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Abstract

Volatility spillovers in stock markets have become an important phenomenon,

especially in times of crises. Mechanisms of shock transmission from one mar-

ket to another are important for the international portfolio diversification. Our

thesis examines impulse responses and variance decomposition of main stock in-

dices in emerging Central European markets (Czech Republic, Poland, Slovakia

and Hungary) in the period of January 2007 to August 2009. Two models are

used: A vector autoregression (VAR) model with constant variance of resid-

uals and a time varying parameter vector autoregression (TVP-VAR) model

with a stochastic volatility. Opposingly of other comparable studies, Bayesian

methods are used in both models. Our results confirm the presence of volatility

spillovers among all markets. Interestingly, we find significant opposite trans-

mission of shocks from Czech Republic to Poland and Hungary, suggesting that

investors see the Central European exchanges as separate markets.
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Abstrakt

Přeléváńı volatility akciového trhu se zejména v časech krize stalo d̊uležitým

fenoménem. Mechanismy přenosu šok̊u z jednoho trhu do druhého jsou d̊uležité

pro diverzifikaci portfolia v mezinárodńım měř́ıtku. Naše diplomová práce zk-

oumá impulsńı odezvy a dekompozici rozptylu čtyř hlavńıch akciových index̊u

rozv́ıjej́ıćıch se trh̊u ve středńı Evropě (Česká republika, Polsko, Slovensko

a Mad’arsko) v obdob́ı od ledna 2007 do srpna 2009. V práci jsou použity

dva modely: vektorová autoregrese (VAR) s konstantńım rozptylem rezidúı a

vektorová autoregrese s časově rozd́ılnými parametry (TVP-VAR) se stocha-

stickou volatilitou. Na rozd́ıl od jiných porovnatelných studíı jsou v obou mod-

elech použity Bayesovké metody. Naše výsledky potvrzuj́ı př́ıtomnost přeléváńı

volatility ve všech trźıch. Zaj́ımavým zjǐstěńım je nalezeńı opačného přenosu

šok̊u z České republiky do Polska a Mad’arska, což naznačuje, že investoři vid́ı

středoevropské burzy jako oddělené trhy.
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Chapter 1

Introduction

Together with the growing technology potential and corresponding stock mar-

ket growth, a numerous research on integration and volatility spillovers of these

markets has been performed lately. Such research included advanced as well as

emerging economies. However, studies concentrating on integration and volatil-

ity spillovers in New Member States have usually examined the relationship of

these stock markets to some advanced markets, e.g. German or British. This

thesis examines the direct relationship among these stock markets.

We focus our attention to the so called Visegrad countries. Three out

of these countries, Czech Republic, Hungary and Poland are the largest new

member states that joined EU in 2004. They represent growing stock markets

and are often considered the most developed economies from the 2004 acces-

sion. Nevertheless, even though these economies developed very much since

early 1990’s, their stock markets still have not achieved liquidity and levels of

market capitalisation that would be comparable to Western European or main

world’s stock markets. As a result, possible gains from international portfolio

diversification into these countries arise (Gilmore & McManus 2002).

The particular research interest lies in impulse response functions and vari-

ance decomposition of sample indices as their volatility can be seen as a proxiy

for their risk (Scheicher 2001). The analysis of impulse responses will reveal

information about the transmission of shocks from one country to another. The

variance decomposition obtained from impulse responses will show how much

of volatility in each country is driven on its own and how much is transmitted

from the other countries.

The data are examined using two different vector autoregression (VAR)

models. Firstly, we provide a basic homoscedastic vector autoregression. The
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second model generalizes our first model by allowing its coefficients and volatil-

ity of residuals to vary in time. Both models are calculated in Bayesian frame-

work, which is one of the main contributions of our thesis.

The remainder of this thesis is structured as follows. Chapter two pro-

vides overview of theory and literature associated with topics of this thesis and

chapter three presents basic terms and tools used in Bayesian econometrics.

Chapter four presents data and methodology used in the empirical estimation,

results of which are presented in chapter five. Chapter six discusses robustness

of our results, chapter seven concludes and suggests ideas for future research.



Chapter 2

Theory and Literature Review

2.1 Efficient market hypothesis

Efficient market hypothesis (EHM) is by far the most important concept that

has been used in modern finance. In fact, Frankfurter & McGoun (1999) state

that ”many equate what is called modern finance with the EMH”. According

to EMH, all markets move in an efficient manner which implies an impossibility

of abnormal returns, because any news is immediately negated by the rational

behavior of investors. There are three forms of EHM. The weak form only con-

siders historical information, the semi-strong applies for all publicly available

information and the strong form includes even privately available information.

An interested reader is advised to see Fama (1970) for a detailed overview of

the three concepts.

Even though many have tried, up to a current state no one has come with a

theory that would generally outperform the EMH (Fama 1998), however, many

have shown that EMH does not truly reflect the actual behavior of financial

markets. It is beyond the scope of this thesis to provide an overview of all

such demonstrations,1 instead of it we merely state that the sole existence

of volatility spillovers provides an example of market inefficiency (Wei-Chong

et al. 2011).

2.2 Portfolio diversification

A generally known fact is that investors tend to diversify their portfolios in

order to reduce their risk. However, many have found that with the growth of

1Various challenges to EMH are described in Novak (2008).
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technology and corresponding interdependencies, benefits of portfolio diversifi-

cation in developed markets declined. On the other hand, this did not apply for

emerging markets where gains from portfolio diversifications would still exist

(Gilmore & McManus 2002).

Though the early emerging market research concentrated mainly on Asian

and Latin American countries, with the transition of Central European econo-

mies from communist regimes these markets became interesting as well (Gilmore

& McManus 2002).

Several studies such as Scheicher (2001), Gilmore & McManus (2002) and

Égert & Kočenda (2011) find no evidence of causal relationship of Central

European markets, which can be seen as a proof that CE markets were at

least at some point interesting in terms of portfolio diversification for investors

from developed markets. On the other hand, results of VAR model variance

decomposition by Chelley-Steeley (2005) find presence of integration in Central

European markets. Results of our analysis will reveal whether investors make

differences among particular Central European markets, which would mean

existence of additional gains from diversifying portfolios inside of CE markets.

2.3 Shock transmission and volatility spillovers

Cappiello et al. (2006) use the regression quantile method to find that the Czech

Republic, Hungary and Poland exhibit strong comovements among themselves.

Although our research question does not include interdependency of returns, it

is a clue that volatility spillovers should exist.

Models assessing volatility spillovers in Central European countries found

evidence that such spillovers do exist. Scheicher (2001) found out that shocks

in Hungarian market spill over to the Czech market, which spills over to the

Polish market.2 Kasch-Haroutounian & Price (2001) analyze main stock indices

of Czech, Polish, Slovak and Hungarian markets and find significant volatility

spillovers from Hungarian to Polish market during the 1990s.

Fedorova & Saleem (2010) analyse markets of Czech Republic, Poland, Hun-

gary and Russia in the period from 1995 to 2008. They find an existence of

bidirectional shock transmissions for pairs Czech Republic & Poland and Czech

Republic & Hungary, but only a one-directional relationship of Poland & Hun-

gary. To the contrary, they find the exactly opposing result for volatility spill-

2Sheicher’s results hold mainly for returns, but several volatility coefficients are also sig-
nificant
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overs, which are found to be bidirectional for Poland & Hungary, but Czech

Republic is dominated by Hungary and at the same time dominates the Polish

market.

2.4 TVP-VARs

The advantage of time-varying parameter VAR (TVP-VAR) models lies in es-

timating different coefficients for each time unit of the sample. As far as the

TVP-VAR work is taken generally, researchers have mostly concentrated on

various macroeconomic variables, such as relationship of inflation and unem-

ployment (Cogley & Sargent 2001), general monetary policy (Canova & Gam-

betti (2009), Cogley & Sargent (2005), Koop et al. (2009)) or relationship of

output and exchange rates in a single country (Mumtaz & Sunder-Plassmann

2010). Canova & Ciccarelli (2006) observe shock transmissions in G-7 countries

and Baumeister et al. (2008) examine the dynamic effects of liquidity shocks

on economic activity, asset prices and infation in Euro area.

Unfortunately, the useful property of estimating huge number of parameters

comes with a price of being very demanding in terms of needed computational

power. Because of this, only a scarce research has been conducted on financial

data. Such research includes Kumar (2010) who runs several models examining

the daily exchange rates of Indian currency and finds out that the TVP-VAR

model consistently outperforms simple VAR and ARIMA models.

Ito & Noda (2012) run the TVP-VAR model for stock market indices.

Specifically, they use impulse responses of a model with Japanese and U.S.

markets to find out that stock market linkages and signs of market efficiency

do vary in time. However, the dataset of Ito & Noda (2012) contains monthly

returns, which means that they lose information about intra-monthly behavior

of indices. Our model tries to estimate the TVP-VAR model on a daily stock

market data.

