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Motivation of a variableless
approach
For centuries, mathematicians have been using notation that is “intuitively appeal-
ing” but not conforming to modern set theory and logic. Probably every mathe-
matician believes that the traditional notation1 could be translated into a completely
rigorous symbolic language if necessary (and this is indeed true, as we will show in
this text), and it is generally understood that elementary operations in calculus (i.e.
computing limits, derivatives, integrals etc.) are just examples of application of an
operator to a function (for example, if we denote the operator of one-dimensional
derivative by ∂, it is completely natural to state the rule for the derivative of a sum
of functions as ∂(f + g) = ∂f + ∂g, without any reference to a variable).

However, in practical computations, we always apply these operators “with re-
spect to a variable”. The reason why we cannot get rid of the variable lies ba-
sically in the fact that there is no function symbol for “xn”; we cannot write,
for example, x3(2) = 8. In this text, we will use the symbol ιn to denote this
function, i.e. ιn(x) = xn (and, in particular, ι(x) = x), so we can write, for ex-
ample, sin ◦ ι2 to represent the function defined as (sin ◦ ι2)(x) = sin(x2). How-
ever, because writing the circle symbol all the time would be impractical, we will
write f [g] instead of f ◦ g. The chain rule (f(g(x)))′ = f ′(g(x))g′(x) for differ-
entiation translates as ∂(f [g]) = ∂f [g] ∂g into a “variableless” notation, so we see
that, for example, instead of (sin(x2))′ = sin′(x2)(x2)′ = cos(x2)2x we could write
∂(sin[ι2]) = ∂(sin)[ι2] ∂(ι2) = cos[ι2] 2ι (and it is not hard to convince oneself that,
thanks to “ι”, any such computation could be written without using variables).

It may seem at first that the variableless notation only uses different symbols to
denote the same thing, and so there is little reason to abandon the standard notation;
however, we will also see that the variableless notation provides new methods of
computation, not present in the traditional notation. For example, we can write
(ι2 + ι3 + ι4)[sin + cos] (or, more traditionally, (ι2 + ι3 + ι4) ◦ (sin + cos)), a perfectly
well defined function, whose derivative could be computed using the chain rule:

∂
(
(ι2 + ι3 + ι4)[sin + cos]

)
= (2ι+ 3ι2 + 4ι3)[sin + cos] (cos− sin) .

This process doesn’t have any direct traditional notational counterpart; we just have
to write (sinx+ cosx)2 + (sin x+ cos x)3 + (sinx+ cosx)4, which also means that,
to differentiate it, we have to perform many operations repeatedly. The reader can
surely imagine that by nesting the previous construction (e.g. by writing (ι2 + ι3 +
ι4)[sin+cos][tan+cot+ ι5]) we can denote by relatively simple expressions functions
whose expression in the traditional notation would become ridiculously long, and
whose differentiation would be a very time-consuming process.

In integration, the inability of the standard notation to record the real mathe-
matical structure becomes even more pronounced. For simplicity, let’s think about

1When we refer to the traditional (or standard) notation, we mean any of the conventions that
are standardly in use. For example, both meaning of the symbol ⊂ (a subset or a proper subset)
are considered to be a part of the standard notation, although we always use only one meaning in
this text.
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the symbol
r
f as about one particular primitive function of f , i.e. a function such

that ∂(
r
f) = f (later on, the symbol

r
f will denote the set of all primitive functions

of f , and this fact will be crucial for the whole process to be completely correct).
By differentiating the function (

r
f)[g] (for some function g), we get (using the

chain rule) ∂
(
(
r
f)[g]

)
= f [g]∂g, i.e. (

r
f)[g] is a primitive function of f [g]∂g. If we

postpone the question of integration constants for a moment, we can writer
f [g]∂g =

( r
f
)[
g
]
.

This is intuitively appealing (provided that we know that constants do not cause a
problem), because we get an equality upon differentiating both sides of this equation.
In the traditional notation, this would be written as∫

f(g(x))g′(x) dx =

∫
f(t) dt

∣∣∣∣
t=g(x)

which one readily recognizes as the traditional integration by substitution. The
reason we have to use the “substitution” is that we are not able to work with the
function f independently, without a parameter it is applied to (and this makes the
whole process of integration much less transparent). For example, in the variableless
notation we would writer

cos[sin]cos =
( r

cos
)[
sin
]
= sin[sin] ,

and using variables (forgetting about the constants again):∫
cos(sin(x)) cos(x) dx =

∫
cos(t) dt

∣∣∣∣
t=sin(x)

= sin(t) = sin(sin(x)) .

Definite integration in the traditional notation is performed in two independent
steps; first, the indefinite integral of a function is computed, and then the limits are
applied to the result. Although these steps are independent, they are inseparable in
the traditional notation; we may, however, separate them by defining a new symbol
(resp. operator):

b

I
a

f = f(b)− f(a) .

This operator has some obvious properties, such as Iba f [g] = f [g](b) − f [g](a) =

f(g(b)) − f(g(a)) = I
g(b)
g(a) f . The definite integral of f from a to b can be written

as Iba
r
f . Using the mentioned property, we get the substitution rule for definite

integration for free:
b

I
a

r
f [g]∂g =

b

I
a

( r
f
)[
g
]
=

g(b)

I
g(a)

r
f ,

whose mathematical meaning is much clearer at first sight than in the traditional
notation: ∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(t) dt .
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1. Basic notational conventions
The purpose of this section is to both enrich and regularize the language of mathe-
matics. The standard mathematical notation lacks symbols for some mathematical
constructions used in sections 2 and 3; however, most symbols defined in section 1
completely or partially agree with the traditional notation. The following table con-
tains a list of all used symbols that agree with the standard notation. Descriptions
typeset in italics signify that, in practical terms, the symbol means the same as in
the traditional notation, but its mathematical interpretation slightly changes.

e, π common mathematical constants
{x : φ(x)} the set of all x such that φ(x) holds
A ⊆ B A is a subset of B
A ⊂ B A is a proper subset of B
<,≤, >,≥ common order relations on R
(a, b) the open interval {x ∈ R : a < x < b}
[a, b] the closed interval {x ∈ R : a ≤ x ≤ b}
[a, b), [b, a) half-open/half-closed intervals
f : A → B f is a mapping from A to B
f−1 the inverse function of f
(x1, x2, . . . , xn) an ordered n-tuple
an the nth member of a sequence a
a+ b, a · b, a

b
, . . . common binary operations

A ∩B,A ∪B,A \B, . . . common set operations
ab a to the power b
n
√
x the nth root of x∑n
i=m,

∏n
i=m finite sums and products

∆ the forward difference operator
limx→a (. . . ) the limit of “(. . . )” for x → a

Furthermore, there are many symbols that don’t fully agree with the traditional
notation or don’t have a traditional counterpart. Descriptions are listed together
with the number of section these notions are defined in.

f [x] application of a mapping f to x . . . . . . . . . . . . . . . . . . . . . . . 1.1
RJXK the image of a set X under a relation R . . . . . . . . . . . . . . . 1.1
RJx] set of all y such that yRx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
R[XK y such that (∀x ∈ X)(yRx) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
Ω the “undefined” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1
ι the identity function on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2
fA restriction of a function f to a set A . . . . . . . . . . . . . . . . . . 1.2
f [g] composition of f and g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2
. a placeholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3
ιn, aι power and exponential functions . . . . . . . . . . . . . . . . . . . . . . 1.4
D
x
or D:x application of D with respect to x . . . . . . . . . . . . . . . . . . . . 1.5∑n
m,
∏n

m sum and product operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6
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∆h growth operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2
lima the limit operator at a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1
Lim the sequence limit operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1
∂ the derivative operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3
ona [f ] remainder of the Taylor polynomial of f of order n at a 2.4∑

h,
∑

indefinite sum operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1
Ch the set of all h-periodic functions on R . . . . . . . . . . . . . . . . 3.1∑b

a,h definite sum operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2
Iba the (continuous) operator of limits from a to b . . . . . . . . . 3.2r

the indefinite integral operator . . . . . . . . . . . . . . . . . . . . . . . . 3.3
C the set of all constant functions on R . . . . . . . . . . . . . . . . . . 3.3r b

a
definite integral operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4

Note (on typographical conventions). Typographical conventions used in this
text are mostly standard. We number only referenced equations, and, to avoid
possible confusion, we always insert one blank space before punctuation in sepa-
rate equations. Definitions, theorems, lemmas and larger examples share common
numbering (for example, after Theorem 2.2 follows Example 2.3 and Theorem 2.4).

Definitions, theorems etc. are thought of as blocks of text separated from the
rest of the text. To help the reader to quickly see the boundaries of these blocks,
they always end with a small black square placed to the right bottom corner (this
note is an example of such a block).

In definitions, the term being defined is typeset in bold italic type, as are
titles of theorems and lemmas (and this note). Theorems and lemmas generally
consist of two parts, the statement of the theorem and the proof. The black square
symbol is inserted at the end of the proof (and so we don’t have to mark it further
by adding a white square symbol). If the statement itself ends with a black square
(and no proof part is present), it means that the proof has already been explained
in foregoing text. �

1.1 Operations with relations
A binary relation is commonly defined as a set of pairs. For us, the set-theoretical
representation of relations is irrelevant; we will only use the notation yRx for “y
and x are in relation through R”.

Let f : X → Y be a function. The application of f to x ∈ X will be denoted by
f [x], i.e.

f [x] = y ⇐⇒ (∀z)(zfx ⇔ z = y) .

This would be traditionally denoted f(x), so a natural question of why to abandon
this convention arises1. The problem is in the ambiguity of expressions like f(x+y);
it is not clear whether we mean application of f to x+ y, or the product f · (x+ y).

1One could also note that we write functions as relations in the “wrong way”, i.e. we write
f [x] = y as yfx instead of the more traditional xfy. This is to assure consistency with notation
used for general relations (in fact, even in the notation f [x] = y, f doesn’t have to be a function,
the symbol merely means that there is only one value in relation with x).
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While this is usually obvious in traditional calculus, it would reduce intelligibility
in variableless calculus presented in this text; for us, round parentheses will always
denote boundaries of expressions.

Let R be a relation and X a set. RJXK denotes the image of X under R, that
is, the set consisting of all y for which yRx for some x ∈ X. Written symbolically:

RJXK = {y : (∃x ∈ X)(yRx)} .

For example, sinJRK = [−1, 1]. When X doesn’t contain any element in the domain
of R, RJXK is the empty set.

