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1

Introduction

To solve one of the most important questions in complexity theory, the ques-
tion if P=?NP, we must deal with complexity classes which lie between the
classes P and NP and study their properties.

In this thesis we study the class of Total NP search problems, its various
subclasses and reductions among them.
Since an unrelativized separation of any two NP search classes implies P6=NP,
the relativized separations are currently the best result we can hope for. Hence,
we focus on proving some new relativized separations among Total NP search
problems.
The needed technical ingredients were developed in proof complexity and are
well-known. These include search trees and Nullstellensatz expressions. We
use them to show a relativized separation between search classes of the so called
Mod-p counting principles. This is summarized in detail in the last chapter.

The thesis is organized as follows:
In Chapter 1 we recall some definitions from complexity theory and define the
relativized version of NP search problems. This version leads to reformulating
the Turing and many-one reductions in terms of an oracle type-2 Turing ma-
chine and definition of classes Cm and CT .
In Chapter 2 we become familiar with the class of Total NP search problems
and its important subclasses and ways how to define some complete problem
for each of these classes.
After that in Chapter 3 we look at the Mod-p counting principle in algebraic
reformulation, CountNp , and show that the Nullstellensatz refutation is sound
and complete as a proof system.
We use this fact to obtain a separation between two type-2 Mod-p counting
problems in Chapter 4. This separation is based on search tree substitutions
and a lower bound on the degree of Nullstellensatz refutation. To prove this
lower bound we use a construction of design.
At the and of this thesis we summarize the argument in Chapter 5. In partic-
ular, we prove that if there is a Nullstellensatz proof that CountN2 is total of
polylogarithmic (in N) degree and any Nullstellensatz proof that CountM3 is
total requires quasipolynomial (in N) degree, then CountN2 6≤T CountM3 .
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1. Definitions

We assume that the reader is familiar with the basics of computational com-
plexity theory. In particular, he knows the Turing machines and polynomial
time algorithm, and on that basis can understand the definitions of complexity
classes and reductions.

From now on we will use the abbreviation p-time in place of polynomial
time. Let us denote by Un the set {0, 1}n of binary strings of length n. We
say that a Turing machine runs in p-time if there is a polynomial p such that
for each n and all inputs from Un it runs in time ≤ p(n). In this sense n
is a size parameter (if the computation time of a Turing machine is polyno-
mial in n, then also the output-length is bounded by some q(n), q polynomial).

The most fundamental complexity class is the class P, also known as PTIME.
It contains all decision problems, which can be solved by a deterministic Turing
machine in p-time. On the other hand we can define the class NP (NPTIME)
as the set of all problems acceptable by a nondeterministic Turing machine in
p-time. The most important question in complexity theory is if P =? NP
( P ⊆ NP is trivial).

Because all definitions in this chapter are cited from [6], [3] and [1], the
sources are not mentioned repeatedly in the following sections.

1.1 NP decision and search problems

To see the difference between NP decision and search problems let us define
them in terms of a computation of some algorithm.
An NP decision problem is a problem of deciding whether there exists a so-
lution to an instance of this problem. It means: ”Given a p-time computable
predicate R, polynomial p and some input x ∈ Un, decide whether there exists
some output y such that |y| ≤ p(|x|) and R(x, y)”.
An NP search problem is a problem of finding a witness to the given NP prop-
erty; i.e. the task is to find |y| ≤ p(|x|) such that R(x, y) holds, if it exists.

NP search problems form the class FNP. They have been studied mostly
in terms of their equivalent decision counterparts. For example, the problem
SAT of deciding whether a given propositional formula is satisfiable by some
0/1 assignment and the problem SAT-SEARCH of finding some satisfiable as-
signment are polynomial equivalent (there are Turing reductions to each other
in p-time).
But what happens if the solution always exists? In this case the search prob-
lem seems to have no polynomially equivalent decision problem. For example,
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the problem of factoring some large (of the magnitude of around 300 decimal
digits) composite number m is hard but the existence of the prime factors is
always guaranteed. This search problem is important in public-key cryptog-
raphy, namely in RSA cryptographic system; there is a large semiprime1 and
the task is to find its prime factors. Whether breaking RSA encryption is as
hard as factoring is an open question known as the RSA problem.

Intuitively, it makes sense to distinguish NP search problems where the
existence of a solution is guaranteed by some principle (they will form the
class TFNP) from those which can be reduced to their decision counterparts.
Now let us give the formal definition of the FNP and TFNP classes (FP ⊆
TFNP ⊆ FNP). The class FP is not important for us, but for completeness:
FP is the set of functions computable by a p-time algorithm.

Definition 1.1 (The classes FNP and TFNP).
Let R(x, y) be a p-time predicate such that R(x, y) implies |y| ≤ p(|x|), for
some polynomial p. (We often suppress p.)
The NP search problem QR is: ”Given instance x, find y such that R(x, y)
holds, if it exists”.
The class of all NP search problems is denoted FNP.
Let QR(x) = {y|R(x, y)}. The problem QR is total, if QR(x) 6= ∅ for all x.
Then TFNP is the set of all Total NP search problems.

In this definition TFNP problem is the so called type-1 or unrelativized
problem; the inputs are only binary strings - the type-0 objects. But it is more
useful to work with the relativized version of this problem.
Beame et al. [2] reformulate the search problems in terms of type-2 problems,
denoted as TFNP2 problems. This class contains problems which take also
string functions2 and relations - the type-1 objects (presented as oracles) as
part of input.
From now on we will consider the relativized version because it gives us a
better view at the class of Total NP search problems and allows us to prove
separations between them.

First we define the proper type-2 search problem as a function Q that asso-

ciates with each set of string functions
−→
f = (f1, . . . , fr) and a string −→x ∈ U l

n

a set Q(
−→
f ,−→x ) of possible answers to the problem Q on an input instance

(
−→
f , −→x ). Then we consider the relative complexity of the type-1 search prob-

lems by studying the relations between their associated type-2 problems.

Definition 1.2 (Type-2 search problem).

Let
−→
f = (f1, . . . , fr), r ≥ 0, be the set of type-1 objects, −→x = (x1, . . . , xl),

l ≥ 1 and −→z = (z1, . . . , zs) two sets of type-0 objects, where ∀i fi : U
ki
n → Un

1Semiprime is number with exactly two prime factors.
2String functions are functions whose arguments and values are strings
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and ki ≥ 1 is the arity of the input of function fi, ∀j xj ∈ Un and ∀m zm ∈ Un.

Assume that the property −→z ∈ Q(
−→
f ,−→x ) is decidable by a type-2 Turing ma-

chine in p-time (type-2 Turing machines are described below). Then Q is

the following type-2 search problem: ”Given
−→
f and −→x , find −→z such that

−→z ∈ Q(
−→
f ,−→x )”.

If the set Q(
−→
f ,−→x ) is nonempty for all n, fi and xj (defined as above), then Q

is total. The value s is the output arity of Q.

If −→z ∈ Q(
−→
f ,−→x ) is a solution of Q on an input instance (

−→
f ,−→x ), it must be

checkable in p-time and the verifying algorithm is allowed to access to oracles
fi, 1 ≤ i ≤ r.

Before we define the many-one and Turing reductions between two type-2
search problems, it is useful to recall informally these reductions for type-1
problems.

We say that the type-1 problem Q1 = Q1(
−→x ) is Turing reducible to Q2 =

Q2(
−→y ) if there exists a p-time oracle Turing machine M which on input

−→x ∈ U l
n produces some solution −→z ∈ Q1(

−→x ) and is allowed to query an
oracle Q2 repeatedly. That means, M uses an oracle for solving Q2(

−→y ) as a
subroutine. In this case we will write Q1 ≤T Q2.
If M is allowed to query oracle Q2 only once, we write Q1 ≤m Q2 and say that
Q1 is many-one reducible to Q2 by a p-time oracle Turing machine M .

Also in the relativized case a Turing machine uses one of the problems (an
oracle for its solutions) as a subroutine to solve the other problem. It is much
easier to understand the computation of type-2 Turing machine if we first con-
sider only the type-1 oracle Turing machine M .

Now we describe the way how M uses an oracle Q2(
−→g ,−→y ) for solving the

problem Q1(
−→x ). Such Turing machine M has one tape for its own string in-

puts −→x , |xi| = n, i = 1, . . . , l, a special input tape for the string inputs to
Q2 : −→y , |yj| = m, j = 1, . . . , l′ and tapes for each of the input functions gk,
k = 1, . . . , r′ to Q2.
M presents a query (g1, . . . , gr′, y1, . . . , yl′) to Q2 where functions gk, 1 ≤ k ≤
r′, are represented by p-time Turing machines for solving gk and −→y is simply
a bit-sequence.
In the next step M receives an answer

−→
t ∈ Q2(

−→g ,−→y ) which it uses to com-
pute Q1(

−→x ). Calls to the oracle Q2 (functions gk) count as a single time step,
so M runs in p-time; i.e. in time ≤ p(n), for some fixed polynomial p and n -
the length of the input to M .

Let us consider a type-2 Turing machine M which solves some problem

Q1(
−→
f ,−→x ) and uses an oracle Q2(

−→g ,−→y ). The inputs to M include the strings
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Figure 1.1: Computation of the type-2 Turing machine

−→x ∈ U l
n and functions

−→
f = (f1, . . . , fr), each fi of arity ki. Each of the

function gk, k = 1, . . . , r′ (form part of the input to Q2(
−→g ,−→y ) problem) is

described by oracle Turing machineMk with r function oracles which is allowed
to query the functions input to M , see Fig. 1.1. The runtime of M is defined
as before. The calls to fi count as a single time step, meaning fi is an oracle
and does not have a runtime.
Finally, we can define the many-one and Turing reduction in terms of type-2
problems.

Definition 1.3 (Many-one and Turing reduction).

Let Q1 = Q1(
−→
f ,−→x ) and Q2 = Q2(

−→g ,−→y ) be type-2 search problems.
We say that Q1 is Turing reducible to Q2, write Q1 ≤T Q2, if and only if there

exists a type-2 oracle Turing machineM that on given (
−→
f ,−→x ), instance of Q1,

outputs some −→z ∈ Q1(
−→
f ,−→x ) in p-time using f1, f2, . . . , fr and Q2 as oracles

where every query to an oracle Q2 is of the form (−→g ,−→y ) , |y| ≤ p(|x|) for some
polynomial p and with each function/relation gk, k = 1, . . . , r′, computable in
p-time using f1, f2, . . . , fr as oracles. Turing machines computing the functions
g1, . . . , gr′ are part of the reduction.
We say that Q1 is many-one reducible to Q2, write Q1 ≤m Q2, if and only if
there exists a type-2 oracle Turing machine M that is allowed to query Q2 at
most once.

After this important definition we can define the standard TFNP classes in
terms of reductions to their complete type-2 problems. In this case the Turing
machine M is type-1, the tapes for function inputs are not needed.
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Definition 1.4 (Classes Cm and CT ).
Let Q be a type-2 search problem. The class Cm(Q), respectively CT (Q), is
the set of all type-1 search problems which are many-one, respectively Turing
reducible, to Q.
That means:

Cm(Q) = {Q
′

|Q
′

is type-1 & Q
′

≤m Q} ∩ TFNP

and
CT (Q) = {Q

′

|Q
′

is type-1 & Q
′

≤T Q} ∩ TFNP.

