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Abstract:
The bachelor thesis is focused on information-theoretic source of messages with
vague recognition from a final general alphabet. The aim of this work is to
compile an overview of existing approaches to entropy and information. There
were published several approaches how to convert to the fuzzy set theory the
concept of entropy, which was originally introduced in physics, mathematically
expressed as an additive-probability model and adjusted for Shannon probabilistic
information source. Most of these approaches maintains the additive-probability
model, while the emphasis in the theory of fuzzy sets is laid on the characteristics
of minimum and maximum.

Keywords:
Entropy, Information, Fuzzy sets, Vague Entropy, Vague Information



Contents

Introduction 3

1 Entropy in Physics 4

1.1 First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . 4

1.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . 6

1.4 Statistical View of Entropy . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Probability and Entropy . . . . . . . . . . . . . . . . . . . . . . . 8

2 Probabilistic Source of Information 10

2.1 Probabilistic Information Source . . . . . . . . . . . . . . . . . . . 11

2.2 Illustration of Approximation to English . . . . . . . . . . . . . . 13

2.3 Markov Processes and Probabilistic Information Sources . . . . . 14

3 Probabilistic Entropy and Probabilistic Information 17

3.1 Choice, Uncertainty and Entropy . . . . . . . . . . . . . . . . . . 17

3.2 Concept of Information . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Fuzzy Sets 24

4.1 Definition of Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Fuzzy Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Vague Entropy 29

5.1 First Approach to Fuzzy Entropy . . . . . . . . . . . . . . . . . . 29

5.2 Entropy on Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . 32

6 Source of Information on Finite Alphabet 34

6.1 Information Source with Uncertainty . . . . . . . . . . . . . . . . 34

6.2 Information Measure . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Vague Information Source . . . . . . . . . . . . . . . . . . . . . . 36

1



7 Vague Information 37

7.1 Information Measures . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1.1 Additivity of Information . . . . . . . . . . . . . . . . . . 38

7.1.2 Logarithmic Scale of Information . . . . . . . . . . . . . . 38

7.1.3 Limited Regards to the Information of Individual Symbols 38

7.2 Alternative Vague Information Measure . . . . . . . . . . . . . . . 39

7.3 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

2



Introduction

Entropy is an effective measure of uncertainty connected with an information
source. Its transfer from the classical probabilistic information theory models to
the fuzzy set theoretical environment is desirable and significant attempts were
realized in the literature [1, 4, 5, 6, 7].

The aim of this work is to describe the existing state of art, and to sug-
gest and analyze alternative, more fuzzy set theoretical, approaches to the fuzzy
information. The work is chronologically ordered depending on when each term
was discovered and defined.

We can trace the roots of the vague information back to the scientific
revolution in the 18th century that accelerated huge progress in supposedly all
disciplines of science, naturally including probability theory, thermodynamics.
Entropy is a concept, which originally came from physics. [Chapter 1]

In the classical source of information the uncertainty of individual symbols
of the source alphabet is represented by randomness. [Chapter 2]

Theory of information was built by Shannon in 1948 on the concept of
physics and he defined the entropy of the entire source as the probabilistic mean
value of the particular information values. [Chapter 3]

When the fuzzy set theory was presented by Zadeh in 1965, fast develop-
ment in this scientific discipline has started. Generally, fuzzy sets are meant to
handle problems that arise from uncertainty, vagueness and imprecision. [Chap-
ter 4]

The formal definitions of the vague entropy presented in the literature,
e.g., in [1, 4] and in other works, often repeat the structure of the Shannon’s
probabilistic model of the entropy or some of its specific components, in spite of
the fact that there are significant differences between the essence of randomness
and vagueness. Namely, the suggested definitions often prefer the additivity of
uncertainty to its monotonicity. [Chapter 5]

Source of information is defined over the finite alphabet using an uncer-
tainty measure. Information measure is defined on this source of information.
[Chapter 6]

The approach to the vague entropy presented in chapter 5 is not unavoid-
able, as mentioned in [5, 6, 7]. Professor Mareš introduced significant simplifi-
cation of the concept of vague information with respect to the monotonicity of
fuzzy sets. [Chapter 7]
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1. Entropy in Physics

Classical thermodynamics began to develop after the spreading the stream lo-
comotive during the beginning of 19 century. The term entropy was coined in
1865 by the German physicist Rudolf Clausius, from the Greek words en-, ”in”,
and trope ”a turning”, in analogy with energy. Entropy is connected with fa-
mous names S. Carnot, W. Thomson lord Kelvin, J. P. Joule and H. Helmotz, its
statistical interpretation is connected with names J. W. Gibbs and L. Boltzmann.

This chapter gives an introduction to the concept of entropy in its origin
in physics. Section 1.1 describes the first law of thermodynamics, section 1.2
introduces the entropy, section 1.3 describes the second law of thermodynamics,
section 1.4 explains the statistical view of entropy and finally section 1.5 describes
a connection between probability and entropy. This chapter is taken from the
Fundamentals of Physics [2].

1.1 First Law of Thermodynamics

One of the principal branches of physics and engineering is thermodynamics,
which is the study and application of the thermal energy (often called the internal
energy) of systems. The central concepts of thermodynamics are temperature,
heat, work, energy and entropy.

Classical thermodynamics is dealing with a problem how energy can be
transferred as heat and work between a system and its environment. Relation
between heat and work is usually being explained on an example with a movable
piston. The system represented by the gas in a movable piston starts from an
initial state i, described by a pressure pi, a volume Vi, and a temperature Ti and
goes to a final state f described by a pressure pf , a volume Vf , and a temperature
Tf . The procedure by which the system is changed from its initial state to its
final state is called a thermodynamic process. During such a process, energy may
be transferred into the system from the thermal reservoir (positive heat) or in
the opposite direction (negative heat). Also, work can be done by the system to
raise the loaded piston (positive work) or lower it (negative work).

When a system changes from a given initial state to a given final state, both
the work W and the heat Q depend on the nature of the process. Experimentally,
however, we find a surprising thing. The quantity Q − W is the same for all
processes. It depends only on the initial and final states and does not depend at
all on how the system gets from one to the other.

The quantity Q−W represent a change in some intrinsic property of the
system. We call this property the internal energy Eint and we write

∆Eint = Q−W .

Theorem 1.1. First law of thermodynamics. The internal energy Eint of

a system tends to increase if energy is added as heat Q and tends to decrease if

energy is lost as work W done by the system.
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1.2 Entropy

Time has direction, the direction in which it passes. We are familiar with many
one-way processes, processes that can occur only in a certain sequence (the right
way) and never in the reverse sequence (the wrong way). An egg is dropped
onto a floor, a meal is cooked, a car is crashed, large waves erode a sandy
beach—these one-way processes are irreversible, meaning that they cannot be
reversed by means of only small changes in their environment.

One goal of physics is to understand why time has direction and why one-
way processes are irreversible. Although this physics might seem disconnected
from the practical issues of everyday life, it is in fact at the heart of any engine,
such as a car engine, because it determines how well an engine can run. The key
to understanding why one-way processes cannot be reversed involves a quantity
known as entropy the quantity representing an overall disorderliness and chaos
of the system.

The one-way character of irreversible processes is so pervasive that we take
it for granted. If these processes were to occur spontaneously (on their own) in
the wrong way, we would be astonished. Yet none of these wrong-way events
would violate the law of conservation of energy. For example, if you were to wrap
your hands around a cup of hot tee, you would be astonished if your hands got
cooler and the cup got warmer. That is obviously the wrong way for the energy
transfer, but the total energy of the closed system (hands + cup of tee) would be
the same as the total energy if the process had run in the right way.

Thus, changes in energy within a closed system do not set the direction
of irreversible processes. Direction is set by another property—the change in

entropy ∆S of the system.

Theorem 1.2. Entropy postulate. If an irreversible process occurs in a closed

system, the entropy S of the system always increases; it never decreases.

Entropy differs from energy in that entropy does not obey a conservation
law. The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because
of this property, the change in entropy is sometimes called “the arrow of time”.

An example we can find in the fairy tale about Cinderella. The bad step-
mother had easily mix together the peas, corn and poppy seeds. It took a lot of
effort form Cinderella (and some help of pigeons) to collect them all and separate
them like it was before. Because this backward process would result in an entropy
decrease, it never happens spontaneously.

Entropy is defined by two descriptions, first as a macroscopic relationship
between heat flow into a system and the system’s change in temperature, and sec-
ond, on a microscopic level, as the natural logarithm of the number of microstates
of a system.
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1.3 Second Law of Thermodynamics

Although entropy may decrease in part of a closed system, there will always be
an equal or larger entropy increase in another part of the system, so that the
entropy of the system as a whole never decreases. This fact is one form of the
second law of thermodynamics and can be written as

∆S ≥ 0,

where the greater-than sign applies to irreversible processes and the equals sign
to reversible processes. This equation applies only to the closed systems.

In the real world almost all processes are irreversible to some extent be-
cause of friction, turbulence, and other factors, so the entropy of real closed sys-
tems undergoing real processes always increases. Processes in which the system’s
entropy remains constant are always idealizations.

Theorem 1.3. Second law of thermodynamics. If a process occurs in a

closed system, the entropy of the system increases for irreversible processes and

remains constant for reversible processes. It never decreases.