There are also two notions lying somewhere between the previous two. Let R be
a relation. Define

RJx] = {y : yRx} ,

that is, RJx] is the set of all elements that are in relation with x. A few examples
will quickly clarify the meaning. If R is an equivalence relation, then RJx] is simply
the equivalence class of x. Indeed, by definition, RJx] is the set of all y such that y
is equivalent to x (i.e. yRx holds). Let ≤ denote the standard order on the set of
real numbers. What is ≤Jx]? The set of all y such that y ≤ x, i.e. ≤Jx] = (−∞, x].

It might seem strange to use a closing bracket that differs from the opening
one; however, it is logical: single brackets symbolize an “element”, whereas double
brackets symbolize a “set”. The symbol RJXK should be thought of as “taking a set,
producing a set” and the symbol RJx] as “taking an element, producing a set”.

What should R[XK mean? It’s “taking a set, producing an element”, so the
following definition shouldn’t be surprising:

R[XK = y ⇔ RJXK = {y} .

If all elements ofX are mapped to the same y by R, then R[XK is this y (for example,
sinJ{0, π, 2π}K = {0}, whereas sin[{0, π, 2π}K = 0).

Example 1.1. Why should be the R[XK notation an important concept in calcu-
lus? Let ∂ denote the operator of derivative in one dimension (so ∂[f ] = f ′ in the
traditional notation, for example ∂[sin] = cos). Let F = {sin + c : c ∈ R} (meaning
the set of all functions f of the form f(x) = sin(x) + c where c is a real constant,
i.e. the indefinite integral (in the sense to be made precise later) of cos). What is
∂[F K? Obviously, ∂JF K = {∂[sin + c] : c ∈ R} = {cos}, hence ∂[F K = cos. �

It is customary to drop parentheses when denoting application of an operator to
a function. We shall follow this convention and often use expressions like ∂f instead
of ∂[f ]. Similarly, if F is a set of functions, we will often write ∂F instead of ∂[F K.
The same rule applies to RJ. . . ]; for example, if ∼ is an equivalence relation, the
equivalence class of x could be denoted ∼x.

However, we will always write brackets in application of a function that is not an
operator (e.g. sin[x]), so when such a function symbol is not followed by brackets,
it is immediately clear that we mean multiplication (thus, strictly speaking, sinx
would denote sin · x in our notation, but we will avoid such confusing expressions).
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The undefined

The ‘element-producing’ constructions can, from the traditional viewpoint, be “un-
defined”. If x is not in the domain of f , then f(x) “doesn’t make sense”. However,
it is somewhat unfortunate that the very meaningfulness of a formula depends on
the particular value of symbols it contains, and, strictly speaking, such approach
is incorrect from the viewpoint of logic and set theory. We will adopt a different
approach. Let Ω (symbolizing the letter U written upside down) be a constant (that
is, from the viewpoint of set theory just a set) whose set structure is irrelevant; it is
just a symbol in a manner analogous to ∞. Whenever a set-theoretical construction
should be “undefined”, we define it to be equal to Ω and call Ω the undefined.

In other words, if x doesn’t lie in the domain of f , then f [x] = Ω (which would be
read as “f of x is undefined”). Similarly, if fJXK is not a singleton, then f [XK = Ω.
This will simplify statements like “a limit doesn’t exist”, “a sum isn’t convergent”
etc. We will also follow the convention that Ω doesn’t lie in the domain of any
function we work with. This means in particular that whenever any part of an
expression is undefined, the whole expression is undefined, for example sin[5 + 1

0
] =

sin[5 + Ω] = sin[Ω] = Ω.

1.2 Basic constructions with functions
The identity function (on some set understood from the context) is commonly de-
noted by 1 or id, neither of which would be convenient for our purposes. The
real identity function will be denoted by ι (the Greek letter iota, slightly vertically
extended), that is2

ι[x] =
{
x for x ∈ R
Ω otherwise

.

Restriction of a function f to a set A (which is usually a subset of its original
domain) is denoted fA and defined by

fA[x] =

{
f [x] for x ∈ A

Ω otherwise
.

For example, log(0,2] is exactly the Taylor series of log around 1. Using this notation,
the identity function on a set A ⊂ R can be naturally written as ιA.

For a constant c, the symbol c will represent both the constant c and the con-
stant function x 7→ c whose domain is understood from the context (which is a
common convention). Combining this notion with the notation defined in the previ-
ous paragraph, we can denote naturally constant functions on a particular domain.
For example, 1R denotes the constant function 1 restricted to R, that is, the function
1R[x] = 1 for x ∈ R, Ω otherwise.

2One might be wondering why we use a variable to define elementary notions in variableless
calculus. The reason is that there are two different ways in which variables are used (which is
explained in greater detail in section 1.5). To use variables to define functions may be quite useful;
however, what we will be trying to avoid is a reference to variables when we apply operators to
functions that are already defined.
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Composition of functions f and g is commonly denoted f ◦ g and defined by (f ◦
g)[x] = f [g[x]]. Since composition of functions will be perhaps the most commonly
used concept in this text, a more convenient notation is in order here. We shall use
the notation3

f [g] = f ◦ g ,

i.e. f [g][x] = f [g[x]]. This notation creates ambiguity with the notation for func-
tion application, but this ambiguity is actually desirable, because composition and
application are virtually the same concept (for example, if π denotes the constant
function πR, the composition sin[π] is the constant function 0); in other words, com-
position of functions is just an “application” of a function to a “parameter” that
varies as well.

Since application of a function to a parameter is sometimes denoted without
parentheses (e.g. sin cos x), one might be tempted to write also composition without
brackets (e.g. sin cos instead of sin[cos]). However, we will not use this notation
for functions that are not operators (such as sin or cos) as we do not denote ap-
plication of such functions without brackets (that is, sin cos will always denote the
function defined as (sin cos)[x] = sin[x] cos[x]). We may, however, use this notation
for operators.

Functions of multiple variables

An n-tuple will be denoted by round parentheses and commas. Its set-theoretical
definition is immaterial, the only important property is that (a, b, . . . ) = (a′, b′, . . . )
is equivalent to a = a′, b = b′, . . . The Cartesian product of X1, . . . , Xn is the set of
n-tuples (x1, x2, . . . , xn) such that xi ∈ Xi. That is:

X1 × · · · ×Xn = {(x1, . . . , xn) : xi ∈ Xi} .

Functions of more than one variable are simply functions operating on some
Cartesian product, i.e. their parameters are n-tuples. Instead of f [(a, b, . . . )] we
shall use also a shorter version f [a, b, . . . ].

1.3 Arbitrarily placed parameters
It is customary to denote application of a function to parameters by placing these
parameters into larger symbols, for example, n

√
x denotes application of a function of

two variables to (n, x). This process is often not understood as function application,
but merely as a symbol (that can be used to define a function). For us, this will be
just a typographical convention to denote parameters of functions.

Whenever a function symbol contains the symbol . (called a placeholder), the
parameter of this function can be written instead of it (and resized in accordance
with its size). For example, let a. : N → R be a function. Instead of a.[n] we can
write an. We will usually write the parameter instead of . when it is “small”, e.g.

3While this might seem unnecessary at first sight, it is a very useful convention, as it reduces
greatly the number of parentheses required in commonly used expressions. For example, instead
of
(
f ◦ (g + h)

)(
(p ◦ (q + r)

)
we would write simply f [g + h]p[q + r].
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an, and ordinarily after the function symbol when it is “large”, e.g. a.[ a+b
c+ d

e

] instead
of a a+b

c+ d
e

(which is typographically inappropriate).

Composition of a function whose symbol contains a placeholder with another
function will be denoted simply by putting it in place of the placeholder. For exam-
ple, if

√. denotes the square root function,
√. ◦ f would be denoted

√
f . We will

also avoid placeholders whenever possible and write expressions like
√
ι instead of√. .

This concept generalizes naturally to any number of placeholders4. The most
important instance of this construction is the notation . . . for binary operations.
We define

(. . .)[a, f, b] = f [a, b] .

For example, for + : R2 → R being the ordinary addition of real numbers, a + b =
(. . .)[a,+, b] = +[a, b]. This construction is defined for any binary function but
will be used only for those thought of as binary operations.

Every placeholder can be replaced by a parameter with any type of brackets,
because virtually for any combination of brackets there is only one reasonable in-
terpretation of the resulting expression. For example, it is obvious that 1

2
+ JZK

denotes the set {1
2
+ k : k ∈ Z}. In this case, the meaning is so obvious that we

would drop the brackets altogether and write simply 1
2
+ Z. Nevertheless, there are

also non-trivial cases.

Example 1.2. Let T be a topology on a set X. The set

X \ JT K = {X \ t : t ∈ T}

is the set of all closed sets in the topology T . Let A ⊆ X, the set

A ∩ JT K = {A ∩ t : t ∈ T}

is the subspace topology on A (topology is a large source of such examples for its
broad use of operations with sets). �

Note. It is often typographically convenient to expand horizontal components of a func-
tion symbol when its parameter is too wide. For example, .. is defined by ..[a, b] = a/b.
When larger parameters are written in place of ., the horizontal line extends to fit their
width (e.g. a+b

c+d).
Function symbols often consist of several horizontally separated symbols, for example

[.,.) is the function which returns the half open interval [a, b) when applied to the pair
(a, b). In this case, when the parameter is too wide, the distance of individual symbols
increases, e.g. [a+ b, c+ d) = [.,.)[a+ b, c+ d]. �

4One might argue that we should specify the order in which the parameters of a function
symbol containing multiple placeholders should be written; however, there will be usually only one
reasonable choice.
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1.4 The exponential and the power function
Let n ∈ N and let ∗ be an associative binary operation (or a binary operation with
a natural n-ary version). The construction ... is defined by

x∗n = x ∗ x ∗ · · · ∗ x︸ ︷︷ ︸
n times

. (1.1)

This can often be further generalized to n ∈ Z (for example when ∗ is a group
operation). With this notation, we can distinguish various “power” functions, such
as X ·n (the matrix power) for a matrix X, X×n (the Cartesian power) for a set X,
X×n or X⊕n (the tensor power and the direct sum power) for a vector space X etc.,
without any need for further verbal explanation. This is, in fact, a standard notation;
the symbols V ⊕n and V ⊗n are common in algebraic texts. We just generalize this
notion, so we could write, for example, x+n = x+ x+ · · ·+ x = nx. Whenever ∗ is
obvious from the context, we will drop it and write simply Xn.

Usually, this construction denotes the power function “xn” defined on real num-
bers. That is,

xn = x · x · · · · · x︸ ︷︷ ︸
n times

.