In the next section we show how one can present a search problem Q in
terms of first-order logic. This special representation of Q together with the
definitions of Turing and many-one reduction implies interesting results in
proof complexity theory.

1.2 Class TFNP and first-order formulas

Every TFNP2 problem (or TFNP class) can be defined also in terms of first-
order logic. Consider the following formula as an example:

Φ : f(0) = 0 → ∃x[x 6= f(f(x)) ∨ (x 6= 0 ∧ x = f(x))].

We interpret this formula expressing the parity principle in a structure with
the universe Un (in particular, it has even size).
It says that if the function f pairs the elements from the set Un and pairs
the element 0 (=0n) with itself, then there exists another element paired with
itself or some element x for which f(f(x)) 6= x. The universe Un is given as
a part of the input information about function f and there is clearly at least
one solution from Un.
This formula defines the problem QΦ, called Lonely. Since the set Un has
even cardinality, Lonely is total. This problem will be described in more detail
in Section 2.1.

Generally, the first-order formulas will use uninterpreted function symbols
(the function f above - type-1 input) and also interpreted constant symbols
(0 ≡ 0n,1 ≡ 1n), relation symbols and function symbols (f< ≡< and f≤ ≡≤
corresponding to lexicographic ordering). The interpreted symbols depend on-
ly on the size parameter n, thus they have a fixed meaning in Un. They are
also called ”built-in” symbols.

For simplicity, we may assume that there are no uninterpreted constant
symbols and no relation symbols except ”=” which always denotes the true
equality. An uninterpreted constant symbol c can be replaced by unary func-
tion fc and we set fc(0) in place of c. Relation symbol R may be replaced with

a new function fR for the graph of R and we set fR(
−→
t ) = 0 in place of R(

−→
t ).

This simplification allows the following
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Definition 1.5 (Basic language).
A language L is basic if it is finite and contains only the following symbols:
- built-in constant and function symbols
- one relation symbol: the equality symbol (=)
- finite number of non-built-in function symbols f1, . . . , fr.

Definition 1.6 (Existential formula, existential sentence).
An ∃-formula is a formula of the form ∃−→x φ(−→x ) where φ is quantifier-free. If
∃−→x φ(−→x ) has no free variables, then it is an ∃-sentence and is said to be total
if it is true over all interpretations of the basic language in all Un.

Definition 1.7 (Type-2 search problem in terms of ∃-sentences).
Let Φ be an ∃-sentence ∃−→x φ(−→x ) in a basic language. The type-2 search prob-
lem QΦ is: ”Given the string 0n (n is the the size parameter) and interpreta-
tions for non-built-in function symbols fi’s in Un, i = 1, . . . , r, find −→u ∈ Un
such that φ(−→u ) holds.” If Φ is total3, then QΦ ∈ TFNP2.

For simplicity we will assume that ∃-sentence Φ = ∃−→x φ(−→x ) is in the prenex
form, φ is in the DNF form:

φ =
∨

j∈J

φj =
∨

j∈J

(

ij
∧

i=1

li)

and for all i

li =







h(−→u ) = v, h is a function symbol and v, −→u are variables/constants
w = v, v, w are variables/constants
w 6= v, v, w are variables/constants

Every literal l can be assumed to be in this form. For example formulas of
the form h(−→u ) 6= v can be replaced by ∃x[h(−→u ) = x ∧ x 6= v] where x is new
existentially quantified variable.

We follow Buss and Johnson [6] in showing that if QΦ ≤T QΨ, then there
is a low degree Nullstellensatz proof of combinatorial principle (Φ) express-
ing the totality of given search problem QΦ from combinatorial principle (Ψ)
expressing the totality of the search problem QΨ.

3∃−→x φ(−→x ) is always true



2. The class TFNP and its subclasses 8

2. The class TFNP and its
subclasses

The content of this chapter is based on facts from [1], [3] and [6]. We refer to
more specific sources at the beginning of every section.

The problems in the class TFNP have their totality guaranteed typically
by some combinatorial principle. Because different combinatorial lemmas are
being required for different problems, it seems unlikely that the class TFNP
has any complete problem; this would correspond informally to an unintuitive
assumption that there is the strongest combinatorial lemma.

There are several studied subclasses of the class TFNP. The exact com-
putational complexity of these classes is unknown. Some problems in these
classes are in P, some in NP. But we know that if P = NP, then all problems
in TFNP class can be solved in p-time.
Hence, without showing P 6= NP it cannot be established that no reduction
between some classes exists. One can instead consider oracle separations, sep-
arations between two TFNP2 problems and hope it sheds light on their type-1
parts.
There are some known reductions between these classes, see Fig. 2.1 at the
end of this chapter (p. 16).

We introduce three ways how to define a TFNP problem (the second one
and the third one were described in previous chapter):

1, Most intuitive: by a combinatorial lemma, often from graph theory.

2, Used in algorithm: as a type-2 search problem Q = Q(
−→
f ,−→x ) described

precisely in previous section (Definition 1.2).

3, Usually used to obtain reductions: as a type-1 translation Q of some
natural type-2 problem given by first-order formula Φ :
Q = Cm(QΦ) (or Q = CT (QΦ)).

Remark 2.1. In item 3, we reformulate some type-1 problem complete in a
given TFNP subclass in terms of type-2 search problem and then redefine the
subclass like in Definition 1.4.
Every first-order formula (in some basic language) can be put into the form of
the ∃−sentence/∃−formula.

In the following sections we investigate some interesting subclasses of the
class TFNP.
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2.1 The classes PPA, PPAD and PPADS

These classes were first introduced by Ch.H.Papadimitriou in [11]. One can
find some relations among these classes also in [1] and [3].

We start this section with a description of the class PPA (Polynomial Parity
Principle) by a simple combinatorial principle.

Theorem 2.2 (Matoušek and Nešetřil [10]).
For every graph G=(V,E) where V is a nonempty set of nodes and
E ⊆

(

|V |
2

)

is the set of edges in an undirected graph G without loops, the equation

∑

v∈V

deg(v) = 2.|E|, (2.1)

holds.

Proof.
Each edge is counted into the degree of two nodes: its end-nodes.

Remark 2.3. There are some simple consequences of previous theorem:

a, Parity principle: In every finite graph G the number of odd-degree nodes
is even.

b, Every graph G with an odd number of nodes has a node with an even
degree.

c, Let G=(V,E) be a graph with nodes of degree less or equal 1 and |V | be
odd. There is no perfect matching of V.
A perfect matching is a subset of the edge set E such that each node in
G is met by exactly one edge in the subset.

The problems in this class can be often based on special versions of Parity
principle. For example the Smith’s theorem: ”Every graph with odd-degree
nodes has an even number of Hamiltonian cycles through some given edge
(x, y).”
Then the search problem Smith is: Given graph G with all nodes of odd de-
gree and one Hamiltonian cycle, find another one. [11]

Another problem in this class is so called Chess-player game problem:
Imagine the situation that everybody remembers all games of chess they have
played in their life, you have played an odd number of games, and you must
find a fellow odd player (known to exist by the Parity principle). It is based
on a version of this principle: ”All graphs of degree less or equal 2 have an
even number of leaves (nodes of degree 1).” [11]

The problem Leaf is an example of a complete problem in the whole class
PPA. It is based on special version of graph-theoretical lemma in Remark 2.3.
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item a, where the graph has all nodes of degree at most 2. We know that there
is some standard leaf (let say 0). The problem is to find another leaf in graph
G.
For more examples of (complete) problems in class PPA see [11].

Now we show all types of possible definitions of the search problem in
TFNP on the total problem called Lonely and we will use the first definition
(”most intuitive”) as the basic one.

1, Lonely is based on combinatorial lemma: Remark 2.3. item c,.
We can define this problem as a set of instances (α,−→x ), |−→x | = n, which
define an undirected graph G = (V,E), V = Un, E ⊆

(

|V |
2

)

, and an edge
(u, v) ∈ E if and only if u 6= v, u = α(v) and v = α(u).
We set deg(0n)=0, the standard lonely node. Then the set Un \ {0n}
has odd number of nodes and by Remark 2.3. item c, there must exist
another lonely node v (deg(v)=0). So, the problem Lonely is total in Un.
The set of solutions to this problem on instance (α,−→x ) is
Lonely(α,−→x )={v ∈ V : (v = 0n if 0n is not a standard lonely node) or
(v 6= 0n if v is lonely node)}

2, Lonely can be also characterized as a type-2 search problem Q. In this
case the function α from the previous item is a part of the input to the
Turing machine for solving Q. By Definition 1.2 we have Lonely(α,−→x )=
Q(α,−→x ) where α is the only type-1 input with arity 1 and −→x codes the
graph on nodes from the set Un,

−→x = (x0, . . . , xl), ∀i = 1, . . . , l: xi ∈ Un.
We know that α(xi) is either 0 or some xj , i 6= j and α(x0) = 0 (x0 is
the standard lonely node). We are looking for some node y ∈ Un such
that y ∈ Q(α,−→x ); i.e. α(y) = 0, y = xk for some k = 1, . . . , l and this
property can be decided by some type-2 Turing machine in p-time in n.
The set Q(α,−→x ) is nonempty because the cardinality of Un without
element x0 is odd.

3, Lonely expressed in terms of first-order formula in some basic language
with one non-built-in function symbol α was mentioned earlier (Section
1.2):

Φ : α(0) = 0 ∧ ∀x(x = α(α(x))) → ∃x[x 6= 0 ∧ x = α(x)]

and says that if every element is either lonely or is matched with a unique
partner and if 0=0n is lonely, then there exists another lonely element.
This formula defines type-2 search problem QΦ, called Lonely and be-
cause Lonely is total and complete following the Definition 1.4 we can
define the class PPA:

Definition 2.4 (The class PPA).
PPA=Cm(Lonely).
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The Remark 2.3. item c, discusses the non-existence of a perfect match-
ing on the set with odd elements. We can say that if the size of set N (e.g.
Un \ {0

n}) is not divisible by 2, then there is no partition of its elements into
subsets of size 2. This principle is also called Mod-2 counting principle
and the problem based on this principle is the Mod-2 counting problem,
in this case it is the same problem as Lonely.

Following this idea we can define Mod-p counting principlefor every
prime p.

Definition 2.5 (Mod-p counting principle).
Let N be the set of elements and p be some prime such that |N | 6≡ 0 (mod p).
Then there is no p-partition of N ; i.e. the set N cannot be partitioned into
subsets all of size p.

In this thesis we investigate Mod-3 counting problem prominently,
hence we describe it a more detail.