1.4 Statistical View of Entropy

Macroscopic properties of gases can be explained in terms of their microscopic, or
molecular, behaviour. An example is the pressure exerted by a gas on the walls of
its container in terms of the momentum transferred to those walls by rebounding
gas molecules. Such explanations are part of a study called statistical mechanics.
We shall focus on a single problem, involving the distribution of gas molecules
between the two halves of an insulated box. This problem is reasonably simple
to analyze, and it allows us to use statistical mechanics to calculate the entropy
change for the free expansion of an ideal gas. Statistical mechanics leads to the
same entropy change as in the classical thermodynamics.

Figure 1.1 shows a box containing six identical (and thus indistinguishable)
molecules of a gas. At any instant, a given molecule will be in either the left or the
right half of the box. Because the two halves have equal volumes, the molecule
has the same probability of being in either half. In general, a given configuration
can be achieved in a number of different ways. Different arrangements of the
molecules are called microstates.

For example, suppose we have N molecules, distributed with n1 molecules
in one half of the box and n2 in the other, n1 + n2 = N . To get the number
of different arrangements we use the combinatory number. We call the resulting
quantity, which is the number of microstates that correspond to a given configu-
ration, the multiplicity of configuration W ,

W =

(

N

n1

)

=
N !

n1! n2!
.

6



❥

❥❥

❥

❥

❥

Figure 1.1: An insulated box containing six gas molecules.

Configuration Number of Probability Entropy
n1 n2 microstates W of configuration [ 10−23J/K ]
0 12 1 0,0002 0
1 11 12 0,0029 3,43
2 10 66 0,0161 5,78
3 9 220 0,0537 7,44
4 8 495 0,1208 8,56
5 7 792 0,1934 9,21
6 6 924 0,2256 9,42
7 5 792 0,1934 9,21
8 4 495 0,1208 8,56
9 3 220 0,0537 7,44
10 2 66 0,0161 5,78
11 1 12 0,0029 3,43
12 0 1 0,0002 0

Table 1.1: Possible configurations of 12 molecules

Table 1.1 shows the N+1 possible configurations of the N = 12 molecules.
The basic assumption of statistical mechanics tells that all microstates are equally

probable. If we were to take a great many snapshots of the N molecules as they
jostle around in the box of Figure 1.1 and then count the number of times each
microstate occurred, we would find that all microstates would occur equally often.
Thus the system will spend, on average, the same amount of time in each of
microstates. The total number of different microstates is

Total =
N
∑

i=0

(

N

i

)

.

Because all microstates are equally probable and different configurations
have different numbers of microstates, the configurations are not all equally prob-
able. The most probable configuration with even number of molecules is the
configuration, where molecules are equally divided between the two halves of the
box, it’s probability is

W

Total
=

(

N
N
2

)

∑N
i=0

(

N

i

) .

The most probable configuration with odd number of molecules is the configura-
tion, where molecules are as equally as possible divided between the two halves of
the box, in one half are N

2
+1 molecules and in the other half are N

2
−1 molecules.
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Figure 1.2: Distribution of microstates for larger number of molecules

Configurations where all the molecules are in one half of the box are the least
probable, each with a probability of

W

Total
=

1
∑N

i=0

(

N

i

) .

It is not surprising that the most probable configuration is the one in which
the molecules are evenly divided between the two halves of the box, because that
is what we expect at thermal equilibrium. However, it is surprising that there
is any probability, however small, of finding all molecules clustered in half of the
box, with the other half empty.

For large values of N there are extremely large numbers of microstates,
but nearly all the microstates belong to the configuration in which the molecules
are divided equally between the two halves of the box, as Figure 1.2 indicates.
This is the configuration with the greatest entropy, represented with the central
configuration peak on the plot .

1.5 Probability and Entropy

In 1877, Austrian physicist Ludwig Boltzmann derived a relationship between the
entropy S of a configuration of a gas and the multiplicity W of that configuration.
That relationship, so called Boltzmann’s entropy equation, is

S = kB lnW,

where S is the entropy of a configuration, W is the multiplicity of that configu-
ration and kB is Boltzmann constant.

Boltzmann constant kB is defined as

kB =
R

NA

=
8.31 J mol−1 K−1

6.02 · 1023 mol−1
= 1.38 · 10−23 J K−1,

where R is the gas constant and NA is the number of molecules in 1 mol.
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It is suitable that S and W are related by a logarithmic function. The
total entropy of two systems is the sum of their separate entropies. The proba-
bility of occurrence of two independent systems is the product of their separate
probabilities. Because ln(a · b) = ln(a) + ln(b), the logarithm seems the fitting
way to connect these quantities.

The concept of thermodynamic entropy has arised from the second law of
thermodynamics. It uses entropy to quantify the capacity of a system for change,
namely that heat flows from a region of higher temperature to one with lower
temperature, and to determine whether a thermodynamic process may occur.

Thermodynamics describes mostly the isolated systems which after cer-
tain time in stable state. New variable entropy was introduced and it takes its
maximum by reaching the stable state of the system. If the stable state of the
system is once reached and if the system has no interactions with surrounding
then the system can exist forever in this state.

The situation is different if we are exploring live systems. This systems can
exist only because they are open, consuming material and energy form surround-
ings. Living systems are creating inseparable part of surrounding world, from
where they draw food and can’t be separated form flow of energy and material
which they continuously change. Living systems are using surrounding energy to
keep and increase their own organisation.

9



2. Probabilistic Source of

Information

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point. Frequently
the messages have meaning ; that is they refer to or are correlated according to
some system with certain physical or conceptual entities. These semantic aspects
of communication are irrelevant to the engineering problem. The significant as-
pect is that the actual message is one selected from a set of possible messages.
The system must be designed to operate for each possible selection, not just the
one which will actually be chosen since this is unknown at the time of design. If
the number of messages in the set is finite then this number or any monotonic
function of this number can be regarded as a measure of the information produced
when one message is chosen from the set, all choices being equally likely.

This chapter is an overview of information sources. Section 2.1 introduces
mathematical models of sources on finite alphabets, in section 2.2 there are ex-
amples of using introduced models on English language, section 2.3 is describing
the relation between information sources and Markov processes. It was taken
over from Shannon’s article [8], where he had introduced the entropy from infor-
mational point of view.

We want to consider certain general problems involving communication
systems. We may roughly classify communication systems into two main cate-
gories: discrete and continuous. By a discrete system we will mean one in which
both the message and the signal are a sequence of discrete symbols. A typical case
is telegraphy where the message is a sequence of letters and the signal a sequence
of dots, dashes and spaces. A continuous system is one in which the message and
signal are both treated as continuous functions, e.g., radio or television.

Telegraphy is a simple example of a discrete channel for transmitting in-
formation. Generally, a discrete channel will mean a system whereby a sequence
of choices from a finite set of elementary symbols S1, . . . , Sn can be transmitted
from one point to another. Each of the symbols Si is assumed to have a certain
duration in time ti seconds (not necessarily the same for different Si, for example
the dots and dashes in telegraphy). It is not required that all possible sequences
of the Si be capable of transmission on the system; certain sequences only may
be allowed. These will be possible signals for the channel. Thus suppose the
symbols in telegraphy are:

– a dot, consisting of line closure for a unit of time and then line open
for a unit of time,

– a dash, consisting of three time units of closure and one unit open,

– a letter space consisting of, say, three units of line open and

– a word space of six units of line open.

10



2.1 Probabilistic Information Source

How could a source of information to be described mathematically, and how much
information in bits per second is produced in a given source? The main point
of the issue is the effect of statistical knowledge about the source, heading for a
reducing of the required capacity of the channel, by the use of proper encoding
of the information.

In telegraphy, for example, the messages to be transmitted consist of se-
quences of letters. These sequences, however, are not completely random. In
general, they form sentences and have the statistical structure of, say, English.
The letter E occurs more frequently than Q, the sequence TH more frequently
than XP, etc. The existence of this structure allows one to make a saving in
time (or channel capacity) by properly encoding the message sequences into sig-
nal sequences. This is already done to a limited extent in telegraphy by using
the shortest channel symbol, a dot, for the most common English letter E; while
the infrequent letters, Q, X, Z are represented by longer sequences of dots and
dashes.

We can think of a discrete source as a generator of a message, symbol
by symbol. It will choose successive symbols according to certain probabilities
depending, in general, on preceding choices as well as the particular symbols
in question. A physical system, or a mathematical model of a system which
produces such a sequence of symbols governed by a set of probabilities, is known
as a stochastic process. We may consider a discrete source, therefore, to be
represented by a stochastic process. Conversely, any stochastic process which
produces a discrete sequence of symbols chosen from a finite set may be considered
a discrete source. This will include such cases as:

1. Natural written languages such as English, Czech, Japan.

2. Continuous information sources that have been rendered discrete by some
quantizing process. For example, the quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic process
which generates a sequence of symbols. The following are examples of this
last type of source.

(a) Suppose we have five letters A, B, C, D, E which are chosen each with
probability 0.2, successive choices being independent. This would lead
to a sequence of which the following is a typical example.

B D C B C E C C C A D C B D D A A E C E E A A B B D A E E
C A C E E B A E E C B C E A D.

This was constructed with the use of a table of random numbers.

(b) Using the same five letters let the probabilities be 0.4, 0.1, 0.2, 0.2, 0.1,
respectively, with successive choices independent. A typical message
from this source is then:

A A A C D C B D C E A A D A D A C E D A E A D C A B E D A
D D C E C A A A A A D.

