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Abstract 

In this thesis we focus on modelling correlation between selected stock markets using 

high-frequency data. We use time-series of returns of following indices: FTSE, DAX 

PX and S&P, and Gold and Oil commodity futures. In the first part of our empirical 

work we compute daily realized correlations between returns of subject instruments and 

discuss the dynamics of it. We then compute unconditional correlations based on 

average daily realized correlations and using feedforward neural network (FFNN) to 

assess how well the FFNN approximates realized correlations. We also forecast daily 

realized correlations of FTSE:DAX and S&P:Oil pairs using heterogeneous 

autoregressive model (HAR), autoregressive model of order p (AR(p)) and nonlinear 

autoregressive neural network (NARNET) and compare performance of these models. 



 

   

Abstrakt 

Tato prace je zamerena na modelovani korelaci mezi vybranymi akciovymi trhy a 

komoditami s pouzitim vysokofrekvencnich dat. Nasledujici casove rady jsou pouzite 

pro ucely teto analyzy: FTSE, DAX, PX, S&P, Gold commodity futures a Oil 

commodity futures. V prvni casti teto prace denni realizovane korelace jsou vypocitane 

a jejich dynamika je diskutovana. Dal jsou vypocitane korelace pomoci neuronove site 

(feed forward neural network, nebo FFNN). Tyto korelace jsou porovane s prumernymi 

dennimi realizovanymi korelacemi. V posledni casti teto prace jsou vypocitane 

prognozy dennich realizovanych korelaci pomoci HAR modelu, AR(p) modelu a 

dynamicke neuronove site NARNET.   
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1. Introduction 

 

One of the main problems in quantitative finance is modelling of volatility and 

correlation of returns of financial assets. The concept of statistical correlation is 

considered, for example, in financial decision making, risk management, portfolio 

analysis or derivative financial instruments pricing. Research on correlation of returns 

of financial assets and underlying indices, including stock markets indices, was 

developing rapidly over the past decades. Financial econometricians and researchers 

have contributed to a development of advanced methods that are extensively used in 

modern financial time-series analysis. These models can be generally divided into two 

broad groups: “mainstream” models of Autoregressive Moving Average (ARMA) and 

Autoregressive Conditional Heteroscedasticity (ARCH, used for volatility modelling) 

families, and alternative models, such as an artificial neural networks. Each family of 

models has its strong and weak sides. Even though artificial neural networks are 

somewhat more powerful computational structures capable of approximating any 

nonlinear function with finite number of discontinuities (Beale et al., 2012), ARMA / 

ARCH models are used in practice more often since they require less effort to setup and 

apply. In our empirical analysis we utilize artificial neural networks as one possible 

alternative for correlation modelling. 

Another reason of increased attention of financial decision makers to advanced and 

robust econometric techniques is a series of financial crises, starting with recent global 

financial crisis and followed by the current EU debt crisis. In turbulent markets, 

decision makers tend to search for more reliable models to support them.  

During the past decade, interconnectedness between national financial markets 

increased significantly. Different segments of financial market experience different 

degree of interdependence. Overall, big markets, such as American, British or Japanese, 

react relatively fast to change in one of them, especially when there are problems in 

financial system. There also was a big deal of deregulation of financial markets in the 

US starting 1970’s. Integration of European financial markets increased with the 

establishment of European Monetary Union. For example, paper by Baele et al. (2004) 

investigates degree of integration of main sectors of financial market of the EU, such as 

money market, government bonds market, corporate bond market, bank credit market 

and equity market. Authors find out that degree of integration of above mentioned 
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segments increased significantly after the establishment of EMU. They argue that only 

20% of local returns variance was explained by aggregate European and US shocks, 

whereas this proportion increased to 40% by 2000.  These factors, along with other 

processes, have led to the increased vulnerability of national stock markets and higher 

probability of financial contagion, i.e. cross-border spread of financial crises. Based on 

stated above it becomes clear that importance of proper estimation of correlation can’t 

be overestimated.  

In portfolio analysis and risk management, correlation is one of the central concepts. 

Decision making process takes place in the risk-return space, where risk of an asset or 

portfolio can be measured by a variance of its returns. In the compendium of the risk-

return calculus portfolio variance is defined as follows: 

2 2 2

1 1 1
2

N N N

P i i i j i j iji i j i
σ θ σ θ θ σ σ ρ

= = = +
= +∑ ∑ ∑      (1.1)  

where , 1,...,i i Nθ = is a share of i-th asset in the portfolio, 2

iσ is a variance of a risky 

asset i, and ijρ correlation coefficient between rates of return of assets i and j. As it can 

be seen from the formula, high positive correlation of assets included in the portfolio 

increases its variance and reduces diversification benefits. Negative correlation, on the 

other hand, reduces the variance and allows for better portfolio diversification.  

Another important measure in the risk management is so-called value at risk (VaR). 

VaR measure aims at providing a single number expressing the total risk of a portfolio 

comprising financial assets. Basically, VaR expresses expected maximum loss given the 

target horizon of investment and confidence level. VaR of the portfolio can be 

expressed in terms of VaRs of individual assets included in it: 

0 2

1 1 1
( ) 2

N N N

P c P P i i j iji i j i
VaR W VaR VaRVaRα σ ρ

= = = +
= = +∑ ∑ ∑    (1.2) 

where 0

PW is a portfolio’s initial value, Pσ is a volatility of the portfolio, cα is a certain 

cut-off rate, , 1,...,iVaR i N= is a value at risk of an asset i and ijρ is the correlation 

structure among assets included in the portfolio. Again, it can be seen that depending on 

the correlation degree and direction, VaR of the portfolio can be increased or reduced. 

These two examples mentioned above give the reader an idea of possible applications 

and importance of the correlation measure in portfolio and risk management.  

In this thesis we focus on modelling of correlations between selected stock markets 

and commodities between 2008 and 2011. We have included commodities in our 
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analysis because in times of crisis it is natural for investors to seek a safe place for their 

funds. One of the choices for them is commodities, such as gold or crude oil. Partially 

because of it we can observe sharp increases in price of mentioned commodities when 

there is a risk of or already ongoing crisis.  In the second part of this thesis we study the 

possibility of forecasting realized correlations and try to find models that suit best for 

that problem. We utilize dynamic neural network and Heterogeneous Autoregressive 

model (HAR) for these purposes. We also use Autoregressive model of order p (AR(p)) 

to see how it compares to more complex techniques.  

We begin with a brief analysis of the existing works studying stock markets 

correlation to understand its possible underlying determinants. There were several 

attempts to analyze the stock markets correlation and model it using econometric 

models. Attention to stock market correlation increased after stock market crash in 

October, 1987. It was observed, that correlation increases when markets experience 

common adverse shock. King and Wadhwani (1990) developed the concept of stock 

market contagion, or crisis spillover, when shock in major market, e.g. US, spreads to 

other stock markets. This topic was further explored by Yang and Bessler (2006) in 

their empirical study investigating contagion among seven international markets around 

the 1987’s stock markets crash. They build their work on Vector Autoregressive 

Analysis (VAR) conducting data-determined historical decompositions to provide day-

by-day picture of price fluctuation transmission. They conclude that the crisis originated 

in the US spilled over to main European and Japanese markets. King et al. (1994) 

argues that majority of stock markets co-movements are determined by unobservable 

factors, i.e. an investor sentiment etc. Ammer and Mei (1996), on the other hand, find 

out that equity risk premium rather than fundamental factors explain most of the co-

movements in national indices. 

Now turning to the existing literature on time-varying (dynamics) properties of stock 

markets correlation, Longin and Solnik (1995) discover that correlations and 

covariances are not stable over time. Authors use a bivariate GARCH model to capture 

the structure of conditional covariance. They show that conditional correlations may be 

influenced by such factors as short-term interest rates and dividend yields. Ramchand 

and Susmel (1998) also show the time dependence of correlations using the SW-ARCH 

model. Bodart and Reding (1999) in their study examine the impact of FX-rate variance 

on international stock markets correlation. According to their findings, correlation of 

bond and stock markets increase with decreasing FX-rate variance.  
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Some authors make use of graphing techniques to investigate stock market 

correlations and their dynamics. Groenen and Franses (2000), using just mentioned 

technique, observe three clusters of stock markets with high correlations, namely US, 

Europe and Asia. Another paper by Bessler and Yang (2003) investigates the dynamic 

structure of interdependencies of nine major stock markets using an Error-Correction 

Model (ECM) and Directed Acyclic Graphs (DAG) approaches. They conclude, for 

example, that the US market is the only market that has a consistently strong impact on 

price movements in other major stock markets in the longer-run. Another recent attempt 

to assess the structure and dynamics of stock markets through correlations between 

them was undertaken by Kenett et al. (2010). In their study named “Dynamics of Stock 

Market Correlations” authors apply so called Stock Market Holography (SMH) method 

complemented by the eigenvector entropy measure to quantify changes in information 

in market. Their analysis is based on data collected from New York Stock Exchange 

(NYSE) and Tel Aviv Stock Exchange (TASE). Authors conclude that there is a 

significant variation over time of the amount of information in the stock market. It also 

can be said that SMH may be a useful first-hand quantitative tool. However, it is good 

only for ex post analysis.         

Based on stated above we can see that there is a large number of factors that can 

determine the existence and degree of correlations between the stock markets as well as 

plethora of quantitative tools to be used to analyze it. Another important recent trend in 

financial econometric research is increasing availability of intraday, or high-frequency, 

transaction data. With the development of computer technologies and trading systems, 

large amounts of high-frequency data on financial assets prices became available. 

Sampling frequencies of intraday data achieve levels of 5 minutes or even real-time. 

Due to the different structure of the high-frequency data, as compared to “classical” 

daily observations, mainstream models are not able to fully utilize information 

contained in this data, which leads to inaccurate estimates. To address this problem 

range of alternative estimators, or so-called realized measures of volatility and 

correlation, were developed. Realized measures are relatively new econometric 

techniques. First attempts to describe properties and advantages of realized volatility 

estimator was undertaken, for example, in works of Andersen et al. (1998) or Andersen 

et al. (1999). The rigorous theoretical background, however, was developed by mid 

2000’s. Probably the most influential work was presented by Andersen et al. (2003) 

where authors provide robust theoretical framework for modeling and forecasting 
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realized volatility. This work also had significant implications for the realized 

correlation estimation method. For the forecasting of realized volatility or correlation 

so-called Heterogeneous Autoregressive (HAR) model can be used. We utilize the HAR 

model in our empirical analysis for realized correlation forecasting and compare its 

performance to performance of artificial neural network and simple AR(p) model. We 

describe realized measures and HAR model in more detail in Chapter 3 of this thesis.   

Another aspect that makes this thesis worth attention is the fact that we apply the 

neural networks on high-frequency data to model the stock markets correlations. 

Artificial neural networks have received a lot of attention in past decade. After failures 

of several major players in financial markets caused by opportunism, supervision and 

regulator systems faults, decision makers are in a constant search for more robust 

quantitative methods to support them. The internet bubble, for example, showed that 

conventional econometric models have substantial shortages in precision and robustness 

(McNelis, 2005). Majority of conventional models try to explain underlying patterns 

using linear relationships and assumptions and rely heavily on assumptions about 

analyzed data distribution. However, most of the empirical evidence does not support 

the assumption about linear relationships in financial data. Furthermore, financial data is 

usually non-normally distributed and has so-called fat tails. That makes non-linear 

method of financial quantitative analysis more appropriate. The artificial neural 

networks are computational structures that allow for accurate analysis and forecasts 

without any specific assumptions about the linearity of underlying relations or statistical 

distribution of observed variables.  We analyze existing literature regarding application 

of neural networks in the quantitative finance in more detail in Chapter 4 of this thesis. 

