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Department: Mathematical Institute, Charles University
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Abstract: Modelling of cerebrospinal fluid flow is important for understanding its
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(expansion) disturbances through spinal cord and its surroundings. It is charac-
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Introduction

Cerebrospinal fluid flow is a problem solved by various authors, for example [11],
[1], [4]. Since measurment can be highly invasive procedure, it is important to
have methods for studying cerebrospinal fluid flow in the whole central nervous
system. One of the reasons for studying it is a disease known as syringomyelia
that is related to damage of spinal cord, it is characterized by fluid-filled cavities
in spinal cord called syrinxes that can affect nervous system. Although we know
what symptoms syringomyelia causes, there is still the question of its origin and
what causes its ultimate development.

One of the approach is considering pressure waves propagating through the
spinal cord because of, for example, cough related shocks[1]. There’s the question
of interfering waves or possible reflection from blockage or the end of the spinal
cord. These can contribute to the rise of high transmural pressure differences
that could possibly damage the spinal cord and lead to the creation of fluid-filled
cavity.

In this work, we will make some basic assumptions of the considered model,
derive governing equations and solve them numerically to observe the formation
of pressure differences almost twice as large as the initial pressure difference.
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1. Cerebrospinal fluid flow

1.1 Cerebrospinal fluid

Cerebrospinal fluid (liquor cerebrospinalis, CSF) is colourless bodily fluid that is
created primarily in choroid plexus (see 1.1). It is also produced by secretion on
the surface of the brain and maybe even ultrafiltration of plasma. Percentage of
extrachoroidal production is a subject of discussion and it is possible it can go
as high as 60% of the whole CSF production[10]. Its daily production is around
500ml.

Importance of CSF lies mainly in its protective function of central nervous
system (CNS). It occupies the subarachnoid space and also fill outs the space
around and inside brain and spinal cord. Therefore it acts as a cushion against
various shocks that could mechanically damage CNS. Another functions of CSF
varies from homeostatic function (it maintains suitable environment for CNS cells)
to information transfer (neurotransmitters and its metabolites can be transported
via CSF), so it’s an essential bodily fluid.

CSF have density of 1003 − 1008kg/m3[10] and approximately the same vis-
cosity as water. Unlike blood it contains minumum of proteins or cells. In fact,
higher counts of proteins or cells in CSF are a sign of infection or another problem.

The velocity of CSF is very small, in the order of mm/min. Since our main
goal would be to examine behaviour of pressure pulse entering the system and
pulse speed would be much bigger than normal flow velocities, we would consider
them to be initially equal to zero, thus examining propagation of pressure pulse
into undisturbed flow.

Figure 1.1: Brain and spinal cord[12]
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1.2 Syringomyelia

Syringomyelia is a serious disease characterized by the longitudinal cavities within
the spinal cord [1]. These cavities, called syrinxes, can be very large and damage
the spinal cord. That may cause variety of symptoms, for example loss of sensa-
tion and loss of ability to feel extremes of cold and hot in hands, muscle atrophies
in upper limbs, etc. It is comparatively rare with 8.4 cases per 100,000 in the
United States[1]. Majority of these are associated with Arnold-Chiari malforma-
tion, brain deformation consisting of a downward displacement of the cerebellar
tonsils. However, syringomyelia can also be aquired through some trauma, for
example car accident, or as a complication of a disease, e.g. an arachnoiditis
(disease caused by the inflammation of the arachnoid). Complicating factor in
determining the exact causes is that it takes long time to develop syringomyelia
so the symptoms are noticeable. Therefore we are interested if there exists mech-
anism that can cause formation of syrinxes in a long period of time. We will be
mainly interested in mechanism proposed by Berkouk[1] that considered cough
related pressure waves propagating in spinal cord.

We will investigate how transmural pressure difference behaves during its
propagation. If there would be point where the pressure difference rises, it can
be seen as potentially harmful for the spinal cord. If the spinal cord would be
damaged or penetrated, CSF flow could make fluid filled cavity, syrinx.

1.3 Anatomy of spinal cord

We will be interested mainly in CSF flow in and around spinal cord. It occupies
subarachnoidal space and central canal (1.2).

Central canal

Figure 1.2: Spine and spinal cord[13]

Sagital and transverse diameter of spinal cord and results of measurments
differ, for example [6],[4]. For our model, we will use results of Elliot[4] used in
his upgraded model based on Berkouk[1]. Those will be specified later.
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1.4 Mathematical representation

Our model will follow the work of Berkouk et al and their fluid-filled co-axial
elastic tubes model [1]. It comprises of outer rigid tube and inner elastic tube as
depicted in (1.3).

r

rigid tube

flexible tube

B

A
B

A

x

Figure 1.3: Co-axial tubes

There are two possible interpretations of this system. Space A denotes spinal
subarachnoid space between dura mater and pia mater, rigid tube denotes dura
mater (that is restricted by spinal canal) and either space B represents central
canal and flexible tube represents the spinal cord[1], or space B represents spinal
cord[4]. In this approach, the elastic tube is merely a boundary of spinal cord.
Elliot[4] argued that in this approach, it is possible to consider spinal cord as a
fluid like with approximately the same density as the CSF flowing in the spinal
subarachnoid space, since it is filled with CSF. So even though we will be following
approach of Berkouk[1], we can use some Elliot’s results.

We define cross-sectional areas AA and AB, where subscripts A and B denotes
the outer rigid and inner elastic tubes respectively. But AA isn’t cross-sectional
area of the whole rigid tube A, because we are only interested in the space between
inner elastic and outer rigid wall. Thus AA + AB = AT , where AT is total cross-
sectional area of both tubes.

First important simplification of this model is that we consider changes in
only one spatial dimension represented by streamwise coordinate x. That means
we neglect radial or transverse variations in flow variables and we focus only on
changes along the x axis. As will be seen during deriving governing equations, this
approach have its own advantages and since spinal cord has small cross-sectional
area and cerebrospinal fluid flows very slowly, it’s not unreasonable simplification.
That way we get quasi-one-dimensional model.

Another sipmlifications will be that the flow is uncompressible, isothermic
and non-viscous. Legitimacy of the first two assumptions follows immediately
from properties of CSF and spinal cord envirnoment. Neglecting viscosity will be
further discussed in chapter (1.5.)

We introduce cross-sectional area ratio α as follows

α =
AA

AT

1− α =
AB

AT

. (1.1)
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Elasticity of inner tube can be expressed either as

α = α0 −D∆p, (1.2)

where D is known as distensibility[1] and ∆p = pB−pA is transmural pressure
difference, or following[11] as

p(t)− p0 =
V (t)− V0

C
,

where spinal cord is divided into several compartments, V (t) is the volume
of certain compartment at time t, V0 is initial volume of that compartment for
pressure p(t) = p0 and C [m3/Pa] is so-called compliance. For maximum value
of compliance Cmax, C0 if p(t) = p0 and coefficient θ holds

C(t) = Cmax + (C0 − Cmax) e

[
θ
(

V (t)
V0

−1
)]

.

If we consider C = 10−10m3Pa−1 constant as some mean value of C(t) and

α− α0 = −D∆p

AA

AT

− AA0

AT

= −D∆p

AA∆x

AT ∆x
− AA0∆x

AT ∆x
= −D∆p

AA∆x− AA0∆x

AT ∆xD
= −∆p

dV (t)− dV0

AT ∆xD
= −∆p,

where ∆x is small streamwise interval. We can see that it’s possible to find a
relation between those two properties of spinal cord, but since p(t) − p0 6= −∆p
and ambiguous ∆x, it would be better for our case to follow [4] and take constant
D = 10−5Pa−1 (even though computing from constant C would yield similar
result). It can be computed from (4.9) and known pulse wave speed (that have
yet to be defined) and we will apply it as a given parameter of our model.

Following [1], (1.2) neglects effects of tube inertia and change in cross-sectional
area depends purely on change in transmural pressure.

As a diameter of flexible tube and diameter of rigid tube, we will take rB =
4mm and rT = 7, 5mm respectively[4]. This will give us cross-sectional area ratio
α0

.
= 0, 7. We will consider tubes of length 50cm, such length roughly corresponds

with length of spinal cord.

1.5 Viscosity effects

According to Berkouk[1], if we try to evaluate shear stress from equations (3.12)
and (3.13), we obtain
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τA =
ρuA√

π

√
ν

h
,

τB =
ρuB√

π

√
ν

h
,

where ν is the kinematic viscosity of the fluid, h is thickness of the wall, uA

and uB are flow speeds in corresponding tubes. An estimate of the ratio of viscous
to the inertial term takes the form of non-dimensional characteristic (relaxation)
time

∣∣∣∣
τAπdA

ρAA∂uA/∂h

∣∣∣∣ = O(TA);TA =

√
ντA

d2
A∣∣∣∣

τBπdB

ρAB∂uB/∂h

∣∣∣∣ = O(TB);TB =

√
ντB

d2
B

,

where dB = rB is diameter of elastic tube B and dA = 0.5(rT − rB). For the
assumption of non-viscous flow to be reasonable, non-dimensional characteristic
times must be TA,B ¿ 1 and both terms can be roughly estimated as follows

TA,B
.
=

√
10−6 · 10−4

(10−3)2 = 10−8 ¿ 1.

