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Chapter 1

Introduction

Missing and incomplete data problems have been an important field of research in mathemat-
ical statistics during the past decades. In particular, a lot of theory has been developed for
the analysis of the interval censored data or in other words, the interval censoring problem.
Here we will consider the uniform deconvolution problem and its application to the interval
censoring problem. In the following sections of this chapter we will mathematically describe
these two problems separately, as well as the relation between them, and we will mention
several examples of an application of this particular problem in real world. We will also
show how to transform interval censored data to uniform deconvolution data. In Chapter
2. we will focus only on the uniform deconvolution model. Here we will derive estimators
of the mean and variance, and their limit distributions. At the end of this chapter we will
give some simulation results for different distributions of the random variables to show how
the theoretical values, from our limit theorems, are close to the simulated ones. In Chapter
3. we will transform the uniform deconvolution model into the interval censoring problem
and derive related estimators of the mean and variance. Here we will derive, also as in the
previous chapter, the limit distributions of these estimators. This is crucial for the thesis
in order to investigate how these relatively simple estimators, based on the random variable
moments estimation, behave with respect to the asymptotically efficient estimators based
on the nonparametric maximum likelihood estimation, i.e. the NPMLE, of the distribution
function. The NPMLE method will be described in Chapter 4. In Chapter 5. we will present
and concentrate on the simulation results from both methods in order to compare the asymp-
totic efficiency of the related estimators. Chapter 6. will summarize the results gained in
Chapter 5.

Let us first give a general description of a statistical estimation problem. The random
quantity X takes values in the measurable space (χ,A) and its distribution F is unknown.
This distribution belongs to the known class F . The map ν : F → Rm defines a Euclidean
parameter. We will study estimation of the unknown value of ν(F ). In particular we will
focus on ν(F ) =

∫
tdF (t), the mean of F , and ν(F ) =

∫
(t −

∫
sdF (s))2dF (t), the variance

of F , in two models, interval censoring case I. and uniform deconvolution. Any measurable
map t : χ→ Rm defines an estimator T = t(X) of ν(F ).
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1.1 Interval censoring case 1.

Let us consider the interval censoring problem case 1, or in other words the current status data
problem. In this estimation problem one observes at i.i.d. random time instants T1, . . . , Tn
whether unobservable variables of interest X1, . . . , Xn are smaller or larger than the corre-
sponding Ti. Writing ∆i = 1[Xi≤Ti], the observations are denoted by (T1,∆1), . . . , (Tn,∆n).
The exact value of Xi is not measured. Based on these data, under some regularity condi-
tions, one can estimate the distribution of the Xi and its mean and the variance, see Chapter
3 and 4.

Before we start with the mathematical computations let us first give some examples of a
possible application of such a problem.

i) The maximum price of a good that a consumer is willing to pay: Let us consider the
issue of looking for a maximum price, which we can represent by the variable X. Assume
that one can observe a supply price of a certain specified good, which would be in our
case represented by the variable T . It is important to emphasize that in this special case
we consider just one observation, our supply price T , so we can omit the subscript i. It
implies that we can observe, whether the variable X representing the maximum price is
smaller or bigger than the supply price T . In other words we can observe whether the
consumer is willing to pay more or less for a certain good than the supply price. The
exact maximum price X is unknown and we are loooking for the distribution of this
price and its characteristics.

ii) The time of infection of a certain disease that causes antibodies at infection: Let us
represent the times when the persons blood is checked with variables Ti and the exact
time of the infection with variables Xi. During a check of the persons blood, antibodies
are present or not. This means that the person has been infected before the time of
the check (Xi ≤ Ti) or after (Xi > Ti). In both cases the exact time of infection Xi is
unknown.

iii) The time of arrival of a new mail to the mailbox: Let us represent the times when the
mailbox is checked by the owner with variables Ti and the exact time of arrival of a new
mail with variables Xi. During a check of the mailbox, new mail is already inside or not.
This means that a new mail was already received (Xi ≤ Ti) or not (Xi > Ti). In both
cases the exact time Xi of arrival of a new mail is unknown.

The probabilities for ∆i, given the value of Ti, are given by

P (∆i = 0|Ti = ti) = 1− F (ti),

P (∆i = 1|Ti = ti) = F (ti). (1.1)

The following transformation of the points Ti plays a crucial role. Let

Vi =

{
Ti + 1 if ∆i = 0,

Ti if ∆i = 1.
(1.2)
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Lemma 1.1.1. Assume that the distribution of Xi is concentrated on [0, 1]. Let us denote
the density of Vi by g and the density of Ti by q. If Ti is supported on [0, 1], then the density
g of Vi is given by

g(v) = q̄(v) (F (v)− F (v − 1)) , (1.3)

with the function q̄ defined by
q̄(v) = q(v) + q(v − 1). (1.4)

Proof. We omit the subscript i. For v ∈ [0, 1] we have

P (V ≤ v)

= P (V ≤ v,∆ = 0) + P (V ≤ v,∆ = 1)

= P (V ≤ v,∆ = 1)

= P (T ≤ v,∆ = 1)

=

∫ 1

0

P (T ≤ v,∆ = 1|T = t)q(t)dt

=

∫ v

0

P (∆ = 1|T = t)q(t)dt

=

∫ v

0

F (t)q(t)dt

By the support restrictions on the distribution induced by F and on q this confirms (1.3) for
v ∈ [0, 1].

Let us also check the claim on the interval [1, 2]. For v ∈ [0, 1] we have

P (1 ≤ V ≤ 1 + v)

= P (1 ≤ V ≤ 1 + v,∆ = 0) + P (1 ≤ V ≤ 1 + v,∆ = 1)

= P (1 ≤ V ≤ 1 + v,∆ = 0)

=

∫ 1

0

P (1 ≤ V ≤ 1 + v,∆ = 0|T = t)q(t)dt

=

∫ 1

0

P (T ≤ v,∆ = 0|T = t)q(t)dt

=

∫ v

0

P (∆ = 0|T = t)q(t)dt

=

∫ v

0

(1− F (t))q(t)dt

=

∫ 1+v

1

(1− F (t− 1))q(t− 1)dt.

Hence the density of V at 1 + v equals (1 − F (t − 1))q(t − 1), which confirms (1.3) for t in
[1, 2].

Note that V takes values in [0, 2). On the interval [0, 1) the function q̄(v) equals q(v) and
on the interval [1, 2) it equals q(v − 1), because we consider the density of the Uniform
distribution on [0, 1] as an indicator 1[0,1)(v).
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1.2 Deconvolution model

Let us now consider the general deconvolution model. Let V1, . . . , Vn be i.i.d. observations,
where Vi = Xi + Ui and Xi and Ui are independent. Assume that the unobservable Xi have
distribution function F and density f . Also assume that the unobservable random variables
Ui have a known density k. Note that the density g of the Vi is equal to the convolution of
f and k, so g = k ∗ f , where ∗ denotes convolution. So we have

g(v) =

∫ ∞
−∞

k(v − u)f(u)du. (1.5)

The deconvolution problem is the problem of estimating f or F , or its moments, from the
observations Vi. In Chapter 2. we will restrict ourselves to uniform deconvolution where we
require the distribution of the Ui to be uniformly distributed on [0, 1].

1.3 Relation between the uniform deconvolution model

and interval censoring case 1.

In the uniform deconvolution problem the error U is Uniform[0, 1] distributed. So in this
particular deconvolution problem we assume to have i.i.d. observations from the density

g(v) =

∫ ∞
−∞

I[0,1)(v − u)f(u)du =

∫ v

v−1

f(u)du = F (v)− F (v − 1). (1.6)

Note that the density of V in the uniform deconvolution model is exactly the same as the
density of V in the interval censoring case 1., see (1.3), when the function q̄ ≡ 1 on [0, 2], i.e.
when the observation times Ti are uniformly distributed in [0, 1]. This shows that in this case
the transformation (1.2) transforms interval censored data to uniform deconvolution data.
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Chapter 2

Uniform deconvolution model

We consider random variables Vi = Xi + Ui in the uniform deconvolution model and we
denote EXi = µ and VarXi = σ2, for all i. Note that, EVi = µ+ 1

2
, so apparently we have∫ ∞

−∞
v(F (v)− F (v − 1))dv = µ+

1

2
. (2.1)

The previous equality can be shown directly by∫ ∞
−∞

v(F (v)− F (v − 1))dv =

∫ ∞
−∞

v

(∫ v

v−1

f(t)dt

)
dv

=

∫ ∞
−∞

(∫ t+1

t

vf(t)dv

)
dt

=

∫ ∞
−∞

1

2

(
(t+ 1)2 − t2

)
f(t)dt

=

∫ ∞
−∞

(
t+

1

2

)
f(t)dt

= µ+
1

2
.

Also note that EV 2
i = EX2

i + 2 E(XiUi) + EU2
i = σ2 + µ2 + µ+ 1

3
, so we have∫ ∞

−∞
v2(F (v)− F (v − 1))dv = σ2 + µ2 + µ+

1

3
. (2.2)
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To show that the equation (2.2) is true we will use the same approach as we used by showing
(2.1). So we can write∫ ∞

−∞
v2(F (v)− F (v − 1))dv =

∫ ∞
−∞

v2

(∫ v

v−1

f(t)dt

)
dv

=

∫ ∞
−∞

(∫ t+1

t

v2f(t)dv

)
dt

=

∫ ∞
−∞

1

3

(
(t+ 1)3 − t3

)
f(t)dt

=

∫ ∞
−∞

(
t2 + t+

1

3

)
f(t)dt

= σ2 + µ2 + µ+
1

3
.

Note that σ2 + µ2 is the second moment of the random variable X i.e., EX2. To show the
previous equalities we used Fubini’s theorem, see W. Rudin (1986).