However, important observation is that prior our empirical work artificial neural 

networks have never been applied to forecast correlations of stock markets. Majority of 

existing papers describe application of neural networks to forecasting of stock markets 

themselves. 

We have set several aims for our research. Firstly, we model correlations of selected 

stock markets and commodities and analyze changes of conditional daily realized 

correlations over the given period of time. We also compare estimates of unconditional 

correlations obtained using feedforward neural network to average daily realized 

correlations to see how well the FFN approximates RC. We also forecast selected time-

series of realized correlations. 
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We start this thesis by introducing basics of time-series analysis and classical time-

series analysis techniques in the Chapter 2. We also introduce Autoregressive model of 

order p – AR(p) that we use in our empirical research. In the Chapter 3 we motivate use 

of realized measures in our empirical work. We provide theoretical foundations of 

realized measures and introduce the computation of realized correlation measure. 

Chapter 4 is devoted to artificial neural networks. In this chapter we establish theory of 

artificial neurons – building blocks of any neural network. It is followed by description 

of feedforward neural network (FFNN) and nonlinear autoregressive neural network 

(NARNET) that we utilize in our empirical research. We present our empirical findings 

in the Chapter 5 of this thesis. Chapter 6 concludes. 
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2. Theoretical Background of Classical Time-Series Analysis 

Techniques  

 

As it was discussed in the introduction to this thesis, correlation is one of the central 

concepts in quantitative finance. There are a lot of econometric models and 

computational techniques that academics and practitioners can use for correlation 

modelling. These models range from classical correlation measure to most advances 

contemporary techniques, such as artificial neural networks. Since the main focus of this 

thesis is to model correlations of selected stock markets and selected commodities, in 

this chapter we present econometric models and techniques that we utilize in our 

analysis.  

In the first section we describe basic statistic concepts of stationarity, integration of 

time-series and correlation. We then turn to the linear autoregressive model of order p 

(AR(p)) which we use in the second part of our empirical research devoted to 

forecasting of realized correlation that we describe in Chapter 5 of this thesis. 

 

2.1 Basic Concepts 

 

Fist important concept used in financial time-series analysis is so-called (weak) 

stationarity. The time-series ty is said to be stationary if: 

1. it fluctuates around a constant long-run mean, e.g. ( )tE y µ= ; 

2. ty has a finite variance which is not dependent upon time, e.g. 2( )tVar y σ= ; 

3. covariance between two values of ty depends only on the difference apart in 

time, e.g. ( , ) ( )t t nCov y y nχ− = . 

Property of stationarity is important for the forecasting tasks to assure that the 

forecasted time-series won’t diverge to infinity. Since the majority of financial time-

series do not reveal stationarity, initial data should be transformed in a certain way in 

order to allow for estimation of model and forecasting of assumed process. One way 

how to transform the data is integration. Time-series y(t) is integrated of order one if: 

*

1t t ty y y −= −            (2.1) 
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Integration, or first differencing, has a drawback because it causes the partial loss of 

information of initial time-series. On the other hand, if integration is applied on 

financial asset prices or stock market index values, integration transfers the problem to 

the asset or index nominal returns analysis: 

1t t tr P P−= −          (2.2) 

Due to the stationarity issues, major part of analysis of financial time-series is 

focused on the returns volatility or correlations estimation, modelling and forecasting. 

The detailed description of concepts of stationarity and integration can be found in any 

academic book regarding financial time-series analysis (for example, Tsay, 2005).  

Correlation coefficient measures the degree and direction of statistical relationship 

between two random variables. For two variables X and Y it is defined as follows:  

 

,

[( )( )]cov( , )
( , ) X Y

X Y

X Y X Y

E X YX Y
corr X Y

µ µ
ρ

σ σ σ σ
− −

= = =     (2.3) 

where , ,i i X Yµ = is an expected value of a random variable, and 2 , ,i i i X Yσ σ= = is a 

volatility. 

 

2.2 Normality 

 

There are several assumptions imposed on the residuals in the classical econometric 

models. One of them is that residuals come from a Gaussian or normal distribution. One 

of the most often used tests for residuals normality is the Jarque-Bera test. It was 

proposed by the Jarque-Bera (1980). Test statistics is based on an assumption that 

normally distributed data has a skewness of zero and the kurtosis of three. The tests 

statistics ˆ( )JB ε has a 2 (2)χ distribution and can be defined as follows (McNelis, 2005): 

( )2 2ˆ ˆ ˆ( ) ( ) .25( ( ) 3)
6

T k
JB s krε ε ε

−
= + −        (2.4) 

where T is the total number of observations, k is the number of parameters in the model, 

ε̂  is the estimated vector of residuals, and ˆ( )s ε and ˆ( )kr ε  are skewness and kurtosis 

respectively. Skewness and kurtosis are computed as follows: 

3

1
ˆ

ˆ ˆ1
ˆ( )

T t

t
s

T ε

ε ε
ε

σ=

 −
=  

 
∑         (2.5) 
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4

1
ˆ

ˆ ˆ1
ˆ( )

T t

t
kr

T ε

ε ε
ε

σ=

 −
=  

 
∑         (2.6) 

where ε̂ is the estimated mean and ε̂σ  is the estimated standard deviation of the 

residuals vector. 

 

2.3 Stationarity 

 

When stationarity of a time-series is considered, it is necessary to test if the unit roots 

are present. Presence of the unit roots can lead to the problem of a spurious regression. 

If the subject time-series contains a unit root, stationarity cannot be assumed, and 

estimated relationship may not reflect the true process. One way how to address this 

problem is differencing of the subject time-series and testing each order for the unit 

roots. 

One of the most often used methods for unit roots testing is the Dickey-Fuller test. It 

was proposed by Dickey and Fuller (1979). The null hypothesis is that the subject time-

series contains a unit root against an alternative that the time-series is stationary. The 

test is based on the autoregressive process underlying a change in the subject time-

series{ }ty . For theoretical foundations of DF-test, reader may refer to McNelis (2005). 

The test statistics for DF-test is constructed as follows: 

11

2

11
ˆ

T

t tt

T

tt

r
DF

rε

ε

σ
−=

−=

= ∑
∑

         (2.7)  

To verify the null hypothesis the t-test is usually constructed. Augmented Dickey-

Fuller test extends the test presented above and allows for inclusion of the constant term 

and trend terms in the regression described above. Main drawback of the ADF-test is 

that it tends to over reject the null hypothesis. 
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2.4 Linear Models 

 

Linear time-series models provide a simple framework for the analysis of stock 

market returns. Returns are said to be described by a linear process if they can be 

modeled as follows: 

0

t i t i

i

r µ α ε
∞

−
=

= +∑ ,         (2.8) 

where µ is the mean of the process, iα  are the weights with 0 1α = , and { tε } is the 

white noise process. The white noise process is defined as follows: 

  ,t tuε =  where 2(0, )tu IID σ∼        (2.9) 

As it was already discussed above, the stationarity is a crucial in order to estimate 

and model the process underlying development of financial time-series. If we assume 

the tr process to be weakly stationary, mean and variance of that process can be 

computed as follows: 

( )tE r µ= ,    and   2 2

0

( ) ( )t i

i

Var r σ ε α
∞

=

= ∑ ,      (2.10) 

where 2 ( )σ ε is the variance of { tε }. 

 

2.4.1  AR Model 

 

Autoregressive model is one of the simplest techniques for time-series analysis that 

uses lagged values of tr to model the underlying process. The econometric literature 

defines the p-order process as follows: 

0

1

p

t i t i t

i

r rφ φ ε−
=

= + +∑         (2.11) 

where { tε }is an 2(0, )IID σ white noise and p is a non-negative integer. The series of 

white noise { tε }is the source of randomness in the model. Regarding the stationarity, 

AR(p) process is stationary if: 

1

1
p

i

i

φ
=

<∑ ,           (2.12) 
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otherwise the process is said to be explosive. The given process, if assumed to be 

stationary, can be described by mean:  

0

1

( )
1 ...

t

p

E r
φ

φ φ
=

− − −
,         (2.13) 

and can be alternatively defined as follows (without intercept): 

( ) t tL rφ ε= ,          (2.14)  

where   

2

1 2( ) 1 ... p

pL L L Lφ φ φ φ= − − − − .        (2.15)  

When determining the order of AR-process in practice, two main approaches can be 

applied based on the order specification procedures described in mainstream time-series 

analysis literature. The first one is based on so-called partial autocorrelation function 

(PACF) to determine the optimal number of lags. The second one uses different 

information criteria. All of the available ICs are likelihood based. An example of IC 

used to set the order p of AR-process is Akaike information criterion (Akaike, 1973). It 

is defined as follows: 

 
1

(2 2ln( ))AIC n L
T

= − ,        (2.16) 

where T is the sample size, n is the number of parameters and L is the likelihood 

function for the estimated model. The logarithm of likelihood function measures the 

goodness of fit of estimated AR-model to data while former term in the eq.1.11 

penalizes a potential model for the number of parameters used. Some researchers even 

use and AIC to determine the neural network architecture (for example, Panchal et al. 

(2010)). 
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3 Realized measures 

 

Because we work with high-frequency data in our analysis, it makes sense to utilize 

so-called realized measures techniques to model correlations. In following chapter we 

introduce the realized measures – statistical measures and models designed especially to 

be applied on high-frequency data.  

As it is argued in Yu et al. (2009), main problem of classical parametric models, if 

applied on the high-frequency data, is that microstructure noise contained in the data of 

frequencies higher than 15 minutes sampling do not allows for as good asymptotic 

results of estimators, used in the parametric models, as when working with data of lower 

frequencies. As a result, in-sample fitting and out-of-sample forecasts are not precise 

because parametric models do not fully utilize the information contained in the data of 

high frequencies.  

Motivation behind using realized measures is quite strong. On one hand, the 

construction of realized volatility, for example, is trivial: it is just sum of squared intra-

period high-frequency returns (Andersen et al., (1999)). On the other hand, Andersen 

and Bollerslev (1998) show that realized volatility computed on high-frequency data is 

effectively an error-free volatility measure under usual diffusion assumption. Since it is 

error-free, volatility estimated on high-frequency data can be treated as observable. 

Problem with classical models for volatility modelling, such as GARCH, is the fact that 

volatility is not observable directly, thus classical volatility models describe latent 

volatility. Let’s formalize return innovation as follows: 

t t tr zσ= ⋅             (3.1) 

where tz denotes an independent zero mean and unit variance stochastic process, and tσ  

stands for latent volatility evolving according to the selected model. Even if the model 

for 2

tσ is correctly specified and squared innovation provides unbiased estimate for the 

latent volatility factor (i.e. 2 2 2 2

1 1( ) ( )t t t t t tE r E zσ σ− −= ⋅ = ), squared innovation may yield 

very noisy estimate due to the idiosyncratic error term 2

tz . Poor forecasting 

performance of volatility models, using 2

tr as a measure for ex-post volatility, is an 

inevitable consequence of noise present in the process that generates returns. These 

arguments show a need for a fundamentally different approach to volatility modelling.  
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In theory, with an increase of observation frequency form daily to infinitesimal, 

volatility measure based on cumulative intra-period squared returns converges to the 

true measure of latent volatility. Even though in practice there are certain limitations 

due to the availability and quality of data, Andersen and Bollerslev (1998) show that 

realized volatility measure provide significant reduction of noise and improved temporal 

stability as compared to measures based on daily returns. In other words, if we would 

have infinitely many data points, we would actually observe a true process. We can say, 

that with high-frequency data we can observe volatility. In fact, based on most 

influential work of Andersen et al. (2003), where general framework for integration of 

high-frequency intraday transaction data into the measurement, modelling and 

forecasting of returns volatilities and distributions of lower frequencies was presented, 

we expect that the neural network will not outperform HAR model based on realized 

measures significantly in forecasting of realized correlations. 

