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Abstract: Although the collisions of electrons and atomic hydrogen has been studied for
several decades, there is still neither a complete database of scattering data, nor a universal
method that would let generate such data. For astronomical and other purposes the cross
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Chapter 1

Introduction

Electron-atom scattering processes play an important role in astrophysical phenomena. Stel-
lar atmospheres often happen to be a stage for violent collisions of emitted particles and the
omnipresent light-element gas. Likewise, the interstellar medium is constantly ruffled by stel-
lar wind and other sources of accelerated particles. Both events contribute to the dynamics
of the participating matter and – moreover – they provide invaluable means of observation.

Most experimental data in astronomy consist of optical measurements, e.g. the spectra
of stellar radiation. Such data contain more or less decipherable signature of surface micro-
scopical processes in the form of spectral lines, originating also in de-excitation of previously
excited atoms. The original excitation can be achieved in many ways – by exposition to a hard
UV radiation, by atom-atom collisions etc., but among them the most important (at least
in absence of electromagnetic radiation) are the collisions with free accelerated elementary
particles: protons and electrons.

The observed de-excitation radiation can be polarized with a polarization dependent on
the direction of both incident and outgoing projectiles. [1] Thus, measuring a polarization
degree can offer an insight into the physics of stellar atmosphere including not only its
composition, but also the direction and massiveness of atmospherical currents.

The most basic scattering event happening on Sun and other stars is the collision of elec-
trons with hydrogen atoms in the ground state. This thesis focuses on a precise determination
of the electron-hydrogen cross sections for elastic processes and for excitation. Such a task
involves a discussion of available data, methods, as well as ready-made computer codes. As
was shown in [2], there exists a variety of ready computer programs, which compute scatter-
ing variables for electron-atom collisions. A confrontation of their results proved that none
of them can be used as the final code that would produce all necessary data with a given
precision. Even for electron-hydrogen scattering, detailed cross section data are neither freely
available nor easily obtainable with present specialized approaches, which are mostly valid
in a limited energy range. Successful interpretation of astronomical data, however, requires
models which need as an input the cross sections in the broad energy range, from fractions
of eV up to several MeVs.

In addition to astrophysics, electron-hydrogen collisions are a cornerstone of plasma
physics. As stated in [3], the hydrogen line intensity ratios Hγ/Hα and Hβ/Hα serve as
density indicators in tokamak physics. These coefficients are greatly dependent on the the
impact excitation cross sections from H(1s) to higher quantum levels (to n = 6) at high
temperatures (∼ 10 eV) and also on the “stepwise” cross section between consecutive energy
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levels at low energies (∼ 0.1 eV).
This thesis arised for the needs of collaborators from the Astronomical Institute, whose

research areas involve scattering events in plasmas. Data for several processes are already
tabulated in on-line databases, which will be briefly mentioned in chapter 2. The general
requirements of atronomers, though, span broader theory and are listed below:

• For modelling various isotropical electron-hydrogen (and proton-hydrogen) collisions
the integral cross sections for fine structure transitions H(nljm)→H(n′l′j′m′) are nec-
essary. The main contribution comes from low n’s up to the level n = 3 and from low
energies, mostly up to 10 eV.

• Determining impact polarization in solar flares requires angular distribution of the
previous, i.e. the differential cross section, for a wide range of energies from threshold
to tens of keVs.

• Depolarization by proton collisions doesn’t change the principal quantum number (i.e.
transitions will have the scheme H(nljm)→H(nl′j′m′)) and occurs at energies around
1 eV.

• Common transition rates are computed from cross sections integrated with Maxwell
distribution and summed over all transitions. Even high transitions may contribute
to the rates, so excitations up to H(n = 50) need to be computed, summed over
angular quantum numbers. These data would be used with velocity distributions at
temperatures to T = 105 K (i.e. typical thermal energies below 1 eV).

• Other elements can be found in the stars, too. Integrated cross sections for light non-
hydrogen elements (He, Ca, ...) are useful.

These topics would offer sufficient work for several master theses. In this thesis the fourth
point has been chosen as a goal, whereas the fine-structure transitions in electron-hydrogen
collisions and likewise the proton and other-element scattering has been postponed to the
PhD thesis. Only the elastic and excitational scattering has been considered here.

As elaborated further, scattering can be roughly divided into low-energy and high-energy
scattering. The former is discussed in chapter 3, together with examples of already pub-
lished codes. Also an original code is presented here, which is based on exact solution of
the Schödinger equation in the B-spline basis with the exterior complex scaling boundary
condition. High-energy scattering is topic of chapter 4. Several Born-type approximations
have been implemented and compared with experimental and other computed data.

Every one of these approaches is either mathematically valid for a certain energy range
only, or the computation cost outside some energy interval increases dramatically, so that
it quickly starts to be unusable with available computing facilities. Therefore, an emphasis
has been put on validity limits of the methods and on the intermediate regions, where the
results of different methods ought to match. Fortunately, present astrophysical models need
scattering data for very low energies (around excitation thresholds) and for very high energies,
which are satisfactorily described by the first and third method.

Chapter 5 contains an overview of derived scattering variables that can be extracted from
the results of mentioned codes and chapter 6 discusses results of the implementations and
their comparison with the experimental data.
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Chapter 2

Databases

The electron-atom scattering has been an intensive research field for a long time and many
data have already been produced. Several atomic databases are freely accessible on the
internet, some of which also cover electron-atom scattering. Some notable representatives
are:

Aladdin [4] – Contains data for elastic scattering, excitation and ionization of hydrogen
for n, n′ = 1s up to 4d. The data are from convergent close coupling (CCC) calculations
by Bray [5] and match perfectly R-matrix results in low energies and Born-approximation
results in high energies. The cross section curve is fitted only through several tens of points,
so it represents just the scattering background and contains no resonances, see figure 2.1.
Ionization cross sections were also computed by Janev and Smith [6] over finer energy mesh.
Several derived rate coefficients are also stored here. Both calculations differ slightly, see
fig. 2.2, without a clear clue, which results to use for a given energy range.

NIST Electron-impact cross sections for ionization and excitation [7] – Contains
the total and differential ionization cross sections compiled from several sources and also cross
sections for discrete transitions 1s→np, where 2 ≤ n ≤ 10. Main resource is the report [8],
data are produced by “BE-scaled” plane-wave Born approximation [9]. Comparison is done
with web data [10] from a CCC calculations and with experiment [11]. Comparison between
Aladdin and NIST databases for one chosen transition is presented in figure 2.3. There is
also another – offline – database by NIST containing elastic data based on Dirac equation
integration by Salvat et al [12].
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CAMDB [13], Chinese atomic and molecular database – Contains no data for hydrogen
reactions, just for heavier atoms.

Open ADAS [14] – The system is meant to contain mainly spectroscopic data (sponta-
neous transitions etc.). Scattering data are rather scarce and for hydrogen are represented
by the ionization cross section only.

2.1 Collision rates

Collisions in astrophysical applications do not occur at globally fixed energies, one needs to
use thermally averaged cross sections, which describe overall effect of scattering from particles
of different energies. Such quantity is called reaction rate coefficient and it can be calculated
as

τ(T ) = 〈σv〉some distribution for T ,

typically with the Maxwell-Boltzmann velocity distribution, [15]

τ(T ) = 〈σv〉Maxw/Boltz =
1

π1/2

∫ ∞

vth

σ(Er)
v2
r

v2
T

e−v
2
r/v

2
T

dvr
vT

(2.1)

with thermal velocity

v2
T =

2kT

m

and threshold velocity vth given as the lowest speed for which the considered transition can
occur (or zero if such channel is opened for all energies). The integration variable is the
relative speed between the projectile and the target atom.

It is obvious from the shape of the Maxwell-Boltzmann distribution (figure 2.4(a)) that
maximal contribution to the integral comes from energies close to the thermal ET = mv2

T/2 =
kT , i.e. when vr ≈ vT . If the threshold velocity vth (being the lower bound for vr) is higher
than the thermal velocity vT , only the energies close to the threshold energy matter, because
the distribution exponentially diminishes for relative velocities higher than thermal.

The immediate conclusion is that – generally – in the collisional excitation of cold gas
only the closest neighbourhood of threshold energy affects the resulting reaction rate τ(T ).
This is however not a universal statement, because it may depend on the precise shape of
integral cross section energy dependence. If the initial ascent of the data is comparable with
the exponential decay of statistical weight in (2.1), the most influential spot may obviously
be shifted.

10



10

100

0.7 0.8 0.9 1 2

σ
[a

2 0
]

E [Ry]

RmaX
Aladdin

Fig. 2.1: Elastic integral cross section for e-H(1s) scattering. Aladdin data are compared to an
R-matrix calculation. Apparently, all structures are missing in the database.
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Fig. 2.2: Comparison of two datasets for an identical process, electron impact excitation H(1s) to
H(2p). The Aladdin database contains both of them. Ordinary plane wave Born approximation
of the first order is added for reference. Clearly, due to the discrepancy between Janev & Langer
and Bray & Stelbovics datasets, the data cannot be totally relied upon approximately outside the
PWBA-1 validity region. If these cross sections were used for a computation of reaction rates, one
would get very distinct results, see the figure 2.4.
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Fig. 2.4: Left graph: Maxwell-Boltzmann distribution for illustration of the necessity of accurate
cross sections near transition thresholds. See the text for details. Right graph: Reaction rates
computed from the slightly differing curves in 2.2. The dashed blue dependence is taken from the
database as well – it is carefully integrated from a fit to the cross section data. But a straightforward
trapezoidal integration (full blue curve) is apparently a good approximation. The same integration
applied on results of Bray and Stelbovics (red cuve) gives a different dependence.
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Chapter 3

Low energy scattering

Low energies are understood here to be the impact energy range below the ionization thresh-
old. For hydrogen the limiting impact energy is 1 Ry or 13.6 eV. Low energy cross sections can
display quite complicated behaviour in the vicinity of transition thresholds – it can contain
resonances, both wide and narrow energy subintervals where the cross section dependence
abruptly deviates from the overall trend. Resonances can be split into two general families:
(a) Feshbach resonances and (b) shape resonances. Both of them arise when the projectile
attaches to the atom for a short while and forms a temporary negative ion (assuming the
atom was neutral prior to the collision). [16]

• Feshbach (also called Type I or closed channel) resonances lie mostly few tenths of eV
below excitation thresholds and they are a manifestation of a temporary creation of a
metastable double excited state. For example: when the projectile hitting the hydrogen
has energy just below the H(1s)→H(2s) transition threshold, it can not excite the atom
to 2s stationary state (hence the “closed channel”). Nevertheless, for a short moment it
can descend in the potential well of the proton and be captured to some high stationary
state. The excess energy is then used to excite the atomic electron, so that e.g. the
metastable state H−(2s4s) forms. Hydrogen negative resonances are usually designated
in the following way:

H−(electron configuration) SXP ,

where S stands for total electron spin, X is the spectroscopic label (S, P , D, ...) of
total angular momentum of the system and P its parity (e or o). The lowest type I
resonance H−(2s2s) 1Se has energy 0.702 Ry. See 3.1 for examples. The stationary
atomic state which has the threshold energy is called a parent state. In given example,
both in the text and in the figure, the parent state is the state 2s.