8



2. Describtion of fluid motion

2.1 Material derivative

There are two basic descriptions of continuum: Lagrangian and Eulerian descrip-
tion. Lagrangian description focuses on specific particle and its trajectory. Let
E be Euclidean space R3. Position x ∈ E of this particle in time t ∈ (0, T ) is
determined by its referential position X ∈ E in time t0 (usually t0 = 0) and
mapping ξ(., .) : E × (0, T ) → E:

x = ξ(X, t),

where position of referential point X in time t0 is

x = ξ(X, t0) = X.

Velocity and acceleration can then be expressed as

uL(X, t) =
dξ(X, t)

dt
=

∂ξ(X, t)

∂t
,

aL(X, t) =
d2ξ(X, t)

dt2
=

∂2ξ(X, t)

∂t2
.

On the other hand, in Eulerian description we focus on specific point x in
space and we are interested in velocity and acceleration of specific particle that
go through that point in time t. This is better suited for our model, because we
can examine certain spots in our fluid-filled tubes and we don’t need to know
how certain particle enter and exit whole system.

Velocity of a particle must be the same in both desriptions, so

u(x, t) = uE(x, t) = uL(X, t) =
ξ(X, t)

∂t
,

but for determining the acceleration we need to derive as follows:

aE(x, t) =
duE(x, t)

dt
=

duE(ξ(X, t), t)

dt

=
∂

∂t
uE(x, t) +

∂uE(ξ(X, t), t)

∂ξ

∂ξ(X, t)

∂t

=
∂uE(x, t)

∂t
+ (uE(x, t).∇) uE(x, t). (2.1)

As you can see, acceleration in Eulerian and Lagrangian description differ
in convective derivative - the last term in (2.1). Now we can define material
derivative

d

dt
=

∂

∂t
+ (u.∇) . (2.2)
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That generally holds for u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) : E× (0, T ) → E,
where x = (x1, x2, x3) ∈ E, but since our model is quasi-one-dimensional, we can
modify (2.2) to obtain

d

dt
=

∂

∂t
+ u(x, t)

∂

∂x
, (2.3)

where u(x, t) is velocity of a particle in (x, t).

Material derivative is often denoted (̇), for example:

u̇ =
∂

∂t
u + u

∂

∂x
u.

Last equation we need to prepare is

x = ξ(X, t)

dx

dX
=

ξ(X, t)

dX

dx =
∂ξ(X, t)

∂X
dX, (2.4)

which will be very useful afterwards.

2.2 Localization theorem

Result from this theorem will help us when deriving governing equations from
balance laws in the next chapter. Let ψ be a continuous vector or scalar field on
an open set Ω ⊂ E. Then given any x0 ∈ Ω

ψ(x0) = lim
δ→0

1

volBδ(x0)

∫

Bδ(x0)

ψdV,

where Bδ(x0) is closed ball of radius δ > 0 centered at a point x0. Proof of
this theorem can be found in [5]. Important is that if

∫

B

ψdV = 0

for every closed ball B ∈ Ω, then

ψ = 0. (2.5)
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3. Governing equations

3.1 Balance laws

Now we need to derive governing equations for our model. In order to achieve
that, we generally need to use four basic conservation laws:

• balance of mass

• balance of linear momentum

• balance of angular momentum

• balance of energy.

However, in our simplified model we only need to consider the balance laws
of mass and linear momentum. The balance of angular momentum holds due to
our one dimensional approach and the balance of energy is of no significance for
us, because of our isothermal approach.

3.2 Balance of mass

Let ρ and Vt be a density of cerebrospinal fluid and a control volume in time t,
respectively. Then mass m(Vt) of this control volume can be expressed as

m(Vt) =

∫

Vt

ρdV.

Balance of mass states that mass remains the same in control volume with
respect to time differences, that means

˙∫

Vt

ρdV = 0. (3.1)

Now we substitute volume element dV with product Adx, where A denotes
cross-sectional area of elastic tube and dx is element of streamwise axis. As
you can see, this is a good way of representing volume element in quasi-one-
dimensional model such is ours, because even though we consider only changes
in streamwise axis, we are still taking the whole volume of the tube into account.
Moreover, we can interchange derivation and integration

˙∫

Vt

ρdV =

∫

Vt

˙ρAdx

=

∫

Vt

˙ρAdx +

∫

Vt

ρAḋx (3.2)
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Using (2.3) on the first term in (3.2) we obtain

˙ρA =
∂

∂t
(ρA) + u

∂

∂x
(ρA)

and using (2.3) and (2.4) on the second term in (3.2) we obtain

ḋx =
˙

∂ξ(X, t)

∂X
dX =

∂u(X, t)

∂X
dX =

∂u(x, t)

∂x
dx

and (3.2) can be written as follows:

˙∫

Vt

ρdV =

∫

Vt

(
∂

∂t
(ρA) + u

∂

∂x
(ρA)

)
dx +

∫

Vt

ρA
∂u

∂x
dx

=

∫

Vt

(
∂

∂t
(ρA) +

∂

∂x
(ρAu)

)
dx = 0. (3.3)

Now using the localization theorem (2.5), we can write 3.3 in local form

∂

∂t
(ρA) +

∂

∂x
(ρAu) = 0. (3.4)

We divide equation (3.4) by ρ and replace variables A and u with their coun-
terparts in both tubes A and B. This way we obtain two equations representing
the balance of mass.

∂

∂t
AA +

∂

∂x
(AAuA) = 0

∂

∂t
AB +

∂

∂x
(ABuB) = 0

Furthemore, we can divide both equations with total cross-sectional area AT

and using (1.1) we obtain balance of mass equations in this form

∂

∂t
α +

∂

∂x
(αuA) = 0 (3.5)

− ∂

∂t
α +

∂

∂x
((1− α) uB) = 0. (3.6)

With (1.2) we can eliminate α from equations and get balance of mass equa-
tions for variables ∆p, uA and uB. For equation (3.5) we get

−D
∂

∂t
∆p + α0

∂uA

∂x
−D∆p

∂uA

∂x
−DuA

∂∆p

∂x
= 0

∂

∂t
∆p +

(
∆p− α0

D

) ∂uA

∂x
+ uA

∂∆p

∂x
= 0 (3.7)

and for equation (3.6) we get
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D
∂

∂t
∆p + (1− α0)

∂uB

∂x
+ D∆p

∂uB

∂x
+ DuB

∂∆p

∂x
= 0

∂

∂t
∆p +

(
∆p +

1− α0

D

)
∂uB

∂x
+ uB

∂∆p

∂x
= 0. (3.8)

Finally, (3.7) and (3.8) are balance of mass equations for tubes A and B.

3.3 Balance of linear momentum

Linear momentum l(Vt) of control volume Vt at time t can be expressed as

l(Vt) =

∫

Vt

ρu(x, t)dV.

In contrast to balance of mass, linear momentum doesn’t stay the same with
respect to time differences, but we need to describe how exactly it will change.
We can write that

˙∫

Vt

ρu(x, t)dV =

∫

∂Vt

s(n, x, t)dA +

∫

Vt

ρb(x, t)dV,

where the two terms on the right side of equation denotes surface forces s and
volume forces b respectively. Volume forces have effect on every point in control
volume Vt, an example would be gravity. We won’t consider any volume forces
in our model.

Surface forces affects only surface of control volume Vt. s(n, x, t) is a surface
force on every point on the boundary of Vt, where n is unit outer normal at point
(x, t). For Cauchy stress tensor T (x, t) holds that T (x, t) · n = s(n, x, t), so we
can write our balance of linar momentum as follows[5]

˙∫

Vt

ρu(x, t)dV =

∫

∂Vt

T (x, t) · ndA.

and using the divergence theorem we can write

˙∫

Vt

ρu(x, t)dV =

∫

Vt

∇T (x, t)dV. (3.9)

We can divide stress tensor T into two parts T = Tel + Tdis, where Tel is the
elastic part and Tdis is dissipative part. Since we don’t consider any dissipative
effects, neither viscosity nor tube inertia effects, we can concentrate only on elastic
part, which we can for our one-dimensional case write as Tel = −pI[8], where p
is static (hydrodynamic) pressure and I unit tensor.

By substituting volume element dV = Adx we obtain
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˙∫

Vt

ρu(x, t)Adx =

∫

Vt

∇p(x, t)Adx

and using (2.3) and (2.4) on the first term we can write

˙∫

Vt

ρu(x, t)dV =

∫

Vt

˙ρuAdx

=

∫

Vt

˙ρuAdx +

∫

Vt

ρuAḋx

=

∫

Vt

(
∂

∂t
(ρAu) +

∂

∂x
(ρAu2)

)
dx.

