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√
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stupnosť P obsahuje konvexnú alebo konkávnu podpostupnosť dĺžky Ω(logN).
Najprv definujeme (k + 1)-ticu K ⊆ P ako pozitívnu, keď leží na grafe funkcie
s nezápornou k-tou deriváciou a podobne tiež negatívnu (k+ 1)-ticu. Ďalej hovo-
ríme, že S ⊆ P je monotónna k-teho rádu, keď jej (k + 1)-tice sú buďto všetky
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pre zodpovedajúce Ramseyovské funkcie. Dostávame Ω(log(k−1)N) ako dolný
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types a One-sided sets of hyperplanes.
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pi = (xi, yi) and x1 < x2 < · · · < xN . A famous 1935 Erdős–Szekeres theorem
asserts that every such P contains a monotone subsequence S of d

√
N e points.

Another, equally famous theorem from the same paper implies that every such
P contains a convex or concave subsequence of Ω(logN) points. First we define
a (k + 1)-tuple K ⊆ P to be positive if it lies on the graph of a function whose
kth derivative is everywhere nonnegative, and similarly for a negative (k + 1)-
tuple. Then we say that S ⊆ P is kth-order monotone if its (k + 1)-tuples are
all positive or all negative. In this thesis we investigate quantitative bound for
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Preface

In this thesis we provide a generalisation of the two well-known theorems of Erdős
and Szekeres and apply our results to related problems of order type and one-
sided sets of hyperplanes. We introduce a concept of kth-order monotone sets to
generalise monotonicity and convexity/concavity which are considered in original
Erdős–Szekeres theorems.

Chapter 1 provides theoretical background and tools which are used through-
out the thesis. In Chapter 2 we define kth-order monotonicity itself and outline
several aspect of this definition. Transitive colorings of hypergraphs introduced
by Fox et al. [FPSS11] turned out to be very useful when proving bounds for
kth-order monotone sets; their properties are discussed in Chapter 3. Bounds
for kth-order monotone sets are proved in Chapter 4. Probably the most inter-
esting result is the construction providing a lower bound for 3rd-order monotone
subsets in Theorem 4.2. Improved bounds for order types and one-sided sets of
hyperplanes are provided in Chapter 5 and a list of unsolved related problems
can be found in Chapter 6.

Most of the results in this thesis was written jointly with professor Matoušek
in a paper [EM11] which will be published soon.
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Chapter 1

Introduction

In this chapter we provide necessary theoretical background needed in proofs of
our results. The first two sections provide insight into most important results of
Ramsey theory which served as the main motivation of this work and are needed
for basic understanding of its subject. Section 1.3 gives a summary of a recently
published paper by Fox et al. [FPSS11] which introduces very important defini-
tion of transitive hypergraph coloring. Our results imply better bounds for two
problems described in Sections 1.4 and 1.5. In the last section we recall techni-
cal propositions mostly from mathematical analysis and polynomial interpolation
which are used mainly in the next chapter when describing properties of kth-order
monotonicity.

1.1 Ramsey
The history of Ramsey theory begin in 1930 by article of Frank P. Ramsey
[Ram30] although many of the results nowadays belonging to Ramsey theory
were known before. More about history of Ramsey theory and many similar re-
sults can be found in book of Graham, Rothschild, and Spencer [GRS80]. We
refer to this book also for proofs of the two following theorems.

Theorem 1.1 (Ramsey [Ram30]). For every k, r, n ∈ N there exist a number
N ∈ N such that for every coloring of the k-tuples of the [N ] by r colors there is
a subset T ⊆ [N ] of size n such that all k-tuples of elements of T have the same
color. We denote Rr

k(n) the smallest such N and if r = 2 we write only Rk(n).

Infinite version is provided in the original words of Ramsey for r-tuples and
µ colors as cited in [GRS80].

Theorem 1.2 (Infinite version of Ramsey’s theorem [Ram30]). Let Γ be an
infinite class, and µ and r positive integers; and let all those sub-classes of Γ
which have exactly r members, or, as we may say, let all r-combinations of the
members of Γ be divided in any manner into µ mutually exclusive classes Ci

(i = 1, 2, . . . , µ), so that every r-combination is a member of one and only one
Ci; then, assuming the Axiom of Selections, Γ must contain an infinite sub-class
∆ such that all the r-combinations of the members of ∆ belong to the same Ci.

