
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Bc. Ľuboš Magic

Remote Method Invocation for Android
Platform

Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Pop

Study programme: Computer Science

Specialization: Software Systems

Prague 2012

The author would like to thank Tomáš Pop, Jan Šteffl and Jan Nemec for their
interest and support of this work.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date Ľuboš Magic

Názov práce: Vzdialené volanie metód pre platformu Android

Autor: Bc. Ľuboš Magic

Katedra: Katedra distribuovaných a spoľahlivých systémov

Vedouci diplomovej práce: RNDr. Tomáš Pop, Katedra distribuovaných a spoľah-
livých systémov

Abstrakt: Diplomová práca skúma potenciál vzdialeného volania metód v pro-
stredí mobilných zariadení s operačným systémom Android. Hlavný cieľ práce
je výskum v oblasti realizácie bezpečnostne kritických častí aplikačného kódu
na smart karte (v prostredí mobilných zariadení hovoríme o SIM karte). Práca
taktiež popisuje vzdialené volanie metód všeobecne a porovnáva špecifiká imple-
mentácie volaní na vzdialený server a na smart kartu. Súčasťou práce je aj návrh
prípadovej štúdie, ktorá využíva získané poznatky.

Kľúčové slová: Android, vzdialené volanie metód, smart karta, bezpečnosť

Title: Remote Method Invocation for Android Platform

Author: Bc. Ľuboš Magic

Department: Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Pop, Department of Distributed and Dependable Sys-
tems

Abstract: The thesis inquires the potential of a remote method invocation in
the context of the Android mobile devices. The primary goal of the thesis is
to investigate execution of security-critical parts of application code on smart
cards (a prominent example of a smart card is the SIM card). Further, the thesis
discusses issues of implementation of the remote method invocation in general,
covering also its other frequent forms (such as execution on a remote server). A
part of the thesis is a real world case study, which demonstrates the results of the
thesis.

Keywords: Android, remote method invocation, smart card, security

Table of Contents

1 Introduction 1
1.1 Motivation Case Study . 2
1.2 Goals . 3
1.3 Structure of the Thesis . 3

2 Related work 4
2.1 Security and Trust Services API for J2ME 4
2.2 Secure Element Evaluation Kit for the Android platform 5

3 Background 6
3.1 Android Operating System . 6

3.1.1 Application Fundamentals 7
3.1.2 The Android Application Manifest File 9
3.1.3 Security Architecture . 9
3.1.4 Inter-Process Communication 11

3.2 Smart Cards Overview . 12
3.2.1 Microprocessor Cards . 13
3.2.2 Smart Cards Standards . 14
3.2.3 Smart Card File System 15
3.2.4 Communication with a Smart Card 16
3.2.5 Java Card Technology . 16

3.3 Remote Method Invocation . 18
3.3.1 Benefits of Usage . 19

3.4 One Time Passwords Algorithms 20
3.4.1 HOTP . 20
3.4.2 TOTP . 21

4 Analysis 23
4.1 Communication with a SIM Card 24
4.2 Handsets Implementation . 26

4.2.1 Hardware Structure . 26
4.2.2 Communication with the Baseband Modem 27
4.2.3 Hardware Limitations . 28
4.2.4 Vendor Specific RIL Android Implementation 29

4.3 Android Emulator . 29
4.3.1 QEMU . 30
4.3.2 PC/SC . 30

4.4 SIM Card RMI Architecture . 30
4.4.1 RMI Generator . 31

4

4.4.2 APDU Interface . 33
4.4.3 RMI Library . 33

4.5 SIM Card RMI Security . 33
4.5.1 Access Control . 34

4.6 Link to a Related Work . 35
4.7 Goals Revisited . 36

5 Implementation 38
5.1 RMI Implementation . 38

5.1.1 Stub and Skeleton Generator 38
5.1.2 RMI Library . 40
5.1.3 APDU Transport Layer 40
5.1.4 Access Control Layer . 41

5.2 Case Study Implementation . 41
5.2.1 RMI Interface . 42
5.2.2 Shared Secret . 42
5.2.3 SIM Card Applet . 42
5.2.4 Android Application . 42
5.2.5 Validation Server . 43

6 Discussion 44
6.1 Security Aspects of Implemented Solution 44

6.1.1 Threat Model . 44
6.1.2 Security Concerns . 45
6.1.3 Possible Improvements . 46

6.2 Handsets Support for APDU Transport 46
6.3 Comparison to Generic RMI . 47

7 Conclusion and Future Work 49

Bibliography 50

A Traces 54

B Content of the Attached CD 56

Chapter 1

Introduction

The first commercial version of the Google’s Operating system, Android 1.0, was
introduced on 23 September 2008 [1]. Soon after the release, on 22 October 2008,
the first Android phone “HTC Dream” entered the US Market [2]. Instantly
after the debut of the first mobile device with Android, the market-share of this
operating system started to grow rapidly. The Table 1.1 shows the Mobile phone
operating systems’ market-share in time according to Gartner [3].

Year Symbian Android RIM iOS Microsoft Bada Others
2011 Q2 22.1% 43.4% 11.7% 18.2% 1.6% 1.9% 1.1%
2011 Q1 27.4% 36.0% 12.9% 16.8% 3.6% N/A 3.3%
2010 37.6% 22.7% 16.0% 15.7% 4.2% 0.9% 2.9%
2009 46.9% 3.9% 19.9% 14.4% 8.7% N/A 6.1%
2008 52.4% 0.5% 16.6% 8.2% 11.8% N/A 10.5%
2007 63.5% N/A 9.6% 2.7% 12.0% N/A 12.1%

Table 1.1: Mobile phone operating systems’ market-share in time.

Plenty of applications need to securely store a secret. The number of such
an Android applications is rising [4] and in-hand with the Android penetration,
the need for a secure storage will become more and more relevant. The secure
storage shall not be implemented in a phone’s memory, as there exist a risk of
secret compromission by a malware application (especially when Android system
can contain various serious security vulnerabilities [5]). A better place for storing
the secret is a hardware token specially designed for security sensitive operations,
the SIM card. Naturally, the SIM card cannot just store the secret and reveal
it when a password is provided, as that would lead to the same security risk as
storing the secret outside of the secure token. Instead, the whole computation
with the secret, must be held inside the secure token and only the result of such
a computation shall be revealed.
The Java Mobile Edition enabled mobile phones are able to access the Smart

card interface by a technology called JSR177, Security and Trust Services API
for J2ME. This technology defines the methods to communicate to a Smart Card,

1

by leveraging the APDU protocol to the J2ME application interface [6]. Howe-
ver, there is no standardized API for Android phones and the Smart cards yet,
although some initiatives to create one already exist [7].

1.1 Motivation Case Study

In this section, we present a motivation case study to show the potential benefits
of the remote method invocation on smart cards in the Android environment.
As the computational power of computers is constantly rising, the brute force

attacks for static passwords are becoming more and more successful. As the hu-
man being has its mental limitations of remembering a password of a certain com-
plexity, the two-factor authentication was introduced to improve the security of
authentication schemes. There are several ways how to implement the two-factor
authentication. Most of them rely on a OTP (One Time Password) delivered to
the user by various channels, such an SMS, e-mail, IM, and others. The security
flaw in these is obvious, the security of the solution depends on the security of
the channel used. The other way of presenting the user the OTP synchronized
with the authentication server, bypassing the possibly insecure transfer channel,
is the hardware token in the user’s possession as shown in Figure 1.1.

Figure 1.1: Hardware token generating OTP [8].

The drawback of this method is the high cost of the hardware token if used
with a large user base and the low level of user friendliness, when the user must
carry the device all the time. By implementing the remote method invocation
between the Android applications and the smart cards, we would allow a solution,
which would use a SIM card as a secure token and would present the OTP to
the user on the Android phone, to be created. The JCRE (Java Card Runtime
Environment) embedded in a SIM card would run the algorithm and would use
the pre-shared secret, which would be stored in the SIM card’s file system as well.
The access to a SIM card’s file system would have to be restricted.
The solution shall have a clear interface, which could be used by i.e. a bank

2

application to allow the user accessing his/hers e-banking services with a trans-
parent second factor authentication to the user.
There are two well-known standardized One Time Password algorithms, pub-

lished by IETF (The Internet Engineering Task Force), HOTP (Hashed Message
Authentication Code OTP) [10] and TOTP (Time-based OTP) [12], which we
discuss more in detail in Chapter 3. The two mentioned algorithms require a pre-
shared secret to be used, which would not be safe to keep inside an Android
device memory, but a SIM card tamper resistant environment appears to be an
ideal storage. Both of the algorithms may be implemented into a scheme and
serve as an authentication system for Internet enabled applications user policies.

1.2 Goals

The thesis will inquire the potential of a remote method invocation in the context
of the Android mobile devices. The primary goal of the thesis is to investigate
execution of security-critical parts of application code on smart cards. As a result
of the investigation, the real-world case study will be proposed and implemented.

1.3 Structure of the Thesis

Chapter 2 offers an insight into a related work. The technical background of the
thesis is described in Chapter 3. In Chapter 4 we provide a detailed analysis of
what has to be done to fulfill the goals of the thesis and we provide a reasoning of
the chosen approaches. Chapter 5 describes the implementation of the proposed
real-world case study and the underlying RMI environment. Chapter 6 discusses
important aspects of the proposed and implemented solution and it also elabo-
rates on various interesting topics related to this thesis. We provide a conclusion
and a vision of future work in Chapter 7.

3

Chapter 2

Related work

The two most important projects related to this work are the Security and Trust
Services API for J2ME platform and the Secure Element Evaluation Kit for the
Android platform.

2.1 Security and Trust Services API for J2ME

The Security and Trust Services API specification defines optional packages for
the Java Micro Edition Platform [6]. It has been produced in response to Java
Specification Request 177 and specifies a collection of APIs that provides security
and trust services by integrating a Security Element access. One of the form of
the Security Element is also a SIM card. The scope of the SATSA specification
deals with several needs, which can be divided into the following groups:

• Smart Card Communication - The specification defines two smart card ac-
cess methods. The first one is based on APDU (Application protocol data
unit) protocol and the second one uses Java Card RMI protocol. These two
access methods allowed a J2ME application to communicate with a smart
card by leveraging the security services deployed on it.

• Digital Signature Service and Basic User Credential Management - Digital
signature service and credential management rely on a Security Element to
provide secure storage of user credentials and cryptographic keys, as well as
to perform secure computation involving the cryptographic keys that are se-
curely stored on the Security Element. The API defined by SATSA reduces
the complexity of generating a formatted digital signature by introducing
this high-level interface to J2ME applications.

• General Purpose Cryptography Library - It is a subset of the Java Stan-
dard Edition Platform cryptography API (version 1.4.2), which supports
basic cryptographic operations, such as message digest, digital signature
verification (but not signing), encryption, and decryption.

The technology itself did not enjoyed a wide spread usage, as only a few
handset manufacturers included a full support in their devices. However, the API
specification helps us to identify the needs, which we may target our implemen-
tation of the Remote Method Invocation for Android platform on.

4

2.2 Secure Element Evaluation Kit for the An-

droid platform

An international security company called Giesecke & Devrient[13] identified a need
of a secure token presence in an open environment of the Android platform. The
company offers a flash memory MicroSD card[14] with an embedded smart card
chip and they have required an access to it from an Android application. A rising
demand for NFC (Near Field Communication) payment applications in Europe
and a rising number of NFC enabled handsets with Android operating system
available, the business need for an Android system and a secure token interface
became even more eminent.
The NFC communication is possible on a physical layer with no interaction

of the Android system, but it is often desired, that the payment terminal - secure
token communication can interact with an Android application. The application
can either allow/dismiss the payment, show a summary of the payment or prompts
a user to authorize the payment.
For those reasons, the company started an initiative[15] for creation of a smart

card API between a smart card and the Android applications, which would be
consequently included in the Android baseline and thus available in new handsets.
At the time, when this thesis has been started, the mentioned initiative was

not publicly known. The public availability of the initiative, which partly helps
to fulfill the goals of the thesis, came shortly after the thesis announcement.
The initiative proposes a vision of how an access to a secure element in the

Android environment should look like. The vision of this initiative is an APDU
interface to the smart card, which would be accessible by an Android application.
The initiative copes with a secure element access security only marginally, it
depends on the security of the secure token itself.
The activity on the initiative is very high as several people are regularly

contributing to it. We follow this initiative and we will possibly reuse some ideas or
components of the initiative in the implementation phase of the thesis, depending
on how the initiative evolves.