Using this and localization theorem (2.5) as with the mass balance law, we
can rewrite (3.9) as

∂

∂t
ρAu +

∂

∂x
ρAu2 = −A

∂p

∂x

u
∂

∂t
A + A

∂

∂t
u + 2Au

∂

∂x
u + u2 ∂

∂x
A = −A

ρ

∂p

∂x

u

(
∂

∂t
A + A

∂

∂x
u + u

∂

∂x
A

)
+ A

∂

∂t
u + Au

∂

∂x
u = −A

ρ

∂p

∂x
(3.10)

Using (3.4) we see, that the first term on the left side in (3.10) is equal to 0
and we obtain

A
∂

∂t
u + Au

∂

∂x
u = −A

ρ

∂p

∂x

By dividing this equation by A we come to our final form of balance of linear
momentum in local form:

∂

∂t
u + u

∂

∂x
u = −1

ρ

∂p

∂x
(3.11)

Now we need to distinguish between compartments A and B as we did in the
case of balance of mass.

∂uA

∂t
+ uA

∂uA

∂x
= −1

ρ

∂pA

∂x
(3.12)

∂uB

∂t
+ uB

∂uB

∂x
= −1

ρ

∂pB

∂x
(3.13)
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As we can see, there is an increase in number of variables. We now have two
more, pA and pB and we need to find a way how to express them in our three main
variables ∆p, uA and uB. According to [4] we can relate pA and pB as follows:

pA = −1− α0

α0

pB (3.14)

This will be discussed further in section 4.4. Now it’s easy to find a way how
we can express the terms pA and pB with ∆p. For pA holds

pA = −1− α0

α0

pB

∆p = pB − pA

pA = −1− α0

α0

(∆p + pA)

1

α0

pA = −1− α0

α0

∆p

pA = − (1− α0) ∆p

and for pB holds

pB = − α0

1− α0

pA

pB = α0∆p.

Right sides of equations (3.12) and (3.13) can be written as

1

ρ

∂pA

∂x
= − ∂

∂x

(
1− α0

ρ
∆p

)
(3.15)

1

ρ

∂pB

∂x
=

∂

∂x

(
α0

ρ
∆p

)
(3.16)

and therefore our final balance of linear momentum laws for both tubes are
as following

∂uA

∂t
+

∂

∂x

(
uA

2

2
− 1− α0

ρ
∆p

)
= 0

∂uB

∂t
+

∂

∂x

(
uB

2

2
+

α0

ρ
∆p

)
= 0.

There’s no need for special balance of angular momentum law. It is satisfied
by tensor T being symmetrical[5] and since we substitued T = −pI, it clearly
holds.
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3.4 Modified balance of mass

Both (3.7) and (3.8) describe time evolution of transmural pressure difference ∆p
with help of variables uA and uB, every other element is a constant. Since ∆p is
exactly the same in these two equations, we would prefer to merge them in only
one equation describing ∆p changes in relation to changes of flow speeds uA and
uB.

If we make a sum of equation (3.7) multiplied by α0 and equation (3.8) multi-
plied by (1− α0), we will obtain combined balance of mass in the form very well
suited for finding characteristic speeds in the next chapter.

α0
∂

∂t
∆p + (1− α0)

∂

∂t
∆p +

(
α0∆p− α0

2

D

)
∂uA

∂x
+

+

(
(1− α0)∆p +

(1− α0)
2

D

)
∂uB

∂x
+

+ α0uA
∂∆p

∂x
+ (1− α0)uB

∂∆p

∂x
= 0

We can see that any unnecessary time derivatives of ∆p will disappear. With
little adjustments we obtain

∂

∂t
∆p + (α0uA + (1− α0)uB)

∂∆p

∂x
+ ∆p

∂

∂x
α0uA + (1− α0)uB)+

+
(1− α0)

2

D

∂uB

∂x
− α0

2

D

∂uA

∂x
= 0

and finally we get to our combined balance of mass equation:

∂

∂t
∆p +

∂

∂x

(
∆p(α0uA + (1− α0)uB)− uA

α0
2

D
+ uB

(1− α0)
2

D

)
= 0

3.5 Final system of equations

In this chapter, we derived governing equations describing our model.

∂

∂t
∆p +

∂

∂x

(
∆p(α0uA + (1− α0)uB)− uA

α0
2

D
+ uB

(1− α0)
2

D

)
= 0

∂uA

∂t
+

∂

∂x

(
uA

2

2
− 1− α0

ρ
∆p

)
= 0

∂uB

∂t
+

∂

∂x

(
uB

2

2
+

α0

ρ
∆p

)
= 0

We can see those are already in conservation form and so we can easily rewrite
them as a vector equation in conservation form

∂

∂t
W +

∂

∂x
F (W ) = 0,
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where W = (uA, uB, ∆p)> is a vector of conserved quantities and

F (W ) = (F1(W ), F2(W ), F3(W ))>

F1(W ) =
uA

2

2
− 1− α0

ρ
∆p

F2(W ) =
uB

2

2
+

α0

ρ
∆p

F3(W ) = ∆p(α0uA + (1− α0)uB)− uA
α0

2

D
+ uB

(1− α0)
2

D

is a vector of so-called fluxes.
This is our final system of governing equations for co-axial fluid-filled elastic

tubes that we want to solve with consideration to problem of cerebrospinal fluid
flow.
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4. Governing equations analysis

Before we proceed to numerical solution, we need to further examine our sys-
tem of equations. We assume it’s a hyperbolic system, but we need to confirm
that. Furthemore we need to introduce new variables that will help us better
understand our model.

4.1 Pressure wave speed

We will follow the approach of Berkouk et al [1] and substract equation (3.12)
from equation (3.13) to obtain

∂uB

∂t
− ∂uA

∂t
+ uB

∂uB

∂x
− uA

∂uA

∂x
= −1

ρ

∂pB

∂x
+

1

ρ

∂pA

∂x
∂uB

∂t
− ∂uA

∂t
+ uB

∂uB

∂x
− uA

∂uA

∂x
= −1

ρ

∂∆p

∂x
(4.1)

If we consider small-amplitude waves propagating into an initially undisturbed
state where the flow is stationary, we can neglect third and fourth term on the left
side of (4.1). If we now differentiate this equation with respect to x, we obtain

∂2uB

∂t∂x
− ∂2uA

∂t∂x
+

1

ρ

∂2∆p

∂x2
= 0 (4.2)

First and second term can be expressed by equations (3.5) and (3.6). We
differentiate them with respect to t, so from (3.5) we obtain

∂2

∂t2
α +

∂2

∂x∂t
(αuA) = 0

∂2

∂t2
α + α

∂2

∂x∂t
uA + uA

∂2

∂x∂t
α +

∂

∂x
α

∂

∂t
uA +

∂

∂x
uA

∂

∂t
α = 0

∂2

∂t2
α + uA

∂2

∂x∂t
α +

∂

∂x
α

∂

∂t
uA +

∂

∂x
uA

∂

∂t
α = −α

∂2

∂x∂t
uA (4.3)

and from (3.6) we obtain

− ∂2

∂t2
α +

∂2

∂x∂t
((1− α) uB) = 0

− ∂2

∂t2
α + (1− α)

∂2

∂x∂t
uB + uB

∂2

∂x∂t
(1− α)+

+
∂

∂x
(1− α)

∂

∂t
uB +

∂

∂x
uB

∂

∂t
(1− α) = 0

∂2

∂t2
α− uB

∂2

∂x∂t
(1− α)− ∂

∂x
(1− α)

∂

∂t
uB− (4.4)

− ∂

∂x
uB

∂

∂t
(1− α) = (1− α)

∂2

∂x∂t
uB
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Again, we are considering only small-amplitude waves so we can neglect most
of terms in both equations and end with

∂2

∂t2
α = −α

∂2

∂x∂t
uA (4.5)

∂2

∂t2
α = (1− α)

∂2

∂x∂t
uB (4.6)

So when we replace matching terms in (4.2) with (4.5) and (4.6) and if we use
(1.1) and (1.2), we obtain

1

1− α

∂2

∂t2
α +

1

α

∂2

∂t2
α +

1

ρ

∂2∆p

∂x2
= 0

(
1

1− α
+

1

α

)
∂2

∂t2
α +

1

ρ

∂2∆p

∂x2
= 0

∂2∆p

∂x2
−

(
Dρ

α(1− α)

)
∂2∆p

∂t2
= 0 (4.7)

Equation 4.7 is a wave equation with wave speed

c2 =
α(1− α)

Dρ
. (4.8)

We can also define

c0
2 =

α0(1− α0)

Dρ
, (4.9)

for chosen value of distensibility c0
.
= 4, 5mm/s, which is in measured range[1].

4.2 Characteristics

For further study of our system of equations, we need to find its characteristics
and especially relevant characteristic speeds. Whether they will be real, imagi-
nary, positive or negative, will help us in numerical solution and further analysis
of system.

Characteristics of system of partial differential equations

A(W,x, t)
∂W

∂t
+ B(W,x, t)

∂W

∂x
= 0

with solution W (x, t) = (W1,W2,W3) are curves φi(x, t) = x−at = const, i =
1, 2, 3, where the solution W is constant along those curves and a is characteristic
speed. If we parametrize them with variable s, φi(s) = φi(x(s), t(s)) = const we
can find characteristic curves by solving ordinary differential equations

∂t

∂s
= A(W,x, t),
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∂x

∂s
= B(W,x, t).