We start the Chapter 3 by discussing main problems one can face when using high-

frequency data. We then present foundations of construction of realized measures, 

namely realized volatility and realized correlation. We finish this chapter by introducing 

Heterogeneous Autoregressive model (HAR) which we use for forecasting realized 

correlation.  

 

3.1 Main Problems with High-Frequency Data 

 

High-frequency data is intraday tick-by-tick transaction level data on returns of 

selected stock market indices. For the purposes of our analysis we use data with 

sampling frequency of 5 minutes. With the development of trading systems and 

transactions tracking systems, large sample of data on stocks, indices etc. became 

available. One good thing about using high-frequency data for correlations modelling, 

except of the fact that it allows to observe volatility, is that this approach reduces 

probability of random co-movement of subject stock market indices that does not reflect 

any statistical dependency (if we look at the daily movements – indices may move the 

same direction as a result of different independent events). In our research we assumed 

that using the high-frequency data reduces a probability of such random co-movement.     

Other problems related to high-frequency sampling are as follows: large number of 

data points requiring additional “preparation work” on samples that later will be used in 
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the analysis; “dirty” data with irregular spacing; heavy tailed returns series; long 

memory behavior. Another problem with computing correlations between national stock 

market that relates to all sampling frequencies is different trading hours. In our work we 

have undertaken initial data preparation to adjust for these differences and compute 

correlation only on those parts of sample that overlap among subject stock and 

commodity markets.  

 

3.2 Construction of Realized Measures 

 

Realized measures is the family of statistical measures, such as realized correlation 

or realized volatility, developed especially to utilize high frequency data. The way how 

realized measures are constructed is presented below. We start with describing 

construction of realized volatility (realized variance). Let’s consider ,i tp to be a 

logarithmic price of an asset i at time t. Let m denote the number of observed data points 

per one trading session, and n to denote a fraction of trading session with given 

sampling frequency. This way n = 1/m. In other words, n can be viewed as a time step 

given the sampling frequency. Let T to be a number of days in the sample. Based on it, 

the total number of data points will m x T.  The realized variance on day t is then 

constructed as a sum of squared returns, computed in each step during the day:  

2

, , 1

1

m

i t i t jn

j

RV r − +
=

=∑ ,          (3.2) 

Important property of realized variance is that it is asymptotically unbiased and 

consistent estimator of the integrated variance given certain assumptions.  

Let’s consider jump-diffusion continuous-time no-arbitrage price process, which is 

defined as follows: 

t t t t t tdp dt dW c dJµ σ= + + ,       (3.3) 

where tµ is a predictable component of a price change, tW  is a Wiener process, tJ  is a 

constant-intensity Poisson process and jump magnitude is determined by 2(0, )tc N σ∼ . 

Quadratic variation of the above defined price process if formalized as follows: 

2 2

10

t t

t s ss
QV ds Jσ

=
= +∑∫         (3.4) 

The asymptotic result for realized variance if then as follows: 
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2

0
, 0, ( )

t

t sRV ds n mσ→ → →∞∫ , and (0,1)t

t

r
N

RV
∼     (3.5) 

The proof this classical property of RV can be found, for example, in Protter (2004). 

Realized volatility is defined as follows: 

, ,i t i tRVOL RV=          (3.6) 

Realized covariance of two assets x and y on day t is defined as follows: 

,( , ) , 1 , 1

1

m

t x y x t jn y t jn

j

RCov r r− + − +
=

=∑        (3.7) 

,( , )t x yRCov  will converge in probability to the covariance matrix of two assets X and Y, 

thus it is a consistent estimator. 

Finally, realized correlation on day t is then computed as follows: 

,( , )

, ,

t x y

t

t x t y

RCov
RC

RV RV
=          (3.8) 

 

3.3 Heterogeneous Autoregressive Model  

 

In our empirical work, except of modelling correlations of selected stock markets and 

commodities, we also focus on forecasting realized correlations of selected pairs of 

indices and commodities. We compute daily realized correlations based on intraday 

high-frequency data and perform out-of-sample forecast of this time-series assuming 

autoregressive process behind RC development. We use several models for our analysis, 

namely simple Autoregressive model of order p (AR(p)),  dynamic Nonlinear 

Autoregressive Neural Network (NARNET) and Heterogeneous Autoregressive model 

(HAR) to compare performance of these models and comment on which one addresses 

issue of forecasting realized daily correlation better. We apply a HAR setup which is 

described below to model assumed autoregressive process of development of realized 

correlations. 

Before heterogeneous models such as GARCH or HAR were introduced, the idea of 

efficient market prevailed in academic field. So-called Efficient Market Hypothesis, or 

EHM, was developed by Eugene Fama in late 1960’s – early 1970’s. According to 

EHM, all available information is translated into prices quickly enough so there is no 

possibility of making profits in the long run and prices are at equilibrium level. This 
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statement, among other things, relies on rather strong assumption of homogeneity of 

market participants. In this case it means homogeneity of their expectations, perception 

and incorporation of available information into their decisions, and similar investment 

horizons.  

At this point it is necessary to note that efficient market hypothesis was challenged 

both by academics and financial markets themselves. Recent financial crisis of 2008-

2009 is a good example of it.  

Relevant to evolution of heterogeneous models is the work of Muller et al. (1993), 

where authors challenge the assumption of homogeneity. According to them it is more 

realistic to assume market participants to differ in their expectations and investment 

horizons if different types of investors are considered, such as daily traders, medium-

sized funds and large institutional investors. Sources of heterogeneity may be different 

preferences regarding risk and liquidation of opened positions. Based on this 

argumentation authors propose Heterogeneous Market Hypothesis (“HMH”) framework 

where they try to address issues of heterogeneity of market agents. 

HMH was further utilized in the proposition of Heterogeneous Generalized 

Autoregressive Conditional Heteroscedasticity model (“HARCH”). This type of models 

provides a framework for capturing above mentioned heterogeneity of market 

participants. For the formalization of the HARCH framework reader can refer to 

Dacorogna et al. (1997). 

Finally, Corsi (2007), based on works discussed above, proposed an additive cascade 

model of volatility components that are defined over different periods of time. 

Suggested model utilizes simple AR-process and is based on realized measures.  

The model for realized variance can be formalized as follows: 

(5) (22)

0 1 1 2 1 2 1t t t t tRV RV RV RVβ β β β ε− − −= + + + +     (3.9) 

where tRV  is a variance realized during the day t, (5)

1tRV − is a (t-1) lagged average 

realized variance for 5 days and (22)

1tRV −  is a is a (t-1) lagged average realized variance 

for 22 days. Although the setup of the model is rather simple and the model lacks true 

long memory properties, Corsi argues that based on empirical results model performs 

relatively well in reflecting main empirical features of financial time-series, i.e. fat tails, 

self–similarity and long memory. Moreover, author also reports that HAR model 

performs extremely well in forecasting tasks. 
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In our analysis we use HAR model for out-of-sample forecasting of realized 

correlation. The model we use is similar to one used for  tRV  and is defined as follows: 

(5) (22)

0 1 1 2 1 2 1t t t t tRC RC RC RCβ β β β ε− − −= + + + +       (3.10) 

This setup allows to model autoregressive process of realized correlation using 

lagged values that effectively contain information about the process lagged up to one 

month. 
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4 Neural networks 

 

As it was discussed in the introduction to this thesis, our research is focused on 

modelling correlations based on high-frequency data and forecasting of realized daily 

correlations of selected stock markets and commodities.  

In the first part of our empirical work we model correlations of selected stock 

markets and commodities using intraday 5 minutes data on returns. We model 

conditional correlations using daily realized correlation measure. We also estimate 

unconditional correlations using average daily realized correlations over the given 

periods of time. We also apply feedforward neural network on high frequency data to 

obtain estimated unconditional correlations for the given period of time. We then 

compare unconditional estimates obtained using neural network to the average realized 

daily correlations to see if the network is capable of approximating the realized 

correlations process. 

In the second part of our empirical work we forecast time-series of realized daily 

correlations we computed in the first part of our empirical research, assuming certain 

autoregressive process behind the RC development. The task is to apply several selected 

models, namely Autoregressive model of order p (AR(p)), Heterogeneous 

Autoregressive model (HAR) and dynamic Nonlinear Autoregressive Neural Network 

(NARNET) to modelling of realized daily correlations and assess (i) relative 

performance of mentioned models, and (ii) overall goodness of obtained forecasts. 

Detailed description of data used and explanation of application of selected methods to 

modelling and forecasting tasks are presented in the Chapter 5 of this thesis.   

We introduce theoretical foundations of artificial neural networks in Chapter 4 of this 

thesis. We start with a revision of existing literature on application of artificial neural 

networks in stock markets analysis. Following section presents theoretical foundations 

of a building block of any neural network – artificial neuron, where we describe 

biological concepts of human neuron, transfer functions and connection of neurons in 

the network.  Section that follows describes architecture of neural networks we used in 

our research. The last section is devoted to network learning algorithms and 

backpropagation method. 
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4.1 Application of Neural Networks in Quantitative Finance 

 

Even though artificial neural networks have been used in quantitative finance for 

relatively short time, there is already a vast pool of literature regarding application of 

neural networks in stock markets analysis. In general, existing literature on neural 

networks in stock markets analysis can be divided into two categories. First category of 

works suggests that there is no gain from using artificial neural networks instead of 

classical econometric models. Second category of works regards neural networks as 

powerful computational mechanisms and authors report significant improvement of 

results if NN is used.  

One of the first works regarding application of neural networks to stock market 

analysis was prepared by McCluskey (1993). Author applied feedforward and recurrent 

neural networks to forecasting S&P 500 (S&P) stock market index. Even though in the 

introduction to his research author claims that recurrent NN may improve forecasting 

performance significantly, empirical results of his work do not suggest any significant 

improvement in forecasting performance. Another attempt to use neural networks in 

stock market prediction was made by Kulkarni (1996) where S&P 500 (S&P) stock 

index one-week ahead prediction was obtained. The forecast was based on lagged 

values of S&P itself along with past values of long and short term interest rates. Author 

use feedforward neural network and reports that trained NN performs very well in 

prediction task even when applied on time-series with lots of unexpected rises and falls. 

Artificial neural networks were applied by Pan et al. (2005) to forecast Australian stock 

market index AORD. Authors utilize multi-layer feedforward neural networks to find 

best specification of NN for prediction purposes. As input information authors use six 

daily returns of AORD, one daily return of S&P and day of the week. Having that 

approach to the problem they report up to 80% directional prediction correctness. Quah 

(2007) applies radial basis function (RBF) neural network to selection of Dow Jones 

Industrial Average (DJIA) equities problem. He uses General Growing and Pruning 

Radial Basis (GGAP-RBF) neural network and compares its performance to less 

complicated Multi-layer Perceptron (MLP) network and Adaptive Nero-Fuzzy Inference 

Systems (ANFIS). Author concludes that there is a potential for good performance of 

neural networks in equities selection problem and improvement of results of investment 

strategy, but in his work RBF did not outperformed MLP and ANFIS techniques.  
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Turning to the training methods of neural networks used in practice, paper by 

Rumelhart et al. (1986) argues that backpropagation is the most used learning method in 

stocks and stock markets analysis.  Several authors, namely Jovina and Akhtar (1996), 

Brownstone (1996), Quah and Sirinvasan (1999), Oh and Kim (2002), Salim (2011) 

used backpropagation algorithm and achieve relatively good performance of the 

networks. Another works by Kohzadi et al. (1996), McNelis et al. (1998) and Yim 

(2002) suggest that artificial neural networks perform better than conventional time-

series analysis methods. 