11



pi(j) j
A B C

A 0 4
5

1
5

i B 1
2

1
2

0
C 1

2
2
5

1
10

Table 2.1: Transition probabilities pi(j)

0.1 A 0.16 BEBE 0.11 CABED 0.0417 DEB
0.04 ADEB 0.04 BED 0.05 CEED 0.15 DEED
0.05 ADEE 0.02 BEED 0.08 DAB 0.01 EAB
0.01 BADD 0.05 CA 0.04 DAD 0.05 EE

Table 2.2: Probability of choosing ”word”

(c) A more complicated structure is obtained if successive symbols are
not chosen independently but their probabilities depend on preceding
letters. In the simplest case of this type a choice depends only on the
preceding letter and not on ones before that. The statistical structure
can then be described by a set of transition probabilities pi(j), the
probability that letter i is followed by letter j. The indices i and j
range over all the possible symbols.

As a specific example suppose there are three letters A, B, C with
the probability table 2.1. A typical message from this source is the
following:

A B B A B A B A B A B A B A B B B A B B B B B AB A B A B
A B A B B B A C A C A B B A B B B B A B B A B A C B B B A
B A.

(d) Stochastic processes can also be defined which produce a text consist-
ing of a sequence of ”words”. Suppose there are five letters A, B, C, D,
E and 16 ”words” in the language with associated probabilities given
in table 2.2.

Suppose successive ”words” are chosen independently and are separat-
ed by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE
BEBE ADEE BED DEED DEED CEED ADEE A DEED DEED
BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivalent to one
of the preceding type, but the description may be simpler in terms of
the word structure and probabilities. We may also generalize here and
introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and
examples to illustrate various possibilities. We can also approximate to a natu-
ral language by means of a series of simple artificial languages. The zero-order
approximation is obtained by choosing all letters with the same probability and
independently. The first-order approximation is obtained by choosing successive

12



letters independently but each letter having the same probability that it has in the
natural language. Thus, in the first-order approximation to English, E is chosen
with probability 0.12 (its frequency in normal English) and W with probability
0.02, but there is no influence between adjacent letters and no tendency to form
the preferred digrams such as TH, ED, etc. In the second-order approximation,
a digram structure is introduced. After a letter is chosen, the next one is chosen
in accordance with the frequencies with which the various letters follow the first
one. This requires a table of digram frequencies pi(j). In the third-order approx-
imation, trigram structure is introduced. Each letter is chosen with probabilities
which depend on the preceding two letters.

2.2 Illustration of Approximation to English

To give a visual idea of how this series of processes approaches a language, typical
sequences in the approximations to English have been constructed and are given
below. In all cases we have assumed a 27-symbol ”alphabet”, the 26 letters and
a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYDQPAAMK-
BZAACIBZLHJQD.

2. First-order approximation (symbols independent but with frequencies of
English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHEN-
HTTPA OOBTTVA NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D
ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE
SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDE-
NOME OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA
OF CRE.

5. First-order word approximation. Words are chosen independently but with
their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN
DIFFERENT NATURAL HERE HE THE A IN CAME THE TOOF TO
EXPERT GRAY COME TO FURNISHES THE LINE MESSAGE HAD
BE THESE.
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6. Second-order word approximation. The word transition probabilities are
correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER
THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTH-
ER METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER
TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at
each of the above steps. Note that these samples have reasonably good structure
out to about twice the range that is taken into account in their construction. Thus
in 3 the statistical process insures reasonable text for two-letter sequences, but
four-letter sequences from the sample can usually be fitted into good sentences.
In 6 sequences of four or more words can easily be placed in sentences without
unusual or strained constructions. The particular sequence of ten words ”attack
on an English writer that the character of this” is not at all unreasonable. It
appears then that a sufficiently complex stochastic process will give a satisfactory
representation of a discrete source.

2.3 Markov Processes and Probabilistic Infor-

mation Sources

Stochastic processes of the type described above are known mathematically as
discrete Markov processes. The general case can be described as follows: There
exist a finite number of possible “states” of a system; S1, S2, . . . , Sn. In addition
there is a set of transition probabilities; pi(j) the probability that if the system
is in state Si it will next go to state Sj. To make this Markov process into
an information source we need only assume that a letter is produced for each
transition from one state to another. The states will correspond to the “residue
of influence” from preceding letters.

The situation can be represented graphically as shown in Figures 2.1, 2.2.
The “states” are the junction points in the graph and the probabilities and letters
produced for a transition are given beside the corresponding line. Figure 2.1 is
for the example 3b in Section 2.1, while Fig. 2.2 corresponds to the example 3c.
In Fig. 2.1 there is only one state since successive letters are independent. In Fig.
2.2 there are as many states as letters. If a trigram example were constructed
there would be at most n2 states corresponding to the possible pairs of letters
preceding the one being chosen.

Discrete source for our purposes can be considered to be represented by a
Markov process. Among the possible discrete Markov processes there is a group
with special properties of significance in communication theory. This special class
consists of the ”ergodic” processes and we shall call the corresponding sources
ergodic sources. Although a rigorous definition of an ergodic process is some-
what involved, the general idea is simple. In an ergodic process every sequence
produced by the process is the same in statistical properties. Thus the letter
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Figure 2.1: A graph corresponding to the source in example 3b in Section 2.1
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Figure 2.2: A graph corresponding to the source in example 3c in Section 2.1

frequencies, digram frequencies, etc., obtained from particular sequences, will,
as the lengths of the sequences increase, approach definite limits independent of
the particular sequence. Actually this is not true of every sequence but the set
for which it is false has probability zero. Roughly the ergodic property means
statistical homogeneity.

All the examples of artificial languages given above are ergodic. This
property is related to the structure of the corresponding graph. If the graph has
the following two properties the corresponding process will be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is
impossible to go from junction points in part A to junction points in part
B along lines of the graph in the direction of arrows and also impossible to
go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing
in the same orientation will be called a ”circuit”. The greatest common
divisor of the lengths of all circuits in the graph be one.

If the first condition is satisfied but the second one violated by having the
greatest common divisor equal to d > 1, the sequences have a certain type of
periodic structure. The various sequences fall into d different classes which are
statistically the same apart from a shift of the origin (i.e., which letter in the
sequence is called letter 1). By a shift of from 0 up to d − 1 any sequence can
be made statistically equivalent to any other. A simple example with d = 2 is
the following: There are three possible letters A, B, C. Letter A is followed with
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either B or C with probabilities 1
3
and 2

3
respectively. Either B or C is always

followed by letter A. Thus a typical sequence is ABACACACABACABABACAC.
This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separated into a set
of subgraphs each of which satisfies the first condition. We will assume that
the second condition is also satisfied for each subgraph. We have in this case
what may be called a “mixed” source made up of a number of pure components.
The components correspond to the various subgraphs. If L1, L2, L3, . . . are the
component sources we may write L = p1L1 + p2L2 + p3L3 + . . . where pi is the
probability of the component source Li.

Physically the situation represented is this: There are several different
sources L1, L2, L3, . . . which are each of homogeneous statistical structure (i.e.,
they are ergodic). We do not know a priori which is to be used, but once the
sequence starts in a given pure component Li, it continues indefinitely according
to the statistical structure of that component.

Except when the contrary is stated we will assume a probability source to
be ergodic. This assumption enables one to identify averages along a sequence
with averages over the ensemble of possible sequences (the probability of a dis-
crepancy being zero). For example the relative frequency of the letter A in a
particular infinite sequence will be, with probability one, equal to its relative
frequency in the ensemble of sequences.

If Pi is the probability of state i and pi(j) the transition probability to
state j, then for the process to be stationary it is clear that the Pi must satisfy
equilibrium conditions

Pj =
∑

i

Pipi(j).

In the ergodic case it can be shown that with any starting conditions the prob-
abilities Pj(N) of being in state j after N symbols, approach the equilibrium
values as N → ∞.

16



3. Probabilistic Entropy and

Probabilistic Information

The main property of random events is a complete lack of confidence in their
occurrence, which creates the well-known uncertainty about the outcomes of an
experiment related to these events. However, it is fully obvious that the amount
of this uncertainty is different in different cases.

The most natural choice is the logarithmic function. Although this def-
inition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we
will in all cases use an essentially logarithmic measure. The logarithmic measure
is more convenient for various reasons:

• It is practically more useful. Parameters of engineering importance such
as time, bandwidth, number of relays, etc., tend to vary linearly with the
logarithm of the number of possibilities. For example, adding one relay to
a group doubles the number of possible states of the relays. It adds 1 to
the base 2 logarithm of this number. Doubling the time roughly squares
the number of possible messages, or doubles the logarithm, etc.

• It is nearer to our intuitive feeling as to the proper measure. This is closely
related to previous item since we intuitively measures entities by linear com-
parison with common standards. One feels, for example, that two punched
cards should have twice the capacity of one for information storage, and two
identical channels twice the capacity of one for transmitting information.

• It is mathematically more suitable. Many of the limiting operations are
simple in terms of the logarithm but would require clumsy restatement in
terms of the number of possibilities.

log(ab) = log a+ log b

Section 3.1 introduces choice, uncertainty and entropy, it is taken from [8].
Section 3.2 introduces the concept of information and is taken from [9].

3.1 Choice, Uncertainty and Entropy

We have represented a discrete information source as a Markov process. Can we
define a quantity which will measure, in some sense, how much information is
”produced” by such a process, or better, at what rate information is produced?

Suppose we have a set of possible events whose probabilities of occurrence
are p1, p2, . . . , pn. These probabilities are known but that is all we know about the
fact as to which event will occur. Can we find a measure of how much ”choice” is
involved in the selection of the event or of how uncertain we are of the outcome?
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If there is such a measure, say H(p1, p2, . . . , pn), it is reasonable to require
the following properties of it:

E1 H should be continuous in the pi.