• Shape (also called Type II or open-channel) resonances lie always above the parent
state and occur when the projectile with a specific energy is captured because of the
presence of the centrifugal barrier. Naturally, S-states possess no such structures. See
figure 6.7 for an example of a shape resonance.

In the next three sections the most successful methods are briefly explained, namely the
convergent close coupling, R-matrix theory and finally exterior complex scaling. The last one
has been implemented by the author and is described in greater detail together with some
technicalities of the implementation.
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Fig. 3.1: Feshbach resonances (collected from [17], [18] and [19]) below the H(1s)→H(2s) threshold,
which is at E = 0.75 Ry. The finite number of them is given by (a) the finite resolution of the
energy grid and (b) because structures extremely close to the transition threshold will not occur
due to finite radial mesh – relevant bound states would reach too far from the centre of force that
they would be nonzero on the boundary. This cannot be satisfied with the ECS zero boundary
condition and such resonances won’t be present in the results.

3.1 Convergent close coupling method

Most relevant data in the Aladdin database have been computed using the convergent close
coupling method (CCC). The usual close coupling expansion of the sought scattering wave
function (for electron colliding with N -electron atom) has the form

Ψj(r1, r2, ..., rN , r0) = A
N∑

i=1

Φij(r1, r2, ..., rN)
1

r0

Fi(r0) . (3.1)

The channel functions Φi are obtained by coupling target states to the angular part of
the projectile wave function and in such a way, that the result has a defined total angular
momentum, spin, their projections to a chosen axis and parity. Substituting (3.1) into the
Schrödinger equation gives rise to the set of close coupling equations for radial functions
Fj(r0). The expansion (3.1) is known to converge slowly for energies near thresholds, as it
does nt contain continuum states. In the convergent approach, the channel functions are
composed of a set of n artificial basis functions, which in the limit n→∞ correctly describe
the contribution of the continuum. An example of a widely used basis is

ξk`(r) =

(
λ`(k − 1)!

(2`+ 1 + k)!

)1/2

(λ`r)
`+1 exp(−λ`r/2)L2`+2

k−1 (λ`r) k = 1, ..., n` . (3.2)

The expression (3.2) resembles hydrogen radial functions

Pn`(r) = rRn`(r) =

(
λ(n− `− 1)!

2n[(n+ `)!]3

)1/2

(λr)`+1 exp(−λr/2)L2`+1
n−`−1(λr) .

with just different normalization. The arbitrary shielding constant λ` in (3.2) stands for
the scaled proton charge, λ = 2Z/n. The function Lαk is the common generalized Laguerre
polynomial.
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3.2 R-matrix method

The R-matrix approach separates the physical space into two areas. One of them, the inner
region, is mostly a sphere of some radius a that encompasses the atom and reaches far enough,
so that it is possible to set short-range potentials to zero outside this sphere. The outer (or
asymptotic) region is in non-ionizing collisions occupied only by one electron (projectile) and
any exchange interactions can be ignored there. On the other hand, in the inner region
the equations are solved in a non-simplified full close-coupling form. Because the region is
encapsulated in a finite sphere, some operators – including the hamiltonian – would loose
their hermiticity. This is avoided by rearranging the Schrödinger equation and adding a
special compensating (Bloch) operator on both sides. [20]

(Ĥl + L̂ − E)ψ
(int)
l = L̂ψ(ext)

l . (3.3)

Solution is then sought as expansion coefficients in a given basis, ideally in the pseudostate
expansion, which involves both low lying bound states as well as positive energy eigenstates
simulating an effect of (free) Coulomb waves.

A “pseudostate” is a discrete state with energy higher than the ionization threshold
and its function is to simulate the effect of the continuum. Carefully chosen pseudostates
together with enough bound states then form an effectively complete basis set, at least for
low-energy scattering. The higher the energy is, or the higher excitations we consider, the
more pseudostates we need to include.

A common way how to generate a pseudostate basis is to encapsulate the system into
a large but finite box and to find eigenfunctions of some hamiltonian in this box. As an
example, one could compute the matrix of the hydrogen hamiltonian in some arbitrary but
spacially finite basis and by diagonalization get its eigenstates.

Both inner and outer solutions are matched on the separating boundary by means of the
R-matrix, which is proportional to inverse logarithmic derivative of the wave function on the
boundary. The definition is

ψl(a) = Rl(E) [aψ′l(a)−Bψl(a)] ,

where ψl is the radial part of the partial wave under consideration and a is the R-matrix ra-
dius. Arbitrary dimensionless parameter B can be chosen in any way that possibly simplifies
the employed numerical procedure. For a given B the Bloch operator has the form

L̂(B) =
1

2
δ(r − a)

(
d

dr
− B

r

)

and the equation (3.3) supplemented with continuity condition ψext
l (a) = ψ

(int)
l (a) can be

solved traditionally using the Green’s function mechanism. Having the solution of

(
Ĥl + L̂(B)− E

)
Gl(r, r

′) = δ(r − r′)

the R-matrix can be expressed simply as

Rl(E) =
1

2a
Gl(a, a) ,
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which – expanded in some basis – is nothing else than

Rl(E) =
1

2a

∑

ij

φi(a)Gijφj(a)∗

with the matrix elements Gij obtainable via the inversion of

(
G−1

)
ij

= 〈φi|T̂l + L̂(B) + V − E|φj〉. (3.4)

The energy-independent terms of (3.4) can be diagonalized (which is the most computa-
tionally difficult task of any R-matrix package) and the inversion of the whole G−1 (after
subtracting the remaining diagonal energy term) is then trivial.

3.3 ECS method

Both previous methods directly use the outgoing particle boundary condition in the far
region, either for matching at the separating boundary (in R-matrix approach) or at the end
of the grid (in the close coupling approach). Exterior complex scaling is another method
serving to efficiently enforce the correct outgoing asymptotic condition. The wave function
of a scattered particle oscillates and asymptotically behaves as a shifted harmonical function
in the radial coordinate. If all computations are done on a special semirotated contour, cnf.
fig. 3.2,

ρ(r) =

{
r r ≤ R0

R0 + (r −R0)eiθecs r > R0

the imaginary part of the coordinate exponentially suppresses the harmonical function and
so – at a sufficiently distant radius – a zero boundary condition can be imposed and the
equations can be solved in a box without the need of considering reflections, standing waves
etc. More on this is said in the “Results” chapter.

Re ρ(r)

Im ρ(r)

r

0 R0 Rmax

θecs

Fig. 3.2: Exterior complex scaling transformation
of the radial coordinate.

Exterior complex scaling can be used
both in time-dependent and time-indepen-
dent computations, though mostly ([21],
[22]) the latter approach is used. In this
thesis, the implementation is also time-
independent.

Resulting coupled equations are solved
using an expansion into a B-spline basis.
B-splines are piecewise polynomial func-
tions smooth up to the degree equal to
their “order”, with compact support. The
other fully specifying parameter of the ba-
sis is a set of “knots”, which are the start-
ing/trailing points of distinct B-splines, see example in the figure 3.3.

If the B-splines are constructed on a knot mesh at the semirotated ECS contour, they
already contain derivative discontinuities stemming from sharp coordinate edge at ECS turn-
ing point. And these discontinuities are precisely transfered to approximated wave functions
as appropriate, so that the turning point needs not to be treated specially (e.g. by significally
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4.4.3 BSR

BSR [45] se od předchozích R-maticových programů odlišuje dvěma výraznými změnami.
V prvé řadě nepoužívá výhradně ortonormální bázi vlastních stavů k rozvoji řešení ve vnitř-
ním i vnějším regionu, čímž dosahuje pružnějšího popisu (a je typicky potřeba kratší rozvoj
k dosažení konvergence). Druhá, související změna je použití B-spline funkcí jako báze R-
matice. B-spliny jsou polynomiální funkce podobné Bézierovým křivkám a existují rychlé,
efektivní a stabilní postupy k jejich numerickému zpracování. Podle Zatsarinnyho článku
je BSR srovnatelně výkonný a přesný u jednoelektronových atomů jako ostatní R-maticové
programy, u vzácných plynů ovšem dosahuje významného pokroku.
B-spliny k-tého řádu jsou funkce definované pomocí posloupnosti uzlů (tj)

n+k
j=1 rekurzivním

předpisem

Bi1(r) =
{
1, ti ≤ r ≤ ti+1
0, jinak

(4.6)

Bik(r) =
r − ti

ti+k−1 − ti
Bi,k−1(r) +

ti+k − r

ti+k − ti+1
Bi+1,k−1(r). (4.7)

Jsou normalizované,
∑

i Bik(x) = 1, derivace B-splinu je opět kombinace B-splinů, a součin
dvou B-splinů k-tého řádu se dá přesně integrovat k-bodovou Gauss-Legedreovou integrací,
což umožňuje snadné vyčíslování např. překryvových integrálů. Tato báze je navíc „efektivně
úplnáÿ, čímž se myslí to, že při svém konečném počtu prvků dává velmi přesné výsledky i na
místech, kde se jinak vyskytují nekonečné sumy přes „skutečněÿ úplnou bázi. Příklad sady
B-spline funkcí je na obr. 4.5.
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Obr. 4.5: B-spline 8. řádu (k = 8, n = 17, j = 2 − 16); uzly ti jsou číslované nad obrázkem. Pro
nerovnoměrné rozmístění uzlů se B-spline nazývá non-uniform (NURBS).