One very important feature of artificial neural network is its generalization ability. 

Beale et al. (2012) argues that properly trained multi-layer neural network in general 

gives reasonable results when inputs that network has not seen are presented to it. New 

inputs lead to as good result as one obtained during the network’s training if this input is 

the same as ones used for training. This feature is important because it allows training 

the network on representative set of inputs, rather than on all available subsets of inputs. 

Generalization is also crucial for avoiding overfitting. Network may perform very well 

on the training data set, when error is forced to be on the low level, but such a network 

won’t perform well with new data sets. Thus it is also important for application of NN 

to forecasting of financial time-series. One of the attempts to improve generalization 

ability of the network was undertaken by Hochreiter et al. (1997) by introducing an 

algorithm for location of a flat minimum of an error function. Authors argued that this 

algorithm improved performance of the network significantly.  

Recurrent neural networks have drawn a lot of attention recently. Beale et al. (2012) 

argues that delayed inputs in the recurrent network make it more efficient in forecasting 

tasks. Lee Giles et al. (2001) used recurrent neural network for noisy FX time-series 

prediction and reported 47.1% error rate of next day prediction, and reduction of error 

rate down to 40% if intervals with low system confidence were removed. Other authors 

that utilized recurrent neural networks in their work are Zimmermann et al. (1996), 

Kohara et al. (1997), Kim and Chun (1998). Authors conclude that recurrent networks 

have good potential in in-sample fitting and forecasting tasks. 

Another important issue associated with use of neural networks is a selection of 

number of hidden layers and neurons. The problem is loss of degrees of freedom with 

increased number of layer due to larger number of parameters to be estimated (McNelis, 

2005). Use of networks with more than one hidden layer was discussed, for example, in 

works of Hornik et al. (1989) and Dayhoff and DeLeo (2001). Authors conclude that a 
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general function approximation theorem has been proven for three-layer neural 

networks and that two-layer network with trainable parameters (weights and bias) can 

approximate any nonlinear function. Beale et al. (2012) makes the same conclusions 

regarding approximation capabilities of two-layer neural networks.  

Based on reviewed literature and to our best knowledge, we conclude that neural 

networks have never been applied to forecasting of realized correlations. We use 

dynamic recurrent neural network in the second part of our empirical work for realized 

correlations forecasting, which is described in the Chapter 5 of this thesis. 

 

4.2 Artificial Neuron - Building Block of Neural Network 

 

Artificial neural networks are computational structures that are based on the concept 

of functioning of biological nervous system. This concept is built on the mathematical 

apparatus developed to simulate the behavior of neurons of human brain and nervous 

system. NN use relatively simple mathematical operations for solving nonlinear 

stochastic problems. The biological nervous system functions as follows: it consists of 

interconnected neurons, e.g. individual cells characterized by structural properties that 

represent very fast transmission of electrical signals among neurons in the system 

(Churchland and Sejnowski, 1992). Each neuron acts as independent parallel 

computational centre that reacts in a unique way to a received signal and sends 

transformed signals to neighboring neurons in the network.  The key feature of that 

network is that weights of incoming signals from other neurons are not uniform, e.g. 

some connections are more important, thus have higher priority in information input. 

Such interconnectedness and non-uniformity of signal weights is the fundamental idea 

behind the artificial neural networks.    

For example, the biological neuron can be approximated by relatively simple 

mathematical concept of perceptron. This concept is based on summing function and 

can be represented based on Rojas (1996) as follows: 

1

k

i i

i

w x ξ
=

=∑ ,          (4.1)  

where ix are inputs and iw are respective weights. The perceptron then compares the 

sum ξ  with the respective threshold θ (defined separately for each particular case). 
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Let’s say, that if value of ξ exceeds that of θ , the perceptron sends out the signal of 1. 

In other case it sends the signal of 0. That signal is the received by neighboring 

perceptrons in the hypothetical network, which again assign the weights to each input 

and send out further signals. That way the initial inputs are transformed with neural 

network into the output signal.   

In other words, like the linear an nonlinear methods (such as (G)ARCH models), the 

neural network relates a set of input variables { }, 1,...,ix i k=  to a set of one or more 

output variables { }, 1,...,jy j k= . The difference between a neural network and the other 

approximation methods is that NN makes use of one or more hidden layers with one or 

more neurons, in which the input variables are squashed or transformed by a special 

function, known as logistic or log-sigmoid transformation (McNelis, 2005). Hidden 

layers approach represents very efficient way to model nonlinear stochastic processes.     

Let’s examine simple artificial neural network. According to Haykin (1994), so-

called single neuron (node) is an information-processing unit that is fundamental to the 

neural network functioning. The following figure shows the model of a neuron which 

forms the basis for designing artificial neural networks: 

 

Fig. 4.1: Simple neuron model 

 

There are three basic elements of neuronal model:  

1. Set of synapses or connection links, each of which is characterized by a 

weight or strengths. Each input (or signal) ix  connected to a subject neuron 

(in this case it is a neuron k) is multiplied by the synaptic weight kiw . The k 

subscript denotes the subject neuron. The weights in artificial neuron can 

have negative as well as positive values. 

2. Adder, for summing the input signals (represented on the figure as summing 

junction). 
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3. Activation or squashing function that limits the amplitude of the output of a 

neuron to some finite value. 

The external bias term kb , also included in the model, lowers or increases the net 

input of the activation function.  

In mathematical terms the neuron k can be defined as following pair of equations. 

Note, that it basically similar to the perceptron concept described above in this section: 

 
1

m

k ki i

i

u w x
=

=∑ ,          (4.2) 

and 

( )k k ky u bϕ= + ,          (4.3) 

where { ix } are inputs; { kiw }are synaptic weights of neuron k; ku is the linear combiner 

output respective to the input signals; kb is the bias term; ( )ϕ ⋅ is the activation (or 

squashing) function; and ky is the output of neuron. The external bias term kb has an 

effect of applying an affine transformation on the output ku  depending on whether it is 

negative or positive. The term k ku b+ can be also regarded as local induced field or 

activation potential kυ . 

 One of the most important steps when designing an artificial neural network is 

the selection of activation or squashing function. Along with number of hidden layers 

neurons in the system, it will define the way inputs are transformed into the outputs of 

neurons. First one, the simplest one, is so-called threshold function defined as follows: 

1, 0
( )

0, 0

υ
ϕ υ

υ
>

= 
≤

         (4.4) 

Such a neuron was presented by McCulloch and Pits (1943) and it has all-or-none 

property: the output of neuron takes the value of 1 if the local induced field is 

nonnegative and 0 otherwise. Figure 3.2 shows the plot of such activation function: 
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Fig. 4.2: Threshold activation function 
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Second type of potential activation function is so-called pricewise-linear function. It 

is defined as follows: 

1
1, _

2

1 1
( ) , _ 1/ 2

2 2

1
0, _

2

υ

ϕ υ υ υ

υ

 ≥ +



= − ≤ + ≤ +



≤ −

,       (4.5) 

This form of an activation function can be seen as a rough approximation of a 

nonlinear amplifier. The following figure shows the graph of pricewise-linear function: 
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Fig. 4.3: Pricewise-linear activation function 

  

The last but not least type of activation function is nonlinear sigmoid function. That 

particular function is one of the most often used in application of artificial neural 

networks. It is defined as strictly increasing function possessing linear and nonlinear 

characteristics. An example of sigmoid function can be so-called logistic function. It can 

be defined as: 

 
1

( )
1 exp( )a

ϕ υ
υ

=
+ −

,         (4.6) 

where a is the slope coefficient. By changing the slope coefficient we can change the 

shape of sigmoid function. If a approaches infinity in limit, sigmoid function 

approaches the simple threshold activation function. The sigmoid function has several 

important properties. Firstly, it assumes the continuous range of values, whereas 

threshold function assumes 1 or 0. Secondly, the sigmoid function is differentiable. In 

practice, the selection of an activation function depends on assumed underlying 

stochastic process and assumed distribution of examined random variables. The 

following figure illustrates the sigmoid function with different parameter a. 
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Fig. 4.4: Sigmoid activation function 

 

Another frequently used activation function is so-called tansig or tanh function 

(McNelis, 2005). It is defined as: 

( )
e e

e e

υ υ

υ υϕ υ
−

−

−
=

+
,         (4.7) 

This function squashes the linear combinations within the interval of [-1;1] rather 

than [0;1] in the sigmoid function. The behavior of such function is illustrated on the 

following figure: 
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Fig. 4.5: Tansig or tanh activation function 

  

It is necessary to note, that there are much more types of activation functions than 

just mentioned above, e.g. Gaussian cumulative function, hyperbolic tangent function 

etc.  In practice sigmoid function is used most often. The reason for that is sigmoid 

function’s “threshold like” behavior which is considered to be appropriate for 

describing behavior of economic variables. A good example can be a reaction of 

savings, on the changes in interest rate. Small deviations from the somewhat stable level 

of interest rate as at particular moment of time most likely won’t affect savings level 

significantly. However, further increase in interest rate will probably cause changes in 

savings level in the economy. On the other hand, there is certain level of savings that 

cannot be exceeded regardless even larger increase in interest rate. One can easily 
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imagine that this behavior of saving is similar to the behavior of the sigmoid function. 

Kuan and White (1994) argue that this threshold feature is a fundamental characteristic 

of nonlinear response of the neural network. In particular, they characterize that feature 

as the “tendency of certain types of neurons to be quiescent of modest levels of input 

activity, and to become active only after the input activity passes a certain threshold, 

while beyond this, increases in input activity have little further effect” [Kuan and White 

(1994), p. 2].        

Logsig or tansig function should be selected based on the distribution of subject 

variables. As it can be seen from the functions formulations, or even graphs, main 

difference between them is the speed of saturation. In other words, logsig function will 

responds faster to the same inputs than tansig one. For the purposes of our analysis we 

have utilized both mentioned activation functions and compared performance of the 

neural network with each of them. 

 

4.3 Neural Networks Architecture  

 

The way neurons and inputs are organized in the artificial neural network is called 

the network architecture. This organization structure of a network is also linked with its 

learning algorithm that is used to train the network.   

We start with describing a feedforward neural network that we applied in the first 

part of our empirical analysis for modelling correlations among selected stock market 

indices and commodity futures. This kind of network is considered to be a static one 

meaning it is used for in-sample fitting. For the second part of this thesis, i.e. for the 

forecasting of realized correlations, we selected nonlinear autoregressive neural network 

(NARNET). It is considered to be a recurrent dynamic network. We describe the 

NARNET later in this chapter.     

Having described main building blocks of neural network in the previous subsection 

it is necessary to generalize the way neural network works. As it was stated above, 

neural network can be seen as a computational structure capable of approximating 

unknown nonlinear process given inputs and targets, and after the network is trained. 

One advantage of NN if compared to classical econometric models described previously 

in this thesis is the fact that neural network does not rely on assumptions about the 

distribution of input variable and errors, such as normality, homoscedastic errors etc.  
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4.3.1 Feedforward Neural Network 

 

The simplest type of a neural network is a single-layer feedforward network. Picture 

below represents the feedforward network with one hidden layer containing 2 neurons, 

three inputs { }, 1, 2,3ix i = and one output y (McNelis, 2005). 

