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Introduction

Hair is a very important visual aspect of human head and represents arguably
the most challenging problem during the rendering of a human body. Our eyes
are very sensitive to any inaccuracies in hair appearance. Hair geometry is very
complex as it contains up to 150.000 very thin hair strands with complicated
light-scattering properties. Rendering of animals is not any easier as the ani-
mal fur can contain millions of strands. As such, the rendering of convincing
images of hair or fur remains a very challenging problem, especially in real-time
graphics. Conventional rendering techniques often fail due to poor performance
and aliasing problems. This thesis presents techniques for rendering images of
hair at interactive time, that are very similar to those rendered in high-fidelity
off-line renderers, such as 3Delight1. See Figure 1 for illustration.

Figure 1: 100k hairs rendered by the 3Delight (on the right) and by the presented
renderer in Autodesk Maya 2012.

The presented renderer is implemented in the environment of Autodesk Maya2

– a widely used tool for modeling and animating 3D scenes. The hair geometry is
generated in the Stubble project, which is a plug-in for Maya for modeling hair.

In order to render a plausible looking image of hair, there are several issues
that need to be solved:

Hair fiber graphical representation. The hair fiber resembles a very thin
cylinder but using cylinders for drawing hair is slow and therefore not suitable for
real-time rendering. Another issue here is aliasing. Normal hair strand is much
thinner than the pixel width and even with multi-sampling, current hardware

1http://www.3delight.com/
2http://usa.autodesk.com/maya/
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cannot capture the high-frequency geometry of hair. Alpha blending is normally
applied to approximate anti-aliasing but it raises other problems.

Alpha blending. As stated above, alpha blending is required to eliminate se-
vere aliasing. Also, blond or light-colored hair fibers are semi-transparent, which
in itself requires alpha blending. Proper usage of alpha blending to achieve trans-
parency effects usually requires that the fragments are drawn in back-to-front
order, which is not easily realizable. Several ways to address this problem is
presented.

Light-scattering model of a hair-fiber. The light-scattering, especially in
blond hair, can be complex as it produces both reflection and refraction of incom-
ing light. Fast implementation of a plausible light-scattering model is essential
for interactive hair rendering.

Self-shadowing. Hair fibers cast shadows onto each other, as well as receive
and cast shadows from/to other objects in the scene. Self-shadows are very
important for recognizing the shape of hair. It is crucial to implement hair shad-
owing to provide usable preview during hair modeling. Several methods for hair
self-shadowing are presented in this thesis.

Thesis overview

This thesis consists of following chapters:

• Theory: This chapter discusses possible algorithms for different aspects of
hair rendering. Related work is presented individually in each section of
this chapter.

• Implementation: Here is presented the actual implementation of the ren-
derer in the environment of Autodesk Maya and Stubble.

• Results: This chapter shows visual results and performance of the final
hair renderer in comparison with off-line renderer 3Delight.

• Conclusion: The conclusion of my thesis and possible future work.
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1. Theory

1.1 Overview

There are several sections in this chapter that describe the theory required for
solving separate aspects of the hair rendering. All of those sections show methods
presented by other authors except Section 1.2.3, which is my own work.

1.2 Hair fiber graphical representation

1.2.1 Problem overview

The hair geometry is very complex. There is about 100 - 150 thousand hairs on a
human scalp and animal fur can consist of millions of strands. Even the geometry
of a single hair fiber is not trivial. A long curled hair is geometrically complex
on its own. If each hair was drawn using 100 triangles, it would cause a serious
slowdown even on modern hardware.

Besides that, the hair strand is very thin in diameter (under 0.1 mm) and can
be very long. This causes an under-sampling problem since pixels are typically
much thicker. Hardware multi-sampling does solve this issue. Super-sampling by
rendering to an off-screen buffer would help but it would significantly increase the
number of generated fragments, and since fragment shaders for hair are normally
quite time-consuming, this solution would bring severe performance issues.

1.2.2 Drawing primitives

A hair fiber is a curved cylinder, see Figure 1.1. Tessellated version of a cylinder
is a valid representation of a hair but has its drawbacks. Such cylinder would
consist of many triangles and rendering many thousands of cylinders would be
too slow. Also, the problem with aliasing would lead to a low-quality result.
Tessellated cylinders would be a good approach for rendering a limited number
of thick fibers, or when rendering a detail of a human scalp.

Another approach is to approximate a hair as a flat ribbon. It is a good ap-
proximation but requires the ribbon to be facing the camera. This could be done
in hardware shader but the aliasing problem still exists. Non-rotating ribbons
are used as a graphical representation in default Stubble renderer and are also
available in my renderer, because they can preserve hair thickness even if the
width is different at the hair root and the hair tip. Results of rendering typical
hair with this representation are not very good though, see Figure 1.2.

Further simplification leads to a line strip. Its primitive count is halved com-
pared to the ribbon representation. A line mathematically does not have any
width, but in the case of hardware rendering, the line width is non-zero and rela-
tive to a pixel width. This causes an inconsistency between the hair’s width in 3D
world space and the projected line’s width in 2D screen space. The line’s project-
ed width is constant with distance from the camera plane (plane perpendicular
to the camera direction containing the camera position) and with camera’s field
of view. It is, on the other hand, not constant with the viewport resolution. This
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(a) (b) (c) (d)

Figure 1.1: Possible hair graphic representations. On the left is the exact hair
shape (a), simplified by tessellated cylinder (b), flat ribbon (c), and the line strip
(d).

ribbons line strip 3Delight

Figure 1.2: Image of hair rendered with the ribbon and line strip representation
compared to reference rendered in 3Delight.

means that if the resolution is higher, the line of a given width in terms of pixels
appears thinner on the screen. See Figure 1.3 for illustration. It is also not possi-
ble to represent different width of hair tip and hair root with a line strip because
the line width is an attribute of the graphics pipeline that cannot be efficiently
changed on a per-primitive basis.

Graphics hardware can do fast line anti-aliasing. It allows fairly smooth draw-
ing of lines with various widths based on the pixel width. However, it puts some
conditions on the rendering process. It requires lines to be drawn from back
to front with specific blending parameters. Those parameters are not, unfortu-
nately, suitable in some cases. Details about this issue are discussed in section
Section 2.5.2. Also, the capabilities of the hardware line anti-aliasing are very
dependent on the actual hardware. Normally, drawing lines that are thinner than
a pixel, is not supported. Since thin hairs are often projected to a screen area
that is smaller than a pixel, the hardware line anti-aliasing does not solve the
problem of the hair width inconsistency.
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Figure 1.3: The difference between line width based on the resolution. The
image on the left is rendered at a resolution of 640×480. The image on the right
is rendered at a resolution of 320×240

In the next section, I described an algorithm I developed in order to cope with
the problem of the hair width inconsistency and aliasing.

1.2.3 Line width computation and anti-aliasing

As shown in Figure 1.3, the inconsistency of projected hair width can totally
disrupt the hair volume. It would not be acceptable if the image looked completely
different based on its resolution.

In order to draw hair fibers with correct width, it is necessary to find the
screen area, to which the fiber is projected. With that, it is possible to compute
the intersection between the projected fiber and each pixel the fiber projects to.
The final color addition of the fiber to the pixel can be computed as:

Ca = Is/Ps · Cf

where Is is the size of the intersecting area between the projected line and
the pixel, Ps is the size of the pixel, and Cf is the color of the hair fiber. See
Figure 1.4.

The implementation on CPU of the intersecting area computation would not,
however, be very effective. The hardware line anti-aliasing does this but with
some restrictions as mentioned above. By a considerate approximation, it is
possible to achieve a plausible and fast solution.

Dealing with sub-pixel width

If the projected width of a hair fiber is smaller than the pixel width, I propose
to approximate the intersection of the projected fiber with the pixel simply by
the fiber’s projected width. The equation for the hair fiber addition to the pixel
color is changed to:

7



Ps

Is

Figure 1.4: Projected line going through a pixel. Ps is the pixel size, Is is the
size of the intersected area.

Ca =
Fpw

Pw

· Cf

where Pw is the pixel width and Fpw is the projected width of a hair fiber.
This equation could be modified to:

Ca =
Fw

P3dw · d
· Cf

where P3dw is the width of a square at distance 1 from the camera plane, that
is projected on the screen to an area that exactly corresponds to one pixel. d is
the distance of the hair fiber from the camera plane.

The P3dw is computed from the viewport frustum and resolution. The view-
port frustum is a rectangular pyramid that is cut by two planes (near plane and
far plane), which are perpendicular to the view direction, see Figure 1.5.

+Y

+Z

+X

(r,b,n)

(r,t,n)
(l,b,n)

(l,t,n)

Figure 1.5: Viewport frustum.

The width of a square at distance 1 from the camera plane is given by:

P3dw =
(r − l)/n
Res

where r and l are the right and left boundaries of the near plane, respectively,
n is the distance from near plane to the camera plane and Res is the horizontal
viewport resolution.
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This approximation assumes that the line is either horizontal or vertical. If
the line is diagonal, the final color addition is underrated. That is because the
intersection area of a horizontal/vertical line and the pixel is smaller than the
intersection area of a diagonal line. Let us assume that the line goes through
the center of a pixel as shown in Figure 1.6. The relative intersection area of the
horizontal line is:

Iha =
Fw

P3dw · d
The relative intersection area of the diagonal line would be:

Ida =

√
2 · Fw

P3dw · d
− F 2

w

2 · P 2
3dw · d2

So the ratio of Ida and Iha is:

Ida
Iha

=
√

2− Fw

2 · P3dw · d

Iha

Ida

Figure 1.6: Horizontal and diagonal line going through the pixel center.

In practice, an accurate computation of the ratio that is based on the line’s
angle is not necessary. I suggest that the ratio is approximated as a constant,
independent of the actual angle as follow:

Rat =
Ida + Iha

2 · Iha
This formula gives a correct result on average and the actual error is very

small.
The final equation of the color addition of the fiber to the pixel is computed

as:

Ca =
Fw

P3dw · d
·Rat · Cf (1.1)

P3dw must be computed only when the viewport is changed. The rest of the
equation changes for every fragment. By exploiting the fact that the Ca changes
linearly through the line segment, it is possible to resolve the equation just in the
line vertices and linearly interpolate for every fragment of the line. Therefore, it
can be easily implemented in the hardware vertex shader. For further details on
implementation, see Section 2.4.
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Setting correct line width

Above presented equations work only for fibers that have the projected width
smaller than the pixel width. If the projected width is larger than the pixel
width, it is necessary to set the line’s pixel width before rendering. The equation
for line width is very similar to equation 1.1:

Lw =
Fw

P3dw · d
Getting the distance between the hair fiber and the camera plane (d) is not so

easy here. The Lw value is required before the rendering, thus it cannot be com-
puted in the vertex shader. The hair sorting algorithm presented in Section 1.3.3,
which is used to approximate alpha blending, helps with that. It divides the hair
geometry into slices, based on the distance from the camera plane. The slices
are then drawn in back to front order. This can be easily exploited and the line
width can be set before each slice is rendered. See Section 2.4 for details.