BSR opět umožňuje zahrnout relativistické efekty jako Breitovy-Pauliho členy a kromě
členů výše uvedených (4.3), (4.4) a (4.5) nabízí několik dalších, postupně druhý Darwinův

29

Fig. 3.3: A B-spline set with multiple knots at the beginning and at the end (which results in
denser spacing of the splines in constrast with the central uniform spacing).

denser grid in its vicinity) [22], though addition of several knots after the turning point R0 is
actually used here to enable better approximation of incoming wave function, which has to
be truncated at R0 (and such truncation is obviously not inherent to the B-spline basis set).

3.3.1 Theory

In this section we closely follow the article of Bartlett [21].
An unknown scattering state, which is an eigenfunction of the full system hamiltonian

and from which the cross section of the studied processes can be determined, is split into two
parts,

Ψ = Ψinc + Ψsc ,

the asymptotic “incoming particle” state Ψinc and the scattered part Ψsc, which is a solution
of the driven Schrödinger equation,

(
E − Ĥ

)
Ψsc = ĤintΨinc . (3.5)

The state Ψinc is a product of initial atomic state and a projectile plane wave,

Ψinc(r1, r2) =
1

kir1r2

Pnili(r1)Ylimi(r̂1) ·
∑

lm

4πilĵl(kir2)Ylm(k̂i)Y
∗
lm(r̂2) , (3.6)

and (anti)symmetrized with respect to electron exchange, according to the total spin,

ΨS
inc(r1, r2) =

1√
2

(
Ψinc(r1, r2) + (−1)SΨinc(r2, r1)

)
.
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(a) E = 0.7 Ry (b) E = 4.0 Ry

Fig. 3.4: A typical wave function ψ000
00 (r1, r2) (defined in (3.11)), a radial part of two-particle S-

partial wave, illustrating the exponential damping beyond the ECS turning point. The leftmost
point of the plots is the origin of (r1, r2) coordinates, which continue along the edges to the right.
The oscillations in the right figure indicate a nonzero contribution to ionization cross section – there
is a nonzero probability of both electrons existing far from r1 ' 0 and r2 ' 0.

Here and in the whole text, plane waves are normalized to

〈k|k′〉 = (2π)3δ3(k− k′) , (3.7)

which saves us from carriyng the (2π)−3/2 terms in every equation.
hamiltonian Ĥ is a sum of the free hamiltonian and the interaction hamiltonian,

Ĥ = Ĥfree + Ĥint

Free hamiltonian is the hamilton operator for electron and atom separated far away,

Ĥfree = −∇
2
1

2
− ∇

2
2

2
− 1

r1

or with swapped coordinates for indirect (exchange) case, whereas the interaction hamiltonian
contains the interaction between projectile and the atomic constituents, that is

Ĥint =
1

r12

− 1

r2

for direct case and with swapped coordinates when acting on indirect (exchange) part of
incoming wave. Having the solution of equation (3.5), we can extract the scattering am-
plitude, which is a matrix element of Ĥint between the solution Ψ = Ψsc + Ψinc and some
asymptotic state Ψout that is experimentally inquired. Conventionally, Ψout is also a product
of (now final) atomic state, possibly different from the original, with an outgoing plane wave
of the projectile. The outgoing function should be (anti)symmetrized in simillar fashion to
the incoming wave function, but since only one of these (anti)symmetrical states is measured,
one can use a non-(anti)symmetrized Ψout with just a multiplicative factor of 2−1/2, which
originates in the normalization of the would-be (anti)symmetrized pair.
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For our plane wave normalization convention (i.e. without the (2π)−3/2 factor) one has

f = − 1

2π
〈Ψout| Ĥint |Ψ〉 (3.8)

which can be also written as

f = − 1

2π
〈Ψout|E − Ĥfree |Ψsc〉 , (3.9)

where the following was used: Ĥint = Ĥ − Ĥfree, Ψ = Ψsc + Ψinc and ĤΨ = EΨ. The
multiplicative factor is a consequence of the choice (3.7). Otherwise, for traditional unit
normalization, there would be −4π2 in (3.8) and (3.9).

3.3.2 Implementation

Radial part of sought wave-functions is expanded in a B-spline basis {Bi}Nspline−1
i=0 of a given

order,

ΨS
sc(r1, r2) =

∑

LM

ΨLMS
sc (r1, r2) , (3.10)

ΨLMS
sc (r1, r2) =

∑

l1l2

ψLMS
l1l2

(r1, r2)YLMl1l2 (r̂1, r̂2) , (3.11)

ψLMS
l1l2

(r1, r2) =
1

r1r2

∑

ij

ψLMS
l1l2,ij

Bi(r1)Bj(r2) , (3.12)

and when projecting the equation (3.5) on a bipolar spherical function
〈
YLMl1l2

∣∣ to get rid
of angular dependence, and on a pair of B-splines to get rid of any coordinate dependence
at all and keep only matrix elements, one arrives at a matrix equation for components of
ψLMS
l1l2

(r1, r2),
[(
ESikSjl −H(1)

ijkl −H
(2)
ijkl

)
δ
l′1
l1
δ
l′2
l2
−
∑

λ

fλl1l2l′1l′2;LR
λ
ijkl

]
ψLMS
l′1l

′
2,kl

= χLMS
l1l2,kl

with

H
(1)
ijkl =

1

2
DikSjl +

1

2
l1(l1 + 1)M

(−2)
ik Sjl −M (−1)

ik Sjl ,

H
(2)
ijkl =

1

2
SikDjl +

1

2
l2(l2 + 1)SikM

(−2)
jl − SikM (−1)

jl

or symbolically
[
Id1 ⊗ Id2 ⊗

(
ES⊗ S− H(1) − H(2)

)
+
∑

λ

fλL ⊗ Rλ

]
ψLMS = χLMS ,

H(1) =
1

2
D⊗ S +

1

2
l1(l1 + 1)M(−2) ⊗ S−M(−1) ⊗ S

H(2) =
1

2
S⊗ D +

1

2
l2(l2 + 1)S⊗M(−2) − S⊗M(−1) .

Symbol ⊗ stands for Kronecker product (“flattened tensor product”) and matrices have
following meanings:
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• Matrix Id1 is identity of rank equal to maximal allowed angular momentum l1. Ana-
logically for Id2 .

• Matrix D is the matrix of derivative overlaps of B-splines. It can be shown for B-splines
basis which is zero at boundaries that in such case

〈Bi|
(
− d2

dx2

)
|Bk〉 = +

∫ b

a

dBi

dx

dBk

dx
≡ +Dik .

• Matrix S is just the standard overlap matrix of the B-spline basis,

Sik = 〈Bi|Bk〉 .

• Matrix M(α) is matrix element of power of coordinate (also called “integral moment”
in the source code),

M
(α)
ik = 〈Bi(r)| rα |Bk(r)〉 .

• Matrix Rλ is matrix of four-B-spline multipole integrals for multipole λ,

Rλ
ijkl =

∫ b

a

∫ b

a

Bi(r1)Bj(r2)
rλ<
rλ+1
>

Bk(r1)Bl(r2)dr1dr2 ,

flattened so that i and j form one multi-index [ij] and the other indices the multi-index
[kl].

• Matrix fλL is the angular part of the reduced matrix element,

〈l1l2||
1

r12

||l′1l′2〉L =
∑

λ

fλl1l2l′1l′2;L

rλ<
rλ+1
>

,

flattened so that l1 and l2 form one multi-index [l1l2] and the other two indices the
second. The symbol fλl1l2l′1l′2;L stands for a product of Wigner 3j- and 6j- coupling

coefficients, see [21].

Finally, the symbol χLMS stands for the projection of the right hand side, which is

χLMS
l1l2,ij

=
1

kf

∑

`

i`
√

2π(2`+ 1)CLM
limi`0

{
χ
LMS,(1)
l1l2,ij

+ (−1)S+Πχ
LMS,(2)
l1l2,ij

}
(3.13)

with

χ
LMS,(1)
l1l2,ij

=

(∑

λ

fλl1l2li`;LR
λ
ijkl − δlil1δ

`
l2
SikM

(−1)
jl

)
[Pnili(r1)]k

[
ĵ`(kir2)

]
l

χ
LMS,(2)
l1l2,ij

=

(∑

λ

fλl1l2`li;LR
λ
ijkl − δ`l1δ

li
l2
M

(−1)
ik Sjl

)[
ĵ`(kir1)

]
k

[Pnili(r2)]l

or symbolically

χLMS =
1

kf

∑

`

i`
√

2π(2`+ 1)CLM
limi`0

{
χLMS,(1) + (−1)S+ΠχLMS,(2)

}
(3.14)
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with

χLMS,(1) =

(∑

λ

fλL ⊗ Rλ − Id1 ⊗ Id2 ⊗ S⊗M(−1)

)
·∆li ⊗∆` ⊗ Pnili ⊗ j`,ki ,

χLMS,(2) =

(∑

λ

fλL ⊗ Rλ − Id1 ⊗ Id2 ⊗M(−1) ⊗ S

)
·∆` ⊗∆li ⊗ j`,ki ⊗ Pnili .

Here, the one-dimensional vectors ∆` are zero vectors with only one element equal to
one at position `. P- and j- vectors are components of respective function (hydrogen radial
function multiplied by radius or Riccati-Bessel function) in chosen B-spline basis. These
expansions are determined from the solution of the matrix equations

(S)ij (Pnili)j =

∫ Rmax

0

Bi(r)Pnili(r)dr ,

(S)ij (jl,ki)j =

∫ Rmax

0

Bi(r)ĵl(kir)dr .