 

Fig. 4.6: Feedforward neural network 

 

We can see the parallel processing of inputs inside the network. McNelis (2005) 

refers to the connectors between input variables as input neurons and to the neurons in 

hidden layer and connectors between the hidden layer neurons and output variable as 

output neurons. Inputs are summed with neurons weights and bias in order to create so-

called net input. Net input is then processed by each neuron and network’s estimate of 

the target y is returned. Estimate value is then compared to the true output value and 

error is calculated. To obtain most accurate approximation of relationship between 

inputs and output, error function is constructed and minimized. The process of 

minimizing the error function is called network training. Weights along with bias are 

free parameters of the network that are adjusted during the training. Training algorithms 

and methods will be discussed further in this thesis.  

Next picture represents single-layer neural network as it is constructed in the Matlab 

software. We can observe inputs, weights w and bias b. We can also observe the flow of 

signals in the model – through the hidden layer, with sigmoid function neurons, to the 

output. There is another layer present, called output layer, which is based on the linear 

transfer function neuron. In majority of cases, this layer is used just to speed up the 

processing of signals by linear transformation of hidden layer’s output, thus hidden 

layer is of particular interest.  
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Fig. 4.7: Single-layer feedforward neural network (Matlab) 

 

Single layer feedforward neural network can be represented mathematically as 

follows (McNelis, 2005): 

*
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where ,( )k tL n represents the logsigmoid activation function formalized as 
,

1

1 k tn
e
−+

. 

There are i* input variables {x} in the system, and k* neurons. Variable ,k tn , or net 

input, is formed by linear combination of input variables as at time t, ,{ }, 1,..., *i tx i i= , 

with set of input weights , , 1,..., *k i i iω = , and constant term, or bias, ,0kω . This net input 

is then transferred using logsigmoid function ,( )k tL n and becomes a neuron ,k tN at time 

t. Hyperbolic tangent, or tansig, function (4.7) can be used as an alternative to the logsig 

to transfer the net input. The set of k* neurons is then put in a linear combination with 

vector of coefficients { }, 1,..., *k k kγ =  and a constant term 0γ  to form a forecast ˆ
ty at 

time t. Feedforward neural network combined with a sigmoid activation function is also 

known as multi-layer perceptron or MLP network. It is a basic network architecture that 

is often used by econometric researchers as a starting specification of the network.   

Certain econometric problems may require more complex structure of the network. 

Single-layer neural network can be extended by adding one or more hidden layers. 

Multilayer networks are very powerful approximators. As it is argued in Beale et al. 

(2012), network of two layers, with sigmoid transfer function in the first layer and linear 

in second, is capable, after it is properly trained, of approximating any nonlinear 

function with finite number of discontinuities. Multilayered neural network is 
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formalized as follows given k* neurons in the first hidden layer and l* neurons in the 

second hidden layer and assuming logsigmoid transfer function (McNelis, 2005): 
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We utilize the MLP network architecture with two hidden layers with ten neurons 

each for modelling correlations in the first part of our empirical work presented in the 

Chapter 5 of this thesis.     

 

4.3.2 Nonlinear Autoregressive Neural Network 

 

Another type of network we use in our analysis is a nonlinear autoregressive neural 

network, or NARNET. It is dynamic recurrent network based on Elman recurrent 

network architecture. In this type of network neurons depend not only on external 

inputs, but also on their own lagged values. Following chart depicts general structure of 

Elman recurrent network as presented in McNelis (2005): 

 

Fig. 4.8: Elman recurrent network 

 

Elman network builds “memory” in the evolution of neurons. This type of network is 

similar to moving-average (MA) process that is often used in financial time-series 

analysis. In the MA process, dependent variable y is a function of independent variables 
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x as well as current and lagged values of a random shockε . Equations formalizing the a 

q-th order MA process are as follows: 

*

0 ,1 1
ˆ

i q

t i i t t j t ji j
y xβ β ε ν ε −= =
= + + +∑ ∑       (4.14) 

ˆ ˆ
t j t j t jy yε − − −= −           (4.15) 

In a similar fashion, the Elman recurrent network makes use of current as well as 

delayed observations of unobservable unsquashed neurons in a hidden layer. In a same 

as for the MA model, it is necessary to use multi-step estimation procedure for the 

Elman recurrent network (McNelis, 2005). First step is to initialize vector of lagged 

neurons with lagged neurons proxies from a simple feedforward network. Next step is to 

estimate their coefficients and recalculate the vector of lagged neurons. Parameter 

values are recalculated in a recursive manner. The process goes on until the 

convergence occurs. 

It is necessary to note that recurrent network has a time dimension. It means that it 

can be applied only on time-series data as opposed to feedforward network that can be 

used as well for panel data. System of equations formalizing recurrent neural network is 

presented below: 
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In practice, Elman’s type of the network is often used for forecasting foreign 

exchange and stock markets returns using intraday high-frequency data. Structure of the 

network changes over time thanks to lagged neurons being feed back into current ones. 

However, lagged neurons are feed back before they are transformed by sigmoid 

function. So the network does not use lagged neurons from the output level. This 

process allows for memory capturing in financial markets.  

Following scheme depicts an example of NARNET architecture with five delays, two 

hidden layer containing ten neurons with sigmoid function each as presented in the 

Matlab software: 



  

 

34

  

 

Fig. 4.9: Nonlinear autoregressive network (Matlab) 

 

In our analysis we utilize nonlinear autoregressive neural network for forecasting 

realized correlations. Data and procedures used during this exercise are described in the 

fifth chapter of this thesis. 

 

4.4 Network learning 

 

Distinctive feature of a neural network is that it learns from data it is applied on 

about the environment. Learning is done in a way of iterative adjusting free parameters 

of the networks – its weights and biases. Aim of learning, or adjustments iterations, is to 

make network “understand” underlying process in the presented data. Each iteration 

increases network’s understanding of the environment. Every time external information 

is presented to the networks and free parameters are adjusted, internal structure of the 

network is changed and so is its reaction to the new information.   

There are different ways, or algorithms, how the learning of a network can be done. 

It should be noted that the network learning can be actually viewed as a nonlinear 

estimation problem. As it was already discussed earlier in this chapter, the network’s 

output is compared to the actual values of a target and error is computed after each 

iteration. The aim is to minimize the error function. Nonlinear estimation means that 

there can be multiple locally optimal solutions none of which yielding the global 

minimum of an error function. When estimating the network one should start with some 

initial values of weights. Basically, these initial values are some kind of guess that can 

move final optimal solution closer to or further from the global optimum. This problem 

can be illustrated by the following picture taken from the McNelis (2005). 
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Fig. 4.10: Weight values and error function 

 

Clearly, when estimating the network one can easily get stuck at some locally 

optimal point. Unfortunately, there is no single way how to avoid locally optimal 

solutions. In our work when estimating the network we set initial weights randomly and 

ran estimation several times to see how the results will differ. If the difference is 

marginal we assumed that the result is best solution network can provide. 

To formalize the learning process we describe main principles on the example of a 

single layer network. To find the optimal set of coefficients ,{ , }k i kω γΩ = the loss 

function Ψ is minimized (McNelis, 2005). The loss function is defined as a sum of 

squared differences between the actual values of the target ty network’s output ˆ
ty . The 

whole problem can be defined as follows: 

2

1
ˆmin ( ) ( )

T

t tt
y y

=Ω
Ψ Ω = −∑         (4.11) 

The network’s output is a function of the inputs tx and the set of weights and bias Ω : 

ˆ ( ; )t ty f x= Ω           (4.12) 

Generally, there are three main ways how to minimize a nonlinear function ( )Ψ Ω : 

local gradient-based search; stochastic search; and evolutionary stochastic, or genetic 

algorithms, search. In our work we have used the first method, i.e. local gradient-based 

search. It is based on first- and second-order derivatives of Ψ with respect to network 

parameters included in the setΩ . After every iteration of network learning, values of 

parameters are adjusted and this process continues until certain stopping criteria are 

met. For technical details of all three methods of the network learning reader may refer 

to McNelis (2005). 
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5 Empirical findings 

 

In the following chapter we will utilize theory established previously in this thesis 

regarding classical econometric models and techniques, realized measures and artificial 

neural networks to analyze correlations between selected stock markets approximated 

by the stock market indices, namely FTSE, DAX and PX, and between S&P 500 stock 

market index and commodities futures, namely gold and crude oil. We assess the 

dynamics of the correlations by computing and analyzing daily realized correlations. 

Based on these estimates of conditional correlations we see how the correlations have 

been changing over the given horizon. We then utilize these estimates of daily realized 

correlations to get estimates of unconditional correlations for each individual year from 

interval between 2008 and 2011. We do so to compare these unconditional estimates 

with ones obtained using feedforward neural network. Based on literature discussed in 

the Chapter 4 of this thesis, we expect neural network to perform very well in in-sample 

fitting and forecasting tasks. The aim here is to see how good the NNs are in reality and 

understand if it is useful to utilize them in further research. 

We start with the description of data we use in our empirical research and present 

main statistical characteristics of examined time-series. Second section of this chapter 

deals with modelling correlations between stock markets and commodities specified 

above. We assess dynamics of these correlations based on development of daily realized 

correlations. We then compare estimates of unconditional correlations based on average 

daily correlations and ones obtained using FFNN to see how weel the network is able to 

approximate the average daily RC. In the third section of this chapter we present results 

of forecasting realized correlations or pairs DAX:FTSE and S&P:Oil using AR(p) 

model, HAR model and dynamic recurrent neural network NARNET.  

 

5.1 Data description 

 

For the purposes of our analysis we have selected three stock markets – British, 

German and Czech represented by Financial Times Stock Exchange 100 (FTSE), 

Deutsche Börse (DAX) and Prague Stock Exchange 50 (PX) indices respectively. There 

were several reasons why these stock markets were selected. Firstly, overlapping 
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trading hours that could capture many effects in cross-country equity returns correlation, 

starting from the co-movement of markets as a reaction to common news, markets 

contagion and ease of trading with another market participant at different location 

(Flavin et al., 2001). Adjustments to the initial data sets of FTSE, DAX and PX indices 

were made to correctly reflect parts with overlapping hours. Secondly, the size of the 

stock markets and level of concentration can affect cross-border correlations according 

to the mentioned paper. Authors argue that more liquid markets can have stronger 

correlations than markets with low liquidity. Thus we expect stronger correlations 

between DAX and FTSE than between DAX and PX and FTSE and PX. General 

conclusion by Flavin et al. (2001) is that geographical variables that are used to explain 

trade in goods, such as distance between markets, common border etc., are also 

applicable to the financial assets markets. 

As an extension to modelling correlations between selected stock markets we also 

include commodities, represented by gold and crude oil futures traded on NYSE, in our 

analysis and model the correlations between them and a stock market represented by 

Standard & Poor’s 500 (S&P) index. As it has been discussed earlier in this thesis, 

during the time of crisis investors tend to seek a safe place for their funds and may turn 

to commodities when there is a problem in the stock markets. 

Our subject data samples comprise intraday logarithmic returns of specified indices 

and commodities collected on 5 minutes basis. Since the dynamics of the correlation 

was of our particular interest, especially its changes during the crisis, i.e. in 2008-2009, 

and right after it, selected time span of analyzed data for stock indices is 2 January, 

2008 – 9 December, 2011; for commodities and S&P it is 1 February, 2008 – 29 

November, 2011. Data was sourced from the Tick Data. After adjustments for 

differences in trading hours and holidays, stock markets indices sample, i.e. FTSE, 

DAX and PX, contains 76,085 observations. Sample with observations of gold, oil and 

S&P returns contains 62,832 observations. 