Let us look at it in terms of graph theory (1, definition). We consider the
set Vn := {0, 1, 2}n. Like in the definition of problem Lonely we have some
graph G = (Vn, E) but in this case the degree of all nodes is at most 2. The set
of instances (β,−→x ), |−→x | = n, which define the graph G, is described in very
similar way: an edge (u, v) ∈ E if and only if u 6= v, u ∈ β(v) and v ∈ β(u)
where β is a function assigning to a node u a subset β(u) ⊂ Vn such that
|β(u)| ≤ 21.
We again set deg(0n) = 0. Hence, the set Vn \ {0

n} is not divisible by 3. The
problem of finding some non-zero node u ∈ Vn such that |β(u)| ≤ 1 (analo-
gously deg(u) ≤ 1) is total and for illustration we called it 3-Lonely. Now
the set of solutions on an instance (β,−→x ) is:
3-Lonely(β,−→x )={v ∈ V : (v = 0n if deg(0n) 6= 0 and 0n is not a standard
3-Lonely node) or (v 6= 0n if v is lonely node or deg(v) = 1)}

3-Lonely can be also characterized as a type-2 search problem QΨ (Defini-
tion 1.2) or expressed by a first-order formula:

Ψ : β(0) = 0 ∧ ∀x(x = β(β(β(x)))) → ∃x[x 6= 0 ∧ (x = β(x) ∨ x = β(β(x)))].

Another complexity subclasses of TFNP are PPAD and PPADS - direct-
ed versions of PPA. One of the complete problems in the class PPAD is
SOURCEorSINK: Let G be some directed graph on nodes from Un and for
every node is the in-degree and out-degree ≤ 1. The solution of this prob-
lem is any sink (a node with in-degree 1 and out-degree 0) or any source (a
node with in-degree 0 and out-degree 1) s if s 6= 0n or 0n if it is not a source. [1]

1The image of β is a subset of Vn with zero, one or two nodes.
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The example of complete problem in the class PPADS is called
SINK: We have a graph G like in previous case but now we are looking for
some sink s 6= 0n or we put 0n as a solution if it is not a source. [1]

It is easy to see ([1]) that

SOURCEorSINK ≤m Leaf,

by ignoring the direction information on the input graph. Also is easy to prove
that

SOURCEorSINK ≤m SINK,

and a little harder is to show that

SINK 6≤m Lonely.

It holds that FP ⊆ PPAD ⊆ PPA ⊆ TFNP ⊆ FNP and it is not known if
PPA = PPAD.

2.2 The class PLS

This class is another subclass of TFNP developed by Ch.H.Papadimitriou and
precisely described in [7].
PLS (Polynomial Local Search) consists essentially of those local search prob-
lems for which local optimality can be verified in p-time. Every PLS problem
can be either maximization or minimization problem.

Consider a typical search problem Q in class PLS. Each instance x (car-
ries an information about some subset of Un) of Q is associated with a set of
feasible solutions, every such solution is polynomially bounded in |x|, each of
them has a cost (computable in p-time) and the goal is to find some solution
with minimal (maximal) cost.

In order to derive a local search algorithm we put on the solution set a so
called neighborhood structure. This structure defines for each solution s some
solution s′ which is in some sense close to the given solution s. For example
if we consider the graph on Un nodes and the solution is some node v, its
neighbor can be any node v′ such that v and v′ have the Hamming distance 2.

To make this class meaningful, we must make certain assumptions on the
problem at the neighborhood structure:

• given an instance of Q, all solutions must have size bounded by a polyno-
mial in the instance size and we must be able to produce some solution
in p-time;
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• given an instance and a solution, we must be able to compute the cost
of the solution in p-time;

• given an instance and a solution, we must be able to determine in p-time
whether that solution is locally optimal and if it is not, to generate a
neighboring solution of an improved cost.

Let us now introduce some more useful notations.
For all x ∈ Un, an input instance to the search problem Q, we have a finite set
FQ(x) of feasible solutions and w.l.o.g. all with the same polynomially bound-
ed length q(|x|); that is for x ∈ Un FQ(x) ⊆ {0, 1}m, for some m = nO(1).
If s ∈ FQ(x) is solution, we define cost function CQ(s, x) and also the neighbor
of s NQ(s, x) ∈ FQ(x) such that CQ(NQ(s, x)) is the better cost than CQ(s, x).
We will write CQ(NQ(s, x)) < CQ(s, x).

Finding a local optimum for problem Q on instance x is done in three steps:

1, On x ∈ Un we produce a particular solution s (s ∈ FQ(x)). We can
always assume that 0 ∈ FQ(x).

2, We compute its cost CQ(s, x) and some neighbor NQ(s, x).

3, Now there are two types of output depending on s:

3a, either there is some s′ 6= s, s′ ∈ FQ(x), s
′ = NQ(s, x) such that

CQ(s
′, x) < CQ(s, x) and we found the solution of better cost

3b, or we report that no such solution exists and hence that s is locally
optimal.

This procedure is repeated starting with some canonical initial solution.
The problem is solved by finding a locally optimal solution s ∈ FQ(x); i.e. an
s such that NQ(s, x) = s.

The local optimal solution must always exists because even when the costs are
improving, they never go below zero. So, the problem Q of finding such solu-
tion is total and it is based on an iteration principle (we sequentially choose
better solution).

The totality of this problem is also assured by the combinatorial principle:
”Every directed acyclic graph with at least one edge has a sink”.
This lemma expressed by first-order formula

Φ : N(0) > 0 ∧ ∀x[C(N(x)) ≤ C(x) ∧ C(x) ≥ 0] → ∃x(C(N(x)) = C(x)),

give rise to a complete type-2 search problem QΦ = ITERATION. Like in
Definition 1.4 we obtain the following:

Definition 2.6 (The class PLS).
PLS=Cm(ITERATION).
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The iteration principle expressed by Φ involves an ordering relation and
is defined only on finite structure. In [3] and [1] were shown some relativized
reductions between complete problems from classes PPA, PPAD and PPADS
and problem ITERATION. For example the following facts hold:

Lonely 6≡m ITERATION and also

SOURCEorSINK 6≤m ITERATION,

SINK 6≤m ITERATION.

Again it is easy to see that FP ⊆ PLS ⊆ FNP.

If the reader is interested in more examples of complete problems in the
class PLS, we recommend to Johnson, Papadimitriou and Yannakakis [7].

2.3 The class PPP

PPP (Polynomial Pigeonhole Principle) is a subclass of TFNP intuitively rel-
evant to cryptographic hash functions. We do not know if PPP = FP, but if
it is so then there exist no one-way permutations.
This class is based on a combinatorial principle: ”There is no injective map-
ping from Un to Un \ {0}”.

The main problem in the class PPP is the so called PIGEON. On the
input to some algorithm we have function f : Un → Un where Un denotes as
usual the set of all n-bit strings and a string −→x , |−→x | = n is the size parameter.
The solution to this problem on given instance (f ,−→x ), is any pair (v,v′) such
that v 6= v′ and f(v) = f(v′) 6= 0n or any u with f(u) = 0n.

This can be expressed by a first-order formula in the form

Φ : ∀x(f(x) 6= 0) ⇒ ∃x, y[x 6= y ∧ f(x) 6= f(y)]

and because of the totality of QΦ = PIGEON we can set (using Definition 1.4):

Definition 2.7 (The class PPP).
PPP = Cm(PIGEON).

In Section 2.1 we have shown some relations between classes PPA, PPAD,
PPADS. It is not hard to prove that SINK ≤m PIGEON (see [1]). After
showing this simple reduction we can illustrate the relations among all known
TFNP subclasses by a set diagram (Fig. 2.1, p. 16).

Theorem 2.8 (Beame et. al [1]).
SINK ≤m PIGEON.
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Proof. Let G = (V,E) be a directed graph on V = Un nodes with in-degree
and out-degree ≤ 1 for all v ∈ V . G is an input graph to SINK. We use an
algorithm which solves PIGEON (call it P) as a subroutine in algorithm for
solving SINK (call it S).

First we construct the function f (input to PIGEON):

- if the node v ∈ V is a sink, then f(v) := 0n,

- if there is an edge from u to v, then put f(u) := v and

- if the node v is isolated (deg(v) = 0), then put f(v) := v.

There are two cases which might happen. We illustrate them on small graphs
a, and b, with only 5 (respectively 6) nodes:

a

v1

source
-
v2
a -

v3
a -

v4

sink
a�

v5
a

v1 = 0n is a source

f(v1) = v2
f(v2) = v3
f(v3) = v4
f(v5) = v4 a,

av6 �
�
��

a

v1 - a

v2

@
@
@R

a v3
�

�
�	a
v4

�a
v5

@
@

@I

v1 = 0n is not a source

f(v1) = v2
f(v2) = v3
f(v3) = v4
f(v4) = v5
f(v5) = v1 = 0n

b,

In the case a, P responds (v3, v5): f(v3) = v4 = f(v5) ⇒ S responds node
v4. In the case b, the algorithm P responds v5: f(v5) = 0n ⇒ S responds 0n

which is again the right answer. This is made with one query to P. Hence,
SINK ≤m PIGEON.
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Because the relation ≤m is transitive and we showed that

SINKorSOURCE ≤m SINK and

SINK ≤m PIGEON in Section 2.1,

SINKorSOURCE ≤m PIGEON also holds.

It was shown (in [3]) that

Lonely 6≡m PIGEON,

PIGEON 6≤m ITERATION and

PIGEON 6≤m SINKorSOURCE.

Some known relations between the class PLS and the classes PPA, PPAD,
PPADS are discussed in the Section 2.2.

From the Definition 1.4 and known reductions between type-2 search prob-
lems discussed in previous sections we get interesting relations between the
corresponding search classes in relativized world:

PPAD ⊆ PPA PPA 6⊆ PLS PPP 6⊆ PLS
PPAD ⊆ PPADS PPAD 6⊆ PLS PPA 6= PLS
PPADS ⊆ PPP PPADS 6⊆ PPA PPP 6= PPA
PPAD ⊆ PPP PPP 6⊆ PPAD

Figure 2.1: Relations between search classes in relativized world



3.1 Algebraic proof systems 17

3. Algebraic insight

In this chapter we introduce some algebraic proof systems, in particular, the
Nullstellensatz refutations and we reformulate the Mod-p counting principle
from an algebraic point of view. We draw on material from [5], [4] and [3].

3.1 Algebraic proof systems

Let R be a fixed commutative ring, usually Zm for m integer or a prime (which
implies Zm is a field). We try to derive consequences from system of polyno-
mial equations P = {pi(

−→x ) = 0|i = 1, . . . , m} using equational reasoning over
ring R.

Equational reasoning is a useful tool used in automated theorem prov-
ing (in rewriting systems as Waldmeister). The ring structure provides some
polynomial identities (equations) which always hold. For example, in commu-
tative ring R with two binary operations ”+” and ”.”, the equation ∀x, y ∈ R

(x.y = y.x) holds.
Hence, we use all ring identities and identity laws (the ring axioms) to prove
some properties (solvability/unsolvability) of the system of polynomial equa-
tions P.

There are two types of algebraic proof systems:

• for proving unsolvability of systems of polynomial identities - Polynomial
calculus

• for proving polynomial identities - Equational calculus

A specific example of an algebraic proof system which is contained in Poly-
nomial calculus is the Nullstellensatz proof system discussed in the next sec-
tion.