The symbol .. is defined only for integer exponents by (1.1); however, ab is defined
much more generally in R in the traditional notation and we shall use it in this
generalized sense, i.e. the symbol ab denotes what it would denote in any common
real calculus textbook.

The function ιn (i.e. .. composed with ι in the first parameter and applied to
n in the second) shall be called the nth power function. Similarly, aι denotes the
exponential function with base a.

More (and also less) generally, ... will denote the construction defined by

xnh = x(x− h) . . . (x− (n− 1)h) .

This is a slight generalization of the so called Pochhammer symbol (or falling
factorial, which is the name we will use), which would be traditionally denoted
(x)n or xn (which is equal to xn

1 in our notation). Also, notice that xn
0 = xn.

In accordance with the traditional notation, we define the symbol .√. to denote
the “root” function; in particular, n

√
ι is called the nth root function.

Example 1.3 (Usage of ιn). Sometimes the fact that the standard notation lacks a
function symbol for ιn disallows us to denote functions that are simple in their nature,
but require nesting of rational functions or polynomials. Consider the following
function:

f = (ι2 + ι3 + ι4)[2ι2 + 3ι3 + 4ι4][ι+ ι2]
(i.e. f = (ι2 + ι3 + ι4) ◦ (2ι2 + 3ι3 + 4ι4) ◦ (ι+ ι2)). The structure of this function is
clear; it wouldn’t be hard to compute its value at some point using only a pen and
paper, for example

f [1] = (ι2 + ι3 + ι4)[2ι2 + 3ι3 + 4ι4][2] = (ι2 + ι3 + ι4)[96] ≈ 86 · 106 ,

10



nor would it be hard to differentiate it (differentiation will be considered in greater
detail in section 2.3):

∂f = (2ι+ 3ι2 + 4ι3)[2ι2 + 3ι3 + 4ι4][ι+ ι2] (4ι+ 9ι2 + 16ι3)[ι+ ι2] (1 + 2ι) .

In the standard notation, there’s no way to write f using a simple formula. Subse-
quent polynomials are simply put “inside” the preceding ones:

f(x) = (2(x+ x2)2 + 3(x+ x2)3 + 4(x+ x2)4)2 + (2(x+ x2)2 + 3(x+ x2)3+

+ 4(x+ x2)4)3 + (2(x+ x2)2 + 3(x+ x2)3 + 4(x+ x2)4)4 .

Such a function is too complicated to be of concern, and calculating its derivative
by hand would be a nightmare. However, in fact, this complicatedness is caused only
by lack of appropriate notation. �

1.5 Variables
In practice, we often work in an abstract manner with letters (which may represent
some physical properties of an object under consideration, mathematical constants
etc.) as with “dummy variables” that have the same value throughout the whole
computation. For example, x in the expression f(x) = x2 is used as a bond between
the sides of the equality, meaning “if you replace me by a particular value, you still
get a correct equality”, e.g. f(3) = 32. From the set-theoretical viewpoint, these
dummy variables are just variables bound to an implicit universal quantifier, e.g.
f(x) = x2 means (∀x)(f(x) = x2).

However, expressions like ∂
∂x
(sin(xy)) are of different kind; they denote a vague

process of application of an operator with respect to a variable. This process will be
formalized in this section.

Let F be a functional (i.e. an operator that returns a number when applied to a
function). Define:

F
x
(“expression with x”) ≡ F [x 7→ “expression with x”] .

In text style in LaTEX (i.e. inside text, in the numerator or the denominator of a
fraction etc.) we would write F:x instead (with a colon to avoid confusion with a
bottom index; the colon can be read as “with respect to”).

Example 1.4. Let Evala[f ] = f [a] be the evaluation operator at a. We can either
write, for example Eval2[ι2 + ι + 1] = (ι2 + ι + 1)[2] = 7, or, using the notion just
defined,

Eval2
x

(x2 + x+ 1) = 22 + 2 + 1 = 7 .

However, it would be more natural to write Evalx=a f [x] instead of Evalx:a f [x], resp.

Eval
x=a

f [x] instead of Evala
x

f [x] .

This will often be the case; when there exists a more natural notation for variables
than the two possibilities just defined (usually because there is already a standard
way to denote variables), we will use this “irregular” natural version. �
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There is also another important class of operators—those that return a function
(such as ∂). Let D be such an operator. Define:

D
x
(“expression with x”) ≡ D[x 7→ “expression with x”][x] .

The letter x is used in two meanings in this expression; firstly, it is a variable with
respect to which the operator D is applied, and secondly, it is a “dummy variable”.
For example, we can write

∂
x
sin[x] = ∂[x 7→ sin[x]][x] = ∂[sin][x] = cos[x] .

Example 1.5. Expressions can contain more than one dummy variable; it is com-
pletely correct to write

f [x, y] = ∂
x
(x2y3) = 2xy3 . (*)

However, notice that this concept is independent of the concept of partial derivatives;
no partial derivative operator was used here. Formula (*) can be rewritten as

f [x, y] = ∂
x
(x2y3) = ∂[x 7→ x2y3][x] = ∂[ι2y3][x] = (2ιy3)[x] = 2xy3 .

�

1.6 Classical operators
When we have an associative binary operation, or an operation having a natural
n-ary version for every n ∈ N (for example ⊕, the direct sum of vector spaces),
and a sequence of its parameters (e.g. V. being a sequence of vector spaces), it is
customary to write

Vm ⊕ Vm+1 ⊕ · · · ⊕ Vm+n =
n⊕

i=m

Vi .

Similarly, for example, Vm ⊗ · · · ⊗ Vn =
⊗n

i=m Vi, or Vm × · · · × Vn =×n
i=mVi etc.

This suggests the following construction:...[∗,m, n][f ] =∗n
m[f ] = f [m] ∗ f [m+ 1] ∗ · · · ∗ f [n] .

The operator ∗n
m will be usually called by the name of ∗ followed by the word

“operator”, for example
⊕n

m is a direct sum operator,
⊗n

m is a tensor product
operator etc. Its synonymous form can be used in display style (i.e. in a separate
formula): ... =... .

There’s usually a conventional way to denote variables for these “classical” op-
erators, and we shall follow this way instead of the two defined possibilities. For
example, instead of

⊕b
a:k Vk, we would write

n⊕
k=m

Vk or
⊕n

k=m Vk .
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In accordance with the traditional notation, we let
∑n

m = +n
m and

∏n
m = ·nm

(i.e.
∑n

m f = f [m]+ · · ·+f [n] and analogously for
∏n

m) and call
∑n

m a sum operator
and

∏n
m a product operator.

Another common version of
∑n

m is traditionally denoted as
∑

x∈X f(x), meaning
the sum of f [x] over all elements of X. This expression can be understood as the
traditional way to write variables for the operator

∑
X , that is,

∑
X f =

∑
x∈X f [x].

In display style, we can use expressions like∑
{0,π,2π}

cos =
∑

x∈{0,π,2π}

cos[x] = 1 + (−1) + 1 = 1 .

It is common to use the same operator symbol for functions as for elements. For
example,

∑n
k=1 fk could traditionally denote a sum of functions, that is, a function

defined by (
∑n

k=1 fk)(x) =
∑n

k=1 fk(x). We shall follow this convention;
∑n

1 f. =∑n
k=1 fk will denote the function f1 + · · ·+ fn.

13



2. Differential calculus
In this section, we present basics of variableless differential calculus. We will learn
how to compute limits, finite differences, and derivatives without using variables,
and how to translate these computations into computations with variables, when
this is desirable. Since we will develop only real one-dimensional calculus in this
text, the following convention will save us a lot of repetition.

Convention. In what follows, f and g will always denote real functions of one “real
variable”, i.e. functions M → R where M ⊆ R, and h denotes a real number not
equal to zero, unless stated otherwise. �

This convention applies here, as well as in the section about integral calculus.

2.1 Limits
Every mathematician has learned how to compute limits using symbolical manipu-
lation. The symbol

lim
x→a

f(x)

is traditionally defined to “mean” the value L such that (∀ε > 0)(∃δ > 0)(fJUδ[a]K ⊆
Bε[L]), where Bα[x] denotes the open ball of (positive) radius α around x (in some
metric space) and Uα[x] = Bα[x] \ {x}.

In R with the Euclidean metric this translates as Bα[x] = (x− α, x + α) and is
extended to R̄ = R ∪ {−∞,∞} by Bα[∞] = (1/α,∞), and similarly for −∞. This
definition of limit can be rewritten using a more mathematical way of thinking:

Definition 2.1. Let a ∈ R̄. A function f lies in the domain D of the limit
operator lima : D → R̄ whenever there is a number L ∈ R̄ such that (∀ε > 0)(∃δ >
0)(fJUδ[a]K ⊆ Bε[L]). For such f we define1 lima f = L. �

The parameter a of lima will be placed below it when written in a separate
formula. This definition says nothing else than

lim
a

f = lim
x→a

f(x) (in the traditional notation).

If the limit “doesn’t exist” (i.e. f doesn’t lie in the domain of lima), we write simply
lima f = Ω (in agreement with the definiton of Ω).

The arithmetics on R̄ is defined in the standard way, that is x+∞ = ∞+x = ∞
for x 6= −∞, x · ∞ = ∞ · x = ∞ for x 6= 0, x/∞ = 0 for all x ∈ R, and similarly for
−∞. Other expressions are left undefined, that is, −∞+∞ = 0 · ∞ = 0 · −∞ = Ω.
Also remember that a+ b = a · b = Ω whenever a = Ω or b = Ω.

The following elementary theorems about Evaluation, Neighbourhood, Composition,
and Arithmetics are standard and we will not prove them in this text. Above every
equality, one or more of the letters E, N, C or A can be written to express which
theorem was used.

1Of course, for this definition to be correct, one has to check that if such L exists, it is unique
(as in the traditional approach) which is an easy exercise.
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Theorem 2.2 (Evaluation). If f is continuous at a, then lima f = f [a].

Proof. This is, basically, one way to state the definition of continuity. �

Example 2.3. Since ι + 1 is a continuous function (and therefore in particular
continuous at 1), we can write

lim
1

(ι+ 1)
E
= (ι+ 1)[1] = 1 + 1 = 2 .

�

Theorem 2.4 (Neighbourhood). If f and g agree on some neighbourhood of a
(excluding a), i.e. fUα(a) = gUα(a) for some α (recall that fA denotes the restriction
of f to a set A), then lima f = lima g.