Factor CLM
limi`0

in the expressions (3.13), (3.14) is a Clebsch-Gordan coefficient and the zero
projection of `-momentum reflects the deliberate choice of scattering axis along the projectile
momentum, so that its angular momentum projection is zero.

3.3.3 Restrictions on potential

Exterior complex scaling of the right hand side poses a serious problem for typical (not
exponentially decreasing) potentials. One of the factors in the right hand side is the Riccati-
Bessel function ĵ, which exponentially diverges under ECS transformation. To avoid this,
potential Ĥint is artificially truncated at (or before) the turning point R0, which has several
consequences for the numerical construction:

• In equations (3.8)-(3.9), the radial integration is done only up to r1, r2 = R0 and not
further.

• Matrices M(−1) and Rλ in (3.13), (3.14) are to be computed, again, for r1, r2 ≤ R0.
These are referenced as “truncated overlap matrices” in the source code.

To preserve the physical sense of the equation, the enforced truncation is also done in the left
hand side – in the hamiltonian –, in simillar manner. The truncation is not done by a step
function θ(|r| −R) but using a smooth rapidly decreasing distribution

ζ(r) =

{
tanh (α(R− r)) (Im r = 0)
0 (Im r > R)

.

Sharp truncation might result in reflections at the potential step, which would affect the
results. The parameter α controls the slope of the decreasing region.
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3.3.4 Cross section

As was said above, the scattering amplitude is

f = − 1

2π
〈Ψout|E − Ĥfree |Ψsc〉R0

,

where the subscript R0 means that the radial integration is done only for radii less than
R0, because the original matrix Ĥint has to be truncated at such distance to avoid far-region
divergence. The outgoing – detected – wavefunction Ψout has a form simillar to (3.6), with re-
placed initial to final quantum numbers. Substituting such expansion into the equation (3.8)
and once again using zero boundary condition of the chosen B-spline basis when doing per
parts integration one easily arrives at the formula for cross section

σS =
2

kikf

∑

`LL′ab

C
Lmf
lfmf `0

C
L′mf
lfmf `0

∣∣∣ψLmfSlf `,ab
W [P ]aS[j]b + ψ

L′mfS
lf `,ab

S[P ]aW [j]b

∣∣∣
2

,

where W [P ]i and W [j]i stand for wronskian (evaluated at R0−ε) of the i-th B-spline and the
(final) hydrogenic or Riccati-Bessel function, and S[P ]i and S[j]i stand for the (truncated)
overlap integrals of the i-th B-spline and the (final) hydrogenic or Riccatti-Bessel function. In
the limit of R0 →∞ the array W [P ] will contain only zeros (P is an exponentially decreasing
function), so the whole term can be neglected.

Total spin-weighted cross-section is

σtot =
∑

S

2S + 1

4
σS .

3.3.5 Implementation details

Most of the matrices are sparse. Matrices of integral moments are symmetrical and have
exactly 2*order+1 diagonals. Matrices constructed from them by means of the Kronecker
product have diagonal count equal to the second power of previous number etc. The rank
of these matrices, proportional to B-spline count, is typically two orders higher, which leaves
only units per cent elements non-zero. Matrices are stored in the compressed row storage
format or coordinate (“ijv”) format and the program uses several external libraries for heavy
algebraical tasks, namely linear system solution and conversions between storage formats.
Solution of all matrix equations is implemented as a refined LU-decomposition as offered by
two high-performance libraries.

• Intel MKL Direct Sparse Solver – Wrapper of the commercial Pardiso solver, “a thread-
safe, high-performance, robust, memory efficient and easy to use software for solving
large sparse symmetric and unsymmetric linear systems of equations on shared-memory
and distributed-memory multiprocessors” [23]. This solver has even so called “out of
core” capabilities, which enable it to run on system with low memory. Large auxiliary
disk files are then used.

• UMFPACK – Free (under GNU GPL terms) library for solving unsymmetric sparse
linear systems, using the Unsymmetric MultiFrontal method [24]. This package can be
used on systems without Intel MKL and when used together with optimized OpenBLAS
it doesn’t do any worse than Pardiso.
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Every partial wave ΨLMS is expanded in terms of “coupled angular-momentum states” ψLMl1,l2 .
In theory, the angular momentum quantum numbers should run over all non-negative integers
and couple together the Schrödinger equations for each of pairs (l1, l2). Thus, the matrix of
the equation set gains a block structure with off-diagonal blocks represented by elements of
f ⊗ R and diagonal blocks represented by the kinetic energy and the potential in the proton
Coulomb field. In reality, the numbers l1 and l2 are obviously limited, typically to one-digit
numbers. Still, the matrix E − H can easily reach huge ranks of order up to several milions.
Direct LU-factorization of such a matrix is unthinkable with presently available computer
memories. Purely iterative methods are unusable as well; the convergence of iteratively
refined solution for so large matrices is extremely slow, many iterations are needed, which
gives rise to numerical rounding errors.

In the end, a hybrid method has been used, where individual diagonal blocks are LU-
factorized and used as a block preconditioner of Jacobi type for a preconditioned conjugate
gradients algorithm. With this approach the LU-factorizations do not consume such a vast
amount of memory and a machine with several tens of GiB-s of memory suffices to produce
converged results.

Compute r(0) = b− Ax(0) for some initial guess x(0)

for i = 1, 2, ...
solve M · z(i−1) = r(i−1)

ρi−1 = r(i−1) · z(i−1)

if i = 1
p(1) = z(0)

else
βi−1 = ρi−1/ρi−2

p(i) = z(i−1) + βi−1p
(i−1)

endif
q(i) = A · p(i)

αi = ρi−1/
(
p(i) · q(i)

)

x(i) = x(i−1) + αip
(i)

r(i) = r(i−1) − αiq(i)

check convergence; continue if necessary
end

Fig. 3.5: Preconditioned conjugate gradients for solution of the system A · x = b [25]. The matrix
M is an arbitrary preconditioner, in present implementation a block-diagonal of A, the main matrix
of the system. Dot symbol stands for scalar product of the operands.

3.4 Programs

The collisional cross sections use to be computed using the close-coupling expansion, which is
a method that treats all the electrons (both atomic and projectile) as indistinguishable and
performs full antisymmetrization. Most large and successful computation packages use the
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Fig. 3.6: Confrontation of mentioned R-matrix packages for basic H(1s)→H(1s) elastic scattering.
Though all of them have been computed for a sufficient (convergent) number of partial waves, still
there are some discrepancies. If the RmaX results are taken as reference, the BSR results appear
shifted down, whereas 2DRMP seems to misplace some resonances, most notably the H−(2p2p) 1De.
Results of RmaX have been more or less verified by our program Hex.
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Fig. 3.7: Comparison of 1P o partial wave cross section for H(1s)→H(1s) elastic scattering. Again,
RmaX and Hex give very simillar results. On the contrary 2DRMP gives the “dip” resonance shifted
by ∼ 0.013 Ry. The results of BSR did not fit into the figure at all, they were about ten times larger
than the rest.
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R-matrix method and certainly the three presented here do so. Still, their results differ, as
can be seen for example of the figure 3.6 or below. Comparison is done also with the original
code Hex.

3.4.1 BSR

BSR by Zatsarinny [26] is a package that uses a B-spline basis to expand the sought wave
functions. The same set of B-splines thus serves as a basis of the R-matrix. It offers a lot
of flexibility as it allows usage of non-orthogonal target orbitals, which may contribute to
better target description even with a few orbitals. Unfortunately, for a reasonable description
of excitation one would need to include pseudostates, which are (in the hydrogen case)
impossible to generate using supplied atomic sctructure tools. As BSR lacks the possibility
to include pseudostates, only elastic scattering results for low energies are trustworthy. As
pointed out by Callaway in [27], pseudostates are necessary for the correct description even
of 1s → 2s excitation. Moreover, the radial grid in BSR is hardcoded in logarithmic way,
which is appropriate for true bound state but not for discretized continuum states, that can
vary rapidly (oscillate) even for distant radii.

3.4.2 2DRMP

2DRMP by the Belfast group [28] uses IERM method – intermediate energy R-matrix –,
which differs from the previous RMPS – R-matrix with pseudo-states – by including true
two-particle continuum basis wave functions in the expansion of the wave function of the
whole system, not the artificial pseudo-orbitals. This method is not as extensible as the
RMPS (concerning the number of electrons) and is easily implemented just for 1+1 electron
systems. On the other hand, as it allows to treat both electrons identically – even if both are
in contiuum – it can very efficiently describe ionization processes. The name 2DRMP reflects
this idea of two independent and equally described radial coordinates.

While the R-matrix radius in the traditional R-matrix divides the r coordinate into two
semi-lines, the 2D R-matrix approach divides the (r1 > 0, r2 > 0) quadrant into two 2D
regions. Folowing the precise R-matrix scheme is computationally costly here, so the inner
2D region is divided into “sectors” and each of these sectors is solved independently. This
allows parallelization of some stages of the computation. Recently, the relevant part was
implemented on GPU [29].

Though for some energies the results are quite good, like in fig. 3.6, there are areas where
2DRMP fails, too; see figs. 3.7 and 3.8.

3.4.3 UK RmaX

UK RmaX by the University of Strathclyde group [30] is a follower and extension of RMA-
TRX1 [31], the first large low-energy scattering computation system. It uses the pseudostate
expansion, which is easy to generate for hydrogen as well using appended atomic structure
package (called autostructure), and is available in a parallelized version, which allows the
user to speed up the computation when using a multiprocessor system. It, too, has some
drawbacks, which are illustrated in the “Results” chapter in figures 6.6 and 6.7.

25



As all listed programs use the same method based on R-matrix matching at the separating
boundary between the close-coupling (antisymmetrized) and asymptotic (non-antisymmetrized)
region. A slightly different one was implemented by the author of this thesis to allow a com-
parison across different methods and to support the results of one of the above mentioned
packages.
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Fig. 3.8: The three low-energy R-matrix packages compared with benchmark data of Bartschat et
al [32]. The elastic cross section of BSR (black curve) is by a factor off the data.
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Chapter 4

High energy scattering

When dealing with the scattering at energies larger than several times the ionization threshold
one has to keep in mind that accurate approximation of wave function requires significantly
finer radial mesh division or finite element basis functions to simulate rapid oscillations than
in the low energy scattering.