5

Chapter 3

Background

This chapter describes technical background of the thesis. It focuses on the most
important aspects of the technologies used or related to the thesis. It does not
aspire to be an exhaustive manual of all the possibilities that the technologies
may offer. The main purpose is to help a reader to introduce the fundamentals,
which are used in the implementation of the thesis goals. The simplifications
have been made in order to keep the scope in an acceptable scale, but interested
reader has the possibility to read all the details in referenced documents. First
section describes the basics of the Android Operating system, the second section
introduces basic principles of Smart Cards and the last section familiarizes the
reader with a general concept of the Remote Method Invocation.

3.1 Android Operating System

Android is a software stack for mobile devices that includes an operating system,
middleware and key applications [16].
The Android system is developed by an Open Handset Alliance, a consortium

of a hardware, software and telecommunication companies, which have an interest
in advancing open standards for mobile devices [17]. The source code of the whole
project was made public under the Apache license and is maintained by the
Android Open Source Project community, led by Google [18].
Android architecture is hierarchically structured as shown in Figure3.1. The

framework for applications on Android is extremely rich in comparison to older
mobile platforms, such as Nokia’s Symbian. It allows developers of the applica-
tions to use the device hardware, access location information, run background
services, set alarms, add notifications to the status bar, and more. Developers
have full access to the same framework APIs as are used by the core applications,
as an Internet browser, SMS program, calendar, etc. The application architecture
allows the reuse of components as any application can publish its capabilities
and any other application may use it. Applications for the Android are written
in Java programming language. Application Java source code is compiled into
the bytecode .class format and then transformed into the .dex format by a tool
which comes with the Android SDK. The created classes are then run by a Dalvik
virtual machine [19]. The Dalvik VM is a Google’s implementation of a standard
Java runtime. The compact Dalvik Executable format is designed to be suitable
for systems that are constrained in terms of memory and processor speed. Every

6

Android application runs in its own process, with its own instance of the Dalvik
virtual machine. The Dalvik VM relies on the Linux kernel for underlying func-
tionality such as threading and low-level memory management. The Android is
built on Linux kernel version 2.6 for core system services such as security, me-
mory management, process management, network stack, and a driver model. The
kernel also acts as an abstraction layer between the hardware and the rest of the
software stack [20].

Figure 3.1: System architecture of the Android OS [16].

3.1.1 Application Fundamentals

An Android package is an archive file with an .apk suffix which contains all the
data and resources files for an application. To get an Android package, we use
the Android SDK tools to compile all the resources. To install the application to
an Android powered device, only single .apk archive is required.
A typical Android application consists of several components. Every compo-

nent may behave as a different point through which the system can enter the
application. There are four different types of an application component in the
Android [22]:

• Activities represent a single screen with an user interface. The life-cycle of
an activity is shown in Figure 3.2.

• Services are the background tasks that perform long-running operations
or work for remote processes. A service does not provide a user interface.

7

Figure 3.2: Android Activity life cycle [24].

Services may be started by another component, such as an activity, or it
may be binded to in order to interact with it.

• Content providers manage shared set of application data. The storage may
be either a file system, an SQLite database, a remote location on the web
or any other persistent location, which is accessible by the application. The
Content provider is used by the applications to query or to modify the
persistent data, if the component allows it.

• Broadcast receivers respond to a system-wide broadcast messages. The mes-
sages may originate from the Android itself, or even the applications may
issue their own announcements. The Broadcast receiver does not show a user
interface, but it may notify a user by a status bar notification.

The component system allows a high amount of possible code reuse as An-

8

droid allows applications to start another application’s components. Thanks to
this approach, applications do not need to implement activities, which were al-
ready implemented in another applications, such as activity for taking picture
from a device’s camera. When one application calls a component from another
application, a new process for that application is started (if it is not already
running). However, due to the fact, that Android runs each application in a se-
parate process with file permissions that restrict access to other applications, the
application cannot directly activate the other application component, it needs to
deliver a message to the system, called Intent, to start a particular component.
The Android system then evaluates if it is possible and starts the component.
The Intent is an asynchronous message which can be used to activate three

out of four component types, activities, services and broadcast receivers. Intents
bind different components to each other at runtime, regardless whether the owner
of the component is the calling application, or another.

3.1.2 The Android Application Manifest File

Every Android application must have an XML (Extensible Markup Language)
structured Manifest file, which informs the Android system about the presence of
the application components. Without this file, the Android system would not be
aware of the application, and as a consequence, it would not be possible to run
it.
In addition to declaring the application’s components, the Manifest file is also

used to identify the required permissions by the application, minimum version of
the API supported, hardware features used or required, additional libraries which
need to be linked against, and more.

3.1.3 Security Architecture

An essential security architecture building block for Android is the approach of
minimal permissions granted to the applications, meaning that by default, an
application has no permissions to perform any operations that would adversely
impact other applications, the operating system, or the user [21].
After the installation, each application lives in its own sandbox [22]. The

Android operating system is a multi-user Linux based system, in which each
application acts as a different user. A unique Linux user ID is assigned to each
application at install time. All the files contained in an application have the
permissions set, so that only the user ID assigned to that application may access
them. The kernel enforces security between applications and the system at the
process level through standard Linux facilities, such as user and group IDs that
are assigned to applications.
Each process in the Android has its own virtual machine, which means, that

every application’s code is run isolated from others. Each application is run in
its own process. The process is started, when a component from the application
needs to be executed and shut-down, when it is no longer needed.
Since the application sandbox is in the kernel, this security model extends to

native code and to operating system applications as well and is not bound only to
the Dalvik VM barriers. All of the software above the kernel (see 3.1), including

9

operating system libraries, application framework, application runtime, and all
applications run within the application sandbox [23] too.
Because of the sandboxes, applications must explicitly share resources and

data. This is done by the declaration of the required permissions, which are ne-
eded for its tasks and are not provided by the basic sandbox. The set of required
permissions is declared by the programmer in the mentioned Manifest file. The
Android system prompts the user for approval of the application required per-
missions at install time. There is no mechanisms in the Android, for granting the
permissions at run-time, as the architects of the system, considered this possibility
as too much user experience disrupting.

Permission Types

An application can declare a security permission that can be used to limit access
to specific components or features of this or other applications [27].
The declaration is done via a Manifest file and can have various attributes.

Along with the expected ones as the description and labels are, a protection level
is also being defined here. It characterizes the potential risk implied in the per-
mission and indicates the procedure the system should follow when determining
whether or not to grant the permission to an application requesting it. The value
can be set to one of the following:

• normal - The default value lower-risk permission that gives requesting app-
lications access to isolated application-level features, with minimal risk to
other applications, the system, or the user. The user has an option to re-
view these permissions before installing, but if not explicitly requested, the
Android automatically grants this type of permission to a requesting app-
lication automatically at install time, without asking for explicit approval.

• dangerous - A higher-risk permission that would give a requesting applica-
tion access to private user data or control over the device that can negatively
impact the user. Because this type of permission introduces potential risk,
the system will not automatically grant it to the requesting application.
Any dangerous permissions requested by an application will be displayed
to the user and require confirmation before proceeding, or some other app-
roach may be taken to avoid the user automatically allowing the use of such
facilities.

• signature - A permission that the system grants only if the requesting app-
lication is signed with the same certificate as the application that declared
the permission. If the certificates match, the system automatically grants
the permission without notifying the user or asking for the user’s explicit
approval.

• signatureOrSystem - A permission that the system grants only to applicati-
ons that are in the Android system image or that are signed with the same
certificates as those in the system image. It is used for certain special situ-
ations where multiple vendors have applications built into a system image
and need to share specific features explicitly, because they are being built
together. It is not intended to be used by a common application.

10

File System

As every application runs as a unique user, following the standard Linux-based
file system permission rules ensures, that one user cannot read nor alter another
user’s files, unless the files were explicitly exposed by a developer.
Android contains several partitions with various file systems. The /system

partition contains Android’s kernel as well as the operating system libraries, app-
lication runtime, application framework, and applications. This partition is set
to read-only. When a user boots the device into a Safe Mode, only core Android
applications are available. This ensures that the user can boot their phone into
an environment that is free of third-party software.
The type of a file system used for a certain partition depends mainly on the

hardware manufacturer and a version of the OS. A typical file system type for
/system and /data is YAFFS(2) (Yet Another Flash Filesystem), the /sdcard
partition uses VFAT (Virtual File Allocation Table). An example of a custom
file system can be Samsung’s proprietary RFS (Robust File System) used in the
Galaxy S series handsets [25].

Application Signing

Every Android application must be signed with a certificate prior to its installa-
tion. The certificate’s private key is held by the application developer. It is not
required for the certificates to be signed by a certification authority, the common
model is, that an Android application uses self-signed certificates. The main pur-
pose of the certificates in Android is to reliably distinguish applications authors.
This allows the system to grant or deny applications access to signature-level
permissions and to grant or deny an application’s request to be given the same
Linux identity as another application, depending whether they were signed by
the same key-set. The certificates also allow the developers to issue upgrades of
their applications, which are subsequently identified to be the same application
only using a different version [26]. Another purpose of the application signing is
a confirmation for the users, that the code has not been altered or corrupted since
it was signed by use of a cryptographic hash.

3.1.4 Inter-Process Communication

The Android platform is intended to eliminate the duplication of functionality in
different applications, to allow functionality to be discovered and invoked on the
fly, and to let users replace applications with others that offer similar functionality
[28]. In order to achieve this, an inter-component or inter-process communications
had to be introduced.
An Andoird application can use the traditional Linux IPC mechanisms as

sockets, pipes, message queues, shared memory or others to exchange data with
other applications [29] [30] [31]. However, these practices are hard to maintain
and easily error prone. Modern programming environments including Android,
have moved on to more robust component-like systems. Specifically:

• Intents - Representations for operations to be performed. An intent is a kind
of a data-structure which contains an URI (Uniform Resource Identifier)

11

and an action. The URI uniquely identifies an application component and
the action identifies the operation to be executed [32].

• Remote methods - With the help of AIDL (Android Interface Definition
Language) remote objects executed in another process allow to call it’s
methods through defined API.

3.2 Smart Cards Overview

A smart card may come in one of two varieties. Memory only smart card and
a smart card with integrated microprocessor. Memory cards simply store data
and can be viewed as a small flash disk with optional security. A microprocessor
card, on the other hand, can add, delete and manipulate information in its me-
mory on the card. Similar to a miniature computer, a microprocessor card has an
input/output port operating system and hard disk with built-in security features.
The input/output interface of a smart card may be contact, but also contact-

less. Contact smart cards are inserted into a smart card reader, making physical
contact with the reader. However, contactless smart cards have an antenna em-
bedded inside the card (see Figure 3.3) that enables communication with the
reader without physical contact. Also cards with both of the input/output type
of the interfaces exist [34].

Figure 3.3: Smart card with contactless interface [33].

Smart cards are used in a wide range of businesses because of its ability to
provide security for transactions for relatively low investment and maintenance
cost [35]. The main areas of usage of smart cards are:

• Telecommunications - The most prominent application of smart card tech-
nology is in SIMs (Subscriber Identity Modules), required for all phone sys-
tems under the GSM (Global System for Mobile Communication) standard.

12

Each phone utilizes the unique identifier, stored in the SIM, to manage the
rights and privileges of each subscriber on various networks.

• Banking - Millions of banking smart cards worldwide are enrolled under
the EMV (Europay, MasterCard, VISA) standard. Smart cards have been
proven to secure transactions with regularity, so much so that the EMV
standard has become the norm.

• Physical access - Basic identity cards for simple authentication of individu-
als, but also more advanced PIV (Personal Identity Verification) standar-
dized enrollments are present all over the world.

• Healthcare - Smart cards address challenges connected with healthcare data
with secure, mobile storage and distribution of patient information, from
emergency data to benefits status. Many countries have already adopted
smart cards as credentials for their health networks and as a means of
carrying an immediately retrievable EHR (Electronic Health Record).

• Digital content protection - Information and entertainment being delivered
to customers via satellite or cable to the home DVR (Digital Video Recor-
der) player or cable box or cable-enabled PC. Home delivery of service is
encrypted and decrypted via the smart card per subscriber access. Digital
video broadcast systems have already adopted smart cards as electronic
keys for protection.