2.1 Estimators of mean and variance

In this section we will derive estimators of the mean and variance in the uniform deconvolution
model. Recall

EVi = EXi + EUi = µ+
1

2
. (2.3)

Now we can estimate µV = EVi by the sample mean V̄n and we get

V̄n ≈ µ+
1

2
. (2.4)

So our estimator for the mean µ in the uniform deconvolution model, denoted by MX,n will
be

MX,n =
1

n

n∑
i=1

Vi −
1

2
. (2.5)

Note that MX,n is an unbiased estimator of µ. To derive an estimator for the variance we
proceed analogically. Note that because of the independence of Xi and Ui we can write

VarVi = VarXi + VarUi = σ2 +
1

12
. (2.6)

We can estimate σ2
V = VarVi by S2

V,n and we get

S2
V,n ≈ σ2 +

1

12
, (2.7)

where

S2
V,n =

1

n

n∑
i=1

(Vi − V̄n)2 =
1

n

n∑
i=1

V 2
i −

(
1

n

n∑
i=1

Vi

)2

. (2.8)
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So our estimator for the variance σ2 in the uniform deconvolution model, denoted by S2
X,n,

will be

S2
X,n = S2

V,n −
1

12
=

1

n

n∑
i=1

(Vi − V̄n)2 − 1

12
. (2.9)

This estimator would be unbiased if we had used 1
n−1

instead of 1
n
, but for mathematical

convenience we have chosen 1
n
.

2.2 Limit distribution of the estimators of mean and

variance

In this section we derive the limit distributions of the estimators MX,n and S2
X,n in the

following two theorems.

Theorem 2.2.1. Assume that EX2 < ∞. As n approaches infinity, the random variable√
n(MX,n− µ), where MX,n is defined by (2.5), converges to a normal N (0, σ2

V ) distribution,

√
n (MX,n − µ)

D→ N (0, σ2
V ) (2.10)

with σ2
V = σ2 + 1

12
.

Proof. To prove (2.10) we must show that the requirements of the Central Limit Theorem
(CLT), see Serfling (1980) are satisfied. First we will derive the mean and the variance of
the estimator MX,n. We have by (2.3) and (2.6)

EMX,n = E

(
1

n

n∑
i=1

Vi −
1

2

)
= µ

Var(MX,n) = Var

(
1

n

n∑
i=1

Vi

)
=

1

n
Var(Vi) =

σ2
V

n

Now by applying the CLT to the estimator MX,n we get the required result.

The limit distribution of S2
X,n is given by the following theorem.

Theorem 2.2.2. Assume that EX4 < ∞. As n approaches infinity, the random variable√
n(S2

X,n − σ2), where S2
X,n is defined by (2.9), converges to a normal N (0, σ2

1s) distribution,

√
n
(
S2
X,n − σ2

) D→ N (0, σ2
1s) (2.11)

with σ2
1s = Var ((V − µV )2).

Proof. To prove (2.11) we will apply CLT to Yi = (Vi − µV )2. We have

E Ȳn = EYi = Var(Vi) = σ2
V = σ2 +

1

12
,

Var(Ȳn) =
1

n
Var(Y1) =

1

n
Var((V1 − µV )2) =

σ2
1s

n
.
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The CLT says, when n approaches infinity, that we have

√
n

(
Ȳn − σ2 − 1/12

σ1s

)
D→ N (0, 1).

Note that S2
V,n 6= Ȳn, so we must show that the following expression is true for large n

√
n

(
Ȳn − σ2

V

σ1s

)
=
√
n

(
S2
V,n − σ2 − 1/12

σ1s

)
+ op(1) =

√
n

(
S2
X,n − σ2

σ1s

)
+ op(1), (2.12)

and we will proceed as follows. Note that we have S2
V,n = 1

n

∑n
i=1(Vi − V̄n)2, thus we can

write

1

n

n∑
i=1

(Vi − µV )2 =
1

n

n∑
i=1

(Vi − V̄n + V̄n − µV )2

=
1

n

n∑
i=1

(Vi − V̄n)2 + 2
1

n

n∑
i=1

(Vi − V̄n)(V̄n − µV ) +
1

n

n∑
i=1

(V̄n − µV )2

= S2
V,n + (V̄n − µV )2,

since

2
1

n

n∑
i=1

(Vi − V̄n)(V̄n − µV ) =
2

n

(
V̄n − µV

) n∑
i=1

(
Vi − V̄n

)
︸ ︷︷ ︸

=0

= 0.

So we have

S2
V,n =

1

n

n∑
i=1

(Vi − µV )2 − (V̄n − µV )2

and we can rewrite the previous expression to the form

√
n
(
S2
V,n − σ2

V

)
=

1√
n

n∑
i=1

(
(Vi − µV )2 − σ2

V

)
−
√
n(V̄n − µV )2

=
1√
n

n∑
i=1

(
Yi − σ2

V

)
−
√
n(V̄n − µV )2

=
√
n
(
Ȳn − σ2

V

)
−
√
n(V̄n − µV )2.

Now √
n(V̄n − µV )2 =

√
n(V̄n − µV )(V̄n − µV )

P→ 0.

In the previous expression we used Slutsky’s Theorem, see Serfling(1980), and

√
n(V̄n − µV )

D→ N (0, σ2
V ),

(V̄n − µV )
P→ 0.

This proves the first equality in (2.12). The second equality follows by definition of S2
X,n.
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Remark 2.2.1. Note that σ2
1s is related to the kurtosis γ(V ) of V . Recall that the kurtosis

is defined as

γ(V ) =
E((V − µV )4)

σ4
V

− 3 =
Var((V − µV )2)

σ4
V

− 2.

We find that σ2
1s = (γ(V ) + 2)σ4

V .

Example 2.2.1. For V1, . . . , Vn a sample from the normal distribution N (µV , σ
2
V ) there are

no problems. In this case γ(V ) = 0, thus we can write σ2
1s = 2σ4

V , see previous Remark. As
n approaches infinity, we have

√
n
(
S2
X,n − σ2

) D→ N (0, 2σ4
V ), (2.13)

see (2.11).

2.3 Simulation of the estimators

In this Section we generate a sequence of random variables Xi, i = 1, . . . , n, from different
distributions and construct Vi = Xi+Ui, where the random variables Ui are from the Uniform
distribution on [0, 1], and are independent of Xi for all i = 1, . . . , n. Then we compute our
estimates of the mean (2.5) and the variance (2.9), and compare them to our limit theorems
(2.10) and (2.11), for different values of n.

i) The distribution of random variable X is Uniform on [0, 1].

Figure 2.1: Histogram of 500 simulations of the estimator MX,n, where the random variable
X has an Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean of the
MX,n samples is 0.5009 and the sample variance is equal to 3.29599 × 10−4. Right: For
n = 1000 observations, the mean of the MX,n samples is 0.49905 and the sample variance is
equal to 1.49041× 10−4.

Now we will check the result of our Theorem 2.2.1., where MX,n has an AN
(
µ,

σ2
V

n

)
distribution. When X has an Uniform distribution on [0, 1], then µ = 1

2
and the variance

σ2 = 1
12

= 8.33 × 10−2, and we can write in general that MX,n has an AN
(

1
2
, 1

6n

)
distribution.
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For n = 500 observations, MX,500 approximately has a N (0.5, 3.33× 10−4) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.5, 1.67× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also Theorem 2.2.2., where S2
X,n has an AN

(
σ2,

σ2
1s

n

)
distribution. When

X has an Uniform distribution on [0, 1], then we can write in general that S2
X,n has an

AN
(

1
12
, 7

180n

)
distribution.

For n = 500 observations, S2
X,500 approximately has a N (8.33× 10−2, 7.78× 10−5) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (8.33× 10−2, 3.89× 10−5) distribution.

Figure 2.2: Histogram of 500 simulations of the estimator S2
X,n, where the random variable

X has an Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean of the
S2
X,n samples is 8.31318 × 10−2 and the sample variance is equal to 7.7228 × 10−5. Right:

For n = 1000 observations, the mean of the S2
X,n samples is 8.31943 × 10−2 and the sample

variance is equal to 4.07688× 10−5.

Simulations of the estimator S2
X,n gave us values, which confirm our Theorem 2.2.2..

ii) The distribution of random variable X is standard normal.

Now we will check the result of our Theorem 2.2.1., where MX,n has an AN
(
µ,

σ2
V

n

)
distribution. When X has a standard normal distribution, then µ = 0 and the variance
σ2 = 1. Here we can write in general that MX,n has an AN

(
0, 13

12n

)
distribution.

For n = 500 observations, MX,500 approximately has a N (0, 2.17× 10−3) distribution
and for n = 1000 observations, MX,1000 approximately has a N (0, 1.08× 10−3) distribu-
tion.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also Theorem 2.2.2., where S2
X,n has an AN

(
σ2,

σ2
1s

n

)
distribution. When

X has a standard normal distribution, then we can write in general that S2
X,n has an

AN
(
1, 421

180n

)
distribution.
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Figure 2.3: Histogram of 500 simulations of the estimator MX,n, where the random variable
X has a standard normal distribution. Left: For n = 500 observations, the mean of the MX,n

samples is 2.56367 × 10−2 and the sample variance is equal to 2.22689 × 10−3. Right: For
n = 1000 observations, the mean of the MX,n samples is −9.06578 × 10−4 and the sample
variance is equal to 1.04319× 10−3.

For n = 500 observations, S2
X,500 approximately has a N (1, 4.68× 10−3) distribution and

for n = 1000 observations, S2
X,1000 approximately has a N (1, 2.34× 10−3) distribution.