We can see that

dW

ds
=

∂t

∂s

∂W

∂t
+

∂x

∂s

∂W

∂x
= 0

and therefore solution W is constant along φi(s), i = 1, 2, 3. And if I will
denote unit matrix 3× 3, we can write that

dW

ds
=

∂W

∂t

dt

ds
+

∂W

∂x

dx

ds
= 0

dW =
∂W

∂t
dt +

∂W

∂x
dx = 0

∂W

∂t
Idt +

∂W

∂x
Idx = 0 (4.10)

holds along characteristic curves.
Characteristic speed a satisfies φi(x, t) = x − at = const, therefore along the

characteristic curve holds

x + dx− a(t + dt) = x− at

dx− adt = 0

dx = dta

and we can see that a = dx
dt

.
Now if we look at our system of equations

∂

∂t
W +

∂

∂x
F (W ) = 0,

we can see that it also needs to hold along the characteristic curves. So we
have two matrix equations that needs to be satisfied

∂

∂t
W +

∂

∂x
F (W ) = 0,

∂W

∂t
Idt +

∂W

∂x
Idx = 0,

and if we slightly rewrite the first equation

I
∂W

∂t
+ F ′(W )

∂W

∂x
= 0,

Idt
∂W

∂t
+ Idx

∂W

∂x
= 0, (4.11)

where F ′(W ) is a 3× 3 Jacobian matrix that satisfies

(
∂F1

∂x
,
∂F2

∂x
,
∂F3

∂x

)>
= F ′(W )

(
∂W

∂x
,
∂W

∂x
,
∂W

∂x

)>
,
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we can see, that it can be considered system of linear equations for variables
∂W
∂t

and ∂W
∂x

. Since our concern is that those equations hold, we are not interested
in exact solution, but only in existence of non-trivial solution, i.e. ∂W

∂t
6= 0 and

∂W
∂x
6= 0.
Let us rewrite (4.11) in the following form

(
I F ′(W )

Idt Idx

)(
∂W
∂t

∂W
∂x

)
=

(
0
0

)
.

Since the right side of this system is equal to null vector, it has non-trivial
solution if and only if it’s described by singular matrix. That means

∣∣∣∣
I F ′(W )

Idt Idx

∣∣∣∣ = 0.

With a few adjustments we obtain

∣∣∣∣
I F ′(W )

Idt Idx

∣∣∣∣ = dt3
∣∣∣∣

I F ′(W )
I I dx

dt

∣∣∣∣ = dt3
∣∣∣∣

0 F ′(W )− I dx
dt

I I dx
dt

∣∣∣∣ = 0.

Now if we set λ = dx
dt

we see, that the whole problem is reduced to

det(F ′(W )− Iλ) = 0

and finding λ that satisfies this equation is equivalent to finding eigenvalues
of matrix F ′(W ) and those eigenvalues equals to characteristic speeds.

The reason we are interested in characteristic speeds is that since the solution
is constant along the characteristic curve, we can use an intial condition u0(x) =
u(x, 0) to determine solution u(x, t) in time t. We can write φi(x, t) = x − at =
const = φi(x− at, 0), so

u(x, t) = u0(x− at).

Initial condition at point x−at determines solution at (x, t). This is important
for boundary conditions as we can see that characteristic speed a determines if we
can calculate solution from the inside of the computational domain (i.e. we can’t
set the boundary condition) or from the outside (i.e. we must set the boundary
condition).

4.3 Characteristic speeds

First we need to rewrite our system of governing equations so it corresponds with
aforementioned method. With a little adjustments we can write

∂

∂t
∆p +

∂

∂x

(
∆p(α0uA + (1− α0)uB)− uAα0

2/D + uB(1− α0)
2/D

)
= 0

∂uA

∂t
+

∂

∂x

(
uA

2

2
− 1− α

ρ
∆p

)
= 0

∂uB

∂t
+

∂

∂x

(
uB

2

2
+

α

ρ
∆p

)
= 0
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We can see that

F ′(W ) =




uA 0 α0∆p− α0
2/D

0 uB (1− α0)∆p + (1− α0)
2/D

−(1− α0)/ρ α0/ρ α0uA + (1− α0)uB


 ,

so to find characteristic speed we need to find λ such that it satisfies

∣∣∣∣∣∣

uA − λ 0 α0∆p− α0
2/D

0 uB − λ (1− α0)∆p + (1− α0)
2/D

−(1− α0)/ρ α0/ρ α0uA + (1− α0)uB − λ

∣∣∣∣∣∣
= 0

Since we are trying to find determinant of 3 × 3 matrix, after using Sarrus’
scheme we obtain

(uA − λ)(uB − λ)((1− α0)uA + α0uB − λ)− (4.12)

−(uB − λ)(−(1− α0)

ρ
)(α0∆p− α0

2/D)− (4.13)

−(uA − λ)
α0

ρ
((1− α0)∆p + (1− α0)

2/D) = 0 (4.14)

For easier computing we establish notation

ū = uA + uB

ú0 = α0uA + (1− α0)uB

and we start with expanding (4.12):

(uA − λ)(uB − λ)(ú0 − λ) =

= uAuBú0 − λ(uAuB + uAú0 + uBú0)+

+ λ2(ū + ú0)− λ3.

From (4.13) we obtain

− (uB − λ)(−α0(1− α0)

ρ
∆p +

α0
2(1− α0)

Dρ
) =

− (uB − λ)(−c0
2∆pD + α0c0

2) (4.15)

and from (4.14) we obtain

− (uA − λ)(
α0(1− α0)

ρ
∆p +

α0(1− α0)
2

Dρ
=

− (uA − λ)(c0
2∆pD + (1− α0)c0

2). (4.16)

Now if we add (4.15) and (4.16) we can write

λ
(−c0

2∆pD + α0c0
2 + c0

2∆pD + (1− α0)c0
2
)
+
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+uBc0
2∆pD − uBα0c0

2 − uAc0
2∆pD − uA(1− α0)c0

2 =

= λc0
2 + (uB − uA) c0

2∆pD − ((1− α0)uA + α0uB) c0
2 =

= λc0
2 + (uB∆pD − uA∆pD − uA + α0uA − α0uB) c0

2 =

= λc0
2 + ((α0 −∆pD − 1)uA + (∆pD − α0)uB) c0

2 =

= λc0
2 − ((1− α)uA + αuB) c0

2 =

= λc0
2 − (ū− ú) c0

2

Where we introduced, similarly to ú0,

ú = αuA + (1− α)uB,

ū− ú = (1− α)uA + αuB.

Adding (4.12), (4.15) and (4.16) we obtain equation for characteristic poly-
nomial χ(λ) of matrix F ′(W )

χ(λ) = λ3 − λ2(ū + ú0) + λ(uAuB + uAú0 + uBú0 − c0
2)

+c0
2(ū− ú)− uAuBú0.

Since c0
2 À u2, where u ≈ uA, uB, ú0, we can neglect several terms and end

up with

λ3 − λ2(ū + ú0)− λ(c0
2) + c0

2(ū− ú) =

λ2(λ− (ū + ú0))− c0
2(λ− (ū− ú)).

We need λ to satisfy χ(λ) = 0 and we can already guess that two roots of
characteristic polynomial will relate to pressure-wave speed c0:

λ1 ≈ −c0

λ2 ≈ +c0,

Suppose we rewrite polynomial χ(λ) as following

χ(λ) = λ2(λ− (ū + ú0))− c0
2(λ− (ū + ú0))− c0

2(ú0 − ú) =

= (λ2 − c0
2)(λ− (ū + ú0))− c0

2(ú0 − ú) =

= (λ2 − c0
2)(λ− (ū + ú0))− c0

2(α0uA + (1− α0)uB − αuA − (1− α)uB) =

= (λ2 − c0
2)(λ− (ū + ú0))− c0

2((α0 − α)uA − (α0 − α)uB) =
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= χ(λ)− c0
2D∆p(uA − uB)

Now we can see, that polynomials χ(λ) and χ(λ) differ only in the last term.
This term is very small, in fact we can write that

c0
2D∆p(uA − uB) ≈ 101 · 10−5 · 103 · 10−1 = 10−2,

so polynomial χ(λ) is, for our purposes, a good approximation of polynomial
χ(λ). It’s eigenvalues are

λ̄1 = ū + ú0

λ̄2 = −c0

λ̄3 = +c0

and we can express eigenvalues of polynomial χ(λ) as

λ1 ≈ ū + ú0,

λ2 ≈ −c0,

λ3 ≈ +c0,

so we can see we have three real-valued eigenvalues. Evidently λ2 < 0, λ3 > 0,
but we need to further investigate λ1 to find out if corresponding characteristic
speed is negative or positive.