From now on we will assume that the ring R is of the form Zp for p a prime.
To prove the main theorem of this thesis it suffices to consider a field structure
instead of a more general ring structure.
To enforce the variables having only 0/1 values, the system has always as
axioms the equations x2i − xi = 0 for each xi variable

1.

1Such proof system can serve as a propositional proof system.
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3.2 The Nullstellensatz refutation

The Nullstellensatz proof system is a proof system for propositional logic based
on algebraic identities in some fixed field F.
Boolean values True and False are identified with algebraic values 1 and 0.
Boolean operations are expressed as field operations. We set 1 − x instead of
¬x, x · y instead of x ∧ y and x+ y − x · y instead of x ∨ y.
The propositional formula ϕ(−→x ) is transformed into a polynomial t(−→x ) such
that both expressions have the same value for all 0/1 assignment to all vari-
ables −→x = (x1, . . . , xn).

Now consider some propositional formula ϕ(−→x ). The satisfiability of some
formula (SAT) is an NP-complete problem in propositional logic. If t(−→x ) is
the corresponding polynomial which computes the same function as ϕ(−→x ) for
all Boolean inputs, then

ϕ is SAT ⇔ t(−→a ) = 1, where −→a is some 0/1 assignemt to −→x .

The polynomial t(−→x ) can be w.l.o.g. replaced by several polynomials
t1(

−→x ),...,tm(
−→x ) ∈ F [−→x ] such that it holds:

ϕ is SAT ⇔ ti(
−→a ) = 1, for −→a some 0/1 assignment to −→x

and for all i = 1, . . . , m.

If we recall that the algebraic structure we are working in is a field, then
the system of equations x2i −xi = 0 for all i = 1, .., n is satisfiable exactly when
the variables xi are set to 1 or 0. So, ϕ is unsatisfiable if and only if it is not
possible to assign the field elements to the variables −→x = (x1, . . . , xn) which
simultaneously satisfy the n+m equations

tj(
−→x )− 1 = 0 j = 1, . . . , m

x2i − xi = 0 i = 1, . . . , n.

Now we reformulate the Hilbert’s Nullstellensatz (from [8]) to see the sim-
ilarity with the above-mentioned SAT problem in terms of polynomials over a
field F .

Theorem 3.1 (Hilbert’s Nullstellensatz).
Let F be an algebraically closed field and let f1, . . . , fm ∈ F [x1, . . . , xn] be a list
of polynomials of degree at most d.
Let S = {−→x ∈ F |fi(

−→x ) = 0, i = 1, . . . , m}. The set S is empty if and only if
there are polynomials g1, . . . , gm ∈ F [x1, . . . , xn] such that the following equality

1 = f1 · g1 + f2 · g2 + · · ·+ fm · gm

holds in the ring F [x1, . . . , xn].
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In other words: The polynomials f1, . . . , fm ∈ F [x1, . . . , xn] cannot be si-
multaneously equal to zero for any 0/1 assignment to variables x1, . . . , xn if
and only if 1 ∈ 〈f1, . . . , fm, x

2
1 − x1, . . . , x

2
n − xn〉

2.

It is now easy to see that the satisfiability of ϕ expressed as the system of
n+m equations in F [x1, . . . , xn] is equivalent to question whether

1 ∈ 〈t1, . . . , tm, x
2
1 − x1, . . . , x

2
n − xn〉;

i.e. whether there are polynomials pj, j = 1, . . . , m and qi, i = 1, . . . , n such
that the polynomial identity

1 = t1(
−→x ) · p1(

−→x ) + t2(
−→x ) · p2(

−→x ) + · · ·+ tm(
−→x )pm · (−→x )+ (3.1)

(x21 − x1) · q1(
−→x ) + (x22 − x2) · q2(

−→x ) + · · ·+ (x2n − xn) · qn(
−→x )

holds in F [−→x ] = F [x1, . . . , xn].

Definition 3.2 (The Nullstellensatz proof and refutation).
The Nullstellensatz proof (NP) of polynomial g from polynomials t1, . . . , tm is
any set of polynomials pj, j = 1, . . . , m and qi, i = 1, . . . , n such that the
polynomial identity

g = t1(
−→x ) · p1(

−→x ) + t2(
−→x )p2 · (

−→x ) + · · ·+ tm(
−→x )pm(

−→x )+ (3.2)

(x21 − x1) · q1(
−→x ) + (x22 − x2) · q2(

−→x ) + · · ·+ (x2n − xn) · qn(
−→x )

holds.
The Nullstellensatz refutation (NR) of polynomials t1, . . . , tm is the set of poly-
nomials pj, j = 1, . . . , m and qi, i = 1, . . . , n such that the polynomial identity
(3.1) holds.

In the Nullstellensatz proof system the proof is the set of polynomials
{pj, qi}. Each of polynomials pj, qi is represented explicitly by its vector of
coefficients of all monomials up to the degree of the polynomial. Hence, the
size of the proof is determined by the largest degree. We thus concentrate on
degrees of polynomials and will use the ”degree of NP proof” in the place of
proof size for NP proof. It is also more intuitive in the algebraic context.

Definition 3.3 (The degree of NP proof).
The degree of NP proof {pj, qi} (satisfy (3.2)) is defined as

degNP ({pj, qi}) = max{max1≤j≤m{deg(pj)+deg(tj)}, max1≤i≤n{deg(qi)+2}}.

The following lemma shows that the degree of the Nullstellensatz proof
does not depend on the degrees max1≤i≤n{deg(qi) + 2}, so we can define it
simply as

degNP ({pj , qi}) = max1≤j≤m{deg(pj) + deg(tj)}

2Ideal generated by polynomials f1, . . . , fm, x2

1
− x1, . . . , x

2

n
− xn in F [−→x ]
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Lemma 3.4 (Buss et al. [5]).
Suppose that there is a NR p1, . . . , pm, q1, . . . , qn of t1, . . . , tm and let
d = max1≤j≤m{deg(pj) + deg(tj)}.
Then there is another NR p1, . . . , pm,q

′

1, . . . , q
′

n of t1, . . . , tm of degree ≤ d.

Proof. Consider the eguation (3.1) and denote Q = 1−
∑m

j=1 pj.tj , deg(Q) = d

and suppose m 6= 0. (If m = 0 ⇒ 1 = Q; i.e. 1 =
∑n

i=1 qi · (x
2
i − xi) and

1 ∈ 〈x21 − x1, . . . , x
2
n − xn〉 never holds.)

Q ∈ 〈x21 − x1, . . . , x
2
n − xn〉 implies that Q cannot be multilinear, so it must

contain some monomial of the form x2ji · xj2 · ... · xjk , {j1, . . . , jk} ∈ {1, . . . , n}.
We can replace this monomial by xji · xj2 · ... · xjk and get another polynomial
Q

′

, degQ
′

≤ d and the polynomial Q − Q
′

has a Nullstellensatz derivation
(refutation) from x2j1 − xj1 of degree ≤ d.

Now we prove that the Nullstellensatz proof system is sound and complete
as a refutation system following Buss [4].

Theorem 3.5 (Soundness of NR).
If t1, . . . , tm have a NR, then there is no 0/1 assignment to variables x1, . . . , xn
that makes t1, . . . , tm simultaneously equal to zero.

Proof. By contradiction:
Suppose t1, . . . , tm have a NR and there is some 0/1 assignment −→a ∈ {0, 1}n

such that t1(
−→a ) = 0, t2(

−→a ) = 0, . . . , tm(
−→a ) = 0.

There exist polynomials pj , 1 ≤ j ≤ m and qi, 1 ≤ i ≤ n, for which the
identity (3.1) holds, so we have

1 =

m
∑

j=1

tj(
−→a ) · pj(

−→a ) +
n

∑

i=1

(a2i − ai) · qi(
−→a )

1 =
m
∑

j=1

0 · pj(
−→a ) +

n
∑

i=1

0 · qi(
−→a )

1 = 0 which is a contradiction.

Theorem 3.6 (Completeness of NR).
Suppose that there is no 0/1 assignment to variables x1, . . . , xn that makes
t1 = 0, t2 = 0, . . . , tm = 0. Then t1, . . . , tm have a NR.

Proof. The completeness of NR is simple consequence of Hilbert’s Nullstellen-
satz. Namely, if there is no 0/1 assignment to variables x1, . . . , xn such that
t1, . . . , tm cannot be simultaneously equal to zero, then 1 ∈ 〈t1, . . . , tm, x

2
1 −

x1, . . . , x
2
n−xn〉. This implies the existence of polynomials pj, qi such that (3.1)

holds.
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3.3 Algebraic formulation of the

Mod-p counting principle

This principle was shortly described in Section 2.1 already. In this section
we take a more detail look at it and reformulate this principle in terms of an
(N, p)-polynomial system.

Let us fix some prime p and a large number N ≥ p such thatN 6≡ 0 (mod p).
The algebraic interpretation of Mod-p counting principle, CountNp , expresses
the following tautology: A set with N elements cannot be partitioned into
p-element subsets.

Because we will use the Nullstellensatz refutations to prove the totality of
this principle, we will work with its negation and prove that the negation is
not satisfiable (¬ CountNp is not satisfiable ⇔ CountNp is total).
The next definition specifies the conditions under which the set [N ] = {1, . . . , N}
has a partition into subsets of size p (shortly: [N ] has a p-partition).

Definition 3.7 (The (N,p)-polynomial system).
Assume that N ≥ p. The (N,p)-polynomial system is the following system of
polynomial equations in variables xe where e ranges over all p-element subsets
of the set [N ].

Qv :
∑

v∈e

xe = 1, one for each v ∈ [N ] (3.3)

Qe,f : xe · xf = 0, for all e, f such that e ⊥ f ; (3.4)

i.e. e 6= f and e ∩ f 6= ∅

The equation (3.3) reflects the fact that every v belongs to one subset, the
second equation (3.4) says that for every v this subset is exactly one. Then
the variable xe for which v ∈ e equals 1.

Because the following equation for v ∈ e holds:

x2e − xe = −1 ·
∑

v∈e⊥f

xe · xf + xe · (
∑

v∈f

xf − 1)

= −
∑

v∈e⊥f

xe · xf + x2e +
∑

v∈e⊥f

xe · xf − xe

the polynomials x2e − xe have a Nullstellensatz proof from Qv, Qe,f of degree
two3 (Definition 3.3) and any solution of the (N, p)-polynomial system in any
field F must be necessary the 0/1 solution. Then the set {e | xe = 1} forms a
total p-partition of [N ] into p-element subsets. Hence, the (N, p)-polynomial
system has no solution in any field F if N 6≡ 0 (mod p) (⇒ CountNp is total).

3In this case the polynomials x2

e
− xe do not have to be added to the (N, p)-polynomial

system for refutation.
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Definition 3.8 (An instance of the (N, p)-polynomial system).
An instance of the (N,p)-polynomial system is any polynomial system obtained
from the (N,p)-polynomial system by substituting arbitrary polynomials for the
variables xe.