All low energy methods eventually arrive at a limit, when they stop to be efficient and
computationally bearable. High energies are thus a domain of perturbation aproaches, which
consider rather the effective potentials than detailed inter-electron interactions. In [2] several
published programs were presented, namely Elastic [33] and Elsepa [12]. As their name
suggests, they work only in the elastic regime; that is also a necessary consequence of the
static-potential method. Event hough the results of these programs in elastic scattering are
quite good, for general usage they are inadequate, because the excitation crosss sections are
needed as well.

Excitations had been computed by the means of eikonal approximation or the (distorted
wave) Born approximation, to be described below, and there actually exist some their im-
plementations, Eikonal [34] and DWBA (appended to [35]). However, both are limited to
transitions from the ground state and DWBA fails for energies above ∼ 30 Ry and Eikonal
can be used just for several fixed final states. For these reasons, alternative universal methods
have been investigated, as described in the following sections.

4.1 PWBA and BE scaling

The most famous asymptotic approximation is the so called “(plane wave) Born approxima-
tion”. It is a simplification of the Lippman-Schwinger equation

Ψ(+) = Ψinc + Ĝ(+)ĤintΨ
(+)

by recurrent substitution and deliberate truncation of the series,

Ψ(+) ≈ Ψinc + Ĝ(+)ĤintΨinc + Ĝ(+)ĤintĜ
(+)ĤintΨinc + ... .

The T-matrix in the first Born approximation then simply reads

T = 〈Ψout| Ĥint |Ψinc〉 , (4.1)
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where the left or right vector may be (anti)symmetrized to compute simultaneously direct
and indirect scattering amplitude.

This naive and straightforward method was solved in [2] and gives correct results for
energies higher than approximately 1 MeV. Higher-order Born approximation would involve
computation of many-dimensional integrals containing Green’s functions. A feasible alterna-
tive is a certain modification of states under consideration, which is presented in the next
section.

However, if only cross sections are needed, a simple yet powerful scaling method was
discovered [9], which transforms first-order plane wave cross sections so that they very well
match the experimental data and other more sophisticated theories as well. The method is
called BE-scaling and modifies the general formula for cross section

σ(Ei) =
4πa0R

Ei
Ω̃(Ei) ,

into

σBE(Ei) =
4πa0R

Ei +B + E
Ω̃(Ei) ,

i.e. applies the transformation

σBE(Ei) = σ(Ei)
Ei

Ei +B + E
.

Here, Ei is the kinetic energy of the incident projectile, R Rydberg energy, B ionization
energy (“binding energy” of the initial state) and E excitation energy of the final state with
respect to the initial state. The quantity Ω̃, is proportional to the collision strength (5.3).

BE-scaling works best for the dipole-allowed transitions, e.g. 1s→2p, but is less satis-
factory for dipole-forbidden transitions, e.g. 1s→2s. The reason is, that plane wave Born
approximation of the second order cannot consider multistep transitions like 1s→2p→2s,
which would occur more frequently than the direct process 1s→2s. Resulting cross section
is thus smaller than in reality. Some examples are in the figures 4.1 and 4.2. Theoretical
justification of BE-scaling is yet to be discovered; at present it serves as a mere empiric rule.

4.2 DWBA method

There exists an extension of the plane wave Born approximation called the distorted wave
Born approximation. Plane waves are substituted by distorted waves, which solve the follow-
ing equation: (

−∇
2

2
+ Ui −

k2
i

2

)
χ

(+)
i = 0 , (4.2)

where Ui is an arbitrary distorting potential. Whenever Ui ≡ 0, the solutions χ
(+)
i are just

ordinary plane waves. The scattering amplitude cannot be then evaluated simply from (4.1).
The correct expression for T-matrix is the two-potential formula [35] [36]

T = (N + 1)
〈
χ

(−)
f ψf

∣∣∣V − Uf
∣∣∣AΨ

(+)
i

〉
+
〈
χ

(−)
f ψf

∣∣∣Uf |ψiβi〉 , (4.3)

where:
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• V is the full potential felt by projectile. In the case of hydrogen

V (r1, r2) = − 1

|r2|
+

1

|r1 − r2|
.

The potential has this form only when acting on wave function describing the direct
scattering (electron no. “1” is the atomic electron). When acting on the exchange term,
the coordinates would be swapped.

• Uf is the final distorting potential that defines states χf through the equation (4.2).
The potential can be truly arbitrary; nevertheless, a common choice is a sphericaly
symmetrical potential of the electron cloud in final (or initial) state,

Uf (r2) =
1

4π

∫
〈ψf (r1)|V (r1, r2)|ψf (r1)〉dΩ2 .

• Ψ
(+)
i is the full solution of the (N+1)-particle Schrödinger equation or, equivalently, of

the Lippman-Schwinger equation

Ψ
(+)
i = ψiχ

(+)
i + Ĝ(+)(V − Ui)ψiχ(+)

i , Ĝ(+) = (E − Ĥ − iη)−1 (4.4)

As it is apparent, this solution is not automatically antisymmetrical with respect to the
particle exchange. The operator (N+1)A takes care of the manual antisymmetrization.

• χ
(−)
f is a distorted wave (by the distorting potential Uf ) satisfying incoming wave asymp-

totic condition. It holds that one can get χ
(−)
f from χ

(+)
f by complex conjugation of the

radial part. [35]

• ψi and ψf are the initial and final atomic states.

• βi is the initial plane wave.

The first Born approximation, which contains no Green’s function, is done by taking only
the first term in (4.4). This leads to

T ≈ T1 = (N + 1)
〈
χ

(−)
f ψf

∣∣∣V − Uf
∣∣∣Aψiχ(+)

i

〉
+
〈
χ

(−)
f ψf

∣∣∣Uf |ψiβ〉 (4.5)

which for hydrogen means T1 = Tdirect + (−1)STexchange, where

Tdirect =
〈
χ

(−)
f ψf

∣∣∣V
∣∣∣ψiχ(+)

i

〉
+
〈
χ

(−)
f

∣∣∣Uf
∣∣∣βi − χ(+)

i

〉
δfi

Texchange =
〈
χ

(−)
f ψf

∣∣∣V ′
∣∣∣χ(+)

i ψi

〉
−
〈
χ

(−)
f

∣∣∣Uf |ψi〉 〈ψf |χ(+)
i

〉

The Ui, Uf depend only on the projectile coordinate. The V ′ contains swapped coordinates
as mentiones above, so that it is integrated with the projectile coordinates.

The computation has been done in the following way: The equation (4.2) is solved nu-
merically for every partial wave (χ`) using a routine from the O2scl library [37]. We have
a boundary condition to satisfy, which has the standard scattering form

χ`(k, r) ∝ eiδ` sin(kr − π`

2
+ δ`) . (4.6)
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Unfortunately, such a form is not really helpful, as we do not know the phase shift δ`. The
solution χ` ought to be regular, so we principally could start from a zero initial condition
in r = 0. In that case, however, a common initial value solver will return a trivial (zero)
solution, which certainly solves (4.2). Assuming that the repulsive centrifugal barrier is much
more influential around the origin than the distorting potential U(r), which behaves as r−1,
whereas the barrier behaves as r−2, the U(r) can be neglected for r ≈ 0 and we are left
with a standard spherical Riccati-Bessel equation. Thus, we can use nonzero initial value
condition near the origin as if we were computing regular Riccati-Bessel function and start
onward. Asymptotics of Riccati-Bessel function near zero is

ĵ` ∝
2``!

(2`+ 1)!
x`+1, ĵ′` ∝

2`(`+ 1)!

(2`+ 1)!
x` , (4.7)

so if we use the initial conditions in the form

χ`(k, δ) ' ε1 and
dχ`
dr

(k, δ) = ε2

with δ being the grid discretization and εi being arbitrary small numbers differing by the
same factor as the asymptotic expansion of the regular Riccati-Bessel function, that is with
the ratio

ε1

ε2

=
δ

`+ 1
,

we ought to get correct behaviour. For the solution a callback library function is used, which
executes several steps at once to advance solution from the point r1 to a near point r2. After
every such step we normalize the solution, if necessary, to avoid overflow, which is otherwise
inevitable when using considerably larger initial conditions than the correct ones in (4.7).
It would be easiest to use (4.7) directly when specifying the initial conditions; however, for
high partial waves (` > 80) the formulas – evaluated in common double precition – would
underflow to zero and the solution would collapse (we would get the trivial solution again).
For this reason (and because of possible roundoff errors) the procedure was implemented
with larger initial condition, which is slowly damped, if necessary, – even to numerical zero
– as the computation goes on.

Having the real radial function e−iδ`(k)χ`(k, r), the condition (4.6) can be used to obtain
a formula for the phase shift δ`(k),

tan δ`(k) =
k cosφ` −D sinφ`
k sinφ` +D cosφ`

, φ = kr − π`

2
,

where D is the logarithmic mumerical derivative of the computed solution. The true phase
of the solution is then exp(iδ`).

The second and last step (apart from direct evaluation of ψ and β functions) is the
multipole expansion of the two-electron potential

V (r1, r2) =
∑

λµ

4π

2λ+ 1

(
rλ<
rλ+1
>

− δ0
`

r2

)
Yλµ(r̂1)Y ∗λµ(r̂2) .