Up to our knowledge, only several studies have been conducted on daily

stock market data. Sugihara (2010) examines volatility spillovers among Eu-

ropean, Japanese and U.S. share and option prices. Triantafyllopoulos (2011)

runs a TVP-VAR model for explaining daily stock prices of IBM and Microsoft

in the U.S. market.



Chapter 3

Brief Intro to Bayesian

Econometrics

The purpose of this chapter is twofold. Firstly, it provides an introduction to

the area of Bayesian econometrics for the readers that are unfamiliar with this

field. Secondly, it defines some notations and provides definitions used in the

remainder of this thesis. It is important to stress that this chapter is by no

means a complete guide to the wide field that Bayesian econometrics is. Readers

interested in this topic are advised to go through some introductory Bayesian

book. A brief and non-mathematical introduction can be found in Koop (2003),

somewhat more rigorous and generalized approach is in Dorfman (1997). For

more technical analysis including empirical solutions of many methods see Koop

et al. (2007). Where not stated otherwise, the vast majority of information

contained in this section is based on these three books.

The well-known classical, sometimes called frequentist econometrics, views

parameters of interest as true, unobservable values, about which one is trying

to find estimates that are as close as possible to such true values. The biggest

difference of Bayesian econometrics is that it takes these parameters as random

variables and is consecutively only interested in their distributional properties.

Even though the Bayesian econometrics started as a field in the 1970’s,

its methods started to blossom with the development of computer hardware.

The reason why such methods have recently become used so extensively is that

estimation of advanced models commonly requires computing analytically in-

solvable multidimensional integrals, hence implementation of Bayesian methods

often requires usage of numerical software together with advanced hardware.
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3.1 Basic ideas

3.1.1 Bayes theorem

The cornerstone of Bayesian econometrics is the Bayes theorem. Let A and B

be any random variables. Therefore, standard rules of probability imply that

p(A,B) = p(A|B)p(B). (3.1)

Using the fact that the order of variables does not generally matter, we can

rewrite (3.1) as

p(A,B) = p(B|A)p(A). (3.2)

Combining (3.1) and (3.2) together, we obtain the simplest form of Bayesian

theorem:

p(B|A) =
p(A|B)p(B)

p(A)
. (3.3)

Even though A and B can in principle be any variables about which one can

express some probability beliefs, econometric analysis is usually interested in

some parameters of a set of specific variables. Therefore, we can rewrite (3.3)

as

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (3.4)

where θ is the set of parameters we want to estimate about or using the set

of variables y. Function p(θ|y) is called the posterior density which is used in

various methods to establish results of the analysis.1 Function p(y|θ) is called

the likelihood function and probability p(θ) is called the prior density. As a

researcher is usually interested in a set of parameters θ without the need to

examine the probability p(y), the denominator can be dropped out as it does

not involve θ. The resulting relationship

p(θ|y) ∝ p(y|θ)p(θ) (3.5)

is sometimes reffered as ”posterior is proportional to likelihood times prior”

(Koop 2003).

1Perhaps the most common approach is to evaluate the posterior density to obtain values
of θ.
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3.1.2 Likelihood

The likelihood function p(y|θ) is sometimes called ’the data generating process’.

It reflects some probabilities of the data. For example, if errors of data are

normally distributed (see the illustrative model in section 3.2), the likelihood

function will be the density of normal distribution.

3.1.3 Prior

A prior p(θ) is a probability function which reflects a set of beliefs that the

researcher has about θ before seeing the data. The choice for the researcher is

free, however, there are some conventional rules that should be fulfilled while

selecting a prior. For example, the prior should not be so centered that it would

not allow contribution of the data for updating beliefs about θ (Dorfman 1997).

There are several ways how to divide existing priors according to some of

their characteristics. The first distinction is into informative and noninfor-

mative priors. A noninformative prior does not express any particular beliefs

about θ, it simply diffuses all possible information among all possible variants.

An example can be a prior in form p(θ) = 1
σ

in case of linear regression model

- such a prior is called Jeffrey’s prior. On the other hand, an informative

prior can restrict some parameters into a range. For example, in a supply and

demand equation one can restrict the parameters of θ to positive or negative

values according to a set of standard economic assumptions. Alternatively, a

normal distribution with chosen exogenous parameters can be specified for the

prior.

Another distinction of priors is to proper and improper priors. A proper

prior is such that its probability density integrates to unity. Accordingly, the

probability density of improper prior does not integrate to unity, but to some

other value, commonly infinity. On the priors from the previous paragraph we

can illustrate a common property of priors: that informative priors are often

proper, and noninformative priors are commonly improper.

A conjugate prior is such that leads to the posterior which allows for its an-

alytical analysis. Moreover, natural conjugate prior is the case when the prior

comes from the same family of distributions as the likelihood and posterior

(Koop & Korobilis 2010). Conjugate priors allow for a considerable simplifi-

cation of the analysis, however, their importance has declined with the rise of

speed and capacity of computing techniques.

A hierarchical prior is a prior that depends on some other parameters which
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are themself calculated in a Bayesian way using a prior on their own. Param-

eters of such higher prior are called hyperparameters. Hierarchical priors are

heavily used in many advanced methods, for an illustrative example see section

3.4 on state space modelling.

Theoretically, a Bayesian prior should be independent on the data as it

represents the prior beliefs of the researcher before seeing the data. However,

there has been a growing extent of so called data based priors which take some

prior assumptions using the data. The range of possibilities for such prior is

virtually unlimited - for example, Ingram & Whiteman (1994) use the results of

business cycle theory models as priors in VAR model. Del Negro & Schorfheide

(2004) do the same with results of DSGE models. These papers show that even

though data based priors violate the independency condition, it is not unlikely

that they will perform well in the empirical analysis.

3.2 Illustrative model

For illustration of basic concepts of Bayesian analysis, we will use the linear

regression model in form of equation 3.6. Even though standard estimation of

such model requires validity of potentially restrictive assumptions, we can do

so using a useful property of of Bayesian inference. It can be shown that many

econometric models can be transformed by various techniques to the form of

linear regression model. The great feature of Bayesian modelling lies in the

fact that complicated models can in many cases be estimated by combining

techniques from simpler models in a straightforward manner.2

Let us follow the demonstration of Koop (2003) and assume that a regression

model is described by equation

y = Xβ + ε, (3.6)

where y = (y1, y2, . . . , yT )′ is the vector of realizations of a dependent variable,

X is a T × k matrix of explanatory variables, β = (β1, β2, . . . , βk)
′ is a k × 1

vector of coefficients and ε = (ε1, ε2, . . . , εT )′ is a T × 1 vector of residuals.

According to the common approach of Bayesian analysis, let us assume that

ε is i.i.d. and following a homoscedastic N(0N , h
−1IN) where 0N is a vector

of zeros, h = σ−2 and IN is N × N identity matrix so the covariance matrix

2A specific example is the inclusion of heteroscedasticity into the models of Koop &
Korobilis (2010).
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of residuals is σ2IN . Hence the set of parameters of interest θ takes the form

θ = (β, h).

3.2.1 Likelihood

Using the fact that ε follows the multivariate normal distribution, we can write

(see (3.31))

p(y|β, h) =
h
N
2

(2π)
N
2

{
exp

[
−h

2
(y −Xβ)′(y −Xβ)

]}
. (3.7)

As we do not know anything about h and β, we need to approximate it. The

most convenient way is to use OLS estimates.3 Therefore, we have

β̂ = (X ′X)
−1
X ′y (3.8)

and

s2 =

(
y −Xβ̂

)′ (
y −Xβ̂

)
N − k

. (3.9)

Putting (3.8) and (3.9) into (3.7), it can be shown that the likelihood function

transforms to the form

p(y|β, h) =
1

(2π)
N
2

{
h

1
2 exp

[
−h

2
(β − β̂)′X ′X(β − β̂)

]}{
h
N−k

2 exp

[
−h(N − k)

2s−2

]}
.

(3.10)

Such a form of likelihood function will be useful later in the analysis. Note that

the middle term is the p.d.f. of the multivariate normal distribution (equation

3.31) and the last term can be interpreted as a p.d.f. of Gamma distribution

(equation 3.32).

3.2.2 Prior

There are several ways how to select a prior for the linear regression model.

Following Koop (2003), we show the natural conjugate prior which allows for

the analytical examination of the resulting posterior distribution. Due to the

form of (3.10), if we set ν = N − k, the natural conjugate prior requires that

3Details about these estimates can be found in many introductory econometric books,
e.g. Greene (2002).
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the prior for h comes from a gamma distribution

h ∼ G(s−2, ν)

and the prior for β conditional on h comes from the multivariate normal dis-

tribution

β|h ∼ N(β, h−1V ).

Putting together, we have a Normal-Gamma distribution

β, h ∼ NG(β, V , s−2, ν). (3.11)

The bar under the parameter, •, means the arbitrarily chosen initial belief

about a prior density, therefore, it is a number which is to be chosen freely by

the researcher. In the next section we will introduce a bar over the parameter,

•, which will be an updated value of the posterior parameter after the data

come in.