Beame et al. [2] have noticed a link between the degree of Nullstelensatz
refutation of polynomials Qv, Qe,f over a ring Zm and constant-depth Frege
proofs of CountNp from instances of CountMm where p is a prime and m some
integer not divisible by p. They showed that

Theorem 3.9 (Beame et al. [2]).
If there is a NR of Qv, Qe,f over Zm of degree d(N), then there is a depth l
Frege proof of CountNp from instances {CountMm : M 6≡ 0 (mod m)} of size at

least N ε.d(Nε) for ε > 0 and l ≥ 1 constant.

In the next chapter we avoid talking about Frege proof systems and just
use the ideas behind the proof of this theorem to demonstrate a non-reduction
result between relativized Mod-p and Mod-q counting principles (a separation
of corresponding type-2 search problems CountNp and CountMq ).

We will always assume that p and q are two distinct primes. Then the ring
Zq is a field and we can use NR as a sound and complete proof system. More-
over, it is intuitively clear, that the (N, p)-polynomial system is independent
from the (M, q)-polynomial system and therefore we do not expect there to be
p-time reductions between corresponding problems.
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4. Separation of type-2 search
problems CountNp and CountMq

We can prove the main result of this thesis already. To show that there is no
reduction between CountNp and CountMq problems we use the Nullstellensatz
refutations and substitutions based on search trees. After that we prove a
lower bound for the degree of NR using a combinatorial construction called
design; the proof includes an explicit construction of a design. Then in the
last chapter we summarize the steps and apply them to the specific case:
a separation of type-2 search problems CountN2 , N = 2n − 1, and CountM3 .

Let us start with a theoretical background about search trees. For more
details we recommend to [6].

4.1 Search trees

Let M be a Turing machine with a string input x of size n and a function
f : Un → Un as its oracle. We define the search tree T fn (x) as a tree that
encodes all possible computations of M(x) in terms of f . Each internal node
denotes a query to f with outgoing edges labeled with all 2n possible ways the
query can be answered. Every leaf node is labelled with the output value of
M(x) for the corresponding computation.
Analogously would be defined the tree T fn (x) for M(x) with more than one
oracle function f .

Let denote P f
n (x) the path corresponding to a computation of M(x) for

given f . We identify P f
n (x) with a set of edge labels (the answers to ora-

cle queries) in T fn (x) starting in the root of the tree and ending in some leaf
of T fn (x). The set of all paths in T fn (x) (for M(x)) is denoted P(T fn (x)) and
a set of all paths ending in a leaf with some fixed label w is denoted Pw(T

f
n (x)).

The height of T fn (x) is defined as the length of the longest path from the
root to the leaf. One can see that it is equivalent to the maximum number of
queries that M(x) asks to f , taken over all functions f .
The size of T fn (x) is defined as the number of all nodes in the search tree T fn (x).

If M(x) runs in p-time, the height of T fn (x), denoted h(T
f
n (x)), is bounded

by a polynomial p(n) and the size of T fn (x), denoted s(T
f
n (x)), is bounded by

2n.p(n). If we set N = 2n, N is called the maximum branching factor, then the
height is polylogarithmic in N and the size is quasipolynomial in N . We will
use the maximum branching factorN to measure the size and the height of tree.
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From now on the string x will be some canonical word of given length n

and we would not show it explicitly. So, the Turing machine with input x, will
be simply denoted M , instead of M(x). The same is true for its search tree
T fn (in place of T fn (x)) and the path P f

n (instead of P f
n (x)).

Now assume that there exists a p-time type-2 oracle Turing machine M

and Q1 ≤m Q2 by M where Q1 = Q1(
−→
f ,−→x ), |−→x | = n and Q2 = Q2(

−→g ,−→y ),
|−→y | = m, m = nO(1).
The computation of type-2 oracle Turing machine M was precisely described
in Section 1.1. We can split M into Turing machines M1 and M2 such that
M1 simulates the computation of M except that, it terminates when M has
produced the query q = (−→g ,−→y ) to Q2. The Turing machine M2 simulates the
computation of M after it receives an answer w ∈ Q2(

−→g ,−→y ). The input to

M2 is of the form (
−→
f ,−→x , w).

Then T f,M1
n is a search tree for M1 on (

−→
f ,−→x ) with leaves labeled by queries

to Q2 and T f,M2
n (q, w) is search tree for the machine M2 on (

−→
f ,−→x , w). If P1

is the path in T f,M1
n ending with q and P2 is some path in T f,M2

n (q, w), then
P1 ∪ P2 naturally defines a solution to Q1.

The computation of oracles g1, . . . , gr′ can be also represented by search
trees T

gi(−→w )
m , i = 1, . . . , r′ where −→w ∈ Um is an input to gi and there is an

oracle Turing machine Mgi(
−→w ) computing gi(

−→w ) in p-time using f1, . . . , fr as
oracles.
The internal nodes of T

gi(−→w )
m are labeled by queries to f1, . . . , fr and any leaf is

labeled with an output value z ∈ Um (gi(
−→w ) = z, z is produced byMgi(

−→w )). If
Mgi(

−→w ) runs in p-time bounded by some polynomial p, then there is a canon-
ical way of constructing a corresponding search tree of height at most p which
faithfully represents the computation of Mgi(

−→w ).

Now we give some precise definitions which will be used in Section 4.2 to
obtain a reduction. Before that, we introduce new variables. The fact that
the oracle (for function f) answer on input −→u is v; i.e. f(−→u ) = v, will be
represented by new variable x−→u ,v.

Definition 4.1 (Path).

If P is a path in search tree T
g(−→w)
m for some g ∈ {g1, . . . , gr′} and −→w ∈ Um,

then we identify P with
∧

i∈I

x−→ui,vi

where {f(−→ui) = vi}i∈I is set of all f values set by the edge lables of P .

Definition 4.2 (Substitution instance).
The substitution instance σT : (x−→w ,z)σT = λT ,−→w,z defined from a family of

search trees T = {T
g(−→w)
m |−→w ∈ Um, g ∈ {g1, . . . , gr′}} where T

g(−→w )
m corresponds
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to computation of Mg(
−→w ) is given by formula

λT ,−→w,z =
∨

P∈Pz(T
g(−→w)
m )

P.

Let us define a search tree for the computation of a p-time type-2 or-
acle Turing machine M which computes a Turing reduction QΦ ≤T QΨ.

M makes queries to f1, . . . , fr (QΦ = QΦ(
−→
f ,−→x ), |−→x | = n) and an oracle

QΨ = QΨ(
−→g ,−→y ). For simplicity let us consider there is only one type-1 input

to QΦ: f = f1 and only one type-1 input to QΨ: g = g1. The search tree T fn
for computation of M is defined as follows:

a, each internal node is labeled either by some f(−→u ) ∈ Un,
−→u ∈ Un, with

2n children and the outgoing edges labeled with all possible values of
f(−→u ) or

b, by a query to QΨ(g,
−→y ) where g is described as p-time oracle Turing

machine Mg.
Each such node has 2m.s.J children (ψ = ∨j∈Jψj , s arity of the output

of QΨ). The outgoing edges are labeled with all possible values (j,
−→
b ),

−→
b ∈ Um, 1 ≤ j ≤ J ; i.e.

−→
b is a solution to QΨ(g,

−→y ) such that ψj(
−→
b )

is true.
When M calls to the oracle QΨ only the value

−→
b is returned but we can

w.l.o.g. assume that there is also the value j such that ψj(
−→
b ) is true,

since M can in p-time determine the value of j by evaluating ψ(
−→
b ).

The leaf nodes of T fn are labeled with output values of M - the solutions
to QΦ. Because M runs in p-time nO(1), the height of T fn is also nO(1).

Definition 4.3 (Trace).
Let ν be a node of T fn . Pν denotes the path from the root to the node ν. We
define the set of traces τ to ν by induction on length of Pν. Such trace to ν
will consists of a sequence of literals x−→u ,v (representing that f(−→u ) = v).
The following construction may be used to form traces:

1, If ν is a root and Pν has length 0 ⇒ there is only one trace to ν equal
an empty sequence.

2, If ν is an internal node labeled by f(−→u ), ν ′ is a child of ν, the edge (ν, ν ′)
is labeled by v = f(−→u ) ∈ Un and τ is a trace to ν ⇒ τ, x−→u ,v is a trace to
ν ′.

3, If ν is and internal node labeled with a query to QΨ and ν ′ is a child of

ν, (ν, ν ′) is labeled by (j,
−→
b ) and ψj(

−→
b ) contains h(−→u ) = v or w = v or

w 6= v which is false ⇒ there is no trace to ν.
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4, Otherwise let us consider T = {T
g(−→w )
m |−→w ∈ Um, g ∈ {g1, . . . , gr′}} be a

family of search trees for g and let g(−→wi) = zi, i = 1, . . . , k be the atomic
formulas of ψj that involve g. Then for any trace τ to ν and any choice of

paths Pi ∈ Pzi(T
g(−→wi)
m ) the sequence τ, P ?

1 , . . . , P
?
k is the trace to ν ′ where

P ?
i is a sequence of disjuncts contained in Pi for all i = 1, . . . , k. (ψj(

−→
b )

is true if each g(−→wi) = zi holds.)

4.2 Reduction by search tree substitutions

Many-one reductions between two TFNP2 problems QΦ and QΨ coded as ex-
istential first-order formulas give rise to low-degree Nullstellensatz refutations
([6]). In this section we show that in case of Turing reductions, if QΦ ≤T QΨ

and there are polylogarithmic degree Nullstellensatz proofs that QΨ is total,
then there are polylogarithmic degree Nullstellensatz proofs that QΦ is total.

In Section 3.2 we showed that Nullstelensatz refutation is sound and com-
plete as a proof system, so we will proceed as follows:
In this section we will work in some fixed field F but we would not write
it explicitly. Each of the problems QΦ = QΦ(

−→
f ,−→x ), |−→x | = n and QΨ =

QΨ(
−→g ,−→y ), |−→y | = m will have w.l.o.g. only one type-1 input.

At the beginning we define a set of polynomials Fφ (the values of polynomials
are conditional on the structure of a field) which when simultaneously equal 0
encode that the ∃-sentence Φ (defined in Section 2.1) is not total on n-length
inputs. The polynomials in Fφ are in variables x−→u ,v where −→u , v ∈ Un and
think of them defining the graph of function f (the input function to QΦ):

x−→u ,v =







1, f(−→u ) = v

0, f(−→u ) 6= v

So, the variables are only 0/1 valued and to ensure this fact we define for
all possible variables a set of polynomials

{x2−→u ,v − x−→u ,v|
−→u , v ∈ Un} (4.1)

which simultaneously equal 0 only if the variable-assignment is 0 or 1 for all
variables. This polynomials form part of the set Fφ.