• Loyalty cards - Another use of smart cards is stored value, particularly
loyalty programs, that track and provide incentives to repeat customers.

For our purposes, we will focus on smart cards with integrated microprocessor,
accessed by a contact interface, which are used in telecommunications as SIM
cards.

3.2.1 Microprocessor Cards

These cards have on-card dynamic data processing capabilities. Multifunction
smart cards allocate card memory into independent sections or files assigned to
a specific function or application. Within the card, there is a microprocessor or
micro-controller chip that manages this memory allocation and file access. This
type of chip is similar to those found inside all personal computers and when
implanted in a smart card, manages data in organized file structures, via a COS
(Card Operating System).
The two primary types of smart card operating systems are fixed file structure

and dynamic application system. As with all smart card types, the selection of
a card operating system depends on the application that the card is intended for.
The fixed file structure COS treats the card as a secure computing and sto-

rage device. Files and permissions are set in advance by the card issuer. These
specific parameters are ideal and economical for a fixed type of card structure
and functions that will not change in the near future. An example of this kind of
card is a low-cost employee multi-function badge or credential.

13

The dynamic application COS contains a type of an Multi-application opera-
ting system and a Java Card virtual machine - an engine that executes Java Card
technology applications, also called applets. Because the card operating systems
and applications are more separate, updates can be made. An example card is
a SIM card for mobile GSM where updates and security are downloaded to the
phone and dynamically changed. This type of card deployment assumes that the
applications in the field will change in a very short time frame, thus necessitating
the need for dynamic expansion of the card as a computing platform [36].

3.2.2 Smart Cards Standards

There is a wide range of standards linked with the smart cards world. There is
a set of well known and strictly followed standards issued by ISO (International
Organization for Standardization) for smart cards in general, regarding the physi-
cal characteristics of the cards. Another entities which issue standards important
for smart cards used in telecommunications are ETSI (European Telecommunica-
tions Standards Institute), 3GPP (3rd Generation Partnership Project), Simal-
liance, Global Platform, Open Platform, Oracle (Sun Microsystems) and others.
Specifically the most important standards are:

• ISO 7816 - This standard is the most important specification for the lower
layers of the smart card. It is a multi-part international standard broken
into fourteen parts. The first three parts deal only with contact smart cards
and define the various aspects of the card and its interfaces, including the
card’s physical dimensions, the electrical interface and the communications
protocols. The other parts of the standard refer to both types of smart
cards (contact and contactless). They define the card logical structure (files
and data elements), various commands used by the application program-
ming interface for basic use, application management, biometric verification,
cryptographic services and application naming.

• 3GPP 11.11 (51.011) - It defines the interface between the SIM card and
the ME (Mobile Equipment) for use during the network operation phase
of GSM as well as those aspects of the internal organization of the SIM
card which are related to the network operation phase. This is to ensure
the interoperability between the SIM card and the ME independently of
the respective manufacturers and operators.

• 3GPP 11.14 (51.014) - The document defines the interface between the
SIM and the ME, and mandatory ME procedures, specifically for ”SIM
Application Toolkit”.

• ETSI 102.221 - Defines generic commands which could be exchanged bet-
ween the SIM and a terminal as file manipulation commands, authenticate
commands, etc.

• ETSI 102.222 - Defines administrative commands for smart cards as file
creation, deletion, activation, etc.

• ETSI 102.224 - Specifies the security mechanisms for a smart card for OTA
(Over the Air) manipulation.

14

• Global Platform 2.x - Defines smart card life cycle management and a secure
manipulation with a smart card during its whole life cycle.

• Open Platform 2.x - Structures smart card architecture, defines an entity
of Card Manager.

• Java Card 2.x - Defines the programming language used for an environment
present on a smart card.

3.2.3 Smart Card File System

According to the ISO 7816 Part 4 there are three categories of files defined:

• Master file (MF)

• Dedicated file (DF)

• Elementary file (EF)

The Master file is a mandatory file for conformance with the standard and
represents the root of the file structure. It contains the file control information
and allocable memory. Depending on the particular implementation it may have
dedicated files and/or elementary files as descendants. A dedicated file has simi-
lar properties to the master file and may also have other dedicated files and/or
elementary files as descendants. An elementary file is the bottom of any chain
from the root MF file and may contain data as well as file control information.
An elementary file has no descendants.
Each file is referenced by a two byte identifier which allows the path to any

file to be defined from the root directory. The data structure for an elementary
file allows four options:

• Linear fixed - Set of records with the same length.

• Linear variable - Set of records with the variable length.

• Cyclic - A cyclic record.

• Transparent - A raw block of data without a record structure.

A file control information for DF and EF files consist of two parts, FCP (File
Control Parameters) and FMD (File Management Data). FCP are defined as
ASN.1 (Abstract Syntax Notation One) encoded data field that describes the
necessary parameters such as file size, file identifier and optionally the file name.
It also defines the type of file and the data structure used.
The file management data is also constructed as an ASN.1 object and it con-

tains Inter-Industry or provider specific objects. A typical usage is for definition
of an access rights for files.

15

3.2.4 Communication with a Smart Card

The smart card acts as an ultimately thin server. It always acts as a slave and
never takes an initiative of initiating the communication.
A standardized communication with a smart card was introduced by the ISO

7816 standard in the part 3. The standard defines a concept of APDUs (Applica-
tion Protocol Data Units). An APDU contains the command or response message.
There are 4 cases of APDUs, as shown in Table 3.1:

Case Input data Output data
1 NO NO
2 YES NO
3 NO YES
4 YES YES

Table 3.1: Different cases of APDUs.

With respect to the different cases of APDUs, the structure of the data units
is shown in Figure 3.4.

Figure 3.4: APDU command structure.

The response APDU contains the response data field (if present) and two sta-
tus bytes. The normal response code has been defined as ”0x9000” and a number
of error conditions have its standardized error codes as well.

3.2.5 Java Card Technology

Java Card technology provides a secure environment for applications that run on
smart cards and other devices with very limited memory and processing capabi-
lities. Multiple applications can be deployed on a single card, and new ones can
be added to it even after it has been issued to the end user [37].

16

The Java Card 2.1 standard was released by the Java Card Forum in early
1999. At the same time, ETSI endorsed the use of Java Card in SIM cards and
defined the GSM SIM API for Java Cards [38].
The current Java Card platform, as defined by Oracle (Sun Microsystems)

and the Java Card Forum, deals with the execution of applets written in the Java
Card, which is a subset of Java. Applet management, such as loading, installing
or deleting, was deliberately left open to allow proprietary implementations by
the vendors. However, the new Global Platform specifications aim to standardize
also this process to support full interoperability possibility.
Java Card applets are programs written in the Java Card subset of the Java

platform. They make use of the Java Card API, the Java Card virtual machine
and the Java Card runtime environment (JCRE) provided by the smart card. Java
Card applets are completely different to Java applets executed in a browser or
applet viewer, so these two techniques should not be mixed up. The name applet
was chosen to distinguish the Java Card applications from other applications
in embedded devices, which are normally burnt into ROM, whereas Java Card
applets can be dynamically loaded and deleted after the card has been issued.
Unlike other computers, the smart card is only booted once. The life cycle of

the virtual machine, runtime environment and all pre-instantiated objects cor-
responds to the life cycle of the card. Removing the power source only stops the
system temporarily, it does not terminate it.
The applet life cycle begins after it has been completely downloaded on to the

card, linked with the other applets and registered by the JCRE. It lasts until the
end of the card’s life cycle or until it is deleted. To initiate the applet life cycle, the
JCRE executes the applet install method, which is similar to the main method
used in conventional Java: an instance of the applet is created and registered. At
the same time, all objects needed by the applet are created and initialised.

Java Card Memory Management

A smart card usually has three types of memory:

• ROM (Read Only Memory) - Read only memory which can be written to
only during the card production.

• RAM (Random Access Memory) - Unlike on a ”normal” platform, where
Java would create an object in RAM memory, in the smart cards environ-
ment, the RAM is extremely expensive to provide, and thus usually very
limited. This constraint lead to a decision made in Java Card 2.x, that
object can be created also outside of the RAM.

• EEPROM (Electrically Erasable Programmable Read-Only Memory) - Non-
volatile type of memory in smart cards. Slower than RAM, but its content
remains persistent also after a card power supply is removed. Smart cards
have physical limitations on number of writes to this memory.

For the reasons stated, Java Card object can be created in a combination of
a volatile (RAM) and non-volatile memory (EEPROM). The default behavior
is that all objects registered or referenced from a static field become persistent.
On the opposite, the transient objects are saved in RAM. There exist two events

17

of transient objects memory release: COD (Clear on Deselect) and COR (Clear
on Reset). Objects in COR are cleared to a default value (null, zero or false)
whenever the card is reset or its power supply removed. Objects in COD are
cleared to a default value (null, zero or false) each time the applet that created
them is deselected, and also when the card is reset or powered down.

Communication between the Terminal and the Applet

Communication with the outside world takes place via the APDU exchange me-
chanism described earlier. After the system is a powered up or reset, the JCRE
enters a loop and waits for any incoming messages (APDUs). If an APDU is re-
ceived, the JCRE dispatches it and checks whether it is a message for the JCRE
itself, such as the command to select or deselect a certain applet. Otherwise, it
forwards the message directly to the selected applet. The selected applet must
process the APDU and send an answer to the terminal, following which it returns
control to the JCRE.
Applets are identified by the applet identifier (AID). On a card, the AID must

be unique for each applet. The AID is defined before the applet is loaded to the
card. The format of AIDs is specified by ISO 7816 part 5, and in particular for
GSM cards, by ETSI 101.220.

3.3 Remote Method Invocation

Remote method invocation (RMI) is a general approach of executing some com-
putations remotely. In Java environments, it is considered to be an object oriented
version of the remote procedure calls (RPC) [39].
Remote procedure calls are a kind of an inter-process communication, that

allows a program to cause a subroutine to be executed in another address space,
which is usually physically on another device, without the programmer explicitly
coding the details for this remote interaction.
An RPC is initiated by the client, which sends a request message to a known

remote server to execute a specified procedure with supplied parameters. The
remote server sends a response to the client, and the application continues its
process. There are many variations and subtleties in various implementations,
resulting in a variety of different (incompatible) RPC protocols.
The basic building blocks of the remote technology are the Stubs and Ske-

letons approach. A Stub is located on the client side while Skeleton is located
on the server side. The role of the Stub and the Skeleton is to do marshalling
and unmarshalling, meaning that it flattens the arguments and return value of
a method to be in a standard format for transferring over the network on one side
and it builds the same arguments and a return value on the other side. Figure 3.5
shows how RMI communication is performed.
The original Java RMI depends on JVM (Java Virtual Machine) class repre-

sentation mechanisms and it thus only supports making calls from one JVM to
another. The protocol underlying this Java-only implementation is known as Java
Remote Method Protocol (JRMP) [40].
As the need to interact with other than Java environments evolved, a CORBA

(Common Object Request Broker Architecture) platform was developed. The

18

CORBA is a standard defined by the Object Management Group that enables
software components written in multiple computer languages and running on mul-
tiple computers to work together. CORBA uses an interface definition language
(IDL) to specify the interfaces which objects present to the outer world. CORBA
then specifies a mapping from IDL to a specific implementation language like
C++ or Java. Standard mappings exist for Ada, C, C++, Lisp, Ruby, Smalltalk,
Java, COBOL, PL/I, Python and others [41].

Figure 3.5: Remote Method Invocation communication.

3.3.1 Benefits of Usage

The benefits of using the remote method invocation are most visible when used in
distributed computing. Distributed computing involves the design and implemen-
tation of applications as a set of cooperating software entities (processes, threads,
objects) that are distributed across a network of machines. Each entity has some
advantage and offers its services to others transparently over the RMI.
The general advantages include:

• Performance

• Scalability

• Resource sharing

• Fault tolerance

The main issues of the traditional (network based) distributed systems are
latency, synchronization and error recovery. Network latency is extended by a RMI

19

middleware processing overhead. Synchronization issues may be present if the
number of entities in the distributed system is high and the network or the nodes
are unreliable. Error recovery may be an issue in a case, when a dead node is
present in the system, but other nodes do not know it. However, the modern
distributed systems copes with those problems and usually its possible to set up
specifically designed and adjusted distributed system RMI solution.