E2 If all the pi are equal, pi =
1
n
, then H should be a monotonic increasing

function of n. With equally likely events there is more choice, or
uncertainty, when there are more possible events. variations in the
probabilities p1, p2, . . . , pk.

E3 The function H(p1, p2, . . . , pk) satisfies the relation

H(p1, p2, . . . , pk) = H(p1+p2, p3, . . . , pk) + (p1+p2)H

(

p1
p1 + p2

,
p2

p1 + p2

)

Theorem 3.1. The H satisfying the three above assumptions is of the form:

HP = −K
n
∑

i=1

pi log pi,

where K is a positive constant.

Proof. Let HP (
1
n
, . . . , 1

n
) = A(n). From condition (3) we can decompose a choice

from sm equally likely possibilities into a series of m choises from s equally likely
possibilities and obtain

A(sm) = mA(s).

Similary
A(tn) = nA(t).

We can choose n arbitrarily large and find an m to satisfy

sm ≤ tn < sm+1.

Thus, taking logarithms and dividing by n log s,

m

n
<

log t

log s
≤

m

n
+

1

n
or

∣

∣

∣

∣

∣

m

n
−

log t

log s

∣

∣

∣

∣

∣

< ε

where ε is arbitrarily small. Now from the monotonic property of A(n),

A(sm) ≤ A(tn) ≤ A(sm+1)

mA(s) ≤ nA(t) ≤ (m+ 1A(s).

Hence, dividing by nA(s),

m

n
<

A(t)

A(s)
≤

m

n
+

1

n
or

∣

∣

∣

∣

∣

m

n
−

A(t)

A(s)

∣

∣

∣

∣

∣

< ε

∣

∣

∣

∣

∣

A(t)

A(s)
−

log t

log s

∣

∣

∣

∣

∣

< 2ε A(t) = K log t,
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where K must be positive to satisfy (2).

Now suppose we have a choice from n possibilities with commeasurable
probabilities pi =

ni
∑

j
nj
, where ni are integers. We can break down a choice form

∑

i ni possibilities into a choice form n possibilities with probabilities p1, . . . , pn
and then, if the i-th was chosen, a choice from ni with equal probabilities. Using
condition (3) again, we equate the total choice from

∑

j nj as computed by two
methods

K log

(

∑

i

ni

)

= HP (p1, . . . , pn) +K
∑

i

pi log ni.

Hence

HP (p1, . . . , pn) = K





∑

i

pi log





∑

j

nj



−
∑

i

pi log (ni)



 =

= −K
∑

i

pi log
ni

∑

j nj

=

= −K
∑

i

pi log pi.

If the pi are incommeasurable, they may be approximated by rationals and the
same expression must hold by our continuity assumption. Thus the expression
holds in general. The choice of coefficient K is a matter of convenience and
amounts to the choice of a unit of measure.

Quantities of the form HP = −K
∑

pi log pi, where the constant K merely
amounts to a choice of a unit of measure, play a central role in information
theory as measures of information, choice and uncertainty. The form of HP will
be recognized as that of entropy as defined in certain formulations of statistical
mechanics where pi is the probability of a system being in cell i of its phase space.
H is then, for example, the H in Boltzmann’s famous H theorem.

In this chapter, we shall call H = −
∑

pi log2 pi the entropy of the set
of probabilities p1, . . . , pn. If x is a chance variable we will write H(x) for its
entropy; thus x is not an argument of a function but a label for a number, to
differentiate it from H(y) say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities p and q =
1− p, namely

H = −(p log2 p+ q log2 q)

is plotted in Figure 3.1 as a function of p.

The quantity H has a number of interesting properties which further sub-
stantiate it as a reasonable measure of choice or information.

1. H = 0 if and only if all the pi but one are zero, this one having the value
unity. Thus only when we are certain of the outcome does H vanish. Otherwise
H is positive.

2. For a given n, H is a maximum and equal to log n when all the pi are
equal (i.e., 1

n
). This is also intuitively the most uncertain situation.
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Figure 3.1: Entropy in the case of two possibilities with probabilities p and 1− p

3. Suppose there are two events, x and y, in question with m possibilities
for the first and n for the second. Let p(i, j) be the probability of the joint
occurrence of i for the first and j for the second. The entropy of the joint event
is

H(x, y) = −
∑

i,j

p(i, j) log p(i, j),

while
H(x) = −

∑

i,j

p(i, j) log
∑

j

p(i, j),

H(y) = −
∑

i,j

p(i, j) log
∑

i

p(i, j),

It is easily shown that

H(x, y) ≤ H(x) +H(y)

with equality only if the events are independent (i.e., p(i, j) = p(i)p(j)). The
uncertainty of a joint event is less than or equal to the sum of the individual
uncertainties.

4. Any change toward equalization of the probabilities p1, p2, . . . , pn in-
creases H. Thus if p1 < p2 and we increase p1, decreasing p2 an equal amount
so that p1 and p2 are more nearly equal, then H increases. More generally, if we
perform any ”averaging” operation on the pi of the form

p′i =
∑

j

aijpj,
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where
∑

i aij =
∑

j aij = 1, and all aij ≥ 0, then H increases (except in the special
case where this transformation amounts to no more than a permutation of the pj
with H remaining the same).

5. Suppose there are two chance events x and y as in 3., not necessarily
independent. For any particular value i that x can assume there is a conditional
probability pi(j) that y has the value j. This is given by

pi(j) =
p(i, j)

∑

j p(i, j)
.

We define the conditional entropy of y, Hx(y) as the average of the entropy of y for
each value of x, weighted according to the probability of getting that particular
x. That is

Hx(y) = −
∑

i,j

p(i, j) log pi(j).

This quantity measures how uncertain we are of y on the average when we know
x. Substituting the value of pi(j) we obtain

Hx(y) = −
∑

i,j

p(i, j) log p(i, j) +
∑

i,j

p(i, j) log
∑

j

p(i, j)

Hx(y) = H(x, y)−H(x)

or
H(x, y) = H(x) +Hx(y).

The uncertainty (or entropy) of the joint event x, y is the uncertainty of x plus
the uncertainty of y when x is known.

6. From 3. and 5. we have

H(x) +H(y) ≥ H(x, y) = H(x) +Hx(y).

Hence
H(y) ≥ Hx(y).

The uncertainty of y is never increased by knowledge of x. It will be decreased
unless x and y are independent events, in which case it is not changed.

Consider a discrete source of the finite state type considered above. For
each possible state i there will be a set of probabilities pi(j) of producing the
various possible symbols j. Thus there is an entropy Hi for each state. The
entropy of the source will be defined as the average of these Hi weighted in
accordance with the probability of occurrence of the states in question:

H =
∑

i

PiHi

= −
∑

i,j

Pipi(i) log pi(j).

If successive symbols are independent then is simply

H = −
∑

i

pi log pi,

where pi is the probability of symbol i.
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3.2 Concept of Information

We recall the quantity H(y) characterizing the amount of uncertainty of an ex-
periment y. When this quantity is 0, it signifies that the outcome of y is known
beforehand; the value of H(y) being large or small implies that the problem of
predicting the result of an experiment is complicated or straightforward, respec-
tively.

Some measurement or observation x, preceding an experiment y, may nar-
row down the number of possible outcomes of y and thereby reduce the amount
of its uncertainty. The amount of uncertainty of an experiment, consisting of
determining the heaviest of three loads, is reduced after two of them have been
compared by weighing. In order that the result of the measurement (observation)
x may yield information about the succeeding experiment y, it is obviously nec-
essary that this result be not known previously; hence, x can be considered as an
auxiliary experiment, also having several admissible outcomes.

The fact that the realization of x cannot increase the amount of uncertainty
of y finds itself reflected in the observation that the conditional entropy Hx(y)
of y given the occurrence of x is found to be not greater than the unconditional
entropy H(y) of the same experiment. In addition, if the experiment y does
not depend on x, then the realization of x does not lower the entropy of y, i.e.,
Hx(y) = H(y); if, however, the result of x completely predetermines the outcome
of y, then the entropy of y reduces to zero: Hx(y) = 0. The difference

I(x, y) = H(y)−Hx(y)

indicates to what extent the realization of x lowers the uncertainty of y, i.e., how
much more we know about the outcome of y by carrying out a measurement
(observation) x; this difference is called the amount of information with respect
to the experiment y, contained in the experiment x or, briefly, the information

about y contained in x.

The relationship between the concepts of entropy and information in a
well-known sense recalls the relationship between the physical concepts of poten-
tial and potential difference. The entropy is an abstract ”measure of uncertainty”;
the value of this concept to a considerable extent lies in the fact that it enables
us to compute the influence on a specific experiment y of some other experiment
x as the ”difference of entropies” I(x, y) = H(y) − Hx(y). Since the concept of
information, related to specific changes in the conditions of experiment y, is, so
to say, ”more active” than the concept of entropy, hence for imparting a sharper
meaning to the entropy it is more expedient to reduce the latter concept to the
former one.

The entropy H(y) of y can be also defined as the information with respect

to y, contained in y itself (since the realization of the experiment y itself, obvi-
ously, completely determines its outcome and, consequently, Hy(y) = 0), or as
the maximum information that can be obtained with respect to y (”the total infor-
mation with respect to y”). Differently, the entropy H(y) of y is the information
given by the realization of this experiment, i.e., the average information contained

in a single outcome of the experiment y. These statements have understandably
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the same meaning as the ”measure of uncertainty”; the greater the uncertain-
ty of any experiment, the larger is the information obtained by determining its
outcome.

