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Introduction

Machine translation is a subfield of Natural Language Processing which tries
to do human like translation from one natural language into some other natural
language. These languages can differ a lot on many different levels, for example in
this thesis we will concentrate on translation from morphologically poor language
into morphologically rich. Different approaches have been tried so far in solving
these problems. Some systems have a lot of linguistic rules directly implemented
in them so they could handle some problems better than the other systems. For
example rule based systems are in some cases better than other approaches in the
case when translation is done between language pairs that have big differences
in word order. In case of morphologically rich languages, such as Serbian and
Czech, word order is relatively free so it is usually not the biggest problem that
appears when machine translation is done with them as a target language. So far
statistical machine translation systems performed better than rule based systems
in the case of languages with rich morphology like Czech. That is the reason
we have chosen SMT approach for building translator with Czech as a target
language. We will use the most popular type of SMT system which is phrase based
SMT that is translating whole phrases from a source language to the phrases of
a target language. System built using phrase based approach usually consist of
two major components:

e basic part with a generative model and a decoder which generates candidate
translations with high probability (according to a generative model) of being
correct translations and

e a discriminative model that chooses the correct translation from these can-
didates.

In the following chapters we will first introduce basic generative component of this
type of SMT systems, and after that we will look at discriminative component.
When we introduce these basic components of phrase based SMT system we will
turn to concrete ideas that are applied in this thesis: different objective function
and sparse features that were used to solve problems that exist in translation into
morphologically rich languages. In the end we will show our experimental results
and give final conclusion.



1. Generative phrase-based
machine translation

The translation of a source sentence f into the target language can be seen as
search for the translation e in a space E of all possible sentences in a target lan-
guage that has the highest probability of being a translation of f. More formally
we are trying to find:

€pest = argmaxP(e|f)
eck

This formula can further be simplified to:

P(fle)P(e)

€pest = argmaxP(e|f) = argmar——-———= = argmaxzP(f|e)P(e)
ccE ecE P(f) ccE

This formula allows us to replace the probability of a target sentence given
a source sentence with two other probabilities that are called translation model
and language model. A language model P(e) is a component which models the
probability of sentence e appearing in the target language and indirectly by doing
that it also models the fluency of the output. A translation model is modeling
P(fle), which is a reverse translation component. Translation model and lan-
guage model are usually trained and then used together during computation of
argmax in a component that is called decoder. Language and translation mod-
el do not have to be trained on the same corpus. Often a language model is
trained on a monolingual corpus that is much larger than a parallel corpus used
for training a translation model.

1.1 Translation model

The translation model that is used in phrase based SMT decomposes the proba-
bility of translating sentences to the probability of translating phrases:

P(fle) = H (fi,&)d(a; — bi—1)

d is a distortion model which penalizes big reordering in translating phrases,
a; is a starting position of a foreign phrase f;, b;_; is a end position of a target
phrase €;_; and ® is giving probability of phrase f being translation of phrase e

These probabilities can be learned directly from training data by using the
expectation maximization algorithm, but usually it is done by first doing word
alignment and then extracting phrases using some heuristics which gives better
results than learning phrase translation probabilities directly.

1.2 Language model

There are different types of language models. Some are based on modeling the
probability of a target sentence using syntactic information and some other using
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much simpler methods. The type of language model that is used most often is
the n-gram language model that models probability of a sentence by modeling
the product of the probability of its words conditioned by their history:

I
P(e) =[] P(eileo. . eim1)
i=1

Computation of these probabilities can be simplified by using the Markov
assumption that the probability of a word given its history can be approximated
by the probability of that word using the most recent history. The probability of
a sentence using an n-gram model where n is the order of the history is given in
the following formula:

I
P(e) =[] Pleilei—n .- ei1)
i=1
With using higher order n-grams it becomes likely that some of the proba-
bilities will be zero. Because of that, some smoothing is necessary. The most
widely used smoothing method in today’s state-of-the-art systems is Kneser-Ney
smoothing [19].

1.3 Decoder

The decoder is used for searching for the best translation using given language
and translation models. Because it is impossible to search trough an infinite
space of possible translations, some approximated form of the search is needed
such as A*. Decoding can be seen as a search graph where each node in that
graph represents a hypothesis and it contains all the information about translated
words and their probability. Transition from one node to the next node is called
hypothesis expansion and adds some additional translated words to the hypothesis
and updates its probability. Decoding with A* is done by doing most probable
expansion of all currently observed hypotheses. All hypotheses are put into one
priority queue that is often called stack. In the machine translation and the
speech recognition community, A* applied in decoding is often referred to as a
stack decoding algorithm. A comparison between hypotheses that have translated
a different number of words is not good for choosing the next expansion because
the hypothesis with a smaller number of translated words will be chosen in most
cases as a more probable expansion. This is why stack decoding in machine
translation is done with multiple stacks where every stack contains hypotheses
with the same number of translated words.



2. Discriminative Training in
Machine Translation

As we have seen in a generative approach, we decompose the process of translation
into many smaller steps that we assume are independent so we could solve them
independently and then combine their results creating a good translation. For
example we assume that translation of different phrases is independent. Even
though there is some small dependence introduced by using language model it
still does not eliminate our assumption completely. Independence assumptions
that exist in generative models do not exist in the discriminative models.

The second reason why discriminative models might be more useful is the
support for a large number of features. In generative models, we are searching a
space of possible translations. With each new feature that we add to these models,
we add a new dimension for search which means that dependence of search errors
from numbers of features is exponential. With discriminative models, we are not
searching the whole space of possible translations. Instead of that, we usually
have a finite set of possible translations and try discriminate good translations
from bad. Because of that, adding a new feature will not increase the search
space (it will be the same as without that feature).

The problem with applying discriminative methods to machine translation is
that we usually do not have reasonably small finite set of possible translations.
Many researchers have tried different ways to solve this problem. The most
successful usage of discriminative methods in machine translation so far is by
combining them with generative methods. First, we use a system trained in
a generative fashion to produce a relatively small finite set of most probable
translations (by the generative model) and then we use the discriminative model
with a larger number of features to make a better decision which translation is
the best from the set of possible translations.

The process is shown on Figure 2.Il The finite set of probable translations
that is given by a generative model is usually in the form of an n-best list of
translations. The discriminative model that is used for choosing the best transla-
tion is usually called "reranker” because it takes list of possible translations that
are ranked by their probability from the generative model and then reranks them
by probabilities from the discriminative model.

The process of training discriminative model that is used by reranker is usually
called tuning because some of the features are used in generative model too and
we are trying to optimize their weights. Tuning is done by using an additional
parallel corpus called tuning or development corpus. The tuning process is shown
in Figure The first step in the process is the translation of the source side of
the corpus using the decoder for generative model. As the result of decoding, we
get n-best list of translations (judged using generative model) which is passed on
to the learning algorithm together with a reference translation (the target side of
the tuning corpus) and additional features. This is repeated for several iterations
until we get convergence.

In the next section, we explain how to get the list of best candidates for
reranking and how can learn the parameters for the discriminative model used
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by reranker.

2.1 Finding best candidates for translation

Whole process of decoding can be seen as a search graph that contains relations
between different hypotheses that were expanded during the search. The search
graph is a representation of search history but what we want is a representation of
end hypotheses that cover the largest part of the source sentence. One of possible
representations of best hypotheses is word lattice which is basically a weighted
finite-state machine that is very similar to a search graph. The main difference
is that instead of having the probability of a hypothesis we have the probability
of transitioning from one hypothesis to another or, because it is a weighted FSM,
the probability of transitioning from one state to another.

Another way to represent best hypotheses that is used often is an n-best list.
N-best list can be constructed using a simple algorithm that uses the fact that
for each state in a weighted FSM there is one best path to the start state [20].
Compared to the best path trough the graph, the second best path takes a detour
from the best path. The detour is defined as suboptimal transition from start
state to the state in the best path for which we take detour. Detours for each state
in FSM are already discovered during the search by recombination of hypotheses.

The algorithm is based on having two queues:

e queue for the resulting n-best list

e priority queue of detours where the priority function is the probability of a
detour

The algorithm is as follows:

1. Take the best path, put all the detours from it in a priority queue of detours,
and put the best path in the n-best list

2. Take the detour with the highest probability from the detours priority queue
and remove it from the queue



3. The hypothesis containing that detour and continuing to the end with the
rest of the previous best hypothesis is added to the n-best list

4. All detours from previous detour are added to the priority queue of detours

5. If the n-best list is not of the desired size go to 2.

The larger the set of hypotheses that reranker has access to the higher is the
probability that it will be able to choose good translation. Word lattice is a more
compact representation of translation hypotheses than list of best translations and
that is why it allows access to the larger part of space of possible translations.
Rerankers that work with word lattices usually give better results than those that
work with n-best lists. The problem with word lattice is that it is not always
easy to create an algorithm that will work with word lattices compared to the
algorithms for n-best lists and because of that, n-best lists are still used more
often than word lattices.

2.2 Reranker

As it was mentioned before, reranker takes n-best translations and gives the
best one from it judging by some discriminative model. Name reranker is taken
from machine learning field but it is little bit misleading[15]. What reranker in
machine translation does is not really reranking. The goal of a real reranker is to
put every element in a list to its right place judging by some criterion while the
goal of reranker in machine translation is to put only the best translation to its
right place (1st place) without caring about other translations.