4.4 Analysis of the weak nonlinearity

According to Berkouk et al [1] we can develop weakly nonlinear theory based on
small parameter ε = D∆p ¿ 1 and expand variables in powers of ε as follows:

α = α0 − ε (4.17)

uA = εuA1 + O(ε2) (4.18)

uB = εuB1 + O(ε2). (4.19)

Let us consider elastic jump that forms as the leading edge of the pressure
wave steepens and let us denote variables after an elastic jump as UA′ , UB′ , PA′ ,
PB′ , ∆P ′, α′ = AA′/AT and variables before elasitc jump as UA0 , UB0 , PA0 , PB0 ,
∆P0, α0 = AA0/AT and V as speed of pressure pulse (See fig. 4.1). Since we are
considering propagation into undisturbed flow, we can take UA0 = UB0 = PA0 =
PB0 = ∆P0 = 0. Assumption for PA0 and PB0 is justifiable since we are never
interested in actual values of those variables, only their difference.

If we consider volume marked by dashed lines, we see that flow-rate through
the boundary 0 equals ρAA0C, while through the ′ boundary it’s equal to AA′(C−
UA′). Moreover, we won’t be interested in change in time, because our control
volume travels along the elastic jump with the same speed and its value can be
considered equal to its value in next time step.

Therefore we take the mass balance equation (3.3) in the form
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A'

B'

A0

B0

C

Figure 4.1: Propagating of pulse pressure wave into undisturbed flow

′∫

0

∂

∂x
ρAudx = 0

and for compartment A we obtain

′∫

0

∂

∂x
ρAAudx = 0

ρAA′(V − UA′)− ρAA0(V − UA0) = 0

ρAA′(V − UA′) = ρAA0 .

Doing the same in compartment B and little dividing the equations by ρAT

gives us

α0C = α′ (C − UA′) (4.20)

(1− α0)C = (1− α′) (C − UB′) . (4.21)

Using the same approach on balance of linear momentum

∫

Vt

(
∂

∂t
(ρAu) +

∂

∂x
(ρAu2)

)
dx =

∫

Vt

∇pAdx

we obtain for compartment A following:

′∫

0

∂

∂x
(ρAAu2

A)dx =

′∫

0

∇pAAAdx

ρAA′(C − uA′)
2 − ρAA0u

2
A0

= PA′AA′ − PA0AA0 −
′∫

0

pA
∂

∂x
AAdx

ρ [AA′(C − uA′)] (C − uA′) = PA′AA′ −
AA′∫

AA0

pAdAA
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using (4.20) and dividing by AT gives us

ρα0C(C − uA′) = pA′AA′ −
α′∫

α0

pAdα.

For both compartmens we obtain equations

PA′α
′ −

∫ α′

α0

pAdα = ρα0CUA′ (4.22)

PB′(1− α′) +

∫ α′

α0

pBdα = ρ(1− α0)CUB′ . (4.23)

Adding equations (4.22) and (4.23) gives us

PA′ + ∆P ′(1− α′) +

∫ α′

α0

∆pdα = ρC [α0UA′ + (1− α0)UB′ ] (4.24)

and substracting equation (4.22) divided by α′ from equatin (4.23) divided by
(1− α′) gives us

∆P ′ +
1

1− α′

∫ α′

α0

∆pdα +

(
1

α′
+

1

1− α′

) ∫ α′

α0

pAdα

= ρC

(
1− α0

1− α′
UB′ − α0

α′
UA′

)
. (4.25)

We would like to evaluate integrals in both equations. Substituting dα =
d(−D∆p) = −Dd∆p we can write

∫ α′

α0

∆pdα = −D

∫ ∆P ′

0

∆pd∆p = −D(∆P ′)2

2

For evaluating integral containing pA we will use following estimation[1]:

∫ α′

α0

pAdα ' −DPA′∆P ′

2
.

Substituting in equations gives us

PA′ + ∆P ′(1− α′)− D(∆P ′)2

2
= ρV [α0UA′ + (1− α0)UB′ ] (4.26)

∆P ′ − D

1− α′
(∆P ′)2

2
−DPA′

∆P ′

2

(
1

α′
+

1

1− α′

)

= ρV

(
1− α0

1− α′
UB′ − α0

α′
UA′

)
. (4.27)
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Now using the expansion of main variables in powers of small parameter ε:

UA′ = εUA′1 + O(ε2)

UB′ = εUB′1 + O(ε2)

C = c0 + εC1 + O(ε2)

P ′
A = εPA′1 + O(ε2)

gives us from equations (4.20) and (4.21):

UA′1 = − c0

α0

UB′1 =
c0

1− α0

from equation (4.26):

PA′1 = −1− α0

D

and from equation (4.27):

C0 = c0

C1 =
3

4

(
1

1− α0

− 1

α0

)
c0.

We can see, that when ε > 0, more precisely pB > pA, then uA < 0 and
uB > 0. Also, considering eigenvalues F ′W

ū + ú0 = (1 + α0)uA + (2− α0)uB =

= −c0
1 + α0

α0

ε + c0
2− α0

1− α0

ε

=

(
2− α0

1− α0

)
− 1 + α0

α0

c0ε

=

(
2α0 − α2

0 − 1 + α2
0

α0(1− α0)

)
c0ε

=

(
2α0 − 1

α0(1− α0)

)
c0ε.

So when α0 > 0.5 and ∆p > 0, λ1 = ū + ú0 > 0. We can also see, that

PB′ − PA′ = ∆P ′

PB′ = ∆P ′ − 1− α0

D
ε

PB′ = ∆P ′ −∆P ′(1− α0)

εPB′1 = ∆P ′α0

PB′1 =
α0

D

and from this we can obtain previously used (3.14).
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4.5 Hyperbolic system of PDR

Let us consider our system of partial differential equations in the form

∂

∂t
W + F ′(W )

∂

∂x
W = 0.

This system is called strictly hypebolic[2], if each matrix F ′(W ) has 3 real
distinc eigenvalues λi 6= λj, for i 6= j, i, j = 1 . . . 3, which is our case.

Classical solution to system

∂

∂t
W +

∂

∂x
F (W ) = 0 (4.28)

Wt + F (W )x = 0,

W (x, 0) = W0(x) = (0, 0, 0)>

on domain Ω× (0, T ) ⊂ R×R, T is maximum time, satisfies equations (4.28)
in every point of Ω× (0, T ) and W ∈ C1(Ω× (0, T )), W0 ∈ C1(Ω). If this solution
exists, it is unique.

Problem with non-linear hyperbolic systems such as ours is that classical
solution can very easily collapse in very small times. This can be shown on
Burgers’ equation

ut + uux = 0, (4.29)

u(x, 0) = u0(x),

where ut = ∂u
∂t

and ux = ∂u
∂x

.
The characteristic curves are straight lines and we can show that even for

initial data from C∞, those characteristic curves crosses.

U(x,0)

1

0

x1 x2

Figure 4.2: Initial condition for equation 4.29

For equation (4.29) with initial data similar to (4.2), the slope of characteristic
curves equals

dt

dx
=

1

u(x, t)
=

1

u0(x̄)
,
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where x̄ are corresponding coordinates along the straight line characteristic.
Figure 4.3 shows what happens with characteristic curves and how classical so-
lution can’t be used for determining actual solution of equation for t ≥ T .

t=T

x1 x2
t=0

Figure 4.3: Slopes of characteristics for given initial condition

We need to consider another solution, so-called weak solution that allows
discontinuous solutions and initial conditions. Let us take our system of equations
(4.28), multiply it by some differentiable function with compact support φ ∈
C1

0(Ω × [0, T ]), integrate it with respect to x ∈ Ω and t ∈ (0, T ) and use the
divergence theorem, we see that

∫ T

0

∫

Ω

Wtφdxdt +

∫ ∞

0

∫

Ω

F (W )xφdxdt = 0

∫ T

0

∫

Ω

{Wφt + F (W )φx}dxdt = 0

Therefore according to[2], we will call locally integrable function W = W (t, x)
a weak solution of (4.28) if t → u(t, ·) is continuous as a map with values in L1

loc

and

∫ T

0

∫

Ω

{Wφt + F (W )φx}dxdt = 0

for every differentiable function with compact support φ ∈ C1
0(Ω× (0, T )).

Weak solution always exists, but in contrast with classical solution, it is gen-
erally not unique. We can find many weak solutions and since any real problem
modelled by hyperbolic system has unique real world solution, it is evident that
not all of those weak solutions make physical sense and should be used. So we
need to find restrictive condition that selects only acceptable weak solution.

Let η ∈ C1(R3), η : R3 → R be called entropy and q ∈ C1(R3) that satisfies

3∑

k

∂Fk

∂Wl

∂η

∂Wk

=
∂q

∂Wl

be called entropy flux, then C1 solution W (x, t) of (4.28) satisfies[2]

η(W )t + q(W )x = 0.
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This is in a sense an additional conservation law for our hyperbolic system
(4.28) and we will call a weak solution W (x, t) entropy-admissable[2], if

η(W )t + q(W )x ≥ 0

holds in distribution sense, i.e.

∫ T

0

∫

Ω

{η(W )φt + q(W )φx}dxdt ≥ 0,

for every φ ≥ 0, φ ∈ C1
0(Ω× (0, T ))[2].