The function f must satisfied that it is total and single valued. For this
reason it makes sense to add to Fφ the sets of polynomials

{
∑

v∈Un
x−→u ,v − 1|−→u ∈ Un} (4.2)

{x−→u ,v · x−→u ,w|
−→u ∈ Un, v 6= w ∈ Un}. (4.3)
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If the polynomials in (4.2) equal 0, then there exists some variable x−→u ,v = 1,
for each −→u ∈ Un, the function f is total and f(−→u ) = v. If the polynomials
from the second set (4.3) simultaneously equal 0, then there is exactly one
such variable x−→u ,v, for each

−→u ∈ Un, the function f is single valued.
The similarity with polynomials Qv and Qe,f is not coincidental. The set Fφ

is formed from exactly such polynomials, like those in Definition 3.8 of the
(N, p)-polynomial system.

We remind the reader (it was defined in Section 1.2) that the existential
first-order formula Φ expressing the totality of some search problem in DNF is

∃−→x φ = ∃−→x
∨

j∈J

φj = ∃−→x
∨

j∈J

(

ij
∧

i=1

li)

and for all i, li is of the form h(−→u ) = v or w = v or w 6= v where −→u ,w,v are
either variables or constant symbols and h is function symbol in some basic
language.
To express the fact that this formula is not total, we need to encode the fact
that for all j, φj is false for all 0/1 assignment.

Let −→u = (u1, . . . , us) be a vector of s variables. Fix some n ≥ 1 and let
−→a = (a1, . . . , as) be a vector of fixed values from Un.
If li is of the form h(−→u ) = v, then the Nullstellensatz translation under as-
signment −→a is [li]−→a = x(−→u )−→a ,(v)−→a , meaning that the assignment −→a was applied
to variables −→u , v.
On the other hand if li is of the form w = v or w 6= v then the Nullstellensatz
translation under the fixed assignment −→a , [li]−→a , is either true or false and set
to 1 or 0 accordingly.

We want to express that φj is false for each choice of j and 0/1-assignment
−→a (∀j φj(

−→a ) is false ⇔ φ(−→a ) is false ⇔ ¬φ(−→a ) is true ⇔ ∃j ¬φj(
−→a ) is true).

We look at the negation of this formula and its expression under assignment
−→a . Following Buss and Johnson [6] we obtain:

[¬φj ]−→a =

ij
∏

i=1

[lj,i]−→a

and

[lj,i] =







































1, the Nullstellensatz translation of lj,i under assignment −→a is true ,

0, the Nullstellensatz translation of lj,i under assignment −→a is false

or lj,i is of the form h(−→u ) 6= v

x−→u ,v, lj,i is of the form h(−→u ) = v
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Now we add to polynomials already in Fφ also the set

{[¬φj]−→a ; 1 ≤ j ≤ J,−→a ∈ Un}. (4.4)

It is easy to see that if the last added polynomials all equal to zero, then some
factor [lj,i]−→a of [¬φj ]−→a is zero and each solution to QΦ is ruled out. Hence, QΦ

is not total problem.
The union of the polynomials in (4.1), (4.2), (4.3), (4.4), denoted Fφ, express
the fact that QΦ is not total and the associated function f is single values
and total. The main theorem of this section demonstrate the relation between
Turing reductions of two type-2 search problems QΦ, QΨ and a Nullstellensatz
proof of the polynomial system Fψ from the polynomial system Fφ.

In the proof of the main theorem we will use search trees and substitutions
based on this search trees. As it was described in Section 4.1, the path P in a
search tree is the set of f -values given by the edge labels in P and we identify it
with

∏

i∈I x−→ui,vi where x−→ui,vi is again the variable corresponding to f(−→ui ) = vi.

Similarly, the trace τ is defined as
∏

x−→
u ,v∈τ

x−→u ,v.

Now we prove several simple lemmas that will be needed in the proof of
main theorem:

Theorem 4.4 (Buss and Johnson [6]).
Let us have two type-2 search problems QΦ = QΦ(f,

−→x ), |−→x | = n and
QΨ = QΨ(g,

−→y ), |−→y | = m.
If there is a Turing reduction QΦ ≤T QΨ and a Nullstellensatz refutation of
{Fψ} of degree at most mO(1), then there is also a Nullstellensatz refutation of
{Fφ} of degree at most nO(1).

Lemma 4.5 (Buss and Johnson [6]).

For any search tree T
g(−→w )
m of height at most d, the polynomial

∑

P∈P(T
g(−→w )
m )

P − 1

has a Nullstellensatz proof of degree at most d from the polynomials

{
∑

v∈Un

x−→u ,v − 1|−→u ∈ Un}

which expressing the totality of function f (QΦ = (f,−→x )).

Proof. By induction on the structure of T = T
g(−→w )
m .

If T is only a single node (the root) ⇒ set P = {∅} ⇒ polynomial P = 1 ⇒
∑

P∈P(T ) P − 1 = 0 ∈ 〈
∑

v∈Un
x−→u ,v − 1〉, d = 0.
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Otherwise, pick some node ν labeled f(−→u ) whose children are all leaves. De-
fine tree T ′ as T except the children of ν. Then by induction hypothesis
∑

P ′∈P(T ′) P
′ − 1 ∈ 〈

∑

v∈Un
x−→u ,v − 1〉, d′ = h(T ′) ≤ h(T ).

Let P ′
ν be a path in T ′ that ends in node ν. All paths in T and T ′ are the

same except the P ′
ν in T ′ which is in T replaced by P ′

ν · x−→u ,v, for each v ∈ Un
and x−→u ,v - all children of node ν labeled f(−→u ) (f(−→u ) = v).
Thus

∑

P∈P(T )

P − 1 =
∑

P ′∈P(T ),P ′ 6=P ′
ν

P ′ + P ′
ν ·

∑

v∈Un

x−→u ,v − 1

= (
∑

P ′∈P(T ),P ′ 6=P ′
ν

P ′ − 1) + (
∑

v∈Un

x−→u ,v − 1) · P ′
ν + P ′

ν

= (
∑

P ′∈P(T )

P ′ − 1) + (
∑

v∈Un

x−→u ,v − 1) · P ′
ν

By induction hypothesis the first member of the right hand side has a Null-
stellensatz proof of degree at most d′ from {

∑

v∈Un
x−→u ,v − 1|−→u ∈ Un} and the

second member has a Nullstelensatz proof of degree at most |P ′
ν |+ 1 = d′ + 1

≤ h(T ) = d from {
∑

v∈Un
x−→u ,v − 1|−→u ∈ Un}. So the left hand side of

the equation has a Nullstellensatz proof of degree at most d from the set
{
∑

v∈Un
x−→u ,v − 1|−→u ∈ Un}.

Lemma 4.6 (Buss and Johnson [6]).

Take T = {T
g(−→w )
m |−→w ∈ Um, h(T

g(−→w )
m ) ≤ d} the family of search trees. Then

any polynomial from the set

{
∑

v∈Um

x−→u ,v − 1|−→u ∈ Um}

after applying substitution σT has a Nullstellensatz proof of degree at most d
from polynomials

{
∑

v∈Un

x−→u ,v − 1|−→u ∈ Un}

.

Proof. Fix some −→u ∈ Um and set p =
∑

v∈Um
x−→u ,v − 1.

The polynomial p is in the set {
∑

v∈Um
x−→u ,v− 1|−→u ∈ Um} and by applying the

substitution σT on it we get pσT =
∑

v∈Um
λT ,−→u ,v − 1.

This is by definition of a substitution based on search trees (Definition 4.2)
equal to

∑

v∈Um

∑

P∈Pv(T
g(−→u )
m )

P − 1.

The height of the tree T
g(−→u )
m is bounded by d and P is by definition a polynomial

in variables x−→u ,v where
−→u , v ∈ Un.

Lemma 4.7 (Buss and Johnson [6]).

Take T = {T
g(−→w )
m |w ∈ Um} and m = nO(1). Then any polynomial from the set

{x−→u ,v · x−→u ,w|
−→u , v 6= w ∈ Um}
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after applying substitution σT has a Nullstellensatz proof of degree at most
nO(1) from polynomials

{x−→u ,v · x−→u ,w|
−→u , v 6= w ∈ Un}.

Proof. Fix −→u ∈ Um and put X1 = x−→u ,v and X2 = x−→u ,w, v 6= w ∈ Um. After
applying the substitution σT on X1 and X2 we get P1 = X1σT = λT ,−→u ,v and
P2 = X2σT = λT ,−→u ,w. By the definition of a substitution based on search trees

we have P1 ∈ Pv(T
g(−→u )
m ) and analogously P2 ∈ Pw(T

g(−→u )
m ).

Because P1 and P2 differ in the outputs, v 6= w, there must be a first query
where they differ. Let us assume that it is the query f(−→z ); in P1 is the answer
y1 (f(−→z ) = y1) and in P2 is the answer y2 (f(−→z ) = y2). Then P1 include the
factor x−→z ,y1 and P2 include the factor x−→z ,y2.
Hence, the product P1 ·P2 ∈ {x−→u ,v · x−→u ,w|

−→u , v, w ∈ Um}σT and has a Nullstel-
lensatz proof of the size m = nO(1) from the set {x−→u ,v ·x−→u ,w|

−→u , v, w ∈ Un}.

Lemma 4.8 (Buss and Johnson [6]).
Let us have a Turing reduction QΦ ≤T QΨ and suppose there is a Nullstellen-
satz refutation of Fψ of degree mO(1). If τ is a trace, in the search tree T fn , to
some general node ν, then the polynomial τ =

∏

x−→
u ,v∈τ

x−→u ,v has a Nullstellen-

satz proof from Fφ of degree at most nO(1).

Proof. At first let us consider the case when the trace τ has two factors x−→u ,v

and x−→u ,w. Like in Lemma 4.7 τ ∈ 〈Fφ〉 of degree at most nO(1).
Now if τ is some trace in tree T = T fn rooted in node ν with height hν and
τ do not include the contradictory factors x−→u ,v and x−→u ,w we will proceed by
induction on hν . The induction progresses from leaves to root. We remind
that if the Turing machine associated with the tree T runs in p-time in n, then
also the height of the tree is polynomial in n.

The base case is if ν is a leaf node of T . Then the trace τ ends in ν. When
the computation of some Turing machine reaches the leaf node ν, it determin-
istically produces an output −→a that satisfied a member φj (from the first-order
formula φ =

∨

j∈J φj). Because φj(
−→a ) is true, the Nullstellensatz translation

[¬φj ]−→a under this assignment is false, so it is a non-zero polynomial. Each
factor of polynomial [¬φj ]−→a must be also in trace τ and this implies τ ∈ 〈Fφ〉
with the degree at most nO(1).

If ν is an internal node and is labeled with a query to f(−→u ) (f is part of
input to QΦ), let ν

′ be the child of ν and the edge (ν, ν ′) labeled by answer
f(−→u ) = v. By induction hypothesis τ · x−→u ,v has a Nullstellensatz proof from
{Fφ} of degree at most nO(1) · hν′(= nO(1)).
Rewrite the trace τ as

τ = τ
∑

v∈Un

x−→u ,v + τ · (1−
∑

v∈Un

x−→u ,v). (4.5)
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The first member of (4.5) has a Nullstellensatz proof from {Fφ} of degree at
most max {nO(1) · hν′ |ν ′ is a child of ν}. The second member has a Null-
stellensatz proof from {

∑

v∈Un
x−→u ,v − 1|−→u ∈ Un} of degree at most nO(1).