So what reranker does is scoring every hypothesis in the n-best list using some
model and then outputting the translation with the highest score. Model that is
used is almost always the log-linear model which can have from dozen of features
to a few hundred thousands. What reranker actually does is described with the
following formula [17]:

iy Aihi
reranker(n best list) = argmax eXP(Xicy n(e)) ,
e€ n best list 2 ie'c n best list eXp(Zi:l )‘zhz(e ))

n

= argmax Z)\ihi(e) (2.1)

e€ n best list i—1

A is the parameter or weight that tells us how much feature h; is important.
h; can be any function of translation e. For example, one of the features can
be the number of words in the translation e. Some more sophisticated features
require not only translation e but also the derivation d of that translation. That
is left out from this formula for the sake of clarity, but it will be discussed later
again in the part of training a reranker with a large number of features.

The training of some reranker consists of finding the right set of \ parameters
that maximize some objective function on the processes of translating the tuning
corpus. The ideal objective function is human evaluation which is of course
impossible to use in the training so instead of that, we use an automatic evaluation
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metric that correlates well with the human judgment. The most popular metric
in machine translation community is BLEU [33] which is often used not only for
evaluation but also for tuning. We leave the detailed explanation of evaluation
metrics for chapter Bl where we will deal with it in more detail. For now, the reader
should just know that discriminative training algorithms require some evaluation
function, which we will call EVAL, that takes some hypothesis and a human
reference translation and returns the number that represents how close system’s
translation is to the human translation. Often, we will use the function COST
which can be interpreted as negative value of EVAL.

The general process of training a reranker can be seen in Figure 2.3 We first
a translate source side of a tuning corpus and get an n-best list. After that,
we optimize the parameters of the model by making them such that the best
translation in the n-best list judging by the EVAL is on the top of the list.

2.2.1 Optimization of reranker’s parameters

In this chapter we are going to look at a few different algorithms for optimizing A
parameters of a discriminative model. Learning these parameters using analytical
methods (by computing derivatives and finding optima) is not possible, because
mapping parameters to objective functions can be complex and expensive to
compute[20]. Algorithms that are used for learning can be roughly separated in
two groups: -those that are good at learning small set of parameters usually by
applying some heuristics -those that are good at learning large set of parameters
usually by maximizing the margin between good and bad translations

This thesis is concerned mostly with algorithms that deal with a large set of
features, but we will briefly show one of the algorithms for small set of features
that is used in most of the state of the art systems today. That algorithm is a
version of Powell search which is in machine translation community most often
referred to as MERT (Minimum Error Rate Training) [32]. It is also an important
algorithm since many other algorithms that work with large number of features,
such as PRO, take inspiration from MERT.

MERT is optimizing weights one by one and while it is opetimizing any of
the weights other weights are fixed. Optimization is done in the form of a grid
search. This optimization does not require computing derivatives, but it can be
unstable with large number of features. By fixing all weights of all features except
the one that is optimized at the moment we assume that the best weight for the
optimized feature will not harm other features. When we have small number of
features this risk is small, but with large number of features it is almost certain
that this procedure will not work.



Large-Scale Discriminative Training Algorithms

All algorithms that are used in discriminative training try to minimize some loss
function. We want the best translation according to our models score to also be
the one with the lowest cost or, more formally, loss function that we would want
to minimize in the ideal situation is:

loss = cost(y, argmax score(x,y, h; X))
(y,h)eT(z)

A is a set of learned feature weights

h is a set of features

y is a reference translation or hypothesis if it is under argmax
x is the source sentence

Good properties of MERT are that:

e it optimizes the loss directly without the need of computing the derivative
which can be hard

e it can use corpus level metric for cost function which is good considering
that the most popular metrics in MT community are corpus level metrics

(BLEU, NIST, TER).
On the other hand, MERT also has some problems:
e it is very unstable because of loss complexity and difficulty of search [15]
e it can work well only with small set of features [18]

In order to overcome these problems, we will need to use some other algo-
rithm. Machine learning community has developed large number of algorithms
for reranking but they are not directly applicable to the machine translation
domain. The main reasons for that are [15]:

e these algorithms usually assume that a single correct result is available.
Problems with that are:

— The reference translation might not be reachable by our model

— Even if the reference translation is reachable, we might not got the
correct result using correct derivation (for example phrase alignment
might be wrong) which can lead to optimizing wrong parameters

e Latent variables are present in the process of machine translation. These
latent variables make loss function non-convex and for this class of functions
not much research has been done [15]

e reranking algorithms in machine learning have a similar goal as reranking
in machine translation but usually not completely the same - in machine
translation, we try to reorder the translation with the lowest cost to the
top of the list ranked by the model score and we do not care if second best
translation ended at 10000th position in a sorted list while machine learning
algorithms try to put each translation in the right place [15]
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To solve these problems many researchers have used different loss function
which, in the most general case, could be defined as:

loss = — max (7+score(:p,~,y+) - 5+cost(yi, y+))
Yy €Y (z;)

+ max (v score(z;,y”) — B cost(y,,y~)) (2.2)
yIEY($i)

y* usually represents a translation toward which we want to optimize our model
y~ usually represents a bad translation which we want to get lower model score
in the future

vt and BT are parameters that influence on the participation of cost and score
in the loss

score function here represents score given by the discriminative, not generative,
model

Each part of this formula can significantly influence the process of learning:

1. the choice of the = and 3" parameters can influence the strategy of opti-
mizing the result. Different algorithms use different values for gamma and
beta

2. the choice of y* and y~ from the space of possible translations Y (x;)

3. the cost function needs to work well on the sentence level, which is not the
case for many metrics, especially those that are popular in MT community

like BLEU

4. the derivations of both hypotheses y™ and y~. For the sake of clarity, the
derivations were not included in the formula, but they are important

In the next chapter, we explain some solutions to the problem of choosing
yT, y~ T and BT. After that we look at the problems in machine translation
that are caused by the presence of derivations. The largest attention and also
the largest part of research of this thesis is concerned with solving the problem
of cost function.

2.2.2 Selecting y and y~
Selecting y*

Ideally we would like to use the reference translation y; as y*, but there are few
problems in doing this. The first problem is that 3’ might not enter in the n-best
list because it is ether:

e unreachable by our model or

e reachable but very unprobable, given our generative model, to enter the
n-best list

10



The second problem is that even if the reference translation is reachable by
the given model it might not have the correct derivation (phrase segmentation,
reordering ...) and getting the correct surface form is just a lucky coincidence.

The solution to the first problem that is applied in most cases in practice is
to select some surrogate translation with a low cost that will be the replacement
for the reference translation. The loss function that was defined before in the
parametrized form with 4" and 37 is called hinge loss if the reference translation
is used as y*, but because we are using surrogate translation this loss is referred
usually as ramp loss [15].

The other solution to this problem, which gave bad results [25], is to ignore
cases when we cannot get the reference translation. The reasons why it fails are
that we do not use the full amount of data because the reference is in many cases
not reachable and even if it is reachable it might be with bad derivation (the
second problem). This method is called ”bold updating”.

In the second problem, it is clear that we need to use the model score function
in the selection of y*. There are two ways that have been used so far for solving
this problem:

e the more popular one is by choosing the translation that has the highest
sum of negative cost and score. This hypothesis is often called ”hope”
because it is highly ranked in the n-best list and has a low cost[17]. This
strategy would correspond to the following set of parameters in the given
formula for the ramp loss:

Th=1;p8=1

e by taking the hypothesis from the n-best list with the lowest cost [25]. The
score function is used here indirectly because the hypothesis with the lowest
model score will not enter the n-best list and therefore, cannot be selected
as a surrogate even if it had a low cost. The parameters for this strategy
in the ramp loss formula are:

vt =0 ; f* = 1 with the constraint that it can be applied only on an
n-best list and not during the decoding

One more reason for using the score function in selecting the y* and y~
hypotheses is that we want to operate on translations that are most likely to be
produced by our system. If we have a really good translation (low cost) with
really low probability (low score) it might be a bad idea to optimize toward it
because even if we move that translation from for example 10000th place in the
n-best list to the 2nd place it still does not bring any improvement. By balancing
the importance of cost and score we can get better surrogate translations than
by using only one of these functions.

Selecting vy~

There are three strategies that are used for selecting y—, the bad translation, that
are considered in machine translation research so far:

e The prediction based strategy where we take the hypothesis with the highest
score with parameters [25]

v =1; 08 =0
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e The highest cost strategy which is similar to the local update strategy for
y~. in a way for using only cost function directly but applying it only on
an n-best list which makes usage of score function indirectly [25]

v~ =0; = =1 with the constraint that it can be applied only on n-best
list and not during decoding

e The fear strategy which is similar to the hope strategy because it uses both
cost and score functions but with a difference that the cost is not taken as
negative value. Fear represents hypothesis that is very likely by the model
but actually being very bad [17]

=167 =1

Strategies for selection y* and y~ combined

In [12, Eidelman] all 6 possible combinations of y* and y~ selection strategies
were tested using MIRA online learning algorithm. Their results show that the
only combinations that give good results are:

e local update for y™ and the highest cost for y~

YT =0; fF=1;~v"=0; f =1 with the constraint of being applied
only to the n-best list

e hope strategy for y* and fear for y—
Tr=15 BT =1yT =157 =1

They conducted two experiments with two different language pairs in which
hope/fear was the best method for Czech-English and local update/highest cost
was the best method for French-English.