The best known lower and upper bounds of Rk(n) are stated in the follow-
ing theorem. For recent improvement and more detailed overview of the known
bounds see paper of Conlon, Fox and Sudakov [CFS11].
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Theorem 1.3 (Bounds for Ramsey function). For any n ∈ N R2(n) = 2Θ(n) and
for k ≥ 3

twrk−1(Ω(n2)) ≤ Rk(n) ≤ twrk(O(n)),

where twr1(x) = x and twri+1(x) = 2twri(x).

1.2 Erdős and Szekeres
Two famous Ramsey-type results of Erdős and Szekeres consider large sets of
points in plane.

Theorem 1.4 (Erdős-Szekeres on monotone subsequences [ES35]). For every
positive integer n among every N = (n − 1)2 + 1 points p1, . . . , pN ∈ R2, where
pi = (xi, yi) and x1 < · · · < xN , there is a monotone subset of at least n points.
This means that there are indices i1 < · · · < in such that yi1 ≤ · · · ≤ yin or
yi1 ≥ · · · ≥ yin.

Theorem 1.5 (Erdős–Szekeres on convex/concave configurations [ES35]). For
every positive integer n among every N =

(
2n−4
n−2

)
+1 ∼ 4n/

√
n points p1, . . . , pN ∈

R2, where pi = (xi, yi) and x1 < · · · < xN , there is a convex configuration or a
concave configuration of at least n points. This means that there are indices
i1 < · · · < in such that the slopes of the segments pijpij+1

, j = 1, . . . , n − 1 are
either all nondecreasing or all nonincreasing.

1.3 Fox et al.
A work on related problems were published recently by Fox et al. [FPSS11]. They
also considered a problem similar to that of Erdős and Szekeres:

Definition 1 (monotone path [FPSS11]). Let Hk
N = ([N ],

(
[N ]
k

)
be a hypergraph

and n a positive integer. For j1 < . . . < jn we call sequence of hyperedges{
{ji, ji+1, . . . , ji+k−1}

}n−k+1

i=1

a monotone path of length n.

We denote Nk(q, n) a smallest number such that for every coloring of Hk
Nk(q,n)

there exists a monochromatic monotone path of size n.

Theorem 1.6 (on monotone paths [FPSS11]). For every n and q following holds:

twrk−1(cnq−1) ≤ Nk(q, n) ≤ tk−1(c′nq−1 log n)

Another important definition is stated in this paper, which we later use to
prove our main results.

Definition 2 (Transitive coloring of a hypergraph). Let H([N ],
(

[N ]
k

)
) be a k-

uniform hypergraph with linear ordering of vertices. We say that a coloring
χ :
(

[N ]
k

)
→ {±1} is transitive if for any vertices i1 < · · · < ik+1, ij ∈ [n] the

following holds: whenever χ(i1, . . . , ik) equals χ(i2, . . . , ik+1), then all k-element
subsets of {i1, . . . , ik+1} have the same color.

Two (k + 1)-tuples from the previous definition which differ only in the first
point of the first (k + 1)-tuple and in the last point of the second (k + 1)-tuple
are called subsequent (k + 1)-tuples.
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1.4 Order types
Order types were considered in the paper by Goodman and Pollack [GP93] and
also in [Mat02].

Definition 3 (Order type). Let P = (p1, . . . , pN) be a sequence of points in
Rd and we do not assume the first coordinate to be increasing. Order type
of P is a mapping χ :

(
[N ]
d+1

)
→ {−1,+1}. Mapping χ(I) specifies an orienta-

tion of a (d + 1)-tuple I = {i1, . . . , id+1}, i1 < i2 < · · · < id+1, where χ(I) :=
sgn detM(pi1 , pi2 , . . . , pid+1

), where

M(q1, . . . , qd+1) =


1 1 · · · 1
| | · · · |
q1 q2 · · · qd+1

| | · · · |

 ,

i.e. the j-th column consists of 1 followed by the vector of the d coordinates of
qj.