Figure 2.4: Histogram of 500 simulations of the estimator S2
X,n, where the random variable

X has a standard normal distribution. Left: For n = 500 observations, the mean of the S2
X,n

samples is 0.99509 and the sample variance is equal to 4.51769× 10−3. Right: For n = 1000
observations, the mean of the S2

X,n samples is 0.994162 and the sample variance is equal to
2.47613× 10−3.

Simulations of the estimator S2
X,n gave us values, which confirm our Theorem 2.2.2..

iii) The distribution of random variable X is squared Uniform on [0, 1].

Now we will check the result of our Theorem 2.2.1., where MX,n has an AN
(
µ,

σ2
V

n

)
distribution. X has a squared Uniform distribution on [0, 1], so here X = U2. Then
µ = 1

3
and the variance σ2 = 4

45
= 8.89 × 10−2. We can write in general that MX,n has

an AN
(

1
3
, 31

180n

)
distribution.

For n = 500 observations, MX,500 approximately has a N (0.33, 3.44× 10−4) distribu-
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Figure 2.5: Histogram of 500 simulations of the estimator MX,n, where the random variable
X has a squared Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean of
the MX,n samples is 0.332464 and the sample variance is equal to 3.59296× 10−4. Right: For
n = 1000 observations, the mean of the MX,n samples is 0.33408 and the sample variance is
equal to 1.58466× 10−4.

Figure 2.6: Histogram of 500 simulations of the estimator S2
X,n, where the random variable

X has a squared Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean
of the S2

X,n samples is 8.89417 × 10−2 and the sample variance is equal to 8.91079 × 10−5.
Right: For n = 1000 observations, the mean of the S2

X,n samples is 8.87355 × 10−2 and the
sample variance is equal to 4.28718× 10−5.
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tion and for n = 1000 observations, MX,1000 approximately has a N (0.33, 1.72× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also Theorem 2.2.2., where S2
X,n has an AN

(
σ2,

σ2
1s

n

)
distribution. When

X has a squared Uniform distribution on [0, 1], then we can write in general that S2
X,n

has an AN
(

4
45
, 2507

56700n

)
distribution.

For n = 500 observations, S2
X,500 approximately has a N (8.89× 10−2, 8.84× 10−5) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (8.89× 10−2, 4.42× 10−5) distribution.
Simulations of the estimator S2

X,n gave us values, which confirm our Theorem 2.2.2..

iv) The distribution of random variable X is square root Uniform on [0, 1].

Figure 2.7: Histogram of 500 simulations of the estimator MX,n, where the random variable
X has a square root Uniform distribution on [0, 1]. Left: For n = 500 observations, the
mean of the MX,n samples is 0.666017 and the sample variance is equal to 2.75786 × 10−4.
Right: For n = 1000 observations, the mean of the MX,n samples is 0.665877 and the sample
variance is equal to 1.19894× 10−4.

Now we will check the result of our Theorem 2.2.1., where MX,n has an AN
(
µ,

σ2
V

n

)
distribution. When X has a square root Uniform distribution on [0, 1], then µ = 2

3
and

the variance σ2 = 1
18

= 5.56 × 10−2, and we can write in general that MX,n has an
AN

(
2
3
, 5

36n

)
distribution.

For n = 500 observations, MX,500 approximately has a N (0.67, 2.78× 10−4) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.67, 1.39× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also Theorem 2.2.2., where S2
X,n has an AN

(
σ2,

σ2
1s

n

)
distribution. When

X has a square root Uniform distribution on [0, 1], then we can write in general that
S2
X,n has an AN

(
1
18
, 23

810n

)
distribution.
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Figure 2.8: Histogram of 500 simulations of the estimator S2
X,n, where the random variable

X has a square root Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean
of the S2

X,n samples is 5.56057 × 10−2 and the sample variance is equal to 6.21251 × 10−5.
Right: For n = 1000 observations, the mean of the S2

X,n samples is 5.54688 × 10−2 and the
sample variance is equal to 2.88202× 10−5.

For n = 500 observations, S2
X,500 approximately has a N (5.56× 10−2, 5.68× 10−5) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (5.56× 10−2, 2.84× 10−5) distribution. Simulations of the estimator S2
X,n gave us

values, which confirm our Theorem 2.2.2..
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Chapter 3

Interval censoring case 1.

3.1 Estimators of mean and variance with known dis-

tribution of the observation times

In this section we will discuss the case when the density q is known. We assume that the
densities f and q are concentrated on [0, 1]. First we derive the estimator for the mean in
interval censoring case 1. Because of the equations (1.3) and (2.1) we can write

E

(
Vi
q̄(Vi)

)
=

∫ ∞
−∞

v

q̄(v)
g(v)dv =

∫ ∞
−∞

v(F (v)− F (v − 1))dv = µV = µ+
1

2
(3.1)

Then we again use the sample mean to estimate E
(

Vi
q̄(Vi)

)
and we get our estimator of the

mean µ. We get

MX,n =
1

n

n∑
i=1

Vi
q̄(Vi)

− 1

2
. (3.2)

To simplify the notation we denote

Yi :=
Vi
q̄(Vi)

. (3.3)

To derive the estimator for the variance, recall (2.2). First we derive the second moment of
the random variable Vi√

q̄(Vi)
, which will be useful in the next step of the computation. We

have

E

(
V 2
i

q̄(Vi)

)
=

∫ ∞
−∞

v2

q̄(v)
g(v)dv

=

∫ ∞
−∞

v2(F (v)− F (v − 1))dv

= σ2 + µ2 + µ+
1

3
(3.4)

As an estimator for the second moment of the random variable Vi√
q̄(Vi)

, we use

1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
. (3.5)
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Then we can easily show that the estimator for the variance σ2 will be

S2
X,n =

1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
−M2

X,n −MX,n −
1

3

=
1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
−
(
Ȳn −

1

2

)2

− Ȳn +
1

2
− 1

3

=
1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
− Ȳ 2

n −
1

12

=
1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
−

(
1

n

n∑
i=1

Vi
q̄(Vi)

)2

− 1

12
. (3.6)

We can see that if q̄(.) ≡ 1, the estimators for the mean and the variance are exactly the
same as we derived them in 2nd chapter, see (2.5) and (2.9). We can take it as an indication
that we proceed correctly.

3.1.1 Limit distribution of the estimators

Before we start with the theorem about the asymptotic distribution of the estimator MX,n,
let us first derive one assumption which is crucial for the following theorem in order for the
asymptotic variance to be well defined. Note∣∣∣∣∫ 2

0

v2

q̄(v)
(F (v)− F (v − 1))dv

∣∣∣∣
≤
∣∣∣∣∫ 1

0

v2

q(v)
F (v)dv

∣∣∣∣+

∣∣∣∣∫ 2

1

v2

q(v − 1)
(1− F (v − 1))dv

∣∣∣∣
≤
∫ 1

0

1

q(v)
dv +

∫ 2

1

4

q(v − 1)
dv

= 5

∫ 1

0

1

q(v)
dv.

(3.7)

Theorem 3.1.1. Assume that
∫ 1

0
1
q(v)

dv <∞. As n approaches infinity, the random variable√
n(MX,n−µ), where MX,n is defined by (3.2), converges to a normal N (0, σ2

qm) distribution,

√
n (MX,n − µ)

D→ N (0, σ2
qm), (3.8)

with σ2
qm =

∫ 2

0

v2

q̄(v)
(F (v)− F (v − 1))dv − µ2

V and µV =

∫ 2

0

v(F (v)− F (v − 1))dv.

Proof. First note that
∫ 1

0
1
q(v)

dv < ∞ implies that σ2
qm is well defined. To prove (3.8) we

must show that the requirements of the Central Limit Theorem (CLT) are satisfied. First
we will derive the mean and the variance of the estimator MX,n. We have by (1.3) and (3.1)

EMX,n = E

(
1

n

n∑
i=1

Vi
q̄(Vi)

− 1

2

)
= µ,
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and

Var(MX,n) = Var

(
1

n

n∑
i=1

Vi
q̄(Vi)

)
=

1

n
Var

(
Vi
q̄(Vi)

)
=

1

n

(
E

(
Vi
q̄(Vi)

)2

−
(

E

(
Vi
q̄(Vi)

))2
)

=
1

n

(∫ 2

0

v2

(q̄(v))2
q̄(v)(F (v)− F (v − 1))dv −

(∫ 2

0

v(F (v)− F (v − 1))dv

)2
)

=
1

n

(∫ 2

0

v2

q̄(v)
(F (v)− F (v − 1))dv − µ2

V

)
=

1

n
σ2
qm.

Now by applying the CLT to the estimator MX,n we get the required result.

Before we start with the theorem about the asymptotic distribution of the estimator S2
X,n,

let us first derive one assumption which is crucial for the following theorem in order for the
asymptotic variance to be well defined. We have

Var

(
V 2
i

q̄(Vi)
− 2µV

Vi
q̄(Vi)

)
= E

(
V 2
i

q̄(Vi)
− 2µV

Vi
q̄(Vi)

)2

−
(

E

(
V 2
i

q̄(Vi)
− 2µV

Vi
q̄(Vi)

))2

≤ E

(
V 2
i

q̄(Vi)
− 2µV

Vi
q̄(Vi)

)2

≤ E

(
V 4
i

(q̄(Vi))
2

)
+ 4µ2

V E

(
Vi
q̄(Vi)

)2

≤ 17

∫ 1

0

1

q(v)
dv + 20µ2

V

∫ 1

0

1

q(v)
dv

= (20µ2
V + 17)

∫ 1

0

1

q(v)
dv.

(3.9)

Theorem 3.1.2. Assume that
∫ 1

0
1
q(v)

dv <∞. As n approaches infinity, the random variable√
n(S2

X,n − σ2), where S2
X,n is defined by (3.6), converges to a normal N (0, σ2

qs) distribution,

√
n
(
S2
X,n − σ2

) D→ N (0, σ2
qs), (3.10)

with σ2
qs = Var

(
V 2
i

q̄(Vi)
− 2µV

Vi
q̄(Vi)

)
and µV = E

(
Vi
q̄(Vi)

)
.