3.2.3 Posterior

According to the already cited expression ”posterior is proportional to like-

lihood times prior”, the posterior is obtained by multiplication of the like-

lihood from (3.10) by the probability density fNG(β, h|β, V , s−2, ν) obtained

from (3.11). Thanks to the fact that the prior is natural conjugate, we obtain

the posterior distribution

β, h|y ∼ NG(β, V , s−2, ν), (3.12)

where

V =
(
V −1 +X ′X

)−1
, (3.13)

β = V
(
V −1β +X ′Xβ̂

)
, (3.14)

ν = ν +N (3.15)

and s−2 satisfies the condition

νs2 = νs2 + νs2 +
(
β̂ − β

)′ [
V + (X ′X)

−1
]−1 (

β̂ − β
)
. (3.16)

Equation 3.12 represents the joint posterior distribution of β and h. It is
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possible to integrate out h in order to obtain the marginal distribution of β

without the influence of h. This can be done using the fact that

p(β|y) =

∫
p(β, h|y)dh. (3.17)

It can be shown that integrating out h leads to a multivariate-t distribution

β|y ∼ t(β, s2V , ν), (3.18)

therefore (see section 3.6)

E(β|y) = β, (3.19)

var(β|y) =
νs2

ν − 2
V . (3.20)

Moreover, as β, h|y ∼ NG(β, V , s−2, ν), we have h|y ∼ G(s−2, ν), hence

E(h|y) = s−2, (3.21)

var(h|y) =
2s−2

ν
. (3.22)

Equation 3.19 can be interpreted as a weighted average of OLS coefficient β̂

and prior mean β, with the weights being X ′X and V −1 (Strasky 2010). Thus,

Bayesian estimation in this setting combines classical frequentist approach with

certain prior beliefs about parameters of interest. One interesting result arises

if we set the noninformative prior in the way that ν = 0 and V −1 = 0, as such

estimate of β is equal to β̂ from OLS (Koop 2003). Therefore, one can use

Bayesian techniques to obtain results equal to the classical sampling theory

approach.

3.2.4 Posterior analysis

The very basic rules of probability are used while analyzing posterior charac-

teristics. Thus, if the researcher is interested in any function g(θ), the fact

that

E (g(θ)|y) =

∫
g(θ)p(θ|y)dθ (3.23)

is used. Equation 3.23 might seem little too abstract, therefore we show two

examples of likely the most common integration in Bayesian inference. Let us
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assume that one tries to estimate a value of some parameter, denoted by θi.

To do so, its mean and variance are needed in order to specify the confidence

intervals where the value of parameter lies with some chosen probability. Thus,

function g has the form of g(θ) = θi (equation 3.24) and g(θ) = θ2
i (equation

3.25):4

E (θi|y) =

∫
θip(θ|y)dθ (3.24)

E
(
θ2
i |y
)

=

∫
θ2
i p(θ|y)dθ (3.25)

The natural conjugate prior used in this illustrative example is only one of

many priors that could be used. As the choice of a prior could considerably

affect results of the estimation, prior sensitivity analysis is used to test for

robustness of results. This analysis consists of repeating the model estimation

using several parameter values (and, if applicable, several different priors).

3.3 Nonconjugate priors

Natural conjugate priors described in the previous section have a huge ad-

vantage that analytical results are available for integrals in (3.23), therefore

no posterior simulation is required. However, they also have some undesir-

able properties that should be kept in mind when a natural conjugate prior is

used. For example, usage of a natural conjugate prior in VAR modelling im-

plies that covariances of coefficients of explanatory variables are proportional

to each other, a property that might be undesirable (Koop & Korobilis 2010).

Consecutively, non-conjucate priors are often used.

As the analytical results for non-conjugate priors are not available, numeri-

cal simulations of posterior densities are required. There are several ways how

to approach such analysis. This section describes two particular methods, the

Monte Carlo integration and Gibbs sampling. For a concise review of these and

other posterior simulation methods, see Tanner (1996).

4(3.25) is needed because the rules of probability imply that V ar (θi|y) = E
(
θ2i |y

)
−

[E (θi|y)]
2
.
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3.3.1 Monte Carlo integration

Monte Carlo integration is a very general class of methods which allows us to

estimate E (g(θ)|y). To illustrate how it works, let us define a new notation

θ(s) which marks the s-th draw from p(θ|y). Moreover, let us define

ĝS =
1

S

S∑
s=1

g
(
θ(s)
)
. (3.26)

The law of the large numbers implies that if all θ(s) are random, lim
S→∞

ĝS =

E (g(θ)|y). In empirical estimation, we can obtain the mean of parameter θi by

taking random draws from (3.24) and analogously use (3.25) to obtain confi-

dence intervals. These are obtained using the properties of normal distribution

as all distributions converge to normal when S → ∞ according to the central

limit theorem.

Unfortunately, it is not always possible to take random draws from the

probability density p(θ|y). In such cases Monte Carlo integration cannot be

used.

3.3.2 Gibbs sampling

Even though it is often not possible to take draws from probability density

p(θ|y), the conditional distributions of subsets of θ commonly have forms that

allow to draw from them. Without loss of generality, let us say that θ can be

divided into three blocks θ1, θ2 and θ3. The Gibbs sampling is performed in

the following way:

1. Choose the initial values θ
(0)
i ,

2. Draw θ
(1)
1 from p

(
θ1|y, θ(0)

2 , θ
(0)
3

)
,

3. Draw θ
(1)
2 from p

(
θ2|y, θ(1)

1 , θ
(0)
3

)
,

4. Draw θ
(1)
3 from p

(
θ3|y, θ(1)

1 , θ
(1)
2

)
,

5. Draw θ
(2)
1 from p

(
θ1|y, θ(1)

2 , θ
(1)
3

)
,

6.
...

7. Draw θ
(S)
3 from p

(
θ3|y, θ(S)

1 , θ
(S)
2

)
.
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We can see that θ(s) is dependent on θ(s−1). Such process is generally called

a Markov process. Therefore, the Gibbs sampler is an example of so called

Markov Chain Monte Carlo procedure, a wide range of algorithms that use

such draws.

Even though the dependence of θ(s) and θ(s−1) is a violation of the Monte

Carlo integration assumptions, it has been proven that with S going to infinity,

the value of ĝ(θ) computed from θ(j)’s converges to E (g(θ)|y) (Geweke 1999).

To assure that the choice of θ
(0)
i does not have influence on the resulting draws

of θi, S is divided into SB and SD, where the SB marks the number of burn-in

iterations where draws of θi are not stored.

3.4 State space models

State space models have been extensively used in the empirical research with

both Bayesian and frequentist approaches. It is a very general and wide class

of models that can incorporate many of the well known models such as e.g.

ARMA and VAR models. The reason why this section is included here is that

understanding basics of state space models is a necessary requirement before

continuing towards TVP-VAR models (Koop & Korobilis 2010). It also shows

how the MCMC method can be implemented in the framework of state space

models.

Following Koop & Korobilis (2010), a general state space model can be

written by a set of equations

yt = Wtδ + Ztβt + εt, (3.27)

βt+1 = Πtβt + ut, (3.28)

where y is an M×1 vector of dependent variables, Wt is a known M×p0 matrix

of explanatory variables with constant coefficients represented by a p0×1 vector

δ, Zt is a known M × k matrix of explanatory variables with time varying

coefficients represented by a k × 1 time varying vector βt. Errors εt and ut

are independent in time and each other with εt ∼ N(0,Σt), ut ∼ N(0, Qt),

Cov(εt, us) = 0 for t, s = 1, . . . , T and finally Cov(εi, εj) = Cov(ui, uj) = 0 for

i, j = 1, . . . , T and i 6= j. We also assume the k × k matrix Πt to be known.

Equation 3.27 is called the measurement equation and equation 3.28 is

called the state equation. In Bayesian estimation, it is necessary to implement

priors for δ, βt, Πt, Qt and Σt. The posterior density after combining these
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priors with a specific likelihood function will be analytically unobservable so a

computer algorithm that will draw from conditional densities is required (see

section 3.3).

3.5 Stochastic volatility

The well known fact about financial time series models is that their residu-

als often vary in time. There are two main approaches to account for het-

eroscedasticity - the autoregressive conditional heteroscedasticity (ARCH) and

the stochastic volatility. As we only use the latter approach in our model,

we will not describe ARCH in this thesis. A brief and concise review of its

properties can be found in Brooks (2008), alternatively Bauwens et al. (1999)

provide its detailed Bayesian treatment together with other time series meth-

ods. Kim et al. (1998) discuss the differences between ARCH and stochastic

volatility models in Bayesian framework. Jeantheau (2004) shows an example

of a stochastic volatility model that has very similar properties as GARCH(1,1)

model.