We further emphasize that the information, with respect to y, contained
in an experiment x is, by definition, the mean value of the random variable
H(y)−HAt

(y) associated with the individual outcomes Ai of x; hence, it can also
be termed as ”the mean information with respect to y contained in x”. It may
often happen that our desire to know the outcome of some experiment y may
motivate us to perform an auxiliary experiment (measurement, observation) x
which can be selected in a variety of ways; thus, for example, when ascertaining
the heaviest of some system of loads, we can compare the individual loads in
different orders. In this case, it is recommended to start with that experiment x0,
which contains the maximum information with respect to y, because in a different
experiment x it is likely that we shall obtain a smaller decrease in the amount of
uncertainty of y (the entropy H(y)).

In reality, however, it is also possible that by chance the experiment x
occurs to be more useful than x0; in principle, the outcome A of x0 may turn
out to be so unfortunate that the entropy HA(y) is found to be greater than the
original entropy H(y). Such a situation is completely natural, since the random
character of the outcomes of y does not obviously permit us to outline in advance
the results of this experiment via some shortest route; at most, we can work out
and indicate the path, which is found to be probably the shortest; it is precisely
this possibility which is offered by information theory.

The individual quantities H(y)−HAi
(y) do not factually constitute even

the characteristics of the experiment y, because if the result Ai of an experiment
x is known to us (and x and y are not independent), then we lose the right to
speak of the initial experiment y and have to take into account those changes in
the conditions of this experiment which stem from the fact that x has an outcome
Ai. Thus, HAi

(y) is simply the entropy of some new experiment to which the
experiment y is reduce given that the event Ai is realized.
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4. Fuzzy Sets

We often encounter objects that can be described with some uncertainty. We
have only vague information about them. Imagine everyday terms like little, less,
more, much, small, big, cold, hot and so on. One can definitely see that these are
meant to give us information - however uncertain.

The Greek philosoph Zenon had been already dealing with problems of
uncertain and vague terms. Let us imagine a small sandhill in front of us on a
beach. There can be laid a question: ”What if we take a small grain of sand away
from that sandhill? Will it still be a sandhill?” Should we take one grain only,
there will be still a sandhill in front of us, most likely.

Yet, when we are taking grains of sand away a longer time the sandhill will
dimish to a fistful of sand. When the turning point will happen? How many grains
of sand should a fistfull contain at utmost to turn it into a small sandhill with one
grain of sand added? This is the question which can help us to determinate the
exact borderline between a fistfull and a small hill. Alternatively, having used a
certain measure of uncertainity, we can lower gradually and steadily the weight
of classification of the sandformation in front of us as a small sandhill with each
grain of sand taken away.

The fuzzy sets theory was introduced by Zadeh in 1965 [11] in order to
provide a scheme for handling a variety of problems in which a fundamental role
is played by an indefiniteness arising more from a sort of intrinsic ambiguity than
from a statistical variation.

Section 4.1 contains the definition and basic properties of fuzzy sets, sec-
tion 4.2 describes some operations on fuzzy sets and section 4.3 introduces a
special case of fuzzy set, a fuzzy number. Definitions 4.1 - 4.2 and 4.7 - 4.12 are
taken from [11], definitions 4.3 - 4.6 are taken from [3], definition 4.13 is taken
from [1], definitions 4.14 and 4.16 are taken form [4] and definition 4.15 is taken
from [10].

4.1 Definition of Fuzzy Sets

Definition 4.1. Let M denote a universal set. Fuzzy set A in M is characterized
by membership function µA : M → [0, 1], which associates each object in M with
a real number in the interval [0, 1].

For each x ∈ M is the value of µA(x) representing the “grade of member-
ship” of x in A. Nearer value of µA(x) to unity means higher grade of membership
of x in A.

Remark 4.1. When A is a crisp set, set in ordinary sense of term, its member-

ship function can take only two values 0 and 1, where ∀x ∈ A : µA(x) = 1 and

∀x /∈ A : µA(x) = 0.

24



Definition 4.2. The set of all fuzzy sets in M will be denoted by F(M). The
set of all crisp sets in M will be denoted by C(M).

Note that crisp sets are contained in fuzzy sets, C(M) ⊂ F(M). Examples
of fuzzy sets can be a blurry outline of an object, an old or a young man, a
number close to zero and many others. We cannot determine an exact border to
decide if an object is or isn’t a part of our set.

Fuzzy sets are sometimes incorrectly assumed to indicate some form of
probability. Despite the fact that they can take on similar values, it is important
to realize that membership grades are not probabilities. One immediately appar-
ent difference is that the summation of probabilities on a finite universal set must
equal 1, while there is no such requirement for membership grades.

Definition 4.3. The support of a fuzzy set A in the universal set M is the crisp
set that contains all the elements of M that have a non-zero membership grade
in A. That is, supports of fuzzy sets in M are obtained by the function

supp(A) = {x ∈ M | µA(x) > 0}.

Definition 4.4. An empty fuzzy set is a fuzzy set with empty support. Its
membership function is identically zero on the universal set M .

Definition 4.5. A fuzzy set is called normalized when at least one of its elements
reaches to the maximum possible membership grade 1.

Definition 4.6. An α-cut of a fuzzy set A is a crisp set Aα that contains all the
elements of the universal set M that have a membership grade in A greater than
or equal to the specified value of α,

Aα = {x ∈ M | µA(x) ≤ α}.

The value of α can be chosen arbitrary from interval [0, 1]. Observe that
the α-cuts of any fuzzy set on X are nested crisp subsets of X.

Note that the notion of ”belonging”, which plays a fundamental role in
the case of crisp sets, does not have the same role in the case of fuzzy sets. Thus,
it is not meaningful to speak of a point x ”belonging” to a fuzzy set A. Instead
of it, we can say, that x belong to the α-cut of a fuzzy set A.

4.2 Operations on Fuzzy Sets

In this section let M denote a universal set, let A and B be fuzzy sets in the
universal set M with membership functions µA and µB respectively.

Definition 4.7. Fuzzy sets A and B are equal, A = B, if and only if its mem-
bership functions are identical.

Definition 4.8. The complement of a fuzzy set A is a fuzzy set denoted by Ā
and defined by its membership function

µĀ = 1− µA.
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Definition 4.9. Fuzzy set A is a subset of fuzzy set B (or, equivalently, A is
contained in B, A is smaller than or equal to B), if and only if µA ≤ µB. In
symbols

A ⊂ B ⇔ µA ≤ µB.

Definition 4.10. The union of fuzzy sets A and B is a fuzzy set C, C = A∪B,
whose membership function is related to membership functions of A and B by

µC(x) = max{µA(x), µB(x)}, x ∈ M.

Definition 4.11. The intersect of fuzzy sets A and B is a fuzzy set D, written
as C = A∩B, whose membership function is related to membership functions of
A and B by

µC(x) = min{µA(x), µB(x)}, x ∈ M.

Definition 4.12. Fuzzy sets A and B are disjoint if A ∩ B is empty.

Definition of disjoint fuzzy sets is an analogy to disjoint crisp sets. Note
that operators for union and intersection, ∪ and ∩, have the associative property.

Lemma 4.1. Let A and B be fuzzy sets. The union of A and B is the smallest

fuzzy set containing both A and B.

Proof. Let A, B be fuzzy set with respectively membership functions µA and µB.
Let C = A ∪ B with membership function be according the definition of union

µC(x) = max{µA(x), µB(x)}, x ∈ M.

We note first, that C is containing fuzzy sets A and B, A ⊂ C and B ⊂ C.
It is sufficient to prove, according to definition 4.9, that

µA ≤ µC and µB ≤ µC .

To do this, we just realize that,

∀x ∈ M
µA(x) ≤ max{µA(x), µB(x)} = µC(x)
µB(x) ≤ max{µA(x), µB(x)} = µC(x).

Now we note that C is the smallest fuzzy set containing both A and B.
Let D be a fuzzy set containing both A and B, then

µD ≥ µA and µD ≥ µB

µD ≥ max{µA, µB} = µC

which implies that C is a subset of D, in other words, C is smaller than D or
equal to D.

Lemma 4.2. Let A and B be fuzzy sets. Then the intersection of A and B is

the largest fuzzy set which is contained in both A and B.

Proof. The proof is an analogy to the previous one.
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Lemma 4.3. The involution law and De Morgan laws are valid for fuzzy sets.

Let A,B be fuzzy sets, then the following is true:

A = A,

A ∪B = A ∩ B,

A ∩B = A ∪ B.

Proof. Let M be universal set, let A,B be fuzzy sets on M with membership
functions µA, µB respectively.

We denote the membership function of fuzzy sets A,A,B,A ∪ B,A ∪B,
A ∩ B,A ∩ B by symbols µA, µA

, µB, µA∪B, µA∪B, µA∩B, µA∩B respectively. Then
for any x ∈ M

µ
A
(x) = 1− µA(x) = 1− (1− µA(x)) = µA(x)

µA∪B(x) = 1− µA∪B(x) = 1−max{µA(x), µB(x)} =

= min{1− µA(x), 1− µB(x)} = min{µA(x), µB(x)} = µA∪B(x)

µA∩B(x) = 1− µA∩B(x) = 1−min{µA(x), µB(x)} =

= max{1− µA(x), 1− µB(x)} = max{µA(x), µB(x)} = µA∩B(x)

Definition 4.13. Let A,B be fuzzy sets onM with membership functions µA, µB

respectively. We say that fuzzy set A is sharper than fuzzy set B, with the
notation �, if

µA(x) < µB(x) if µB(x) <
1

2

and

µA(x) > µB(x) if µB(x) >
1

2

for all x ∈ M

Definition 4.14. Let A,B be fuzzy sets onM with membership functions µA, µB

respectively. We say that fuzzy set A is sharper* than fuzzy set B, with the
notation �∗, if

|µA(x)−
1
2
| ≥ |µB(x)−

1
2
| forallx ∈ M.