Proof. This is a trivial consequence of the definition of the limit operator. �

Example 2.5. Consider the function ι−1
ι−1

. It is equal to 1R\{1}, that is, for any
neighbourhood of 1 (excluding 1 itself) it is equal to 1R, so using the two previous
theorems we can write

lim
1

ι− 1

ι− 1
N
= lim

1
1R

E
= 1R[1] = 1 .

�

Theorem 2.6 (Composition). If f is continuous at lima g, then lima f [g] =
f [lima g]. If g doesn’t equal lima g on some neighborhood of a, then lima f [g] =
limlima g f .

Proof. See, for example, [Lang96, p. 49]. �

Example 2.7. It is well known that lim sin
ι = 1. Since eι is continuous, we can write

lim
0

eι
[
sin
ι
]
= eι

[
lim
0

sin
ι

]
= eι[1] = e ,

which would be usually written more concisely as

lim
0

e
sin
ι = elim0

sin
ι = e1 = e .

�

Theorem 2.8 (Arithmetics).

1. If limaf + limag 6= Ω, then lima(f + g) = limaf + limag.

2. If limaf · limag 6= Ω, then lima(fg) = limaf · limag.

3. If limaf/ limag 6= Ω, then lima(f/g) = limaf/ limag.

Proof. See, for example, [Lang96, p. 45]. �
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Example 2.9. Combining Examples 2.3, 2.5 and Theorem 2.8, we can write

lim
1

ι2 − 1

ι− 1
= lim

1

(ι− 1)(ι+ 1)

ι− 1
= lim

1

(
1R\{1} (ι+ 1)

) A
= lim

1

(
1R\{1}

)
lim
1

(
ι+ 1

)
N
= lim

1

(
1R
)
lim
1

(
ι+ 1

) E
= 1R[1] (ι+ 1)[1] = 1 · 2 = 2 . (2.1)

This derivation is as formal as it could possibly be; in practice, however, most of
the steps are obvious, so a typical computation will look more like

lim
1

ι2 − 1

ι− 1
= lim

1

(ι− 1)(ι+ 1)

ι− 1
= lim

1

(
ι+ 1

)
= 2 (2.2)

which resembles traditional

lim
x→1

x2 − 1

x− 1
= lim

x→1

(x− 1)(x+ 1)

x− 1
= lim

x→1
(x+ 1) = 2 . (2.3)

Nevertheless, it is almost impossible to write a purely formal derivation in the stan-
dard notation, whereas in our notation, it’s always possible to write all mathematical
steps (containing only functions and set-theoretical operations) if necessary. �

It might be sometimes convenient to work with variables. This is captured by
the notion of “applying a functional with respect to a variable” defined in section
1.5. The notation for variables of lima is borrowed from the traditional notation,
that is, we use expressions of the following kind:

lim
x→a

f [x] = lim
a

f .

We see that, in fact, equation (2.3) is just the equation (2.2) rewriten using variables.
The limit operator extends naturally to families of functions and operators:

Definition 2.10. Let {fh : h ∈ M ⊆ R} be a family of functions. Define lima f. by
(lima f.)[x] = limh→a fh[x]. �

This is the “pointwise” limit, which might be clearer when written using a variable:
(limh→a fh)[x] = limh→a fh[x]. For example limh→0(ιnh) = ιn. This can be further
generalized to operators:

Definition 2.11. Let {Fh : h ∈ M ⊆ R} be a family of operators. Define lima F.
by (lima F.)[f ] = limh→a Fh[f ]. �

This captures the idea of having a family of operators which converges to a single
operator whose action on functions is defined pointwise. The definition can be
rewritten as (limh→a Fh)[f ][x] = limh→a Fh[f ][x]. The most important example of
such operator will be the operator of derivative.
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Limits of sequences

There is another important notion of limit in calculus—the limit of a sequence.
In the traditional notation, the distinction between the limit of a function and
that of a sequence is usually provided by the symbol for the variable, thus, for
example, limn→∞ f(n) would most probably denote the limit of a sequence, whereas
limx→∞ f(x) would be the limit of a function.

However, the reader may have noticed that the definition of the limit opera-
tor is broad enough to include also sequences, for if a. : N → R is a sequence,
lim∞ a. = limn→∞ an is already defined to be the limit of this sequence by Defi-
nition 2.1 (because it is defined using images of sets, and it is not necessary for a
function to be defined for all elements of those sets). So, in fact, the information
saying what kind of limit is to be computed is encoded in the domain of the function
we apply the limit operator to. For example,

lim
∞

sin[πι] = Ω ,

whereas
lim
∞

sin[πιN] = lim
∞

0N = 0 .

The last example indicates how to denote the traditional notion of limit over a set:

lim
a

fA = lim
x→a
x∈A

f(x) .

Notice that it subsumes also the notion of limit from above and from below. For
example the limit traditionally written as limx→a− f(x) can be denoted lima f<a;
however, we define also lima− f = lima f<a and lima+ f = lima f>a in agreement
with the traditional notation.

It is convenient to define a simpler notation for sequences, so we don’t have to
write ∞ and N every time. Define:

Lim f = lim
∞

fN .

Example 2.12. As Lim is just a special case of lim, all the rules of arithmetics hold
for it, for example

Lim
2ι2 + ι

3ι2 + (−1)ι
= Lim

2 + 3/ι
3 + (−1)ι/ι2 =

Lim2 + Lim(3/ι)
Lim 3 + Lim((−1)ι/ι2) =

2 + 0

3 + 0
= 2

3
.

Again, if convenient, we can introduce a variable:

Lim
n

an2 + (−1)n

n2 + a
= Lim

n

a+ (−1)n/n2

1 + a/n2
=

a+ 0

1 + 0
= a

Lim
a

an2 + (−1)n

n2 + a
= Lim

a

n2 + (−1)n/a
n2/a+ 1

=
n2 + 0

0 + 1
= n2 .

However, such computations can always be translated into computations without
variables if desired:

Lim
n

an2 + (−1)n

n2 + a
= Lim

aι2 + (−1)ι

ι2 + a
= Lim

a+ (−1)ι/ι2
1 + a/ι2 =

a+ 0

1 + 0
= a .

�
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As the example of sin[πι] suggests, the operators lim∞ and Lim are not generally
interchangeable. If lim∞ f 6= Ω, then obviously Lim f = lim∞ f , but the converse
doesn’t generally hold.

2.2 Finite differences
Differential calculus can be thought of as a “continuous” version of difference cal-
culus. It is therefore pedagogical to define first the difference quotient operators
and to show some of their properties (which are similar to those of the derivative
operator), and then define derivatives in terms of these simple operators.

Definition 2.13. The difference quotient operator with step h will be denoted
∆h and defined by ∆hf = f [ι+h]−f

h
. �

The definition can be more traditionally written as (∆hf)[x] =
f [x+h]−f [x]

h
. When

no h is given, we suppose that it is equal to 1, i.e. ∆f = f [ι+ 1]− f .

Example 2.14. Lets show a few simple computations:

∆ι2 = (ι+ 1)2 − ι2 = ι2 + 2ι+ 1− ι2 = 2ι+ 1

∆ι3 = (ι+ 1)3 − ι3 = ι3 + 3ι2 + 3ι+ 1− ι3 = 3ι2 + 3ι+ 1

∆π sin = sin[ι+π]−sin
π

= −sin−sin
π

= − 2
π
sin .

�

The following theorem about basic arithmetics of ∆h can be proven by a simple
computation (however, there is no general formula for ∆h(f [g])).

Theorem 2.15 (Arithmetics of ∆h).

1. ∆h(cf) = c∆hf , for c ∈ R,

2. ∆h(f + g) = ∆hf +∆hg,

3. ∆h(fg) = f∆hg + g∆hf + h(∆hf)(∆hg),

4. ∆h(f/g) =
g∆hf − f∆hg

g2 + hg∆hg
.

�

In fact, the condition c ∈ R in point 1. of the previous theorem could be replaced
by a weaker condition that c be an h-periodic function.

In the traditional approach, operators of this kind are usually thought of as a
symbolical process with “variables”; one would write, for example

∆(n2) = (n+ 1)2 − n2 = n2 + 2n+ 1− n2 = 2n+ 1

where it is implicitly understood that the difference is “with respect” to n. This
approach is captured by the notion of application of an operator with respect to a
variable defined in section 1.5:

∆
n
(n2) = ∆[ι2][n] = (2ι+ 1)[n] = 2n+ 1 .
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Example 2.16. We have seen that there is no need to introduce a variable in a
case we have a function and want to compute its difference. However, in practice we
often work with expressions containing several dummy variables and want to apply
an operator “with respect” to one of them, for example

∆
n
(n3m2) = ∆[ι3m2][n] = (∆[ι3]m2)[n] = ((3ι2 + 3ι+ 1)m2)[n] = (3n2 + 3n+ 1)m2

∆
m
(n3m2) = ∆[n3ι2][m] = (n3∆[ι2])[m] = (n3(2ι+ 1))[m] = n3(2m+ 1) .

Of course, one wouldn’t write the middle steps in practice, because the variableless
definition translates in the obvious way into expressions with variables. �

Example 2.17. We still miss some functions that behave nicely in connection with
∆h and could therefore serve as building blocks for more complicated functions,
whose difference would be easy to compute. Those are exactly falling factorials:

∆h(ιnh) =
(ι+ h)ι · · · (ι− (n− 2)h)− ι · · · (ι− (n− 1)h)

h

=
ι · · · (ι− (n− 2)h)(ι+ h− (ι− (n− 1)h))

h
=

ι · · · (ι− (n− 2)h)nh

h
= nιn−1

h .

One way to compute the difference of a power function is to express it through
falling factorials (for example ι3 = ι31 + 3ι21 + ι11, and indeed, ∆(ι31 + 3ι21 + ι11) =
3ι21+6ι11+1 = 3ι2− 3ι+6ι+1 = 3ι2+3ι+1, in agreement with what we computed
previously). Although this is superfluous for computing differences, it will be a
useful tool for computing sums. �

Example 2.18. We would like to find a “finite exponential” that is, a function
such that ∆hf = f . Lets suppose it is of the form aι for some a. The equation
∆h(a

ι) = aι can be rewritten as

aι+h − aι

h
= aι ⇔ aι(ah − 1) = aιh ⇔ ah − 1 = h .

The last equation can be rewritten as a = (1 + h)1/h. Since for h = 1, a = 2,

∆(2ι) = 2ι .