3.4 One Time Passwords Algorithms

In the Chapter 1, we have outlined the advantages of One Time Passwords. In
this section, we overview the two most common standardized implementations of
OTP algorithms.

3.4.1 HOTP

The HMAC (Hashed Message Authentication Code) [9] One-Time Password Al-
gorithm is based on an increasing counter value and a static symmetric key known
only to the token and the validation service. According to the RFC 4226, the al-
gorithm was created with respect to the following requirements:

• The algorithm must be sequence or counter based.

• The algorithm should be economical to implement in hardware by minimi-
zing requirements on battery, number of buttons, computational horsepo-
wer, and size of LCD display.

• The algorithm must work with tokens that do not support any numeric
input, but may also be used with more sophisticated devices such as secure
PIN-pads.

• The value displayed on the token must be easily read and entered by the
user, which requires the HOTP value to be of reasonable length. The HOTP
value must be at least a 6-digit value. It is also desirable that the HOTP
value be ’numeric only’ so that it can be easily entered on restricted devices
such as phones.

• There must be user-friendly mechanisms available to resynchronize the
counter.

• The algorithm must use a strong shared secret. The length of the shared
secret must be at least 128 bits. The RFC 4226 recommends a shared secret
length of 160 bits.

The algorithm and the protocol uses several parameters:

K is a shared secret between client and server. Each HOTP generator has a different
and unique secret K.

C is an 8-byte counter value, the moving factor. This counter must be synchronized
between the HOTP generator (client) and the HOTP validator (server).

20

T is a throttling parameter. The server will refuse connections from a user after T
unsuccessful authentication attempts.

S is a resynchronization parameter. The server will attempt to verify a received aut-
henticator across S consecutive counter values.

D is a number of digits in an HOTP value.

In order to create the HOTP value the HMAC-SHA-1 algorithm is used [11]. The
output of the HMAC-SHA-1 calculation is 160 bits, so it must be truncated to
something that can be easily entered by a user. The HOTP value is calculated
using the following formula:

HOTP (K,C) = Truncate(HMAC − SHA− 1(K,C))

The prove, which demonstrates that the best possible attack against the
HOTP function is the brute force attack is described in the Appendix A of the
RFC 4226.
The exchange of the HOTP values sent from the client to the server needs

to be synchronized. However, the validation server needs to cope with situations,
where client’s counter value was incremented, but not sent to the server. If the
value received by the server does not match the value calculated by the client,
the server initiates the resynchronization protocol (look-ahead window of size
S) before it asks for another OTP value. This parameter S must be as low as
possible with user friendliness of the protocol in mind, to avoid the probability of
an adversary simply guessing the OTP value as in case of of a high S parameter
and short D parameter, it can lead to a serious security vulnerability.
The validation server also needs to detect a possible brute force attack and

stop it before it can succeed. One way is to introduce the throttling parameter T,
which defines the maximum number of possible attempts for One-Time Password
validation. Another option would be to implement a delay scheme, which would
increase a delay between the consecutive invalid OTP requests.

3.4.2 TOTP

The Time-Based One-Time Password Algorithm is an extension to the previously
described algorithm supporting the time-based moving factor. The HOTP algo-
rithm specifies an event-based algorithm, where the moving factor is an event
counter, while the TOTP bases the moving factor on a time value. A time-based
variant of the OTP algorithm provides short-lived OTP values, which are desi-
rable for enhanced security. The RFC 6238 summarizes the requirements taken
into account for designing the TOTP algorithm.

• The prover and the verifier must know or be able to derive the current Unix
time for OTP generation.

• The prover and verifier must either share the same secret or the knowledge
of a secret transformation to generate a shared secret.

• The algorithm must use HOTP as a key building block.

21

• The prover and verifier must use the same time-step value X.

• There must be a unique secret for each prover.

• The keys should be randomly generated or derived using key derivation
algorithms.

• The keys may be stored in a tamper-resistant device and should be protected
against unauthorized access and usage.

Parameters used in the algorithm:

X represents the time step in seconds.

T0 is the Unix time when we start counting the time steps X.

T1 is the current Unix time.

The TOTP value is calculated using the following formula:

TOTP (K, T) = HOTP (K, T)

where T = ⌊
(T1− T0)

X
⌋

The values of the system parameters X and T0 are pre-established during
the provisioning process and communicated between prover and verifier as a part
of the provisioning step. The security considerations depend on the properties
of the underlying HOTP algorithm. Similarly to the underlying building block,
the settings of the validation service affects the usability and the security of the
protocol. As the validation service cannot know the exact time stamp, when the
client’s OTP was generated, it may only calculate with a time stamp, when the
OTP was received, a look ahead time step window must be introduced. Due to
a user and network latency, at least one next time step TOTP value shall be
validated. However, longer time-step and lager look ahead window means more
time for an adversary to misuse the TOTP value. The RFC 6238 recommends
a default time-step size of 30 seconds and only one time stamp look ahead window
as a balance between security and usability.

22

Chapter 4

Analysis

In this chapter, we investigate the existing concepts of the AOSP (Android Open
Source Project) which are related to SIM card communication with hardware
and analyse possible modifications, which would allow the SIM card RMI to be
implemented.

The initial idea of an Android handset communication with a SIM card was,
that the Android OS offers an interface of useful commands, such as boolean
verifyChv(byte[] baChv, bChvType) (verifies PIN code), which could be cal-
led from the top level applications. The idea was, that the implementation of
the interface is in the Android OS library and it simply translates the interface
calls into the APDU messages which are subsequently sent to / received from
a Linux kernel driver, which communicates directly with a SIM card as shown in
Listing 4.1.

/∗∗
∗ Ve r i f i e s CHV (Card Holder V e r i f i c a t i o n)
∗ which i s known as PIN (Personal I d e n t i f i c a t i o n Number)
∗ f o r CHV type 1 and as a PUK (Personal Unblocking Code)
∗ f o r CHV type 2 .
∗
∗ baChv must be supp l i ed as 8 bytes o f GSM 8 b i t s Hexa
∗ Unpacked encoded byte array padded with 0xFF .
∗ (i . e . ”1234” in ASCI −> ”31323334FFFFFFFF” encoded) .
∗/
boolean ver i fyChv (byte [] baChv , byte bChvType) {

i f (baChv . l ength != 0x08)
return f a l s e ;

i f (bChvType != 0x01 | | bChvType != 0x02)
return f a l s e ;

byte bClass = 0xA0 ;
byte bIns = 0x20 ;
byte bP1 = 0x00 ;
byte bP2 = bChvType ;
byte bLc = 0x08 ;

23

sho r t sSW = LinuxSimCardDriver . sendAPDU(
bClass , bIns , bP1 , bP2 , bLc , baChv) ;

i f (sSW == 0x9000)
return true ;

return f a l s e ;
}

Listing 4.1: PIN code verification method.

This approach would mean that to access an arbitrary SIM card application,
we would just need to implement a generic APDU command proxy into the
Android OS library by which we could send APDUs from the upper layers of the
Android.
However, after the inspection of the source codes of the AOSP, we came to

the conclusion, that for the communication with the SIM card, another imple-
mentation is used.

4.1 Communication with a SIM Card

Android applications communicate with a SIM card through a telephony stack.
The telephony architecture is split between Java (Application Framework part of
AOSP) and native code (Libraries) (see Figure 4.1).
The android.telephony [43] package exposes all the SIM card capabilities to

the other components inside the android framework. This class interfaces with the
radio interface layer (RIL) in order to communicate to the baseband radio modem
with the help of com.android.internal.telephony.RIL. The top-down commu-
nication between these layers is done by asynchronous function calls passing an
android.os.Message [44] instance to be used in order to send the response back
to the function caller with the function result within the message itself.
The com.android.internal.telephony.RIL class has two internal classes

responsible for sending the requests and receiving the responses to and from the
RIL daemon (RILD). Both RILSender and RILReceiver classes run on its own
threads interacting with the RILD through a Linux socket to send and receive
messages to the baseband radio.
As a container for messages, an anroid.os.Parcel [45] is used. A Parcel

contains flattened data that are unflattened on the other side of the IPC.
The RIL daemon, which is a native Linux process, loads a proprietary vendor

RIL library and registers its radio specific functions implementation into the
telephony stack. The RILD receives requests through a Linux socket and processes
the request calling the proprietary library’s radio function implementation passing
the appropriate parameters. The proprietary library returns a response to the
telephony stack through a callback function which marshals the response and
sends it back to the Java API through the same socket used to receive the request.
The Java layers process the request on the RILReceiver class and forwards the
response to the original request owner [46].

24

Figure 4.1: Telephony stack [42].

Android initializes the telephony stack and the Vendor RIL at startup as
described below:

• RIL daemon reads rild.lib path and rild.libargs system properties to
determine the Vendor RIL library to use and any initialization arguments
to provide to the Vendor RIL.

• RIL daemon loads the Vendor RIL library and calls RIL Init to initialize
the RIL and obtain a reference to RIL functions.

• RIL daemon calls RIL register on the Android telephony stack, providing
a reference to the Vendor RIL functions.

There are two types of communication that the RIL handles:

• Solicited commands - Commands that originates from the RIL daemon,
such as SIM PIN, outgoing sms, call handling and others. An example of
a solicited command is shown in Figure 4.2.

• Unsolicited commands - Unsolicited responses that originate from the base-
band, such as incoming sms, network status change and others. An example
of an unsolicited command is shown in Figure 4.3.

The next section describes an implementation of exposed SIM card interface
layer through the baseband modem of the handset.

25

Figure 4.2: Solicited command example [42].

Figure 4.3: Unsolicited command example [42].

4.2 Handsets Implementation

Our initial target was to set up a RMI environment between the SIM card and
the handset, HTC Wildfire S A510e, which we had available. However, after the
performed research, we realized, that it will not be possible. This section describes
the obstacles, which appeared to be impassable in implementing the RIL layer
for this handset.

4.2.1 Hardware Structure

Historically, the GSM phones ran a GSM protocol stack (the software imple-
menting the GSM protocol) as well as the user interface and all applications on
a single processor, which was called baseband processor [50].

26

Along with the GSM phones, another market industry was created, producing
PDAs (Personal Digital Assistant), which had a wide application base and were
initially used as a schedulers, diaries, dictionaries, calendars.
Evolution led to a phase, when it was possible to put both, the GSM phone

and the PDA into one case. A smartphone was born.
However, with a reference to historical reasons, the smartphones kept a dedi-

cated processor for the GSM protocol stack (Baseband processor), and another,
potentially multi-core, general purpose processor (Application processor) for the
user interface and applications.
Due to a market pressure for even smaller phones with even more functions,

the industry has produced highly integrated products, uniting the Application
processor and the Baseband processor inside one physical package. This approach
is called SoC (System on a Chip).
These SoCs have multiple processing cores but unlike the contemporary pro-

cessor chips, these multiple cores are not available in the OS to run applications
with symmetric multiprocessing properties, there is only one core to run the OS
and user applications (Application processor).
Generally SoCs chips have the following 4 cores [49]:

• Applications processor - running the OS (Android)

• Applications DSP (Digital Signal Processing) - encoding/decoding of the
media

• Baseband processor - running a real-time OS and the GSM stack

• Baseband DSP - encoding/decoding for telephony services

Since the SIM card is connected to the Baseband processor and the OS is
running on Application processor, each with their own memory address space,
the Android application - SIM card communication must be done via a form of
an IPC. For historic reasons, AT commands (messages passing) were chosen [50].

4.2.2 Communication with the Baseband Modem

There are several methods for invoking and controlling modem services. The two
most common are through the AT commands and / or through Remote procedural
calls.
The AT command set, or so called the Hayes command set, is a specific com-

mand language, which consists of a series of short text strings, which combine
together to produce complete commands for modem operations. Most of the mo-
dems follow the specifications of the Hayes command set.
The AT commands method of inter process communication is by far the most

popular also in the smartphones chips, in which AT commands set can be cate-
gorized as follows [51]:

• Call Control - Initiation, termination and overall control of the calls.

• Data Call Control - Quality of Service data flow commands.

27

• Network Service - Commands for Supplementary services, operator selec-
tion, locking and registration to the network.

• SMS Control - Commands for sending, notifying, setting SMS services.

• Control & Status - SIM card phone-book access, power management and
others.