Using a line width other than 1 has different effects, depending on whether
the hardware line anti-aliasing is enabled. If the line anti-aliasing is disabled, the
line width is rounded to the nearest positive integer.

Computing the line width correction is also important when rendering shadow
maps, discussed in Figure 1.5. Without the corrections, the shadow maps with
different resolution would produce different self-shadowing, see Figure 1.7.

reference
by 3Delight

Without 
line width 
correction

With 
line width 
correction

256x256 1024x1024
Figure 1.7: Hair shadowed by shadow maps with different resolutions and with
and without line width correction.

Anti-aliasing

The computation of hair fragment addition does not, by itself, entirely solve
the problem of aliasing. However, it allows using the line strip as geometry
primitive for fibers with sub-pixel projected width. The line strip does always
rasterize into a fragment, to which is the hair fiber projected, as opposed to
other representations, see Figure 1.8 (a) and (d). This alone significantly reduces
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the aliasing in the hair geometry, see Figure 1.2. Proper anti-aliasing can be
achieved by combination with hardware anti-aliasing. It works well with both
line anti-aliasing and multi-sampling techniques, see Figure 1.8.

(a) (b) (c) (d) (e) (f) (g)
MSAA 1x MSAA 4x MSAA 8x MSAA 1x MSAA 4x MSAA 8x MSAA 32x

ribbon representation line strip representation 3Delight

Figure 1.8: Zoomed image of a thin hair rendered with different hair represen-
tations and different multi-sampling settings (MSAA). Note that ribbon without
multi-sampling (a) cannot capture the thin hair and even 8x MSAA does not give
accurate result. On the other hand, the line strip is plausible without MSAA and
with 4× and 8× MSAA gives a fairly accurate result.

Discussion

The main contribution of the method proposed in this section lies in the approx-
imation of the conversion between a screen space width and world space width,
which allows rendering sub-pixel geometry, such as hair fibers, with a line strip.
Together with hardware anti-aliasing, it produces very accurate results. A small
error is produced by the approximation of Rat ratio, but the Rat is correct on
average. Results are illustrated in Figure 1.9.

1.3 Alpha blending

1.3.1 Problem overview

Alpha blending is the process of combining a translucent foreground color with an
opaque background color, which produces a new blended color. It is necessary for
rendering light-colored semi-transparent hairs. As stated in section Section 1.2,
it also helps in anti-aliasing thin hair fibers. Modern graphics hardware can deal
very efficiently with alpha blending, but usually requires translucent fragments
to be drawn in the order from the farthest to the nearest to the camera plane, see
Figure 1.10. When considering hundreds of thousand of line segments needed for
representing full human hair, it is clear that interactive rendering requires a fast
solution to this problem. Note that translucency techniques that do not require
fragment sorting, exist, see Section 1.3.4.

1.3.2 Exact solution

To ensure that all fragments are drawn in a back to front order, a technique
called Depth-peeling by Everitt (2001) [1] is commonly used. This method draws
the geometry multiple times with depth test set to pass fragments with larger
or equal z value than the one in the depth buffer. The next render pass uses

11



without line width
correction

with line width
correction

reference by 3Delight

Figure 1.9: Images of hair taken from different distances. Top images show
a close-up view, middle images show middle distance and bottom images are
rendered from large distance and then zoomed in. Note how the images rendered
without the line width correction does not maintain hair width with different
distances.

the depth buffer of the previous pass. This way, each render pass peels off one
layer. However, the number of render passes needed for rendering thousands of
hairs can easily reach hundreds, making this technique unusable for interactive
rendering.

Several attempts to speed up the depth-peeling were made. Liu et al. (2006) [2]
proposed to use multiple render targets for sorting the fragments in the fragment
shader. The theoretical 8 times speed-up is rarely achieved in practice due to the
possibility of read-modify-write hazards.

[3] suggested a the technique that peels off the front-most and further-most
layer. It doubles the performance of the original depth-peeling algorithm, but
when rendering geometry with high depth-complexity such as hair, the speed is
not sufficient for interactive use.

12



not sorted sorted into
256 bins

3Delight

Figure 1.10: Hair geometry rendered without sorting produces very bad results.
Approximate line segment sorting into 256 bins shows a result very similar to the
reference rendered by 3Delight.

A faster solution would be to explicitly sort all the geometry segments by
distance from the camera plane, but sorting the sheer number of hairs is not very
fast either. On top of that, it is not always possible to figure out the rendering
order of segments in a way that it gives a correct result. See Figure 1.11.

Figure 1.11: Three lines, each of which is both covered by and covering other
line. There is no correct rendering order for those lines.

It turns out, however, that exact sorting is not necessary in order to achieve
a convincing image of hair. If we put up with approximate hair ordering, it is
possible to attain a fairly fast sorting algorithm.

1.3.3 Sorting approximation

As presented by Kim (2003) [4], one way of approximating hair sorting is that
the hair geometry is divided by planes perpendicular to the camera direction.
Each bin, a volume bounded by a pair of adjacent planes, stores indices of hair
segments whose farthest end point is contained by the bin, see Figure 1.12.

The index of the bin enclosing each point is found by

i =

⌊
N

D −Dmin

Dmax −Dmin

⌋
, 0 ≤ i < N

where i is the index of the bin and N is the total number of bins. D is the
distance from a hair point (corresponds to a vertex in the line strip) to the camera
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Figure 1.12: Hair volume divided into bins. Each hair segments is assigned by
its farthest point.

plane. Dmin is the distance between the camera plane and the first bin and Dmax

is the distance to the last bin.
Given a point −→p and the camera positioned at −→c looking in direction of

−→
d ,

the distance to the image plane is computed by

D = (−→p −−→c ) ·
−→
d

When hair segments are nearly parallel to the image plane, the number of
incorrectly ordered segments is small if the slices are close together. However,
when segments extend over many bins, the visibility order cannot be determined
either by maximum depth or minimum depth of the segment. On the other hand,
the pixel coverage of such a segment is usually very small. For example, when
a line is perpendicular to the image plane, the pixel coverage of the line is a
single pixel. In practice, using maximum depth for every segment produces good
results. Generally, the shorter the segments are and the smaller the distance
between slices is, the more accurate result is produced.

The algorithm has a time complexity of O(n), where n is the number of hair
segments. It is invariant to the number of bins, so the slices could be dense
enough (however, high numbers of bins can slow down the rendering). 256 bins
seems to be sufficient in most cases, see Figure 1.10. Rendering of hair is done
by drawing the hair segments contained in bins. First goes the farthest bin and
last the nearest bin.

Writing to the depth buffer should be disabled when rendering hair as it
produces much better results. Let u imagine two overlapping lines that are drawn
in wrong order, as illustrated in Figure 1.13. The correct result of blending those
two lines would be:

C1A1 + (C2A2 +B(1− A2))(1− A1)

where Ci is the color of the line i, Ai is the opacity of the line i and B is the
color of the background. When writing to the depth buffer is disabled, the result
of blending in wrong order will be:

C2A2 + (C1A1 +B(1− A1))(1− A2),

14



(1)

(2)

Figure 1.13: Line segments rendered in wrong order: first (1), then (2).

while with enabled depth buffer update, only the second line will be drawn,
resulting in:

C1A1 +B(1− A1)

When rendering typical hair it is fairly safe to assume that the color of two
hairs that are very close together will be similar. The background color can be
fairly different, however. Let us say that C1 = (1.0, 0.8, 0.6), A1 = 0.5, C2 =
(0.8, 0.6, 0.4), A2 = 0.5, B = (0.2, 0.2, 0.8). Correctly blended color will be:
(0.75, 0.6, 0.6). Without depth buffer update: (0.7, 0.55, 0.55) and with buffer
update (0.6, 0.5, 0.7).

When the color of overlapping hair fibers is similar, the error is plausibly small
(if hairs have the same opacity, the error equals (C1 − C2)A

2). Significant errors
may occur with strong self-shadowing as fully illuminated hairs may get covered
by those that are shadowed, if rendered in wrong order. However, the combination
of light colored hair and strong self-shadowing, which is the worst combination
for this method, is not very realistic so in most cases the approximation behaves
well.

Hair segments do not need to be re-sorted in every frame. It is possible to
separate the visibility ordering from the actual drawing. For example, during
interactive modeling, the viewpoint does not change much from frame to frame.
This coherence allows reusing the computed order for subsequent frames.

With a high number of hair segments, there could be a significant lag when
the re-sorting is performed. This does not matter too much during modeling
but can be troublesome, for example, in games. The renderer presented in this
thesis is supposed to be used during modeling so this issue is not considered to
be crucial.

1.3.4 Order independent transparency

The Order Independent Transparency (OIT) denotes any technique that allows
rendering translucent surfaces without the need of the fragment sorting. An
example of such technique is the aforementioned Depth-peeling, see Section 1.3.2.
Those techniques are, however, usually either too slow or lack quality.
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The Occupancy maps method (described in section Section 1.5.5), which seems
fast enough and provides sufficient quality, requires that all fragments have the
same opacity. It computes color addition of every fragment in the fragment
shader. This allows alpha blending to be set as additive, which is commutative
operation and can be executed in any order, thus does not require fragment
sorting.

Stochastic transparency presented by Enderton et al. (2010) [6] is another
example of OIT technique. It is based on the so called Screen-door transparency
by Mulder et al. (1998) [7], which replaces semi-transparent surfaces with a set
of pixels that are either fully on or off. Enderton et al. shows an efficient way
of sampling those pixels and adds an alpha correction and accumulation pass,
all with massive use of modern hardware. However, images that are rendered at
interactive frame rates contain some noise. The main advantage of Stochastic
transparency is that it provides a unified approach to OIT, anti-aliasing, and
deep shadow maps.

1.3.5 Discussion

For my renderer, I used the sorting approximation method presented in Sec-
tion 1.3.3. The main reason for it is that I need the sorted geometry for deciding
line width (see Section 1.2.3). Sintorn and Assarsson (2008) [5] proposed a GPU
algorithm for fast approximate sorting based on quick sort, which could be a bet-
ter alternative to presented sorting method though. Implementation of the GPU
based sorting in my renderer remains a subject of future work.

Occupancy maps method requires hair fibers to have the same opacity, which
is too restrictive. Stochastic transparency technique looks promising but it is
not certain if an implementation of the stochastic transparency would give good
results for complex hair at interactive frame rates.

1.4 Light-scattering model of a hair fiber

Extensive research has been done in order to capture the light scattering of human
hair. This section provides an overview of some significant models that were
developed.