The principle of stochastic volatility lies in rearranging residuals into the

form

yt = εt exp

(
ht
2

)
, (3.29)

where εt ∼ N(0, 1) and ht ∼ N
(
0, σ2

η

)
. The volatility component ht is then

modeled as a random walk following

ht+1 = ht + η. (3.30)

Note that equations 3.29 and 3.30 can be seen as a specific class of state space

models described above. As such, stochastic volatility can be incorporated into

various state space models. The simplest stochastic volatility model illustrated

here allows for many extensions. For example, Kim et al. (1998) include a

coefficient φ into equation 3.30, changing its nature from random walk into

an AR(1) process.5 Primiceri (2005) shows an extension to the multivariate

framework. His methodology is used later in this monograph.

5Kim et al. (1998) also develop likelihood inference for stochastic volatility models, which
has been widely used in the following empirical work.
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3.6 Statistical distributions

This section provides a basic overview of statistical distributions appearing

in this monograph. The purpose of this overview is to show the probability

density functions, parameters, means and variances of distributions that might

be unknown for a reader of this text. More details can be found in a variety

of statistical and econometric books, e. g. Koop (2003), Koop et al. (2007).

A very detailed treatment of these and many more statistical distributions

including rigorous proofs and derivations can be found in chapter 3 of Poirier

(1995).

Multivariate normal distribution

A random variable y is said to follow multivariate normal distribution φ(y|µ,Σ)

with mean µ and variance Σ, denoted by y ∼ N(µ,Σ), if its p.d.f. is

φ(y|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, (3.31)

where y and µ are k-dimensional vectors and Σ is a k × k positive definite

matrix.

Gamma distribution

A random variable y is said to follow a gamma distribution, denoted by y ∼
G(α, β), if its p.d.f. is

fγ(y|µ, ν) =

{
c−1
G yα−1 exp

(
− y
β

)
if 0 < y <∞,

0 otherwise,
(3.32)

where

cγ = βαΓ (α)

is the integrating constant and Γ(α) is the gamma function satisfying∫ ∞
0

tα−1 exp(−t)dt.

The mean of gamma distribution is αβ and its variance is αβ2 (Poirier 1995).

The gamma distribution is a generalization of some well known distributions -

specifically, if α = 1, it is the exponential distribution and if β = 2, it is a Chi-
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square distribution. The inverted gamma distribution is also used extensively,

meaning that if y has an inverted gamma distribution, then 1/y has a gamma

distribution.

Normal-Gamma distribution

Let h be a random variable following a gamma distribution G(m, ν) and y

be a random vector following the conditional normal distribution y|h, µ,Σ ∼
N(µ, h−1Σ). Then θ = (y′, h)′ follows the Normal-Gamma distribution denoted

by θ ∼ NG(µ,Σ,m, ν).

Multivariate-t distribution

A continuous k-dimensional random vector y has a multivariate-t distribution

with a mean µ, scale matrix Σ and degrees of freedom ν, denoted by y ∼
t(µ,Σ, ν), if its p.d.f. is denoted by

ft(y|µ,Σ, ν) =
1

ct
|Σ|−

1
2

[
ν + (y − µ)′Σ−1(y − µ)

]− ν+k
2 ,

where

ct =
π
k
2 Γ
(
ν
2

)
ν
ν
2 Γ
(
ν+k

2

) .
In order for the multivariate-t distribution to have a defined mean and variance,

the condition ν > 2 has to be satisfied.6 In such cases, the mean of the

distribution is E(Y ) = µ and its variance is var(Y ) = ν
ν−2

Σ.

In the univariate case, if we set µ = 0 and Σ = 1, we have a well-known

Student-t distribution with ν degrees of freedom.

Wishart distribution

The Wishart distribution is a multivariate generalization of the Gamma distri-

bution defined above. The N×N random positive definite symmetric matrix H

has a Wishart distribution with a scale matrix A (N ×N , known and positive

definite) and degrees of freedom ν (positive scalar), denoted by H ∼ W (A, ν),

if its p.d.f. is given by

fW (H|A, ν) =
1

cW
|H|

ν−N−1
2 |A|−

1
2 exp

[
−1

2
tr(A−1H)

]
,

6If 1 < ν < 2, the mean exists, but the variance does not.
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where

cW = 2
νN
2 π

N(N−1)
4

N∏
i=1

Γ

(
ν + 1− i

2

)
.

If we denote Hxy to be an element of the matrix H in the x-th row and y-th

collumn, then for i, j, k,m = 1, · · · , N the mean of the Wishart distribution is

E(Hij) = νAij, its variance is var(Hij) = ν
(
A2
ij + AiiAjj

)
and the covariance

of two distinct elements is cov(Hij, Hkm) = ν (AikAjm + AimAjk).



Chapter 4

Data and Methodology

In order to capture interdependencies among multiple time series, the vector

autoregression (VAR) model was chosen. The lag length of 5 was selected

to account for possible dependencies originating from one week prior to the

particular observation.

4.1 Data

The stock market data were downloaded from particular stock exchanges’ web-

sites. Data were collected for the period of January 2007 to August 2009. This

time span was chosen as it includes several periods which differ in terms of

market conditions, hence it is likely that properties of the data changed in

time and amplitude of shocks changed as well. As the amount of shocks tends

to increase in times of crisis, higher volatility of markets during such time is

expected.

Figure 4.1 shows the time behavior of the four stock indices during the

sample period. The two cut-off dates depicted by dashed lines were chosen

arbitrarily based on the data properties. The first cut-off date, January 16

2008, was chosen as it is the date when Czech, Polish and Hungarian markets

all fell under the level of the first observation and stayed below this level until

the end of sample period.1 The second cut-off date, March 6 2009, was chosen

as it is the first date since September 2008 where all four markets rose in the

day immediately following the day where all four of them declined.

We can see that all indices share common properties. In fact, behavior of the

1To be precise, this statement holds with the exception of 28 observations in the period
of May 2 to June 18 2008 (34 trading days in total).
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Figure 4.1: Stock market indices, January 2007 to August 2009
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Czech, Polish and Hungarian indices is extremely similar. The sample can be

broken down into three periods which differ in terms of market behavior and are

marked by the vertical lines. The first period represents a stable development

where stock indices behave without a general trend. Afterwards, the crisis

comes and markets start to decline. In March 2009 markets rebound towards

an increasing trend.2

Even though the (non)stationarity of the data is irrelevant in Bayesian

framework, all series were log-differenced in order to assure comparability with

the standard sampling theory research. The second reason to use log-differenced

data is to avoid the potential danger of spurious regression present in time series

modelling.3

Table 4.1: Descriptive statistics of the full sample

CZE POL SVK HUN

Minimum -0.1619 -0.0829 -0.0958 -0.1265
Maximum 0.1236 0.0608 0.1188 0.1318
Mean -0.0005 -0.0004 -0.0004 -0.0004
Std. Dev 0.0226 0.0175 0.0113 0.0220
Variance 0.0005 0.0003 0.0001 0.0005
Skewness -0.4450 -0.2897 0.3497 -0.0696
Kurtosis 12.4862 4.9852 33.8124 8.9799
Jarque - Bera 2572.0738 121.1766 26913.7294 1013.7143

Note: Jarque-Bera test statistics is significant at any imaginable

level of confidence (critical value is 5.9706).

Descriptive statistics of the full sample is presented in table 4.1. Each

variable contains 680 observations, which totals to the sample size of 2720. We

can see that data from all countries have a structure that is typical for financial

time series’. All series except Slovakia are skewed to the left which means that

there were relatively more declines than increases (on the other hand, these

relatively few increases had a relatively higher magnitude). We can also see

that all four series are leptocurtic, which is a very common property of financial

2Note that there is a difference in the behavior of Slovak market which contains very low
but stable increasing trend from approximately half of the stable period to approximately
half of the crisis.

3Spurious regression arises when two or more series contain a trend - in such cases one can
find significant statistical relationship among variables that do not have any causal relations
(see Granger & Newbold (1974)).
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data (Brooks 2008).4 The Jarque-Bera statistics show that all series are highly

non-normal.

Table 4.2 shows the descriptive statistics of the three subsamples described

above. Period 1 runs from January 2007 to January 15 2008 and contains 264

observations for each time series. Period 2 runs from January 16 2008 to March

5 2009 and contains 291 observations. Period 3 runs from March 6 2009 to the

end of August 2009 and contains 125 observations.