Proof. First note that
∫ 1

0
1
q(v)

dv < ∞ implies that σ2
qs is well defined. Write Yi = Vi

q̄(Vi)
,

EYi = µy and VarYi = σ2
y to simplify the notation. Note that µy = µV . Let {Yi}i={1,...,n} be

a sequence of i.i.d. random variables, then we can write

√
nȲ 2

n =
√
n(Ȳn − µy)2 + 2µy

√
n(Ȳn − µy) +

√
nµ2

y.

Then from this equation it follows that

√
n(Ȳ 2

n − µ2
y) =

√
n(Ȳn − µy)(Ȳn − µy) + 2µy

√
n(Ȳn − µy), (3.11)
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where

√
n(Ȳn − µy)(Ȳn − µy)

P→ 0, (3.12)

2µy
√
n(Ȳn − µy)

D→ N (0, 4µ2
yσ

2
y). (3.13)

Equations (3.12), (3.13) are true, because of the CLT, the Kolmogorov Theorem (law of large
numbers) and Slutsky’s Theorem, see Serfling(1980). Then we can write

√
n(Ȳ 2

n − µ2
y)

D→ N (0, 4µ2
yσ

2
y), (3.14)

because of Slutsky’s Theorem. Then from the equation (3.11) is obvious that

Ȳ 2
n − µ2

y = 2µyȲn − 2µ2
y + op(

1√
n

). (3.15)

To prove (3.10) it suffices to show that

√
n

(
1

n

n∑
i=1

[
V 2
i

q̄(Vi)
− 2µy

Vi
q̄(Vi)

]
− E

[
1

q̄(Vi)
(V 2

i − 2µyVi)

])
=
√
n
(
S2
X,n − σ2

)
+ op(1).

(3.16)

Note that

σ2 = E

(
V 2
i

q̄(Vi)

)
− µ2 − µ− 1

3
,

see (3.4). Thus we can write

√
n
(
S2
X,n − σ2

)
=
√
n

 1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
−

(
1

n

n∑
i=1

Vi
q̄(Vi)

)2

− 1

12
− σ2


=
√
n

 1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
−

(
1

n

n∑
i=1

Vi
q̄(Vi)

)2

− E

(
V 2
i

q̄(Vi)

)
+ µ2

y


=
√
n

 1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
− E

(
V 2
i

q̄(Vi)

)
−

( 1

n

n∑
i=1

Vi
q̄(Vi)

)2

− µ2
y


Now we can apply (3.15) to the previous expression and we get

=
√
n

(
1

n

n∑
i=1

(
V 2
i

q̄(Vi)

)
− E

(
V 2
i

q̄(Vi)

)
− 2µy

1

n

n∑
i=1

Vi
q̄(Vi)

+ 2µ2
y

)
+ op(1)

=
√
n

(
1

n

n∑
i=1

[
V 2
i

q̄(Vi)
− 2µy

Vi
q̄(Vi)

]
− E

[
1

q̄(Vi)
(V 2

i − 2µyVi)

])
+ op(1).

19



This proves the equality in (3.16). The CLT says, as n approaches infinity,

√
n

(
1

n

n∑
i=1

[
V 2
i

q̄(Vi)
− 2µy

Vi
q̄(Vi)

]
− E

[
1

q̄(Vi)
(V 2

i − 2µyVi)

])
D→ N (0, σ2

qs), (3.17)

where

σ2
qs = Var

[
V 2
i

q̄(Vi)
− 2µy

Vi
q̄(Vi)

]
. (3.18)

3.2 Simulations of the estimators

In this Section we generate a sequence of random variables Xi, i = 1, . . . , n and a sequence
of random variables Ti, i = 1, . . . , n, from different distributions. Then we easily compute
∆i, where ∆i = 1[Xi≤Ti]. To construct the random variable Vi, we use formula (1.2) and we
will restrict only to Uniform distribution on [0, 1], its transformations (i.e. squared Uniform
and square root Uniform distribution on [0, 1]), and Beta distribution with scale parameters
α and β. Then we will compute our estimates of the mean (3.2) and the variance (3.6), and
compare them to the result of the theorems 3.1.1, and 3.1.2 for different values of n.

Note that, when the density q of the observation times Ti is Uniform on [0, 1], then
q̄(.) ≡ 1, see (1.4), and therefore our limit theorems for the estimators MX,n and S2

X,n, see
(2.10), and (2.11) are the same as (3.8), and (3.10).

i) Let us first consider the case, when the density q of the observation times Ti is Uniform
on [0, 1] and the random variable X has an Uniform distribution on [0, 1]. As we can
see on Figures 3.1 and 3.2 simulations gave us similar results as in the previous chapter,
see Figures 2.1 and 2.2, which also confirm that, when the density q is Uniform on [0, 1],
the theorems 3.1.1 and 3.1.2 are the same as the theorems 2.2.1, and 2.2.2. Because of
different generations of the random variable V the simulation results are not the same.

ii) The density q of the observation times Ti is squared Uniform on [0, 1] and the random
variable X has a squared Uniform distribution on [0, 1].

Now we will check if the result holds our Theorem 3.1.1, where MX,n has an AN
(
µ,

σ2
qm

n

)
distribution. When X has a squared Uniform distribution on [0, 1], then µ = 1

3
= 0.33

and variance σ2 = 4
45

= 8.89 × 10−2, and we can write in general that MX,n has an
AN (0.33, 0.48/n) distribution.

For n = 500 observations, MX,500 approximately has a N (0.33, 9.54× 10−4) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.33, 4.77× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also the Theorem 3.1.2, where S2
X,n has anAN

(
σ2,

σ2
qs

n

)
distribution. When

X has a squared Uniform distribution on [0, 1], then we can write in general that S2
X,n

has an AN (8.89× 10−2, 0.18/n) distribution.
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Figure 3.1: Histogram of 500 simulations of the estimator MX,n, where the density q is
Uniform on [0, 1] and the random variable X has an Uniform distribution on [0, 1]. Left: For
n = 500 observations, the mean of the MX,n samples is 0.50035 and the sample variance is
equal to 3.41719× 10−4. Right: For n = 1000 observations, the mean of the MX,n samples is
0.500491 and the sample variance is equal to 1.76624× 10−4.

Figure 3.2: Histogram of 500 simulations of the estimator S2
X,n, where the density q is Uniform

on [0, 1] and the random variable X has an Uniform distribution on [0, 1]. Left: For n = 500
observations, the mean of the S2

X,n samples is 8.27407 × 10−2 and the sample variance is
equal to 7.36203× 10−5. Right: For n = 1000 observations, the mean of the S2

X,n samples is
8.30364× 10−2 and the sample variance is equal to 3.68688× 10−5.
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Figure 3.3: Histogram of 500 simulations of the estimator MX,n, where the density q is
squared Uniform on [0, 1] and the random variable X has a squared Uniform distribution on
[0, 1]. Left: For n = 500 observations, the mean of the MX,n samples is 0.333618 and the
sample variance is equal to 9.88741 × 10−4. Right: For n = 1000 observations, the mean of
the MX,n samples is 0.333893 and the sample variance is equal to 4.70584× 10−4.

For n = 500 observations, S2
X,500 approximately has a N (8.89× 10−2, 3.55× 10−4) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (8.89× 10−2, 1.78× 10−4) distribution.

Figure 3.4: Histogram of 500 simulations of the estimator S2
X,n, where the density q is squared

Uniform on [0, 1] and the random variable X has a squared Uniform distribution on [0, 1].
Left: For n = 500 observations, the mean of the S2

X,n samples is 8.89655 × 10−2 and the
sample variance is equal to 3.55967 × 10−4. Right: For n = 1000 observations, the mean of
the S2

X,n samples is 8.80317× 10−2 and the sample variance is equal to 1.79164× 10−4.

Simulations of the estimator S2
X,n gave us values, which confirm our Theorem 3.1.2.

iii) The density q of the observation times Ti is squared Uniform on [0, 1] and the random
variable X has a square root Uniform distribution on [0, 1].

Now we will check if the result holds our Theorem 3.1.1, where MX,n has an AN
(
µ,

σ2
qm

n

)
distribution. When X has a square root Uniform distribution on [0, 1], then µ = 2

3
= 0.67
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Figure 3.5: Histogram of 500 simulations of the estimator MX,n, where the density q is
squared Uniform on [0, 1] and the random variable X has a square root Uniform distribution
on [0, 1]. Left: For n = 500 observations, the mean of the MX,n samples is 0.667043 and the
sample variance is equal to 1.33208 × 10−3. Right: For n = 1000 observations, the mean of
the MX,n samples is 0.666879 and the sample variance is equal to 6.49092× 10−4.

Figure 3.6: Histogram of 500 simulations of the estimator S2
X,n, where the density q is squared

Uniform on [0, 1] and the random variable X has a square root Uniform distribution on [0, 1].
Left: For n = 500 observations, the mean of the S2

X,n samples is 5.30812 × 10−2 and the
sample variance is equal to 9.43035 × 10−4. Right: For n = 1000 observations, the mean of
the S2

X,n samples is 5.44715× 10−2 and the sample variance is equal to 4.63484× 10−4.

23



and variance σ2 = 1
18

= 5.56 × 10−2, and we can write in general, that MX,n has an
AN (0.67, 0.68/n) distribution.

For n = 500 observations, MX,500 approximately has a N (0.67, 1.37× 10−3) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.67, 6.83× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also the Theorem 3.1.2, where S2
X,n has anAN

(
σ2,

σ2
qs

n

)
distribution. When

X has a square root Uniform distribution on [0, 1], then we can write in general that
S2
X,n has an AN (5.56× 10−2, 0.46/n) distribution.