Following figures plot subject time-series used for stock markets correlation analysis: 
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Fig. 5.1: FTSE, DAX and PX 5 minutes logarithmic returns 

 

As it can be observed from the graphs presented above, there are clear clusters of 

relatively high volatility of returns in the end of 2008 – beginning 2009 and during 

2011. Period between 2008 and 2011was characterized by relatively lower returns 

volatility. Worsening Euro zone debt crisis partially caused increased volatility in the 

end of 2010 – beginning 2011.  

Following figures plot gold, crude oil and S&P time-series used for commodities and 

stock market index correlation analysis: 
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Fig. 5.2: S&P, Gold futures and Crude Oil futures 5 minutes logarithmic returns 

 

From the charts above we can clearly observe clusters of increased volatility during 

the second half of 2008, especially for the oil futures returns, when spread of the US 

financial crisis hit the rest of the world. As in the case of three European indices 

mentioned above, during the period between second half of 2009 till late 2010 was 

characterized by relatively lower volatility of returns of subject instruments. 

Working with such a data is a quite challenging task for any type of econometric 

model, either solving in-sample fit or out-of-sample forecast problem. In tables below 

we summarize descriptive statistics for subject time-series. CV stands for the 

Coefficient of Variation defined as a ratio of the standard deviation to mean. 

 

Index / futures Mean Median Minimum Maximum 

FTSE 0.00000 0.00000 -0.02109 0.030277 

DAX 0.00000 0.00000 -0.02003 0.031769 

PX -0.00002 0.00000 -0.01967 0.027016 

S&P 0.00000 0.00001 -0.02389 0.036665 

Gold 0.00000 0.00000 -0.02809 0.022964 

Oil 0.00001 0.00000 -0.03418 0.038403 

 
Table 5.1: Summary statistics (1) 

 

Index / futures Std.dev CV Skewness Kurtosis 

FTSE 0.00118 242.570 0.22440 21.128 

DAX 0.00140 338.750 0.07963 18.147 

PX 0.00108 58.036 -0.16798 25.371 

S&P 0.00159 768.530 0.38592 18.794 

Gold 0.00120 1495.900 -0.19104 22.702 

Oil 0.00239 339.390 -0.06853 12.278 

 
Table 5.2: Summary statistics (2) 

 

As it can be observed from the table 5.2, selected time-series possess feature of high 

excess kurtosis. This supports one of the stylized facts about financial time-series 

regarding the fat, or heavy, tails in probability distribution. In statistical literature it is 

Oil 
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argued that high kurtosis reflects infrequent extreme deviations which are specific to 

financial time-series. These deviations can be easily observed from the graphs of returns 

of selected indices and futures presented above. Once again, such data makes our task of 

modelling and forecasting correlations rather challenging. 

Based on the summary of descriptive statistics we can see that the Oil future has 

suffered largest loss (-3.4%) among selected indices and commodities given the 

sampling frequency.  In terms of largest positive returns among stock market indices 

S&P experienced largest increase of 3.6%. However, in terms of positive returns crude 

oil futures has outperformed S&P index with returns of 3.8%. It should be noted, that 

we are discussing the 5 minutes data and that picture of daily returns can be different. 

For the reader’s reference, charts depicting returns distribution of the subject time-series 

with fitted normal distribution can be found in the Appendix 1. 

Following table summarizes results of Jarque-Bera and Augmented Dickey-Fuller tests 

performed for all subject time-series of logarithmic returns. 

 

Index / futures J-B test p-value ADF test p-value 

FTSE 1,415,756.37 0.000 -160.11 0.000 

DAX 1,044,118.53 0.000 -160.57 0.000 

PX 2,040,929.52 0.000 -139.10 0.000 

S&P 926,258.72 0.000 -145.26 0.000 

Gold 1,349,683.06 0.000 -147.25 0.000 

Oil 394,686.60 0.000 -144.15 0.000 

 
Table 5.3: JB and ADF tests 

 

Based on test statistics and p-values of the JB-test we can reject the null hypothesis 

about normal distribution of returns. This result is expected since we work with the 

financial time-series and it is a well known fact that such data is not usually distributed 

normally. Regarding the stationarity of subject time-series, based on the results of ADF-

test we can reject the null hypothesis that there is a unit root present in the subject time-

series. As it was discussed in the Chapter 2, ADF test has a tendency to over-reject 

0H even if there is a unit root. But based on the extremely low p-value of test statistics 

we will assume subject time-series of returns to be stationary. 
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5.2 Correlations Modelling and Dynamics 

 

In the first part of our empirical analysis we analyze the correlations between three 

selected stock markets represented by FTSE, DAX and PX stock market indices. We 

use data for the period starting January. 2008 till December, 2011. We also analyze 

correlations between two commodities, namely gold and crude oil, represented by 

commodity futures and the US stock market index S&P 500 (S&P) for the period 

starting January, 2008 till November, 2011. As was discussed previously in this thesis 

there are certain limitations associated with computation of correlations among selected 

instruments (different trading hours, holidays etc.). That is why, given the available 

data, correlations were modelled for two groups of indices and commodities:  

1) First group includes pairs: FTSE:DAX, FTSE:PX and DAX:PX; 

2) Second group includes pairs: Gold:Oil, Gold:S&P, Oil:S&P.  

Our analysis is based on high-frequency intraday data with sampling frequency of 5 

minutes. We start with computing daily realized correlations for pairs specified above. 

Looking at the daily realized, or conditional, correlations is one way how to assess the 

dynamics of correlations.  

We then compute averages of daily realized correlations for each year in considered 

range between 2008 and 2011 to get an estimate of unconditional correlations for each 

period. We also compute standard errors of these estimates to see how these 

unconditional correlations for each period have been changing and if year-on-year 

changes in these unconditional correlations are statistically significant. We then 

compute unconditional correlations for each period using multilayer feedforward neural 

network (FFNN). If estimates of unconditional correlations obtained from the FFNN lay 

in the interval of standard errors of average daily realized correlations it can be said that 

the neural network approximates these unconditional estimates. 

Chart below illustrate the daily realized correlation estimates for pairs specified 

above. We start with the first group of indices. Daily realized correlations were 

computed for the range from January, 2008 till December, 2011. Number of 

observations in each data set is 954.  
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Fig. 5.3: Daily realized correlations for pairs FTSE:DAX, FTSE:PX and DAX:PX computed for the period starting 2 

January, 2008 – 9 December, 2011. 

 

From the charts above we can make first conclusions regarding the correlations 

between pairs FTSE:DAX, FTSE:PX and DAX:PX. Firstly, we can see that FTSE and 

DAX indices had much stronger correlation over the given period as compared to other 

two pairs in the group. Secondly, FTSE:DAX realized daily correlations experienced 

several significant decreases, namely between days 100 and 200 (year 2008), 400 and 

500 (year 2009), and 700 and 800 (end of 2010 – beginning of 2011). Tables below 

summarize main statistics of subject time-series of daily realized correlations. 

 

Pair Mean Median Minimum Maximum 

FTSE:DAX 0.80119 0.81611 0.23583 0.962480 

FTSE:PX 0.28046 0.28235 -0.14833 0.769050 

DAX:PX 0.28032 0.28058 -0.18625 0.784650 
 

Table 5.4: Summary statistics of daily realized correlations, indices (1) 
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Pair Std.dev CV Skewness Kurtosis 

FTSE:DAX 0.08893 0.111 -1.25460 2.855 

FTSE:PX 0.15434 0.550 -0.00513 -0.052 

DAX:PX 0.15494 0.553 0.04656 -0.023 
 

Table 5.5: Summary statistics of daily realized correlations, indices (2) 

 

From the statistics presented in tables above it is clear that strongest correlation was 

between the UK and German stock market indices. Mean daily realized correlation 

between FTSE and DAX indices was on the level of 0.8 over the given horizon. Even 

though the standard deviations for this pair were relatively low (around 0.088), over the 

given period correlation of this pair experienced deepest decline down to 0.24 in 

August, 2008 and highest increase up to 0.96 in 2009. Overall, it can be said that these 

indices remained positively correlated during the whole examined period even though 

daily correlations experienced several significant upside and downside movements. On 

the other hand, correlations among FTSE:PX and DAX:PX pairs were significantly 

lower. For both pairs over the given period, mean daily realized correlation was on the 

level of 0.28. Both pairs have shown relatively high standard errors of 0.154 and both 

reached negative values of around -0.15 and -0.19 respectively. Lower correlations 

between FTSE, DAX and Prague stock exchange index can be explained by several 

factors. One of them may be the fact that UK and German markets are more developed 

then Czech one in terms of liquidity and depth of the market, i.e. number of transactions 

and volumes. This result is in line with results obtained by Flavin et al. (2001) where 

authors, using gravity model, concluded that size and liquidity of the stock markets can 

explain significant portion of their co-movements. 

We use the time-series of daily realized correlations between FTSE and DAX in the 

second part of our empirical research where we forecast selected series of daily realized 

correlations using AR(p) model, HAR model and dynamic neural network NARNET. 

Since FTSE:DAX daily realized correlations are of our particular interest, let’s have a 

look at the year by year split of summary statistics of it.  
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FTSE:DAX 2008 2009 2010 2011 

Mean 0.76398 0.79206 0.84201 0.806830 

Median 0.78440 0.79871 0.85635 0.830710 

Minimum 0.23583 0.50390 0.40525 0.383460 

Maximum 0.93951 0.96248 0.96188 0.955140 

Std.dev 0.09161 0.08034 0.07615 0.089250 

CV 0.11991 0.10143 0.09044 0.110620 

Skewness -1.33780 -0.91604 -2.18530 -1.144200 

Kurtosis 3.96630 1.16180 7.85150 1.911500 
 

Table 5.6: FTSE:DAX daily realized correlations, summary statistics split by years 

 

Several notes on the numbers presented above regarding daily realized correlations 

of FTSE:DAX pair. Firstly, we can observe a slight increase in correlation from mean of 

circa 0.76 in 2008 up to 0.84 in 2010, taking in consideration decreasing standard 

deviations. Secondly, upper bound of daily realized correlations remained above 0.93 in 

all four years whilst lower bound has been changing from 0.24 in 2008 up to 0.38 in 

2011.   

Having discussed development of changes in daily realized correlations among 

indices from the first group, let’s now turn to the daily realized correlations among S&P 

index and selected commodities futures. The daily realized correlations were computed 

for the period starting February, 2008 and ending November, 2011. Number of 

observations in each set is 816. Following chart illustrate subject time-series of daily 

realized correlations. 
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Fig. 5.4: Daily realized correlations for pairs S&P:Gold, S&P:Oil and Gold:Oil computed for the period starting 1 

February, 2008 – 29 November, 2011. 

 

From the charts above we can see how daily realized correlations were developing 

over the given period of time. It can be seen that daily realized correlations of all three 

pairs reached negative values during 2008 and between 2010 and 2011. To provide 

exact numbers, following tables summarize main statistics for subject time-series. 

Pair Mean Median Minimum Maximum 

S&P:Gold 0.20622 0.27282 -0.64906 0.790760 

S&P:Oil 0.37473 0.46810 -0.58393 0.855250 

Gold:Oil 0.36061 0.41106 -0.57146 0.792000 
 

Table 5.7: Summary statistics of daily realized correlations, S&P and commodities (1) 

 

Pair Std.dev CV Skewness Kurtosis 

S&P:Gold 0.32365 1.569 -0.48878 -0.772 

S&P:Oil 0.29979 0.800 -1.18780 0.732 

Gold:Oil 0.24764 0.687 -1.01530 0.707 
 

Table 5.7:Summary statistics of daily realized correlations, S&P and commodities (1) 

 

We can see from the tables with summary statistics that daily correlations changed a 

lot between 2008 and 2011. We can say so based on mean value and minimum / 

maximum values of subject realized correlations. They also reveal significant standard 

errors. Interesting observation is that dynamics of daily realized correlations among 

S&P and two commodities is rather similar. There was a steady decrease of correlations 

from the beginning of 2008 followed by a sharp increase somewhere in August, 2008. 