Now, let us consider the Cauchy problem for modified hyperbolic system with
viscosity

W ε
t + F (W ε)x = εW ε

xx, (4.30)

W ε(x, 0) = W0(x),

where ε is a small parameter ε > 0, then if

V (W0, Ω) < δ,

‖W0‖L∞ < δ,

where V (W0, Ω) = sup

[∫
Ω

W0 · div(φ)dx : φ ∈ C1
0(Ω,R), ‖φ‖L∞(Ω) ≤ 1

]
is to-

tal variation of W0 and δ > 0, then (4.30) has unique solution for all ε[2]. If those
solutions converges for ε → 0 to some W (x, t) boundedly almost everywhere (i.e.
in L1 norm), then W would be admissable solution to problem (4.28)(satisfying
the entropy condition)[3].

We will further adress the problem of correct weak solution in section 5.1.
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5. Numerical solution

5.1 Lax-Wendroff scheme

For computing approximate solution to our system of equations we will use Richt-
myer two-step Lax-Wendroff scheme as described in [9]. Let τ > 0 be a length
of time step, n ∈ N be a number of time step and let h be a length of minimal
spatial interval, j ∈ N be a number of spatial interval. When we denote the count
of all spatial intervals J then J ·h is the whole spatial interval, where we want to
compute solution. Then the scheme looks like this

Un+1
j = Un

j −
τ

h

[
F

(
U

n+ 1
2

j+ 1
2

)
− F

(
U

n+ 1
2

j− 1
2

)]

U
n+ 1

2

j+ 1
2

=
1

2

(
Un

j + Un
j+1

)− τ

2h

[
F

(
Un

j+1

)− F
(
Un

j

)]
(5.1)

According to[7] we will add so called artificial viscosity to (5.1) to help us
damp oscillations that would appear in our solution.

Un+1
j = Un

j −
τ

h

[
F

(
U

n+ 1
2

j+ 1
2

)
− F

(
U

n+ 1
2

j− 1
2

)]

U
n+ 1

2

j+ 1
2

=
1

2

(
Un

j + Un
j+1

)− τ

2h

[
F

(
Un

j+1

)− F
(
Un

j

)]
+ γ

(
Un

j+1 − 2Un
j + Un

j−1

)
,

(5.2)

where γ = τQ, Q is a constant. By comparing appendices A and C we can
see the effect of added term. Furthermore, scheme in this form imitates vanishing
viscosity solution of our hyperbolic system. For τ → 0 it converges to numerical
solution to our original problem.

Scheme (5.2) is suitable for nonlinear problems such as ours and we need to
further examine its properties, namely its stability and phase error (dispersion)
and order of dissipation. Since it is in conservative form, we can expect it to be
convergent, if it is stable.

5.2 Stability of numerical scheme

We would want to use von Neumann stability analysis (also known as Fourier
stability analysis), so we need to consider linear scheme

Un+1
j = Un

j −
τ

h

[
aU

n+ 1
2

j+ 1
2

− aU
n+ 1

2

j− 1
2

]
+ γ

(
Un

j+1 − 2Un
j + Un

j−1

)

U
n+ 1

2

j+ 1
2

=
1

2

(
Un

j + Un
j+1

)− τ

2h

[
aUn

j+1 − aUn
j

]

Un+1
j = Un

j − a
τ

2h

[
Un

j+1 − Un
j−1 − a

τ

h

(
Un

j+1 − 2Un
j + Un

j−1

)]
+

+ γ
(
Un

j+1 − 2Un
j + Un

j−1

)
, (5.3)
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where a is characteristic speed and is constant. This can be a problem, but if
we take our system

∂

∂t
W +

∂

∂x
F (W ) = 0

∂W

∂t
I + F ′(W )>

∂W

∂x
= 0,

and consider matrix of left eigenvectors S and diagonal matrix of eigenvalues
Λ,

SF ′(W )> = ΛS,

we can see that

∂

∂t
W +

∂

∂x
F (W ) = 0

S
∂W

∂t
I + SF ′(W )>

∂W

∂x
= 0

S
∂W

∂t
I + ΛS

∂W

∂x
= 0

∂R

∂t
I + Λ

∂R

∂x
= 0,

where Rx = SWx and Rt = SWt. Since our characteristic speeds are bounded
and don’t change that much with respect to time and spatial coordinates, stability
analysis for a linear version of Lax-Wendroff scheme with a = max(λ1, λ2, λ3) can
be applied to our case.

Using approximation of solution

W (x, t) =
∞∑

m=−∞
eimπx−(mπ)2t,

where x = jh, t = nτ and mπ = k we can write our approximate solution in the
form

Un
j = λneijkh,

where λ is an amplification factor that we want to examine. Introducing the
parameter

ν̃ = a
τ

2h
, (5.4)

we can expand our scheme using (5.4)
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Un+1
j = Un

j − ν̃
(
Un

j+1 − Un
j−1

)
+

+ 2ν̃2
(
Un

j+1 − 2Un
j + Un

j−1

)
+ γ

(
Un

j+1 − 2Un
j + Un

j−1

)

λn+1eijkh = λneijkh − ν̃
(
λnei(j+1)kh − λnei(j−1)kh

)
+

+ 2ν̃2
(
λnei(j+1)kh − 2λneijkh + λnei(j−1)kh

)
+

+ γ
(
λnei(j+1)kh − 2λneijkh + λnei(j−1)kh

)

λ = 1− ν̃
(
eikh − e−ikh

)
+ 2ν̃2

(
eikh − 2 + e−ikh

)
+ γ

(
eikh − 2 + e−ikh

)
(5.5)

Using Euler’s formula we can write

eikh + e−ikh = 2 cos(kh)

eikh − e−ikh = 2i sin(kh).

and we can also rewrite

ν = a
τ

h
= 2ν̃, (5.6)

where ν is so-called Courant number. Now let us further adjust

λ = 1− 2iν̃ sin(kh) + 2ν̃2 (2 cos(kh)− 2) + γ (2 cos(kh)− 2)

λ = 1− iν sin(kh) + ν2 (cos(kh)− 1) + 2γ (cos(kh)− 1) . (5.7)

To obtain amplification factor only in terms of sin, we can use

cos(kh) = cos

(
2
kh

2

)
= cos2

(
kh

2

)
− sin2

(
kh

2

)

cos(kh)− 1 = cos2

(
kh

2

)
− sin2

(
kh

2

)
−

[
cos2

(
kh

2

)
+ sin2

(
kh

2

)]

= −2 sin2

(
kh

2

)

and finally get from (5.7) equation for amplification factor λ.

λ = 1− iν sin(kh)− 2ν2 sin2

(
kh

2

)
− 4γ sin2

(
kh

2

)

λ = 1− iν sin(kh)− (2ν2 + 4γ) sin2

(
kh

2

)
(5.8)

We are interested in magnitude of λ, if we would find out that ‖λ‖ > 1 then
the error would be amplified and the scheme wouldn’t be stable. Therefore we
want to know when ‖λ‖ < 1 and it’s easier to examine the case of ‖λ‖2 < 1.
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‖λ(k)‖2 =

=

(
1− (2ν2 + 4γ) sin2

(
kh

2

))2

+ ν2 sin2(kh)

= 1− 2(2ν2 + 4γ) sin2

(
kh

2

)
+

(
(2ν2 + 4γ) sin2

(
kh

2

))2

+ ν2 sin2(kh)

= 1− 4(ν2 + 2γ) sin2

(
kh

2

)
+ 4

(
ν2 + 2γ

)2
sin4

(
kh

2

)
+

+ 4ν2 sin2

(
kh

2

)
cos2

(
kh

2

)

= 1− 4(ν2 + 2γ) sin2

(
kh

2

)(
1− cos2

(
kh

2

))
+

+ 4
(
ν2 + 2γ

)2
sin4

(
kh

2

)
− 8γ sin2

(
kh

2

)
cos2

(
kh

2

)

= 1− 4(ν2 + 2γ)(1− (ν2 + 2γ)) sin4

(
kh

2

)
− 2γ sin2 (kh) (5.9)

Now, since we set γ > 0, it’s only the second term in (5.9) that interests us.
We can see that

‖λ(k)‖ < 1 ⇐⇒ 1− (ν2 + 2γ) > 0

⇐⇒ 1− 2γ > ν2

⇐⇒
√

1− 2γ > ‖ν‖ (5.10)

and 5.10 is our main condition of stability, so-called CFL condition for our
numerical scheme (5.2).

For investigating dissipation of our scheme, we are interested in inequality

‖λ(k)‖ ≤ 1− C(sin
kh

2
)2r. (5.11)

If we can find such an inequality for constant C independent on τ and h, the
scheme will be dissipative of order r. Let us write

‖λ(k)‖2 = 1− 4ν2(1− ν2 − 4γ) sin4

(
kh

2

)
− 4(2γ − 4γ2) sin4

(
kh

2

)
−

− 8γ sin2

(
kh

2

)
cos2

(
kh

2

)

= 1− 4ν2(1− ν2 − 4γ) sin4

(
kh

2

)
−

− 8γ sin2

(
kh

2

)
+ 16γ2 sin4

(
kh

2

)

and with little adjustment we can write
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Figure 5.1: Amplification factor λ(k) in complex plane (Re = real part of λ,
Im = imaginary part of λ), kh = (0, π) for ν = 0.3(solid line), ν = 0.5(dashed
line) and ν = 0.7(dotted line).