Thus, τ has a Nullstellensatz proof of {Fφ} of degree at most max{nO(1) ·
hν′ |ν

′ is a child of ν}+ nO(1) = nO(1) · hν(= nO(1)).

Now, if the internal node ν is labeled by a query to QΨ(g,
−→y ) and ν ′ is again

the child of ν with the edge labeled (j,
−→
b ); i.e. the p-time Turing machine M

gives an assignment
−→
b ∈ Um under which the disjunct ψj is true. Then the

polynomial [¬ψj ]−→b is non-zero and we suppose it is equal to
∏

i∈I x−→ui,vi.

Then ∀j,
−→
b : τ · ([¬ψj ]−→b )σT and assume that ([¬ψj ]−→b ) =

∏l
i=1 x−→ui,vi . After

rewriting τ · (
∏l

i=1 x−→ui,vi)σT in terms of substitution we have

τ ·
l

∏

i=1

∑

Pi∈Pvi
(T

g(−→ui)
m )

=
∑

P1∈Pv1 (T
g(−→u1)
m ),...,Pl∈Pvl

(T
g(−→ul)
m )

τ ·
l

∏

i=1

Pi.

Each term of this sum lies (by induction hypothesis) in ideal generated by
Fφ and thus has a Nullstellensatz proof of {Fφ} of degree at most nO(1).

It is easy to see (for more detail we recommend to [6]) that if there is a
Nullstellensatz refutation of {Fψ} of degree at most mO(1) (m = nO(1)), then
there is a Nullstellensatz refutation of {(Fψ)σT } of degree at mostmO(1)+nO(1).

(After the substitution of the λT ,−→u ,v’s for the variables x−→u ,v’s is the degree of
NR of {(Fψ)σT } ≤ mO(1) + nO(1). )
If we rewrite this fact we obtain the following equation

1 =
∑

pi∈{
∑

v∈Um
x−→

u ,v−1|−→u∈Um}∪

{x−→
u ,v·x−→

u ,w|−→u∈Um,v 6=w∈Um}

fi · (piσT ) +
∑

qi∈{[¬ψj ];1≤j≤J,
−→
b ∈Um}

gi · (qiσT ).

By previous lemmas, the first summation has a Nullstellensatz proof from
{Fφ} of degree at most nO(1) and by multiplying both sides by τ the second
summation (from already proved) has a Nullstellensatz proof from {Fφ} of
degree max{nO(1) · hν′ | ν

′ is a child of ν}.
Hence, together we get that τ has a Nullstellensatz proof from {Fφ} of degree
max{nO(1) · hν′|ν

′ is a child of ν}+ nO(1) = nO(1) · hν = nO(1).

Applying Lemma 4.8 to the trace τ to the root we get the proof of the main
Theorem 4.4.

This theorem implies the following

Corollary 4.9. If there is a Nullstellensatz proof that QΨ is total of degree
at most nO(1) and any Nullstellensatz proof that QΦ is total requires degree
mO(1) = 2n

O(1)
, then QΦ 6≤T QΨ.
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4.3 Design based degree lower bound

Designs are collections of subsets with certain intersection properties. The
part of mathematics which deals with the existence and construction of such
systems is called Combinatorial design theory. This theory has interesting ap-
plications in cryptography (authentification codes, threshold schemes), coding
theory, group testing, mathematics biology et cetera. At the present time de-
signs are also the most useful tool for proving the lower bounds for the degree
of Nullstellensatz refutations.
In this section we draw on material from [4], [2] and [5].

Let us denote by F [−→x ]≤d the set of all polynomials over some fixed field F
of degree less or equal d.

Definition 4.10 (Design).
Let F be some fixed field, T = {ti}

n
i=1 polynomials from F [−→x ]≤d and d ≥ 0.

A d-design for T is a mapping D : F [−→x ]≤d → F such that the following
conditions hold:

1, D(1) = 1.

2, ∀ a ∈ F , ∀ p,q ∈ F [−→x ]≤d: D(a·p) = a·D(p) and D(p+q) = D(p)+D(q);
meaning D is a linear mapping.

3, ∀ t ∈ T , ∀ p ∈ F [−→x ]≤d such that deg(t · p) ≤ d: D(t · p) = 0.

4, ∀ x variable, ∀ p ∈ F [−→x ]≤d−2: D(x2 · p) = D(x · p).

By including polynomials x2i − xi for all variables xi into the set T and
because D is a linear mapping, D is completely determined only by values
D(p) where p is some multilinear monomial over F of degree less or equal d.

Remark 4.11. Designs can be also defined on the propositional statements
represented by propositional variables. This is easy to see when one realizes
the relation between monomials and propositional statements. For example
the monomial x1 · x2 · (1 − x3) can be transformed into propositional term
x1 ∧ x2 ∧ ¬x3.
As we will see below designs can be also defined on sets with less or equal d
elements.

Before formulating and proving the theorem showing a relation between
designs and the degree of Nullstellensatz refutation of the set of polynomials
T it is necessary to understand the idea of Integer linear programming problem.

Integer linear programming problem (ILP) is the problem of finding the
optimal solution (the maximum or the minimum integer value) of some given
linear expression with a set of additional constraints. This problem is given by
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a rational matrix A = {ai,j}
n,m
1 and a rational vector

−→
B . The task is to find a

solution, an integer −→x , (or to determine if it exists) to the set of inequalities

m
∑

j=1

ai,j.xj ≤ Bi, i = 1, . . . , n.

By adding an extra condition 0 ≤ xj ≤ 1 for all j = 1, . . . , m we may restrict
the set of solutions only to 0’s and 1’s.
We will see the connection between ILP problem and NR in the second part
of the following theorem’s proof.

Theorem 4.12 (Buss [4]).
The set of polynomials T over a field F does not have a NR of degree less or
equal d if and only if this set admits a d-design.

Proof. The necessary condition will be proven by contradiction.
Suppose the set T has a NR of degree ≤ d. Then there exist pj, qi ∈ F [−→x ]
(Section 3.2) such that

1 =
∑

j

pj · tj +
∑

i

qi · (x
2
i − xi)

1 = D(1) = D(
∑

j

pj · tj) +D(
∑

i

qi · (x
2
i − xi))

1 =
∑

j

D(pj · tj) +
∑

i

D(qi · x
2
i )−D(qi · xi)

1 = 0 which is a contradiction.

To prove the sufficient condition we use the fact that the question whether
there exists a NR of degree ≤ d turns into a question of finding a solution to
a ILP problem. Then the question whether a d-design exists turns out to be
the dual problem.

Let S = {p | p monomial, deg(p) ≤ d} and s = |S|. All this monomials
can be ordered by their degree such that the constant monomial will be the
last. Then every polynomial q, deg(q) ≤ d can be written as a vector −→vq in
basis S and dim(−→vq )=s.

Now let G = {p·t | p ∈ F [−→x ], t ∈ T or of the form x2−x and deg(p·t) ≤ d}
and denote g = |G|. If we express every Gi ∈ G as a column vector in basis S,
we obtain a (s×g)-matrixM (rows −→mp, p ∈ S monomial, columns −→vGi

, Gi ∈ G).

There is a NR of degree ≤ d if and only if −→v1 = (0, . . . , 0, 1), dim(−→v1) = s,
can be expressed as F -linear combination of −→vGi

, Gi ∈ G. This is equivalent
to: ∃ −→u = (u1, . . . , ug) from F such that M · −→u = −→v1 (ILP).
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Let M− be the matrix which arises from M by cutting out the last row.
The vector −→v1 has non-zero number only on its s-th place, so the vector −→u
must be in the Nullspace of the mapping M−. (It is easy to see that the map-
ping and matrix are equivalent in the sense that one can express the mapping
by a matrix and the matrix on basis vectors defines a mapping).

Now two cases can occur:

a, the last row of M lies in the linear span of the first s − 1 rows, then
M− · −→u =

−→
0 ⇒ M · −→u =

−→
0 .

b, the last row of M is not in the linear span of the first s−1 rows. Denote
U = {u | M− · −→u =

−→
0 }. It is possible to pick from U some vector −→u for

which M · −→u = −→v1 holds.

So there is no NR of degree ≤ d if the last row is F -linear combination of the
previous rows. It remains to show that then there exists a d-design. (dual ILP)

Each row is a vector −→mp for some monomial p, deg(p) ≤ d. In the case a,
since the rows in M are linearly dependent we have

∑

deg(p)≤d

ap ·
−→mp =

−→
0 , ap ∈ F, a1 = 1 for −→m1 (1 the constant monomial).

Now it is obvious how to define a d-design D : D(p) = ap for each monomial
p over F . (deg(p) ≤ d)
It is easy to see that D is correctly defined design (D(1) = 1, linear, well
defined on minimal monomials of degree less than d).

We apply the Definition 4.10 of design on the (N, p)-polynomial system
over Zq, p, q different primes which encodes the conditions under which there
is a p-partition of [N ] over the field Zq. The place of monomials T ⊆ F≤d[

−→x ]
is taken by partial p-partitions of [N ]. Let denote the set of all such partition P.

Every element in P is some set P of less or equal d p-element subsets of
[N ], N > p. Then it is easy to modify the definition of the design in terms of
these sets in the following sense:

- if P ∈ P, then D(P ) = D(t) ∈ Zq where t ∈ T and deg(t) = the number
of p-element subsets in P ,

- if P is empty, then D(∅) = D(1) = 1 and

- if P has less than d p-element subsets and v is some element which is not
in any of the subset of P we put D(P ) =

∑

v∈e,e∩[P ]=∅D(P ∪ e) where e
is p-element subset not in the set P .
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The last option says that if there is some partial p-partition P and we can
improve it by adding an extra p-element subset to the given p-partition, we
just do it and the value of D(P ) will not change.

The lower bound for degree of NR by constructing the design was proven
for general primes p, q and N (N 6≡ 0 (mod p)) by Buss et al. in [5]. We apply
this proof to a special case of N = 2n − 1 (n > 1 integer), p = 2 and q = 3
and fill in some details of the original proof. At the start of the construction
let us introduce some notation:

Let S be a set of 5N elements. Fix a permutation π on S. For a giv-
en element s ∈ S we put s0 = s, s1 = π(s), . . . , s5 = s0. The cycles of
π have length 5 and s−i = s5−i, (s−i)i = s0. For every such cycle denote
Orbit(s) = {s1, s2, s3, s4, s5} and for S ⊂ S we put Orbit(S) =

⋃

s∈S Orbit(s).

Let R be a set with only N elements. Each element is indexed by cy-
cles from π; i.e. if s ∈ S, then r(s1,s2,s3,s4,s5) ∈ R. By this construction we
get from the set of 5N elements a set of N elements : all 2-element subsets
e = (s1, s2) of S are then 2-element subsets e′ = (rOrbit(s1),rOrbit(s2)) of R, if
Orbit(s1) ∩ Orbit(s2) = ∅.