For n = 500 observations, S2
X,500 approximately has a N (5.56× 10−2, 9.24× 10−4) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (5.56× 10−2, 4.62× 10−4) distribution.
Simulations of the estimator S2

X,n gave us values, which confirm our Theorem 3.1.2.

iv) The density q of the observation times Ti is squared Uniform on [0, 1] and the random
variable X has a Beta distribution with scale parameters α = 5 and β = 2.

Figure 3.7: Histogram of 500 simulations of the estimatorMX,n, where the density q is squared
Uniform on [0, 1] and the random variable X has a Beta distribution with scale parameters
α = 5 and β = 2. Left: For n = 500 observations, the mean of the MX,n samples is 0.715547
and the sample variance is equal to 1.18261 × 10−3. Right: For n = 1000 observations, the
mean of the MX,n samples is 0.71441 and the sample variance is equal to 6.30535× 10−4.

Now we will check if the result holds our Theorem 3.1.1, where MX,n has an AN
(
µ,

σ2
qm

n

)
distribution. When X has a Beta distribution with scale parameters α = 5 and β = 2,
then µ = 5

7
= 0.71 and variance σ2 = 5

196
= 2.55 × 10−2, and we can write in general,

that MX,n has an AN (0.71, 0.67/n) distribution.

For n = 500 observations, MX,500 approximately has a N (0.71, 1.34× 10−3) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.71, 6.70× 10−4)
distribution.
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Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also the Theorem 3.1.2, where S2
X,n has anAN

(
σ2,

σ2
qs

n

)
distribution. When

X has a Beta distribution with scale parameters α = 5 and β = 2, then we can write in
general that S2

X,n has an AN (2.55× 10−2, 0.56/n) distribution.

For n = 500 observations, S2
X,500 approximately has a N (2.55× 10−2, 1.12× 10−3) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (2.55× 10−2, 5.61× 10−4) distribution.

Figure 3.8: Histogram of 500 simulations of the estimator S2
X,n, where the density q is squared

Uniform on [0, 1] and the random variable X has a Beta distribution with scale parameters
α = 5 and β = 2. Left: For n = 500 observations, the mean of the S2

X,n samples is
2.3026 × 10−2 and the sample variance is equal to 1.02878 × 10−3. Right: For n = 1000
observations, the mean of the S2

X,n samples is 2.41975 × 10−2 and the sample variance is
equal to 5.56178× 10−4.

Simulations of the estimator S2
X,n gave us values, which confirm our Theorem 3.1.2.

v) The density q of the observation times Ti is Beta distributed with scale parameters α = 1
2

and β = 1
2
, and the random variable X has a Uniform distribution on [0, 1].

Now we will check if the result holds our Theorem 3.1.1, where MX,n has an AN
(
µ,

σ2
qm

n

)
distribution. When X has a Uniform distribution on [0, 1], then µ = 1

2
and variance

σ2 = 1
12

= 8.33× 10−2, and we can write in general, that MX,n has an AN (0.5, 0.47/n)
distribution.

For n = 500 observations, MX,500 approximately has a N (0.5, 9.30× 10−4) distribu-
tion and for n = 1000 observations, MX,1000 approximately has a N (0.5, 4.65× 10−4)
distribution.

Simulations of the estimator MX,n gave us values, which are close to the real values. The
simulation results support the theorem.

Let us check also the Theorem 3.1.2, where S2
X,n has anAN

(
σ2,

σ2
qs

n

)
distribution. When

X has a Uniform distribution on [0, 1], then we can write in general, that S2
X,n has an

AN (8.33× 10−2, 0.16/n) distribution.
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Figure 3.9: Histogram of 500 simulations of the estimator MX,n, where the density q is
Beta distributed with scale parameters α = 1

2
and β = 1

2
, and the random variable X has

a Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean of the MX,n

samples is 0.499842 and the sample variance is equal to 9.81582× 10−4. Right: For n = 1000
observations, the mean of the MX,n samples is 0.498813 and the sample variance is equal to
4.3118× 10−4.

Figure 3.10: Histogram of 500 simulations of the estimator S2
X,n, where the density q is Beta

distributed with scale parameters α = 1
2

and β = 1
2
, and the random variable X has a

Uniform distribution on [0, 1]. Left: For n = 500 observations, the mean of the S2
X,n samples

is 8.14184 × 10−2 and the sample variance is equal to 3.07231 × 10−4. Right: For n = 1000
observations, the mean of the S2

X,n samples is 8.28168×10−2 and the sample variance is equal
to 1.62075× 10−4.
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For n = 500 observations, S2
X,500 approximately has a N (8.33× 10−2, 3.27× 10−4) dis-

tribution and for n = 1000 observations, S2
X,1000 approximately has a

N (8.33× 10−2, 1.63× 10−4) distribution.
Simulations of the estimator S2

X,n gave us values, which confirm our Theorem 3.1.2.

3.3 Estimators for mean and variance with unknown

distribution of observation times

In this section we will discuss the case where the density q is unknown. Consider estimation of
the density function q from the observations T1, . . . , Tn. Several generally applicable methods
have been proposed for this problem, but let us review the direct kernel density estimation.
The kernel density estimator with kernel function w and bandwidth h > 0, is defined by

qnh(t) =
1

n

n∑
j=1

1

h
w

(
t− Tj
h

)
. (3.19)

In the definition of qnh(.), the kernel w and the bandwidth h enter as unspecified parameters.
By making the kernel fixed the bandwidth is usually chosen on the basis of the data. The
choice of the bandwidth plays a crucial role in the performance of the estimator. Choice of
a small bandwidth h leads to an estimator with small bias and large variance what produces
noisy estimates whereas too large h leads to highly biased estimator producing flat estimates
that do not reveal some interesting characteristics of q. Because of its relevancy, the selection
of the bandwidth h is one of the mostly studied topics in kernel density estimation and several
approaches have been proposed for choosing h. Wand and Jones (1995) made a good overview
of the variety of methods that were proposed and appeared since the late seventies.

In this paper we will briefly review direct plug-in method, one of the most successful
among all current methods. The core idea of the direct plug-in method dates back to
Woodroofe(1970), later on modified by Nadaraya(1974) and Deheuvels and Hominal(1980).
Direct plug-in is a very simple data dependent method for selection of the bandwidth. It
is based on asymptotic approximations for the bandwidth h0 that minimizes the mean inte-
grated square error MISE(q;n, h) = E(ISE(q;n, h)) = E ‖qn − q‖2

2, where ‖.‖ denotes the
L2 distance:

h0 = arg min
h>0

MISE(q;n, h). (3.20)

Chacón(2007) proved the existance and described asymptotic behaviour of h0. Under some
moment and regularity conditions on w and q, respectively, two asymptotic approximations
to the optimal bandwidth h0 are given by

h1 = C1,wθ
−1/5
2 n−1/5 and h2 = C1,wθ

−1/5
2 n−1/5 + C2,wθ

−8/5
2 θ3n

−3/5, (3.21)

where θr denotes the quadratic functional

θr =

∫
q(r)(t)2dt =

∥∥q(r)
∥∥2

2
, (3.22)
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with r = 0, 1, . . . , q(r) the rth derivative of q, and

C1,w = ω
1/5
0 ω

−2/5
2 , C2,w =

1

20
ω

3/5
0 ω

−11/5
2 ω4, (3.23)

with ω0 =
∫
w(u)2du, ωj =

∫
ujw(u)du for j = 1, 2, . . . , see Tenreiro(2010). These asymptotic

approximations to h0 reduce the problem of estimating the optimal bandwidth to that of
estimating the quadratic functionals θ2 and θ3. This is the idea of the direct plug-in approach
to bandwidth selection.

Next we show the mean and the variance of such a kernel density estimate of q. For
smooth q, essentially twice continuously differentiable, and symmetric w with integral one,
we have

E qnh(t) =

∫ ∞
−∞

1

h
w

(
t− u
h

)
q(u)du = q(t) +

1

2
h2q′′(t)

∫
u2w(u)du+ o(h2),

Var qnh(t) =
1

nh
q(t)

∫
w2(u)du+ o

(
1

nh

)
,

as n→∞, h→ 0 and nh→∞. For proofs and more on direct kernel density estimators see
for instance Prakasa Rao (1983), Silverman (1986) and Wand and Jones (1995).

Kernel density estimate of q can be computed in several mathematical and statistical
programs like Wolfram Mathematica, R or Matlab, where this function is already predefined
or can be easilly added by appropriate packages.

To show the estimators of the mean and the variance first we need to define the function
q̄nh by

q̄nh(t) = qnh(t) + qnh(t− 1). (3.24)

The principle of deriving estimators for the mean and the variance is exactly the same as
for known distribution of observation times. We just replace the density q(.) by the kernel
denstiy estimate qnh(.) in our estimators (q̄ by q̄nh respectively). This gives the following
estimators

MX,n =
1

n

n∑
i=1

Vi
q̄nh(Vi)

− 1

2
, (3.25)

S2
X,n =

1

n

n∑
i=1

(
Vi√
q̄nh(Vi)

)2

−

(
1

n

n∑
i=1

Vi
q̄nh(Vi)

)2

− 1

12
. (3.26)

Because of lack of time we have not been able to perform simulations of these estimators.
The limit theory seems complicated.
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Chapter 4

Nonparametric maximum likelihood
estimation (NPMLE) in interval
censoring case 1.