1.4.1 Kajiya-Kay model

The lighting model known as Kajiya-Kay model was presented by Kajiya and
Kay(1989) [8] and is formed by two components, the diffuse and specular. The
diffuse component is computed by adapting the Lambert shading model to an
infinitely thin cylinder. The specular component uses Phong light reflection model
that has been modified for cylinder surfaces.

The diffuse component

The diffuse component is an integration of a Lambert surface model along the
illuminated half of the cylinder. The result of the integration is a simple function
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Figure 1.14: Notation for Kajiya-Kay scattering geometry.

of angle θ (between the hair tangent t and the light direction l) given by:

Ψdiffuse = Kd · sin θ

where Kd is the diffuse coefficient. This computation does not take into account
self-shadowing of the hair fiber but the human hair is quite translucent so even
the shadowed area of the fiber transmits diffusely an amount of light that is
comparable to the amount reflected diffusely on the non-shadowed side.

The specular component

The specular component computation is based on the Phong specular model. It
exploits the fact that the reflection of a parallel beam from the cylinder surface
forms a cone centered on the hair axis, see Figure 1.14. The actual highlight
intensity is maximal if the eye vector is contained in the reflected cone and falls
off with Phong dependence:

Ψspecular = Ks · cosn (θ − φ)

where Ks is the specular coefficient.
The final fragment color is given by

FragmentColor = Ca + Ψdiffuse + Ψspecular

where Ca is the ambient color.
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1.4.2 Marschner model

Marschner et al. (2003) [9] presented a physically-based scattering model for hair
based on measurements of real human hair. The fiber is modeled as a translucent
elliptical cylinder with pigmented interior.

(1)

(2)

(3)

Figure 1.15: A schematic of Marschner model for a hair fiber. Shows three
different reflection modes.

It brings two improvements to Kajiya-Kay’s model. It introduced azimuthal
dependence into the fiber scattering model based on the ray optics of a cylinder
with tilted surface scales, and it shows three possible modes of reflection. The first
mode is a reflection on the hair surface and is also considered by the Kajiya-Kay
model. The second mode is a transmission through hair fiber, which produces a
bright component that is focused on the opposite side of hair fiber. In the third
mode, the light refracts to the fiber volume, reflects off the inside of the hair
surface and refracts back with shifted angle, see Figure 1.15. This makes two
visually distinguishable highlights.

Nguyen and Donelly (2005) [10] showed a real-time approximation of the
Marschner model by using a precomputed look-up texture.

1.4.3 Multi-scattering models

Multiple scattering between neighboring hairs can be observed especially in light
colored hair. The Kajiya-Kay model is accurate for black hair and Marschner
model is accurate for dark hair but both fail to capture multiple fiber scatter-
ing effects. Those effects are accounted for in model presented by Moon and
Marschner (2006) [11]. However, this method use photon mapping and cannot
be made interactive.

The dual-scattering model introduced by Zinke et al. (2006) [12] divides the
scattering function into global multiple scattering and local multiple scattering.
The global multiple scattering approximates self-shadowing properties of hair
considering the forward-scattered light through hair fibers through the light path,
while the local multiple scattering accounts for the scattering events within the
neighborhood of a hair fiber. The dual-scattering method can achieve interactive
times.
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1.4.4 Discussion

The light-scattering model used in my renderer is the Kajiya-Kay model. It
is mainly because this model can be easily and effectively implemented on the
graphics hardware. It is probably the most commonly used model for real-time
rendering and the quality of this model is sufficient for the interactive preview
during hair modeling.

1.5 Self-shadowing in hair

Even a very thin hair fiber casts a shadow, just like any object. A shadow from a
single fiber may be insignificant, but shadows in a dense volume of hair produce
a very distinctive effect. Self-shadowing creates important visual patterns that
distinguish one hairstyle from another, see Figure 1.16.

Hair exhibits complex light propagation, as each hair fiber transmits and
scatters the incoming light. It makes the shadow computation very difficult.

Figure 1.16: The difference between shadowed and non-shadowed hair. Note how
the shadows reveal the details of the hair shape.

1.5.1 Depth-based shadow mapping

Most commonly used techniques for hair self-shadowing are based on Depth-
based shadow maps (DBSM) presented by Williams (1978) [13]. In the first pass
of shadow mapping, shadow casting objects are rendered from the light’s point
of view, and the lowest depth values for each fragment are stored in a depth
map. During the final render pass, each fragment to be shadowed is projected
onto the light’s camera and the fragment’s depth is compared with the depth in
the shadow map. If the fragment’s depth is higher then the corresponding depth
value from the depth map, it means that the fragment is not visible from light,
thus shadowed.
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This approach has two main issues - the thin hair fibers and the translucency.
The problem with the thin geometry is very similar to one discussed in Section 1.2.
This is not surprising if we note that the shadow computation is just one instance
of the more general visibility computation problem. As showed in Section 1.2.3,
this problem can be overcame with the translucency. That brings us to the second
issue with shadow maps. The binary decision nature of the shadow mapping does
not allow translucent object to cast attenuated shadows. The fragment can be
either fully illuminated or fully shadowed.

Also, light-colored hair fibers do not fully block the incoming light, thus they
are translucent and it is impossible to capture their shadows by shadow mapping.

Depth-based shadow mapping can be effectively implemented on graphics
hardware, but its inability to compute shadows of translucent object makes it
unsuited for volumetric objects such as hair.

1.5.2 Deep Shadow Maps

Lokovic and Veach (2000) [14] presented a high quality self-shadowing method for
off-line rendering. For each texel of a deep shadow map a transmittance function
in the light direction is computed. Sampling of the transmittance function is
done by finding intersections with semi-transparent objects by shooting a ray
from the light position. Those samples are then compressed into a list of pairs of
transmittance and depth value.

The computation of a shadow value for a hair fragment is found similar to
shadow maps, but the depth of the fragment is used to evaluate the transmittance
function at the corresponding texel of the deep shadow map.

This technique produces very accurate results, but due to the underlying data
structure (linked list), an efficient hardware implementation is difficult to achieve.

1.5.3 Opacity Shadow Maps

Opacity Shadow Maps (OSM) by Kim and Neumann (2001) [15] is essentially
a simpler version of deep shadow maps that is designed for interactive hair ren-
dering. It exploits the fact, that the transmittance functions vary smoothly in
the hair volume. This allows an approximation by linear interpolation of fixed
number of samples, see Figure 1.17.

OSM use a similar principle as the one presented in Section 1.3.3. The hair
geometry is divided by the opacity maps, planes that are perpendicular to the
light direction and are identified by their distances from the light source. Each
texel of a map contains the line integral of densities along the path from the light
to the texel.

An opacity map can be efficiently rendered on graphics hardware by render-
ing the hair geometry from light’s point of view. A separate rendering pass is
performed for each opacity map with maximum depth for rendering set to the
corresponding depth of the opacity map. The computation of hair density is
performed by additive blending on graphics hardware.

In the final render pass, the actual light transmittance (τ) for a fragment (p)
is computed from linear interpolation of the corresponding texel values from the
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Opacity function Ω(d)

d

Figure 1.17: Hair volume divided by four opacity maps. Generated opacity maps
are shown on the right. The opacity function Ω(d) shown as blue curve is ap-
proximated by linear interpolation of values from these maps (red line).

adjacent opacity maps (Ω):

τ(p) = exp(−Ω(pz))

where pz is the depth of fragment p in light direction.
Depending on the number of opacity maps used, the quality of self-shadowing

can be much lower compared to deep shadow maps. Due to the interpolation of
the opacities between the maps, the result may contain visible artifacts on the
hair (Figure 1.18). In order to minimize those artifact, a large number of opacity
maps has to be rendered.

Figure 1.18: Visible artifact when 8 opacity shadow maps are used.

Nguyen and Donelly (2005) [10] showed how to render 16 opacity maps in a
single pass by using multiple render targets.

Sintorn and Assarsson (2008) [5] presented a way to increase the speed of
rendering a large number of opacity maps by sorting the geometry by depth from
light source (same principle as in Section 1.3.3). This way, the opacity maps can
be rendered in a single pass.
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1.5.4 Deep Opacity Maps

The Deep Opacity Maps (DOM) algorithm by Yuksel and Keyser (2008) [16] is a
further improvement of shadow maps for hair self-shadowing. It is a combination
of a DBSM (Depth-based shadow mapping) and OSM (Opacity Shadow Maps)
techniques. It requires much fewer map layers than OSM to produce an image of
hair without visible artifacts. Therefore, it is faster and uses less memory.

DOM uses two passes prior to the final hair rendering. First, the depth map
is rendered from the light’s position. The hair volume is then divided into slices
just like it is done in OSM algorithm. But this time, the depth of an opacity map
is not constant for all texels. Every texel in the map can represent an opacity
at a different depth. The depth of the texel in i-th map is computed as z0 +Di,
where z0 is value from the same texel in the depth map, and Di is the depth of
i-th opacity map. D0 = 0; Di − 1 < Di. The size of the spacing between the
opacity maps (Dk−Dk−1) does not have to be constant. Since z0 varies by texel,
the opacity maps take shape of the hair geometry see Figure 1.19.

Figure 1.19: Deep opacity map layers conforming to the shape of hair.

The second step renders the opacity maps using the depth map computed in
the first step. All opacity maps are rendered in a single pass. Which fragment falls
into which map is decided in the fragment shader. The z0 value for the fragment
is looked up from the depth map. The fragment’s opacity contribution is assigned
to opacity map Oi if: z− z0 < Di. Total opacity of an opacity map is the sum of
contributions from assigned fragments, efficiently computed by additive blending
on graphics hardware.

In the final rendering, the fragment’s light occlusion is computed in a similar
way as in OSM. The difference lies in the need to subtract the depth map val-
ue z0 from the projected fragments depth z in order to look up opacities from
corresponding opacity maps.

Each opacity map is represented as a channel in a texture. One channel is
reserved by the depth map. By enabling multiple render targets the number of
opacity maps that can be rendered is 4n − 1, where n is the number of draw
buffers.

With a small number of layers, it is more difficult to ensure that all hair
fragments are assigned to an opacity map. Points beyond the last layer do not
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correspond to any opacity map. We can ignore them, thus those points will not
cast shadows. Or we can add them to last opacity map. Then, they will shadow
themselves. Ideal solution would be to add another layer that will contain these
points but it would lead to unnecessary extra layers. The points beyond the
last layer are not expected to be strongly illuminated so the second options gives
reasonable results in most cases.

The most sensitive part of hair for self-shadowing is the fully illuminated
hair surface. The main advantage of DOM over OSM is that the illuminated
hair surface is rendered very accurately. For best results, the distance between
opacity maps should be linearly increasing from the first to last. It ensures that
the shadows in more illuminated areas of hair are computed more precisely.