Furthermore, as h → 0, a tends to e, that is, aι are “finite approximations” of eι. �

2.3 Differentiation
The concept of finite differences is much more accessible than the notion of deriva-
tive, because all of its properties can be easily derived using only elementary math-
ematical knowledge. Once the concept of limits is understood, a natural question of
what ∆h as h tends to 0 should mean arises (since (∆hf)[x] expresses the slope of
the secant line of f going through points (x, f [x]) and (x+ h, f [x+ h]), the natural
geometric interpretation is that for h → 0, (∆hf)[x] is the slope of the tangent line
of f at x).
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Definition 2.19. The operator of derivative ∂ is defined by ∂f = limh→0(∆hf),
which can be written more concisely as ∂ = lim0 ∆.. �

In fact, we already know elementary rules of arithmetics for ∂; applying limh→0

to both sides of the equalities in Theorem 2.15 simply changes all occurrences of ∆h

to ∂ and h to 0.

Theorem 2.20 (Arithmetics of ∂).

1. ∆h(cf) = c(∆hf) =⇒ ∂(cf) = c(∂f),

2. ∆h(f + g) = ∆hf +∆hg =⇒ ∂(f + g) = ∂f + ∂g,

3. ∆h(fg) = f∆hg + g∆hf + h(∆hf)(∆hg) =⇒ ∂(fg) = f∂g + g∂f ,

4. ∆h(f/g) =
g∆hf − f∆hg

g2 + hg(∆hg)
=⇒ ∂(f/g) =

g∂f − f∂g

g2
.

�

The only result that crucially distinguishes ∂ and ∆ is the chain rule for deriva-
tives which doesn’t have any direct analogue in the finite case. A simple version of
it can be stated as

Theorem 2.21. Let f and g be functions differentiable on their respective domains,
then ∂(f [g]) = ∂f [g]∂g.

This can be easily generalized to more functions; the case of three functions
should make the idea clear (here h is also supposed to be a differentiable function):

∂(f [g][h]) = ∂f [g][h] ∂g[h] ∂h .

Proof. See, for example, [Lang96, p. 67]. �

The standard rules of differentiation are probably well known to the reader, so it
shouldn’t be hard to translate statements such as ∂[arctan] = 1

1+ι2 into the standard
notation and vice versa.

Example 2.22. Lets differentiate a more complicated function that would be writ-
ten as

f(x) =
(sinx+ cos x)3 + esinx+cosx

1 + (sin x+ cos x)4

in the traditional notation. In our notation, we can notice that the function actually
has a simpler structure:

f =
(sin+ cos)3 + esin+ cos

1 + (sin+ cos)4
=

ι3 + eι

1 + ι4 [sin+ cos] ,

and so we would differentiate it in this form:

∂

(
ι3 + eι

1 + ι4 [sin+ cos]

)
=

(3ι2 + eι)(1 + ι4)− (ι3 + eι)4ι3
(1 + ι4)2 [sin+ cos](cos− sin) .
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This could, of course, be further simplified, but it is a complete result. There is no
way to “notice” the simpler structure in the traditional notation (because there is
no way to denote it), thus we are forced to repeat steps many times:(

(sinx+ cos x)3 + esinx+cosx

1 + (sin x+ cos x)4

)′

= ((3(sin x+ cos x)2(cosx− sin x) + esinx+cosx·

· (cosx− sinx))(1 + (sin x+ cosx)4)− ((sinx+ cos x)3 + esinx+cosx)·
· 4(sin x+ cos x)3(cosx− sinx))/(1 + (sin x+ cos x)4)2 .

Further algebraical manipulations with such an expression would be very compli-
cated and its structure is unclear. Also, in terms of computational complexity, the
first expression is very friendly, because the value at a particular point (e.g. 0) can
be computed quite simply:

∂f [0] =
(3ι2 + eι)(1 + ι4)− (ι3 + eι)4ι3

(1 + ι4)2 [sin 0 + cos 0](cos 0− sin 0) =

=
(3ι2 + eι)(1 + ι4)− (ι3 + eι)4ι3

(1 + ι4)2 [1] =
(3 + e)(1 + 1)− (1 + e)4

22
=

1− e

2
.

An algorithm computing the value using the traditionally written expression would
require much more time (because it is necessary to repeat the most time-consuming
operations many times). �

Of course, everything we have done so far can be rewritten using variables, that
is, we can write expressions like

∂
x

(
sin[x] cos[x]

)
= cos2[x]− sin2[x]

that resemble the traditional notation. However, in such a situation we don’t have
to use the variable at all and could write

∂
(
sin cos

)
= cos2 − sin2 ,

which is briefer and more convenient. The real reason to use variables arises when
there is more of them.

Example 2.23. We can write

∂
y
(x2y3) = 3x2y2 .

However, this construction can also be nested. For example, we can write

∂
x
∂
y
(x2y3) = ∂

x
(3x2y2) = 6xy2 .

Nevertheless, this has nothing to do with more-dimensional differentiation. The
whole process would be correctly rewritten as

∂
x
∂
y
(x2y3) = ∂

x
∂[x2ι3][y] = ∂

x
(x2 3ι2)[y] = ∂

x
(3x2y2)

= ∂[3ι2y2][x] = (6ιy2)[x] = 6xy2 .

�
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Traditional counterparts of ∂:x are d
dx

and ∂
∂x
. The symbol ∂

∂x
is used in two

different meanings in the traditional notation. In expressions like
∂

∂x
(x3y2) = 3x2y2

it is synonymous to ∂:x, whereas in expressions like
∂f

∂x
(1, 1) = 3

it denotes the directional derivative of f in direction (1, 0). Both d
dx

and ∂
∂x

are quite
inconvenient and will be avoided in our notation.

2.4 L’Hôpital’s rule and the Landau notation
Most limits in practice are computed using l’Hôpital’s rule.
Theorem 2.24 (l’Hôpital’s rule). If

1. lima f = lima g = 0 or lima f = ± lima g = ±∞, and

2. lima(∂f/∂g) 6= Ω,
then lima(f/g) = lima(∂f/∂g).
Proof. For a very nice unified proof of all cases, see [Tayl52]. �

Its usage can be expressed by putting H above =, for example
Example 2.25.

lim
0

sin− ι
ι3

H
= lim

0

cos− 1

3ι2
H
= lim

0

−sin
6ι

H
= lim

0

−cos
6

E
= −1

6
.

�

For sequences, we can use the fact that if lim∞ f 6= Ω, then lim∞ f = Lim f .
In combination with l’Hôpital’s rule, this leads to a series of equalities Lim(f/g) =
lim∞(f/g) = lim∞(∂f/∂g).
Example 2.26.

Lim
e1/ι − 1

1/ι = lim
∞

eι − 1

ι
[
1
ι
] C
= lim

lim∞
1
ι

eι − 1

ι = lim
0

eι − 1

ι
H
= lim

0

eι

1
E
= 1 6= Ω .

This would be traditionally denoted by something like

lim
n→∞

e1/n − 1

1/n
= lim

x→∞

e1/x − 1

1/x
= lim

y→limx→∞
1
x

ey − 1

y
= lim

y→0

ey − 1

y
= lim

y→0

ey

1
= 1 .

�

The fact that Lim changes to lim∞ is important. One could be tempted to
compose the equalities into one as Lim(f/g) = Lim(∂f/∂g) whenever f and g are not
only sequences, but are defined on some neighbourhood of ∞, and Lim(∂f/∂g) 6= Ω.
However, this is not correct, for example

0 = Lim
sin[2πι]
1/ι 6= Lim

∂(sin[2πι])
∂(1/ι) = Lim

cos[2πι] 2π
−1/ι2 = −∞ .

The reason is that lim∞( cos[2πι] 2π−1/ι2 ) = Ω, so the assumptions of Theorem 2.24 aren’t
satisfied.
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Landau notation

Lets define first the notion of Taylor polynomials.

Definition 2.27. The operator Tn
a of Taylor polynomial of order n at a is defined

as
Tn

a [f ] =
n∑

k=0

∂kf [a]

k!
(ι− a)k .

For a = 0, this will be denoted also Tn[f ]. �

Functions of the form Tn[f ] are functions fully in their own right; for example,
we can write T3[sin][π] = (ι−ι3/6)[π] = π(1−π2/6). If f is not n times differentiable
at a, then Tn

a [f ] = Ω, i.e. the condition “f is n times differentiable at a” can be
symbolically written as Tn

a [f ] 6= Ω.
With the notions we have developed so far, we can fully formalize the Landau

little-o notation.

Definition 2.28. The remainder of the Taylor polynomial of function f around
a is defined as ona [f ] = f − Tn

a [f ]. In particular, define on[f ] = on0 [f ]. �

The following well-known theorem gives us an important information about on.

Theorem 2.29 (Taylor’s theorem). Let f : O → R be an n times differentiable
function on some open neighborhood O ⊆ R of a. Then

lim
a

ona [f ]

(ι− a)n
= 0 .

In particular, lim0
on[f ]
ιn = 0.

Proof. See, for example [Lang96, p. 109]. �

Example 2.30. Lets compute Example 2.25 again using this notation:

lim
0

sin− ι
ι3 = lim

0

ι− 1
6
ι3 + o3[sin]− ι

ι3 = lim
0

(
−1

6
+

o3[sin]

ι3

)
= −1

6
.

�

The difference between this notation and the traditional notation is that o3[sin]
is a well defined function, that is, we can boldly use expressions like o3[sin][π] =
sin[π]− T3[sin][π] = π(π2/6− 1).

Some elementary rules follow directly from the definition and well known theo-
rems about the Taylor series:

Theorem 2.31 (Arithmetics of ona). Let f and g be (for simplicity) infinitely
differentiable functions on some neighbourhood of a, then

1. ona [f ] + oma [g] = o
min(m,n)
a [h] for some h,

2. cona [f ] = ona [cf ] for c ∈ R,
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3. ona [f ]o
m
a [g] = on+m

a [h] for some h,

4. (ι− a)mona [f ] = on+m
a [(ι− a)mf ],

5. ona [f ] = oma [h] for any m < n for some h.

The argument of ona is often immaterial for the computation, and in such a case
we will simply omit it. With this vague notation, we can rewrite the rules from this
theorem as

1. ona + oma = o
min(m,n)
a ,

2. cona = ona for c ∈ R,

3. onao
m
a = on+m

a ,

4. (ι− a)mona = on+m
a ,

5. ona = oma for any m < n. �

However, it is important to keep in mind that these equalities hold only when
the correct arguments are filled in (in particular, they are usable only in the left-to-
right direction, because the full version states that there exists an argument for the
right hand side such that the equality holds). Nevertheless, in computing limits, the
argument is usually immaterial.