It is a direct consequence of Ramsey’s theorem (Theorem 1.1) that for any d
and n there is such N that every sequence of N points in Rd contains an n-point
subsequence with all (d + 1)-tuples having the same orientation. The smallest
such N we denote OTd(n). By Theorem 1.3 we get the following upper bound:

Theorem 1.7 (Upper bound from Ramsey’s theorem).

OTd(n) = twrd+1(O(n))

1.5 One-sided sets of hyperplanes
Now we consider a finite sets of hyperplanes in Rd. This problem was previously
studied by Matoušek and Welzl [MW92] and later by Dujmović and Langerman
[DL11].

Definition 4 (One-sided set of hyperplanes). Let H be a finite set of hyperplanes
in Rd in general position (every d hyperplanes intersect at a single point). We say
that H is one-sided if the intersection of every d-tuple from H lies on the same
side of the coordinate hyperplane xd = 0.

We denote OSHd(n) the Ramsey function for one-sided sets of hyperplanes,
i. e. the smallest number N such that any set of N hyperplanes contains a one-
sided set of n hyperplanes. The existence of OSHd(n) was used by Dujmović and
Langerman [DL11] to prove several interesting results. In Section 5.2 we provide
a lower bound for OSHd(n) which can also be translated into lower bounds for
these problems. Here is a direct consequence of Ramsey’s theorem:

Theorem 1.8 (Upper bound for one-sided set of hyperplanes).

OSHd(n) = twrk(O(n))
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1.6 Polynomial interpolation
In this section we mention definitions and theorems which we use mainly in
Chapter 2 while developing our definition of kth-order monotonicity and later in
Sections 5.1 and 5.2.

Definition 5 (Divided Difference [Phi03, Eq. 1.22]). Let p1, . . . , pk+1 be points in
the plane, where pi = (xi, yi) and all xi are distinct but not necessarily increasing.
We define divided difference ∆k(p1, . . . , pk+1) by the following recursive formula:

∆0(pi) := yi

∆j(pi1 , pi2 , . . . , pij+1
) :=

∆j−1(pi2 , . . . , pij+1
)−∆j−1(pi1 , . . . , pij)

xij+1
− xi1

For example ∆1(p1, p2) equals to the slope of the line p1p2. It should be noted
that Phillips [Phi03] uses different notation for divided differences: ∆(p1, . . . , pk+1)
is there written as f [x1, . . . , xk+1], where f is a function such that f(xi) = yi for
all points pi = (xi, yi).

Following lemma is mentioned in [Phi03] as a corollary of Theorem 1.1.1:

Lemma 1.9. The divided difference ∆(p1, . . . , pk+1) is a symmetric function of
its arguments, meaning that it is unchanged if we rearrange the pj in any order.

Another important property of divided difference is the following lemma of
Cauchy. It is a generalisation of the Mean Value Theorem.

Theorem 1.10 (Cauchy [Phi03, Eq. 1.33]). Let f be a function such that the kth
derivative f (k) exists everywhere on the interval (x1, xk+1). Let p1, . . . , pk+1 be the
points such that pi = (xi, f(xi)). Then there exists ξ ∈ (x1, xk+1) such that

∆(p1, . . . , pk+1) =
f (k)(ξ)

k!

Now we proceed to interpolation theorems by Newton and Vandermonde.

Theorem 1.11 (Newton’s interpolation [Phi03, Eq. 1.19]). Let p1, . . . , pk+1 ∈
R2 where pi = (xi, yi) are points with distinct x-coordinates. Then the unique
polynomial f of degree at most k whose graph contains p1, . . . , pk+1 is given by

f(x) =
k+1∑
i=1

(
∆(p1, . . . , pi)

i−1∏
j=1

(x− xj)
)

Theorem 1.12 (Vandermonde’s interpolation [Phi03, Eq. 1.6]). Let p1, . . . , pk+1,
pi = (xi, yi) be points in R2 with distinct x-coordinates. Then the set of equations

1 x1 x2
1 · · · xk1

1 x2 x2
2 · · · xk2

...
...