The drawback of DOM over OSM is in the hardware filtering. Graphics hard-
ware can linearly interpolate texture values. OSM maps can exploit this feature
resulting in less aliased shadow edges. This is not possible with DOM maps, be-
cause an interpolated value between adjacent texels does not equal interpolated
value between adjacent fragments. Hardware texture filtering must be turned off
for Deep opacity shadow maps. Otherwise, visible artifacts on shadow edges will
appear. The filtering is possible in fragment shader but requires more texture
look ups (at least 2 look ups for every sample) and thus is much slower.

As showed in Figure 1.20, DOM produces much better self-shadowing than
OSM, when similar number of layers is used.

Opacity Shadow Maps
8 layers

Deep Opacity Maps
8 layers

3Delight

Figure 1.20: The difference between Opacity Shadow Maps and Deep Opacity
Maps. With 8 layers, the Opacity Shadow Maps contains visible artifacts.

1.5.5 Occupancy Maps

The Occupancy Maps, presented by Sintorn and Assarsson (2008) [17], show a
modification to DOM that improves sampling of the light transmittance function.
It uses several types of maps.

There are two depth maps; first captures the nearest fragments and second
captures the farthest fragments. It allows finding the exact length of the hair
volume for every texel in the light direction.
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Then, there are occupancy maps. The hair volume for every texel is divided
into N parts corresponding to N maps and each part is further divided into S
sub-parts, where S is the number of bits in occupancy map texture. If there is a
hair fiber fragment that falls into the i-th part and j-th sub-part, the j-th bit of
the i-th occupancy map is marked as 1. Each bit signify an opacity increase of
F
S

where F is the total number of fragments that falls into this occupancy map’s
texel. The F values are stored in so-called slab-maps, see Figure 1.21.

slab 0 slab 1 slab 2 slab 3

Dnear Dfar

Figure 1.21: Visualization of Occupancy maps.

Generating the maps

First, there are two render passes for near and far depth maps. In next pass,
the occupancy maps are created. The ideal format for occupancy maps is a four-
channel int texture with 128 bits total. The opacity values are computed in the
fragment shader, where the fragment’s relative depth is obtained as:

d =
frag.z −Dnear

Dfar −Dnear

The fragment falls to i-th occupancy map and j-th bit if:

i = bd ∗Nc

j = bd ·N · Sc − i · S

The final occupancy maps are given by using the bitwise-or blending operation
on the framebuffer.

Slab maps are generated in a similar way as deep opacity maps.
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Finding the depth order of the fragment

During the final rendering, the number of fragments that have lower depth than
fragment x can be computed as:

xo = (

xmap∑
i=0

Fi) + (

xbit∑
i=0

Bi,xmap) ·
Fxmap∑S

i=0Bi,xmap

xmap = bxd ∗Nc

xbit = bxd ·N · Sc − i · S

where Fi is the number of hair fragments in i-th slab map and Bi,j is the value
of i-th bit in j-th occupancy map.

The computed order can be used to compute the opacity for self-shadowing
as opacity = xo ∗ w, where w is the opacity of one hair fiber. It requires that all
fragments have the same opacity value.

The order can be also used for order independent alpha blending, see Sec-
tion 1.3.4. With additive blending enabled, the color of fragment is computed
as:

Cout = (1− α)xo · α · Cin

where Cin is the fragment’s color and α is fragment’s opacity. This computa-
tion assumes that all hair fibers have the same opacity.

Comparison with DOM

The Occupancy Maps (OM) can sample the light transmittance function more
precisely than Deep Opacity Maps. Where DOM uses linear interpolation be-
tween opacity maps, the OM uses occupancy maps between slab maps. The OM
can capture non-smooth attenuation of the transmittance function much better
than DOM (see Figure 1.22), but requires that all hair fibers have the same
opacity.

0.25 0.50 0.75 10
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depth
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Figure 1.22: Example of visibility function. Red is true visibility, blue is Deep
Opacity Maps approximation and green is Occupancy Maps approximation.
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1.5.6 Discussion

The self-shadowing technique used in my renderer is the Deep Opacity Maps
(discussed in Section 1.5.4). It provides sufficient quality and performance, and
does not require all hairs to have the same opacity (as OM), which is important
because the hair tip and hair root can have different opacity. Furthermore, the
opacity of a hair fiber also depends on the distance from the light camera plane
as described in Section 1.2.3.
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2. Implementation

This section will briefly discuss the architecture of Maya and Stubble, then it will
show the architecture of the presented renderer and finally, the implementation
details about individual aspects of rendering (as described in Chapter 1) will be
discussed.

2.1 Autodesk Maya

Autodesk Maya is a popular 3D animation software. Its feature set includes,
among others, tools for animation, modeling, simulation and rendering. It is
widely used in production of animated movies, television shows, video games and
other CGI content.

Maya’s architecture is designed to be very flexible in terms of adding new
functionality. The architecture is based on a database called the Dependency
graph. The functionality for modeling, animating, rendering and others, is hidden
in nodes of the Dependency graph. Nodes can have input and output attributes.
An output attribute of one node can be freely connected to an input attribute of
another node, as long as the attributes have similar data type. Each node can
modify input data or create new data and send it to next node. Some nodes can
perform special operations such as rendering.

New functionality can be easily added by implementing it into a new node
and connecting the node to the Dependency graph. This enables great flexibility,
but it also makes orienting in the Maya environment more difficult.

By combining a large set of nodes, complex scenes can be represented. There is
a number of basic types of nodes in Maya. Here are some of them for illustration:

• MPxDeformerNode - A deformer is node which takes some geometry
data on input and places modified data into the output geometry attribute.

• MPxEmitterNode - This nodes represents particle emitters.

• MPxSurfaceShape - This node defines shapes in Maya and produces ge-
ometry data.

• MPxHwShaderNode - A shader node that controls rendering to the
screen.

Maya provides two APIs for implementing new functionality. Python API and
C++ API. Both APIs provide similar means for developing new plug-ins, but the
C++ API runs faster and thus is more suitable when performance is required.

2.1.1 Viewport 2.0

Viewport 2.0 is an optional viewport that was introduced in Maya 2011 to provide
high-quality interactive preview of the scene. It is designed to improve perfor-
mance on large scenes and offer high-quality per-pixel lighting and effects. The
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geometry in Viewport 2.0 is cached when possible, which makes rendering, es-
pecially in large and complex scenes, much faster compared to rendering in the
default Maya viewport.

In Maya 2012, the Viewport 2.0 was significantly improved. It introduced
new effects such as anti-aliasing, motion blur, gamma correction, depth of field
and screen-space ambient occlusion.

I decided to use the Viewport 2.0 as it seemed to be better alternative to the
default viewport. The presented features were suitable for my renderer. However,
as it turned out, it brought some problems. See Section 2.3.2.

2.2 Stubble

Stubble is a plug-in for Maya for modeling hair styles. The hair styling is per-
formed by modifying hair guides. Final hair fibers are then interpolated from
those guides. The main goal of Stubble is to allow modeling of different hair
styles in Maya software and to export the generated hair geometry to an off-line
renderer.

Stubble was developed as a software project at the Faculty of Mathematics and
Physics, Charles University in Prague. It was successfully defended in January
2012. I was given the source code of the this project in order to implement
realistic and interactive hair renderer that will use the geometry generated by
Stubble.

The renderer that was initially included in the Stubble did not provide preview
of sufficient quality, which would allow 3D artist easy recognition of the hair style,
see Section 2.2.3. During modeling, the hair styling artist had to preview the hair
shape by using an off-line renderer, which is slow and ineffective for such task.

2.2.1 Implementation of Stubble in Maya

The hair generating functionality of Stubble is implemented in class HairShape,
which overrides Maya’s MPxSurfaceShape class. It means that the Hair-
Shape is a node in Dependency graph that defines a shape. It has an input
attribute, which is connected to another shape node with output mesh attribute.
The hair root positions are then generated on surface of the given mesh. Another
input attribute of a HairShape is connected to the Time node for animation
purposes. Other attributes are fetched from the Maya UI.

From Maya’s point of view, the HairShape is a black box that accepts some
attributes, knows how to draw itself and how to respond to selection requests.
The internal data and process of hair generation is not known to Maya.

2.2.2 Hair generation in Stubble

The hair geometry generation is done in the HairGenerator class. For com-
munication with a renderer, this class needs two other classes, which implement
interfaces PositionGenerator and OutputGenerator respectively. Since
every renderer may require different data types of geometry and other properties
(such as color), each renderer has different implementation of those interfaces. It
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uses class HairProperties, which provides access to various properties of the
generated hair (for example scaling or randomization).

The PositionGenerator interface serves for generation of the root hair
positions on a given mesh. It samples UV coordinates of the mesh and pro-
duces UVPoints. Those are supplied to Mesh object, which will calculate a 3D
position in the world space.

The OutputGenerator interface is used as a proxy between HairGener-
ator and the renderer. Individual generated hairs are sent by HairGenerator
to OutputGenerator, where the geometry of whole hair is stored. Which da-
ta are stored depends on the renderer’s requirements and the implementation.
OuputGenerator then provides methods that will enable the renderer to ac-
cess stored data. Those are:

• Positions: Each hair fiber is defined by a number of hair points, which the
hair curve goes through. Those points are represented by position in 3D
world space. Every hair has the same number of hair points. That number
can be changed in user interface.

• Colors: Each hair point has a color assigned in RGB. The color is inter-
polated between consecutive hair points.

• Opacities: Similar to color, opacities are assigned to hair points and in-
terpolated.

• Widths: Widths are also defined for every hair point.

• Normals: Normal can be any vector perpendicular to the curve tangent.

• Hair index: Unique identifier of hair fiber.

• Strand index: Several hairs can be generated around a main hair fiber.
Those hairs form together one hair strand. This property is unique identi-
fication of such strand.

• Hair UV coordinates: Texture UV coordinates corresponding to the hair
root position on the mesh.

• Strand UV coordinates: UV coordinates of the position on where the
main fiber of a hair strand starts to grow.

Each of these properties must have data types defined by the class that im-
plements the OutputGenerator. For example position is an output with type
PositionType. The OutputGenerator has a template argument which must
be the class defining these types.

The generating of a large number of hairs can be quite slow. In order to
speed it up, the hair is divided into several hair groups, which are generated in
parallel via OpenMP. Each of this group has its own set of data for hair gener-
ation stored in class ThreadData. In this class exists one instance of Hair-
Generator, OutputGenerator and PositionGenerator. The number of
groups is defined by number of system threads (queried by OpenMP’s method
omp get max thread).
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2.2.3 Default interactive renderer in Stubble

The Stubble has an interactive renderer that can draw hair geometry in Maya’s
default viewport. It uses a non-rotating ribbon representation. As stated in
Section 1.2, it has some crucial issues. Firstly, the hair width does change with
rotation of camera. Secondly, it suffers from severe aliasing, especially with thin
hairs.