There is no public documentation of the proprietary vendors RIL implementa-
tions. As a result, when one is flashing a device with a custom version of Android,
it is required to extract the original vendor RIL library (libVENDOR ril.so) be-
fore the original Android image is replaced, so that a specific proprietary version
of the library designed specifically for the baseband chip version is not lost.
Although there is no documentation for vendors baseband interfaces, there is

a 3GPP 27.007 standard, which focuses on AT command set for UE (User Equ-
ipment) and is ”somehow” supported by most vendors. By ”somehow” we mean,
that the vendors often append vendor specific suffix or prefix to a standardized
command. The interested community of experienced users then sniff the baseband
in order to gain the knowledge of the AT command set used [52].
A trace of AT commands communication with a baseband is shown in Figure

A.1.
However, the 3GPP 27.007 defines commands as mandatory, conditionally

mandatory and others as optional. We pick a few AT commands for the readers
orientation:

• AT+CPIN - PIN code entry.

• AT+CREG - Network registration.

• AT+CCHO - Open Logical Channel to a SIM card.

• AT+CCHC - Close Logical Channel to a SIM card.

• AT+CSIM - Generic SIM access. With this command, one can send an
arbitrary APDU command to the SIM card. This command is marked as
optional in the standard.

4.2.3 Hardware Limitations

The handset, which we have tested, HTC Wildfire S 510e, has a CPU model
Qualcomm MSM7227 [48]. It is one of the Qualcomms MSM7200 series chip with
a SoC architecture, which were designed especially for smartphones.
After we have gained root access to the phone [47], we were able to send AT

commands to the devices baseband modem via a /dev/smd0 terminal. Before we
could do that, we had to stop the rild process (by $ stop ril-daemon or by
modifying the init scripts if a fresh communication shall be performed) to stop
the interference.
Since the documentation to the Qualcomm’s baseband modem interface is

not public, we tried to follow the 3GPP 27.007 standard in order to communicate
with a SIM card.

28

We tried to exchange a basic APDU (select Master file) with a SIM card,
using a standardized AT+CSIM AT command. As shown in Figure A.2, the ba-
seband modem returned error state (4), the same, as when we sent a random
AT+DUMMYTEXT, which led us to a conclusion, that it is an unknown com-
mand for this baseband modem.

4.2.4 Vendor Specific RIL Android Implementation

In order to ease the integration of a specific baseband modem provided by a vendor
into the Andoird, a reference ril.c has been provided and it’s stored under
/hardware/ril/reference-ril directory.
As we have already described, the AOSP provides support for the radio (and

also SIM card) access in the Radio Interface Layer, which acts as the interface
between the radio HW and the Java Applicaiton Programming Interface (API).
The RIL is divided into the following parts:

• The Java RIL accessible to the upper layers of Android, but with a limited
set of commands.

• The RIL Daemon acting as an interface between AOSP and the Vendor
RIL.

• The Vendor RIL, which is a closed-source and HW specific implementation.

• The Vendor baseband modem HW with an real time OS (for Qulacomm
modems it is an OS called REX [53]).

Thus the job of the vendor RIL is to translate all the telephony requests
from the Android telephony framework and map them to the corresponding AT
commands to the modem, and back again. The mapping is done through #define
TAG MAPPING in a /hardware/ril/include/telephony/ril.h file.

4.3 Android Emulator

As the intention to implement the SIM card - handset RMI into an Android OS,
which could be then loaded into a real available device appeared to be unrealistic,
we turned our attention to the Android emulator.
The Android Open Source Project contains a QEMU (Quick EMUlator) in

its source codes. The binary version of the QEMU emulator is a part of Android
SDK (Software Development Kit) and is intended to be used as a test platform
for developers [54]. It degrades the need of a physical device to be used, when
developing Android applications.
An Android Virtual Device (AVD) is an emulator configuration that enab-

les modeling an actual device by defining hardware and software options to be
emulated by the Android Emulator.
An AVD consists of [55]:

• Hardware profile - Defines the hardware features of the virtual device as
a camera support, memory size, CPU speed and others.

29

• Mapping to a system image - Usually used with official releases of the
Android OS images. However, also a custom system image can be used.

• Dedicated storage area on hosting device - Emulated user data (and opti-
onally the SD card data) such as settings, applications and others are stored
on a hosting device.

• Other options - Other options as a display resolution, skins and others.

4.3.1 QEMU

QEMU is a generic and open source machine emulator and virtualizer [56].
When used as a machine emulator, QEMU can run Operating Systems and

programs made for one processor (in case of Android it is most often an ARM pro-
cessor) on a different processor (i.e. x86). It uses a dynamic binary translation to
achieve reasonable speed while being easy to port to new host CPU architectures.
QEMU is able to emulate a full computer system, including peripherals.
When used as a virtualizer, QEMU achieves near native performances by

executing the guest code directly on the host CPU. QEMU supports virtualization
when executing under the Xen hypervisor or using the KVM kernel module in
Linux.
The AOSP contains the QEMU sources in /external/qemu. In the telephony

folder, a dummy simulated SIM card implementation is stored. This implemen-
tation returns hard-coded values on AT commands requests from Android RIL
system.

4.3.2 PC/SC

A PC/SC is a shortcut for Personal Computer/Smart Card. It is a specification
for the integration of smart cards into the computing environments.
Drivers for mainstream Operating Systems are provided, so it is possible to

communicate with a smart card from a computer, using a smart card reader as
shown in Figure 4.4.
For Linux, CCID (Chip/Smart Card Interface Devices) protocol drivers are

available, which are needed to access USB smart card readers. A PCSCD (PC/SC
daemon) is used to dynamically allocate/deallocate reader drivers at runtime and
manage connections to the readers. And finally, libpcsclite library is used, to
connect to the PC/SC daemon from a client application and provide access to
the desired reader.
With the help of the described tools, it would be possible, to modify the

QEMU emulator included in the AOSP project to use the PC/SC interface instead
of the dummy SIM card implementation. The Android emulator would be then
connected to a real SIM card via a smart card reader connected to a computer
running the Android emulator.

4.4 SIM Card RMI Architecture

Our aim is to implement a remote method invocation for security-critical parts
of application code on smart cards, which would act as a secure server.

30

Figure 4.4: Gemalto GemPC Twin USB card reader with a card inserted.

Due to a fact, that a security is a main issue for us and we do not want to
have sensitive data present in Android device memory at any time, we cannot
speak about a RMI in terms of object serialization and its migration between
the SIM card and the Android device. As a result of this, we aim to execute
remote methods from an Android application on a SIM card object, but without
its exposal to the Android device memory. Thus, a better term for our aim would
be RPC instead of the RMI.
The overall architecture of our solution is shown in Figure 4.5.
On a SIM card, there will be an applet serving an Android application as

a secure remote server. It would allow satisfactory granularity in terms, that each
Android application, which would need to execute security critical code, would
have its own Java Card applet, which is important because of the security, which
is discussed later, but it also allows reasonable development process, when there
is one applet designated for one purpose.
An Android application Stub will always call one SIM card applet (Skeleton),

identified by its AID. As the AID is generated according to corresponding stan-
dards and it has to be known to the Android application Stub, it is a part of the
interface definition.

4.4.1 RMI Generator

An equivalent of rmic compiler should be constructed, which would create a Stub
and a Skeleton classes, which would reflect a proposed interface between an An-
droid application and a SIM card applet.
An Android application can then call interfaced methods from a Stub. The

application developer do not need to care about the underlying communication
specifics, almost all the communication is handled by the underling RMI archi-
tecture. The only aspect which a developer needs to handle is a remote exception
handling.
On the other side, a SIM card applet developer may be interested in the

31

Figure 4.5: Architecture of the proposed RMI environment.

underlying communication. Due to specifics of Java Card development, which
were described in the previous chapter, the development on a SIM card side of
the RMI implementation must be done very cautiously. As a dynamic memory
allocation is highly discouraged, it must be done in advance, when an applet is
being installed. This necessity and a fact, that memory size is very limited, usually
leads to efforts of reusing allocated memory and thus, one allocated memory block
is used for various purposes. The other aspect of this demand is, that a maximum
size of transported data is required to be known, prior to the applet deployment.
Because of the mentioned reasons, we have decided, that we will not generate

32

class files from the interface, but readable Java and Java Card source files will be
generated instead. Stub file will be part of an Android application project and
will be compiled at the same time as other source files.
On the SIM card side, we generate a Skeleton class, which will implement the

interfaced server methods, but it will also be an entry-point class on the applet,
implementing the void process(APDU oApdu) and static void install(...)
methods. Empty interfaced methods will be a part of this Skeleton class as well.
If memory optimizations are not necessary, a developer can just fill those ge-
nerated empty method bodies and compile the applet, but in case of interest,
optimizations can be done easily.

4.4.2 APDU Interface

Since the only way, how to communicate with a SIM card are the APDUs, a bot-
tom layer interface for the RMI environment will always be APDU based.
In relation to described APDU cases (see Figure 3.4), we can map methods to

distinctive Instruction bytes. Class byte will not be used, as its part is used for
logical channel selection, so by its usage, we would gain only one nibble of a byte.
By mapping remote method calls into a Instruction byte, we would have the
upper limit of possible remote methods set to 255 for one applet, which should be
satisfactory for every intended purpose. P1 and P2 bytes are thus not required to
be mapped either and they should be reserved for future use. Method parameters
and return values can be mapped into the data part of the APDUs.
From the limitations of the Java Card platform, only byte, short, byte[]

data types should be allowed.
Since both sides of the RMI know, in what order the method parameters are,

there is no need for TLV (Tag Length Value) notation as the mapping on Stub
and Skeleton sides can be done in the same order and the lengths of allowed data
types are known as well.

4.4.3 RMI Library

In order to integrate our proposed RMI system, based on a mapping between the
methods and the APDUs, we need a layer, which would transport the APDUs
generated by the Stub/Skeleton through the Android OS environment to the SIM
card.
At least one component of this layer has to be a part of the Android system,

because of the Android permissions. There is an option, that this layer would be
just signed with a same certificate as was used in the Android system, but since
we need to modify other parts of the system image too, and also due to security
considerations discussed later, we chose to have this layer to be a part of the
Android OS.

4.5 SIM Card RMI Security

One of the main thesis goals was to investigate the execution of security critical
parts of application code on smart cards. By excluding all the sensitive data and

33

all related computation from an Android device memory, we have prevented a po-
ssible malicious software installed alongside with an application which requires
a certain level of security on a same device, from stealing its secrets.
Despite this, there still exists a threat, that a malicious application would

sniff the communication with a SIM card and would be then able to reproduce
it, which could lead to secrets compromisation. To prevent this, we need to set
up an access control for all SIM card applets, which serve as secure servers, so
we can deny a communication with an application, which was not approved to
be used with a certain SIM card applet.

4.5.1 Access Control

There are several approaches, how we can achieve the access control for a SIM
card applets.

Android Signature Permission

As described in the previous chapter, Android OS offers a possibility of declaring
security permissions, which are limiting access to specific components of the sys-
tem. Lets assume, that an underlying Android OS SIM card access system would
require a signature permission from Android applications, which would want
to use RMI to a smart card. This would mean, that an application requesting
access to a smart card, would have to be signed with the same certificate as the
underlying Android OS SIM card access system.
This approach would effectively limit applications, which can access the SIM

card RMI system, but the disadvantage of the necessity of signing the application
by the device OS issuer is clear. On the other hand, for certain situations, where
a single entity of Trust is required, this approach might be used.

Android Application Certificates

Android application certificate mechanisms were also described in Chapter 3.
These mechanisms can be used as another concept of the access control to the
SIM card applets from the Android applications. Lets assume, that there would
be a security layer in the underlying Android OS SIM card access system, which
would store a list of acceptable Android application signatures with its linkage
to the applets AIDs. According to this list, the Android OS RMI system would
filter all incoming communication from Android applications and would only allow
those connections, which would be stored in the mentioned cross-reference list.
This mapping would guarantee, that only allowed Android applications can

communicate with certain SIM card applets, which provide specific security cri-
tical tasks.
However, there exists a disadvantage of storing the cross-reference list at one

place. As in the previous security proposal, there would have to be a single entity
of Trust again, although it would not need to be the same entity, which has signed
the Android OS system.