Example 2.32. Let’s compute a more complicated example:

lim
0

(
1

log[1 + ι] −
1

tan

)
= lim

0

tan− log[1 + ι]
log[1 + ι] tan = lim

0

ι+ o2 − ι+ 1
2
ι2 − o2

(ι+ o2)(ι− 1
2
ι2 + o2)

= lim
0

1
2
ι2 + o2

ι2 − 1
2
ι3 − ιo2 + ιo2 − 1

2
ι2o2 + o2o2

= lim
0

1
2
ι2 + o2

ι2 + o2
= lim

0

1
2
+ o2/ι2

1 + o2/ι2 = 1
2
.

Every time we “merge” more on or a function with some on its argument changes.
It would be possible to write the correct argument to all on in the previous computa-
tion, but we know it wouldn’t change the result, because the fact that lim0(o

2[f ]/ι2) =
0 doesn’t depend on f . �

This vague notation can be also adopted to what would be traditionally written
as f(x) = g(x) + o(xn). For example, instead of sin(x) = x + o(x2) we can write
simply sin = ι + o2 (meaning sin = ι + o2[sin]). When using variables, we would
write vaguely sin[x] = x+ o2[x].
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3. Integral calculus
3.1 Indefinite summation
We have already defined sum operators by

∑n
m f = f [m] + · · · + f [n]. There is a

certain connection between these operators and the difference operator ∆. We shall
present some basics of “sum calculus” that will illustrate elementary ideas of integral
calculus.

Definition 3.1. The indefinite sum operator with step h is defined as
∑

h =
(∆h)

−1, i.e. the inverse relation to ∆h. In particular, define
∑

= ∆−1. �∑
h is certainly not a function (since ∆h is not an injective function); neverthe-

less, we shall call
∑

h an operator. Obviously, ∆hF = ∆hG iff ∆h(F − G) = 0 iff
F −G is an h-periodic function, that is, (F −G)[x+h] = (F −G)[x] for all x. This
motivates the following definition.

Definition 3.2. The symbol Ch will denote the set of all h-periodic functions on
R, i.e. Ch = {c : R → R : c[ι+ h] = c}. �

With this notation, we can rewrite the previous paragraph.

Lemma 3.3. ∆hF = ∆hG if and only if F ∈ G + Ch. In other words,
∑

hJf ] =
F + Ch where F is any function such that ∆hF = f . �

For example, we already know that ∆(1
3
ι31) = ι21. This means that

∑Jι21] =
1
3
ι31 + C1. The symbol Ch has some “unusual” properties, such as Ch + Ch = Ch,

meaning JChK + JChK = Ch (because the sum of two h-periodic functions is again h
periodic). Some elementary arithmetical rules of

∑
h follow from its definition.

Theorem 3.4 (Arithmetics of
∑

h).

1.
∑

hJf + g] =
∑

hJf ] +∑hJg],
2.
∑

hJcf ] = c
∑

hJf ] for c ∈ Ch,

3.
∑

hJ∆hf ] = f + Ch,

4. ∆h

[∑
hJf ]y = f . �

To make expressions more readable, we will usually omit brackets; that is, we will
denote

∑
hJf ] as ∑h f .

The difference quotient of a product of functions can be rewritten as f∆hg =
∆h(fg)− g∆hf − h(∆hf)(∆hg). By applying

∑
h to both sides of this equality, we

get a form of “summation by parts”.

Theorem 3.5 (Summation by parts).∑
h

f∆hg = fg −
∑
h

(
g∆hf + h(∆hf)(∆hg)

)
.

�
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The reader might be wondering whether we shouldn’t write fg + Ch instead of fg
(according to the third rule in theorem 3.4), but this would be superfluous, since
the “constant” +Ch is already included in the subsequent sum.

Example 3.6. Since ∆2ι = 2ι, it follows that
∑

2ι = 2ι + C1, so, for example∑
ι2ι = ι2ι −

∑
(2ι + 2ι) = ι2ι − 2 · 2ι + C1 = (ι− 2)2ι + C1 .

�

3.2 Definite summation
The result of

∑
h f itself is not very interesting; it is not even clear why

∑
h is called

the indefinite sum operator. Lets define another operator for which the “sum” in its
name is obviously appropriate:

Definition 3.7. Let a, h ∈ R and b ∈ a+ hN (i.e. b = a+ nh for some n ∈ N). The
definite sum operator from a to b with step h is defined by

b∑
a

h
f =

∑
{a,a+h,...,b−h}

hf = h
(
f [a] + f [a+ h] + · · ·+ f [b− h]

)
(in text we will write

∑b
a,h). �

Geometrically,
∑b

a,h is an approximation of the area under f on the interval [a, b]
by rectangles of base size h. Exclusion of the term hf [b] tells us that

∑b
a,h is the

sum over (b − a)/h numbers starting with a (in particular
∑n

m,1 is the sum over
n − m integers starting with m, whereas

∑n
m =

∑n+1
m,1 is the sum over n − m + 1

integers). Thanks to this property, this operator is “additive” in limits, that is∑b
a,h+

∑c
b,h =

∑c
a,h.

The following notion will provide a way to compute definite sums through indef-
inite sums.

Definition 3.8. The operator of limits from a to b (denoted Iba) is defined as
Iba f = f [b]− f [a] for a, b ∈ R. �

This operator has some obvious properties, such as Iba cf = c Iba f for c ∈ R and
Iba(f + g) = Iba f + Iba g. Lets show how it cooperates with

∑
h.

Theorem 3.9 (Fundamental theorem of finite calculus). Let b ∈ a + hN
(that is, b = a+ hn for some n ∈ N), then

b

I
a

[∑
h
f
z
=

b∑
a

h
f .
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Proof. If c ∈ Ch, then Iba c = 0 (because Ia+hn
a c = c[a+ hn]− c[a] = c[a]− c[a] = 0).

Let F ∈
∑

h f .
∑

h f = F + Ch by lemma 3.3, so we can write
b

I
a

r∑
h
f
z
=

b

I
a

q
F+Ch

y
=

{ b

I
a

(
F+c

)
: c ∈ Ch

}
=

{( b

I
a

F
)
+0 : c ∈ Ch

}
=

{ b

I
a

F

}
It follows that Iba[

∑
h fK = Iba F . This can be even further rewritten as

b

I
a

F = F [b]− F [a] = (F [b]− F [b− h]) + (F [b− h]− F [b− 2h]) + · · ·+

+ (F [a+ h]− F [a]) = h(∆hF )[b− h] + h(∆hF )[b− 2h] + · · ·+ h(∆hF )[a]

= h
(
f [b− h] + f [b− 2h] + · · ·+ f [a]

)
=

b∑
a

h
f ,

from which the assertion follows. �

We will usually write this relation without brackets:
b

I
a

∑
h
f =

b∑
a

h
f . (3.1)

The left-hand side of this equation can be understood as the composition Inm
∑

h

applied to f . In particular,
∑n

m can be rewritten as In+1
m

∑
. Theorem 3.9 provides

a way to compute ordinary sums using indefinite summation.

Example 3.10. Say, we wanted to compute
∑n

i=1 i2
i. This can be rewritten as∑n

1 ι2ι. Using (3.1) and Example 3.6 we can write:
n∑
1

ι2ι =
n+1

I
1

∑
ι2ι =

n+1

I
1

(ι− 2)2ι = (n+ 1− 2)2n+1 − (1− 2)21

= (n− 1)2n+1 + 2 .
�

It is possible to compute
∑n

i=m P (i)ai for any polynomial P and a ∈ (0,∞)
in this way using summation by parts; however, we need a way to compute the
indefinite sum of ιn. This can be done by rewriting it using falling factorials.

Example 3.11. It is easy to compute that ι3 = ι31 + 3ι21 + ι11, so:
n∑

i=1

i3 =
n∑
1

ι3 =
n+1

I
1

∑
ι3 =

n+1

I
1

∑(
ι31 + 3ι21 + ι11

)
=

n+1

I
1

(
1
4
ι41 + ι31 + 1

2
ι21
)

= (1
4
ι41 + ι31 + 1

2
ι21
)
[n+ 1]− (1

4
ι41 + ι31 + 1

2
ι21
)
[1] =

= (n+ 1)n(1
4
(n− 1)(n− 2) + n− 1 + 1

2
) =

(n+ 1)n(n2 + n)

4

=
(n+ 1)2n2

4
.

�
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Variables

We cannot use variables in indefinite summation in the same way as in limits or
derivatives, because

∑
f is not a function; it is a set of functions. However, it is

natural to define
∑

h:i f [i] =
∑

hJf ]. Then, in expressions of the form Inm
∑

f , a
variable can “travel” from

∑
to Inm in the following way:

Lemma 3.12. If F ∈
∑

f , then Inm
∑

:i f [i] = Ini=m F [i]. �

Example 3.13. We can rewrite Example 3.10 using variables as

n∑
i=1

i2i =
n+1

I
1

∑
i

i2i =
n+1

I
i=1

(i− 2)2i = (n− 1)2n+1 + 2 .

Nevertheless, there is no natural way to work with variables in the case of indefinite
summation; we have no other choice than to write∑

i

i2i = (ι− 2)2ι + C1

if we want to be mathematically rigorous. �

3.3 Indefinite integration
In chapter 2, we presented difference calculus first and then differential calculus as
its limit version, whose arithmetics was analogous. As summation calculus is just
“the opposite” of difference calculus, while integral calculus is just “the opposite”
of differential calculus, one would expect certain analogies between summation and
integration calculus to be present as well, and this is indeed the case.

To simplify statements of theorems, we shall impose one assumption on functions
we work with.

Convention. In what follows, f and g will denote functions continuous on some
open interval. F and G will denote functions continuously differentiable on some
open interval. �

This assumption is in fact not very restrictive, as virtually all functions appearing
in practical computations satisfy it. It is probably expectable what shall follow.

Definition 3.14. The indefinite integral operator 1 r
is defined as

r
= ∂−1. �

We are in the situation analogous to
∑

. Since ∂f = ∂g iff f = g + c for some
c ∈ R, it is natural to restate Definition 3.1 as

Definition 3.15. The letter C will denote the set of all constant functions on R,
that is C = {cR : c ∈ R}. �

1We use the symbol
r

instead of the traditional slanted
∫

, because it is typographically more
convenient when used in a manner analogous to

∑
, and because it avoids ambiguity with the

traditional notation.
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Using this notation, we can rewrite lemma 3.3 as

Lemma 3.16. ∂F = ∂G if and only if F ∈ G + C, that is,
r Jf ] = F + C if and

only if ∂F = f . �

For example,
r Jcos] = sin + C,

r Jι2] = 1
3
ι3 + C etc. The basic arithmetics of

r
is the same as that of

∑
and follows immediately from its definition.