... . . . ...
1 xk+1 x2

k+1 · · · xkk+1



a0

a1
...
ak

 =


y1

y2
...

yk+1

 (1.1)

has a unique solution (a0, a1, . . . , ak) and the polynomial

f(x) = akx
k + ak−1x

k−1 + · · ·+ a1x+ a0

interpolates the points p1, . . . , pk+1.
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The leftmost matrix in the equation (1.1) is called Vandermonde matrix. It
possesses the following useful property:

Lemma 1.13 (Determinant of Vandermonde matrix [Phi03, Eq. 1.8]). Let V be
a Vandermonde matrix as in the equation (1.1). Then

detV =
∏
i<j

(xj − xi).

1.7 Convexity
In this section we provide several definitions of convexity/concavity. Our attempt
to generalise these definitions can be found in the next chapter.

Definition 6 (Convex function [Hö94, Def. 1.1.1]). Function f is called convex
if the graph of f lies below the chord between any two points lying on the graph.

This definition is similar to an ancient definition of concavity by Archimedes
from a work called On the Sphere and the Cylinder (Definition 2).

Definition 7 (Concave line by Archimedes1). I call concave in the given direction
a line such that whenever two points are taken, which are on that line, the straight
lines between these points fall either in that direction from the line, or some in that
direction though some along the line itself, although none in the other direction.

Now we provide a definition of a discrete set of points in the plane similar to
Definition 6.

Definition 8 (Convex set of points). Let P ⊆ R2 be a finite set of points. The set
P is called convex if for every two points p, q ∈ P all points of P with x-coordinate
between p and q lie below the segment pq.

1
᾿Επὶ τὰ αὐτὰ δὴ κοίλην καλῶ τὴν τοιαύτην γραμμήν, ἐν ᾗ ἐὰν δύο σημείων λαμβανομένων

ὁποιωνοῦν αἱ μεταξὺ τῶν σημείων εὐθεῖαι ἤτοι πᾶσαι ἐπὶ τὰ αὐτὰ πίπτουσιν τῆς γραμμῆς, ἢ τινὲς

μὲν ἐπὶ τὰ αὐτά, τινὲς δὲ κατ᾿ αὐτῆς, ἐπὶ τὰ ἕτερα δὲ μηδεμία. [Šír11], [Arc70]
Maybe “on that side” would be a better translation of “ἐπὶ τὰ αὐτά” although we find “in that
direction” more convenient for this definition.
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Chapter 2

On kth-order monotonicity

2.1 Introduction
There are two original Erdős-Szekeres theorems: the first one for monotone subse-
quences (1.4) and the second one for convex/concave configurations (1.5) and we
try to generalize these notions of monotonicity and convexity/concavity to higher
orders. We know from mathematical analysis that monotonicity is related to the
first derivative, and convexity and concavity are related to the second derivative.
And actually our initial definition is analytic and we define monotonicity of k-th
order using derivatives. The following definition describes the property of points
which we look for in our Ramsey-type results.

Definition 9 (kth-order monotonicity). We say that a (k+ 1)-tuple is positive if
it lies on the graph of a function whose k-th derivative exists and is everywhere
non-negative. On the other hand we say that a (k + 1)-tuple is negative if it
lies on the graph of a function whose k-th derivative exists and is everywhere
non-positive. An arbitrary set of points is said to be kth-order monotone if all of
its (k + 1)-tuples are positive or all are negative.

The 1st-order monotonicity is equivalent to monotonicity as in Theorem 1.4
and the 2nd-order monotonicity is equivalent to convexity/concavity as in Theo-
rem 1.5. Although there are some interesting questions. The first one is whether
there exists a single function with k-th derivative non-negative/non-positive ev-
erywhere which would intersect the whole kth-order monotone set. This question
was answered negatively for k = 3 by Günter Rote [Rot12], and details and a
generalisation for all k are provided in Section 2.4. Another question is what
do such kth-order monotone sets look like. The convexity/concavity itself is a
geometric concept and in Section 2.3 we provide geometric definitions equivalent
to Definition 9.

Sometimes we need the points to be in a “sufficiently” general position so that
we have no (k + 1)-tuples which are both positive and negative:

Definition 10 (k-general position). A set P is in k-general position if no k + 1
points of P lie on the graph of a single polynomial of degree at most k − 1.