34

Combined Access Control

We aim to produce a security access scheme, which would allow a truly distributed
access control, not reliant on a single entity of Trust, which would be responsible
for allowing/denying the connections from Android applications to the SIM card
applets.
Global Platform standard is being implemented by more and more smart

card manufacturers [57]. Simplified, it allows Service Providers (banks, transport
companies, retailers) loading the SIM card applets to SIM cards, which are owned
by MNOs (Mobile Network Operators) and are in the field, used by the end users.
By introducing the Secure domains on SIM cards a secure separated environment
is provided, which allows multiple unrelated providers to have their own isolated
content on a SIM card, which can be loaded to a live card via the OTA (Over
The Air) protocol.
The access control scheme, which we propose, would be established by a com-

bination of the previous two approaches. More precisely, the Android OS SIM
card RMI system would act only as a protocol enforcer and would not act as
a decision maker, whether to allow or deny the communication between an An-
droid application and a SIM card applet.
The access control protocol would be enforced in a way, that before each

remote request to a SIM card, which has to be made via the Android OS SIM card
RMI system, this system sends a request to the selected applet with a predefined
structure, asking the applet to return a key, by which the requesting application
had to be signed. The SIM card applet can optionally return an empty answer,
which would mean, that the service provided by this applet is public. The Android
OS RMI system would then check, whether the key returned by a SIM card applet
was used to sign the requesting Android application. We do not need to test the
application integrity, as this was tested by the Android system at install time of
the application.
This allows much more flexible management of Android applications and SIM

card applets, as the Android OS SIM card RMI system is only generically imple-
menting an access control protocol, but the decision whether to allow or deny the
communication is done by the SIM card applet.

4.6 Link to a Related Work

As the work on this thesis evolved, the initiative, mention in Chapter 2, Secure
Element Evaluation Kit for the Android platform has advanced as well.
The initiative solves low-level issues with transport of the APDUs via the

Android OS to the SIM card. Since they have identified the issue with the lac-
king support of the required open baseband modem interface as well, they have
implemented an extension of the Android emulator to support a real SIM card
connected to a host computer via a PC/SC interface. Although the binary form
is not available, the Android OS patches have been released.
The initiative produced an Android service, which is a part of the OS, thus

with system privileges which resends received APDUs to the baseband modem,
which have been modified by adding a ”fake” AT+CSIM command, which is ac-
cepted by the modified emulator. The implemented service also tries to restrict

35

the access to a SIM card by several security features. To use the service, an An-
droid application needs to declare a special permission for this service, so the user
is aware, that the application will be accessing a SIM card. This permission based
access restriction is effective in order to block malicious software, from accessing
a SIM card if the end user is behaving responsibly and is reading/allowing the
install pop-up windows. Also the security feature of Android OS, which is showing
the permission request at install time has to be enabled in the system.
This restriction would not prevent several installed applications, which all use

SIM card, from sniffing each other communication. For those reasons, the authors
proposed a more restrictive access scheme based on a single layer cross-reference
list, which would check the requesting application certificate and comparing it to
the list entries in order to allow it to communicate with certain AIDs.
As we have already discussed, this approach of security restriction is effective,

but the granularity and the need of a single entity of Trust is undesirable for us.
The Giesecke & Devrient company, who stands behind this initiative also

released the patches of the Android OS, which integrate the APDU transport
layer as an Android service, which is a part of the OS.
For the RMI system we proposed, an underlying APDU transport layer is

required. Since the SEEK project implementation was made available during our
work before it was finished, we have decided to reuse some of its components.

4.7 Goals Revisited

To achieve the goals of the thesis, as stated in Chapter 1, and in accordance
with the performed analysis, to build a bottom layer of our solution, the APDU
transport component from the SEEK project will be partially reused.
As a security access layer to the sensitive services on a SIM card, we implement

a scheme, introduced as a Combined Access Control.
In addition to the APDU and security layers, we will construct a RMI Stub

and Skeleton generator (or more accurately the RPC generator), which would
serve as a connector between Android applications and Sim card applets.
As a case study implementation, we will implement an OTP generator applet,

which will reside in a SIM card. An Android application will be able to generate
the OTP from a SIM card with a RMI call, which had been specified in RMI
interface, and then show the OTP to the user.
In order to validate the generated One Time Passwords by the SIM card, we

will construct a validation server as well.

The performed analysis shows, that it is not possible to implement a RMI
system, which could be run on a real available handset device, because of the lac-
king support of the required baseband modem interface to the SIM card. Handsets
which implement the optional parts of the 3GPP standard required for commu-
nication with a SIM card in a generic way exist, but they are not accessible to
the author. We expect a much better support of this part of the standard in the
upcoming years, as the market with NFC enabled handsets is expanding and it
is compulsory for such phones to support this feature.
However, we will still be able to integrate the proposed RMI solution for

execution of security critical parts of Android applications in a SIM card into the

36

Android system, which can be run on a modified Android emulator with a SIM
card connected to a host computer via the PC/SC interface.

37

Chapter 5

Implementation

This chapter provides a more detailed insight into our implementation of the RMI
system for executing security critical parts of Android applications on SIM cards.
The implementation of the proposed case study is described as well.

5.1 RMI Implementation

The RMI system is split into two main parts:

• Android service as a part of the Android OS, containing the access control
layer.

• Android library, which is a part of Android application and communicates
with the Android RMI service.

The process of developing an Android application, which uses a SIM card
remote secure server services via the RMI should begin by defining the interface
between the SIM card applet and the Android application.
For definition of the interface, we need a technology independent language, as

we will implement the interface in both, Android implementation of Java and in
a Java Card language.
For the interface definition, the XML format was chosen. Mainly for its reada-

bility, easy parsing and transition to other formats as JSON (JavaScript Object
Notation) and also pseudo Java code if required.

5.1.1 Stub and Skeleton Generator

A command line tool written in Java was developed to generate Stub and Skeleton
classes from a provided interface file written in the XML format. It takes an
interface file as an input and generates Stub and Skeleton files into an output
directory.
We have written templates of Stub and Skeleton classes using the XSL (Ex-

tensible Stylesheet Language). The target Java and Java Card classes are then
generated using the XSLT (XSL Transformations) processor Xalan by Apache.
The XSL is declarative language. It contains rules defining how to transform

input XML nodes (the interface file), matching a particular XPath-like pattern.

38

The mapping between the APDUs and the method calls is done via the Ins-
truction byte as described in Chapter 4. The XSLT rules generate ascending bytes
declarations (from 0x01) which are used as a mapping between the exchanged
APDUs and the methods.

Interface File

The XML interface file format is defined by the XML Schema file, which is a part
of the generator project. It contains required fields, such as the interface name
(from which the Stub and Skeleton class names are derived) or remote applet
AID. Definition of the public RSA key (its modulus and exponent) is optional
and is used for the access control to the applet as described elsewhere. We allow
a definition of maximum 254 methods.
Each method has to have a name, return type and parameters defined. Due to

the described limitation of Java Card environment, we support 3 primitive types:

• byte

• short

• byte[]

For more complex types, a TLV (Tag Length Value) structure is being used in
conjunction with the byte array type, but this is up to the application developers
to decide.
In case of the byte array type, we also require a (maximal) length to be defined,

due to described memory limits of smart cards.

Stub

Generated Stub class is to be used at Client side, which is in our case an Android
application. As discussed earlier, we do not compile the generated classes, so the
package name in which the Stub class will be included must be defined after the
generation. Otherwise, the generated Stub is ready to be used and do not need
any other post-handling.
The Stub.xsl template file is using several generic transformation rules, which

were moved to Templates.xsl as they are used by the Skeleton transformation
as well.
The transform rules provide serialization and deserialization of defined inter-

faced methods into/from the APDUs. The template itself contains static content
defining various helper methods. Each method call is wrapped into a channel ope-
ning and closing routine of the underlying APDU transfer layer. When opening
a channel, the defined AID of the remote SIM card application is used.

Skeleton

Generated Skeleton file is intended to be used as it is, just a package name has
to be changed after the generation to make it pass a Java Card compiler. It im-
plements javacard.framework.Applet interface, so this Skeleton class will be
an entry point for the applet. Empty interfaced methods stubs are generated at

39

the end of the file and are intended to be filled by the implementor. All the seria-
lization/deserialization in the void process(APDU oAPDU) method is generated
from the template file Skeleton.xsl.
Generated file is well commented and places where the implementor is suppo-

sed to fill fields declaration are well marked. This allows also a non experienced
Java Card developer to implement required functionality without deeply studying
all aspects of Java Card development.

5.1.2 RMI Library

We have implemented a RMI library, which has to be appended to every Android
project, which wants to use the RMI functionality from generated Stub and Skele-
ton classes. The RMI library connects to the underlying APDU transport system
and manages data transfers between the Stub and the APDU transport layer.
This part of the system reuses parts of the existing SEEK project implementa-
tion, especially the parts, which intercept with the underlying Android service,
which is a part of the Android OS.
The library main purpose is to establish binding to the remote system service,

which serves as an APDU transport layer.

Android Permissions

The library requires a permission (org.simalliance.openmobileapi.SMARTCARD)
to be granted to the application, which uses the library in order to connect to
the underlying system service (APDU transport layer). The underlying system
service declares this permission to be of a Dangerous type, so during the install,
it has to be approved by the user.

5.1.3 APDU Transport Layer

The APDU transport layer is built upon the Android OS version 4.0.3. It contains
modifications of the RIL implementation of the main branch of the AOSP to
support the AT command for generic SIM card access, which allows us to exchange
generic APDUs with the baseband modem (in our case with modified Android
emulator, which resends the APDUs to the real SIM card connected to a host
computer via the PC/SC interface).
Low level components, as the telephony framework, have been modified in

order to support the APDU exchange between the RIL and the upper layers.
As a single entry point for the generic APDU exchange in the Android OS

a remote service was created. This service reuses components from the SEEK
project implementation version 2.3.2.
This service is installed and registered with a unique Linux UID/GID (public

static final int SMARTCARD UID = 1028;), which is always checked by the
lower layer components in order to ensure, that only this service can access the
APDU exchange capabilities of the lower Android OS layers.
The main interface to this remote service is called SmartCardService and is

defined in the ISmartCardService.aidl file. The whole remote service is a part of
the AOSP and is stored under the packages/apps/SmartCardService directory.

40

The interface allows ISO 7816 channel manipulation (selecting the SIM card
applets) as well as the actual APDU transmission on a selected channel.

5.1.4 Access Control Layer

The Access control layer is a part of the remote SmartCardSevice. Each time,
when an Android application chooses to open a channel to a selected SIM card
applet (identified by its AID), the service enforces a security protocol, whether
the Android application has a permission to exchange APDUs with the desired
applet. If not, a security exception is thrown and the channel is not opened.
The protocol itself is implemented in AccessController class. It consists of

a request to the desired SIM card applet by a special APDU with Instruction
byte set to 0x00. The applet can respond to this instruction in two ways:

• The publicKeyRsa element was not declared in the interface XML file - The
RMI generator did not append a special security APDU (Instruction byte
set to 0x00) handling in the generated Skeleton class process(APDU oAPDU)
method. The default generated behavior in this case is to return Unknown
instruction error status word (0x6D00) to the caller. If the Access control
layer receives this status word as an answer to its access check APDU, it
considers it as a sign, that the SIM card applet is not providing any sensitive
output and the access to it should not be restricted. Thus it allows all APDU
communication with this applet until the channel is closed again.

• The publicKeyRsa element was properly declared in the interface XML file
- The RMI generator generated a static fields within the generated Skeleton
class containing the declared public key components (modulus and expo-
nent) and appended an automatic response to the security check APDU
(Instruction byte set to 0x00) in the process(APDU oAPDU) method, retur-
ning static fields with modulus and exponent defined.

If the control layer receives the modulus and exponent from the applet which
is about to be selected, it verifies, that the caller application was signed with this
key. If yes, it allows the application all APDU exchange with the selected applet,
until the channel to this applet is closed. If not, it does not open the channel and
throws a security exception.

5.2 Case Study Implementation

As a real-world case study implementation and to demonstrate a practical use case
taking advantage of the implemented RMI system, we have constructed a SIM
card applet and an Android application, which serves as an interface for generated
One Time Passwords by the SIM card applet, where all the sensitive data are
stored and where all the computation with the sensitive data is performed. The
Android application acts as a client, requesting generation of the OTPs by the
remote method calls to the SIM card applet, which serves as a secure remote
server.
The main aim of this case study implementation is to allow users with An-

droid handsets to get rid off the hardware tokens as presented in Figure 1.1. The

41

functionality of our solution as a second factor used within the authentication
scheme remains the same, with reasonable security level still ensured.
From the two options of the OTP algorithms (HOTP and TOTP) presented

in Chapter 3, we have chosen the HOTP to be implemented.