Local update and highest cost strategies were used mostly at the start of usage
of discriminative methods in machine translation [I}, 25] while most of the recent
work uses hope/fear strategy [15] [17].

There is also a choice of how can we find hypotheses defined by parameters
for hope/fear strategy. While local update and highest cost can be applied only
on the n-best list, hope and fear hypotheses can be searched both in:

e an n-best as a restricted space of possible translations,
e a word lattice as a restricted space of possible translations,

e a larger space of possible translations by integrating the cost function into
the decoding process

The approaches with n-best list and word lattice are simpler and more mod-
ular, but searching the larger space of possible translations might give better
results. The integration of cost inside the decoding process can be done as in [17,
Hasler et al.] by using cost as an additional feature in the decoder and give it a
weight that is equal to the sum of weights of all other features that contribute
to the real score result if we are searching for fear translation and the negative
of that value if we are searching for hope translation. That would mean that if
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for example the sum of all weights except cost is 0.5, the weight for the cost fea-
ture should be 0.5 when we search for fear and -0.5 when we search for the hope
hypothesis. Searching for hope hypothesis in this way is called cost-augmented
decoding and searching for fear is called cost-diminished decoding [15]. Two
additional technical differences are that:

e applying hope/fear using decoding is two times slower than with n-best list
or word lattice because we need to do decoding once for hope and once for
fear while with hope/fear using n-best list or word lattice both hope and
fear can be selected from the same n-best list or word lattice

e the cost function should be able to evaluate partial hypotheses while with
n-best list and word lattice selection it is enough for cost to be applicable
only to the complete hypotheses. Knowing how some evaluation functions
are bad at sentence level, finding good metric that would work on even a
lower level of partial hypotheses can be even harder. We are not aware that
anyone has identified this problem before

e the word lattice approach does not require double decoding, it covers a
larger space of possible translations which is similar to the size of cost
guided decoding, and it also does not require cost function that will work on
partial hypothesis level which makes it a good choice for selecting training
hypotheses. Some recent systems have started using this method and they
reported results that are better than the results from the same system with
using n-best lists [0]

2.2.3 Influence of derivations on discriminative training

The derivation of some hypothesis represent all the decisions that are taken in or-
der to get to that hypothesis. This can include phrase segmentation of the source
sentence, selection of phrase pairs used for translation, reordering of phrases and
other factors that are used. The derivation is a latent variable in the transla-
tion process and because of that it makes the loss function non-convex which
complicates choice of algorithm that will be used for minimizing loss.

The second problem caused by derivations is that for one surface form we can
have many different derivations, so which one should we use? Ideally we would
marginalize over all possible derivations instead of using only one:

pyle) = > pld,ylx)

deA(y,x)

In |2, Blunsom et al.] they do this type of marginalization and report results
which suggest that with using all derivations instead of the best one, significant
improvement in translation can be achieved. In order for this marginalization to
work, they marginalized feature values too:

Hk(da Y, CE) = Z hk(e> T)

red
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Still, in the majority of papers on discriminative machine translation, viterbi
approximation of the derivation is used which means that they take the assump-
tion that the difference between the most likely derivation and the other deriva-
tions is huge so the marginalized score can be approximated with the most likely
(viterbi) derivation.

2.3 Algorithms for large-scale discriminative train-
ing

In this section, we present a few different algorithms that are used for large-scale
discriminative training of machine translation models. Many of them, but not
all, follow the definition of ramp loss that we have explained before. Except
for the loss function they try to minimize, they also differ in the frequency of
updating the parameters - some of the algorithms process training instances in
online fashion and some in batches. The reason that is given most often for using
online algorithms for large-scale discriminative training is the large number of
features and the large amount of data needed for training this number of features
[20]. Until recently, most of the algorithms used for the training of discriminative
models were online ones. From online algorithms, we will present Perceptron
[25], 20] and the online version of MIRA[9]. Recently, there were a few successful
attempts in using batch algorithms for the training of discriminative models. The
main reason for using batch algorithms is that authors of these systems claim that
there is still no good fully online algorithm for training non-differentiable and
non-convex loss functions like ramp loss [15]. From the class of batch processing
algorithms, we will present PROJI8], Rampion and the batch version of MIRA.

2.3.1 Perceptron

Perceptron is one of the first algorithms used in the field of artificial intelligence
and probably the most simple of all the algorithms that are used for discrim-
inative training in machine translation. The first application of perceptron in
discriminative training for machine translation was in [25, Liang et al.].

The way perceptron works is by looping trough all instances of training data
and checking if the best translation according to the model is the same as the
reference translation. If it is not the same then parameters of the model are
changed in order to make the output of the systems the same as the reference
translation. This process is repeated several times until convergence is achieved.
Perceptron has a good property that for linearly separable classes it is guaranteed
to converge.

As described before, there are problems in using reference translation as the
desired output from the model. That is why in [25 Liang et al.] they use surrogate
translation that is taken by method of local updating (y* = 0 ; g = 1) and
the translation to be compared to the surrogate is the one selected by prediction-
based strategy (y* =1; = = 0). Both of them have to be in the n-best list of
translations. The translation that is compared with the surrogate will be there
anyway because it will have the highest model score while for the surrogate it
is important to be in n-best list to ensure that for the surrogate, we will not
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take a hypothesis that is very unprobable. [25, Liang et al.] has also tried bold
updating and the combination of bold update and local update strategy and they
both gave lower score than local updating alone.

The algorithm can be formulated as follows:

Input: set of sentence pairs from tuning corpus (x, y), set of features h
Output: set of feature weights A
A, =0 for all i
while not converged do
for all z; in x do

Yoracle = argmax score(x;,y)
er($i)

Yprediction = argmax COSt(yia y)
yE n best for x;

if Yprediction 7& Yoracle then
)‘+ = h([L‘Z, Yoracles doracle) - h(!L‘Z, Yprediction dprediction)
end if

end for
end while

Implementations for Perceptron exist for most of the popular SMT toolkits.
Moses SMT framework supports Perceptron as well as many other algorithms for
training discriminative models [I7]. There is also an implementation of Percep-
tron for Joshua [24].

2.3.2 MIRA

MIRA is first formulated in [9, Crammer et al.]. MIRA is a large-margin classifier
that is very similar to Perceptron, especially its online version. The main differ-
ences between online MIRA and Perceptron are in the selection of hypotheses for
training, loss function and in the update rule.

For selecting hypotheses, implementations of MIRA often use hope/fear strat-
egy. Other strategies were also tested in the past and the only strategy that is
comparable to hope/fear is local update/highest cost [12]. Some implementa-
tions select hope and fear hypotheses from n-best lists [6] while others do cost-
augmented and cost-diminished decoding [17].

MIRA update tries to make the margin between model scores of y* and y~
at least as big as the difference in the cost. Usually, this requires complicated
quadratic programming in order to satisfy the large number of constraints, but
if we decide to satisfy only the single most violated margin constraint, analytic
solution can be simple and there would be no need for quadratic programming
[9]. MIRA that is trying to satisfy the single most violated constraint is usually
referred to as 1-best MIRA and it is the version of MIRA that is presented bellow:

The algorithm for online 1-best MIRA [12]:

Input: set of sentence pairs from tuning corpus (x, y), set of features h, step size C
Output: set of feature weights A
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A =0foralli
while not converged do //alternatively we could define a specific number of iterations
for all ; in x do

Yhope = argmax score(x;,y) — cost(y;,y)
yeY ()

Yfear = argmax score(x;,y) + cost(y;,y)
yeY ()

margin = score(T;, Yfear) — SCOTE(Ti, Ynope)
cost = cost(Yi, Yfear) — COSE(Yi, Ynope)
loss = margin + cost
if loss > 0 then
0 = min(C loss )

’ ”hi(miyyhopevdhope)fhi(mivyfearvdfea'r)”
)\+ - 5(h(xza Yhope; dhope) - h(!L‘Z, Yfear, dfear))

end if
end for
end while

The batch version of MIRA differs from the online version in that it accu-
mulates all the updates to the feature weights vector and applies the averaged
update at the end of each iteration. In [6l Cherry et al.] they use n-best lists in-
stead of cost-augmented and cost-diminished decoding because their expectation
is that by replicating MERT architecture of optimizing parameters in the same
n-best list in many iterations gives better results. They also report even better
results by using word lattice in place of n-best lists.

The algorithm for batch 1-best MIRA as given in [6]:

Input: set of sentence pairs from tuning corpus (x, y), set of features h,
step size C, set of n-best lists
Output: set of feature weights A**9

t=1
Aii =0 forall
7=0
while not converged do //alternatively we could define a specific number of iterations
I+ =1
for all z; in x do
Yhope = argmax score(z;,y) — cost(y;,y)
yeY (z;)
Yfear = argmax score(x;,y) + cost(y;,y)
yeY (x;)
margin = score(T;, Year) — SCOTE(Ti, Ynope)
cost = cost(Yi, Yfear) — cOSt(Yi, Ynope)
loss = margin + cost
0= mm(C’, ”hi(mi7yhopevdhopel)0;9fsli(mivyfearvdfear)”)
)\t-‘rl - )\t + 5(h(x27 Yhope) dhope) - h(l‘l, Yfear, dfear))
t=t+1
end for
)\;wg — % 1/21 )\t’
end while
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2.3.3 Rampion

Together with the batch version of MIRA [6], Rampion [15] is one of the most
recently developed algorithm for discriminative training in machine translation.
Because the ramp loss function is non-differentiable and non-convex, standard
gradient based methods are unapplicable. Rampion avoids this problem by using
concave-convex procedure (CCCP) [4I]. CCCP is an batch optimization pro-
cedure for functions that can be decomposed to a sum of concave and convex
functions. The function is optimized by being approximated with the sum of the
convex part and the tangent to the concave part using gradient methods. [15]
Gimpel and Smith] note that CCCP was used before in different domains with
similar non-differentiable and non-convex loss functions where it gave good re-
sults. In their experiments, they report improvement over MERT and PRO in
using both small and large set of features.