The renderer does not solve the problems with transparency sorting, light-
scattering model and self-shadowing. Therefore, the resulting images from this
renderer do not provide a preview of sufficient quality, which would help with
accurate hair modeling, as shown in Figure 2.1.

default Stubble
renderer

my new
renderer

reference by
3Delight

Figure 2.1: Default Stubble renderer fails to provide a plausible preview of hair.

The renderer is implemented in MayaOutputGenerator, which imple-
ments interface of OutputGenerator. During the hair generation process the
hair ribbons are created, and when needed, drawn to the Maya default viewport.
The hair is renderer in OpenGL as colored triangles without any light computa-
tion.

2.2.4 RenderMan and Stubble

RenderMan is an API developed by Pixar for high-fidelity rendering of 3D scenes.
It is widely used as a rendering tool in the film industry. Hairs from Stubble can
be rendered in 3Delight, which is an implementation of the RenderMan API. The
huge advantage of 3Delight is that its version called 3Delight for Maya can be
loaded to Maya as plug-in. Thus, it is easy to render Maya scenes with 3Delight
through Maya user interface.

The hair geometry generated by Stubble is not, however, sent to 3Delight
directly in the Maya environment. Instead, 3Delight, before rendering, loads a
dynamic library, which generates hair geometry for it. That library is called Stub-
bleHairGenerator.dll. It is basically an implementation of the HairGenerator,
PositionGenerator and OuputGenerator mentioned above with the ad-
dition of few methods for communication with 3Delight. The required properties
from Maya (such as color) are saved by the Stubble plug-in loaded in Maya to a
file, and then read by the StubbleHairGenerator.dll loaded in 3Delight.
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2.3 Architecture of the presented renderer

In this section, I will discuss the architecture of my renderer and its connection
to the Maya Viewport 2.0 and Stubble.

2.3.1 Rendering in Viewport 2.0

Custom rendering is done in Viewport 2.0 by registering a draw override for an
existing node. It can be either a shape node or a shader node. There are also some
other overrides like geometry override or render override. Details are presented
in Viewport 2.0 API reference paper1.

The shader can be attached to any shape node in the scene, modifying the way
how the shape would be drawn. If the shader override (MPxShaderOverride)
is registered to a shape node, it will take control of the rendering in the Viewport
2.0. The shader is supposed to only add a shading effect to the shape and does
not have a direct access to the shape’s geometry data.

The shape override (MPxDrawOverride) can replace the rendering logic
in a shape node. The MPxDrawOverride class can obtain a pointer to the
shape node, which allows easy access to the geometry data and other properties.

My renderer is based on the shape override because it renders only one specific
shape. The shader node override is useful for adding a specific effect to a generic
shape.

In order to override a shape node, it is necessary to implement a class that
derives from MPxDrawOverride and register that class with MDrawReg-
istry against a classification string for the shape node. The derived class must
implement several virtual methods:

• creator - Static class that returns a new instance of the derived override
class.

• boundingBox - Returns the bounding box of the rendered geometry.

• prepareForDraw - This method prepares data for rendering and saves
it to a class derived from MUserData. That class is then sent to draw
method. prepareForDraw is called for each screen refresh before rendering.

• draw - This static class is called by Maya whenever an overridden shape
needs to be redrawn. It cannot access Maya’s Dependency graph. The only
non-static data it gets is through its parameters. First is of type MDraw-
Context and provides informations about the rendering context. This
means viewport properties, light properties, world and projection matrices
and GPU state informations. The second parameter is a constant pointer
to the data class that was prepared in prepareForDraw.

2.3.2 Problems with Viewport 2.0

The Viewport 2.0 is relatively new. It was introduced in Maya 2011 and was heav-
ily reworked in Maya 2012. As such, there is not a lot of documentation available.

1http://images.autodesk.com/adsk/files/viewport_2_0_api_gold.pdf
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Except not very detailed Maya API reference, there is a short introduction paper
and a few simple examples of basic usage 2.

There is also some strange functionality in Viewport 2.0. For example, if
the draw override is registered against a shape node, it stops receiving input
attributes as it should. This issue causes the hair geometry to stay in a position
even if the mesh to which the hair is attached, moves. I did not find a way how
to solve this issue.

Another problem arises from the fact that there is no way (or at least I did
not find one) of influencing the render order in which is the Viewport 2.0 draw
override executed. This may cause problems, when there are more translucent
objects in the scene.

All these things make the development in Viewport 2.0 rather difficult. It will
probably take some time before the Viewport 2.0 will be normally usable.

2.3.3 Shader programs

Shaders are small specialized programs that are executed on the graphics pro-
cessing unit (GPU). I use two types of shader programs in my renderer: vertex
shader and fragment shader. The shaders are written in OpenGL Shading Lan-
guage (GLSL). The main reason for that is that this language is supported by
most graphic cards and works well in OpenGL.

Vertex shader is executed in the GPU for every vertex before the rasteriza-
tion. It is responsible for transforming the vertex from the object space into the
clip space. It can also modify the color, normal, texture coordinates, and other
parameters that are assigned to the vertex.

Fragment shader is executed after the rasterization and its main responsibility
is to compute a color of the fragment. It can also modify the depth value of the
fragment. The fragment shader has access to texture units.

Shaders for opacity map generation

Shaders for opacity map generation are named DeepOpacityMaps. The vertex
shader DeepOpacityMaps.vert, besides transforming vertex into clip space, also
transforms vertex to the depth map texture space. This transformed position is
later used in fragment shader for accessing the depth map. The alpha value of the
vertex is modified according to the line width correction, see Section 2.4. Frag-
ment shader (DeepOpacityMaps.frag) outputs opacity values to opacity maps.
For more details please refer to Section 2.7.2.

Shaders for final rendering

In the final rendering, the KajiyaKay shaders are used. There are four pairs
of vertex and fragment shader programs and each of those pairs is used when
different number of lights illuminates the hair (up to four). It is because of the
architecture of the GPU. Shader programs are massively parallelized and work
very efficiently if there is minimal branching in the program. If varying number
of lights would be used in a shader program, it would include branching. Such

2http://download.autodesk.com/global/docs/mayasdk2012/en_us/index.html
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program would run much slower with a single light than specialized one-light
shader. Details about multiple light implementation are discussed in Section 2.5.3

The KajiyaKay vertex shader is similar to the DeepOpacityMaps vertex shad-
er. It computes vertex transformation to the clip space and texture space and
computes line width correction. Fragment shader computes Kajiya-Kay light
model for the fragment and applies shadow. For more details please refer to
Section 2.7.

2.3.4 HairDrawOverride

The HairDrawOverride class is the heart of the renderer. It derives from
the MPxDrawOverride and is registered at the plug-in start-up against the
Stubble hair shape. HairDrawOverride also overrides some virtual methods
of MPxDrawOverride, which are then called directly from Maya. The main
responsibilities of this class are:

Initialization

Whenever a Stubble HairShape node is created, the HairDrawOverride
class is instanced and initialized. During that process, the context for shaders is
created.

Next step is to compile the shader programs. Those programs are located
in Maya Directory/bin/glsl alongside other Maya shader programs. Lastly, the
parameters for those shader programs are bound.

The initialized properties are static and shared by all instances of Hair-
DrawOverride. It means that the initialization process is done only once for
all instances. The HairDrawOverride class keeps the number of instances
and when the last instance is destroyed, the shader context is destroyed too.

Pre-draw preparation

When a screen refresh is required and the HairShape node needs to be redrawn,
the prepareForDraw method is called by Maya before the rendering begins. In
this class, the data needed for drawing the HairShape is prepared. It is done
by filling the DrawData class. This class serves as a storage for render-related
data, is derived from MUserData and handled by Maya. The DrawData class
is instantiated in the first call of prepareForDraw. The destruction of this class
is done after the HairShape node is destroyed and is handled by Maya. The
DrawData class is sent as constant pointer to a draw function, which will be
described later.

During the pre-draw preparation there are several tasks that need to be done:

• Get additional hair shader properties from UI.

• Get hair geometry data from the Stubble hair generator. See Section 2.3.5.

• Sort the hair geometry by depth from camera plane. See Section 2.5.1.

• Generate OpenGL buffer objects from sorted hair geometry for rendering.
See Section 2.3.5.
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• Update lights from Maya and shadow maps. See Section 2.7.

Final hair drawing

The final drawing takes place in draw method. As stated before, it receives a
constant pointer to an instance of DrawData as a parameter. It also receives
a constant reference to the Viewport 2.0 draw context, which is used to get
modelview and projection matrices, and viewport properties such as resolution,
and near and far depth boundaries.

The draw method sets up transformation matrices, OpenGL attributes, shad-
er parameters, computes line width, and pixel width (see Section 1.2.3), binds
OpenGL buffer objects and shadow map textures and draws the geometry. The
geometry is drawn by the bins, in which the sorted geometry is stored, from back
to front from camera plane, see Section 2.5.1.

2.3.5 HairModel

Figure 2.2: Class diagram of HairModel.

This class stores and manages all data regarding the hair geometry. The raw
geometry data is obtained during pre-draw stage in prepareForDraw method. In
this method, a reference to the HairModel object is sent to Stubble’s Hair-
Shape class. Here is decided whether the hair representation is set to lines or
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ribbons, see Section 1.2. From the HairShape class, the HairModel refer-
ence is sent to the InterpolatedHair class, which manages hair generation in
Maya. In the InterpolatedHair, the HairModel object gets a pointer to the
raw data, which is obtained from MayaOutputGenerator, see Section 2.2.2.
Figure 2.3 illustrates the data flow of this process.

Figure 2.3: Data flow diagram for obtaining raw geometry data from Stubble.

The raw data is divided into one or more parts. The number of parts depends
on the number of threads that generated hairs, see Section 2.2.2. Each part is, in
fact, independent hair geometry and contains arrays of hair vertices and indices.

Vertex and index arrays format

Vertices are stored in an array of floats. Each vertex has 4 floats for color with
alpha value in RGBA format, 3 floats for hair tangent, and 3 floats for vertex
position. That means that the size of the vertex array is 10∗number of vertices.
Number of vertices equals number of hair points for line strip representation, and
2 ∗ number of hair points for ribbon representation. Number of hair points is
a number of hairs ∗ (number of hair segments + 1) (can be changed in UI).
Vertices are stored sequentially with starting vertex corresponding to hair root
point of the first hair, and continuing to hair tip, followed by next hair.