The relation sharper* is larger with respect the relation sharper. Fuzzy
sets comparable by the relation sharper* need not be comparable by the relation
sharper. We remark that for any fuzzy set A it is A �∗ A and A �∗ A together,
i.e., A and A are equivalent with respect to the relation �∗.
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4.3 Fuzzy Number

Definition 4.15. A fuzzy number A is a fuzzy set in R determined by its mem-
bership function µA, a real function of one real variable x, fulfilling:

1. µA : R → [0, 1],

2. ∀α ∈ (0, 1] the α-cut (see def. 4.6) is a finite union of compact intervals,

∃ kα∈R ∃([aα,i, bα,i])
kα
i=1 : Aα =

kα
⋃

i=1

[aα,i, bα,i]

3. the support of µA (see def. 4.3) is bounded.

Remark 4.2. Precise numbers a ∈ R are represented by its characterizing func-

tion

µa(x) =

{

0 x 6= a
1 x = a

,

i.e. the one-point indicator function of the crisp set {a}.

Definition 4.16. A fuzzy set F ∈ F(R) is called an L-R fuzzy number, with the
notation F = (a, b, α, β)LR, if its membership function is given by

µF (x) =























1 if x ∈ [a, b]
L(a−x

α
) if x ∈ [a− α, a)

R(x−b
β
) if x ∈ (b, b+ β]

0 otherwise,

where a, b ∈ R, α, β > 0 and L,R : [0, 1] → [0, 1] are continuous non-increasing
functions such that L(x) = R(y) = 1 if and only if x = y = 0 and L(x) = R(y) = 0
if and only if x = y = 1.
The functions L,R are called shape functions and the constants α, β are spreads.

For L(u) = R(u) = 1−u, u ∈ [0, 1], we obtain linear fuzzy numbers, which
are called triangular if a = b, and trapezoidal if a < b.
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5. Vague Entropy

First we are to introduce a concept of vague entropy already defined in literature.
The first approach to fuzzy entropy by De Luca and Termini [1] is introduced in
section 5.1. Entropy of fuzzy numbers, defined by Kolesárová and Vivona in [4],
is described in section 5.2.

In this chapter we will assume this convention: There will be no difference
between a fuzzy sat and its membership function. More precisely, let M be
a universal set, let A ∈ F(M) be a fuzzy set and its membership function µA,
x ∈ M . In this chapter we will be understanding A also as label of its membership
function µA.

5.1 First Approach to Fuzzy Entropy

A functional defined on the class of fuzzy sets, called ”entropy”, is introduced
using no probabilistic concepts in order to obtain a global measure of the indef-

initeness connected with the situations described by fuzzy sets. The ”entropy”
may be regarded as a measure of a quantity of information which is not necessarily
related to random experiments.

The meaning of this quantity is quite different from the one of classical
entropy because no probabilistic concept is needed in order to define it. This
function gives a global measure of the ”indefiniteness” of the situation of interest.

This function may also be regarded as an average intrinsic information

which is received when one has to make a decision (as in pattern analysis) in
order to classify ensembles of objects (patterns) described by means of fuzzy sets.

We try to introduce for every fuzzy set A ∈ F(M) a measure of the degree
of its ”fuzziness”. We require of this quantity, which we shall denote by H(A),
that it must depend only on the values assumed by f on I and satisfy at least
the following properties:

P1 H(A) must be 0 if and only if f takes on M the values 0 or 1.

P2 H(A) must assume the maximum value if and only if f assumes always
the value 1

2
.

P3 H(A) must be greater of equal to H(A∗) where A∗ is any ”sharpened”
version of A, that is any fuzzy set such that µA∗(x) ≥ µA(x) if µA(x) ≥
1
2
and µA∗(x) ≤ µA(x) if µA(x) ≤

1
2
.

LetM be a finite set; this assumption simplify the mathematical formalism
but may be suitably weakened in future generalizations. We note, however, that
the finiteness of I corresponds to a large class of actual situations.

We introduce function ĤLT (·) on F(M), formally similar to the Shannon
entropy although quite different conceptually, whose range is the set of non-
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negative real numbers and defined as

ĤLT (A) = −K
N
∑

i=1

A(xi) log(A(xi)) (5.1)

where A is a fuzzy set, N is the number of elements of M and K is a
positive constant. We will assume 0 · log 0 = 0.

Lemma 5.1. ĤLT (A) is a non-negative valuation on the lattice F(M), i.e.,

ĤLT (A ∪ B) + ĤLT (A ∩ B) = ĤLT (A) + ĤLT (A) ∀A,B ∈ F(M).

Proof. Let A,B be fuzzy sets on M . It follows from definitions of union and
intersection (def. 4.10, 4.11) and from equation 5.1, that

ĤLT (A ∪B) = −K
N
∑

i=1

max{A(xi), B(xi)} log(max{A(xi), B(xi)}),

ĤLT (A ∩B) = −K
N
∑

i=1

min{A(xi), B(xi)} log(min{A(xi), B(xi)}).

Breaking up the sums into two parts, one extended over all x such that
A(x) ≥ B(x) and the other over all x such that A(x) < B(x), and summing up
the right and left sides of them, the statement of this lemma is obtained.

Definition 5.1. The power of a fuzzy set A is called the quantity

PW (A) =
N
∑

i=1

µA(xi).

If A is a classical characteristic function, PW (A) reduces to the ordinary
power of a (finite) set.

Definition 5.2. Let A and B be two fuzzy sets on M . We call direct product of
A and B the fuzzy set over M (2) = M ×M given by

(A× B)(x, y) = A(x) ·B(y).

If A and B takes on only the values 0 and 1, the previous definition reduces
to the usual on of direct product of sets in terms of characteristic functions.

Remark 5.1. The functional ĤLT exhibits a sort of ”additive property”,

ĤLT (A×B) = −K
N
∑

i,j=1

A(xi) ·B(yj) log (A(xi) ·B(yj))

= PW (B) · ĤLT (A) + PW (A) · ĤLT (B).

If PW (A) = PW (B) = 1 then

ĤLT (A×B) = ĤLT (A) + ĤLT (B).
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One might be temped to assume ĤLT is a measure of the fuzziness of a
generalized set. We have to see if it satisfies requirements P1, P2 and P3.

From definition 5.1 it follows that: ĤLT if and only if A belongs to C(M),
the subset of F(M) consisting of the classical characteristic functions. Require-
ment P1 is then satisfied. However, because the maximum of ĤLT is reached
when A(x) = 1

e
for all x of M , in which case ĤLT (A) = K · N

e
, P2 is not fulfilled.

It then seems then to be more convenient for us to introduce the following
functional, which we will call the ”entropy” of the fuzzy set A:

HLT (A) = ĤLT (A) + ĤLT (A) (5.2)

where A is the complement of A.

From 5.2 HLT (A) = HLT (A); moreover, HLT (A) can be written using
Shannnon’s function S(x) = −x log(x)− (1−x) log(1−x) as

HLT (A) = K
N
∑

i=1

S(A(xi)). (5.3)

HLT (A) satisfies requirements P1 and P2. Requirement P3 is also satis-
fied. In fact, if A is a sharper than B we have by definition

0 ≤ B(x) ≤ A(x) ≤ 1
2
, for 0 ≤ A(x) ≤ 1

2
,

1 ≥ B(x) ≥ A(x) ≥ 1
2
, for 1

2
≥ A(x) ≥ 1.

By the well-known property of Shannon’s function S(x)-monotonically increasing
in the interval [0, 1

2
] and monotonically decreasing in [1

2
, 1] with a maximum at

x = 1
2
- we immediately get that, for any x,

S(B(x)) ≤ S(A(x)), x ∈ M.

From this relation by 5.3 it follows that

HLT (B) ≤ HLT (A).

Lemma 5.2. HLT is a non-negative valuation on the lattice F(M).

Proof. Let A,B be fuzzy sets with membership functions µA, µB respectively.
From equation 5.2 and by lemma 5.1 and De Morgan laws (lemma 4.3) we have

HLT (A) +HLT (B) = ĤLT (A) + ĤLT (A) + ĤLT (B) + ĤLT (B)

= ĤLT (A ∪B) + ĤLT (A ∩B) + ĤLT (A ∪ B) + ĤLT (A ∩ B)

= ĤLT (A ∪B) + ĤLT (A ∩B) + ĤLT (A ∪ B) + ĤLT (A ∩ B)

= HLT (A ∪B) +HLT (A ∩B).
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5.2 Entropy on Fuzzy Numbers

In general, a measure of fuzziness H is a mapping which assigns to each fuzzy
subset F of a considered universal set M a non-negative number H(F ) that
quantifies the degree of fuzziness present in F . Value H(F ) can be regarded
as an entropy in the sense that it measures the uncertainty about presence or
absence a certain property described by F .

Paper [4] deals with special types of fuzzy entropy measures defined on
the set of all fuzzy numbers. A special attention is paid to the fuzzy entropy of
L-R fuzzy numbers.

Definition 5.3. A mapping H : F(R) → R
+
0 is called an entropy measure if it

satisfies the properties:

M1 H(F ) = 0 if F ∈ C(R),

M2 H(F1) ≤ H(F2) whenever F1, F2 ∈ F(R) such that F1 �
∗ F2.