4.1 One-step procedure for calculation NPMLE

In this section we will review the procedure for calculation of the NPMLE, F̂n, of the dis-
tribution function F . Most of the theory presented here is from Groeneboom and Wellner
(1992). They showed two different characterizations of the NPMLE, one in terms of the
so-called self-consistency equations and the other using concepts from the theory of isotonic
regression. Let (X1, T1), . . . , (Xn, Tn) be a sample of random variables in R2

+, where Xi and
Ti are independent (non-negative) random variables with distribution function F and Q,
respectively. The setting is as in Chapter 3. The log likelihood for F is given by the function

F 7→
n∑
i=1

{∆i logF (Ti) + (1−∆i) log(1− F (Ti))} , (4.1)

where F is a right-continous distribution function.
First we study the likelihood equations. The log likelihood, devided by n, can be written

in the following way:

ψ(F )
def
=

∫
R2

+

{
1{x≤t} logF (t) + 1{x>t} log(1− F (t))

}
dPn(x, t), (4.2)

where Pn is the empirical probability measure of the pairs (Xi, Ti), 1 ≤ i ≤ n. The nonpara-
metric maximum likelihood estimator F̂n of F is a (right-continous) distribution function F ,
maximizing (4.2).

Note that only the values of F̂n at the observation points matter for the maximization
problem. The NPMLE F̂n is a distribution function, which is piecewise constant, and only
has jumps at the observation times Ti. It is possible that the likelihood function will be
maximized by a function F such that F (t) < 1, at each observation time t. If this happens,
we won’t specify the location of the remaining mass to the right of the biggest observation
time.
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A theoretically useful characterization of the NPMLE in terms of the so-called self-
consistency equations can be found in Groeneboom and Wellner(1992). We will give a differ-
ent characterization of the NPMLE, using concepts from the theory of isotonic regression. To
describe this method we need to set-up some notation. Suppose T(i) is the ith order statistic
of T1, . . . , Tn, and ∆i is the corresponding indicator, i.e., if Tj = T(i), then ∆(i) = 1{Xj≤Tj}.
The NPMLE corresponds to a vector ỹ = (y1, . . . , yn) ∈ Rn, which maximizes the function

φ(x̃) =
n∑
i=1

{
∆(i) log xi + (1−∆(i)) log(1− xi)

}
, x̃ ∈ Rn, (4.3)

under the side condition
0 ≤ x1 ≤ · · · ≤ xn ≤ 1. (4.4)

When we look at the equation (4.3), it is obvious that, when ∆(i) = 0, i = 1, . . . , k, also
y1 = · · · = yk should be equal to 0 in order to maximize (4.3). This makes the second therm
in the sum (4.3) as big as possible and puts no additional constraints on the values of yi, for
i > k. Similarly, if ∆(i) = 1, j ≤ i ≤ n, then yj = · · · = yn should be equal to 1 in order to
maximize (4.3).

Without loss of generality we may assume that ∆(i) = 1 and ∆(n) = 0 for this maximiza-
tion problem. According to this assumption we can assume as well without loss of generality
that y1 > 0 and yn < 1, if ỹ maximizes (4.3), otherwise we would have φ(ỹ) = −∞.

The following proposition give us necessary and sufficient conditions for ỹ to be a vector
maximizing (4.3), under the constraint (4.4) and the just mentioned restrictions.

Proposition 4.1.1. Let ∆(1) = 1 and ∆(n) = 0, and let ỹ = (y1, . . . , yn) satisfy (4.4), with
xi replaced by yi. Then ỹ maximizes (4.3) if and only if∑

j≥i

{
∆(j)

yj
−

1−∆(j)

1− yj

}
≤ 0, i = 1, . . . , n, (4.5)

and
n∑
i=1

{
∆(i)

yi
−

1−∆(i)

1− yi

}
yi = 0. (4.6)

Moreover, ỹ is uniquely determined by (4.5) and (4.6).

The proof of Proposition 4.1.1 can be found in Groeneboom and Wellner(1992).
Groeneboom and Wellner presented two possible solutions of this maximization problem

of (4.3). One is so-called ”max-min formula”, where ym, 1 ≤ m ≤ n, is given by

ym = max
i≤m

min
k≥m

∑
i≤j≤k ∆(j)

k − i+ 1
,

and the other one can be found graphically by plotting the points
(
i,
∑

j≤i ∆(j)

)
in the plane,

and drawing the (greatest) convex minorant of these points on the interval [0, n].
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Proposition 4.1.2. Let function H∗ : [0, n] → R be the convex minorant of the points(
i,
∑

j≤i ∆(j)

)
on [0, n], i.e.,

H∗(t) = sup

{
H(t) : H(i) ≤

∑
j≤i

∆(j), for each i, 0 ≤ i ≤ n,H(0) = 0, andH is convex

}
,

(4.7)

for t ∈ [0, n]. Moreover, let yi be the left derivative of H∗ at i. Then ỹ = (y1, . . . , yn) is the
unique vector maximizing (4.3) under the constraint (4.4).

The proof of Proposition 4.1.2 can be found in Groeneboom and Wellner(1992).

Remark 4.1.1. Note that in Proposition 4.1.2 (in contrast to Proposition 4.1.1) no restric-
tion is made on ∆(1) and ∆(n).

From the Proposition 4.1.2 it follows that i 7→ yi is the isotonic regression of the function
i 7→ ∆(i) in the class of all isotonic functions i 7→ xi, with respect to the simple ordering
x1 ≤ · · · ≤ xn or in other words, the function i 7→ yi minimizes

n∑
i=1

{
∆(i) − xi

}2
,

in the class of isotonic functions i 7→ xi. For further details on the connection between the
derivative of the convex minorant and the solution of the isotonic regression see e.g., Theorem
1.2.1 of Robertson et al. (1988).

So we get that the NPMLE, i.e. F̂n, of F , which maximizes (4.1), is given by

F̂n(T(i)) = yi,

where ỹ is the isotonic regression of the function i 7→ ∆(i).

Theorem 4.1.1. Let t0 be such that 0 < F (t0), Q(t0) < 1, and let F and Q be differentiable
at t0, with strictly positive derivatives f(t0) and q(t0), respectively. Furthermore, let F̂n be
the NPMLE of F . Then we have, as n→∞,

n1/3

{
F̂n(t0)− F (t0)

}
{

1
2
F (t0)(1− F (t0))f(t0)/q(t0)

}1/3

D→ 2U,

where
D→ denotes convergence in distribution, and where U is the last time where standard

two-sided Brownian motion minus the parabola y(t) = t2 reaches its maximum.

The previous theorem describes the asymptotic distribution of F̂n(t0), for fixed t0 ∈ R,
where n1/3 is the obtained convergence rate. A straightforward proof of the previous theorem
is outlined in Groeneboom and Wellner (1992) Chapter 5. in exercises 1 to 4. Another proof
is given in Groeneboom (1987).

Example 4.1.1. Here we will show some examples of convex minorant and its derivative
(NPMLE), for different distributions of random variables X and T .
Note that in Figure 4.4 the distribution function of the random variable X is

√
x and the

variance of the estimator grows as x goes to 0.
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Figure 4.1: The random variables X and T are both from the Uniform distribution on [0, 1],
for n = 1000 observations. Left: Convex minorant. Right: Derivative of the convex minorant,
the NPMLE, i.e. F̂n.

Figure 4.2: The random variable X is from Beta distribution with scale parameters α = 5
and β = 2, and the random variable T is from the Uniform distribution on [0, 1], for n =
1000 observations. Left: Convex minorant. Right: Derivative of the convex minorant, the
NPMLE, i.e. F̂n.
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Figure 4.3: The random variable X is from the squared root Uniform distribution on [0, 1],
and the random variable T is from the squared Uniform distribution on [0, 1], for n =
1000 observations. Left: Convex minorant. Right: Derivative of the convex minorant, the
NPMLE, i.e. F̂n.

Figure 4.4: The random variable X is from the squared Uniform distribution on [0, 1], and
the random variable T is from the squared root Uniform distribution on [0, 1], for n =
1000 observations. Left: Convex minorant. Right: Derivative of the convex minorant, the
NPMLE, i.e. F̂n.
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4.2 Convergence properties of the NPMLE µ(F̂n) of the

mean µ(F )

From the general theory on differentiable functionals (see e.g., van der Vaart (1991)) we know
that, efficient estimators of smooth functionals like the mean

µF =

∫
tdF (t) (4.8)

should have
√
n-behavior. We are using the same set-up as in previous sections. Groeneboom

and Wellner(1992) assume that the support of PF is a bounded interval I = [0,M ], and that
F and Q have densities f and q, respectively, satisfying

q(t) ≥ δ > 0, and f(t) ≥ δ > 0, if t ∈ I,

for some δ > 0. They assume also that q has a bounded derivative on I. An example of this
situation could be the case where F and Q are both the uniform distribution function on
[0, 1]. They claim that it is certainly possible to prove the following theorem under weaker
conditions, but at the cost of an increasing number of technicalities.

Theorem 4.2.1. Let F and Q satisfy the conditions, listed above, and let F̂n be the NPMLE
of F . Then

√
n

∫
I

(F̂n(t)− F (t))dt
D→ Z, (4.9)

where Z has a normal distribution with mean zero and variance

σ2
F =

∫
F (t)(1− F (t))

q(t)
dt. (4.10)

When µ(F̂n) is the NPMLE of the mean µ(F ), it follows from the previous theorem that

√
n(µ(F̂n)− µ(F ))

D→ N

(
0,

∫
F (t) (1− F (t))

q(t)
dt

)
, as n→∞ (4.11)

with q(t) the density of the distribution of the observation times. Huang and Wellner (1995)
prove a similar result for a wider class of functionals. The proof of Theorem 4.2.1 in Groene-
boom (1992) uses the convergence rate of the supremum distance between the NPMLE and
the underlying distribution function, which is replaced by a simpler argument based on L2-
distance properties in Huang and Wellner’s (1995) proof.