5.2.1 RMI Interface

We have proposed a simple interface, as only one method is needed to request
the OTP generation: byte[] getOTP(). We have concluded, that a 4 byte OTP
will be generated and presented to the user in hexadecimal notation.
From a generated RSA key-pair, by which the Android application is signed,

we have included the public part into the interface file to restrict the access to the
SIM card applet, as the generated OTPs will clearly be a sensitive information
and access to its generation should be restricted.

5.2.2 Shared Secret

The HOTP algorithm relies on a symmetric 20 bytes long key and on a 8 bytes
long synchronized counter.
We keep those two values together in one binary file, where first 20 bytes are

the key and the rest 8 bytes consists of the counter on both sides, the SIM card
and on the validation server. The key and an initial counter value can be loaded
to the SIM card during the card personalization during its production or it can
be delivered to a live SIM card in the field via the OTA protocol. In the second
case, even the key file transverses the handset, the information is enciphered and
the decipher keys are stored only in the SIM card.

5.2.3 SIM Card Applet

The SIM card applet, which uses a generated Skeleton class, implements the
RFC 4226 HOTP algorithm. The key is read from the transparent type file as
well as the counter value, which is incremented each time the OTP is generated.
This approach eases a possible resynchronization correction, as only the binary
file contains the resynchronization relevant information.
In opposite to traditional OTP generators, we do not cut the generated 4 byte

OTP, neither do we translate the generated OTP into ASCII digits. This approach
used to be chosen due to technical constraints, which we do not face, so we can
retain even stronger security by using the whole 4 byte long OTP.

5.2.4 Android Application

The Android application contains only one Activity, which offers the user to gene-
rate an OTP by pressing a button. The application project contains the generated
Stub class and also the SimRMI library. The Activity consists of a logo of the
customer, a text box, where the generated OTPs are presented and a button,
which generates the OTP.
An instance of the generated remote OTP generator Stub is created in the

Activity’s onCreate(Bundle savedInstanceState) method.

42

The method called on button pressed event calls the getOTP() method on
created remote OTP generator instance in a try block and catches eventual Se-
curity or generic exceptions. In background, a remote request is sent to the SIM
card applet, where the OTP is generated and it is returned back to the Android
application, where it is presented on the handset’s display.
In the manifest file the org.simalliance.openmobileapi.SMARTCARD per-

mission is declared to be used.

5.2.5 Validation Server

A command line Java validation server was developed, to validate the generated
OTPs by the SIM card applet. It reads OTP values at its input and outputs
either VALID or INVALID strings.
The server uses the same key file as the SIM card applet. It implements

a resynchronization window, which is preventing a resynchronization of the SIM
card applet and the validation server counters. If the end user generates the OTP
on a handset, but does not provide the OTP to the server, the SIM card has
a higher counter value than the one, which is being used on the validation server.
For those reasons, the validation server, if the presented OTP is not valid with
it’s counter value, it also tries defined number of consecutive counter values. If
there is a match, the validation server’s counter is resynchronized. Otherwise, it
remains at the same value as before an invalid OTP entry.

43

Chapter 6

Discussion

In this chapter, we discuss important aspects of the proposed and implemen-
ted solution. We elaborate on security issues, handset support, and related work
implementation. We also provide a short discussion upon the comparison of dif-
ferences between the smart card based RMI and the generic, internet based RMI
implementation.

6.1 Security Aspects of Implemented Solution

Our RMI solution, enabling the Android applications to easily execute security
critical code on a SIM card, gives the application developers an option, how to
avoid storing a sensitive data in Android device memory. This protects the secrets
from compromisation in case an exploit is found in the Android OS, which would
enable a malicious application to overcome its sandbox. We have witnessed several
major security flaws both in Android and also in iOS OSs[5] [58] which ensure
us, that keeping all sensitive data away from the device’s memory and storing
them in a special hardware designed for it (smart cards) instead is at least a good
habit, if not a must.
In addition to the described potential security threat, we can also model

a straightforward attack to the form of the two factor authentication commonly
used nowadays, which our solution is immune to.

6.1.1 Threat Model

The advantage of the two factor authentication is the fact, that by verifying what
the user knows and what the user has, we can be more sure about the user’s true
identity.
Many banks worldwide use users’ handsets (or more precisely their SIM card

subscriptions), as the second factor used for the authentication (what the user
has) to theirs internet banking systems. This concept is based on OTPs generated
remotely on a bank server and sent to the user via the SMS, when he/she requests
a sensitive operation to be performed in the internet banking, such as accessing
the account or issuing a payment order. Especially when the user’s handset is
running Android OS, this approach is not safe.
Consider a situation, when user’s computer, which he/she uses for internet

banking is compromised, meaning, that the attacker gained full control over this

44

computer. The two-factor authentication should prevent a situation, when even
with compromised computer (login/password to the internet banking are com-
promised), the second factor (SMS with OTP sent to the user’s handset) used
within the authentication, prevents the attacker from issuing a payment order to
his account.
However, with a full access to user’s computer, there is also a high probabi-

lity, that not only the internet banking credentials were compromised, but also
logins/passwords used to access other services were compromised as well. One of
them could be the user’s Google account, with which he/she accesses not only hi-
s/hers Gmail, Picasa or other Google accounts, but also the Google Play portal.
Since the user has probably downloaded some applications from the only An-
droid’s official application store, his Android device is linked to this compromised
account.
The problem comes with a fact, that the Google Play portal allows remote

installation of arbitrary application from its database [59]. Surprisingly, the web
portal allows the remote installation without any interaction required with the
actual linked physical Android device. Neither the permissions required by the
remotely installed application has to be approved on the device itself. This allows
the attacker to install any application on the victim’s device.
If the attacker wants to issue a payment order to his account, he already knows

one factor required to authenticate it (the login/password from the compromised
computer) and he can install an arbitrary application from Google play to the
victim’s handset. So he installs a simple SMS sniffing application, which reroutes
the incoming OTPs generated by the bank server generator to his device or email.
This would allow him to easily break the two factor authentication scheme without
the physical possession of the second factor, the Android handset (SIM card’s
subscription).
Our approach of generating the OTPs locally (yet remotely from the applica-

tion’s view) on a SIM card does not make this attack possible. Even the attacker
would remotely install an application, which would want to generate the OTP on
a SIM card, our SIM RMI system access layer would not allow the connection to
the SIM card by this malicious application, as it could not be signed by the same
key as our authentic OTP Android generation application and thus the attempt
would be defeated.

6.1.2 Security Concerns

Although we have shown, that our proposed and implemented security scheme is
better than the one commonly used, we are aware of situations, when even our
model is not satisfactory.
Specifically, the two most hazardous situations, when our security scheme can

be compromised are:

• Physical access to the device - With physical access to the Android device
with a SIM card, where a security enabled applets reside, it is very easy to
compromise the access level in the Android OS by simply removing the SIM
card from the device and inserting it into a card reader, where arbitrary
APDUs can be exchanged with the SIM card. In our case study implemen-
tation, the shared key and the counter value would not be compromised, as

45

they are protected by SIM card access control schemes, but the generation
of the OTPs would be possible by reverse engineering of the APDU protocol
used by the Android application.

• Rooted phone - As the whole security scheme of the Android OS APDU
transport layer depends on Linux UID/GID checks, for an application with
a root access all permissions would be granted. Thus it could easily intercept
or modify all communication between the Android applications and the SIM
card applets.

6.1.3 Possible Improvements

To clear away all security concerns for Android applications, which require to
perform a security critical computation with sensitive data an isolated environ-
ment with very restrictive access has to be created. The environment has to be
isolated in a way, that even with Android root account or with a physical access
to the device, the access to it would still be protected.
The ARM company, which processors are widely used in Android smartphones

have introduced a technology called TrustZone [60]. It provides two processors
backed by hardware based access control. One processor is used for the Android
OS, while the other runs its own secure OS and provides security services to
the normal application processor. The ARM refers to those processors (and its
componenets) as Normal world and Secure world. Hardware logic present in the
TrustZone enabled processor ensures, that Normal world components do not ac-
cess Secure world resources, enabling construction of a strong perimeter boundary
between the two. To switch from the Normal world to the Secure world a PIN
code entry is required on a hardware keyboard, which input is directly connected
to the Secure world processor. It may not be a special dedicated hardware keypad
on a device, but it can also be a normal display keypad, but it is operated by the
Secure world processor (Normal world processor does not have access to the disp-
lay at that time) and users are informed about the Secure state by a dedicated
LED diode on a device.
With this approach, the sensitive data are stored and manipulated with only

in tamper resistant Secure world, access to which is hardware protected.

6.2 Handsets Support for APDU Transport

The AOSP project allows an arbitrary hardware vendor to implement the Android
OS into his hardware. It is up to the manufacturer, whether does he include the
support of the APDU transport layer into his device.
The first step of the device manufacturer would be the implementation of

the IPC to the baseband modem, which would allow the generic SIM card ac-
cess by either implementing the 3GPP standardized AT+CSIM command or by
implementing a proprietary IPC call.
In conjunction to this, the specific RIL implementation has to be provided by

the vendor, to allow upper layers of the Android OS to access the RIL methods.
In addition to the radio modifications, the Android service for the APDU

transport with its access control scheme has to be a part of the Android OS.

46

As an evidence, that the manufacturers of the Android handsets are interested
in the possibility of enabling the generic APDU access to the SIM card, some of
the Sony Xperia series handsets have the SEEK project APDU transport layer
already included [61].

6.3 Comparison to Generic RMI

This section provides a short comparison of differences between the smart card
based RMI and the generic, internet based Java RMI implementation.

Virtual Machines

Java RMI facilitates object function calls between Java Virtual Machines. This
is the first difference when it comes to our smart card RMI solution used for
Android applications, as we need to handle method calls between Dalvik Virtual
Machines and the Java Card Virtual Machine. Even if we consider the Dalvik
Virtual Machine to be the same as the Java Virtual Machine, we would still
need to cope with the Java Card VM, which handles much lesser subset of the
Java language than the other party of the communication. Thus, we can not
speak about function calls between the same Virtual Machines, which effectively
prevents us from generically transfer objects from one VM to another, which is
not a problem for the Java RMI.

Interface Definition

Another difference comes with the interface definition. Java RMI has incorpora-
ted an interface definition, which is a part of the language itself. Our solution
of the interface definition is more alike the CORBA’s IDL (Interface Definition
Language) as it needs to cope with different languages for Stub (Java) and for
Skeleton (Java Card). We have chosen an XML format for the interface definition,
especially for its easy readability and simple transition to other formats (JSON)
if desired.
Another important difference is also the fact, that we do not interface whole

remote objects. We interface only remote method calls on a remote object which
will be generated from the interface and will serve itself as a single object server
implementation, providing the interfaced remote methods.

Stub and Skeleton Generation

The traditional RMI Stub and Skeleton generators, as the rmic, create compiled
class files to be used as Stub and Skeleton. Due to described memory constraints
of the Java Card, where dynamic memory allocation is strongly discouraged and
where memory buffers sharing, depending on the logic of the applet, is common,
we have decided not to compile the generated Skeleton object. Instead, we have
generated a readable Java Card source file, containing empty interfaced methods,
which are intended to be filled by the implementor.
The generated Stub object is not compiled either and it is generated as a re-

adable Java source file as well.

47

Remote Objects Handling

The common part of the both RMI systems is, that they both hide the underlying
communication between the Stub and the Skeleton, which involves serialization /
deserialization, connection initialization, authentication and possibly other tasks.
In opposite to generic, internet based RMI, the smart card RMI clients (An-

droid applications) do not call the registry of the RMI system, as there is only
one server (the SIM card) which can be used and it does not advertise its services.
On smart cards, the server part of the RMI does not need to be explicitly

started, it is accessible immediately after it is installed and made selectable.

Different Concerns

Traditional, internet enabled RMI systems has to cope with various network
problems, as network latency, network outage, routing of the communication and
others.
The smart card RMI system does not cope with any of those problems as the

connection to the SIM card in the handset is reliable and fast by design.
On the other hand, both RMI systems requires a certain level of security to be

ensured. However, the approach of ensuring the secure environment is different.
The internet enabled RMI solution can limit the access to its services by

restricting the access only to certain IP addresses and ports. It is also possible to
use Java RMI with SSL to protect the transport layer of the connection.
Our proposed smart card RMI system restricts access to its services by enab-

ling the server (SIM card) service to request the clients to be signed by the server
provider. This allows the server provider to effectively limit access to its services
only to trusted clients.