We denote ESk(n) the smallest N such that every set of N points in the plain
in k-general position contains a kth-order monotone set of size n. The existence
of such N is a direct consequence of Ramsey’s theorem (1.1).

8
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p1

p2

p3

P (p1, p2, p3)

p4

Figure 2.1: monotone, convex and 3rd-order monotone sets

2.2 Definition using divided difference
Theorem 2.1 (Definition of kth-order monotonicity using divided difference).
Let P = p1, . . . , pn be a set of points in R2. Then P is kth-order monotone if and
only if divided differences of all (k + 1)-tuples of points in P have the same sign.

Proof of this theorem follows directly from the following lemma.

Lemma 2.2. A (k + 1)-tuple K is positive if and only if ∆(K) ≥ 0.
A (k + 1)-tuple K is negative if and only if ∆(K) ≤ 0.

Proof. Let p1, . . . , pk+1 be points of K where pi = (xi, yi). We use Newton’s
interpolation (Theorem 1.11) to define f(x) — a polynomial of degree k passing
through all points of K:

f(x) =
k+1∑
i=1

(
∆(p1, . . . , pi)

i−1∏
j=1

(x− xj)
)

The leading coefficient of f(x) is ∆(p1, . . . , pk+1), so that the k-th derivative of
the polynomial f(x) is exactly the divided difference of the whole K:

f (k)(x) = ∆(p1, . . . , pk+1) = ∆(K)

Now we know that whenever the difference ∆(K) is non-negative, the f(x) is
the function passing through all points of K with k-th derivative existing and
everywhere non-negative, and therefore the set K is positive. And similarly
whenever ∆(K) is non-positive, the set K is negative.

To prove the opposite implications we use the Cauchy’s Lemma (Theorem
1.10). We consider an arbitrary function f passing through all points of K which
has derivatives to the order of k everywhere. Then by Cauchy’s Lemma there
exists a point ξ ∈ (x1, xk+1) such that ∆(K) · k! = f (k)(ξ) and sgn ∆(K) =
sgn f (k)(ξ). Therefore if ∆(K) < 0 the K can’t be positive and if ∆(K) > 0 then
K can’t be negative. And the lemma is proved.

2.3 Geometric interpretation
It is clear that increasing duples and convex triples posses an interesting feature:
the last point always lies above the polynomial interpolating rest of the points
as is illustrated in Figure 2.1. Generally, this property holds for all orders of
monotonicity. Moreover following lemma is true:
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Lemma 2.3. Let K = {p1, . . . , pk+1}, pi = (xi, yi) be a (k + 1)-tuple of points
in k-general position, x1 < · · · < xk+1, let i ∈ [k + 1], and let fi be the (unique)
polynomial of degree at most k − 1 whose graph passes through the points of
K \ {pi}. Then sgnK = (−1)k−i if pi lies below the graph of fi, and sgnK =
(−1)k+1−i if pi lies above the graph.

Proof. Let f be the polynomial of degree at most k passing through all points of
K. We use Newton’s interpolation (Theorem 1.11), but with the points reordered
so that pi comes last, and we get that

f(x) = fi(x) + ∆k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi)
∏

j∈[k+1]\{i}

(x− xj).

Using this with x = xi, we get

sgn(yi − fi(xi)) = sgn(f(xi)− fi(xi))
= sgn ∆k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi) · sgn

∏
j∈[k+1]\{i}

(xi − xj).

Divided differences are invariant under permutations (Lemma 1.9), and so
sgn ∆k(p1, . . . , pi−1, pi+1, . . . , pk+1, pi) = sgnK. Finally, the product

∏
j∈[k+1]\{i}(xi−

xj) has k + 1− i negative factors, thus its sign is (−1)k+1−i, and the lemma fol-
lows.

The following theorem provides a definition of kth-order monotone set similar
to that of convex set of points (Definition 8).