The algorithm for batch Rampion [15]:

Input: set of sentence pairs from tuning corpus (x, y), set of features h,
initial feature weights \g, step size 7, regularization coefficient C,
number of Rampion iterations T, number of CCCP 7" and T" iterations

Output: set of feature weights A

A=\
for iter < 1 to T do
{e}, « Decode({z W}, \)
for iter’ + 1 to T" do
for i< 1to N do
(ypre, 20p6> <« argmax score(z;,y, h; \) — cost(y;,y)
<y,h>€6i
end
for iter” < 1 to T"” do
for i< 1to N do

(Yfears Dfear) <= argmax score(z;,y, h; X) + cost(y;, y)

(y,h)
- oz
M= ﬁ(h(%a ylzmpea dzope) - h(xza Yfear, dfear))
end
end
end

end
2.3.4 PRO

PRO [I§] stands for pairwise ranking optimization. It is a batch algorithm which
is basically a reformulation of the problem that is solved by discriminative train-
ing. Instead of optimizing some global loss PRO is trying to minimize the error
in ranking between pairs of hypotheses. It follows architecture similar to MERT,
and changes only optimization step.
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The same way as in MERT there is a candidate generation step or the gener-
ation of an n-best list. After that PRO samples pairs of hypotheses from these
n-best lists that will be used in training the reranker. This sampling is more
general than the one in MIRA and Rampion where we select only by criterions
of hope and fear. The decision of the way how sampling should done should
be brought together with the choice of classifiers. PRO does not constrain the
choice of the classifier. Any binary classifier can be used, including MIRA. In the
original paper about PRO [I§], maximum entropy classifier is used together with
random sampling from n-best lists with the criterion that difference in cost be-
tween hypotheses in a pair should be at least 0.05. The algorithm as defined there
is shown below. When we sample hypotheses pair (y*, y~) with corresponding
feature vectors (h*,h™) where y* has lower cost than y~, we generate two train-
ing instances for the classifier: the positive one (h™ — h™,+) and the negative
one (h~ — h* —). After we sample desired number of training instances, we can
train it both in a batch or online fashion. This process of decoding, sampling,
generating training instances and training is repeated until convergence.

The algorithm for batch PRO [1§]:

Input: set of sentence pairs from tuning corpus (x, y), set of features h
Output: set of feature weights A

A =0 for all i

while not converged do

//Generation of candidates
E = () // set of tuples (x,y,h,yrer)
for all z; in x do

g <+ Decode(z™, \)

for all do

E+ = (:Eiv Y, ha yl)

end

end

//Sampling of candidates
T = () //training instances
for j < 1to M do
sample (.9, b, y,.;) and (2", y", ", y; ;) uniformly where ' = 2"
if |cost(yresry') — cost(Yyep, y")| > threshold then
_ !/ " : !/ / / "
Eﬁ - EZ’/ _f; " zzgn(cost(y7ef, v) _cost(yr/ep y"))
, sign(cost(Yyer, y") — cost(y,er,y')))
end
end

!

//Training
A = train_classifier(\,T)
end while
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2.4 Technical details about large-scale discrim-
inative training

Large-scale discriminative training usually needs a lot of CPU time whichever
algorithm we use. Also tuning data size might be big. To speed up optimization
parallelization can be very useful. The way it is done often is by splitting tuning
data in to shards of equal size and then do tuning with them on each iteration
independently. After the end of each iteration all feature weights vectors of
parallel processes are collected and average vector is computed. A next iteration
continues the same optimization with using averaged vector as a starting point
on each of the shards [17, [16].

Whenever training is done with a complex model as in our case with large
number of features there is danger of overfitting. That is why we should have one
additional corpus for selecting the weight vectors from all iterations with the best
performance [I7]. In machine translation this additional data is usually called
development data, but because that term is already used for tuning data we will
call this corpus selection corpus.

It is expected that for training large number of features we will need a lot
of tuning data. A lot of tuning data may be useful, but it is not necessary for
getting reasonably good results. Actually, most of the research in large-scale
discriminative training is done using a tuning corpus witch is of the similar size
as tuning corpus for MERT (around 2000 sentence pairs). We have not found any
detailed explanation why it is the case that even such a small tuning corpus is
enough for training large number of features. We think that the reason for small
corpus giving good results might be Zipf’s law. Features that are very important
will appear often in the tuning corpus no matter what is the size of a tuning corpus
while rare, unimportant features will not appear and if they appear algorithms
with good regularization will prevent them form having a big influence.
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3. Objective function

In machine translation, we usually want to make our system’s resulting translation
be judged by humans as a good result. The problem with human judgment of
MT systems is that it is too slow. Ideally we would want an instant answer to the
question whether our system is better or worse compared to some other system.
Other than the comparison of different MT systems we would want to have an
objective function towards which we could optimize our system automatically by
using algorithms that were described in the previous chapter. A large amount of
research has been conducted on the development of automatic evaluation metrics
that have a good correlation with human judgment for comparison by quality of
two (or more) translations of the same corpus given the corpus with reference
translations. The problem with using these metrics as an objective function in
large-scale discriminative training is that in large-scale discriminative training we
need a comparison of different translations on the sentence level while common
metrics are designed to compare large portions of text and usually they do not
work well on the sentence level[22].

In this chapter, we are going to look at some metrics that are used most often
by the MT community. After that, we will discuss the problems with using these
metrics for large-scale discriminative training and propose a solution in the form
of a new metric.

3.1 Automatic Evaluation Metrics

Automatic evaluation metrics are usually defined as functions that take two pa-
rameters: one is the system’s translation and the other is the set of reference
translations. As a result of the evaluation function, we get a number that repre-
sents how much the system’s translation matches the reference translation. The
better the scores of systems given by the evaluation metric correlate with human
judgment, the better is the metric.

Except high correlation with human judgment, another preferred property of
evaluation metrics is the simplicity of implementation. Some metrics like BLEU
are very simple to implement and do not require any additional resources like
word alignment or a POS tagger. There are other metrics, such as METEOR,
that usually have higher correlation with human judgment than BLEU by paying
the cost of using additional data and being slower than BLEU.

Morphologically rich languages have an additional requirement for a good
metric, which is to recognize if the system has chosen the right lemma as a trans-
lation but not the right word form. Also, many morphologically rich languages,
like Czech for example, are more flexible in the word order, so the metric that is
used should not be very harsh to different orderings of words between the reference
and the system’s translation. SemPOS is one of the metrics that was designed
specifically to address these problems for the evaluation of Czech translations.

Finally, the most important requirement for evaluation metrics in their usage
in large-scale discriminative training is their quality on comparison of different
translations on the sentence level or even lower, on the level of partial hypotheses.
Corpus level metrics like BLEU do not behave well on the sentence level, but there
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are alternatives that try to adapt these metrics for usage on the sentence level,
such as sSBLEU (sometimes called BLEUS), and also completely new metrics that
were designed specifically to work on the sentence level.

3.1.1 Precision/Recall based metrics

Many evaluation metrics that are used in the field of Natural Language Processing
are based on precision and recall. Precision, as used in machine translation, is
defined as the ratio of correct words in the system’s translation [20] (by correct
we mean words present in both the system’s and the reference translation) and
the total number of words in the system’s translation. The recall is defined as
the ratio between correct words in the system’s translation and the total number
of words in the reference translation. Usually, these two measures are combined
into f-measure as described in the formulas below:

number of correct words

recision =
b system’s translation length

number of correct words

recall =
reference translation length

(1 + %) x precision * recall

-measure = —
2 ll
B2 x precision + reca

This metric is not used often in machine translation projects but it has some
good aspects. Firstly, it is simple to implement and fast to execute. It is a
sentence level metric, which is good for our purposes, but it ignores word order
which will not lead to learning good parameters during training, especially the
weight for the distortion model because any ordering would give exactly the same
score. Nevertheless, this metric was interesting enough to give rise to some other
metrics that try to repair the ignorance of word order that this metric has. The
list of these metrics include ROUGE-S and our adaptation of it that we will
explain later.

The simplicity of f-measure makes it also useful in the explanation of what
other metrics try to achieve. By setting § to a value larger than 1, we will give
more importance to recall by setting 8 to the smaller value than 1, we will give
more importance to precision. Most often S = 1, which means that precision and
recall will have the same influence on the f-measure. If we want correct words in
the translation and we can tolerate if some unneeded words are present, then we
would prefer a metric with a high recall. If we value more a translation which has
fewer words, but most of them should be correct we would prefer high precision.
All metrics try to find balance between precision and recall in different ways.

