule="string"/>

<assert test="$str=’true’ or $str=’false’"/>

</rule>

Figure B.4: Boolean data type

B.3 Real numbers

<rule id="double" abstract="true">

<let name="num" value="number(normalize-space(text()))"/>

<assert test="$num"/>

</rule>

Figure B.5: Double data type

B.4 Integers

<rule id="integer" abstract="true">

<extends rule="double"/>

<assert test="ceiling($num)=floor($num)"/>

</rule>

Figure B.6: Integer data type

112

<rule id="positiveInteger" abstract="true">

<extends rule="integer"/>

<assert test="$num>0"/>

</rule>

Figure B.7: Positive integer data type

<rule id="negativeInteger" abstract="true">

<extends rule="integer"/>

<assert test="0>$num"/>

</rule>

Figure B.8: Negative integer data type

<rule id="nonPositiveInteger" abstract="true">

<extends rule="integer"/>

<assert test="0>=$num"/>

</rule>

Figure B.9: Non-positive integer data type

<rule id="nonPositiveInteger" abstract="true">

<extends rule="integer"/>

<assert test="0>=$num"/>

</rule>

Figure B.10: Non-negative integer data type

113

<rule id="long" abstract="true">

<extends rule="integer"/>

<assert test="9223372036854775808>$num"/>

<assert test="$num>=-9223372036854775808"/>

</rule>

Figure B.11: Long data type

<rule id="int" abstract="true">

<extends rule="integer"/>

<assert test="2147483648>$num"/>

<assert test="$num>=-2147483648"/>

</rule>

Figure B.12: Int data type

<rule id="short" abstract="true">

<extends rule="integer"/>

<assert test="32768>$num"/>

<assert test="$num>=-32768"/>

</rule>

Figure B.13: Short data type

<rule id="byte" abstract="true">

<extends rule="integer"/>

<assert test="128>$num"/>

<assert test="$num>=-128"/>

</rule>

Figure B.14: Byte data type

114

<rule id="unsignedLong" abstract="true">

<extends rule="integer"/>

<assert test="$num>=0"/>

<assert test="18446744073709551616>$num"/>

</rule>

Figure B.15: Unsigned long data type

<rule id="unsignedInt" abstract="true">

<extends rule="integer"/>

<assert test="$num>=0"/>

<assert test="4294967296>$num"/>

</rule>

Figure B.16: Unsigned int data type

<rule id="unsignedShort" abstract="true">

<extends rule="integer"/>

<assert test="$num>=0"/>

<assert test="65536>$num"/>

</rule>

Figure B.17: Unsigned short data type

<rule id="unsignedByte" abstract="true">

<extends rule="integer"/>

<assert test="$num>=0"/>

<assert test="256>$num"/>

</rule>

Figure B.18: Unsigned byte data type

115

	Introduction
	Motivation
	Aim of this thesis
	Outline

	Conceptual model for XML
	PIM schema
	Components
	PIM formalism

	PSM schema
	Components
	PSM formalism
	Semantic views

	Use cases
	Forward-engineering
	Reverse-engineering

	Implementations
	XCase
	eXolutio

	Schematron
	Schematron schema
	Core constructs
	Underlaying query language
	Ancillary constructs
	Validation

	Implementations
	XSLT validation
	Special libraries

	Schematron properties
	Platform independence
	Expressive power
	Validation diagnostics
	Validation workflows
	Validation performance

	Related work
	Translations between PSM schemas and XML schemas
	Translations among XML schemas
	From XSD to Schematron
	From Schematron to XSD

	From PSM to Schematron
	Overall view of the translation
	Additional functions
	Preconditions

	Allowed root element names
	Absorbing pattern
	Pattern for allowed root elements

	Allowed names
	Pattern for allowed element names
	Pattern for allowed attribute names

	Allowed contexts
	Paths overview
	Paths construction
	Pattern for allowed element contexts
	Pattern for allowed attribute contexts

	Required structural constraints
	Conditional pattern
	Boolean expressions overview
	From complex content to boolean expression
	From boolean expression to CNF
	Patterns for structural constraints

	Required sibling relationships
	Automatons overview
	From complex content to regular expression
	From regular expression to DFA
	From DFA to Schematron
	Pattern for required sibling relationships

	Required text restrictions
	Conclusions
	Numeric constrains
	Main contributions

	Implementation
	User's view
	Programmer's view

	From Schematron to PSM
	Translating Schematron-ish grammars
	Translating Schematron
	Preprocessing
	Analysis of patterns
	Analysis of rules

	Conclusions

	Conclusions
	Future work
	From PSM to Schematron
	From Schematron to PSM

	CD contents
	Bibliography
	Schematron schemas
	Validation diagnostics (Example 3.10)
	Allowed contexts (Example 5.8)
	Structural constraints (Example 5.20)
	Sibling relationships (Example 5.25)
	Open schemas (Example 5.26)

	Schematron data types
	Strings
	Booleans
	Real numbers
	Integers