Geskus and Groeneboom (1996) also showed that µ(F̂n) is an asymptotically efficient esti-

mator of µ(F ). For a similar estimator σ2(F̂n) of σ2(F ) =
∫ (

t−
∫
sdF (s)

)2
dF (t), however,

no limit theory exists.
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Chapter 5

Uniform Deconvolution vs. NPMLE
method in Interval censoring case 1.

In this Chapter we will focus on comparison of the performance of our estimators of Chapter
3. to the NPMLE method in the interval censoring problem for different numbers of obser-
vations, and for different distributions of the random variables X and T . We will also show
the results of simulations of the estimators for different number of observations and for dif-
ferent distributions. It is most unlikely that different methods will agree exactly, for all kind
of distributions. Our method is always worse asymptotically or asymptotically equivalent,
because µ(F̂n) is an asymptotically efficient estimator. For σ2(F̂n) this is not clear.

The condition
∫ 1

0
1
q(v)

<∞ in our Theorem 3.1.1 and Theorem 3.1.2 limits us in possible
densities for q of the observation times for which we can apply our theorems. Note that when
q has an α Uniform density on [0, 1], i.e. the distribution of the random variable T is that
of Uα, where U is uniformly distributed on [0, 1], then the parameter α should satisfy the
following condition

α >
1

2
. (5.1)

When the density q is Beta(α, β), the parameters α and β should satisfy the following con-
ditions

0 < α < 2, 0 < β < 2. (5.2)

Since there is no theory for the limit distribution of the variance estimator based on the
NPMLE of F , we will restrict ourselves only to the comparison of the variances of the
estimators of µ.

5.1 Comparison of the variances of the estimators of µ

To check how the two methods we used perform for different distributions, we will compare
the variances of the estimators of µ for both methods. Theorem 3.1.1 and Theorem 4.2.1
describe the variances of such estimators. So to check if the theorems are exactly the same,
we have to check whether the difference between the variances is equal to 0, so whether∫ 2

0

v2

q̄(v)
(F (v)− F (v − 1))dv − µ2

V −
∫ 1

0

F (v)(1− F (v))

q(v)
dv = 0. (5.3)
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Figure 5.1: Variances of the mean estimate for both methods for α ∈ [0, 10], when the random
variable X has an α Uniform distribution on [0, 1] and T has a β Uniform distribution on
[0, 1]. The dashed curve is Uniform deconvolution method, the dotted curve is the NPMLE
method and the red curve is the difference between these two methods. Left: β = 1. Right:
β = 2.

First we will consider that F is α Uniform distribution on [0, 1], i.e. Uα, and Q is β Uniform
distribution on [0, 1], i.e. Uβ, where α > 0 and β > 1

2
. From equation (5.3) we have∫ 1

0

(
v2v

1
αβv

β−1
β + (v + 1)2(1− v

1
α )βv

β−1
β

)
dv −

(
1

1 + α
+

1

2

)2

−
∫ 1

0

v
1
α (1− v

1
α )βv

β−1
β dv

= −
(

1

2
+

1

1 + α

)2

− αβ3

(β + α(2β − 1)) (2β + α(2β − 1))

+
β2 (α2(1− 5β + 6β2)2 + 2β2(2− 12β + 17β2) + αβ(−5 + 41β − 110β2 + 98β3))

(−1 + 9β − 26β2 + 24β3) (β + α(−1 + 2β)) (β + α(−1 + 3β))
.

(5.4)

Note that for α = β = 1, i.e. both F and Q are Un[0, 1] the limit variances are equal.
Now we will consider that F is α Uniform distribution on [0, 1] for α > 0 and Q is Beta

distributed with parameters a = 1/2 and b = 1/2. From the equation (5.3) we have∫ 1

0

(
v2v

1
απ
√
v
√

1− v + (v + 1)2
(

1− v
1
α

)
π
√
v
√

1− v
)
dv −

(
1

1 + α
+

1

2

)2

−
∫ 1

0

v
1
α

(
1− v

1
α

)
π
√
v
√

1− vdv

=
37

128
π2 −

(
1

2
+

1

1 + α

)2

−
3π

3
2 (1 + 2α)Γ

(
3
2

+ 1
α

)
2αΓ

(
4 + 1

α

) − 1

2
π

3
2

(
Γ
(

3
2

+ 1
α

)
Γ
(
3 + 1

α

) − Γ
(

3
2

+ 2
α

)
Γ
(
3 + 2

α

)) .
(5.5)

Next we consider an F of the α Uniform distribution on [0, 1] for α > 0 and Q of the Beta

36



Figure 5.2: Variances of the mean estimate for both methods for α ∈ [0, 10], when the
random variable X has an α Uniform distribution on [0, 1]. The dashed curve is Uniform
deconvolution method, the dotted curve is the NPMLE method and the red curve is the
difference between these two methods. Left: q is Beta distributed with parameters a = 1/2
and b = 1/2. Right: q is Beta distributed with parameters a = 3/2 and b = 3/2.

distribution with parameters a = 3/2 and b = 3/2. From equation (5.3) we have

∫ 1

0

 v2v
1
απ

8
√
v
√

1− v
+

(v + 1)2
(

1− v 1
α

)
π

8
√
v
√

1− v

 dv −
(

1

1 + α
+

1

2

)2

−
∫ 1

0

v
1
α

(
1− v 1

α

)
π

8
√
v
√

1− v
dv

=
19

64
π2 −

(
1

2
+

1

1 + α

)2

−
π

3
2 (3 + 2α)Γ

(
1
2

+ 1
α

)
8αΓ

(
2 + 1

α

) − 1

8
π

3
2

(
Γ
(

1
2

+ 1
α

)
Γ
(
1 + 1

α

) − Γ
(

1
2

+ 2
α

)
Γ
(

2+α
α

) ) .
(5.6)

The third example is an F of the α Uniform distribution on [0, 1] for α > 0 and Q of the
Beta distribution with parameters a = 5/3 and b = 7/6. From equation (5.3) we have
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Figure 5.3: Variances of the mean estimate for both methods for α ∈ [0, 20]. The dashed
curve is Uniform deconvolution method, the dotted curve is the NPMLE method and the red
curve is the difference between these two methods. The density q is Beta distributed with
parameters a = 5/3 and b = 7/6, and F is an α Uniform distribution on [0, 1].

5.2 Comparison of the simulations of the estimators of

µ and σ2

For the special case, when both random variables X and T have a Uniform distribution on
[0, 1], the estimators derived from the Uniform deconvolution model for interval censoring
case 1. work better for a small number of observations than the NPMLE method, and for
larger numbers of observations the resulting values of the estimators in both methods are
close to the theoretical values, see Table 5.1 and Figure 5.4-5.5. As we can see in Figure 5.1
(left graph) the variances of the mean estimator should be exactly the same, which is also
confirmed in the Table 5.1 of our simulations. Small differences in the simulation results are
caused due to different random number generations.
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”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.494729 0.485422
50 nVar µ̂ 0.164099 0.181879

E σ̂2 0.0812273 0.059999
nVar σ̂2 0.0389754 0.0262945

E µ̂ 0.497745 0.494727
100 nVar µ̂ 0.161642 0.169427

E σ̂2 0.0830499 0.0687081
nVar σ̂2 0.0393127 0.0280347

E µ̂ 0.499946 0.498992
500 nVar µ̂ 0.163922 0.182366

E σ̂2 0.0825502 0.0775889
nVar σ̂2 0.0368032 0.0329724

E µ̂ 0.49936 0.499384
1000 nVar µ̂ 0.16819 0.190955

E σ̂2 0.0824645 0.0799377
nVar σ̂2 0.0394148 0.0337447

Table 5.1: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variables X and T are both from the
Uniform distribution on [0, 1]. The theoretical value of nVar µ̂ for both methods is equal to
0.17 and the theoretical value of nVar σ̂2 for the uniform deconvolution method is equal to
0.04.

Figure 5.4: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variables X and T are from the Uniform distribution on
[0, 1]. Left: The Uniform deconvolution method in the interval censoring case 1. Right: The
NPMLE method in the interval censoring case 1.
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Figure 5.5: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variables X and T are from the Uniform distribution on
[0, 1]. Left: The Uniform deconvolution method in the interval censoring case 1. Right: The
NPMLE method in the interval censoring case 1.

”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.666424 0.607416
50 nVar µ̂ 0.667922 0.473418

E σ̂2 0.0387666 0.0352293
nVar σ̂2 0.476514 0.0177889

E µ̂ 0.665177 0.647004
100 nVar µ̂ 0.697143 0.289355

E σ̂2 0.0483338 0.042259
nVar σ̂2 0.444199 0.0219097

E µ̂ 0.664324 0.66124
500 nVar µ̂ 0.687873 0.217696

E σ̂2 0.0571431 0.0505707
nVar σ̂2 0.457352 0.0278321

E µ̂ 0.666047 0.662532
1000 nVar µ̂ 0.6716 0.233164

E σ̂2 0.0543321 0.0521733
nVar σ̂2 0.48904 0.0271602

Table 5.2: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variable X has a square root Uniform
distribution on [0, 1] and T is from the squared Uniform distribution on [0, 1]. The theoretical
value of nVar µ̂ for the uniform deconvolution method is equal to 0.68 and for the NPMLE
method is equal to 0.21. The theoretical value of nVar σ̂2 for the uniform deconvolution
method is equal to 0.46.
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Figure 5.6: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variable X has a square root Uniform distribution on [0, 1],
and T is from the squared Uniform distribution on [0, 1]. Left: The Uniform deconvolution
method in the interval censoring case 1. Right: The NPMLE method in the interval censoring
case 1.