3.1.2 BLEU and its sentence level approximations

BLEU [33] is a precision-based metric, which is based on computing the number
of matched n-grams between the system’s translation and the reference. Any
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n-gram size can be used in theory, but the larger the n-grams used the more the
word order is influencing the score. BLEU also uses brevity penalty to penalize
short translations, which is necessary because it is a metric that is based on
precision so this brevity penalty could be considered as some way of recall taking
a small part in the final score. The formula for the BLEU score is given below:

BLEU-n = brevity-penalty exp Z \; log precision;
i=1

) ) system’s translation length
brevity-penalty = min ( 1, :
reference translation length

In most cases, the maximum size of the n-grams that are used is 4 and all
weights of different orders of n-grams A are set to 1, which simplifies the formula
to the multiplication of brevity-penalty and geometric mean of n-gram precisions:

4
BLFEU4 = brevity-penalty exp Z log precision;
i=1

. 4

. system’s translation length o
=min [ 1, - recision; (3.1
( reference translation length gp (3:-1)

One of the problems with BLEU is that if one of the n-gram precisions is 0,
then the whole score becomes 0, which can happen often if we are evaluating on
the sentence level. For example, if we have any 3 word reference translation and
we are measuring the score of any system’s translation with BLEU4, the precision
for four-grams will be 0 because there are no four-grams to be matched in the
reference, so the whole score will be 0 in every possible case including the case
that the translation is perfect. This is why BLEU is often used on the corpus
level. For every n-gram order the number of matched n-grams is computed on
the whole corpus, which is very unprobable to be 0. This strategy gives really
good results in correlation with human judgment which has made BLEU the most
popular metric in the MT community. However the problem of using BLEU on
the sentence level is still there, which makes it unsuitable for usage in large-scale
discriminative training algorithms as an objective function. BLEU is also not
decomposable in the sense that a sum or an average of sentence scores is not
equal to the score of the whole corpus. Therefore, optimizing parameters on the
level of the sentence might not lead to a global optimization of BLEU on the
whole corpus.

There are few solutions suggested for approximating corpus level BLEU on
the sentence level. The most popular of them is smoothed BLEU or sBLEU [24].
What sBLEU does is actually a La-Place’s smoothing by adding one additional
count to each n-gram count except for unigrams, which makes BLEU score non-
zero unless not even one word was matched.

The other solution for approximating BLEU that is used only for discrimina-
tive training and not for comparing different systems is a modification of BLEU

22



by [7, Chiang et al.]. What their modification does is smoothing of the BLEU
score by using the average of the previous translations that gets updated after
each new evaluated sentence. They first define a vector c(e; r) where e is the hy-
pothesis to be evaluated and r is the reference translation. That vector contains
all information needed to compute the BLEU score: length of e, length of r, for
1 < n < 4 counts of n-grams in e and counts of matched n-grams in e. Let us
say that for computing BLEU using this vector, we can just call BLEU(c(e;r)).
We also define a pseudo-document O, an exponentially weighted moving average
of vectors ¢ and Of an exponentially moving length of input:

O + 0.9(0 + c(e))
Of + 090 + |f])
Finally BLEU approximation is computed as:

B(e; f,r) = (Op + [f)BLEU(O + c(e; 7))

Oy + | f] is needed for controlling the influence of context O on the B score.

3.1.3 NIST

NIST [11] tries to repair the assumption that is made in BLEU, that all n-grams of
the same order are equally important. NIST tries to reward the translations which
have rare n-grams of any order while giving less importance to the translation of
n-grams that are seen often. In order to do that, NIST requires information weight
for each n-gram that is used. These weights need to be determined before the
evaluation and this is usually done by computing these weights on the reference
corpus. What is also a good property of NIST compared to BLEU is that NIST
is a decomposable metric: the average score of all sentence scores is equal to the
corpus score.

counts of w .. .wn_l)

Info(w ... wy,) =log, (

counts of wy ... wy,

N
N[ST _ Z { Eall w1...wyn that cooccure Info(w1 e w") }
n=1

number of wy ...w, in the system translation

% exp {Blog2 [min <Lsys : 1)} } (3.2)
Lref

3.1.4 METEOR

METEOR [10] is a metric that uses lots of additional linguistic information in or-
der to allow some variation in the system output. By using stemming, METEOR
gives some score even to near matching words. It also uses semantic word-nets
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in order to accept near synonyms. METEOR is a more recall-oriented measure
compared to BLEU which is precision-oriented. The reason for that decision is
that having high recall ensures complete meaning of the source sentence captured
in the translation [20]. METEOR usually has much better correlation with hu-
man judgment, but it usually requires additional linguistic resources in order to
be applied to some language. From the perspective of discriminative training,
METEOR has good sentence level correlation with human judgment but it is too
slow to compute compared to BLEU.

3.1.5 SemPOS

SemPOS (Semantic POS Overlapping) [22] is a metric that was specifically de-
signed to do evaluation of Czech output. It is based on the semantic role overlap-
ping metric from [I4]. Instead of using semantic roles that were defined in that
metric and not available in the Czech linguistic resources, SemPOS uses semantic
POS from TectoMT [40] framework. Also, instead of surface word form, t-lemma
from TectoMT [40] is used in order to be more tolerant on the choice between
different variations of word form for lemma in a morphologically-rich language
as Czech. In a way, SemPOS has many similarities with METEOR: it is slow to
compute, has a requirement of rich linguistic resources and has a high correlation
with human judgment on the corpus level. However, it is reported that it has
really low correlation with human judgment on the sentence level which is similar
to BLEU sentence level performance [22].

3.1.6 ROUGE-S

ROUGE-S [26] is a variation of f-measure described before. Instead of matching
words ROUGE-S tries to match skip-bigrams which is better choice because it
introduces word order information in the metric’s score. A skip-bigram is defined
as a bigram that allows skips (other words) between its two words. Let us take
the following example of having a reference translation:

R:ABC
and three system’s translations:

S1: ABC
S2: CB A
S3: ACB

The total number of skip-bigrams in reference translation is 3: A B, A C, B
C. Sentence S1 has all 3 matches of skip-bigrams which will give it high ROUGE-
S score. Sentence S2 has no matching skip-bigrams, which will give it score 0.
Sentence S3 even though it has the same words as for example sentence S1, one
word is in a wrong place. It will not have the same score with S1 because of
that, but it will still be rewarded for other two matching skip-bigrams: A C and
A B. Compared to the previous f-measure on the level of words that would give
to all these three sentences the same maximal score, f-measure with skip-bigrams
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rewards translations with the right word order. It does not require any additional
linguistic resources and it is designed to work on the sentence level.

As the original f-measure, ROUGE-S does not differentiate between its two
arguments - it does not care which argument is reference and which is system’s
translation. It just computes similarity between two sentences. This is why in
the following formula that describes ROUGE-S we will use X and Y as sentences
between which similarity is computed and m and n as their number of words
respectively.

b SKIP2AX.Y)
skip2 — C(m, 2)

p_ SKIP2AX.Y)
skip2 — C(TL, 2)

(1 + BQ)RskinPskizﬂ
Rskip2 + 62Pskip2

Fskin =

where function SKIP2 computes the number of matched skip-bigrams and C
computes the number of skip-bigrams for the given length and is computed as
the number of word combinations:

vn=(3) =

ROUGE-S also allows one additional parameter that controls the number of
maximal number of skipped words. The value of that parameter is usually added
at the end of the name of the metric so for example if the maximal allowed skip
is 4 words then name of this version of ROUGE-S is ROUGE-S4. If the maximal
number of skipped words is undefined, then that version is called ROUGE-S*.
The smaller is the number of allowed skips, the more value we give to the word
order. In their work [26] Lin and Och| have found that for English the best
number of allowed skips is 4.

3.1.7 ROUGE-SX

The problem that we have found with ROUGE-S is that if you restrict the num-
ber of allowed skips, then the number of skip bigrams that are present in both
the reference and the system’s translation is not equal to the number of word
combinations. Let us take as an example sentences with four words and the
maximal number of allowed skips 1. The nmber of possible word combinations
is 6 but the actual number of skip-bigrams with skip not bigger than 1 is 5. By
computing total number of combinations we have included skip-bigram with first
and fourth word which should not be included because number of the skipped
words is two. The other problem is that if we compare two completely identical
sentences of length 4 using the maximal number of skips to be 1, the score will
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not be 1 but lower number because translation will be punished for not matching
the skip-bigram which was forbidden to match.

Our formula for computing the correct number of skip-bigrams with a defined
maximal number of allowed skips is given bellow:

1 when n < 2
CX(n,s) = "("271) when2<n<s+2 V s=x
(n—s—l)(s+1)+@ when s +2 <n

Here, s represents the number of allowed skips and n the length of the sen-
tence for which we are computing the number of skip-bigrams with a constrained
number of maximal skips. This formula might not seem really precise because for
a sentence with length 0 or 1 a number of skip bigrams is 0, not 1 as given by the
formula. The reason for using 1 instead of 0 is to avoid error by division with zero
when we compute precision and recall. Because the number of matched bigrams
will be zero in any way, the final score will still be zero so this impreciseness does
not influence the score and saves us from processing results for this functions as
special cases when result is zero and when it is not zero. In the case of having
infinite number of allowed skips (s = * ), this function returns the same result
as the function used before for the number of combinations.