Table 4.2: Descriptive statistics of subsamples

CZE POL
S1 S2 S3 S1 S2 S3

Min. -0.0567 -0.1619 -0.0644 -0.0631 -0.0829 -0.0514
Max. 0.0274 0.1236 0.0612 0.0446 0.0608 0.0580
Mean 0.0001 -0.0032 0.0048 -0.0002 -0.0026 0.0042
St.d. 0.0110 0.0293 0.0219 0.0135 0.0200 0.0181
Var. 0.0001 0.0009 0.0005 0.0002 0.0004 0.0003
Skew. -0.8408 -0.2763 -0.0873 -0.4241 -0.3443 0.2337
Kurt. 5.6415 9.5178 3.5987 4.8142 4.5918 3.4771
J-B. 107.8618 518.7920 2.0256 44.1172 36.4740 2.3236

SVK HUN
S1 S2 S3 S1 S2 S3

Min. -0.0301 -0.0513 -0.0958 -0.0436 -0.1265 -0.0463
Max. 0.0236 0.0624 0.1188 0.0334 0.1318 0.0640
Mean 0.0003 -0.0013 -0.0001 -0.0000 -0.0032 0.0056
St.d. 0.0064 0.0104 0.0188 0.0117 0.0269 0.0246
Var. 0.0000 0.0001 0.0004 0.0001 0.0007 0.0006
Skew. -1.1698 -0.1938 0.5931 -0.0874 -0.0650 0.1580
Kurt. 8.7564 12.8716 20.908 4.1236 8.3103 2.3730
J-B. 424.7190 1183.3737 1677.6157 14.2233 342.1167 2.5681

Several properties of subsamples are worth mentioning. Firstly, we can see

that means of all series during the crisis are negative, which is an expected

property. Similar statement holds for means in the rebound period, where only

Slovakia with a mean of −0.0001 reports negative value. Secondly, the data

are negatively skewed in the first two periods and positively skewed during the

rebound period (with the exception of the Czech Republic), a property which

is also expected. The most interesting and very unexpected finding is that,

4Leptocurtic distributions are sometimes said to contain ’fat tails’.
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except for the Slovak market, the Jarque-Bera test applied to the data from

the rebound period does not reject the null hypothesis of normality.

4.2 BVAR

Our first model is described by equation

yt = c+ A1yt−1 + A2yt−2 + A3yt−3 + A4yt−4 + A5yt−5 + εt (4.1)

where y is anM -dimensional vector of examined variables, c is anM -dimensional

vector of constants, Ai is an M×M matrix of coefficients for the i-th lag of ex-

amined variables and εt is an M -dimensional homoscedastic vector of random

errors following εt ∼ N(0,Σ). If we set

A =
[
c A1 A2 A3 A4 A5

]
,

X =
[
1 yt−1 yt−2 yt−3 yt−4 yt−5

]′
,

(4.2)

equation 4.1 can be rewritten as

yt = XtA+ εt, (4.3)

which can be rearranged into the form

yt = Ztα + εt, (4.4)

where

Zt = (I ⊗Xt) (4.5)

and α = vec(A). The biggest advantage of such trasformation is that the

residuals are normally distributed following εt ∼ N (0,Σ⊗ IT ), which allows

the researcher to break the sampling density p (y|α,Σ) into two separate parts

(see Koop & Korobilis (2010)).

4.2.1 Independent Normal-Wishart prior

Following Koop & Korobilis (2009), we decided to use two different priors in our

estimation of the basic BVAR model. The first prior is called the Independent

Normal-Wishart prior. As the Zt from (4.4) equals to I ⊗Xt and the residual
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εt has a variance matrix Σ ⊗ IT , we can combine the multivariate normal

distribution for obtaining draws of α with drawing the variance matrix Σ from

the Wishart distribution. As the two priors are independent of each other, we

use the basic probability rule that

p
(
α,Σ−1

)
= p (α) p

(
Σ−1

)
. (4.6)

The prior takes form of

α ∼ N (α, V α) , (4.7)

Σ−1 ∼ W
(
S−1, ν

)
. (4.8)

Note that, as Koop & Korobilis (2009) point out, the variance of α does

not depend on Σ and its chosen values are up to the researcher. Even though

the full posterior distribution does not have an analytical form, conditional

distributions have form of

α|y,Σ−1 ∼ N
(
α, V α

)
, (4.9)

Σ−1|y, α ∼ W
(
S
−1
, ν
)
, (4.10)

where

V β =

(
V −1
β +

T∑
t=1

Z ′tΣ
−1Zt

)−1

, (4.11)

α = V β

(
V −1
β α +

T∑
t=1

Z ′tΣ
−1y

)
, (4.12)

ν = ν + T, (4.13)

S = S +
T∑
t=1

(yt − Ztα) (yt − Ztα)′ , (4.14)

which allows usage of the Gibbs sampler in the following way:

1. Initialize α, V α, S
−1 and ν

2. Draw α from p (α|y,Σ−1)

3. Draw Σ from p (Σ−1|y, α)

4. Go back to 2.
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4.2.2 Independent Minnesota-Wishart prior

The Independent Minnesota-Wishart prior combines the useful properties of

the Minnesota prior (see below) with drawing the variance matrix Σ from the

Inverted Wishart distribution.

The Minnesota prior has been created by researchers of Federal Reserve

Bank of Minneapolis in the 1980’s (see Litterman (1986)). Its properties made

the estimation of Bayesian models much easier. The advantage of Minnesota

prior lies in replacing the variance matrix Σ with a given estimate Σ̂. It follows

that the Bayesian inference of α does not depend on Σ but only on its OLS

estimator. The posterior of α follows

α ∼ N (αMn, V Mn) . (4.15)

Following Koop & Korobilis (2010), we will set all αMn to 0 as our data were

differenced. Similarly, we decided to follow Koop & Korobilis (2010) in their

approach to set V Mn. As Minnesota prior assumes V Mn to be diagonal, let us

denote its block corresponding to coefficients in i-th equation as V i. Moreover,

V i,jj denotes diagonal elements of V i. The prior for V i,jj follows

V i,jj =


a1
r2

for coefficients on own lag r for r = 1, . . . , p
a2σii
r2σjj

for coefficients on lag r of variable j 6= i for r = i, . . . , p

a3σii for coefficients on exogenous variables.

(4.16)

This specification narrows down the complicated specification to choosing the

level of scalars a1, a2 and a3. In our estimation we use the same values as Koop

& Korobilis (2009), the robustness of results to their specification is presented

in section 6.1.1.

The posterior of α follows the distribution

α|y ∼ N
(
αMn, V Mn

)
, (4.17)

where

V Mn =
[
V −1
Mn +

(
Σ̂−1 ⊗ (X ′X)

)]−1

, (4.18)

αMn = V Mn

[
V −1
MnαMn +

(
Σ̂−1 ⊗X

)′
y

]
. (4.19)
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Similarly as in case of the INW prior, draws of Σ are obtained fom the distri-

bution Σ−1|y, α ∼ W
(
S
−1
, ν
)

. An analogical Gibbs sampler follows.

4.3 TVP-VAR with stochastic volatility

The conducted empirical research has proven that relaxing of the residual ho-

moscedasticity assumption can considerably improve the model as volatility

of financial time series’ tends to cluster. It is not unlikely that similar state-

ment holds as well for allowing time variation in regression coefficients. This

section presents the methodology of heteroscedastic Time Varying Parameter

VAR model (TVP-VAR) presented by equation

yt = ct + A1
tyt−1 + A2

tyt−2 + A3
tyt−3 + A4

tyt−4 + A5
tyt−5 + et, (4.20)

where yt and et have the same properties as in (4.1).5 The crucial difference is

that the constant c and matrices Ai can now be different for each time unit.

Under the frequentist approach it would be impossible to estimate such a

model because of overparametrization, however, Bayesian methods deal with

this issue by introducing shrinkage of coefficients (Koop & Korobilis 2010).

In practice, some or all parameters are shrunk towards zero using the prior

definition and then updated recursively in an MCMC algorithm.

Since the pioneering work of Canova (1993), numerous applications of TVP-

VAR modelling have been performed. Estimation of our model follows the work

of Primiceri (2005). As Bayesian econometrics allows for an extreme variety

of possible specifications, inference and analysis, it is beyond the scope of this

thesis to provide overview of specific methods that have been used until now.

Section 2.4 leads an interested reader to several empirical papers that perform

TVP-VAR models.

4.3.1 Rearrangement of variables

Let us assume that the residual vector et has the variance covariance matrix

Ωt. In order to make the estimation more efficient, this matrix Ωt will be

decomposed by a triangular reduction

ΛtΩtΛ
′
t = ΣtΣ

′
t, (4.21)

5Note that, rigorously speaking, et has the same properties as εt.
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where

Λt =


1 0 · · · 0

λ21,t 1
. . .

...
...

. . . . . . 0

λn1,t · · · λn(n−1),t 1

 (4.22)

and Σt is a diagonal equation satisfying

diag (Σt) = (σ1,t, σ2,t, · · · , σn,t) . (4.23)

Equation 4.20 can then be rewritten as

yt = X ′tAt + Λ−1
t Σtεt, (4.24)

where the right hand side variables are stacked into the form

X ′t = In ⊗
[
1 yt−1 · · · yt−5

]
, (4.25)

At =
[
c A1

t · · · A5
t

]
. (4.26)

It can be shown that under this notation var (εt) = In, which is a desired

property.