‖λ(k)‖2 ≤ 1− 8γ sin2

(
kh

2

)
+ 16γ2 sin4

(
kh

2

)

‖λ(k)‖2 ≤ 1− 2

[
4γ sin2

(
kh

2

)]
+

[
4γ2 sin2

(
kh

2

)]2

‖λ(k)‖ ≤ 1− 4γ sin2

(
kh

2

)
.

However, γ = τQ is dependent on τ , so we can see that our scheme (5.2) is
not dissipative. Furthemore we can investigate dispersion of used scheme. Phase
error can be written as

a− β(k)

and we would like that to be as small as possible. Dependence of the phase
speed β(k) on apmlification factor λ(kh) can be written as

tan(kβ(k)τ) = −Im(λ(k))

Re(λ(k))

=
ν sin(kh)

1− (2ν2 + 4γ) sin2
(

kh
2

) . (5.12)

Now, if we prepare following Taylor series

35



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Re

Im

Figure 5.2: Amplification factor λ(k) in complex plane (Re = real part of λ,
Im = imaginary part of λ), kh = (0, π) for ν = 0.8(solid line), ν = 1(dashed line)
and ν = 1.1(dotted line).

sin x = x(1− x2

6
+ O(x4))

cos x = 1− x2

2
+ O(x4)

1

1− x
= 1 + x + O(x2)

arctan(x) = x(1− x2

3
+ O(x4))

and relation

sin2

(
kh

2

)
=

1− cos(kh)

2
(5.13)

we can easily rewrite (5.12) as follows

tan(kβ(k)τ) =

=
ν sin(kh)

1− (2ν2 + 4γ) sin2
(

kh
2

) =
ν sin(kh)

1− (ν2 + 2γ)(1− cos(kh))

=
νkh

(
1− (kh)2

6
+ O((kh)4)

)

1− (ν2 + 2γ)
(

(kh)2

2
+ O((kh)4)

)

= νkh

(
1− (kh)2

6
+ O((kh)4)

)(
1 + (ν2 + 2γ)

(kh)2

2
+ O((kh)4)

)

= νkh

(
1 + (

3ν2

2
+ 3γ − 1

2
)
(kh)2

3
+ O((kh)4)

)
(5.14)
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Now, let us consider variable z = tan(kβ(k)τ). We can find Taylor series of
arctan(z)

z = νkh

(
1 + (ν2 + 2γ − 1

3
)
(kh)2

2
+ O((kh)4)

)

z2 = ν2(kh)2

(
1 + 2(ν2 + 2γ − 1

3
)
(kh)2

2
+ O((kh)4)

)

= ν2(kh)2 + O((kh)4)

z(1− z2

3
) =

= νkh

(
1 + (ν2 + 2γ − 1

3
)
(kh)2

2
+ O((kh)4)

)(
1− (

ν2(kh)2

3
+ O((kh)4))

)

= νkh

(
1 + (3ν2 + 6γ − 1)

(kh)2

6
+ O((kh)4)

)(
1− 2ν2(

(kh)2

6
+ O((kh)4))

)

= νkh

(
1 + (3ν2 + 6γ − 1)

(kh)2

6
− 2ν2(

(kh)2

6
+ O((kh)4))

)

= νkh

(
1 + (ν2 + 6γ − 1)

(kh)2

6
+ O((kh)4))

)

and use that and (5.6) to find phase speed β(k)

kβ(k)τ = νkh

(
1 + (ν2 + 6γ − 1)

(kh)2

6
+ O((kh)4))

)

β(k) = ν
h

τ

(
1 + (ν2 + 6γ − 1)

(kh)2

6
+ O((kh)4))

)

= a

(
1 + (ν2 + 6γ − 1)

(kh)2

6
+ O((kh)4))

)

We can see that our scheme has phase error of the order (kh)2 and that we
would ideally want

0 ≈ ν2 + 6γ − 1

1 ≈ ν2 + 6γ.

However since we can’t chose specific ν (we don’t have a specific a), it is better
to have smaller ν, as can be seen in figure 5.3.

5.3 Constants, initial and boundary conditions

We will use our scheme (5.2) with following parameters:
τ . . . 10−7 time step
h . . . 5× 10−4 interval length
γ . . . 10−4 artificial viscosity coefficient
J . . . 1000 number of spatial intervals
D . . . 10−5 distensibility
α0 . . . 0.7 initial cross-sectional area ratio
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Figure 5.3: Relative phase error for ν = 0.1(solid line), ν = 0.4(dashed line) and
ν = 0.7(dotted line) plotted against kh.
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Figure 5.4: Relative phase error for ν = 0.001 and γ = 0.01(solid line), γ =
0.0001(dashed line) and γ = 1(dotted line) plotted against kh.

We will use initial condition

W = (uA, uB, ∆p)> = (0, 0, 0)>.

Boundary conditions can be entered for each variable only on one side of the
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Figure 5.5: Amplification factor (left) and relative phase error (right) for given
parameters.

boundary. Since we have two positive characteristics and one negative character-
istic we know that two boundary conditions will be entered on left side x = 0, and
one on the right side x = J · h. We want to simulate propagation of a pressure
pulse from one boundary to the other, so let us choose left side x = 0 as the
beginning of this pressure pulse. We will let in pulse of total size 3kPa over a
small amount of time (0.01s) simulating a cough[4]. If this pressure pulse will
be positive, i.e. ∆p = pB − pA > 0, then in the near vicinity of pulse will hold
uA < 0 and uB > 0, so we will set boundary condition for uA on x = J · h and
for uB on x = 0. The rest values on boundaries will be computed in each step.

Our ν may seem too small ν ≈
(

5·10−7

5·0−4

)
= 10−3 considering our stability

analysis. But this value guarantees stability and moreover gives solutions without
unwanted oscilations. For comparison see appendix B.

5.4 Results

Now let us see some results of numerical method (5.2). More pictures with smaller
time steps are in the appendices A - E.

Figure 5.6: Without artificial viscosity scheme (5.1) is too dispersive and can’t
be used.

Figure 5.7: Pressure wave travels through the spinal cord to its end where it
reflects back. We can see that during the reflection, transmural pressure difference
rises up to twice the size the pressure difference initially was. This can be seen
as dangerous effect, that can potentially damage the spinal cord. Computed flow
velocities in both tubes (figure: 5.8) match are approximations from section 4.4.

Figure 5.9: If we consider two similar pulses in a row, we can see that not
only does pressure difference rises at the end of our tubes, but also when first
reflected and second pulse meet. That way the spinal cord could be damaged
along its whole length.

Figure 5.10: If there would be a blockage in outer tube A, then pressure pulse
can again produce great pressure difference. That can be especially dangerous,
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since the blockage itself may have damaged the spinal cord already and thus
weakened the tissue.

Figure 5.11: Last case is one pulse consisting of positive and negative pressure
difference. That can be interpreted as a result of for example an impact to the
head, where head moves quickly one way, hits something and moves back. Since
we are considering ∆P < 0, we need to be cautious on the boundary and always
check, if characteristic speed λ1(W ) is positive or negative. If it’s positive, there’s
no change, however if it’s negative, we need to switch boundary conditions for uA

and uB (we can see that in this case uA > 0 and uB < 0).
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Figure 5.6: One pulse without artificial dampening (more in appendix A). Pres-
sure difference ∆p in every point of mesh.

41



0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.03s

0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.06s

0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.09s

0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.1s

0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.11s

0 0.1 0.2 0.3 0.4 0.5
−8000

−6000

−4000

−2000

0

2000

4000

6000

8000
time = 0.12s

Figure 5.7: One pulse with artificial dampening (more in appendix B). Pressure
difference ∆p in every point of mesh.

42



0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.03s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.03s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.06s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.06s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.09s

0 0.1 0.2 0.3 0.4 0.5
−1

−0.5

0

0.5

1
time = 0.09s

Figure 5.8: Two pulses - flow velocities uA (left) and uB (right) in every point of
mesh.
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Figure 5.9: Two pulses (more in appendix C). Pressure difference ∆p in every
point of mesh.
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Figure 5.10: Reflection from the blockage (more in appendix D). Pressure differ-
ence ∆p in every point of mesh.
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Figure 5.11: One sinusoidal pulse (more in appendix E). Pressure difference ∆p
in every point of mesh.
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Conclusion

We constructed a fluid-filled co-axial elastic tubes model for CSF flow in and
around spinal cord, derived governing equations forming a quasi-one-dimensional
hyperbolic system of conservational laws describing the model and we demon-
strated mechanism for forming big transmural pressure differences in spinal cord.
There’s a question if they are high enough for actually damaging the spinal cord,
but considering the spinal cord could already be weakened, it is still possible
for them to cause problems. According to[4], spinal cord should be modelled as
porous tube and that the amount of CSF that flow through dura mater and pia
mater has dissipative effects on pressure pulse making it too small to actually
cause syrinxes. Thus making mechanism of development of syringomyelia due to
high transmural pressure differences only improbable. However even small rise in
pressure can cause damage in certain points. Most promising seems reflection of
pressure pulse from blockage located close to the start of the pulse. For example
impact to the head and blockage in the upper regions of spinal cord.