If we try this formula on the previous example, we get the correct prediction of
5 skip-bigrams. The more the size of the sentence rises, the larger is the difference
between the correct number of skip-bigrams and the number of combinations.
This leads to two problems with the original ROUGE-S metric:

e translations that are longer than their competitors will get punished because
the length exponentially influences the number of combinations

e cven if all competitors are of the same length, the final number that will
result from the score will be too small because they are divided with large
denominator. For example, for n=100 and s=4 denominator in the original
ROUGE-S will be 4950 while for our method it will be 485

Our formula does not have these problems since the size of the sentence does
not exponentially influence the number of skip-bigrams and the final score can
be any number between 0 and 1 independently from its length.

There is also one more problem with the imprecise definition of ROUGE-S4
as given in [26, Lin and Och]. In their paper they say that the function SKIP2
computes the number of matched skip-bigrams between its two parameters (two
sentences). One possible interpretation of this is that SKIP2 computes the num-
ber of the skip-bigrams that are in the first sentence that appear in the second
sentence. If we take the simple example with the first sentence being A A A and
the second sentence being A, by this definition, it would mean that the number
of matched skip-bigrams is 3 and the recall will be 3 which of course does not
make sense since recall is defined in a way not to be bigger than 1. The way we
make this definition more precise is this pseudo code for function:
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SKIP2 (X, Y)
XH // hash map that has skip-bigram of sentence X
//as a key and its count in sentence X as a value
YH // hash map that has skip-bigram of sentence Y
//as a key and its count in sentence Y as a value

foreach skip-bigram x in X do
XH{z}+ =1

foreach skip-bigram y in Y do
YH{y}+ =1

matched_bigrams = 0

foreach x in keys XH do
matched_bigrams+ = min(X H{z},Y H{z})

return matched_bigrams

By having defined function SKIP2 precisely there could be no confusion of
what is meant by the matching skip-bigrams and we would not be led to the
wrong result like in the previous example. ROUGE-S4 works well even with
the wrong definition of SKIP2 because the situations that we have described
in the previous example are rare, but this could present a problem if we use
ROUGE-S4 with wrong definition of SKIP2 because with the wrong definition
the optimization algorithm will prefer output that is long filled with repetitions
of correct translations, which is a really bad result in the end. With our definition
that problem cannot appear because we are recognizing the most minimal number
of matched skip-bigrams and the system is punished for long output.

3.2 Motivation for using ROUGE-S4 as an ob-
jective function

Ideally we would like to use as an objective function for discriminative training an
automatic evaluation metric that correlates best with human judgment. In the
case when our target language is Czech that metric would be SemPOS since it has
good correlation with human judgment [22]. However, there are some problems
with using SemPOS as an objective function:

1. it is slow to compute
2. it is a corpus level metric

[23, Bojar and Kos| solved the first problem by preprocessing the training data to
include semantic POS and t-lemma as factors which would be used later to build a
factorized statistical machine translation system. Because the information about
a word’s semantic POS and t-lemma was available as a factor during tuning, there
was no need to do parsing with TectoMT, which is the slowest part of the whole
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evaluation process. What we have mentioned as a the second problem was not
a big problem for them because they used MERT as an optimization algorithm,
which can handle metrics that operate on the corpus level. The results that
they achieved by using only SemPOS as an objective function were not as good
as expected because even though SemPOS was good for comparison of different
systems which make different lexical choices, it turned out not to be as good for
comparing different but similar translations in the n-best list. This is a similar
problem like the one that we have described with having the wrong definition for
the SKIP2 function in the ROUGE-S evaluation metric. ROUGE-S was good for
comparing systems even with the wrong SKIP2 function, but when we optimize
using this wrong function the optimization algorithm exploits the weaknesses of
this definition.

As stated above, for the objective function in large-scale discriminative train-
ing we need, for most algorithms that are used for this task, a metric that is good
in comparing similar sentences with reference translation. Because SemPOS has
a really bad correlation with human judgment on the sentence level [22] and
bad for discriminating similar translations [23] it cannot be used for large-scale
discriminative training. A metric such as BLEU is bad on the sentence level,
but also bad for languages with free word order and rich morphology [22]. As
an alternative to optimization towards BLEU, the most popular choice is sSBLEU
which was first published in [26, Lin and Och]. In that paper, the authors present
several different metrics where most of them are new and they all work on the
sentence level. They have compared all these different metrics with their new
meta-evaluation method called Orange (presented in the same paper) which does
not require human judgment scores in order to compare different metrics. In this
comparison, the metric that gave the best results on the English translations is
ROUGE-S4. It was better then metrics like NIST, BLEU and sBLEU.

[22] Bojar and Kos| have examined sentence level correlation of different met-
rics with human judgment for translations in Czech and found that the best
correlated one is NIST. Together, results from [26, Lin and Och] and [22, Bojar
and Kos] led us to the idea that ROUGE-S4 might be a good metric for large-
scale discriminative training, because if NIST is the best from all tested metrics
on the sentence level in [22, Bojar and Kos| and in [26, Lin and Och] ROUGE-
S4 is even better than NIST and sBLEU, which is the most popular choice for
large-scale discriminative training, then ROUGE-S4 might be interesting to test
as an objective function. Of course, these comparisons cannot be linked directly
because they were done on different data and different languages, but it is enough
to support the motivation for our experiments.

The second reason for experimenting with ROUGE-S4 is that it is a simple
metric that does not require remembering the history of the previous evaluations
like BLEU approximation used in [7, Chiang et al.]. Their approximation is
based on using the average vector of counts from the previous translations and
there is no real reason to expect that to be the right approximation because the
history of previous translations might be completely different from the one we
are evaluating. Even if we take that these methods of approximation are good,
they could also be applied to ROUGE-S4 if there is need for that. We do not
have a direct comparison between their approximation of BLEU and any other
metric except in the influence of that metric on discriminative training where it
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was preferred by them as an objective function over sBLEU.
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4. Sparse features in Large-Scale
Discriminative Training

The invention of new algorithms for large-scale discriminative training of machine
translation models has opened the space for usage and research of a large num-
ber of features for modeling the translation process. However, these algorithms
are not a sufficient condition for using features with rich linguistic information.
Some of the problems are related to the way the generative model that produces
candidates works, like for example phrase based statistical machine translation
which does not (in general case) give any rich linguistic information like parse
tree or POS tags. The other problem is that even if we had a perfect system
for handling the large number of rich linguistic features, what features would
we use? There has not been a lot of research on the rich features for modeling
translation output, but help might be found in the area of linguistics. There are
also features that are already present in the generative model but could be used
more effectively in discriminative models. These are the most often used features
in large-scale discriminative training, but to our knowledge they have not been
applied to Czech as a target language so far. We will address all these problems
in this chapter and suggest possible solutions.

4.1 Simple Generative features in Large-Scale
Discriminative Model

It is a standard practice in statistical machine translation to train generative
models like the language model and the translation model independently and then
use them as features in a discriminative model. It is possible to make these models
integrated even more in a discriminative model. For example, instead of using
the probability of translation from the translation model we can use individual
parts of the translation model that are used for computing that probability and
make them discriminative. For example, we can use each phrase pair from the
translation model as an independent feature in a discriminative model instead of
their generative combination. In most of the practical applications of large-scale
discriminative models, these features gave the best results.

The main advantages of using features from generative models in discrimina-
tive models for machine translation are:

e correction of errors introduced by training generative model features like
phrase pair probability from translation model and n-gram probability from
the language model independently on different data set

e correction of overestimated probabilities in generative training

The two most often used features from the generative model in the discrimi-
native model are the discriminative language model (DLM) and the phrase pair
feature (PP). DLMs have been used before in many subfields of natural language
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processing and in particular in speech recognition systems [36]. What a discrim-
inative language model does is to give us an estimate how much some n-gram is
a sign of a good translation.

To see the difference between the usage of a discriminative and a generative
language model, let us look at the following example. If we have some n-gram
that is by the generative model very probable, this means that in the target
language this n-gram appears very often. This information is taken from the
target monolingual corpus on which the generative model was trained. However,
that n-gram might have a very low score by the discriminative model because it
is a sign of a bad translation. Now this looks like a paradox, but it is not. One
of the possible reasons for that n-gram to be sign of a bad translation is that it
is part of the phrase pair that is learned from bad parallel data. In this case, the
discriminative methods act as some corrective factor to the generative features
that have problems because they are trained independently.

Controlling the dependency between different features is not the only rea-
son for using discriminative methods. One other example where discriminative
methods can correct the judgment of the generative model is the case when some
n-gram probability is overestimated. Overestimated n-gram probability will cause
translations with bad score during tuning which will make its weight in the dis-
criminative model very small or even negative so it would not cause a low score
during testing.

The other feature that is used often is the phrase pair feature. It gives an
estimate of how much some phrase pair that was used in the generative trans-
lation is informative or a sign of a good translation. That phrase pair might be
very probable in a generative model, but this might be an error caused by inde-
pendent training of features or overestimation. Using phrase pairs as discrimina-
tive features can reduce issues that are caused by overestimation of phrase pair
probability in the generative translation model and independent training of the
generative translation model from other features.