Figure 5.7: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variable X has a square root Uniform distribution on [0, 1],
and T is from the squared Uniform distribution on [0, 1]. Left: The Uniform deconvolution
method in the interval censoring case 1. Right: The NPMLE method in the interval censoring
case 1.
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”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.327372 0.33308
50 nVar µ̂ 0.487122 0.197324

E σ̂2 0.0797685 0.064273
nVar σ̂2 0.229728 0.0307087

E µ̂ 0.326811 0.337766
100 nVar µ̂ 0.593986 0.216281

E σ̂2 0.0830141 0.0708243
nVar σ̂2 0.282814 0.0336281

E µ̂ 0.331527 0.338828
500 nVar µ̂ 0.596458 0.255957

E σ̂2 0.0879949 0.0806184
nVar σ̂2 0.230275 0.0403909

E µ̂ 0.335192 0.338021
1000 nVar µ̂ 0.54687 0.217025

E σ̂2 0.087535 0.0832436
nVar σ̂2 0.214267 0.0416525

Table 5.3: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variable X has a squared Uniform
distribution on [0, 1] and T has a Beta distribution with parameters a = 5/3 and b = 7/6.
The theoretical value of nVar µ̂ for the uniform deconvolution method is equal to 0.70 and
for the NPMLE method is equal to 0.23. The theoretical value of nVar σ̂2 for the uniform
deconvolution method is equal to 0.25.

Figure 5.8: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variable X has a squared Uniform distribution on [0, 1],
and T has a Beta distribution with parameters a = 5/3 and b = 7/6. Left: The Uniform
deconvolution method in the interval censoring case 1. Right: The NPMLE method in the
interval censoring case 1.
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Figure 5.9: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variable X has a squared Uniform distribution on [0, 1],
and T has a Beta distribution with parameters a = 5/3 and b = 7/6. Left: The Uniform
deconvolution method in the interval censoring case 1. Right: The NPMLE method in the
interval censoring case 1.

”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.0611257 0.069375
50 nVar µ̂ 0.190362 0.128732

E σ̂2 0.0238639 0.0185147
nVar σ̂2 0.0432067 0.0115713

E µ̂ 0.058485 0.0703596
100 nVar µ̂ 0.133171 0.126783

E σ̂2 0.0263796 0.0209462
nVar σ̂2 0.0205877 0.0133858

E µ̂ 0.0625968 0.0685972
500 nVar µ̂ 0.1863 0.13714

E σ̂2 0.0279369 0.0249703
nVar σ̂2 0.0211424 0.0151118

E µ̂ 0.0608505 0.0673941
1000 nVar µ̂ 0.159216 0.147629

E σ̂2 0.0279049 0.0258414
nVar σ̂2 0.0218457 0.0188084

Table 5.4: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variable X has a Uniform distribution
on [0, 1] to the power 15, i.e. U15 and T has a Beta distribution with parameters a = 5/3,
and b = 7/6. The theoretical value of nVar µ̂ for the uniform deconvolution method is equal
to 0.25 and for the NPMLE method is equal to 0.18. The theoretical value of nVar σ̂2 for
the uniform deconvolution method is equal to 0.02.
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Figure 5.10: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variable X has a Uniform distribution to the power 15, i.e.
U15, on [0, 1] and T has a Beta distribution with parameters a = 5/3, and b = 7/6. Left:
The Uniform deconvolution method in the interval censoring case 1. Right: The NPMLE
method in the interval censoring case 1.

Figure 5.11: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variable X has a Uniform distribution to the power 15, i.e.
U15, on [0, 1] and T has a Beta distribution with parameters a = 5/3, and b = 7/6. Left:
The Uniform deconvolution method in the interval censoring case 1. Right: The NPMLE
method in the interval censoring case 1.
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”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.329078 0.313078
50 nVar µ̂ 0.355461 0.226959

E σ̂2 0.0854564 0.0648559
nVar σ̂2 0.110381 0.0369783

E µ̂ 0.331934 0.324128
100 nVar µ̂ 0.360844 0.224074

E σ̂2 0.086389 0.0747777
nVar σ̂2 0.108557 0.039271

E µ̂ 0.330725 0.329716
500 nVar µ̂ 0.332566 0.214185

E σ̂2 0.0884206 0.0841244
nVar σ̂2 0.10038 0.0436377

E µ̂ 0.333427 0.332846
1000 nVar µ̂ 0.344408 0.220596

E σ̂2 0.0885696 0.0861581
nVar σ̂2 0.109132 0.0447196

Table 5.5: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variable X has a squared Uniform
distribution on [0, 1] and T has a Beta distribution with parameters a = 1/2, and b = 1/2.
The theoretical value of nVar µ̂ for the uniform deconvolution method is equal to 0.36 and
for the NPMLE method is equal to 0.22. The theoretical value of nVar σ̂2 for the uniform
deconvolution method is equal to 0.10.

Figure 5.12: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variable X has a squared Uniform distribution on [0, 1] and
T has a Beta distribution with parameters a = 1/2, and b = 1/2. Left: The Uniform
deconvolution method in the interval censoring case 1. Right: The NPMLE method in the
interval censoring case 1.
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Figure 5.13: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variable X has a squared Uniform distribution on [0, 1] and
T has a Beta distribution with scale parameters a = 1/2, and b = 1/2. Left: The Uniform
deconvolution method in the interval censoring case 1. Right: The NPMLE method in the
interval censoring case 1.

”n” numbers of Estimates Uniform deconvolution NPMLE method
observations method

E µ̂ 0.24892 0.245317
50 nVar µ̂ 0.370779 0.144096

E σ̂2 0.0749734 0.0560885
nVar σ̂2 0.151972 0.0216635

E µ̂ 0.253026 0.251191
100 nVar µ̂ 0.38705 0.147398

E σ̂2 0.0761187 0.0624301
nVar σ̂2 0.1108 0.0300449

E µ̂ 0.249856 0.252665
500 nVar µ̂ 0.44376 0.170586

E σ̂2 0.0788549 0.0729135
nVar σ̂2 0.128771 0.0325075

E µ̂ 0.248686 0.251408
1000 nVar µ̂ 0.403786 0.165569

E σ̂2 0.0807041 0.0747131
nVar σ̂2 0.102595 0.0376444

Table 5.6: Mean and variance of 500 simulations of the estimators of the mean µ and variance
σ2 for different numbers of observations. The random variable X has a Uniform distribution
to the power 3, i.e. U3, on [0, 1] and T has a Beta distribution with parameters a = 3/2, and
b = 3/2. The theoretical value of nVar µ̂ for the uniform deconvolution method is equal to
0.39 and for the NPMLE method is equal to 0.17. The theoretical value of nVar σ̂2 for the
uniform deconvolution method is equal to 0.10.
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Figure 5.14: Histograms of 500 simulations of the estimator of the mean µ for n = 100
observations, where the random variable X has a Uniform distribution to the power 3, i.e.
U3, on [0, 1] and T has a Beta distribution with parameters a = 3/2, and b = 3/2. Left: The
Uniform deconvolution method in the interval censoring case 1. Right: The NPMLE method
in the interval censoring case 1.

Figure 5.15: Histograms of 500 simulations of the estimator of the variance σ2 for n = 100
observations, where the random variable X has a Uniform distribution to the power 3, i.e.
U3, on [0, 1] and T has a Beta distribution with parameters a = 3/2 and b = 3/2. Left: The
Uniform deconvolution method in the interval censoring case 1. Right: The NPMLE method
in the interval censoring case 1.
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Chapter 6

Discussion and conclusions

In the preceding chapters we discussed two different approaches for the interval censoring case
1 problem, the uniform deconvolution method and the NPMLE method. In both methods
we described the estimators of the mean and the variance and their limit distributions. Then
we compared the simulation results of these estimators in order to present their behaviour
under some specific distributions of the random variables. By specific distributions we mean
distributions of the random variables, which satisfie the necessary condition involved in the
theorems about the limit distributions of the estimators of the mean and variance. We
expected that the estimators of the mean µ and variance σ2 in the uniform deconvolution
method will perform better than the NPMLE based estimators under some distributions of
the random variables X and T .

The uniform deconvolution method is based on the transformation of the data from the
uniform deconvolution model into interval censored data. The estimators of the mean and the
variance in the uniform deconvolution method are relatively simple, derived from estimators
of the moments of the random variables V = X + U in the uniform deconvolution model,
and based on the sample mean and sample variance.

The NPMLE method is based on estimating the distribution function F by nonparametric
maximum likelihood and then computing the mean and variance of this distribution.

Simulations of the estimators in the uniform deconvolution method show results which are
closer to the theoretical values of the mean µ and variance σ2 than the results of the NPMLE
based estimators for small samples. Considering small sample behaviour, the NPMLE of
distribution function is inaccurate and then also the mean and variance are far from the the-
oretical values. With increasing number of observations the NPMLE of distribution function
is more precise, i.e. the values of the sample mean and the sample variance are closer to the
theoretical values. What makes the uniform deconvolution method worse is the fact that the
asymptotic variances of the estimators of the mean µ and variance σ2 are larger than the
asymptotic variances of the estimators in the NPMLE method. This confirms the fact that
µ(F̂n) is an asymptotically efficient estimator of µ(F ). In the special case when both random
variables X and T are uniformly distributed on [0, 1], the estimators of the mean µ for both
methods reach the same results. Because no theory about the asymptotic variance behaviour
of the estimator of the variance σ2(F ) exists, we can only discuss about the efficiency of such
an estimator. In all the simulations we showed, the variance of the NPMLE based estimator
of the variance σ2 is always smaller than the variance in the uniform deconvolution method.
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This suggests that σ2(F̂n) could be an asymptotically efficient estimator of σ2(F ).
One possible way we could continue and improve the estimators of the mean µ and vari-

ance σ2 in the uniform deconvolution method is to use Le Cam’s one-step efficient estimator.
The procedure of constructing such an estimator is described in Le Cam(1986).
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