After angular integration one needs only to integrate three one-dimensional integrals and
two two-dimensional integrals for every partial wave. The contributions of every next partial
wave is compared to the sum of the previous and the computation terminates as soon as
requested precision is achieved.
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4.3 DWBA – second order

As will be shown in the “Results” part, the first-order distorted wave Born approximation
yields better results than its plane-wave variant, but it still doesn’t agree with convergent
close-coupling computations from Aladdin. The formula (4.3) can be unwrapped further than
just to (4.5). If one proceeds further to the next order in the Green’s functions, it will be

T ≈ T2 = T1 +DD + EE + (−1)S(ED +DE) ,

where T1 is defined above in (4.5) and the second-order corrections for electron colliding with
hydrogen atom are [38]

DD =
1

2

〈
χ−f (1)ψf (2)

∣∣ [V − Uf (1)] [E − hg]−1 [V − Ui(1)]
∣∣ψi(2)χi(1)+

〉
,

DE =
1

2

〈
χ−f (2)ψf (1)

∣∣ [V − Uf (2)] [E − hg]−1 [V − Ui(1)]
∣∣ψi(2)χi(1)+

〉
,

ED =
1

2

〈
χ−f (1)ψf (2)

∣∣ [V − Uf (1)] [E − hg]−1 [V − Ui(2)]
∣∣ψi(1)χi(2)+

〉
,

EE =
1

2

〈
χ−f (2)ψf (1)

∣∣ [V − Uf (2)] [E − hg]−1 [V − Ui(2)]
∣∣ψi(1)χi(2)+

〉
.

Indices in parentheses indicate on which particle’s coordinates the respective variable de-
pends. The two-electron potential V depends obviously on both the first and second electron
and the S-wave proton field contribution depends on the same coordinate as the distorting
potential which is subtracted above. Fro example, the first [V −Uf (1)] bracket will evaluate
to

〈r1r2|(V − Uf (1))|r1r2〉 =
∑

λµ

4π

2λ+ 1

(
rλ<
rλ+1
>

− δ0
`

r1

− δ0
`Uf (r1)

)
Yλµ(r̂1)Y ∗λµ(r̂2) .

All functions above have been commented on except for the projectile Green functions
[E − hg]−1. It can be expanded into a complete set of hydrogen states,

[E − hg]−1 =
∑

n

|n〉g(+)
n 〈n| , (4.8)

where the sum over intermediate state index n includes also integration over the continuous
spectrum. In coordinate representation and in partial wave expansion the matrix element
reads

g(+)
n (r′, r) =

1

kn

1

rr′

∑

lnmn

g
(+)
ln

(kn, r
′, r)Y ∗lnmn(r̂′)Y ∗lnmn(r̂) .

The energy En = k2
n/2 is energy of the projectile decreased (or increased) by the difference

of energy between the initial (i) and intermediate (n) atomic state.

Etot = − 1

2n2
i

+
1

2
k2
i = − 1

2n2
n

+
1

2
k2
n = − 1

2n2
f

+
1

2
k2
f .

The continuum intermediate states are the regular Coulomb functions

ψLn(Kn, r) =
4π

Kn

iLn exp(iσLn)FLn(Kn, r) .
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Capital letters designate quantum numbers belonging to the atomic electron. The phase σLn
is the Coulomb phase shift, but as the intermediate free states occur in (4.8) always in
conjugated pairs, it will cancel.

The radial part of the Green’s function partial wave can be computed as a product of a
regular and irregular solution of (4.2) with correct boundary conditions,

g
(+)
ln

(kn, r
′, r) = −φln(kn, r<)ηln(kn, r>) ,

φln(k, r) ∝ ĵln(kr) + iTlnĥ
(+)
ln

(kr) , ηln(k, r) ∝ iĥ
(+)
ln

(kr) .

The function φ has been computed in the same way as χ. The irregular function has been
also computed using an initial value solver, but with inverted grid (δ < 0), so that the
“asymptotic” condition has been applied at the very beginning. Whereas the regular solution
can be computed in real numbers (the equation (4.2) is real and the asymptotic phase in (4.6)
doesn’t depend on the coordinate and will thus hold for all radii), the complex phase of
irregular solution will change with coordinate and the differential equation has to be split
into its real and imaginary part, forming a set of two real differential equations. Moreover,
when the solver approaches zero, it may have to follow divergent irregular functions, which
significantly slows down the progress, as the adaptive steps have to be shortened. For both
these reasons, computation of irregular solution of the distorting equation is by far the
heaviest bottleneck of the whole code.

Distorting potential Ug(r) used for computing these functions is a new arbitrary potential.
It can be set to zero, which will produce a free particle Green’s function, or computed
using the intermediate wave functions. According to [38], the best agreement of theory and
experiment is recovered if the Green’s function distorting potential is computed between
ground level states,

Ug(r2) =
1

4π

∫
〈ψ1s(r1)|V (r1, r2)|ψ1s(r1)〉dΩ2 ,

still its effect will be very small.
Having all the functions, the T-matrix contribution can be evaluated. For direct-direct

term it is

DD =
1

2

∑

n

〈
χ

(−)
f (r′1)ψf (r

′
2)
∣∣∣(V−Uf (r′1))ψn(r′2)g(+)

n (r′1, r1)ψ∗n(r2)(V−Ui(r1))
∣∣∣ψi(r2)χ

(+)
i (r1)

〉
,

which can be straightforwardly modified to

DD =
16π

kfknki

∑
n

liλ1lnλ2li

ili−lf
GLnMn
λ2µ2lnmn

GLnMn
LiMiλ2µ2

Glnmn
λ1µ1lfmf

G
LfMf

LnMnλ1µ1

(2λ1 + 1)(2λ2 + 1)
Iλ1λ2fni,Lnln

√
2li + 1√

4π
Ylfmf (k̂f ) .

Gaunt’s coefficients stand for angular integrations of 3Y -integrals,

GLM
l1m1l2m2

=

∫
Yl1m1Yl2m2Y

∗
LMdΩ =

√
(2l1 + 1)(2l2 + 1)

4π(2L+ 1)
(l1m1l2m2|LM)(l10l20|L0) , (4.9)
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radial integral looks this way:

Iλ1λ2fni,Lnln
=

∫ ∫
ϕλ1fn,LfLn(r′1)χlf (kf , r

′
1)g

(+)
ln

(kn, r
′
1, r1)χli(ki, r1)ϕλ2ni,LnLi(r1)dr1dr′1 , (4.10)

where

ϕλ1fn,LfLn(r′1) =

∫
ψ∗Lf (f, r

′
2)

(
r′<

λ1

r′>
λ1+1

− δ0
λ1

r′1
− δ0

λ1
Uf (r

′
1)

)
ψLn(n, r′2)dr′2 , (4.11)

ϕλ2ni,LnLi(r0) =

∫
ψ∗Ln(n, r2)

(
r<

λ2

r>λ2+1
− δ0

λ2

r1

− δ0
λ2
Ui(r1)

)
ψLi(i, r2)dr2 . (4.12)

Symbols “i”, “n” and “f” in argument list of hydrogen radial functions stand for indication
of energy, because the states can be both bound (energy dependent on Ni, Nn, Nf ) and free
(energy dependent on Kn). Summation over angular momenta projections mi, mf , mn, µ1

and µ2 is removed in the formula for DD, because all projections are fixed by the choice
mi = 0 which, again, comes from the given orientation of ki (i.e. along the z axis). All other
m’s are set by the Clebsh-Gordan coefficients in (4.9) from known Mi, Mn and Mf .

The other terms DE, ED and EE have a simillar pattern. They can be retrieved by
exchanging ψi with χi resp. ψf with χf resp. doing both at once. The exchange must be
done with all the indices as well, so that the change will be apparent also in the Gaunt’s
coefficients.

As the evaluation of the Green’s function two-dimensional integral (4.10) containing other
two one-dimensional integrals (4.11) and (4.12) in expressions for DD, DE, ED and EE is
computationally expensive operation, a special care has to be given to the limits of summa-
tion. Though all possible values are allowed for li, lf , ln, λ1 and λ2, fortunately just some of
the combinations will give nonzero Gaunt’s coefficients. The angular momentum lf is let to
gradually increase and values of DD, DE, ED and EE are being stored separately for every
partial wave (and checked for convergence). Due to the conservation of angular momentum
and the rules for its composition, li will be always bounded by lf + Li + Lf . If it were
larger, then not even the highest possible final composition lf + Lf would reach the lowest
possible initial composition li − Li. Manifestly, angular momentum wouldn’t be conserved.
Furthermore, parity has to be conserved, so only those li states that satisfy

(−1)Li+li = (−1)Lf+lf

will contribute. The same restrictions can be applied on the summation over Green’s function
partial waves ln.

Atomic intermediate angular momenta are not restricted, so the summation over Ln is
driven by convergence checking. But its value contributes to the bound for ln as was just
mentioned. For every Ln it is necessary to sum over all possible bound states and integrate
over all free states. In reality, only several low lying bound states are taken in account.

Integration over free states is done by naive discretization of the allowed energy range
(the intermediate free state energies cannot be arbitrary, because the initial total energy is
not). To be precise, one ought to integrate even over the forbidden part of the spectrum.
That involves solution of (4.2) with negative energy (imaginary wavenumber), so that in-
stead of oscilating Riccati-Bessel functions we get their hyperbolical counterparts. As stated
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in [38], their contribution quickly decays, so the forbidden region integration wasn’t actually
implemented here. The integration itself is just a summation with appropriate weights: The
weight

dk = 1

is used when summing a discrete state and the weight

w =
dEn
2kn

when the state is discrete. Why? We have chosen to sum energetically equidistant free states,
whereas the original summation/integration in (4.8) runs over projectile (= Green’s function)
intermediate momenta. Thus the integration element has to be transformed and instead of
dEn we use, in Rydberg units,

dkn = d
√
En =

dEn

2
√
En

=
dEn
2kn

.