4.3.2 Model dynamics

Selected variables of the model are estimated as random walks. Given the

definition of At from (4.26) and creating a vector λt by stacking the non-zero

and non-one elements of Λt by rows,6 model dynamics follows equations

At = At−1 + νt, (4.27)

λt = λt−1 + ζt, (4.28)

log σt = log σt−1 + ηt. (4.29)

6 Thus, λt =
[
λ21,t λ31,t λ32,t λ41,t · · · λn(n−1),t

]′
.
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Components of the variance matrix V take the form

V =


εt

νt

ζt

ηt

 =


In 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 , (4.30)

where Q,S and W are positive definite matrices and S is assumed to be block

diagonal in blocks corresponding to coefficients of each equation.

4.3.3 Priors

Priors using OLS estimates from the training sample of 40 initial observations

are set as

A0 ∼ N
(
ÂOLS, 4 · V

(
ÂOLS

))
, (4.31)

Λ0 ∼ N
(

Λ̂OLS, 4 · V
(

Λ̂OLS

))
, (4.32)

log σ0 ∼ N (log σ̂OLS, 4 · In) , (4.33)

Q ∼ IW
(
k2
Q · 40 · V

(
ÂOLS

)
, 40
)
, (4.34)

W ∼ IW
(
k2
W · 5 · In, 5

)
, (4.35)

S1 ∼ IW
(
k2
S · 2 · V

(
Λ̂1,OLS

)
, 2
)
, (4.36)

S2 ∼ IW
(
k2
S · 3 · V

(
Λ̂2,OLS

)
, 3
)
, (4.37)

S3 ∼ IW
(
k2
S · 4 · V

(
Λ̂3,OLS

)
, 4
)
, (4.38)

where values of particular coefficients are calculated by the function tsprior()

obtained from Koop & Korobilis (2010). Values of multiplication parameters

k2
Q, k

2
W and k2

S are discussed in section 5.2.

4.3.4 Gibbs sampling

The Gibbs sampler takes draws from conditional distributions in the following

way:

1. Initialize of ΛT ,ΣT , sTandV .

2. Draw AT from p(AT |yT ,ΛT ,ΣT , V ).

3. Draw ΛT from p(ΛT |yT , AT ,ΣT , V ).
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4. Draw ΣT from p(ΣT |yT , AT ,ΛT sT , V ).

5. Draw ST from p(ST |yT ,ΛTΣT , V ).

6. Draw V by drawingQ,WandS from p(Q,W, S|yT , AT ,ΛT ,ΣT ) = p(Q|yT , AT ,ΛT ,ΣT )·
p(W |yT , AT ,ΛT ,ΣT ) · p(S1|yT , AT ,ΛT ,ΣT ) · . . . · p(Sn−1|yT , AT ,ΛT ,ΣT )

7. Go back to the second step and repeat.

In step 2, the algorithm of Carter & Kohn (1994) is used.

4.4 Impulse responses, variance decomposition

This section explains the methodology of obtaining impulse responses and vari-

ance decomposition in our models. Without loss of generality, all indices shown

in this section apply for the basic BVAR model. Extension to the framework of

TVP-VAR model simply lies in having a separate measure for each time unit

in the sample.

4.4.1 Impulse responses

Impulse responses can be calculated due to the well known fact that every

autoregressive function can be transformed to a moving average form. This

fact holds for vector models as well, the resulting models are called Vector

Moving Average (VMA) models.7 An intuitive illustration in case of bivariate

VAR is shown in Diebold & Yilmaz (2009). Let us rewrite equation 4.1 as

yt = c+
5∑
i=1

Aiyt−i + εt. (4.39)

This can be rearranged into

yt = µ+
∞∑
i=1

Φiεt−i. (4.40)

Coefficients Φ1 to Φ∞ can then be used to calculate impulse responses to the

shock to the dependent variable at time t.8 As far as the system does not follow

an exploding path, particular coefficients will shrink towards zero with longer

7For details on VMA models see e.g. Tsay (2002).
8Steps of this calculation are very technical and beyond the scope of this thesis. Hamilton

(1994) provides a very detailed explanation.
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horizons which is in line with economic theory. Our analysis sets the horizon

to 21 lags, where the first lag describes the impact at time t and the rest of

coefficients represent responses of the system in four weeks following the shock.

Note that due to the step-wise calculation of impulse responses, a shock

into the first variable at time t will not affect the other variables until time

t+ 1, but a shock to the i-th variable will affect variables 1 to i− 1 already at

time t. Therefore, the order of variables matters in calculation of VAR impulse

responses. This may potentially create issues in case of stock data, as there

usually is no information about the possible direction of spillovers from one

market to the other ones. The only exception for stock market data that we

can think of are studies that examine data from various time zones - in such

case, researcher should order the data according to the geographical location

from east to west.9 The robustness of our variable ordering is discussed in

section 6.1.2.

4.4.2 Variance decomposition

Let us now define the impulse response storage matrix Φ which takes form

Φh =


Φh

1,1 Φh
1,2 Φh

1,3 Φh
1,4

Φh
2,1 Φh

2,2 Φh
2,3 Φh

2,4

Φh
3,1 Φh

3,2 Φh
3,3 Φh

3,4

Φh
4,1 Φh

4,2 Φh
4,3 Φh

4,4

 , (4.41)

where Φh
i,j marks the impulse response of the j-th variable to the shock in the

i-th variable at h− th period after the shock. The matrix of relative variance

9In macroeconomic modelling it is often the case that researcher can impose such assump-
tions.
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decomposition Ξ takes form

Ξ =



21∑
h=1

Φh1,1

4∑
i=1

21∑
h=1

Φhi,1

21∑
h=1

Φh1,2

4∑
i=1

21∑
h=1

Φhi,2

21∑
h=1

Φh1,3

4∑
i=1

21∑
h=1

Φhi,3

21∑
h=1

Φh1,4

4∑
i=1

21∑
h=1

Φhi,4

21∑
h=1

Φh2,1

4∑
i=1

21∑
h=1

Φhi,1

21∑
h=1

Φh2,2

4∑
i=1

21∑
h=1

Φhi,2

21∑
h=1

Φh2,3

4∑
i=1

21∑
h=1

Φhi,3

21∑
h=1

Φh2,4

4∑
i=1

21∑
h=1

Φhi,4

21∑
h=1

Φh3,1

4∑
i=1

21∑
h=1

Φhi,1

21∑
h=1

Φh3,2

4∑
i=1

21∑
h=1

Φhi,2

21∑
h=1

Φh3,3

4∑
i=1

21∑
h=1

Φhi,3

21∑
h=1

Φh3,4

4∑
i=1

21∑
h=1

Φhi,4

21∑
h=1

Φh4,1

4∑
i=1

21∑
h=1

Φhi,1

21∑
h=1

Φh4,2

4∑
i=1

21∑
h=1

Φhi,2

21∑
h=1

Φh4,3

4∑
i=1

21∑
h=1

Φhi,3

21∑
h=1

Φh4,4

4∑
i=1

21∑
h=1

Φhi,4



, (4.42)

where a term in i-th row and j-th column denotes the relative importance of

shocks coming from i-th variable into j-th variable. Note that terms in each

column will always sum to unity.

4.4.3 Spillover indices

The results of variance decomposition can be used to calculate the Spillover

Index (SI) defined by Diebold & Yilmaz (2009). If we denote the term in i-th

row and j-th collumn of the relative variance decomposition matrix Ξ as Ξi,j,

SI takes the form

S =

∑4
i=1

∑4
j=1,i 6=j Ξi,j∑4

i=1

∑4
j=1 Ξi,j

(4.43)

The Spillover Index measures how much of the total variance in the sample

is caused by spillovers among markets to another. Following the results of

Diebold & Yilmaz (2009), it is expected to be higher in times of crises and

lower in stable times.

4.4.4 Impulse performance diagnostics

In order to compare performance of impulse responses of several models, we

use the following measure. Let us define the Impulse Performance Diagnostics

(IPD) for each country as

IPDctr =
∑M

i=1

∑h

j=1

(
q(Φj

ctr,i, qu)− q(Φ
j
ctr,i, qb)

)2
, (4.44)
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where Φj
ctr,i is an impulse response defined by (4.41), qu and qb are the specified

upper and bottom quantiles and h is the horizon of IPD calculation. The re-

sulting diagnostics is a 1×(M+1) vector IPD =
[
IPD1 · · · IPDM IPDtot

]
where the term IPDtot is the sum of M previous rows.

As the diagnostics measures the square distance between two specified quan-

tiles of impulse response distribution, the model with the lowest value of IPD

can be seen as the best model in terms of impulse responses.