We will define entropy measures by means of so-called norm functions.

Definition 5.4. A continuous function h : [0, 1] → [0, 1] with the properties:

N1 h(0) = 0, h(1
2
) = 1, and h(1) = 0,

N2 h is non-decreasing on the interval [0, 1
2
],

N3 h(x) = h(1− x) for each x ∈ [0, 1],

will be called a norm function.

Remark 5.2. A norm function h is non-increasing on the interval [1
2
, 1].

For example, the following functions are norm functions:

h1(x) = min{2x, 2− 2x}, x ∈ [0, 1],

hk(x) = 1− |2x− 1|k, x ∈ [0, 1], k ∈ (0,∞),

hs(x) = −x log(x)− (1− x) log(1− x), x ∈ [0, 1], where 0 · log 0 = 0,

hl(x) = 4x(1− x), x ∈ [0, 1].

Note that the function h1 is a ”tent” function, functions hk are its gener-
alizations (for k = 1 hk gives the function h1), hs is called the Shannon function
derived from the Shannon entropy and hl is the logistic function.

Definition 5.5. The global entropy H(F ) of a fuzzy quantity F ∈ F(R) can be
defined by means of a norm function h and the Lebesgue integral with respect to
the Lebesgue measure as follows:

H(F ) =
∫

∞

−∞

h(F (x))dx, F ∈ F(R).
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Lemma 5.3. The global entropy H(F ) is an entropy measure in the sense of

definition 5.3.

Proof. Let mapping H : F(R) → [0,∞) be a global entropy using norm function
h. This lemma follows from the properties of norm functions and the monotonicity
of the integral.

M1 Let F ∈ C(R) be a crisp set, then ∀x ∈ F h(x) = 0, ∀y /∈ F h(y) = 0

H(F ) =
∫

∞

−∞

h(F (x))dx =
∫

∞

−∞

0dx = 0.

M2 Let F1, F2 ∈ F(R) be such that F1 �
∗ F2, which means

∀x ∈ R |F1(x)−
1
2
| ≥ |F2(x)−

1
2
|.

From the monotonicity and symmetry of norm function we have

∀x ∈ R h(F1(x)) ≥ h(F2(x))

and hence, using linearity of Lebesgue integral, we obtain

H(F1) =
∫

∞

−∞

h(F(x))dx ≥
∫

∞

−∞

h(F2(x))dx = H(F2).

For L-R fuzzy numbers the entropy defined by (2) can be simplified and
by a direct computation it can be shown that the entropy H(F ) of an L-R fuzzy
number F depends only on h, L,R and the spreads α, β.

Lemma 5.4. If F = (a, b, α, β)LR, then H(F ) = α · cL + β · cR, where

cL =
∫ 1

0
(h(L(u))du, cR =

∫ 1

0
(h(R(u))du.

Proof. Since supp(F ) = (a− α, b+ β) and h(0) = 0,

H(F ) =
∫

∞

−∞

h(F (x))dx =
∫ b+β

a−α
h(F (x))dx =

=
∫ a

a−α
h(L(

a− x

α
))dx+

∫ b

a
h(1)dx+

∫ b+β

b
h(R(

x− b

β
))dx.

Using h(1) = 0 and substitutions a−x
α

= u and x−b
β

= v we obtain:

H(F ) = −
∫ 1

0
h(L(u))(−α)du+

∫ b

a
0 dx+

∫ 1

0
h(R(v))βdv = αcL + βcR.
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6. Source of Information on

Finite Alphabet

The general concept of information source with uncertainty and information mea-
sure are introduced in this chapter in sections 6.1 and 6.2. Vague information
source is introduced in section 6.3. Text in this chapter is taken from [5, 6].

6.1 Information Source with Uncertainty

In correspondence with probabilistic and fuzzy set theoretical methods of the
information theory (chapters 2, 3, papers [8, 5, 6]) we can define the source of
information as a pair, composed from an alphabet and an uncertainty distribution
over that alphabet. In our case, the fuzzy information source is defined as a fuzzy
subset of an alphabet, identified by a membership function.

Definition 6.1. Let us consider a non-empty and finite set A, called an alphabet.
Its elements a, b, c, . . . ∈ A are called symbols and a finite sequence of symbols is
called a message. By A∗ we denote the class of all finite messages, where

A∗ = A ∪ (A× A) ∪ (A× A× A) ∪ . . . .

Each symbol is connected with some uncertainty regarding its frequency in
messages, the exactness of its meaning, its precision or its expectedness. It means
that there exist several formal representations of particular types of uncertainty.

Definition 6.2. In general, let us consider a mapping u : A → [0,∞) called
the uncertainty measure. We will call the pair (A, u) the elementary source of

uncertain information.

The elementary source can be extended to more complex object, namely
the messages (i. e., words). In the case of the probabilistic model, such extension
is formally treated by the well managed concepts of conditional and associated
probabilities. Analogous procedure can be used for elementary source of uncertain
information handled in the following way.

Definition 6.3. Let us extend the uncertainty measure u on the entire class A∗

and define the extended uncertainty measure u∗ : A∗ → [0,∞), such that for any
n ∈ {1, 2, . . .}, a∗ = (a1, a2, . . . , an) ∈ A∗

IS1 u∗(a∗) ≥ 0,

IS2 if a∗ = (a), a ∈ A then u∗(a∗) = u(a),

IS3 u∗(a∗) ≤ min{u(a1), . . . , u(an)}.

The pair (A∗, u∗) is called the source of uncertain information.
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The previous conditions characterize the general uncertainty measures.
The next condition is not necessary but it simplifies eventual interpretation of
the source concept.

IS4 If a∗ = (a1, . . . , an) ∈ A∗, b∗ = (b1, . . . , bn) ∈ A∗ and u(ai) ≥ u(bi)
for all i ∈ {1, . . . , n} and some n ∈ {1, 2, . . .} then u∗(a∗) ≥ u∗(b∗).

Remark 6.1. Let a∗, b∗, c∗ ∈ A∗, a∗ = (a1, . . . , an), b
∗ = (b1, . . . , bm), and let

c∗ = (a1, . . . , an, b1, . . . , bm). Then IS3 immediately implies that

u∗(c∗) ≤ min(u∗(a∗), u∗(b∗)).

Lemma 6.1. Probability source of information described in chapter 2 fulfils con-

ditions requested for a source of uncertain information.

Proof. Let A be general finite alphabet. The uncertain measure p : A → [0, 1] is
a probability distribution,

0 ≤ p(a) ≤ 1 for all a ∈ A and
∑

a∈A

p(a) = 1.

This probability distribution can be extended on the class of all finite messages
A∗ by means of conditional probabilities. Let a1, . . . , an be symbols form A, and
let p(am|a1, . . . , am−1) be the conditional probability of am under the condition
that the ordered sequence (a1, . . . , am−1) was obtained for every m = 1 . . . , n− 1.
Then the extended probability distribution p∗ over A∗ is defined for any a∗ =
(a1, . . . , an) ∈ A∗ by

p∗(a∗) = p(a1) · p(a2|a1) · . . . · p(an|a1, . . . an−1).

Now we can consider (A, p) as an elementary source of uncertain informa-
tion and (A∗, p∗) as a source of uncertain information. Validity of conditions IS1,
IS2 and IS3 follows from prescription for p and p∗.

6.2 Information Measure

Definition 6.4. Let (A, u) be an uncertain information source with alphabet A
and uncertainty measure u. Let A∗ be the set of finite messages and u∗ be the
extension of u on A∗. If I : A∗ → R is a mapping such that

IM1 I(a∗) ≥ 0,

IM2 if a∗, b∗ ∈ A∗, u∗(a∗) ≥ u∗(b∗), then I(a∗) ≤ I(b∗).

then we say that I is an information measure on (A, u).

Remark 6.2. If a∗ = (a1, . . . , an) ∈ An, and b∗ = (a1, . . . , an, an+1)
n+1 then

Remark 6.1 implies that I(a∗) ≤ I(b∗).

Remark 6.3. Keeping notations of IS4, if IS4 is fulfilled then I(a∗) ≤ I(b∗).
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6.3 Vague Information Source

The vagueness is a frequently appearing type of uncertainty even in the context of
the information emission and transmission, whenever the situation does not ad-
mit the application of the statistically estimated probabilities. The vague reading
of defected symbols, subjective interpretation of noisy measurements, or approx-
imation of continuous data by discrete values, can be mentioned as examples of
fuzzy information and knowledge.

The essential difference between the probabilistic and fuzzy interpretation
of the data uncertainty appears to consists in the following heuristic principle.
Meanwhile the probability p(a), a ∈ A, in the Shannon’s classical model usually
represents the uncertainty with which the symbol a is expected in the future, the
membership value µ(a) rather evaluates the vagueness of the interpretation or
understanding the symbol a ∈ A, already received as a result of the information
acquisition.

This type of uncertain information source is the one in which the generated
information is vague. It means that the emitted signals are well (or relatively
well) identified but their interpretation, the real content of the data represented
by them, is deformed by subjectivity of imprecise understanding.

The alphabet A of a fuzzy information source is a general alphabet. The
uncertainty measure µ is a fuzzy subset of A, µ ∈ F(A), and we use the symbol
µ for its membership function, as well.

Definition 6.5. If a∗ = (a1, . . . , an) ∈ A∗, we define extended vague measure µ∗

as
µ∗(a∗) = min{µ(a1), . . . , µ(an)}.

Lemma 6.2. Function µ∗ displays the properties of membership function, i. e.

it identifies a fuzzy subset of A∗.