Interm. atomic state Interm. atomic energy range Green’s function wavenumber

discrete bound −1
2
< − 1

2N2
n
< 0 kn ∈ R+

free allowed 0 < K2
n

2
< Etot kn ∈ R+

free forbidden Etot <
K2
n

2
<∞ kn ∈ C

Table 4.1: Intermediate atomic states in the Green’s function expansion.
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Fig. 4.1: Cross section for dipole-allowed excitation H(1s)→H(2p) at intermediate and high en-
ergies. The scaling parameters are B = 1 Ry (ionization energy) and E = 0.75 Ry (excitation
energy).
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Fig. 4.2: Cross section for dipole-forbidden excitation H(1s)→H(2s) at intermediate and high
energies. Intermediate region is approximated worse than in figure 4.1 above, because the indirect
transition contribution is not included.
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Chapter 5

Applications

One of aims of this work had been to create an easy-to-use computer program, that would
produce all astrophysically relevant scattering data mentioned in the introduction. After
thorough consideration, i.e. realization how time-expensive the exact computations can be,
this aim has been slightly altered: to produce an intuitive programming interface (library),
which would extract necessary data “on-the-fly”, during execution of a derived work. The
new task has thus been twofold:

• creation of a scattering data collection in a form that would be extensible by any new
data and also somehow standardized for the ease of maintenance and

• creation of a set of routines usable by other computer codes that would retrieve the
contents of the database according to the other code’s needs.

For the first task, several representations have been considered: from already existing
scattering data formats as for example the AMDIS format (see fig. 5.1) used by the Aladdin
database to raw storage using text files with column data. The AMDIS files, though well
established, are designed only for integral cross section data, which is a strong restriction.
They might be used to store detailed scattering information (T-matrices) as well, but such
modification discards the “standardization” which would prefer this particular format to raw
text (or even binary) files, which are much more straightforward to parse.

Finally, to not completely reinvent the wheel, an existing format has been used, which has
a strong support in information technology (including modern web browsers and operation
systems): an SQLite relational database [39]. In a simplified way, a relational database
is a set of tables containing the data, which can be interconnected among themselves by
reference tables (“relations”). For present purpose the relations are irrelevant, but being a
well spread technology, many tools are available for these databases. SQLite is one of the
open-source implementations of the SQL standard (Structured Query Language) as well as a
free command line program for manual database access. Graphical interfaces are also freely
available. SQL allows fast and comfortable filtering, ordering and aggregation of the data
and there is a C++ interface for SQLite, so that its inclusion in new software is really easy.
For instance, for a given transition a legible short code can find out the highest available
partial wave or retrieve all T-matrices.

There are several quantities that (with a varying completeness) describe the scattering
event. Most of them can be computed with the knowledge of T`, which appear in the partial
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Record-number RN 12345
Theory-or-Experiment TE E
Method TA BC
Element EL Si
Ionic-STate IST +7
Initial-State INS Si +7
Final-State FIS Si +8
Final-Ion-Conf CF
Data-Producer PD
Transition-Energy EN 303.87
OSC.Strength OS
Number-of-Datapoints ND 21
Org-E-EXP SEE 1
Org-CS-EXP CSS A
Comment CM test data
Ref-ID RI
#
Normalize-10-X NRM10X 1
Normalize-10-Y NRM10Y -18
#
Data-Point-X DTPNTX 200,298,323,347,372,386,396,421,
+445,470,494,519,544,593,642,740,789,888,986,1182,1363
Data-Point-Y DTPNTY 0.019,0.004,0.127,0.298,0.355,
+0.397,0.500,0.522,0.662,0.642,0.756,0.781,0.826,0.860,0.877,
+0.917,0.878,0.952,0.890,0.821,0.812
#
Error-Range-X ERRNGX
Error-Range-Y ERRNGY 0.072,,0.047,,0.046,,0.033,,0.044,,
+0.065,,0.036,,0.045,,0.040,,0.037,,0.059,,0.067,,0.041,,0.067,,
+0.040,,0.055,,0.069,,0.056,,0.064,,0.057,,0.056,,0.056
#
!

Fig. 5.1: AMDIS cross section data file format (example shown for ionization of a quartz ion).

wave expansion of the T-matrix,

T =
∑

`

Y`mi−mf (k̂f )T` .

Here, as earlier in the text, the z-axis is oriented along the incoming projectile momentum, so
that the spherical harmonic associated to ki yields δm10, where m1 is the third component of
projectile angular momentum. Consequently, it is the partial T-matrix T` that has been used
as the intermediate product of the computations that is to be stored in database, indexed by
initial and final atomic quantum numbers, initial projectile energy, final partial wave angular
momentum ` and global quantum numbers L and S.

The utility code (and associated standalone interface library) can then be used to produce
the following information:

• the scattering amplitude

fSi→f (E) = − 1

2π
T Si→f (E) = − 1

2π

∑

L

fLSi→f (E) = − 1

2π

∑

`L

Y`mi−mf (k̂f )T
LS
fi,`(E) ,
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• the differential cross section

dσSi→f
dΩ

(E) =
kf
ki

2S + 1

4
|fSi→j|2 , (5.1)

• the partial integral cross section

σLSi→f (E) =
kf
ki

2S + 1

4

∫

4π

|fLSi→f (E)|2dΩ(k̂f ) =
kf
ki

2S + 1

16π2

∑

`

|TLSfi,`(E)|2 ,

• the “complete” integral cross section

σi→f (E) =
∑

LS

σLSi→f (E) , (5.2)

• the total cross section

σi(E) =
∞∑

nf=1

nf−1∑

lf=0

lf∑

mf=−lf
σi→f (E) ,

• and also the momentum transfer

ηLSi→f =

∫
dσLSi→f

dΩ
(E)(1− cosϑ)dΩ(k̂f )

• or the dimensionless, i↔ j symmetrical, collision strength

ΩLS
i→f (E) = k2

i σ
LS
i→f (E) . (5.3)

Whenever one knows the cross section for the inelastic process i → j, it can be used
also to compute the cross section for a reverse process. According to the theorem of
reciprocity [40], the matrix elements Ti→j and Tj→i are just the same, which results in
the relation

p2
iσi→j(Ei) = p2

jσj→i(Ej) (5.4)

meaning

(Etot − Eat
i )σi→j(Etot − Eat

i ) = (Etot − Eat
j )σj→i(Etot − Eat

j ) .

For this reason is the collision strength “i↔ j symmetrical”.

Though the saved results are (within some precision) converged with respect to the grid
length and allowed angular momenta, the energy mesh is obviously discrete and a user may
generally want to retrieve a cross section value which has not been precomputed. In such
cases, the values are interpolated from surrounding samples. Because the cross sections do
contain sharp resonances, smooth interpolations are not adequate here. Thus, a simple linear
interpolation has been used.

Together, the program package structure is described in figure 5.2. Computational units
serve to produce scattering T-matrices in their respective validity range – exterior complex
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scaling is used for low energies, Born-type approximations for higher energies. The T-matrices
are produced in the form of SQL batch files, which can be comfortably inserted into existing
databases by a single shell command1

# sqlite3 database.db < batch.sql

The user interface hex-db then extracts requested information from a given database file, for
example by a call

# seq 0.01 0.01 3.14 | hex-db --database "hex.db" \

--ni=1 --li=0 --mi=0 \

--nf=3 --lf=0 --mf=0 \

--S=0 --E=1.213 --dcs > output-1s3s.dcs

which will print differential cross section for angles 0.01 ≤ ϑ ≤ 3.14 for H(1s) → H(3s)
transition, total spin being zero, at E = 16.5 eV. A command line interface (CLI) has been
chosen rather than full graphical user interface (GUI) to allow easy inclusion in Unix shell
scripts. Detailed information on available command line arguments is given in the electronic
attachment to this thesis.

hex-main

dwba-2

dwba-1

pwba-1

hex1.sql

hex2.sql

hex3.sql

hex4.sql

lowE.db

highE.db

hex-db

Computing units SQL batch files SQLite3 databases User interface

Generation and management of the data

Usage of the data

Fig. 5.2: Hex toolchain

1Standard Unix (Linux, CygWin, ...) shell is assumed; there is (yet) no version for Microsoft Windows
operating system.
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Chapter 6

Results

In this chapter the computed results are presented, together with comparison with other
researchers’ codes and/or with the experiment.

6.1 Exterior complex scaling

The complexity of the low-energy computations arises from omnipresent partial wave- and
multipole expansions and the eventual convergence is understood mostly with respect to
the angular momenta summations. Nevertheless, to have a solid ground on which to sum
the partial contributions, one has to choose a proper grid, i.e. the spacing in the coordinate
representation. For exterior complex scaling, three parameters from the figure 3.2 are crucial:
the turning point R0, marking the end of purely real grid, the θecs, being the ECS rotation
angle, and Rmax, which is the trailing point of the grid discretization.

Far from the potential influence the outgoing wave function will be proportional to the
free spherical wave

ψout ∼
1

r
eikfρ .

As the radial coordinate possesses a positive imaginary part, ψout will exponentially decrease
according to

ψout ∼
1

ρ
eikfRe ρe−kf Im ρ =

1

ρ
eikfRe ρe−kf (r−R0) sin θecs .

Now, if we choose an integer n, we can see that ψout will be damped by the factor at least
e−n for all distances r −R0 ≥ rn, where

rn =
n

kf sin θecs

.

Apparently, for a given θecs > 0, there always exists a sufficient distance far from the atom,
where the wave function will be damped under any limit. This can be used in the construction
of an effective grid as explained below. In all calculations the angle θecs has been fixed at π

5
.

Two numerical tests were done to verify that the results won’t change with the change to π
4

or π
6
.

We may choose an arbitrary n and θecs such that a wave with the wavenumber kf will be
damped “just enough” for our numerical purposes after the distance rn. Another wave with
k′f = 2kf is going to be damped twice faster whereas the wave with k′′f = kf/2 twice slowlier.
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Fig. 6.1: R0 convergence for elastic cross section just after the n = 1→ n = 2 threshold.
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In numerical calculations the “fast” waves (with large wavenumber) are mostly prob-
lematic. The discretized grid has to be fine enough to describe their quickly varying shape
with satisfying presicion. For the real ECS grid the outcome is simple: the grid step must
be approximately proportional to the inverse wavenumber (disregarding the proportionality
constant). For high energies the storage requirements thus considerably grow.