Index array defines which vertices are connected together in order to create
a line or triangle. Individual indices are represented as unsigned integers. Each
integer defines a position of a vertex in the vertex array. Since the hair vertices
are stored sequentially, the index array for a line strip representation and 4 hair
segments looks like 0112233455667 etc. Each pair of values represents index of two
vertices that are connected to a line. The ribbon representation uses triangles,
and how the indices are sequenced is shown in Figure 2.4.
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Figure 2.4: Index array for ribbons is stored as 320013542235 etc.

Pointers to vertex and index arrays are copied to a structure called Thread-
HairData. One instance of this structure contains pointers to arrays from one
part of hair geometry that was generated by one thread. Besides those arrays,
a number of hairs, a number of elements, a number of vertices, and an array of
numbers of vertices in individual hairs is stored. An array of ThreadHairData
structures that together contains whole geometry, is stored inside the HairMod-
el.

Vertex and index buffer object division

Vertex buffer object (VBO) and Index buffer object (IBO) is an OpenGL buffer
that allows vertex (resp. index) array data to be stored in high-performance
graphics memory on the server side. When the buffer objects are generated, it
is relatively easy to render the geometry contained in them. First, the buffers
must be bound. Then the format of vertex array must be specified. Finally, an
OpenGL method for drawing with parameters that tells the GPU which draw
primitives to use and number of elements to draw, must be called. GPU then
reads the geometry data from the internal memory, which is very efficient.

The geometry data must be, however, divided into a number of parts in order
to render hair properly. As stated above, the vertex and index arrays are divided
into several parts depending on the number of threads that generated the hair
geometry. Let’s call that number threadCount. But that is not all. As mentioned
in Section 2.5.1, the hair geometry is divided into a number of bins based on the
distance from camera plane.

The vertex data can stay in the arrays as it was divided during hair generation.
The number of vertex arrays is therefore equal to threadCount.

The index data must be divided into more arrays. Each part that was generat-
ed by a single thread is further divided into a number of parts that is equal to the
number of sort bins. The final number of index arrays is threadCount ∗ number
of sort bins, which can be quite high (1024 on a quad-core processor).

The algorithm for rendering can be summarized as follows:

2.3.6 Lights

The Lights class is responsible for storing the data of lights that are placed in a
Maya scene. Every time the HairShape is asked to redraw itself, the method
updateLight is called from prepareForDraw.
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for each sort bin i, starting with the farthest
for each system thread t

- bind vertex buffer corresponding to thread t
- bind index buffer corresponding to thread t and bin i
- draw bound geometry

end for
end for

Figure 2.5: Loop for rendering hair geometry.

The Lights class contains an array of instances of Light class. Each of those
instances represents one light object from Maya. There are several types of light
that can be represented by the Light class.

• Directional light - is an oriented light with an origin at infinity.

• Point light - is a light placed in 3D world that lights to all directions.

• Spot light - is a light placed in 3D world that lights to a directions limited
by light cone. Those directions are defined by a direction vector and a light
cone angle.

Ambient lights, producing light from all directions, are not saved as separate
Light objects, but just as single color, where all ambient light contributions are
summed to.

The Light class is also responsible for generating the shadow maps. If any
change that affects shadow maps is done to a light, the corresponding shadow
maps are updated. For more details on shadow maps generation please refer to
section Section 2.7.

2.4 Implementation of hair fiber representation

As was mentioned earlier, the renderer provides two graphical hair fiber represen-
tations to chose from: the line strip and the ribbon. The ribbon representation
is not very interesting so I will focus only on discussing the line strip implemen-
tation.

To draw the hair fiber with a line strip correctly, it is necessary to compute
the line width and addition to the pixel color as described in Section 1.2.3. The
width is computed before drawing. As stated in Section 2.3.5, the hair geometry
is rendered by sort bins from back to front. Before rendering each bin, the width
of all lines in the bin is computed. The lines in one bin have very similar distance
from the camera plane and since the line width depends on the same distance, the
one width, that is set for all lines in the bin, is very accurate for each individual
line. The rendering loop with the line width correction is illustrated in Figure 2.7
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Figure 2.6: Class diagram of Light.

When rendering opacity shadow maps Section 2.7, it is not so easy to set the
line width. There are no bins that are sorted by distance from light. Fortunate-
ly, the opacity maps are not so sensitive to inaccurate computation of the line
width. For plausible results, it is sufficient if the distance during the line width
computation is set as a distance between the hair model center and the light
position.

Note that the maximum line width that can be set depends on the hardware
implementation. According to OpenGL capabilities database 3, the maximal
width can be 63 pixels on most ATI cards and 10 on most nVidia cards.

The color addition of a thin hair fiber is set by modification of alpha com-
ponent of line vertex color. The final color of individual pixels on the screen is
computed by the hardware alpha blending.

The modification of alpha is computed in GPU vertex shader. The vertex
shader is a small program that is executed whenever a GPU is processing a
vertex. The main purpose of vertex shader is to transform a vertex from object
space to clip space for a rasterizer, but can modify some of the vertex properties
as well.

The computation of the alpha modifier is executed in the vertex shader and
requires to find the distance between the vertex and the camera plane. This
can be easily done by multiplying the vertex position with the modelview matrix.
After the multiplication, the camera position will be in the origin and the distance
between the vertex and the camera plane will be the z coordinate of the vertex
position. Note that this computation is accurate even for opacity shadow maps.

During the rasterization of the line segment, the color with modified alpha
is linearly interpolated into fragments (potential pixel color additions) and then
blended to final pixels.

3http://feedback.wildfiregames.com/report/opengl/
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for each sort bin i, starting with the farthest
for each system thread t

- get the depth of the first bin Dmin and length of a single bin d
- compute the depth Di of the bin i as Dmin + d · i
- compute the width of a pixel P3dw

- get the width of a hair fiber Fw from user interface
- compute the width of hair fibers Wi in bin i from P3dw, Di and Fw

if Wi ≥ 1
- set line width for rendering to Wi

else
- set line width for rendering to 1

end
- bind shader TODO
- set P3dw and Fw as parameter for vertex shader
- render segments in bin i

end for
end for

In vertex shader:
if primitive = line strip

- compute the distance Dv from the camera plane to currently processed vertex
by multiplying the vertex postion with modelview matrix

- compute line width correction coefficient Wcoef

if Wcoef ≤ 1
- modify the alpha value Ca of the vertex as Ca = Ca ·Wcoef

end if
end if

Figure 2.7: Rendering with the line width correction.

2.5 Implementation of hair alpha blending

2.5.1 Hair sorting

As discussed in Section 1.3.3, the sorting of hair geometry is required in order
to achieve correct alpha blending (unless some order independent transparency
technique is used).

The hair sorting takes place in the HairModel class and is executed in the
pre-draw stage (see Figure 2.8 for pseudo-code), if the vector from the camera
position to the hair model center has changed significantly (the cosine of angle
between old and new vector is lower than a constant set to 0.95), or if the hair
model has changed. This improves performance for scenes where the camera
position or the hair model does not change rapidly.
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The volume that is being divided into bins is defined by the hair geometry
bounding box. The first bin starts at the closest point of the bounding box and
the last bin ends at the farthest point. This way, it is ensured that all hair
segments are assigned to a bin and the bins are reasonably small.

The line segment can overlap over multiple bins, but is always assigned to a
bin by its farther vertex position. The bins themselves contain a pair of indices
that form an assigned line segment (or 6 indices in case of ribbon representation).
One bin creates one index buffer object as described in Section 2.3.5.

The geometry is divided into several parts, depending on the number of system
threads, before hair sorting, as discussed in Section 2.2.2. It allows easy paral-
lelization of the sorting algorithm. Each thread can sort each part separately,
resulting in very good scalability. See Figure 3.5.

clear all sort bins
parallel for every system thread t

for every hair h
for every segment s of hair h

- compute the depth of the end points of segment s
- using the larger depth, compute the bin index i
- add vertex indices of segment s to the bin i

end for
end for

Figure 2.8: Hair geometry sorting.

During rendering the hair, the update of depth buffer is disabled. It means,
that not a single hair’s fragment is discarded due to being covered by another
hair fragment. Depth buffer test must be enabled so the hairs can be covered by
opaque objects that are in front of them and are drawn earlier.

There is one more problem however. Normally, opaque objects are drawn first
followed by depth sorted transparent objects. This cannot be easily enforced in
Maya. The draw overrides in Viewport 2.0 are executed after opaque rendering,
but there is no way to ensure the correct order of rendering for overrides (at
least for MPxDrawOverride). This means that if there are more transparent
objects in the scene, there is no guarantee that the rendering will be executed in
correct order.

2.5.2 Pre-muliplied alpha

The color of a fragment can be stored in RGBA format with either a conventional
alpha or with so-called pre-multiplied alpha. The first one has a color stored in
RGB components and alpha - representing transparency of the fragment, in A
component. Standard blending (sourceColor ∗ sourcAlpha+ destinationColor ∗
(1− sourceAlpha)) of color C with a background color B is then:
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Crgb · Ca +Brgb · (1− Ca)

The color with pre-multiplied alpha is stored as (R
A
, G
A
, B
A
, A) and the blending

with settings (sourceColor ∗ 1 + destinationColor ∗ (1− sourceAlpha)) is:

Crgb +Brgb · (1− Ca)

This looks theoretically the same, but there is a difference in implementation
because the color of a fragment must be clamped to an interval [0, 1]. Let’s
imagine a very transparent fragment that is lit by a strong light. If the vector
from light to the fragment is perpendicular to the fragment normal, the diffuse
component of color is usually computed as Lc · Li · C, where Lc is the incoming
light color, Li is the light intensity and C is the color and alpha of the fragment,
see Section 1.4.1.

Let’s say that the C = {0.8, 0.7, 0.4, 0.3} (blond), Lc = {1, 1, 1} and Li =
3. With conventional alpha, the color value of the fragment before clamping is
{2.4, 2.1, 1.2, 0.3}. After clamping, the color is {1, 1, 1, 0.3}. When blended to
a black background, the final color is {0.3, 0.3, 0.3} which is dark gray and not
highly lit transparent blond as it should be.

With pre-multiplied alpha, the color before clamping is {0.72, 0.63, 0.36, 0.3},
same as after clamping and blending to black background. This result is certainly
much better than with the conventional alpha, see Figure 2.9.

standard
alpha

pre-multiplied
alpha

3Delight

Figure 2.9: Strongly illuminated hair. Shows difference between the standard
alpha and the pre-multiplied alpha.

The disadvantage of pre-multiplied alpha is that is does not work with the
hardware line anti-aliasing. The hardware anti-aliasing requires the blending
to be set to a standard sourceColor ∗ sourceAlpha + destinationColor ∗ (1 −
sourceAlpha). Otherwise, the rendering of anti-aliased lines does not give correct
good results.