Theorem 3.17 (Arithmetics of
r

).

1.
r Jf + g] =

r Jf ] + r Jg],
2.

r Jcf ] = c
r Jf ] for c ∈ R,

3.
r J∂F ] = F + C,

4. ∂
[ r Jf ]y = f . �

In practice, we will omit brackets when appropriate and use expressions like
r
cos =

sin + C.
If we rewrite the derivative of a product of functions as f∂g = ∂(fg)− g∂f , we

can derive integration by parts by applying
r
to both sides of this equality.

Theorem 3.18 (Integration by parts).
r
f∂g = fg −

r
g∂f . �

Example 3.19. Lets recompute Example 3.6 with
r

instead of
∑

and eι instead
of 2ι: r

ιeι = ιeι −
r
eι = ιeι − eι + C = (ι− 1)eι + C .

As you can see, the finite and the continuous cases are completely analogous. �

Another trivial fact is how
r
f composes with other functions.

Lemma 3.20. Let F ∈
r
f , then( r

f
)[
g
]
= F [g] + C ,

where (
r
f)[g] denotes the the set {F [g] : F ∈

r
f}.

Proof. (
r
f)[g] = {F + c : c ∈ C}[g] = {F [g] + c : c ∈ C} = F [g] +C, since c[g] = c.

�

Theorem 3.21 (First substitution rule). Let g be a differentiable function, thenr
f [g]∂g =

( r
f
)[
g
]
.

Proof. By lemma 3.20, (
r
f)[g] = F [g] + C for any F ∈

r
f , and so by lemma 3.16

it is the integral of the function ∂(F [g]) = f [g]∂g. �

This theorem is traditionally written as∫
f(g(x))g′(x) dx =

∫
f(t) dt

∣∣∣∣
t=g(x)

.

One may think that we use this formula, because it is practical. We will show that
this is not really true.
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Example 3.22. Lets compute the integral of sin3 cos (that is, the product of sin3

and cos): r
sin3 cos =

( r
ι3
)
[sin] = 1

4
ι4[sin] + C = 1

4
sin4 + C .

(If the way we used the first substitution rule is not immediately obvious, one may
rewrite sin3 cos as ι3[sin]cos). In the traditional notation:∫

sin3(x) cos(x) dx =

∫
s3 ds

∣∣∣∣
s=sin(x)

= 1
4
s4 + c = 1

4
sin4(x) + c .

�

It is quite hard to see what the traditional notation means from the set-theoretical
viewpoint. Nevertheless, denoting a larger function by a new letter may help to find
an appropriate substitution.

Example 3.23. The integral
∫

1√
x2+1

dx can be computed using the first Euler’s
substitution

√
x2 + 1 = −x+ s in the traditional notation. From this equation, one

would derive x = s2−1
2s

, so “dx = s2+1
2s2

ds” and put together:∫
1√

x2 + 1
dx =

∫ s2+c
2s2

ds√(
s2−1
2s

)2
+ 1

=

∫
1

s
ds = log s+ c = log(x+

√
x2 + 1) + c .

It seems that such a process cannot be rewritten without variables. However, in
fact, it can be rewritten in almost the same way: we define a new function s by√
ι2 + 1 = −ι+ s (that is, s =

√
ι2 + 1+ ι). From this equality we can derive in the

same way as with variables that ι = s2−1
2s

and that 1 = ∂ι = s2+1
2s2

∂s. Put together:

r 1√
ι2 + 1

=
r s2+1

2s2
∂s√(

s2−1
2s

)2
+ 1

=
r

1
s
∂s = log[s] + C = log[ι+

√
ι2 + 1] + C .

Again, it is completely clear what mathematically happens. In the first step we just
express ι2 using s, 1 using s and ∂s, and then simplify the expression. The result is
exactly of the form

r
f [s]∂s for f = 1

ι , so we can apply the first substitution rule. �

Example 3.24. Using the first substitution rule, we can also perform separation of
variables in differential equations. Suppose we have a differential equation

∂y = g[y]f .

This is a variableless way to write what would be traditionally written as y′(x) =
f(x)g(y(x)), or slightly incorrectly as y′ = f(x)g(y). The latter (incorrect) expres-
sion can be rewritten as dy

dx
= f(x)g(y) which may be further nonsensically rewritten

as dy
g(y)

= f(x)dx from which “follows” that
∫

dy
g(y)

=
∫
f(x) dx (and most physicists

and engineers do solve differential equations using this notation). However, this
nonsensical process gives the correct result. This is not a coincidence; it mimics the
correct mathematical derivation, which is the following:
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Suppose that g 6= 0, points t for which g[t] = 0 provide stationary solutions and
can be treated separately. Rewrite ∂y = g[y]f as

1

g[y]
∂y = f

and further using 1
g[y]

= 1
g
[y] as

1
g
[y]∂y = f .

Apply
r
to both sides (which can be easily shown to be equivalent to the previous

equality): r
1
g
[y]∂y =

r
f .

Apply the first substitution rule:( r
1
g

)
[y] =

r
f .

This process resembles the traditional nonsensical computation, but all steps are
completely rigorous. �

There is another also another substitution rule:

Theorem 3.25 (Second substitution rule). Let g : I → J be a differentiable
and invertible function from an open interval I onto an open interval J (i.e. there
is a function g−1 such that g[g−1] = ιJ). Thenr

fJ =
( r

f [g]∂g
)[
g−1] ,

where fJ denotes the restriction of f to J .

Proof. (
r
f [g]∂g)[g−1] = (

r
f)[g][g−1] = (

r
f)[g[g−1]] = (

r
f)[ιJ ] =

r
fJ . �

Traditionally, this substitution rule is written as∫
f(x) dx =

∫
f(g(t))g′(t) dt

∣∣∣∣
t=g−1(x)

.

Example 3.26. Suppose that we know that
r
cos2 = 1

2
(ι + sin cos). We use the

preceding theorem for g = sinI : I → J where I = (−π
2
, π
2
), J = (−1, 1). We also

write arcsin instead of sin−1
I :r √

1− ι2 =
r (√

1− ι2
)
J
=
( r √

1− sin2
I cosI

)
[arcsin] =

( r
cos2I
)
[arcsin]

= 1
2
(ιI + sinI cosI)[arcsin] + C = 1

2

(
ιI + sinI

√
1− sin2

I

)
[arcsin] + C

= 1
2

(
arcsin + ιJ

√
1− ι2J

)
+ C
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and in the traditional notation:∫ √
1− x2 dx =

∫ √
1− (sin t)2 cos(t) dt

∣∣∣∣
t=arcsinx

=

∫
cos2(t) dt

= 1
2

(
t+ sin(t) cos(t)

)
+ c = 1

2

(
t+ sin(t)

√
1− (sin t)2

)
+ c

= 1
2

(
arcsin(x) + x

√
1− x2

)
+ c .

Notice how our notation already subsumes further discussion that would be neces-
sary in the traditional notation. For example, it is true that

√
1− sin2

I = cos2I , but
it is not possible to write

√
1− sin2(t) = cos(t) without further explanation in the

traditional notation. �

Note. This substitution rule is sometimes used in cases that require solving an integral
on several intervals separately and than it is necessary to ‘glue’ these parts together. This
can be also addressed by our approach. For example, if C = A ∪ B where A = (a, c) and
B = (c, b) (meaning open intervals), then

r
fC =

r
(fA ∪ fB) = Jr fAK ∪′

c Jr fBK where ∪′
c

denotes the differentiable union of functions defined as follows: if the domains of f and
g are disjoint and limc f = limc g = L ∈ R, and if f ∪ L{c} ∪ g is differentiable at c, then
f ∪′

c g = f ∪ L{c} ∪ g, otherwise it is left undefined. �

3.4 Definite integration
The following notion is a direct generalization of

∑b
a,h.

Definition 3.27. Let a, b ∈ R, a < b, and let f be continuous on [a, b]. The area
operator

r b

a
is defined as

br
a

f = lim
h→0+

b∑
a

h
f . (3.2)

and
ar
b

f = −
br
a

f

�

The right-hand side of (3.2) is essentially the Riemann integral in which only
equidistant divisions with one “pivot point” are taken into account. Notice that∑b

a,h f is defined only for h of the form (b− a)/n, n ∈ N. So, in fact, the definition
can be rewritten as

br
a

f = Lim
n

b∑
a

(b−a)/n
f .

In teaching, this could be the first definition of integration; it has an obvious
geometric interpretation—we approximate the area under a curve by smaller and
smaller rectangles (all of the same base size). This definition is fully sufficient as
long as we deal with continuous or piecewise continuous functions (and we usually
do in practice).
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Theorem 3.28 (Area of a continuous function).
r b

a
f is a real number for

every function f continuous on [a, b] (that is, the limit in the definition exists and
is finite).

Proof. As
r b

a
is just a special case of the Riemann integral, and for the Riemann

integral this is true, we know that this must hold for our area operator as well. The
reader interested in the general proof can find it in [Lang96, p. 106]. The proof
in our situation can be, of course, much simplified, because we need to take only
equidistant divisions into account. �

Lemma 3.29. Let f : [a, b] → R be continuous, then (b − a)(min[a,b] f) ≤
r b

a
f ≤

(b− a)(max[a,b] f).

Proof. Since f ≤ max[a,b] f , it follows that
∑b

a,h f ≤
∑b

a,h(max[a,b] f) = (b −
a)(max[a,b] f), and so the same must hold for the limit for h → 0. The other
inequality is analogous. �

Lemma 3.30. Let f : [a, β] → R be continuous, then

βr
a

f = lim
b→β−

br
a

f . (3.3)

Proof. Let b ∈ (a, β). Since
∑b

a,h =
∑c

a,h+
∑b

c,h, it follows from arithmetics of
limits that

r b

a
f =

r c

a
f +

r b

c
f for c ∈ (a, b). We can therefore write limb→β−

r b

a
f =

limb→β−(
r β

a
f −

r β

b
f). However, limb→β−

r β

b
f = 0, since

r β

b
f is bounded by (β −

b)(max[b,β] f) above and similarly from below by Lemma 3.29, from which the asser-
tion follows. �

In the light of this lemma, we can extend the definition of
r b

a
to functions con-

tinuous on [a, β) by formula (3.3), and similarly for functions continuous on (α, b].

Lemma 3.31. Let f be continuous on [a, β) and let c ∈ (a, β). Then
r β

a
f =r c

a
f +

r β

c
f .