4.2 Generalization of Simple features in Large-
Scale Discriminative Model

Features like DLM and PP are used often on the level of word forms, but that
does not have to be the case. We can make DLM or PP more robust to the data
sparsity problem that is often present in morphologically rich languages by using
some more abstract representation of a word then its surface form. Some of those
more abstract representations can be:

e lemma

e stem

POS tag

cluster id from clustering like in [31, Och]

affix (usually suffix for languages like Czech)
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Each of these features can decrease different types of errors that appear in
machine translation with morphologically rich languages:

e lexical choice - lemma and stem are a good choice for solving this problem.
They bring similar type of information into the model, so the usage of both
of them at the same time might not bring advantage over using only one

e word order - POS tag and cluster id are good for creating a robust language
model. In [29, Niehues et al.] authors have created two language models
for German to be used in generative translation: one based on the POS
tags, and the other on the cluster ids where 50 clusters were built using
[31], Och]. The language model built on clusters gave better end translation
results than the language model built on POS tags. This can be explained
by clusters being more fit to the actual data which we plan to translate than
POS tags which are not based on data, but on some linguistic theories.

e word form choice - POS tag and affix feature can influence the choice of the
right word form

All these features require some additional processing of all hypotheses in an
n-best list. POS taggers and other similar classifiers that are used for gathering
information that is needed for these features are usually trained on data of rea-
sonable quality. Hypotheses in an n-best list might be of very bad quality and
therefore their words can be misclassified because classifiers were trained on data
of different quality.

Some researchers have built special classifiers for handling translation output.
In [37, Rosa] they have created a parser for processing translation output by using
not only features that are based on the target language but also features from
the source side and alignment between words of source and target sentences. The
parser was also trained on translation results which made it robust for handling
that kind of text. This parser was created with the reason to do post-processing
of translation output, which means that the number of times it is applied is equal
to the number of translated sentences which is usually not a big number, so the
speed of parsing was not a big limitation for its usage. However, if we want to
use this type of parser in discriminative training, it would be applied number of
tuning sentences*number of iterations*n-best size times, which is a large number
considering how slow the parsing of one sentence can be. This makes usage of
parsers and similar classifiers a bad option for discriminative training.

A similar problem was encountered in [23] Bojar and Kos|, where the authors
have tried to use SemPOS as an evaluation metric for optimization. SemPOS
requires some deeper linguistic information on the target side so the first option
to try out was to parse each hypothesis in an n-best list. They have reported that
tuning with parsing each hypothesis in an n-best list is extremely slow. Because of
that, they have applied a different technique of getting the information they need
(lemma and semantic POS). They did all necessary linguistic preprocessing on
the training data and set this information (lemma and semantic POS) as a factor
in the training data. By training a factored model with linguistic descriptions
as additional information in the form of factors they were able to access these
descriptions during tuning without processing each entry in the n-best list. This
was done in order to use a specific evaluation metric, but the same approach can
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be applied in finding abstract representations of words that we need for large-
scale discriminative training. It should be noted that this method does not come
without any cost. Doing factored training with additional factors influences the
process of decoding by increasing the search space, so sometimes it can lead to
n-best lists with translations of bad quality and then additional features will not
help noticeably.

We suggest a simpler approach that can give approximate results, but it is
much faster in processing hypotheses in an n-best list than some complex clas-
sifiers and it does not require a specific way of training and decoding like the
factored training approach.

As a replacement for lemma and stem, we can use their approximation by tak-
ing the first few characters from a word as an approximation. This is a technique
that is applied often in the alignment step of building an SMT system [3]. This
approximation can be applied only in the languages that have morphology based
mostly on suffixes. With the same requirement we can approximate suffixes by
taking what is left from the word form when we take away a stem.

As a replacement for POS tagging, we can apply several different approaches.
One of them is assigning the most frequent POS tag of the given word form or if
that word form was not seen before then assign proper noun tag. This technique
ignores context, but even without considering context it gets around 90% accuracy
with languages like English [5]. The second replacement for POS tags is to use
cluster ids instead. Clusters can approximate POS tagging if a reasonable number
of clusters (depends on the target language) was used. In languages with a very
large number of POS tags, doing clustering with the same number of clusters
might be hard, so instead of doing that, we can use a smaller number of clusters
together with the approximation of suffixes as an approximation of POS tags.

4.3 Rich linguistic features

There are two problems with using linguistically motivated features in large-scale
discriminative training with phrase based statistical machine translation systems.
One is technical and the other one is is linguistic. The technical problem consists
of creating a system capable of having all the necessary linguistic information
in order for rich features to work. The linguistic problem is in deciding which
features to use. We will try to offer possible solutions to these problems, but
without experimental evidence for them, which is left for the future work.

4.3.1 Technical problem of incorporating rich features

What we usually mean by linguistic information is information like POS tags
and parse trees. The solutions to the problem of getting POS tags and similar
information were addressed in the previous chapter. Here, we will take a look at
the problem of getting a parse tree of a target sentence. As we have mentioned
before, it has been shown that parsing machine translation output requires special
a parser in order to get better results [37] and it can take a lot of time to tune
with parsing each sentence in an n-best list [23]. What we can easily get is
linguistic information on the source side. Since the source side is not changing,
we can do all the necessary linguistic preprocessing and then use it for tuning.
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The hard problem is getting the same type of information on the target side.
This problem does not appear in systems that are based on syntax translation
[13] or dependency treelet translation [35] because the parse tree of the target
side is part of a translation hypothesis. This is not the case with phrase based
systems and this is why not much research has been done on using rich features
with phrase based systems. We will suggest two solutions of which the first one
is based on mapping source dependency tree to the target side and the second
solution is a small simplification of the first solution.

Alignments

In mapping source side dependency information to the target side, we need align-
ments between the words of the source and target sentences. An alignment that
is necessary for mapping should be one-to-many or one-to-one in order for the
heuristic rules that we use to be applicable. There is one special case of many-to-
one alignments that can be allowed. If nodes in the source side of some many-to-
one alignment cover a complete branch of the source tree then that alignment is
allowed too. Because during tuning, we already have phrase-to-phrase alignments
we can get better quality of word-to-word alignments if the alignment is done on
the level of phrase pairs instead of alignment on the whole sentence pair. Also
this process does not have to be done during tuning, but much earlier when the
phrase table is generated and after that these alignments can just be loaded into
memory. This will take more memory during tuning, but it will be faster since
alignments will not have to be recomputed.

Mapping dependency trees from the source to the target side

Ideas from one of the alternatives to phrase based statistical machine translation
can give solutions to the problem of mapping dependency trees. In dependency
treelet translation [35], a system is trained on a parallel corpus where both sides
have dependency trees. The only requirement is that a parser for the source side
exists. Target side trees are derived from alignments between words and source
parse tree. In dependency treelet translation, this process is used for extracting
linguistically motivated phrases, but in our case we can use the same approach
with the different goal of mapping a source parse tree to a target sentence.

Heuristics for mapping start from the root of the source tree and then map
other source tree nodes in the breath-first order. The heuristics for mapping are
as follows:

e for one-to-many alignment - map the rightmost node to the word in the
source sentence and make dependency of all other words to the rightmost
word

e for one-to-one alignment - map source and target word

e for special case of many-to-one alignment - map word on the target side to
the highest node of the source side

e for unaligned words on the target side - make dependency each of them and
the closest node on the left or right side from it that is lower in the parse
tree
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With these mappings, source tree dependencies can be directly mapped to the
target side.

Simplified solution

Previous solution with mapping dependency trees from source to target sentence
is tricky to implement and it introduces some assumptions that are not neces-
sarily true. Instead of using these assumptions, we can introduce some features
that use dependency information, but without mapping the source sentence tree.
For example, if we want to implement a sparse feature that is similar to the dis-
criminative language model, but instead of using consecutive words, we will use
the word and its parent word. One way is to map the source tree to the target
and then use that mapped tree to implement this feature. The other way is to
use any word on the target side and the parent of the aligned word on the source
side. More formally, if we have a mapping f — e, the new feature will be (e,
parent(f)) while in the previous case it would be (e,parent(e)) where parent() is a
function that returns the parent node of its argument from the source tree or tree
mapped to target depending on the argument. Of course, features (e, parent(f))
and (e,parent(e)) are not the same, but the first one can be considered as an
approximation of the second one in the usage of dependency information. Fea-
ture (e,parent(e)) also depends on the translation of parent(f) while (e, parent(f))
does not.

4.3.2 Linguistic problem of finding rich features

We find that the way Optimality theory [34] describes the process of producing the
surface form of a sentence is very similar to the process of discriminative training.
The grammatical component of optimality theory consists of two components [39]:

e GEN function which generates candidates for the final surface form
e EVAL function which evaluates all the candidates that GEN has generated

The evaluation is done using some constraints that are ordered by priority. It
is expected that these constraints are universal for all languages and that priority
is language specific. The sentence that breaks the smallest number of high priority
constraints gets selected as the final surface form.

This process looks very similar to the process of discriminative training in
machine translation. The GEN function in optimality theory can be seen as a
parallel to the generative model in statistical machine translation and the EVAL
function as a parallel to the reranker. This leads us to the idea that the constraints
found by researchers in optimality theory can be used as an inspiration for features
in discriminative training for machine translation.

