A subset of a product space is thin if every two its distinct points are distinct in at least two coordinates. A subset of a product space is very thin if every two its distinct points are distinct in all coordinates. The thesis summarizes the basic properties of thin-type dense sets in products of topological spaces. Sufficient and necessary conditions of their existence are given and several examples are shown. The main result of the thesis is a construction showing that under the continuum hypothesis, for every natural $n \geq 1$, there exists a countable T_{3} dense-in-itself space X such that X^{n} contains an n-thin dense subset, but $X^{m}, n<m<2 n$, doesn't. Besides, $X^{m}, n<m<\omega$, does not contain any $(n+1)$-thin dense subset. A weaker form of the theorem is proven under Martin's axiom.