The final implementation uses pre-multiplied alpha because it produces more
accurate results. Anti-aliasing can be achieved by enabling multi-sampling in
Viewport 2.0.
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2.5.3 Multiple lights

When computing a color of an object that is illuminated by multiple lights, it is
possible to compute color additions from every single light and sum them together.
It can be done per fragment in fragment shader or by rendering the object multiple
times with additive blending. The final color of an object illuminated by two lights
is:

Crgb = (C1rgb + C2rgb) · Ca +B · (1− Ca)

This can be easily done in the fragment shader by summing gains from each light.
However, the parameters for all lights have to be uploaded to the fragment shader
before rendering. Besides parameters like color, intensity or position, the opacity
maps and depth maps must be uploaded. Those maps are 2D textures and the
number of textures that can be uploaded to a fragment shader is limited and
depends on the graphics hardware implementation. According to OpenGL capa-
bilities database 4, that number is usually 16 on a modern consumer hardware.
Each light, in order to cast shadows, needs 4 textures in the current implemen-
tation of the renderer. It means that the maximum number of lights that can be
computed in the fragment shader is 4.

The rendering with multiple passes with additive blending is not limited to
the number of lights. However, it is not usually possible to simply draw the
hair once with standard blending and then start to draw it again with additive
blending, while illuminated by another light. The additive blending would add
full color of every single hair fiber without being covered by other fibers so the
result will be far too bright. Note that this technique would be correct if each
hair fragment would have had correct color addition computed before blending,
as described in Section 1.3.4.

Solution to this problem would be to blend the gains from all lights for every
hair segment separately. This method is, however, way too slow. Another ap-
proach is rendering the hair with standard blending to an off-screen texture, and
then blending this texture to the screen with additive blending. This works well
but the screen depth buffer must be copied when rendering to an off-screen tex-
ture, which slows down the process. Also, when using hardware multi-sampling,
the hair must be rendered into a multi-sampled texture, which cannot be simply
bound to an object and blended to the screen. The multi-sampled texture could
be down-sampled into another off-screen texture by the framebuffer blitting, or
the down-sampling could be done in shader. Both methods cost some additional
time for rendering.

The final implementation uses both the rendering with multiple passes and
the computing of multiple lights in the fragment shader. It renders with as many
lights as possible in the KajiyaKay fragment shader in one pass, and if some more
light gains needs to be computed, additional render passes are executed. On a
common consumer 3D hardware, 4 lights can be processed in the fragment shader
so the number of render passes is a quarter of the number of lights.

4http://feedback.wildfiregames.com/report/opengl/
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2.6 Implementation of light model

The Kajiya Kay light model is implemented in the KajiyaKay fragment shader.
The color of each fragment is computed as described in Section 1.4.1 and then
multiplied by alpha to get the pre-multiplied alpha RGBA format as discussed in
Section 2.5.2.

2.6.1 Light model in 3Delight

The free 3Delight distribution does not have any shaders for hair. Every available
shader I tried did not look realistic on hairs, see Figure 2.10. Therefore I imple-
mented, with a collaboration with a Stubble developer Martin Šik, the Kajiya
Kay shader for 3Delight.

3Delight with default
anisotropic shader

3Deligh with
Kajiya-Kay shader

Figure 2.10: Hair rendered with 3Delight’s default anisotropic shader is too dark.

Whenever 3Delight renders a Maya shape with a Maya shader, it tries to find
a corresponding 3Delight shader in its directory. If a 3Delight shader is found, it
is compiled and used for rendering.

In order to tell 3Delight which shader to use, I had to implement a proxy
Maya shader. That shader does nothing in Maya, but if it is attached to some
Maya shape, the 3Delight will use the corresponding shader to render the shape.
The proxy shader is named Stubble3DelightShader and is automatically attached
to a Stubble HairShape node at creation. The 3Delight shader is named Stub-
ble3DelightShader.h and is located in 3DelightDirectory/maya/rsl.

2.7 Implementation of Deep Opacity Maps

As mentioned in Section 2.3.6 na lights, the opacity maps are managed by Light
class. The maps are not generated for every frame, but only when the light
changes position or direction, or hair model is changed.
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2.7.1 Setting camera matrices

The first step is to compute the camera viewmodel and projection matrices for
the light. Those matrices differ depending on whether the light is directional or
positioned (point light and spot light).

Since the directional light does not have a position, the position of the camera
is set to be on the line that has the same direction as the light direction and pass
through the hair model center. The projection matrix is orthogonal, which means
that the viewport frustum has a shape of a box.

The point or spot light uses a projective projection so their frustum is a culled
pyramid. The position of the camera is the same as the position of the light in
this case.

The viewport frustum is set to be a minimal frustum that contains the bound-
ing box of the hair model. The smaller the frustum is, the more detailed opacity
maps can be rendered. The whole hair geometry must be inside the frustum or
a part of the hair will not be correctly shadowed. Note that if the light position
is inside the bounding box of hair geometry, the shadows will never be correct.

2.7.2 Rendering maps

All maps are rendered into a 2D textures. In order to render to a texture, the
framebuffer object (FBO) is created. A FBO allows to attach a texture to it and
then, if the FBO is bound, all the rendered pixels are not displayed on the screen,
but saved to an attached texture.

There can be more attached textures than one. The actual maximum number
of textures that can be attached depends on the hardware implementation. On
most modern graphic cards, there can be 8 color textures, a depth texture and a
stencil texture attached to a FBO.

In the first render pass, the depth texture is generated. It is then bound
during the second pass to generate opacity maps as described in Section 1.5.
Every individual opacity map is saved in one texture channel. The RGBA textures
have 4 channels and there are 8 opacity maps rendered in current implementation
so it takes two RGBA textures. One more is needed for depth map but depth
texture has only one channel.

For opaque objects, there is another depth map. The Deep Opacity Maps
cannot sample the light transmittance function very well if it is not smooth. If
there is some opaque object in the maps, it will make a sudden drop of the
light transmittance function and fragments that are closely in front of the opaque
object will be shadowed too strongly. Therefore, opaque objects are handled
separately by Shadow Mapping, see Section 1.5.1.

The size of each channel of an opacity map is set to 16 bits. The standard
8 bit channel is not sufficient as it can have only 256 values. It means that 256
hair fibers would make the maximal shadow. The fibers can also have different
opacity so it would not be possible to encode the sum of fiber opacities in 8 bit
accurately.

During the second pass, the actual opacity maps are rendered. In the Deep-
OpacityMap fragment shader, fragments are assigned into individual opacity
maps, based on their depth. The fragment shader is well optimized for vec-
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tor operations, but is slower if the program is branched. With this in mind, the
assigning of fragments into opacity maps is done like this:

−−−−−−−−→
MapColors = max(0, sign(

−−−−→
depths− Z)

Z = fragz −Dz

where
−−−−−−−−→
MapColors is a vector of maps in one texture,

−−−−→
depths is a vector of

relative depths of those maps (predefined), fragz is the depth of the fragment
and Dz is the value from the depth map.

The opacity of a single fragment depends on the fragment’s alpha, which
is a hair fiber opacity modified according to the fiber width, see Section 2.4.
Fragments that fall into one opacity map are summed by additive alpha blending
to create the final opacity map.

2.7.3 Final hair rendering pass

In the final hair rendering pass, the depth map with opacity maps are bound and
accessed by the fragment shader. In order to compute the light transmitted to a
fragment, we need a matrix that transforms a point from the world space to the
opacity texture space. That matrix is computed during opacity map rendering
and is a light’s modelviewMatrix ∗ projectionMatrix ∗ biasMatrix (let’s call it
opacity map matrix). modelviewMatrix ∗ projectionMatrix transforms a point
from the world space to the clip space. In the clip space, the point that is on
the left up corner of the screen has x, y coordinates (−1, 1). The point at the
left up corner of a texture in the texture space has x, y coordinates (0, 1). The
aforementioned biasMatrix transforms the clip space into the texture space.

When a vertex is multiplied by the opacity map matrix, the resulting x, y
coordinates corresponds to the opacity texture UV coordinates and resulting z
coordinate corresponds to opacity maps depth. The multiplication of a point and
an opacity map matrix takes place in the vertex shader and the final coordinates
are interpolated for every fragment. With those coordinates, it is relatively easy
to interpolate the light transmittance from opacity maps.

The implementation of the light transmittance computation from opacity
maps is inspired by work presented by Nguyen and Donelly (2005) [10], but mod-
ified to work with the deep opacity maps. As stated above, a shader program
works more efficiently if there is no branching. So the transmittance is computed
as follows:

−−−−−−−−−−−→
OpMapWeigths =max(0, 1− (max(0, (

−−−−→
depths− Z) ·

−−−−−−−−−−−→
invDepthDeltas)

+max(0, (Z −
−−−−→
depths) ·

−−−−−−−−−−−−→
invDepthDeltas′)));

where
−−−−−−−−−−−→
invDepthDeltas are inverse differences of relative map depths and−−−−−−−−−−−−→

invDepthDeltas′ are those inverse differences shifted one component forward
(similar to >> bit operation).

Opacity = dot(
−−−−−−−→
MapV alue,

−−−−−−−−−−−→
OpMapWeigths);

where
−−−−−−−→
MapV alue are values from deep opacity maps.
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The transmitted light coefficient is given by:

L = exp(Opacity)

The final color of a fragment is given by:

Cout = CKajiya−Kay · L

where CKajiya−Kay is the color which is computed by the Kajiya-Kay shading
model.

46



3. Results

This chapter shows the results of the presented renderer. The first section reveals
the testing environment. In the second section, the performance of individual
renderer’s parts is shown and discussed, and the final section presents visual
results of the renderer compared to the results from 3Delight.

3.1 Testing environment

The machine used for the testing was a quad-core AMD Phenom X4 955 3.2
GHz, 4GB DDR3, ATI Radeon HD 5770 1GB GDDR5. The renderer ran on OS
Windows 7 64-bit in Autodesk Maya 2012 64-bit and the reference images were
rendered in 3Delight for Maya 6.0.17 free license version (uses only 2 cores).

3.2 Performance

This section will show measured performance of the individual renderer’s parts.
The time required for performing GPU-related tasks was measured by OpenGL
timer query 1. The hair segment sorting, which runs only on CPU, was measured
by QueryPerformanceCounter.

The scene used for testing is a flat plane with hairs growing out of it, see
Figure 3.1. The hairs are quite thick so the ribbon representation does not suffer
from the aliasing too much and the number of fragments that are drawn with
the ribbon and line strip are similar. Note that with thin hairs, the ribbon
representation is significantly faster than the line strip representation, because
the number of fragments drawn by the ribbon representation is lower. However,
the resulting image does not correspond to the reference image. The shader for the
Kajiya-Kay lighting model computation is enabled. The resolution of rendered
images is 1024×1024 and self-shadowing is disabled, unless noted otherwise.

5k hair fibers 50k hair fibers 100k hair fibers

Figure 3.1: The scene for testing performance of the hair fiber geometry repre-
sentations.