Still, not all constraints can be applied as features in discriminative training
directly. One of the reasons is that in most cases, they are dealing with some
very specific phenomenon that is not of big importance in the target language
or in the translation process. The other reason is that they use only target side
information and they can be enhanced by using information from both source
and target sides.
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To our best knowledge, this similarity between the translation process and
optimality theory was not mentioned before in the machine translation literature
and it was mentioned in only two papers by the same author [27], 28] in the human
translation literature.
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5. Experiments, results and
discussion

This thesis tries to address problems that are present in large-scale discrimina-
tive training in the case that the target language is morphologically rich. The
problems that we have identified are:

1. a large number of word forms that are present in the test data are not seen
in the training data [23]

2. even if a word form is seen in the training data, choosing the right word
form can be hard [23]

3. BLEU as an evaluation metric is not really good in case of evaluating mor-
phologically rich languages [22] and we expect that its approximation that is
often used in large-scale discriminative training will give even lower results

Part of the plan of this thesis was to develop rich features by working on English-
Serbian as a language pair so they could be applied later to the English-Czech
language pair. The reason for working with Serbian was author’s better under-
standing of it compared to his understanding of Czech. Since we have established
that phrase-based SMT systems are still not suited for rich features we have
decided to work with not linguistically rich, but sparse features that are well
supported under phrase based SMT systems. Focusing on features that do not
require deep linguistic knowledge need for working on English-Serbian language
pair has disappeared and made us focus only on English-Czech language pair.
Working directly on English-Czech language pair allow us to incorporate rich
features in our existing work when support for them in phrase based systems
becomes available. The effect on final result of all the mentioned problem on
English-Czech language pair is given in [23], Bojar and Kos|]. We will concentrate
on the problem of choosing the right word form and the problem of evaluation
metric. We will not deal with the problem of missing word forms in the data
because this problem can in most cases be solved only by getting more data.
The choice of experiments that are conducted is based on the problems we have
selected to explore.

5.1 Models used in all experiments

All conducted experiments share some common infrastructure. For training data
we have used news section of the CzEng 1.0 parallel corpus [4]. As a tuning,
testing and selection corpora we have used WMT10, WMT11 and WMT12 cor-
pora respectively. The language model is built using Srilm language modeling
toolkit [38] on the Czech side of the training corpus. Training data is first aligned
using GIZA++ [30] on the lemmatized forms and after that translation model is
created using Moses PB-SMT toolkit [2I]. All optimization algorithms that we
use are part of the Moses toolkit. Batch MIRA and MERT are from the main
git branch and online MIRA is from the miramerge git branch. As a baseline we
use weights optimized by MERT.
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As noted in [8, Clark et al.] most of the optimization algorithms for the
discriminative models in machine translation have some randomness and because
of that it is required to repeat some experiments several times in orger to get
statistically significant result. What they suggest in case of MERT is to run
MERT at least three times and then compute the average score and standard
deviation. That approach could also work for batch version of MIRA since it
shares some of the MERT architecture. For online MIRA this approach does not
work because, unlike in MERT, randomness in online MIRA does not come from
random starting points (usually initial weight vector is 0) but from ordering of
training instances. That is why in addition to the repetition of tuning several
times we have also shuffeled tuning data before each tuning.

With this thesis we have also supplied exact tuning data that was used (both
original and shuffeled versions), testing data and end translations of all optimized
models. Also we have supplied code that we have developped for handling some
features and code for different objective functions.

5.2 Experiments for solving the problem of se-
lecting the right word form

DLM with unigrams

DLM with bigrams
e DLM with unigrams and bigrams

e PP feature

Results are shown in the table bellow.

Number of | Avg. BLEU score on | Standard

features the testing data deviation
MERT core 8 12.37 0.02
DLM1 9409 12.34 0.08
DLM?2 42901 12.41 0.04
DLM1+DLM2 42529 12.34 0.04
PP 17641 12.40 0.06

Even though the tuning corpus was small compared to the size of the corpora
that is usually used to learn such a big number of parameters, MIRA was stable
and learned reasonable parameters in each case. In some cases where there were
a larger number of parameters, results are even better, which leads us to think
that data size was not a big problem in this case.

DLM2 and PP have the best results from all features that were tested. The
reason for this might be the context that is taken into account in DLM2 and
PP features. Together with context these features take word order information
too. DLM1 does not depend on the context or word order at all so it does not
help in differentiating hypotheses that have the same words but in different order.
PP influences the word order because phrases can be of size up to 7 words. We
have tried training DLM3 feature, but this feature is too sparse to be trained in
reasonable time.
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Another reason why bigger context that is covered by DLM2 and PP is im-
portant is choice of the word form. For example the choice of case for some noun
depends from its neighbouring words. In this cases DLM1 cannot help at all while
DLM2 and PP can cover these dependences. Deeper exploitation of these features
might lead to better choice of word forms and better choice of word order. In
total, improvements that were acheaved with usage of large number of features
are not big which corresponds to the other similar research [17].

5.3 Experiments for solving the problem of eval-
uation in tuning

For solving this problem, we have tested three different objective functions with

online MIRA:
e BLEU approximation [7]
e ROUGE-54 - our implementation of |26 Lin and Och]

e ROUGE-SX4 - our changed version of ROUGE-S4 that was explained in

the earlier text

Additionally, we have used also a recent addition to the Moses toolkit batch
version of MIRA [6] with BLEU approximation as an objective function. All
these optimizations were done on the same model as previous experiments. As a
baseline, again, we use the same parameters optimized by MERT. All optimiza-
tions are only performed on core features. Results are shown in the table bellow.

Learning | Avg. BLEU score on | Standard

rate the testing data deviation
MERT - BLEU 12.37 0.02
Batch MIRA - approx. BLEU 1.0 12.43 0.05
Online MIRA - approx. BLEU 1.0 12.44 0.06
Online MIRA - ROUGE-54 1.0 12.32 0.07
Online MIRA - ROUGE-54 0.1 12.34 0.26
Online MIRA - ROUGE-SX4 1.0 12.23 0.38
Online MIRA - ROUGE-SX4 0.1 12.01 0.59

Against our expectations, the optimization with ROUGE-S4 was better than
our version of it (ROUGE-SX4). We think that the reason for this is that more
conservative changes seem to give better results. The way we have defined the
margin between two hypotheses is that it depends from the evaluation metric in
one part. When the value of that metric is very small (in general, not for some
particular hypothesis) then the margin between hypotheses is also small. As we
have shown earlier, scores that are produced by ROUGE-S4 are very small com-
pared to ROUGE-SX4 scores, especially in the case of long translations. Because
scores are small, the margin will be small too. It will be small especially in the
cases of long translations where the system is likely to give some bad results, so
it might not be good to give big weight to that update. When we enforce this
margin in the update, small changes to the parameters will be applied.
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Similar effect can be achieved by changing the learning rate of the algorithm.
Lowering the value of the learning rate from 1 to 0.1 has confirmed our expecta-
tions, in case of ROUGE-S, that more conservative changes give better results.
Batch MIRA gave similar results to the online MIRA in both the average score
and standard deviation. From the perspecitve of using different objective func-
tions batch MIRA might be interesting because it does not require evaluation of
partial hypothesis. Selection of hope and fear hypotheses is done on the word
lattice which contains complete hypotheses so evaluation can be more precise no
matter which metric are we using. This property of batch MIRA makes it attrac-
tive for testing our objective functions, but because batch MIRA was a recent
addition to the Moses toolkit we did not have enough time to port our metric to
it. We leave this for further research.

There is a difference between conservativism of low learning rate and ROUGE-
S metric. The low learning rate makes the whole learning conservative, while
ROUGE-54, except for being conservative because of its low score, is conservative
even more in the cases of long translations. Even though our metrics did not give
better results than BLEU approximation we think that experiments have shown
that conservative updates can be better in some cases, especially in the cases of
long translations. Adding some scaling factor to ROUGE-SX4 or BLEU (or any
other tuning metric for large-scale discriminative training) that depends on the
sentence length might improve its effectiveness in the tuning.
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Conclusion

In this work, we have presented a theoretical basis for large-scale discriminative
training, explained how it can be used to solve problems that exist in translation
into morphologically-rich languages and in the end gave the experimental results
of applying large-scale discriminative training in the task of translating from
English into Czech. Some of the ideas that were used here are novel and applicable
not only to the task of translation to morphologically-rich languages, but also to
the more general framework of large-scale discriminative training.

We have tested different features using a phrase-based SMT system. In the
cases of features that could not be used with standard phrase-based systems, we
have given reasons why this is the case and gave suggestions for future research
on how these problems might be overcome. From the linguistic point of view, we
have also shown how different features influence the choice of a word form and
how they could be improved in the speed of their computation and in making
them less sparse. We have pointed out the fact that linguists have already worked
on a theory that has many similarities with discriminative training in machine
translation — optimality theory — and that, when phrase-based SMT systems
become capable of handling rich features, we should try to apply ideas from that
field of linguistics in the engineering of the features.

This thesis is also the first to use the ROUGE-S evaluation metric as an ob-
jective function in discriminative training. It did not give better results than the
approximation of BLEU that is used in most of the systems for large-scale dis-
criminative training, but experiments with it showed that conservative updates
might be more useful especially in the cases of long translations. We have also
introduced our own variation of the ROUGE-S metric, which gave similar results.
This is the first time these metrics were used as objective functions in discrimi-
native training, so we think it is worth to invest future research into them if not
for them to become a replacement for BLEU then at least to give insights how
to better use BLEU in the context of large-scale discriminative training.
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