Another deep decline, common for both index-commodity pairs, occurred in 2011.   

We have selected S&P:Oil pair to use in the second part of our empirical work. Table 

below provides split of main statistics for this pair by individual years. 
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FTSE:DAX 2008 2009 2010 2011 

Mean 0.07985 0.48179 0.54822 0.397130 

Median 0.07942 0.49098 0.56149 0.486470 

Minimum -0.53686 0.10756 0.08752 -0.583930 

Maximum 0.68548 0.81610 0.85525 0.796470 

Std.dev 0.32270 0.13786 0.13839 0.296310 

CV 4.04140 0.28614 0.25243 0.746130 

Skewness 0.01778 -0.22713 -0.56193 -1.394200 

Kurtosis -1.18500 -0.47610 0.19254 1.799900 
 

Table 5.8: S&P:Oil daily realized correlations, summary statistics split by years 

 

Change in mean daily realized correlation between 2008 and 2009 should be noted. 

Increase in 2009 from 0.08 to 0.48 was followed by further increase in 2010 up to 0.55. 

Standard errors in 2008 were significantly higher than those in 2009 and 2010.  

We now turn to the estimating unconditional correlations for each year by averaging 

daily realized correlations described above and by applying FFNN on high-frequency 

data.  We use feedforward neural network with two hidden layers containing ten 

neurons each. Theoretical foundations and mathematical apparatus of feedforward 

neural network were presented in the Chapter 4 of this thesis. Neurons that we use are 

based on sigmoid transfer function. Actually, we employ both logsig and tansig transfer 

functions to see which one performs better on each individual data set. We also include 

bias in each neuron. Backpropagation method is used with Levenberg-Marquardt 

learning function, described in the Chapter 4 of this thesis. We use mean squared error 

function (MSE) as a performance function in our network.  

Correlations for specified pairs of indices and commodities were calculated as 

follows: one index or commodity from the specified pairs was used as an input to the 

network and second one as a target to which network’s output is compared. We solve 

in-sample fitting problem and use observations of both input and target form the same 

time step t. Main idea behind this approach is that the network should model, or 

approximate, the relation between two variables, in our case between two indices or 

commodities. The output of the network represents fitted values to each observation of 

the target based on the input values. Basically, output of a network is a result of 

network’s “understanding of the process” underlying development of a target given the 

behaviour of inputs. In our case this process is a relation between indices and 

commodities included in each pair. Network’s understanding of the process improves 

after each epoch of learning. As it was discussed in the fourth chapter of this thesis, 
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learning occurs in an iterative way. After each step output of the network is compared to 

the target and error is calculated. Consequently, free parameters of the network, namely 

weights and biases, are adjusted to minimize the error. This process continues until 

convergence takes place. Typical behaviour of the error function during the learning, 

validation and testing is presented by the picture below: 

 

Fig. 5.5: Training, validation and testing performance, FTSE:DAX pair 

 

Now, it is necessary to explain how exactly we calculate correlations for subject pairs 

of indices and commodities. As it was stated above, output of the network represents 

network’s estimate of the target variable. We obtained estimates of the target variable 

for different time periods. We started with using the full sample of subject observations, 

i.e. data from the interval 1.2008-12.2011. We then calculated estimates of the target 

variables for each individual year. It should be noted that it is quite challenging to 

comment on the raw output from the neural network thus certain transformation of the 

output is needed. For the purposes of our analysis we have calculated coefficient of 

determination, or 2R , for each set of estimates, i.e. estimates for the whole period of 

time and individual years. Please note that square root taken from the determination 

coefficient is basically a correlation coefficient. This way unconditional correlations 

estimated using feedforward neural network that we report in this section are calculated 

based on goodness of fit of network’s outputs. Since we work with intraday high-

frequency data and it is not feasible to calculate daily correlations using NN and then 

report some kind of average correlation for the period with deviations due to small 

number of observations inside the day, we estimate the correlation for the period of time 

corresponding to the period of data set used. We then compare these estimates to the 

average daily realized correlations.. We discuss results obtained using realized 

correlation measure and their comparison to NN’s outputs later in this section.  



  

 

48

  

As it was discussed in the Chapter 4, one of the problems with NN training is the 

problem of local minimum of the error function. This issue can be addressed in different 

ways. In our work we assure that initial weights values do not lead to locally optimal 

solution by setting the initial weights randomly and running training, validation and 

testing of the network 5 to 10 times. If the difference in network’s outputs is marginal, 

we accept such an outcome. Please note, that by using the same setup of the network 

several time with randomly defined initial weights, one will never get to the exactly 

same output (if only by chance). That is why marginal difference in networks output is 

acceptable. 

Following tables report estimated unconditional correlations for indices pairs for 

each period using the FFNN. We also report average daily realized correlations and 

their standard deviations to see if FFNN’s estimates fall into the interval of average 

daily RC standard errors.  

Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.66640 0.81633 0.801300 0.08893 

2008 0.64420 0.80262 0.764000 0.09161 

2009 0.63200 0.79498 0.792100 0.08034 

2010 0.68310 0.82650 0.842000 0.07615 

2011 0.72410 0.85094 0.806800 0.08903 

Logsig transfer function 

Full sample 0.66580 0.81597 0.801300 0.08893 

2008 0.64070 0.80044 0.764000 0.09161 

2009 0.63720 0.79825 0.792100 0.08034 

2010 0.72730 0.85282 0.842000 0.07615 

2011 0.72580 0.85194 0.806800 0.08903 

 

Table 5.9: FTSE:DAX pair estimated unconditional correlations 
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Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.11140 0.33377 0.280500 0.15434 

2008 0.12320 0.35100 0.284200 0.15101 

2009 0.07950 0.28196 0.273000 0.15395 

2010 0.15350 0.39179 0.307100 0.15700 

2011 0.11050 0.33242 0.256000 0.15168 

Logsig transfer function 

Full sample 0.11170 0.33422 0.280500 0.15434 

2008 0.11680 0.34176 0.284200 0.15101 

2009 0.08210 0.28653 0.273000 0.15395 

2010 0.14850 0.38536 0.307100 0.15700 

2011 0.10690 0.32696 0.256000 0.15168 

 

Table 5.10: FTSE:PX pair estimated unconditional correlations 

 

Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.09190 0.30315 0.280300 0.15494 

2008 0.10680 0.32680 0.285200 0.14405 

2009 0.09050 0.30083 0.272400 0.15870 

2010 0.14050 0.37483 0.306000 0.15614 

2011 0.08910 0.29850 0.256300 0.15722 

Logsig transfer function 

Full sample 0.09140 0.30232 0.280300 0.15494 

2008 0.10600 0.32558 0.285200 0.14405 

2009 0.09020 0.30033 0.272400 0.15870 

2010 0.13910 0.37296 0.306000 0.15614 

2011 0.12230 0.34971 0.256300 0.15722 
 

Table 5.11: DAX:PX pair estimated correlations 

 

From the tables above we can see that the estimates of unconditional correlations 

obtained using the specified FFNN are in the interval of standard errors of average daily 

realized correlations using both logsig and tansig transfer functions. We can conclude 

that for purely index pairs the FFNN approximates unconditional correlations based on 

daily realized measures relatively well. We do the same check for S&P and 

commodities pairs. Tables below summarize the results.  

 



  

 

50

  

Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.02920 0.17088 0.206200 0.32365 

2008 0.03530 0.18788 0.026300 0.32154 

2009 0.05800 0.24083 0.256700 0.33306 

2010 0.10000 0.31623 0.333200 0.24418 

2011 0.03840 0.19596 0.211500 0.30377 

Logsig transfer function 

Full sample 0.02250 0.15000 0.206200 0.32365 

2008 0.03340 0.18276 0.026300 0.32154 

2009 0.05390 0.23216 0.256700 0.33306 

2010 0.09940 0.31528 0.333200 0.24418 

2011 0.04560 0.21354 0.211500 0.30377 

   

  Table 5.12: S&P:Gold pair estimated unconditional correlations 

 

Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.15000 0.38730 0.374700 0.29979 

2008 0.09540 0.30887 0.079800 0.32270 

2009 0.19320 0.43955 0.481800 0.13786 

2010 0.34890 0.59068 0.547700 0.13815 

2011 0.21470 0.46336 0.397100 0.29631 

Logsig transfer function 

Full sample 0.14940 0.38652 0.374700 0.29979 

2008 0.09360 0.30594 0.079800 0.32270 

2009 0.19160 0.43772 0.481800 0.13786 

2010 0.34380 0.58634 0.547700 0.13815 

2011 0.21590 0.46465 0.397100 0.29631 
 

Table 5.13: S&P:Oil pair estimated unconditional correlations 
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Part of sample Neural network in-

sample fit R
2 
 

Unconditional 

correlation 

estimated using 

FFNN 

Average realized 

daily correlation 

Standard 

deviation 

Tansig transfer function 

Full sample 0.08490 0.29138 0.360600 0.24764 

2008 0.12310 0.35086 0.419000 0.18262 

2009 0.04720 0.21726 0.286700 0.28483 

2010 0.12850 0.35847 0.376800 0.23882 

2011 0.07220 0.26870 0.359000 0.25865 

Logsig transfer function 

Full sample 0.08620 0.29360 0.360600 0.24764 

2008 0.12400 0.35214 0.419000 0.18262 

2009 0.05130 0.22650 0.286700 0.28483 

2010 0.13010 0.36069 0.376800 0.23882 

2011 0.06790 0.26058 0.359000 0.25865 

 

Table 5.14: Gold:Oil pair estimated unconditional correlations 

 

From the tables reported above it is clearly seen that as in case of purely index pairs, 

estimated of unconditional correlation obtained using the FFNN are in the interval of 

average daily realized correlations, thus FFNN approximates these unconditional 

correlations well. Based on these results we can say that specified neural network 

performs well in approximating given process and it is a powerful quantitative tool that 

can be used for the correlations modelling.  

 

5.3 Forecasting Realized Correlation 

 

Second part of our empirical research is devoted to forecasting selected time-series of 

daily realized correlations. Based on the results obtained in the previous section we’ve 

selected two pairs, one from each group, with strongest daily realized correlations – 

FTSE:DAX and S&P:Oil. There are two aims we’ve set for the forecasting exercise: 

1. analyze possibility of forecasting time-series of daily realized correlations, and 

2. assess which of selected forecasting techniques, namely AR(p) model, HAR 

model and nonlinear autoregressive neural network (NARNET) perform better 

in forecasting task. 

Importance of correlation measure in different areas of finance and risk management 

was discussed in the introduction to this thesis. Since realized correlation is actually 
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observed, or ”true”, correlation it makes sense to analyze it and forecast it to apply 

further in financial decision making. Time-series of daily realized correlations for 

mentioned pairs were obtained by calculating daily realized correlations for the period 

between 2008 and 2011 using realized correlation measure discussed in detail in the 

Chapter 3. We judge forecasting performance of selected techniques using following 

statistics: Root Mean Squared Error (RMSE), QLIKE loss function, Mincer-Zarnowitz 

regression (MZ). 