4.5 Matlab programming

As our models require usage of numerical software, Matlab codes were down-

loaded from the website associated with Koop & Korobilis (2009).10 These

codes were adjusted in order to comply with our notation and methodol-

ogy. Apart from code adjustment, several additional functionalities were pro-

grammed in order to process the estimation results. This section describes the

two most important programmes that were coded. Both of them concern ma-

nipulation with draws of impulse response functions. Rest of the created codes

including instructions how to use them can be found on the DVD attached to

this thesis.

4.5.1 Extracting impulse responses

Once the necessary quantiles of impulse responses have been calculated, one

does not need to store full draws of impulse response functions. Therefore, we

programmed a code which extracts impulse response draws from the specified

files and saves these results into a new file. This considerably helps with pro-

cessing of the data, as it reduces the needed computer memory by a factor of

”number of replications / number of quantiles”.

4.5.2 Impulse responses for each time period

The code of Koop & Korobilis (2009) calculates impulse responses for three

specific periods in the TVP-VAR model. As a generalization, we programmed

the code to calculate them for each time period of the sample. As such calcula-

tion needs to store all impulse response draws for each time unit of the sample,

enormous computer memory is required. For example, in case of 50000 Gibbs

10http://personal.strath.ac.uk/gary.koop/bayes matlab code by koop and korobilis.html
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sampler iterations, approximately 80 GB of memory is needed, which is around

40 times more than a 32-bit MS Windows can handle. This issue was solved

by saving sequential stores into files of a size that can be specified by the user.

All draws are then combined together with sequential opening and closing of

all saved files at each time unit.



Chapter 5

Empirical Results

5.1 BVAR

The Independent Normal-Wishart and Independent Minnesota-Wishart1 prior

models were estimated with 2000 burn-in draws and 10000 normal draws. The

convergence was confirmed as their results are almost identical to the model

with 20000 + 50000 iterations (see section 6.1.4). Values of parameters a1, a2

and a3 in the IMW prior were set according to the discussion in section 6.1.1.

5.1.1 Impulse responses

Impulse responses for all four variables are depicted in figures 5.1 and 5.2. The

INW benchmark model was selected according to the best performance from

tests for four different variable orderings (see section 6.1.2). The benchmark

IMW model was chosen with the same parameters a1, a2 and a3 as in Koop &

Korobilis (2009) (For robustness, see section 6.1.1).

Note that even though impulse responses obtained from both priors produce

very similar results, we can see that the 10-th and 90-th confidence bands are

tighter in case of INW prior. Table 5.1 confirms this rigorously, as the IPD

diagnostics for the two benchmark models clearly suggests that the INW model

outperforms the second model in terms of impulse responses.

We can see that responses converge to zero in the long term, which is in line

with economic theory of diminishing effects of shocks. Specifically, all shocks to

Central European markets tend to disappear in the horizon of approximately

one and half weeks after the shock. Moreover, all markets tend to slightly

1From now on, we will use the abbreviation INW for the Independent Normal-Wishart
prior. Abbreviation IMW applies analogically.
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Table 5.1: IPD diagnostics of benchmark models

Shock to

Prior CZE POL SVK HUN Total shock

INW 3.4064 3.156 2.5569 3.5927 12.7120
IMW 5.2570 4.6168 3.4972 5.4526 18.8236

Note: IPD diagnostics measures the square distance between

10-th and 90-th quantiles of impulse response distribution.

overreact to shocks in any other market in a period of one week or sooner.

Similarly as in section 4.1, we can see that the behavior of Slovak market is

different from the other markets as it generally does not seem to be responding

to shocks in either of the other countries. The fact that, from the statistical

point of view, Slovak market moves almost randomly, can be explained by

relatively low liquidity on this market.

The strange behavior of Slovak market also results to the finding that pos-

itive shocks in Slovakia will cause all three other markets to fall. From the

portfolio diversification point of view, it might be interesting to invest into

the Slovak market as it is almost independent of the other Central European

countries. An interesting finding is that Polish and Hungarian markets react

negatively to shocks in the Czech republic as well, which can be a sign that

investors view these three markets separately.

To the contrary, all markets tend to react positively to shocks in Poland

and Hungary, suggesting that investors do not see an opportunity for portfolio

diversification among Czech, Polish and Hungarian markets. To summarize,

our impulse response analysis finds out that Slovak market stands separately

from the other three markets, but the evidence for behavior of the other three

markets is ambiguous.
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5.1.2 Variance decomposition

Figure 5.3 depicts the relative variance decomposition of model with INW prior.

Czech Republic is depicted by the blue color, Poland is red, Slovak is yellow

and Hungary is green (These colors will stay the same for the remainder of this

thesis). As the differences in impulse response analysis are not crucial, we do

not report results of variance decomposition from IMW prior in this chapter.

These are reported in section 6.1.5.

Figure 5.3: Relative variance decomposition, INW prior

Table 5.2 shows the variance decomposition of the benchmark model. Re-

sults show an expected fact that the variance in each country is driven mainly

on its own. This also holds for Slovakia with the lowest estimated share of

55%. We find possible explanation for Slovakia’s lowest share twofold: Firstly,

it is the only country that shares its borders with all the other three countries.

This should not be a reason under the assumption of zero transaction costs,

however, even though such costs have become lower with the recent techno-

logical boom, they still undoubtedly exist. Secondly, market capitalisation of

Bratislava Stock Exchange is by far the lowest out of the four countries in our

sample, reaching the level of 29% of the third Hungary and only 2.69% of the

total market capitalisation in sample countries in 2011.2

The Spillover Index of 26.43% means that approximately one quarter of

total volatility in Central European markets was caused by spillovers among

them. Interestingly, Polish stock exchange with the biggest market capital-

ization did not report either the highest contribution to others or the lowest

contribution from others. The biggest contribution to others (and in total)

comes from the Czech Republic and the lowest contribution from others is re-

ported from Hungary. This can be explained by the geographical reason of

Hungary only neighbouring Slovakia, the country with the lowest market capi-

talisation and liquidity. It is also possible that such differences were caused by

different policy responses in times of crisis.

2Data were obtained from Eurostat database in April 2012.
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Table 5.2: Variance decomposition

Market CZE POL SVK HUN Contribution
from others

CZE 74.99 7.64 4.02 13.35 25.01
POL 11.87 80.15 2.23 5.75 19.85
SVK 23.12 9.53 55.3 12.05 44.7
HUN 5.76 7.06 3.35 83.82 16.18
Contribution to others 40.75 24.23 9.6 31.15
Total contribution 115.74 104.38 64.9 114.98

Note: 21 day horizon. All numbers in percentages. Spillover index: 26.43%

Previous results reported the relative variance decomposition in order to

show which share of volatility is caused by which market. Figure 5.4 extends

these data by including levels of total variance in particular countries. Inter-

estingly, Slovakia reports the highest volatility and at the same time lowest

contributions to the other countries. Once again, this can be explained by the

relative isolation from the other markets and by its low liquidity. Nevertheless,

we can see that the relationship of Slovakia to Czech Republic is stronger than

to Hungary, which can be explained by their historical proximity.

Figure 5.4: Absolute variance decomposition, INW prior

Note that we do not report models for the three subsamples defined in

chapter 4. The reason for this is purely practical, as the estimation was not

able to produce converging impulse responses even for 100000 burn-in and

10000 iterations.
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5.2 TVP-VAR with stochastic volatility

Even though we have tried many different models, convergence of impulse re-

sponses in the time-varying model has not been achieved. However, this is not

an unusual result, as responses of TVP-VAR models are often exploding (Prim-

iceri 2005), which is indeed our case. This section shows that the TVP-VAR

model can be seen as an improvement to the basic BVAR model as it shows

that regression coefficients and standard deviations of residuals do vary in time.

The model described in this section shows results of estimation with 10000 +

10000 iterations, however, even the model with 80000 + 50000 iterations did

not produce better results (see section 6.2).

5.2.1 Prior hyperparameters

The value of hyperparameters kQ, kW and kS is crucial for the performance of

TVP-VAR model (Primiceri 2005). Our model sets them as kQ = 0.03, kW =

0.01 and kS = 5, which is little different from Primiceri’s values. The coeffi-

cient kQ has been tripled as the matrix Q was positive indefinite with lower

values. This can be explained by the fact that log differences in the daily finan-

cial data are very likely to be lower than in a quarterly macroeconomic data.

Coefficient kW remained set at the value of Primiceri (2005), as we believe that

there should be no differences in heteroscedasticity of residuals in financial and

macroeconomic time series. The value of parameter kS was set to 5 after the

arbitrary selection among models with values of 0.1, 5 and 100, as results of

the middle model seemed most plausible. More details can be found in section

6.2.2.

5.2.2 Regression coefficients

Figures 5.6 and 5.7 show that the estimated coefficients do vary in time, which

justifies the change from BVAR to TVP-VAR. As can be seen from figures in

appendix 6.2, the reported coefficients vary in time in all estimated models.
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5.2.3 Stochastic volatility

Figure 5.5 shows the time behavior of standard deviations of residuals for

each equation. The time changing variance justifies inclusion of the stochastic

volatility concept into our model. Note that the mean of standard deviations

increases in times of crisis, which is an expected result.