The complex part of the coordinate has to be long enough to damp all waves with relevant
energy. In a complicated system which can absorb some energy of the projectile (e.g. by
excitation) the outgoing solutions present in the wavefunction ψ may have quite various
energies. The grid thus ought to be long enough to damp the long wave part and at the
same time fine enough to accurately describe rapidly oscilating short wave parts. These two
requirements cannot be generally satisfied together due to the enormous computational cost.
Fortunately, because the “fast” waves damp faster, the complexified grid can become coarser
as r approaches Rmax.

The mentioned discretization is valid not only for finite difference methods, but for finite
elements methods as well. In the program Hex the B-spline set is used to expand the functions,
but the idea is simillar. B-splines are defined by a (generally non-uniform) grid of knots and
their shape is derived from distances between the knots: the further the two neighbouring
points are, the slowlier the B-spline changes with distance.

A correct choice of R0 and Rmax is the first topic here to discuss. When the projectile
impact energy is just slightly above an excitation threshold, the solution will contain the
pair “excited atom + slowly outgoing projectile”, which has a long-wave character in one of
the coordinates. Consequently, with finite Rmax we can expect in the cross section that the
small regions just above the excitation thresholds may contain unphysical behaviour which
originates from insufficiently damped outgoing long-wave solutions.

As an example of this phenomenon, the surrounding of the n = 1→ n = 2 transition has
been chosen. All angular momenta have been set to zero for simplicity – we scatter an S-
wave on spherically symmetrical hydrogen 1s-state with disabled simultaneous intermediate
transitions to other angular momentum states. The figure 6.1 represents integral cross section
dependence on energy for several different R0’s from 60a0 to 140a0. The terminating distance
Rmax was always R0 + 40a0. The top (red) graph represents the cross section dependence
for R0 = 60a0, Rmax = 100a0, the lower (blue) graph the dependence for R0 = 140a0,
Rmax = 180a0 and the yellow surface plot in the middle shows the visualization of the gradual
change between these two boundaries. It shows that with larger R0 the shape is worse and
worse. On the contrary, we would expect it to improve, as we are including more interparticle
potential. However, with more interaction the resulting states are spatially larger and their
non-harmonical part does fit less into the Rmax-bounded space.

The same process is inquired in figure 6.2, now from the other end – the effect of Rmax.
Starting from the same configuration, R0 = 60a0, Rmax = 100a0, the complex part of the grid
is scaled gradually up to Rmax = 220a0. The original strongly oscilatory nature improved
into a smooth curve with a single unconverged defect just above the threshold.

Once we have a properly spaced grid, it is possible to undergo the actual calculation. By
the convergence we now understand the convergence with respect to the angular momenta.
There are three quantum numbers connected with angular momentum: L, l1 and l2 and all
of them are necessarily limited in the actual calculation. The main output of the computer
code are the integral cross sections, so the summation in (5.2) is considered the outermost
expansion and the convergence is analyzed with respect to L. The program Hex has to be
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Fig. 6.2: Rmax convergence for elastic cross section just after the n = 1→ n = 2 threshold.
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run for every L and S separately. The necessary numerical restriction on l1 and l2 (which
determine the block structure of most matrices) are then constraints on angular momenta of
individual electrons, which have to compose the total angular momentum.
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Fig. 6.3: Convergence of elastic integral cross section
of 1Ge partial wave (L = 4) at the energy of 16.5 eV.
The restrictions l1,2 ≤ 4 would give approximately half
of the converged cross section.

For example, a restriction “max l =
0” is allowable when computing 1Se wave
(S = 0, L = 0), but cannot result
in nonzero cross section for any higher
terms. Moreover, all resonances that
would require one of these electrons to
have a higher angular momentum than
0 are inaccessible. This may not be
a drawback for sufficiently low energies
where the resonances do not occur, but
still the restrictions on li need to allow at
least the specified initial and final state
(in mentioned hypothetical case it would
not be possible to start e.g. with 2p
state). However, the larger values of li
are used, the more converged will be the
result, see the figure 6.3.

The importance of higher partial
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waves increases with impact energy. Integral cross section for the familiar region around
the n = 1 → n = 2 excitation threshold is plotted in the figure 6.4 for contributions taken
from one up to six partial waves. We can see that inclusion of already three partial waves
gives final shape, at least further from the threshold, where no more resonances may arise
in higher partial waves. The situation is more complicated at higher energies – around ion-
ization threshold and onward. The three left graphs of figure 6.5 show simillar convergence
study of 1s → 3s, 3p and 3d excitation, this time in the differential cross section. We can
clearly see that even after inclusion of five partial wave contributions the shape is not fixed.

When all contributions sum together, Hex output can be tested against the experiment.
Atomic hydrogen is unfortunately a difficult element for scattering measurements, because
the natural state of hydrogen is a diatomic molecule and keeping the atoms separated re-
quires strong UV radiation which might influence the results. There exists just one larger
measurement of integral cross section, for excitation to 2s and 2p, see figures 6.6, 6.7. Other
published results are only for differential cross section.

6.2 Born approximation

For high energies a simple first-order Born approximation has been used here with the in-
tention to compare its results with the (hopefully) better results of the distorted wave Born
approximation. The Born approximation (disregarding the exchange effects) results in the
formula for scattering amplitude [2]

f = − 1

2π
〈Ψout|Ĥint|Ψinc〉.

Here, both Ψinc and Ψout are then expanded in partial waves according to (3.6) and the matrix
element is computed for a sufficient amount of summation terms. The necessary number of
these angular momentum terms increases with energy and with orbital quantum number of
both the initial and final atomic state. Some characteristic trends are presented in figures 6.8
and 6.9.

As pointed out in the fourth chapter, even this simple first-order plane wave Born cal-
culations can lead to very good results when the BE scaling is applied. A quick look at
graphs 4.1 and 4.2 reveals that BE-scaled first-order plane wave cross sections coincide with
the convergent close coupling calculations for energies greater that approximately E = 10 Ry.

Unfortunately, there is no such mechanism that would transform T-matrices and all de-
rived variables, so for a general usage a better method is still necessary. And also the
differential cross section has to be computed in some other way, because – scaled or not –
Born-type cross section is known to have a wrong angular dependence.

6.3 Distorted wave Born approximation

The distortion of a plane wave should – at least partially – account for physical distortion
by the atomic potential. When a first order is taken, the results can improve like in the case
of elastic scattering as shown in the figure 6.10. We can see that the first order of distorted
wave Born approximation follows more closely the convergent close-coupling computation
by Bray and Stelbovics than the simple plane wave Born approximation. However, in some
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Fig. 6.5: Differential cross section for 1s → 3s, 3p, 3d transtitions at E = 16.5 eV. Convergence
with respect to the total angular momentum partial waves shown on left lanels, comparison with
PECS calculation of Bartlett [21] and the measurement of Williams [42] on right panels.
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other transitions where higher orders are important (or the distorted wave Born series does
not converge well) the results may be actually worse than with PWBA-1, which is illustrated
in the figure 6.11 for excitation H(1s)→H(2s).

Still, even though the integral cross section deviates strongly in H(1s)→H(2s) process, the
differential cross section computed using the DWBA-1 method has better shape than with
simple plane waves, fig. 6.13. Other differential cross sections for high energy scattering are
presented in figures 6.12 and 6.14.

By inspection of the integral cross section graphs, we can conclude that the distorsion
is negligible for fast electrons, with kinetic energies above 1 keV, due to the fact that the
encounter is too short for the distortion to arise and manifest itself. Consequently, for energies
above ∼1 keV DWBA-1 and PWBA-1 results match very well and the latter can be used.

Observing the differential cross sections, it seems that plane wave Born approximation
and distorted wave Born approximation agree on the forward peak, at least in the first order.
On the contrary, the backward directions differ substantially. DWBA-1 goes generally more
closely to the experimental data. A natural conclusion can be that the first-order distorting
effects do have an observable impact on the final cross section. On the other hand they
still do not represent the scattering event within the experimental error. In the intermediate
energy regime a higher-order method is necessary. Second order of the DWB approximation
has been implemented, but the calculation is time demanding and its converged results have
not been assembled in time for inclusion in this text.

From dramatic improvement of differential cross section of DWBA-1 over PWBA-1 one
could guess that converged results of DWBA-2 ought to satisfactorily connect to the low-
energy results of Hex. This connection is yet to be investigated as soon as necessary compu-
tational resources are available.
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Chapter 7

Conclusion

Research fields – astronomy and plasma physics – that use electron-hydrogen scattering data
as an input to their models feel the need for more detailed and in some sense canonical
databases. Presently, there are several freely accessible on-line databases, like e.g. Aladdin;
nevertheless, their data either are not complete or they contradict themselves. Likewise,
several computer programs have been published that compute scattering cross sections and
other related variables, but – similarly – they either use a “narrow method”, meaning that
the validity does not span a wide energy range, or they do not match with other programs
and / or the experiment.

For these reasons an attempt was made in this thesis (and is supposed to continue in
author’s further research) to provide a unified user interface, that would output valid cross
sections etc. for all possible energies and electron-hydrogen collisional processes.

A set of computer programs has been created for various energy domains. Low energies
(i.e. with projectile kinetic energy below or just a few eVs above the ionization threshold) are
covered by an exterior complex scaling based precise solution of Schrödinger equation in the
B-spline basis. The resulting program Hex has been shown to produce results well matching
the experiment and in some cases doing even better than already published R-matrix codes.

High energies have been solved using perturbation approaches: first-order plane wave Born
approximation, first-order distorted wave Born approximation and second-order distorted
wave Born approximation. The implementations had not been finished (or optimized) by
the time of finishing this text. Still, it was possible to conclude that these are truly valid
only asymptotically and in the intermediate region 1 Ry to 100 Ry their results deviate
from experiment and other more reliable calculations. As a possibly best move, usage of the
convergent close coupling method can be suggested, which consistently gives the best results
for energies above the ionization threshold.

Besides the computational units (hex, pwba, dwba) a command line user interface (hex-
db) has been created, which on request extracts needed intermediate results (scattering T-
matrices) of the computational units from unified intermediate storage (an SQLite database
file) and from them computes various other derived scattering variables like differential or
integral cross sections, collision strengths or momentum transfer.

All programs together with their source codes and documentation are in the electronical
attachment to this work.
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