Descriptions of subject time-series, summary statistics and their plots were already 

presented in the previous section of this chapter. First observation that should be made 

based on summary statistics and charts of subject time series is that both time-series 

were not stable over the examined period. There is significant difference between mean 

and median values of S&P:Oil pair. Furthermore, pair S&P:Oil revealed negative daily 

realized correlations during 2008 and at the end of 2010 – beginning 2011. This may 

support our assumption established earlier, that investors may escape form stock 

markets to safer commodities during the crisis. Realized correlation between FTSE and 

DAX has never reached negative values.  

Before we start with forecasting subject time-series, we also report results of JB and 

ADF tests to see if subject series are stationary and how far they are from being 

normally distributed. 

 

Pair J-B test p-value ADF test 

FTSE:DAX 573.76 0.000 -10.74 

S&P:Oil 210.10 0.000 -4.27 
  

Table 5.15: JB and ADF tests 

 

From the statistics in table 5.15 it is clear that both time-series are not normally 

distributed and presence of the unit root cannot be rejected, so we cannot assume 

stationarity. However, we did not make any transformation to the considered series 

since we are interested in forecasting realized correlations as they are. Let’s start with 

description of our approach to the forecasting problem. As it was mentioned earlier, we 

focus on forecasting selected series of daily realized correlations using autoregressive 

model of order p (AR(p)), heterogeneous autoregressive model (HAR) and nonlinear 

autoregressive neural network (NARNET). Specification of AR(p) model was provided 

in the Chapter 2. HAR model that we use in this section is presented by equation 3.8. 
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NARNET model was specified in the Chapter 4. We assume certain autoregressive 

process behind the development of realized correlations. We estimate that process using 

specified techniques. 

We forecast one day-ahead value of FTSE:DAX and S&P:Oil realized correlations 

using rolling window forecast approach. Rolling window means that out of total T 

observations first n are selected. Than specified AR(p) and HAR models are estimated, 

or NARNET is trained, on these n observations. Next step is to obtain forecast of (n+1) 

value. The size of the window, i.e. n, is kept during the whole exercise. We then take 

actual observations t=2,...,(n+1)and estimate or train our models and get an estimate of 

(n+2) value. This process goes on till the forecast of last observation T is obtained. We 

use windows of different size to see how increase in training sample, i.e. information 

that is available to the models, improves forecasting performance. 

Our selected models were setup as follows. Firstly, for AR(p) model to define 

number of lags p, we estimated number of significant lags for each year from 2008 to 

2011. For different years number of significant lags was between 1 and 3. Since the 

training window covers all four years we use all three specifications of AR(p) model for 

the forecasting exercise to account for different significant lags. Setup of the HAR 

model has been provided in the Chapter 3 (equation 3.8). As for the NARNET model, 

selection of number of lagged values is rather subjective. We started with 2 lagged 

values and estimated models with number of autoregressive lags all the way up to 7. Till 

lag 5 RMSE of NARNET forecast was declining. However, starting with lag 6 RMSE 

started to increase for forecasts performed for subject time-series. That is why we use 

NARNET with 5 lags in our work. 

To define the size of window we decided to use two sizes – one that represent 

approximately 90% of the full sample, and second that represents 95%. It means that for 

FTSE:DAX pair window sizes were 850 and 900 observations out of total 954. For 

S&P:Oil pair these were 725 and 770 out of 816.  

For the purposes of comparison of forecasts obtained using different models we’ve 

selected RMSE and QLIKE loss functions. Mentioned loss functions are defined as 

follows: 

1 2

1

N

ti
RMSE N e−

=
= ∑          (5.1) 
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1
(ln / )
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t t ti
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=
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where te is the difference between target series “corr” and forecasted values “fcast”. 

The better the forecast is, the lower should be the value of a loss function. 

Table below summarizes statistics based on which we compare the forecasting 

performance of selected models. We start with FTSE:DAX pair and training window of 

850 observations. 

Model RMSE QLIKE 

NARNET 0.05699 87.20052 

AR1 0.05974 87.22154 

AR2 0.05606 87.18966 

AR3 0.05266 87.16155 

HAR 0.05008 87.14105 
 

Table 5.16: FTSE:DAX one day-ahead forecast performance, window size 850  

 

It can be seen from the table that on sample of 850 observations NARNET did not 

outperformed AR(3) and HAR models in terms of yielding lower values of loss 

functions. Moreover, HAR model forecast of one day-ahead value of realized 

correlation is best among selected models. Among AR(p) models, AR(3) specification 

performed best in terms of statistics reported above.  

Next table present results of Mincer-Zarnowitz regression (MZ-regression). MZ-

regression is defined as follows: 

( ) ( )n h n h n n h ny y eα β+ + += + +          (5.3) 

where n hy + is a target series being forecasted, ( )n h ny + is an (n+h) step forecast based on n 

previous observations of the target series and ( )n h ne + is an error term. MZ-regression 

basically tells us how good the forecast is by regressing actual values of the target on 

forecasts. If the forecast is statistically good, beta coefficient should be close to one and 

significant. 

Model MZ-regression, 

beta coeeficient 

Significance 

NARNET 0.18568 - 

AR3 0.98688 *** 

HAR 0.99295 *** 
 

Table 5.17: FTSE:DAX one day-ahead forecast tests, window size 850 

 

Based on the values of MZ-regression we can see that forecast obtained using 

NARNET is not significant. On the other hand, results for HAR model are relatively 
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good with beta of MZ-regression close to 1 and significant. We report MZ-regression 

results for AR(3) model only because this specification performed best among selected 

AR(p) specifications. Chart below illustrates forecasts obtained using NARNET and 

HAR model. 
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Fig. 5.6: FTSE:DAX daily realized correlations forecasts, window size 850 

 

Following tables present statistics and tests for the same FSTE:DAX pair with larger 

training window of 900 observations. 

Model RMSE QLIKE 

NARNET 0.04295 45.08104 

AR1 0.05164 45.11223 

AR2 0.04689 45.09424 

AR3 0.04431 45.08516 

HAR 0.03957 45.06999 
 

Table 5.18: FTSE:DAX one day-ahead forecast performance, window size 900 

 

Model MZ-regression, 

beta coeeficient 

Significance 

NARNET 0.61524 ** 

AR3 0.63571 * 

HAR 0.71777 *** 
 

Table 5.19: FTSE:DAX one day-ahead forecast tests, window size 900 

 

On the training sample comprising 900 observations NARNET outperformed AR(3) 

model in terms of loss functions values. Value of MZ-regression beta for NARNET 

trained on 900 observations is significantly better than one obtained on 850 data points. 

However, NARNET still was not capable of outperforming simple HAR model.  
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Following chart plots forecasts obtained using NARNET and HAR model to 

illustrate differences between two forecasts. 

 

Fig. 5.7: FTSE:DAX daily realized correlations forecasts, window size 900 

 

We now turn to the results of forecasting daily realized correlations of S&P:Oil pair 

calculated over the period between 2008 and 2011. As before, we used two sizes of 

training window, namely 725 and 770 observations out of total 816. Since the time-

series of daily realized correlations for this pair is much more “complicated” for the 

models we’ve selected for our analysis in terms of larger jumps during the considered 

period, we expect worse overall forecasting performance of the models than in case of 

FTSE:DAX pair. We start with presenting results we’ve obtained using training window 

comprising 725 observations. We use the same specifications of AR(p), HAR and 

NARNET models and rolling window forecast approach as in case of FTSE:DAX pair. 

Tables below present values of coefficient of determination, RMSE and QLIKE 

statistics for forecasts obtained using selected models. 

 

Model RMSE QLIKE 

NARNET 0.13446 40.38853 

AR1 0.14367 41.76373 

AR2 0.13510 40.50729 

AR3 0.12964 40.05818 

HAR 0.12736 39.74229 
 

Table 5.20: S&P:Oil one day-ahead forecast performance, window size 725 

 

Based on the values of RMSE statistics we can conclude that among all models HAR 

performed best once again. AR(3) model performed better than NARNET and other 

specifications of AR(p). Next table summarizes results of Mincer-Zarnowitz regression 

for AR(3) model, HAR model and the NARNET. 
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Model MZ-regression, 

beta coeeficient 

Significance 

NARNET 0.50040 *** 

AR3 0.54659 *** 

HAR 0.58413 *** 

 

Table 5.21: S&P:Oil one day-ahead forecast tests, window size 725 

 

Results of MZ-regression suggest that forecast obtained using HAR model was again 

better than those of AR(3) and NARNET models. Following chart illustrates forecasts 

obtained using HAR and NARNET. 
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Fig. 5.8: S&P:Oil daily realized correlations forecasts, window size 725 

 

Following tables present values of RMSE, QLIKE loss functions and MZ-regression 

results for selected models and training window of 770 observations for S&P:Oil pair. 

Model RMSE QLIKE 

NARNET 0.10882 24.30812 

AR1 0.11963 24.34759 

AR2 0.11417 24.17612 

AR3 0.10760 24.07544 

HAR 0.10336 24.01367 
Table 5.22: S&P:Oil one day-ahead forecast performance, window size 770 

 

Model MZ-regression, beta 

coeeficient 

Significance 

NARNET -0.38375 - 

AR3 -0.22280 - 

HAR -0.29803 - 
Table 5.22: S&P:Oil one day-ahead forecast tests, window size 770 
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Following chart plots forecasts of subject realized daily correlations obtained using 

NARNET and HAR models.  
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Fig. 5.9: S&P:Oil daily realized correlations forecasts, window size 770 

 

Based on the results presented above and aims that were set for this part of our 

empirical research we can make several conclusions. Firstly, HAR model performed 

best among selected models in terms of RMSE and QLIKE loss functions and Mincer-

Zanowitz regression results. Despite its simple composition, HAR is rather powerful 

model for forecasting realized correlations. Secondly, even though the specified 

nonlinear autoregressive neural network did not outperformed HAR model in 

forecasting realized correlations if loss functions and MZ-regression are considered, it is 

still a powerful computational structure with good potential in forecasting exercises. 
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6 Summary 

In this thesis we have addressed several issues related to the modelling of 

correlations between stock markets and commodities, namely FTSE, DAX, PX, S&P, 

Gold futures and Oil futures, and analyzing their dynamics. We have based our analysis 

on the high-frequency data with a sampling frequency of 5 minutes. We started by 

computing daily realized correlations and analyzing their development over the period 

between 2008 and 2011. We have significant fluctuations in subject daily realized 

correlations. Among purely indices pairs, strongest correlation was registered for the 

FTSE:DAX pair of indices. Even though fluctuating a lot during 2008 and 2010-2011, 

these indices remained positively correlated. Other pairs experienced decreases to 

negative values over the given period. For index-commodity pairs we’ve seen several 

decreases to negative correlations. It may support the hypothesis that investors may 

escape from risky stock markets during the crisis and turn to the commodities instead. 

These empirical results may have implications, for example, for the portfolio 

management where correlation is one of the key concepts and diversification 

possibilities are important. We also assessed how well the feedforward neural network 

performs in approximating unconditional correlations based on average daily realized 

correlations. Our results suggest that FFNN is very power computational structure with 

a good potential in in-sample fitting.  

In the second part of our empirical research we’ve forecasted time-series of 

FTSE:DAX and S&P:Oil daily realized correlations. We used HAR model, AR(p) 

model and nonlinear autoregressive neural network NARNET. Based on the result 

discussed in the Chapter 5, even though HAR model performed best in forecasting 

subject time-series, NARNET is also a good choice for realized correlations forecasting. 
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Appendix 

Appendix 1: Probability distributions of subject time-series analyzed in section, 5 

minutes sampling frequency 
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