Proof.

cr
a

f +

βr
c

f =
cr
a

f + lim
b→β−

br
c

f = lim
b→β−

(
cr
a

f +
br
c

f

)
= lim

b→β−

br
a

f =

βr
a

f

�

Of course, an analogous result holds for f continuous on (α, b]. We can use this
fact to further extend Definition 3.27 for functions continuous on (α, β) as

βr
α

f =
cr
α

f +

βr
c

f (3.4)
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for some c ∈ (α, β). Let c′ ∈ (α, β). Using the previous theorem we can write
cr
α

f +

βr
c

f =
cr
α

f +

(
c′r
c

f +

βr
c′

f

)
=

(
cr
α

f +
c′r
c

f

)
+

βr
c′

f =
c′r
α

f +
br
c′

f ,

so the right-hand side of (3.4) is independent of the choice of c. Similarly as in the
case of [a, β), we can derive that, for f continuous on [α, β], this extension agrees
with Definition 3.27. Now, we can derive some elementary facts about

r β

α
.

Theorem 3.32 (Arithmetics of
r β

α
). Let f, g : (α, β) → R be continuous and

c ∈ R, then

1. If
r β

α
f +

r β

α
g 6= Ω, then

r β

α

(
f + g

)
=

r β

α
f +

r β

α
g,

2.
r b

a

(
cf
)
= c

r b

a
f .

Proof. First, we prove the first assertion for f, g continuous on [a, b] ⊆ (α, β). For
such f, g we can write

br
a

(
f + g

)
= lim

h→0+

b∑
a

h

(
f + g

)
= lim

h→0+

(
b∑
a

h
f +

b∑
a

h
g

)
=

br
a

f +
br
a

g ,

where we used arithmetics of limits and the fact that the integrals of f and g exist
and are finite. Let c ∈ (α, β), then
βr
α

(
f + g

)
=

cr
α

(
f + g

)
+

βr
c

(
f + g

)
= lim

a→α+

cr
a

(
f + g

)
+ lim

b→β−

br
c

(
f + g

)
= lim

a→α+

(
cr
a

f +
cr
a

g

)
+ lim

b→β−

(
br
c

f +
br
c

g

)
=

cr
α

f +
cr
α

g +

βr
c

f +

βr
c

g =

βr
α

f +

βr
α

g

provided that the rightmost expression is defined, which was the assumption. The
second assertion would be proven similarly. �

In the traditional notation, Riemann and indefinite integration are usually taught
as two related but different mathematical concepts. However, our notions of the area
operator and the indefinite integration can be shown to be in some sense equivalent
using the following notion:

Definition 3.33. The continuous operator of limits Iba is defined as Iba =

limb− − lima+ (that is, Iba f = limb− f − lima+ f) when b ≥ a, and by Iba = − Iab when
b < a. �

One could expect that
∑b

a,h = Iba
∑

h translates as
r b

a
= Iba

r
. This is true and

we shall prove it.

Theorem 3.34 (Fundamental theorem of calculus). Let f be a continuous
function on (α, β). Then

βr
α

f =

β

I
α

r
f .
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Proof. Let α < c < β. Define

F [x] =
xr
c

f

for x ∈ (α, β). Suppose that x ≥ c, then

∂F [x] = lim
δ→0

1
δ

( x+δr
c

f −
xr
c

f
)
= lim

δ→0

1
δ

x+δr
x

f (3.5)

Let ε > 0. Since f is continuous on [x, β), we can always find δ sufficiently close
to 0 such that fJ[x − |δ|, x + |δ|]K ⊆ (f [x] − ε, f [x] + ε). That is, (

r x+δ

x
f) ∈

((f [x]− ε)|δ|, (f [x] + ε)|δ|) and 1
δ
(
r x+δ

x
f) ∈ (f [x]− ε, f [x] + ε). Since this holds for

any ε, it follows that the limit on the right-hand side of (3.5) is equal to f [x]. That
is, F ∈

r
f and it follows that
βr
α

f =

βr
c

f +
cr
α

f = lim
x→β−

xr
c

f + lim
x→α+

cr
x

f = lim
x→β−

xr
c

f − lim
x→α+

xr
c

f

= lim
x→β−

F [x]− lim
x→α+

F [x] =
b

I
a

F =
b

I
a

r
f .

�

Lets show a table of correspondence between discrete and continuous calculus:

Discrete Defined as Computed using Cont. Defined as Computed using

∆h
f [ι+h]−f

h

Arithmetics
Formulas ∂ lim

h→0
∆h

Arithmetics
Formulas∑

h
(∆h)

−1 Arithmetics
Formulas

r
∂−1 Arithmetics

Formulas
b∑
a

h
Evaluation

b

I
a

∑
h

br
a

lim
h→0

b∑
a

h

b

I
a

r
As you can see, the correspondence is very precise. The expression Iba

r
f agrees

with the standard notion of definite integration which is usually defined as
∫ b

a
f(x) dx

= limx→b− F (x) − limx→a+ F (x) where F is a primitive function to f . However, a
huge difference between the two notions is that Iba is a separate operator, and as
such has some interesting properties. If f and g are continuous and a, b ∈ R, then
the limits in Definition 3.33 reduce to evaluation, and we can write

b

I
a

f [g] = f [g[a]]− f [g[b]] =

g[b]

I
g[a]

f .

This can be further generalized if f and g are such that composition rule for limits
holds for them:

b

I
a

f [g] =

limb− g

I
lima+ g

f .
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However, a primitive function of a function is continuous (it is even differentiable).
This means that there are actually no separate substitution rules for definite
integration, since they are already subsumed by rules for indefinite integration,
because

br
a

f [g]∂g =
b

I
a

r
f [g]∂g =

b

I
a

( r
f
)[
g
]
=

limb− g

I
lima+ g

r
f =

limb− gr
lima+ g

f .

Example 3.35. Say, we want to compute the area under the graph of sin2 cos over
the interval [0, π/2], that is

π/2r
0

sin2 cos .

We know that we can rewrite this problem using indefinite integration:

π/2

I
0

r
sin2 cos =

π/2

I
0

( r
ι2
)[
sin
]
=

sin(π/2)

I
sin 0

r
ι2 =

1

I
0

1
3
ι3 = 1

3
13 − 1

3
03 = 1

3
.

This is completely clear; we just use the first substitution rule and change the limits
by putting sin into them. In the traditional notation:

∫ π/2

0

sin2(x) cos(x) dx

∣∣∣∣∣
t=sinx

=

∫ sin(π/2)

sin 0

t2 dt = [1
3
t3]1t=0 =

1
3
13 − 1

3
03 = 1

3
.

It is intuitively plausible to say that “if x ranges from 0 to π/2, then t = sin x ranges
from 0 to 1, and since the substitution rule works for indefinite integration, it should
work for definite as well”, but it is not completely clear why this is correct. �

In the very same manner, we can rewrite the second substitution rule. Suppose
that g is injective and differentiable. Then

br
a

f =
b

I
a

r
f =

b

I
a

( r
f [g]∂g

)[
g−1] = limb− g−1

I
lima+ g−1

r
f [g]∂g =

limb− g−1r
lima+ g−1

f [g]∂g .

In the traditional notation, this theorem is usually written as∫ b

a

f(x) dx =

∫ limx→b− g−1(x)

limx→a+ g−1(x)

f(g(t))g′(t) dt ,

which is not only less mathematically clear, but also much longer than

br
a

f =

limb− g−1r
lima+ g−1

f [g]∂g .
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Variables

In definite integration, variables can travel from
r
to I in the very same manner as

in definite summation, that is, if F ∈
r
f , we can write

b

I
a

r
x

f [x] =
b

I
x=a

F [x] .

In practice, rewriting
r b

a
as Iba

r
is usually superfluous (one can always imagine this

process), and with variables it would be also unnatural, so we would just write
something like

br
x=a

f [x] =
b

I
x=a

F [x] .

When using a substitution rule, we would put the function in substitution directly
into limits:

br
x=a

f [g[x]]∂g[x] =

g[b]r
t=g[a]

f [t] .

This resembles the traditional notation, but it is generally better to use variables
only when this is really necessary, since expressions like

br
a

f [g]∂g =

g[b]r
g[a]

f
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Conclusion
The purpose of this thesis was to change the way one understands classical notions
in calculus from just a ‘vague notation whose only meaning is to express theorems’ to
a more algebraic way of thinking in which computations are performed by algebraic
manipulations (knowing, of course, which manipulations are correct for particular
objects under consideration).

In computation of limits and derivatives, the difference between the traditional
notation and our notation is mostly formal. Our notation provides a way to write
mathematical concepts more fundamentally with all symbols representing clearly
defined objects, not just ‘something to be justified by further explanation’. How-
ever, by exploiting the composition of functions, our notation also provides new
ways to rewrite functions (such as writing

√
ι+ sin[1 + ι + ι2] instead of the tradi-

tional
√
1 + x+ x2 + sin(1 + x+ x2) ), which, especially in differentiation, can lead

to substantive reduction in length (and computational complexity) of expressions.
In addition to that, our definition of the little-o symbol makes computations of limits
with it completely rigorous.

In integration, the difference between the traditional notation and our notation is
more than just formal. In indefinite integration, there is no need for a ‘substitution’
and all common computations can be performed in an almost purely algebraical
manner. The results do not contain any vague symbols such as “+ c”; instead,
they contain only clearly defined function and set symbols. This leads to ‘algebraic’
computations (such as solving a differential equation by separation of ‘variables’)
without having to worry about correctness; if one writes everything according to
the rules, then it is correct, and it is not necessary to define auxiliary functions and
provide further verbal explanation to make all the steps correct. Furthermore, by
rewriting functions in the way as in the previous paragraph, it may be possible to
notice ‘substitutions’ that would be very hard to see in the traditional notation. In
definite integration, there are no separate rules, because thanks to the notion of the
operator of limits, they are already included in the rules for indefinite integration.

Another purpose of this thesis was to show possible ways to teach the variableless
approach to students. We have shown that finite differences and differentiation are
almost completely analogous, the only substantial difference being the chain rule.
Similarly, summation and integral calculus are also almost completely analogous.
It would be therefore possible to teach difference and summation calculus first, let
students get used to the algebraical manipulations involved, and than introduce dif-
ferentiation and integration as its limit cases. The concept of the area operator was
also defined for pedagogical reasons; it is the limit case of the definite sum opera-
tor and it turns out that it completes the analogy by translating the fundamental
theorem of finite calculus to the fundamental theorem of (integral) calculus. This
definition of integral would be, of course, insufficient for most parts of mathematics,
and Riemann and Lebesgue integration could be taught as a generalization of this
most intuitive concept.
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