If V is a set created by selecting one element from each cycle of π we
have |V | = N , Orbit(V ) = S and the number of all such V ’s is 5N . Now
put V i = {si, s ∈ V }. If i ∈ {1, 2, 3} and e ∈ V i (e = (si1, s

i
2)), then

Orbit(e) = Orbit(s1) ∪ Orbit(s2) has exactly 2 cycles of length 5 and in this
case we will call e a cross − edge. If e = {s4, s5} for some s ∈ V , then
Orbit(e) = Orbit(s) have only one cycle and we will call such e an inner−edge.

To prove the main Theorem 4.16 of this section we first prove lemma in
which we construct a design of degree 2d + 1 on 5N elements from design of
degree d on N elements.

Lemma 4.13 (Buss et al. [5]).
Let N , p and q be as above. If there is a design of degree d on N elements,
then there is a design of degree 2d+ 1 on 5N elements over the fixed field Zq.

Proof. Let D be a degree d design on R. If some subset R of R has more
than d elements (2-element cycles) we can w.l.o.g from definition of design put
D(R) = 0. We begin our construction by creating a design DV of degree d on
S for the set V defined as before.

First we define a partial mapping V (S) from partial 2-partition on S to
partial 2-partition on R; if for all e in S ⊂ S holds that they are either cross-
edges (Orbit(e) form 2 cycles in S and then e′ in R is indexed by these cycles)
or inner-edges (Orbit(e) form one cycle in S, then e′ in R has only one el-
ement) and the set {Orbit(e), e ∈ S} is a partial 2-partition in R we put
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V (S) = {Orbit(e), e ∈ S}. Only in these cases is V (S) defined.

Now let

DV =







D(V (S)), if D(V ) is defined

0, otherwise

It is easy to see that D(V ) is a degree d design on S (it is defined only on
sets S with less than d 2-element subsets).
Now define

D+(S) = (5N)−1 ·
∑

V ∈S

DV (S).

We are working in field Z3 so the inverse of 5N exists and is equal to 2 in Z3.
(52

n−1 · x ≡ 1 (mod 3) ⇒ 52
n−1 ≡ 22

n

· 2−1 ≡ 1 · 2 ≡ 2 (mod 3) and
2 · x ≡ 1 (mod 3) ⇒ x ≡ 2 (mod 3))

By discussing all possibilities which might happen it will be proven that
D+ is degree 2d+ 1 design on S.
The condition for the empty set is satisfied:

D+(∅) = (52
n−1)−1 ·

∑

V

DV (∅)

= (52
n−1)−1 · (#V ) · 1

= (52
n−1)−1 · 52

n−1

= 1

where #V is defined as the number of possible V ′s.

Now consider any partial 2-partition S of S and any element v not in any
member of S. We can choose some mapping V (S) (w.l.o.g. is defined at least
for one V ).

If |V (S)| < d, then the same is true for all W ′s for which W (S) is also
defined. The size of the image of such mapping depends only on the number
of cross-edges in S.

If v is in a block (cycle of π) which intersects some cross-edge in S; i.e.
v ∈ e for some e cross-edge, then the design condition is satisfied for DV (S)
and also for D+(S) - is only linear combination of designs satisfying the design
condition.

If the block of v intersects some inner-edge in S and hence contains it three
cases may occur:
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1, v is also in block which intersects some cross-edge in S. In this case is
the design condition satisfied by previous observations.

2, The image |V (S)| < d or is undefined and in this case is the design
condition again satisfied.

3, In S is an edge which satisfied the condition of following lemma

Lemma 4.14 (Buss et al. [5]).
Suppose there is a cross-edge e in S such that no other edge in S intersects
any of the blocks that e intersects. Then D+(S) = 0.

Proof. By definition of a cross-edge, there are only 3 possibilities how to make
a cross-edge for given nodes v, v′ (∈ V i, i = 1, 2, 3).
Hence, for each V such that V (S) is defined, there are exactly two other sets
W1,W2 of elements agreeing on the blocks which e does not intersect and such
that W1(S) and W2(S) are defined. By symmetry we have:
DV (S) = DW1(S) = DW2(S) (they agreeing on images of cross-edges).
Then

D+(S) = 2 ·
∑

V

DV (S) = 2 · 3 ·DV (S) ≡ 0 (mod 3).

If cases 1, and 2, are false, then S has at least d cross-edges with non-
intersecting blocks. Blocks of each other edge intersect with at most one of
the d cross-edges (otherwise V (S) is not a partition) and since S has at most
2d edges and 1, is false, there must be some cross-edge satisfying the assump-
tion in Lemma 4.14 and the design condition is satisfied.

It remains to consider the case when the block of v does not intersect any
edge in S and |V (S)| = d for each V .
Let W range over all selection of elements from blocks not containing v and
let Wi =W ∪vi. Because v 6∈ S we have DW (S) = DWi(S) for all i = 1, . . . , 5.
Then

D+(S) = 2 ·
∑

W

5
∑

i=1

DWi(S) = 2 · 5 ·
∑

W

DW (S) ≡
∑

W

DW (S) (mod 3)

Define ej = {v−j, v1−j} for j = 0, 1. The edges ej do not intersect any edge
in S (v 6∈ S) and by assumption on the design D these two edges are the only
edges for which DWi(S ∪ e) might be non-zero (otherwise |Wi(S ∪ e)| > d or
is undefined). Moreover, if i = −4− j, j = 0, 1, then ej is an inner-edge of Wi

and DWi(S ∪ ej) = DWi(S) = DW (S), otherwise it is zero.
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Thus,

1
∑

j=0

D+(S ∪ ej) = 2 ·
∑

W

5
∑

i=1

1
∑

j=0

DWi(S ∪ ej)

= 2 · 2 ·
∑

W

DW (S) ≡
∑

W

DW (S) (mod 3)

which is equal to D+(S).

Theorem 4.15 (Lower bound for degree of design, Buss et al. [5]).
Let p = 2, q = 3 and the field Z3 be as above.
For any N > 0 such that N 6≡ 0 (mod 2) there is a degree
d = Ω(N1/log25) design on set with N elements ([N ]) over the field Z3.

Proof.
We prove this in the case of N = 2n − 1, n ≥ 1.
If n = 1 ⇒ N = 1 < p = 2 ⇒ w.l.o.g there is a degree 0 design (in the
definition of design on sets we require N > p).
In other cases where N > p we prove the theorem by induction on d and n (N).

By previous lemma if there is a degree d design on [N ], then there is also
a degree 2d+ 1 design on [5N ]. Since

d ≥ k ·N1/log2(5) for k > 0 a constant and

2d+ 1 > 2d ≥ k · (5N)1/log2(5) = k · 2 ·N1/log2(5) (4.6)

dividing both sides of inequality (4.6) by 2 be obtain the same inequality with
the same constant k > 0.

This holds for N of the special form (p + q)i = 5i. Also the value of d
depends on this form and we can see that it increases doubly:

N = 5i

N1/log25 = 5i/log25 = (2log25)i/log25 = 2i

N1/log25 = 2i = d for N = 5i.

The problem with gaps between [N ] and [5N ] is solved by restricting the
design (is a mapping). For example, if we have set with N + 1 elements we
use the design D+ for [5N ] and restrict this only on [N + 1]. So, we obtain a
design D+|N+1 with degree less than 2d+ 1.

Theorem 4.16 (Lower bound for degree of NR, Buss et al. [5]).
The (N, p)−polynomial system for N = 2n− 1 and p = 2 over the field Z3 has
a Nullstellensatz refutation of degree at least d = Ω(N1/log25).

Proof. The theorem follows from Theorem 4.12 and Theorem 4.15 applying on
the (2n − 1, 2)-polynomial system over Z3.
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At the end of this chapter we formulate and prove the theorem about the
(M, q)−polynomial system over Zq, for q = 3 and M 6≡ 0 (mod 3).

Theorem 4.17 (Constant-degree bound of NR).
The (M, q)−polynomial system for q = 3 over the field Z3 has a Nullstellensatz
refutation of constant-degree.

Proof. Following the Definition 3.7, the (M, q)−polynomial system is the sys-
tem of polynomial equations in variables ye where e ranges over all q-element
subsets of the set [M ]:

Qv :
∑

v∈e

ye = 1, one for each v ∈ [M ]

Qe,f : ye · yf = 0, for all e, f such that e ⊥ f,

i.e. e 6= f and e ∩ f 6= ∅

We have

∑

v∈[M ]

∑

e3v

ye =
∑

e3v

∑

v∈[M ]

ye

1 ≡
∑

v∈[M ]

1 =
∑

e3v

3 · ye ≡ 0 (mod 3) which is a contradiction.

Hence, the (M, 3)−polynomial system over the field Z3 has a NR from the
system of polynomial equations {Qv|v ∈ [M ]} of constant-degree.
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5. A separation result

By reformulating the Corollary 4.9 in a more specific way we obtain the fol-
lowing

Theorem 5.1.
CountN2 6≤T Count

M
3 .

Proof. It directly follows from Theorems 4.8, 4.16 and 4.17.
In particular, in Theorem 4.16 we proved the lower bound for degree of Null-
stellensatz refutation in the case of p = 2, N = 2n − 1 and q = 3; i.e. for
the (2n − 1, 2)-polynomial system over the field Z3 and the degree was about
2n/log2(5).
In Theorem 4.17 we proved that the (M, 3)-polynomial system has a Nullstel-
lensatz refutation over the field Z3 of constant-degree.
Hence, the Nullstellensatz proof that CountM3 over Z3 is total is of constant-

degree and the Nullstellensatz proof that CountN2 is total requires degree 2n
O(1)

and we use the Corollary 4.10.

The technical background used to obtain this reduction can be also used
in the general case, for p, q distinct primes. Then the lower bound for degree
of Nullstellensatz refutation for system FΦ where QΦ = CountNp over the field

Zq is Ω(N
1/logp(p+q)) (Buss et al.[5]).

We can conclude this thesis with some more observations about the struc-
ture of the class TFNP and its subclasses (they were described in Chapter 2).
The class PPA is based on total and complete problem Lonely. The problem
Lonely can be formulated also in the algebraic formalism as CountN2 problem
(see Section 3.2). All CountNp problems, for all p primes, can build one sub-
class in TFNP or we can consider various subclasses based on Mod-p counting
principle for every specific prime p.

Let us consider that the problem 3-Lonely (described in Chapter 2) based
on Mod-3 counting principle defines a subclass P3A:= Cm(3-Lonely) of
TFNP. Then the Theorem 5.1 and Definition 1.4 clearly imply the following
fact:

PPA 6⊆ P3A

in relativized world.

In Section 3.1 we briefly introduced the algebraic proof systems and the
connection between equational reasoning and automated theorem proving. If
we use the representation of the type-2 search problems Lonely and 3-Lonely
in first-order logic (as an ∃−sentence in some basic language), we can use
a suitable automated theorem prover to conclude some observations about
relations between the TFNP subclasses in relativized world. For example,
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from the output file of some automated theorem prover one can extract the
substitutions which were used to obtain the reductions.
Hence, it would be interesting (maybe my future work) to look at the search
problems in terms of first-order logic and prove some reductions among them
automatically.
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