3.2.1 Hair fiber representation

Here, the performance of the ribbon and line strip hair fiber geometry represen-
tations will be compared. The influence on the performance of the multi-sample
anti-aliasing and the number of hair segments will be also presented.

1http://www.lighthouse3d.com/cg-topics/opengl-timer-query/
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Figure 3.2 shows the performance of different hair fiber representations. The
line strip is slightly faster and dependence on the number of hairs is linear.
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Figure 3.2: The performance of ribbon and line strip hair fiber representations
with different hair count. Every hair has 5 segments.

Figure 3.3 shows that the number of segments in a hair fiber does not affect
the overall performance very much.
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Figure 3.3: The performance of rendering depending on the number of segments
per hair fiber. The number of hairs is 50k.

Figure 3.4 shows strong dependence of the performance on the image resolu-
tion and multi-sample anti-aliasing.

The line width correction described in Section 1.2.3 did not have any measur-
able influence on the renderer’s performance.
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Figure 3.4: Different multi-sample anti-aliasing settings and image resolutions
were used int this test.

Conclusion

The presented graphs show that the performance is not very dependent on the
hair geometry. The main factor that affects the rendering speed is the number of
fragments that are being processed in the fragment shader.

3.2.2 Hair segment sorting

The hair segment sorting algorithm (presented in section Section 2.5.1) relies only
on the total number of hair segments. It can be easily parallelized with a very
good scalability. See Figure 3.5.
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Figure 3.5: Performance of sorting algorithm.

Figure 3.6 shows the difference between the time needed for rendering and the
time needed for sorting. Sorting clearly depends on the total number of segments
and the rendering is more sensitive to the hair count.
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Figure 3.6: Comparison of rendering and sorting times.

3.2.3 Self-shadowing

Shadow map generation

Figure 3.7 shows the time required to generate 8 deep opacity maps and a depth
map. It strongly depends on the shadow map resolution and the number of
hairs. The key factor here is the number of hair fragments, which rises with both
increasing hair count and resolution.

50k 100k 150k
0

50

100

150

200

250

300

350

4.03 7.94 11.8317.71
34.99

52.85

113.98

224.77

332.62

128x128
512x512
2048x2048

Number of hair fibers

Ti
m

e 
(in

 m
ili

se
co

nd
s)

Figure 3.7: Performance of shadow map generation.

Even though the generation of all deep opacity maps is executed in one render
pass, the time required by the generation is linear to the number of maps, as can
be seen in Figure 3.8. Note that the depth map generation time does not increase
with resolution as much as the opacity map generation time as it does not need
any computations in the fragment shader. All maps had resolution 512x512.
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Figure 3.8: Generation times of depth map and deep opacity maps.

Hair rendering with self-shadowing

Figure 3.9 shows how the number of deep opacity maps influences the rendering
of final hair.
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Figure 3.9: Rendering times with and without enabled deep opacity maps.

Memory consumption

Deep opacity maps are stored as channels in four channel textures. Each channel
has 16 bits per texel so the 4 deep opacity maps take up 8 ∗ number of texels
bytes. Another channel is taken by the depth map. The format of the depth
channel depends on the graphics hardware’s internal depth format.

The current implementation of the renderer uses 8 opacity maps and the
default resolution is 512x512 (can be changed in UI) so it takes up 4 MB plus the
depth map.
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3.2.4 Multiple lights

Using multiple lights seriously slows down the rendering. Almost all computations
in fragment shader depend on light parameters so the computations have to be
done for each light separately.

There are two ways to render hair illuminated by multiple lights: summing
light gains in the fragment shader and using separate render pass for every light,
see Section 2.5.3.

The Figure 3.9 shows the performance of those two methods. Without anti-
aliasing, there is not much difference in performance even though with the mul-
tiple render pass method, the whole geometry has to be rendered more times.
It is due to the fact that the bottleneck of rendering is in the fragment lighting
computation and the work that has to be done in fragment shader is very similar
for both methods.

However, if the multi-sample anti-aliasing is enabled, the multi render pass
method is much slower. There has to be one more step performed: down-sampling
of the off-screen texture. This proves to be very slow.
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Figure 3.10: Performance of the multi render pass method and the single pass
method. Rendered 50k hair fibers with 5 segments each.

The final implementation takes advantage of both aforementioned methods
for multi-light rendering. The number of lights that can be processed in the
fragment shader is limited to 4 on most hardware, so in every render pass, as
many light gains as possible are computed in the fragment shader. If all lights
cannot be processed in one pass, then simply more render passes are used.

Figure 3.11 shows how the number of lights affect the performance while using
the aforementioned hybrid method.
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Figure 3.11: The dependence of performance on the number of lights.

3.3 Visual results

This section shows visual results of my renderer in comparison to the 3Delight.

3.3.1 Differences from 3Delight

Here, I will show main sources of differences between my renderer and 3Delight
and discuss their causes.

Geometry

The hair fiber in 3Delight is represented as a curve based on Catmull-Rom splines.
The hair fiber in my renderer is a line strip. Obviously, the 3Delight curves are
smoother and have more precise tangents. The tangents in my renderer are
linearly interpolated between vertices. This can cause a difference in specular
highlight (see Figure 3.12).

There is also a slight difference in the facing direction of the line strip and
3Delight curve. Lines in OpenGL are drawn facing the camera plane while curves
in 3Delight are drawn facing the camera position. In normal hair the difference
is not noticeable but can be observer in Figure 3.13.

Light model and blending

As can be seen in Figure 3.13, there is no difference between light models. The
difference in blending exists if the geometry is not accurately sorted, see Fig-
ure 3.14. Note that the differences are minimal if the blended colors are similar,
which is usual for normal hair.

Shadows

The deep opacity maps, which are used for self-shadowing, are not filtered. This
causes aliasing in shadows, as can be seen in Figure 3.15. Another issue is that
hair cannot cast shadows on other objects rendered by Maya as I did not found
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my result 3Delight reference

Figure 3.12: Difference in geometry.

my result 3Delight reference

Figure 3.13: There is no visible difference in light model.

my result 3Delight reference

Figure 3.14: When there are many geometry segments close together, they will
not be accurately sorted, which causes errors in blending.

a way how to send shadow information to Maya. Also, other objects do not cast
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shadows on hair with the exception of the mesh from which the hairs grow. See
Figure 3.16.

my result 3Delight reference

Figure 3.15: Strong shadows cast by thick fibers are visibly aliased.

my result 3Delight reference

Figure 3.16: Shadows from hairs are not cast on other objects.

3.3.2 Final hair rendering

All presented images were rendered at a resolution of 1024×1024. The FPS values
were computed by Maya and do not include the geometry sorting and the shadow
map generation. The time values under 3Delight images are pure render times,
not counting the time needed for data preparation, which may take few tens of a
second.
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63.5 fps 3Delight
67.86s

Figure 3.17: Long curly blond hair with 50k hair fibers and 30 segments per hair.

52.6 fps 3Delight
173.27s

Figure 3.18: Straight brown hair with 50k hair fibers and 20 segments per hair.
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26.5 fps 3Delight
67.46s

Figure 3.19: Red hair illuminated by 3 spot lights. The model contains 50k hair
fibers with 30 segments per hair.

51.9 fps 3Delight
15.99s

Figure 3.20: Grass rendered using the ribbon representation. The model contains
5k leaves with 30 segments per leave.
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Conclusion

The main goal of this thesis was to create a plug-in for Autodesk Maya software
that will provide a realistic hair rendering in the user interface of this software.
The renderer should allow an interactive manipulation with hair while generating
images as close as possible to the output of a high-fidelity rendering software such
as Render Man. The hair geometry should be provided from the Stubble hair
modeling tool. All these goals were successfully achieved.

Summary

There were several tasks I had to solve in order to implement the renderer.

Hair fiber geometric representation. The geometry of human hair is very
complex as it can contain up to 150k thin fibers. The geometry of a single hair
fiber must not be too complex in order to ensure real-time rendering. The fact
that hair fiber is very thin (under 0.1mm) can cause severe aliasing.

I chose the line strip as the hair fiber geometric representation and developed
a method that modifies the width of a line according to the hair fiber’s width
projected to screen. If the projected hair width is smaller than the pixel width,
the color addition to the pixel is approximated. It has practically non-measurable
effect on performance and allows to render non-aliased images of sub-pixel geom-
etry, which is crucial for rendering hair.

Alpha blending. Proper usage of alpha blending to achieve transparency ef-
fects usually requires that the fragments are drawn in back-to-front order, which is
not easily realizable. I implemented an approximate geometry sorting algorithm
based on the one presented by Kim (2003) [4].

Light-scattering model of a hair-fiber. The light-scattering, especially in
blond hair, can be very complex. However, the speed of computation of light-
scattering is crucial in real-time rendering. I chose less accurate but very fast
Kajiya-Kay shading model introduced by Kajiya and Kay (1989) [8].

Self-shadowing. The self-shadowing in hair produces very important visu-
al patterns that distinguish one hairstyle from another. I implemented the
Deep Opacity Map method for self-shadowing, presented by Yuksel and Keyser
(2008) [16].

Future work

The renderer was not tested in practical environment. As such, it may need
some improvements especially in communication with Maya and Viewport 2.0.
Some issues that should be solved are mentioned in Section 2.3.2. The Viewport
2.0 is still under development and future versions of Maya may add some new
functionality that can be exploited by my renderer.
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Performance improvement

The fragment shader program should be more optimized. It is the bottleneck
for rendering an some optimization in fragment shader may lead to significant
improvement of the performance of the whole renderer.

The geometry sorting can be executed on the GPU as presented by Sintorn
and Assarsson (2008) [5], which would probably bring some performance improve-
ment.

Visual improvement

• It turned out that the number of hair segments does not influence the
performance very much, so the line strip can be more tessellated in the
geometry shader to produce curves more similar to the curves in 3Delight.

• Deep opacity maps could be filtered by adding an additional pass after the
map generation.

• Finally, more light models can be implemented, as described in Section 1.4.
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A. Attached CD’s content

There is an attached CD to my thesis, which is structured in the following way:

• source This folder contains the source of whole Stubble project, which
includes my renderer. The sub-folder Stubble contains the source of the
plugin to Maya and the sub-folder StubbleHairGenerator contains the
hair generator library for 3Delight RenderMan. The source files of my
renderer are located in the Stubble/HairShape/Interpolation/VP2 0.

• external This folder contains several libraries which are used by the Stubble
project.

• manual This folder contains both the developer and the user manual for
the Stubble project. It also contains user manual for my renderer.

• The root of the CD contains my thesis as thesis.pdf and the instalator
of Stubble with my renderer stubble-setup.exe. For instructions about
Stubble installation and using Stubble see the Stubble user manual.
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