The nonlinear behaviour of the system and various assumptions needed for
finding a solution make this an interesting problem that is still being solved.
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Notation

a . . . max(λ1, λ2, λ3),
generalized characteristic speed for analysis of numerical method

AA . . . cross-sectional area of tube A
AB . . . cross-sectional area of tube B without AA

AT . . . cross-sectional area of tube B, AA + AB

c, c0 . . . pressure wave speeds,
√

α(1−α)
Dρ

,
√

α0(1−α0)
Dρ

C1
0(Ω) . . . continuously differentiable functions of compact

support contained in Ω
D . . . distensibility
F (W ) . . . vector of fluxes
F ′(W ) . . . Jacobian matrix of fluxes
h . . . spatial interval; thickness of wall in section 1.5
∆p . . . transmural pressure difference, pB − pA

pA . . . pressure in tube A
pB . . . pressure in tube B
t . . . time coordinate
uA . . . flow velocity in tube A
uB . . . flow velocity in tube B
ū . . . uA + uB

ú0 . . . α0uA + (1− α0)uB

ú . . . αuA + (1− α)uB

Un
j . . . approximation of solution W (h · j, τ · n)

W (x, t) . . . vector of variables, solution
x . . . spatial coordinate
α . . . cross-sectional area ratio, AA

AT

α0 . . . cross-sectional area ratio,
AA0

AT

β(k) . . . phase error of numerical scheme
γ . . . artificial viscosity coeficient, τQ, where Q is constant
ε . . . small parameter, D∆p
λ, λ(W ) . . . eigenvalues of matrix F ′(W ), characteristic speeds
λ(hk) . . . amplification factor of numerical scheme
ν . . . Courant number, a τ

h

ν̃ . . . 2ν
ρ . . . density of cerebrospinal fluid
τ . . . time step
χ(λ) . . . characteristic polynomial of F ′(W )

χ(λ) . . . characteristic polynomial similar to χ(λ)
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List of abbreviations

CSF . . . cerebrospinal fluid
CNS . . . central nervous system
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A. One pulse without artificial
viscosity
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Figure A.1: ∆p plotted in every point of mesh
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Figure A.2: ∆p plotted in every point of mesh
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Figure A.3: ∆p plotted in every point of mesh
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Figure A.4: ∆p plotted in every point of mesh
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B. One pulse with bigger
Courant number ν
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Figure B.1: ∆p plotted in every point of mesh for parameters τ = 10−6, h =
5 · 10−5, ν ≈ 10−1 (left) and for τ = 10−6, h = 5 · 10−4, ν ≈ 10−2 (right).
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Figure B.2: ∆p plotted in every point of mesh for parameters τ = 10−6, h =
5 · 10−5, ν ≈ 10−1 (left) and for τ = 10−6, h = 5 · 10−4, ν ≈ 10−2 (right).
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C. One pulse
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Figure C.1: ∆p plotted in every point of mesh
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Figure C.2: ∆p plotted in every point of mesh
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Figure C.3: ∆p plotted in every point of mesh
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Figure C.4: ∆p plotted in every point of mesh
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D. Two pulses
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Figure D.1: ∆p plotted in every point of mesh
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Figure D.2: ∆p plotted in every point of mesh
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Figure D.3: ∆p plotted in every point of mesh
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Figure D.4: Cross-sectional area ratio α plotted in every point of mesh

64



0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.129s

0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.13s

0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.131s

0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.132s

0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.133s

0 0.1 0.2 0.3 0.4 0.5
0.65

0.7

0.75
time = 0.134s

Figure D.5: Cross-sectional area ratio α plotted in every point of mesh
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Figure D.6: Cross-sectional area ratio α plotted in every point of mesh
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E. Reflection from the blockage
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Figure E.1: ∆p plotted in every point of mesh, blockage starts at x = 0.3
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Figure E.2: ∆p plotted in every point of mesh, blockage starts at x = 0.3
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Figure E.3: ∆p plotted in every point of mesh, blockage starts at x = 0.3
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F. Sinusoidal wave
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Figure F.1: ∆p plotted in every point of mesh
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Figure F.2: ∆p plotted in every point of mesh
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Figure F.3: ∆p plotted in every point of mesh
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Figure F.4: ∆p plotted in every point of mesh
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Figure F.5: ∆p plotted in every point of mesh
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Figure F.6: ∆p plotted in every point of mesh
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G. Source code for MATLAB
(one pulse with artificial
viscosity)

% CONSTANTS

T = 0.5; % maximum computation time
tau = 0.0000001; % time step
J = 1000; % number of spatial intervals
h = 0.0005; % spatial interval length
AT = 0.00015; % total cross-sectional area
A0 = 0.7; % alpha 0, initial cross-sectional ratio
gamma = 0.0001; % artificial viscosity coeficient
rho = 1000; % CSF density
D = 0.00001; % distensibility
rychlostA = 0; % initial speed in tube A
rychlostB = 0; % initial speed in tube B

% INITIALIZATION

% spatial steps

x = zeros(J+1,1);

for j=1:J+1
x(j) = (j-1)*h;

end

% initial values of solution in every time step

u01 = zeros(J+1,1); u02 = zeros(J+1,1); u03 = zeros(J+1,1);

% first step of method

u11 = zeros(J,1); u12 = zeros(J,1); u13 = zeros(J,1);

% solution

u1 = zeros(J+1,1); u2 = zeros(J+1,1); u3 = zeros(J+1,1);

% fluxes in first step of method

f01 = zeros(J+1,1); f02 = zeros(J+1,1); f03 = zeros(J+1,1);

% fluxes in second step of method
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f11 = zeros(J,1); f12 = zeros(J,1); f13 = zeros(J,1);

A = zeros(J+1,1); % alpha, cross-sectional ratio

t=0; % time step

% INITIAL CONDITION

for j = 1:J+1
u1(j) = rychlostA;
u2(j) = rychlostB;
u3(j) = 0;

end

% LAX-WENDROFF SCHEME

while (t < T)

% known boundary conditions

u01(J+1) = rychlostA;
u02(1) = rychlostB;
if 100*t < 1

u03(1) = 3000*sin(100*pi*t);
else u03(1) = 0;
end

% computed boundary conditions

u01(1) = u1(1);
u02(J+1) = u2(J+1);
u03(J+1) = u3(J+1);

% substituting of computed values to initial values of solution

u01(2:J) = u1(2:J);
u02(2:J) = u2(2:J);
u03(2:J) = u3(2:J);

% first step of method

f01(1:J+1) = u01(1:J+1).*u01(1:J+1)/2 - (1-A0)*u03(1:J+1)/rho;
f02(1:J+1) = u02(1:J+1).*u02(1:J+1)/2 + A0*u03(1:J+1)/rho;
f03(1:J+1) = (u01(1:J+1)+u02(1:J+1)).*u03(1:J+1)/2 +
((1-A0)*u02(1:J+1) - A0*u01(1:J+1))/(2*D);

u11(1:J) = ((u01(1:J) + u01(2:J+1)) - (tau/h)*(f01(2:J+1) - f01(1:J)))/2;
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u12(1:J) = ((u02(1:J) + u02(2:J+1)) - (tau/h)*(f02(2:J+1) - f02(1:J)))/2;
u13(1:J) = ((u03(1:J) + u03(2:J+1)) - (tau/h)*(f03(2:J+1) - f03(1:J)))/2;

% second step of method

f11(1:J) = u11(1:J).*u11(1:J)/2 - (1-A0)*u13(1:J)/rho;
f12(1:J) = u12(1:J).*u12(1:J)/2 + A0*u13(1:J)/rho;
f13(1:J) = (u11(1:J)+u12(1:J)).*u13(1:J)/2
+ ((1-A0)*u12(1:J) - A0*u11(1:J))/(2*D);

u1(2:J) = u01(2:J) - (tau/h)*(f11(2:J) - f11(1:J-1))
+ gamma*(u01(3:J+1) - 2*u01(2:J) + u01(1:J-1));
u2(2:J) = u02(2:J) - (tau/h)*(f12(2:J) - f12(1:J-1))
+ gamma*(u02(3:J+1) - 2*u02(2:J) + u02(1:J-1));
u3(2:J) = u03(2:J) - (tau/h)*(f13(2:J) - f13(1:J-1))
+ gamma*(u03(3:J+1) - 2*u03(2:J) + u03(1:J-1));

% boundary conditions

u1(1) = u1(2); u1(J+1) = u01(J+1);
u2(1) = u2(2); u2(J+1) = u02(J+1);
u3(1) = u03(1); u3(J+1) = u3(J);

A(1:J+1) = A0 - D*u3(1:J+1);
t = t + tau;

% possible plotting of main variables u1, u2, u3 and ratio A
end
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