Figure 5.5: Mean of the standard deviations of residuals in time
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Chapter 6

Model Selection and Robustness

6.1 BVAR

This section shows the results of various robustness tests ran in the BVAR

model. As noted in section 5.1.1, the results of INW and IMW priors are

very similar, however, INW prior generally produces little better results as its

confidence bands are narrower.

6.1.1 IMW parameters

As written in section 5.1, the benchmark IMW model was chosen with parame-

ters a1, a2 and a3 as in Koop & Korobilis (2009). Table 6.1 shows results of two

alternative models, each of them dividing or multiplying the parameters of the

original model by a factor of 10. As a model with ten times lower parameters

reported the 0.5% change of IPD diagnostics and the model with ten times

higher parameters resulted in its change by 1%, we can conclude that results

of IMW prior are robust to specification of its parameters.

Table 6.1: Robustness of IMW model

a1 a2 a3 CZE POL SVK HUN IPD

0.05 0.05 10 5.2462 4.6777 3.5352 5.4644 18.9234
0.5 0.5 100 5.2570 4.6168 3.4972 5.4526 18.8236
5 5 1000 5.1356 4.6635 3.4841 5.3494 18.6327



6. Model Selection and Robustness 46

6.1.2 Order of variables

As noted in section 4.4.1, impulse responses of the same model could be dif-

ferent upon variable ordering. Due to the fact that, in a general VAR model

with N variables, N ! different orders of variables are possible, it could be very

computationally demanding to check for all orderings. In our case, it would

require to estimate 24 different orderings for each prior.

Our approach follows Diebold & Yilmaz (2009) who perform robustness test

by sequentially moving the 1-st, 2-nd to (M-1)-th variable into the last place in

the sample. Results of the four models are available in table 6.2. Model in the

first row was selected as a benchmark model based on the IPD diagnostics.

In order to save space, we do not report impulse response figures here (see

appendix A), but merely state that they also confirm the robustness for order

of variables. This is also confirmed by figure 6.1, which shows the results of

variance decomposition of the four models.

Table 6.2: Robustness to variable ordering

Sample Var 1 Var 2 Var 3 Var 4 IPD Figure

Full CZE POL SVK HUN 12.7120 5.1
Full CZE SVK HUN POL 12.7484 A.1
Full POL SVK HUN CZE 12.7536 A.2
Full CZE POL HUN SVK 12.7863 A.3

6.1.3 Horizon of IPD calculation

Table 6.3 shows the calculated IPD diagnostics for horizons from the 2-nd

to the 6-th horizon. We can see that already the 6-th lag in the IMW prior

reports higher IPD diagnostics than the full 20-th lag used in table 5.1 so the

diagnostics is robust to the specified lag order.

Table 6.3: Robustness of IPD horizon

Prior Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6

INW 1.5995 3.2662 5.0637 6.9962 9.0540 9.8290
IMW 1.9688 4.0821 6.4447 9.0157 11.8069 13.1027
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Figure 6.1: Variance decomposition, robustness to ordering

6.1.4 Number of iterations

In all applications of Gibbs sampling, the number of burn-in iterations needs

to be set to a value that achieves convergence of posterior distributions. Our

values of 2000 burn-in and 10000 standard iterations might seem low, however,

table 6.1.4 and figure 6.2 show the IPD diagnostics and impulse responses

of the INW prior with 20000 burn-in and 50000 standard iterations. As the

differences between both models are marginal (0.3 % in terms of the IPD

index), we can conclude that the chosen number of iterations is satisfactory.



6. Model Selection and Robustness 48

Table 6.4: Robustness to number of iterations

Burn-in Save IPDcze IPDpol IPDsvk IPDhun IPDtot

2000 10000 3.4064 3.1560 2.5569 3.5927 12.7120
50000 20000 3.4046 3.1344 2.5548 3.5814 12.6752

Figure 6.2: Impulse responses, INW prior, 20 000 + 50 000 iterations

6.1.5 Variance decomposition with IMW prior

Figures 6.3 and 6.4 show the results of relative and absolute variance decom-

position with the chosen IMW prior. We can see that even though it produces

somewhat different outcomes, essential properties of the results still stay the

same. The variance of all countries is still driven mainly on its own, with Slo-

vak market having the lowest share and at the same time the highest absolute

variance.

Figure 6.3: Relative variance decomposition, IMW prior
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Figure 6.4: Absolute variance decomposition, IMW prior

Table 6.5: Variance decomposition, IMW prior

Market CZE POL SVK HUN Contribution
from others

CZE 57.79 14.51 8.89 18.81 42.21
POL 17.7 57.23 8.91 16.17 42.77
SVK 10.98 18.1 51.88 19.03 48.12
HUN 7.77 7.92 9.4 74.91 25.09
Contribution to others 36.45 40.53 27.19 54.01
Total contribution 94.25 97.75 79.07 128.93

Note: 21 day horizon. All numbers in percentages. Spillover index: 39.55%

Table 6.5 shows the numerical results of variance decomposition from IMW

prior. We can see that the Slovak market still has the highest contribution from

others and lowest contribution to others, Hungary keeps has lowest contribu-

tion from others. The biggest difference is that the Czech market falls from

the first to the third place in both contribution to others and total contribu-

tion. However, as results from impulse response analysis reported ambiguous

relationship of Czech, Polish and Hungarian markets, we do not consider this

change as crucial.
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6.2 TVP-VAR

As we were not able to find the specification of a TVP-VAR model that would

result in non-exploding impulse responses, many different combinations of prior

hyperparameters were estimated. Apart from the model described in section

5.2, this section presents results of two additional models that generally describe

properties of the other estimated models. Details of these two models are shown

in table 6.6.

Table 6.6: TVP robustness models

Burn-in Saved kQ kW kS Figures

Model 1 80000 50000 0.1 0.01 0.1 6.5, A.4 and A.5
Model 2 10000 20000 10000 10000 10000 6.6, A.6 and A.7

6.2.1 Regression coefficients

Without an exception, all estimated TVP-VAR models showed distinct time

variation of regression coefficients. As their figures take a lot of space, we report

them in appendix A.

6.2.2 Stochastic volatility

The standard deviations of residuals from the two models described in table 6.6

are depicted in figures 6.5 and 6.6. We can see that both models differ a lot. The

high value of coefficients causes the variance residuals to jump to a certain high

level and then vary around such level during the whole period. The low value

of residuals causes them to run smoothly in a time developing trend, however,

such a smooth development is not comparable with empirical experience of

financial models. As a result, a model that has coefficients inbetween of these

two robust models was chosen.
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Figure 6.5: Residual time variance, robust model 1

Figure 6.6: Residual time variance, robust model 2



Chapter 7

Conclusion

Impulse responses of the BVAR model show that shocks in Central European

markets die out in the horizon of approximately one and half weeks. The rel-

atively low liquidity of the Slovak market causes it to behave differently, with

almost zero reactions to shocks in other countries. On the other hand, shocks

in Slovak markets cause all the other markets to fall, which can be a sign

that investors take the Slovak and other markets separately. The negative re-

sponse of Polish and Hungarian markets to positive news in the Czech Republic

strenghtens this interpretation.

The variance decomposition reveals that volatility in all markets is driven

by shocks originating inside of the particular country, which is a result that is

in line with economic theory. Interestingly, the Czech Republic seems to be

the most influential market in terms of total volatility contribution. The Czech

market is also the highest source of volatility in Slovakia, a result that possibly

arises from general interconnectedness of the two economies.

Results of the TVP-VAR model show that the regression coefficients as well

as volatility of residuals change in time. As expected, the estimated volatil-

ity rises in times of crisis. Unfortunately, due to the extreme computational

demand of the TVP-VAR model impulse responses follow an explosive path,

which is however a common result.

Posibble suggestions for future research are twofold. Firstly, next steps

would be taken in order to find a way how to make the impulses of TVP model

converge (on the other hand, one can argue that computational demand is

the reason why, up to our knowledge, no comparable research has been yet

conducted). Secondly, it would be interesting to perform the analysis with

inclusion of additional countries.
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Appendix A

Outputs from Matlab

This appendix presents additional outputs from Matlab that correspond to

particular sections from chapters 5 and 6. Figures A.1 to A.2 present impulse

responses of variable orderings (see section 6.1.2), figures A.4 to A.7 show the

regression coefficients from the two models described in section 6.2.1.
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Appendix B

Content of Enclosed DVD

There is a DVD enclosed to this thesis which contains the following folders:

• Folder 1: Data used in the analysis in .xls, .xlsx and .mat format.

• Folder 2: Matlab codes used in this thesis. For instructions how to use

them, see the particular codes.

• Folder 3: Results of Matlab estimation excluding full draws from impulse

response distributions in TVP-VAR model, which are extremely space

demanding.

• Folder 4: LATEX source code of this thesis and its .pdf version.
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