Proof. According to definition 4.1, membership function displays from universal
set to [0, 1]. Function µ∗ displays from extended alphabet A∗ to the minimum
value of uncertainty measure µ for constituent letters of examined message, where
µ : A → [0, 1].

Lemma 6.3. Fuzzy information source (A∗, µ∗) fulfils properties IS1, IS2, IS3

and IS4.

Proof. Let a∗ = (a1, . . . , an) ∈ A∗ and b∗ = (b1, . . . , bn) ∈ A∗.

IS1 ∀i ∈ {1, . . . , n} µ(ai) ≥ 0 : µ∗(a∗) = min{µ(a1), . . . , µ(an)} ≥ 0.

IS2 For a∗ = (a) : µ∗(a∗) = min{µ(a)} = µ(a).

IS3 µ∗(a∗) = min{µ(a1), . . . , µ(an)} ≤ min{µ(a1), . . . , µ(an)}.

IS4 ∀i ∈ {1, . . . , n}letµ∗(ai) ≥ µ∗(bi) : µ
∗(a∗) = min{µ(a1), . . . , µ(an)} ≥

≥ min{µ(b1), . . . , µ(bn)} = µ∗(b∗)
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7. Vague Information

In this chapter there is introduced a new point of view to vague information.
Comparison with the previous work is done in section 7.1, alternative approach
to vague information is described in section 7.2 and interpretation is discussed in
section 7.3. Text in this chapter is taken from [5, 6, 7].

7.1 Information Measures

Let us consider, now, the fuzzy information source (A, µF ) defined in Section
6.3, where µF is a membership function of a fuzzy subset of the alphabet A, and
its extension µ∗

F on A∗ is introduced by definition 6.5. Such fuzzy information
sources are carefully analyzed by a wide class of works ([1, 3, 4, 5, 6, 7, 9] and
more). Works [1, 3, 4, 9] deal with a total view on fuzzy sources as on compact
objects, and the analysis of informational content of particular symbols (or its
measure) does not represent the essential object of attention.

Nevertheless, the papers mentioned above deal with some implicite concept
of the information of single symbols. Namely, the fuzzy entropy dealt by them,
is a very close analogy of the probabilistic source entropy suggested in [8]. The
Shannon entropy HP is defined as a mean value of probabilistic informations
IP (a) for a ∈ A,

HP (pa1 , . . . , pan) =
n
∑

i=1

paiIP (ai) = −
n
∑

i=1

pai log(pai)

where the information transmitted by the symbol a ∈ A is denoted by

IP (a) = − log pa = log
(

1
pa

)

.

Analogously to this probabilistic entropy, its fuzzy counterpart is usually
defined as a value formally similar to the mean value,

HLT (A
∗, µ∗) = −K

n
∑

i=1

µ∗(ai) log(µ
∗(ai)) + (1− µ∗(ai)) log(1− µ∗(ai))

where K is a positive constant n is the number of elements of extended alphabet
A∗ and (A∗, µ∗) is an vague information source (we assume 0 · log 0 = 0).

Similarly we can generalize the global entropy of a fuzzy number H as

HG(A
∗, µ∗) =

∑

a∈A∗

h(µ∗(a)),

where h is norm-function (definiton 5.4) and (A∗, µ∗) is a vague information
source. We can consider the part h(µ∗(a)) as an information transmitted by
word a,

IG(a) = h(µ∗(a)).
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If the norm-function h is replaced by the Shannon function hs,

hs(x) = −x log(x)− (1− x) log(1− x), x ∈ [0, 1],where0 · log 0 = 0,

we will get from generalized global entropy the entropy HLT defined by DeLuca
and Termini in [1].

The above approaches to fuzzy entropy are correct and they have signifi-
cant advantages, including their nearness to the probabilistic pattern. Neverthe-
less, there are some aspects of their structure which deserve to be discussed. Most
of them are related to the fact that each entropy, including the fuzzy ones, rep-
resents an aggregation operator over the values of fuzzy information transmitted
by individual symbols.

7.1.1 Additivity of Information

The Shannon’s concept of entropy HP and information IP are defined for random
uncertainty characterized by probability distribution. Those probabilities are
naturally processed by algebraic tools, like the operations of sum and product,
and this approach is reflected also in the formal properties of HP and IP .

On the other hand, the vagueness assumed and dealt with fuzzy concepts,
is usually characterized by its monotonicity. Usual operations with fuzzy concepts
are rather monotonous and essentially theoretical (union, intersection, comple-
ment) represented by monotonous operators like minimum and maximum.

7.1.2 Logarithmic Scale of Information

The probabilistic information measure IP is demended to be additive - the asso-
ciated probabilistic information is to be a sum

IP (a, b) = IP (a) + IP (b), a, b ∈ A∗,

if the words a, b are independent. At the same time, the associated probability
p(a, d) of the independent words is the product p(a) · p(b). Hence, the use of
logarithm in IP is not only natural, but also unavoidable.

In the contrary, the fuzzy information is rather monotonous than additive,
and also processing of fuzzy sets and related notions is based on the monotonicity
of used operations. It means, that the use of logarithmic function is possible and
admissible but it is not necessary.

7.1.3 Limited Regards to the Information of Individual

Symbols

The analysis of the uncertainty existing in a random information source starts
from the uncertainty of individual symbols represented by information measure
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IP . The uncertainty of the entire information source (A, p) is defined as an aggre-
gation operator in the case of mean value over the set of individual uncertainties.

The model of fuzzy entropy suggested in [4] is not aimed to the charac-
terization of uncertainty of emitted or transmitted data, but to the measurement
of vagueness characterized by a fuzzy set. This procedure is correct and rational
but it means some weakening of the link between suggested definitions of entropy
and the reality of vague data source.

7.2 Alternative Vague Information Measure

Let us consider an information source (A, µF ) with fuzzy uncertainty measure
µF ∈ F(A). It can be extended on F(A∗) by means of definition 6.5

µ∗

F (a
∗) = min(µF (a1), . . . , µF (an))

for any a∗ = (a1, . . . , an) ∈ An ⊂ A∗. Definition 6.5 represents, in fact, the first
step to the alternative approach to fuzzy information, based on the paradigm of
monotonicity of fuzzy measures and, generally, fuzzy operations.

Definition 7.1. Let us define the monotonous fuzzy information IM : A∗ → R

by means of
IM(a∗) = 1− µ∗

F (a
∗), a∗ ∈ A∗.

Lemma 7.1. If a∗ = (a1, . . . , an) ∈ An then

IM(a∗) = max(IM(a1), . . . , IM(an)).

Proof. The statement follows from definitions 6.5 and 7.1 as

IM(a∗) = 1− µ∗

F (a
∗) = 1−min(µF (a1), . . . , µF (an))

= max(1− µF (a1), . . . , 1− µF (an)) = max(IM(a1), . . . , IM(an)).

Lemma 7.2. ∀a∗ ∈ A∗ : IM(a∗) ∈ [0, 1].

Proof. Follows from the assumption that µF ∈ F(A), µF : A → [0, 1], and
formulae for µ∗

F (a
∗) = min(µF (a1), . . . , µF (an)) and IM(a∗) = 1− µ∗

F (a
∗).

Theorem 7.1. The monotonous fuzzy information is an information measure

fulfilling definition 6.4.

Proof. IM(a∗) ≥ 0 follows from Lemma 7.2. Condition IM2 follows from definition
7.1 immediately.
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7.3 Interpretation

The alternative concept of fuzzy information related to particular symbols and
their finite sequences, suggested in this chapter, can be interpreted in the following
way.

Meanwhile the classical probabilistic information can be interpreted as
a consequence of randomness in the emission of symbols, the fuzzy information
represents rather the vagueness connected with the phenomena of their acquisition
and perception. There exist at least two types of situations in which the fuzzy
approach to uncertain information can be effective – both of them are connected
with subjective estimation of possibilities of symbols.

The first one of them represents an alternative to the (subjective or objec-
tive) probability of symbols produced by an uncertain source. The construction
of a probability distribution is based on the knowledge of massive real data or on a
multilateral analysis of personal preferences and attitudes. Both such procedures
assume relative stability of input data and especially of the situation represented
by them which can be partly substituted by theoretical tools of fuzzy sets.

The second situation in which the application of fuzzy information ap-
pears natural, regards the interpretation of already emitted and accepted but
vaguely cognizable symbol or message. For example, written historical artefacts,
heavily noised telecommunicated messages, remote sensing under complicated
meteorological conditions, and similar events. The uncertainty is not generat-
ed by randomness, but rather by vagueness, and the approach characterized by
definition 7.1 is not only formally correct but also adequate to the problem.

Anyhow – the monotonicity paradigma accepted by fuzzy set theoretical
models and formally represented by the application of maxima and minima in
processing fuzzy set theoretical models, is more adequate and natural for the
construction of mathematical models including vague components. It regards the
vague information sources and measurement of their uncertainty.

Finally, one field of study is worth mentioning, the field of study in which
an effective handling of information and its measure can be significant. The
information theory was originally developed for the analysis of information trans-
mission under regular and relatively stable conditions with random noise and
constant properties of the technical transmission channels. The probabilistic in-
formation theory offers optimal tools by means of which we are able to cope that
problem.

But the uncertainty and information play a crucial role also in another
type of human activity, namely in the decision-making and strategic behaviour.
Here, the typical information and knowledge is vague, subjective and imprecise,
its parameters are not stabilized, and its interpretation is often rather chaotic.
All these properties practically exclude, or at least limit, the application of proba-
bilistic information theoretical methods, and justify the use of alternative models
of information.
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