48

Chapter 7

Conclusion and Future Work

The thesis goals were to inquire the potential of a remote method invocation in
the context of the Android mobile devices and to investigate execution of security-
critical parts of application code on smart cards. As a result of the investigation,
the real-world case study should have been proposed and implemented.
We have proposed and implemented the RMI system, which enables the An-

droid applications to execute security-critical parts of application code on smart
cards. We have compared several approaches of the security mechanisms of the
proposed RMI system and we have implemented the one, which emerged to be
the most secure and viable.
To demonstrate the benefits of the implemented RMI system, we have propo-

sed and implemented a real-world case study, providing the two factor authen-
tication, which offers several advantages over the existing solutions in terms of
security, but also user friendliness.
We have shown, that the integration of the implemented RMI system into the

available physical device is not possible due to the lack of support of the required
standardized features in the device proprietary hardware interface. Despite this
obstacle, we were able to present the results of the thesis in the Android Virtual
Device emulated environment with a connection to the real SIM card via the host
computer using the PC/SC interface.
The future work on the project consists of two parts. Firstly, to enhance the

compliance of the proposed and implemented access scheme of the RMI system
with a still evolving Global Platform standard. Secondly, to attempt the integra-
tion of the created RMI system into the main branch of the Android OS, which
would help to spread the functionality over the newly introduced Android devi-
ces.

49

Bibliography

[1] Dan Morrill: Announcing the Android 1.0 SDK, release 1
http://android-developers.blogspot.com/2008/09/announcing-android-10-
sdk-release-1.html

[2] Know Your Mobile: Press Release
http://www.knowyourmobile.com/glossary/a/446388/android.html

[3] Gartner: Gartner Says Sales of Mobile Devices in Second Quarter of 2011
Grew 16.5 Percent Year-on-Year; Smartphone Sales Grew 74 Percent
http://www.gartner.com/it/page.jsp?id=1764714

[4] Secure storage: Android applications for secure storage of data
http://www.androidzoom.com/android applications/secure+storage+on

[5] Android Police: Massive Security Vulnerability In HTC Android Devices
http://www.androidpolice.com/2011/10/01/massive-security-vulnerability-in-htc-

android-devices-evo-3d-4g-thunderbolt-others-exposes-phone-numbers-gps-sms-emails-

addresses-much-more/

[6] JSR177: Security and Trust Services API for J2ME
http://java.sun.com/products/satsa/

[7] Using Android securely: Giesecke & Devrient initiative for more secure
Android
http://www.gi-de.com/en/trends and insights/android/android security/android security.jsp

[8] UoB: Token-OTP
http://www.uob.com.sg/personal/ebanking/microsite/2FA/2fa/p tokenotp.html

[9] M. Bellare, R. Canetti and H. Krawczyk, ”Keyed Hash Functions and Mes-
sage Authentication”, Proceedings of Crypto’96, LNCS Vol. 1109, pp. 1-15.

[10] HOTP: An HMAC-Based One-Time Password Algorithm
http://tools.ietf.org/html/rfc4226

[11] HMAC: Keyed-Hashing for Message Authentication
http://tools.ietf.org/html/rfc2104

[12] TOTP: Time-based One-time Password Algorithm
http://tools.ietf.org/html/draft-mraihi-totp-timebased-00

[13] Giesecke & Devrient
http://www.gi-de.com/en/index.jsp

50

[14] Giesecke & Devrient: Secure Flash Solutions
http://www.gd-sfs.com/the-mobile-security-card/

[15] Smart Card API Secure Element Evaluation Kit for the Android platform
http://code.google.com/p/seek-for-android/

[16] Android Architecture: Major components of the Android operating system
http://www.android.com/

[17] Open Handset Alliance
http://www.openhandsetalliance.com/

[18] Android Open Source Project: About
http://source.android.com/about/index.html

[19] Dalvik: The Android’s Virtual Machine
http://code.google.com/p/dalvik/

[20] Android: Basics
http://developer.android.com/guide/basics/what-is-android.html

[21] Android: Permissions
http://developer.android.com/guide/topics/security/permissions.html

[22] Android applications: Fundamentals
http://developer.android.com/guide/topics/fundamentals.html

[23] Android Open Source Project: Android Security Overview
http://source.android.com/tech/security/index.html

[24] Android Activity: Lifecycle
http://www.skill-guru.com/blog/2011/01/13/android-activity-life-cycle

[25] Samsung: Products RFS Brochure
http://www.samsung.com/global/business/semiconductor/products/

[26] Android: Signing Your Applications
http://developer.android.com/tools/publishing/app-signing.html

[27] Android: Manifest permission element
http://developer.android.com/guide/topics/manifest/permission-
element.html

[28] O’Reilly Media: Android Application Development, 1st Edition
http://developer.android.com/guide/topics/manifest/permission-
element.html

[29] Android documentation: Socket
http://developer.android.com/reference/java/net/Socket.html

[30] Android documentation: MessageQueue
http://developer.android.com/reference/android/os/MessageQueue.html

51

[31] Android documentation: Pipe
http://developer.android.com/reference/java/nio/channels/Pipe.html

[32] Andoird API Guide: Intents and Intent Filters
http://developer.android.com/guide/components/intents-filters.html

[33] Wikipedia: Australia Bank Paypass Card
http://en.wikipedia.org/wiki/File:Australia Bank Paypass Card.png

[34] Gemalto: Smart cards basics
http://www.gemalto.com/companyinfo/smart cards basics/what.html

[35] Smart Card Basics: Overview
http://www.smartcardbasics.com/smart-card-overview.html

[36] Smart Card Basics: Types of smart cards
http://www.smartcardbasics.com/smart-card-types.html

[37] Java Card Technology: Overview
http://www.oracle.com/technetwork/java/javacard/overview/index.html

[38] Sim Alliance: Interoperability Stepping Stones
Release 2004

[39] Oracle: Java Remote Method Invocation
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-
138781.html

[40] Oracle: Remote Method Invocation: Introduction
http://java.sun.com/developer/onlineTraining/rmi/RMI.html

[41] Oracle: Introduction to CORBA
http://java.sun.com/developer/onlineTraining/corba/corba.html

[42] AOSP: Radio Layer Interface
http://www.kandroid.org/online-pdk/guide/telephony.html

[43] Android reference: Telephony
http://developer.android.com/reference/android/telephony/package-
summary.html

[44] Android reference: Message
http://developer.android.com/reference/android/os/Message.html

[45] Android reference: Parcel
http://developer.android.com/reference/android/os/Parcel.html

[46] David Marques: Android Telephony Stack

[47] XDA developers: How to root Htc Wildfire S
http://forum.xda-developers.com/showthread.php?t=1702984

[48] Qualcomm developer: HTC Wildfire S
https://developer.qualcomm.com/device/htc-wildfire-s

52

[49] Wikipedia: MSM7200
http://en.wikipedia.org/wiki/MSM7000

[50] Harald Welte: Anatomy of contemporary GSM cellphone hardware
laforge.gnumonks.org/papers/gsm phoneanatomylatest.pdf

[51] XDA developers: How to talk to the Modem with AT commands
http://forum.xda-developers.com/showthread.php?t=1471241

[52] Fabien Sanglard: Tracing the baseband
http://fabiensanglard.net/cellphoneModem/index2.php

[53] Wikipedia: REX OS
http://en.wikipedia.org/wiki/REX OS

[54] Android reference: Andoird Emulator
http://developer.android.com/tools/help/emulator.html

[55] Android reference: Managing Virtual Devices
http://developer.android.com/tools/devices/index.html

[56] QEMU: Wiki
http://wiki.qemu.org/Main Page

[57] Global Platform: Full Members
http://www.globalplatform.org/membershipcurrentfull.asp

[58] Jens Heider, Rachid El Khayari, Fraunhofer SIT: iOS Keychain Weakness

[59] Google Play: About
https://play.google.com/about/

[60] ARM: TrustZone
http://www.arm.com/products/processors/technologies/trustzone.php

[61] SEEK: Devices
http://code.google.com/p/seek-for-android/wiki/Devices

53

Appendix A

Traces

[OUT] :AT
[IN] : 0
[OUT] :ATZE0S0=0Q0R0D3&A1&F1
[IN] : 0
[OUT] :AT+CMEE=1
[IN] : 0
[OUT] :AT+CRC=1
[IN] : 0
[OUT] :AT+CR=1
[IN] : 0
[OUT] :AT+CREG=1 # Network Reg i s t r a t i on
[IN] : 0
[OUT] :AT+FCLASS=0
[IN] : 0
[OUT] :AT+CMGF=0
[IN] : 0
[OUT] :AT+CSCS=”HEX”
[IN] : 0
[OUT] :AT+CGREG=1
[IN] : 0
[OUT] :AT+CUSD=1
[IN] : 0
[OUT] :AT+CIMI # What i s the SIM S e r i a l number ?
[IN] :23002756397856 # 230 = Czech Rep . , 02 = O2

Figure A.1: RIL communication with a device baseband processor.

54

lubos@laptop : ˜ $ adb s h e l l
root@android : / # cat /dev/smd0
AT−Command In t e r p r e t e r ready
+PB READY
ˆC
root@android : / # echo −e ’AT\r ’ > /dev/smd0
root@android : / # cat /dev/smd0
0
ˆC
root@android : / # echo −e ’AT+CSIM\r ’ > /dev/smd0
root@android : / # cat /dev/smd0
4
ˆC
root@android : / # echo −e ’AT+CSIM=A0A40000023F00\r ’ > /dev/smd0
root@android : / # cat /dev/smd0
4
ˆC
root@android : / # echo −e ’AT+CSIM?\ r ’ > /dev/smd0
root@android : / # cat /dev/smd0
4
ˆC
root@android : / # echo −e ’AT+DUMMYTEXT\r ’ > /dev/smd0
root@android : / # cat /dev/smd0
4
ˆC
root@android : / # echo −e ’AT\r ’ > /dev/smd0
root@android : / # cat /dev/smd0
0
ˆC

Figure A.2: Communication with HTC Wildfire S 510e baseband modem (radio
version 7.46.35.08).

55

Appendix B

Content of the Attached CD

The attached CD consists of:

• bin/ - Executables of the thesis results.

• etc/ - Configuration files, patch for the AOSP project.

• src/ - Eclipse archive packages with source codes and documentation to
the projects.

• master thesis.pdf - Text of the thesis.

• README.txt - Short CD content description.

• contact.txt - Contact to the author.

Each directory contains its own README.txt which provides a detailed desc-
ription of the subdirectories content.

56

	Introduction
	Motivation Case Study
	Goals
	Structure of the Thesis

	Related work
	Security and Trust Services API for J2ME
	Secure Element Evaluation Kit for the Android platform

	Background
	Android Operating System
	Application Fundamentals
	The Android Application Manifest File
	Security Architecture
	Inter-Process Communication

	Smart Cards Overview
	Microprocessor Cards
	Smart Cards Standards
	Smart Card File System
	Communication with a Smart Card
	Java Card Technology

	Remote Method Invocation
	Benefits of Usage

	One Time Passwords Algorithms
	HOTP
	TOTP

	Analysis
	Communication with a SIM Card
	Handsets Implementation
	Hardware Structure
	Communication with the Baseband Modem
	Hardware Limitations
	Vendor Specific RIL Android Implementation

	Android Emulator
	QEMU
	PC/SC

	SIM Card RMI Architecture
	RMI Generator
	APDU Interface
	RMI Library

	SIM Card RMI Security
	Access Control

	Link to a Related Work
	Goals Revisited

	Implementation
	RMI Implementation
	Stub and Skeleton Generator
	RMI Library
	APDU Transport Layer
	Access Control Layer

	Case Study Implementation
	RMI Interface
	Shared Secret
	SIM Card Applet
	Android Application
	Validation Server

	Discussion
	Security Aspects of Implemented Solution
	Threat Model
	Security Concerns
	Possible Improvements

	Handsets Support for APDU Transport
	Comparison to Generic RMI

	Conclusion and Future Work
	Bibliography
	Traces
	Content of the Attached CD