Theorem 2.4. Let S = {p1, . . . , pn} be a set of points in R2 where pi = (xi, yi)
and x1 < · · · < xn. The set S is kth-order positive if and only if the following
holds:
We choose arbitrary k-tuple K = {pi1 , . . . , pik} ∈ S where i1 < · · · < ik and
denote f a polynomial of degree at most (k − 1) interpolating all points of K.
Then for every l ≥ 1 each point pj such that ik−2l < j < ik−2l+1 lies above the
graph of f , and each point pj′ such that ik−2l+1 < j′ < ik−2l+2 lies below the graph
of f . Similarly for a kth-order negative set.

Proof. Let S be a kth-order positive set. We assume for a contradiction that there
are k points pi1 , . . . , pik and a point pj that lies on the wrong side of the graph of
the polynomial f interpolating points pi1 , . . . , pik . W. l. o. g. ik−2l < j < ik−2l+1

for some l and pj lies below the graph of f . Then by Lemma 2.3 the sign of
(k + 1)-tuple pi1 , . . . , pik , pj is −1 a contradiction.

Let S be a set satisfying the condition of the theorem. Assume for a con-
tradiction that there is a negative (k + 1)-tuple {p1, . . . , pk+1} ⊆ S. Then by
Lemma 2.3 the point pk lies above the graph of the polynomial interpolating
points p1, . . . , pk−1, pk+1 a contradiction.

2.4 Nonexistence of a global function
Lemma 2.5 (3rd-order positive set with no global function [Rot12]). There exists
a 3rd-order positive set such that there is no function f passing through all points
of the set whose 3rd derivative exists and is everywhere positive.
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p1 p2 p3

p4

p5

p6

x0

Figure 2.2: Rote’s example: a 6-point 3rd-order positive set in 3-general position
that does not lie on the graph of any function with nonnegative 3rd derivative.

Proof. Fig. 2.2 shows a 6-point set P = {p1, . . . , p6} in 3-general position (no four
points on a parabola). It is easy to check 3rd-order positivity using Lemma 2.3:
By transitivity, it suffices to look at 4-tuples of consecutive points. For p1, . . . , p4

we use the parabola through p1, p2, p3 (which actually degenerates to the x-axis);
for p2, . . . , p5 we use the dashed parabola through p2, p3, p4 (which is very close
to the x-axis in the relevant region); and for p3, . . . , p6, the parabola through
p4, p5, p6 (drawn full).

It remains to check that P does not lie on the graph of a function f with
f (3) ≥ 0 everywhere. Assuming for contradiction that there is such an f , we
consider the point q := (x0, f(x0)), where x0 is such that the full parabola is
below the x-axis at x0. For the 4-tuple {p1, p2, p3, q} to be positive, q has to lie
above the x-axis, but the 4-tuple {q, p4, p5, p6} is positive only if q lies below the
parabola through p4, p5, p6. And by Cauchy’s Lemma (Theorem 1.10) a strictly
negative quadruple of points lying on the graph of f implies existence of a point
where f (3) is strictly negative — a contradiction.

Lemma 2.6 (kth-order positive set with no global function for k odd). For every
k odd there exists a kth-order positive set such that there is no function f passing
through all points of the set whose k-th derivative exists and is everywhere positive.

Proof. We use a very similar example as in previous lemma. We have k points
p1, . . . , pk on x-axis and another k points pk+1, . . . , p2k lying above x-axis on the
graph of function g which is a function xk−1 shifted and scaled such that there
are exactly two intersections with x-axis and they occur in the interval (xk, xk+1)
where (xi, yi) = pi. Using Lemma 2.3 it can be easily seen that the set of points
p1, . . . , p2k is kth-order positive. We fix x0 an x-coordinate between the two
intersections of g with the x-axis.

Assuming for contradiction that there is an f passing through all points
p1, . . . , p2k with k-th derivative everywhere non-negative, we consider the point
q := (x0, f(x0)). For the (k + 1)-tuple {p1, . . . , pk, q} to be positive, q has to lie
above the x-axis, but the (k + 1)-tuple {q, pk+1, . . . , p2k} is positive only if q lies
below the graph of g — a contradiction.

Lemma 2.7 (kth-order positive set with no global function for k even). For
every k even there exists a kth-order positive set such that there is no function f
passing through all points of the set whose k-th derivative everywhere exists and
is positive.

Proof. We have again k points on the x-axis and k points on a polynomial of
degree k − 1 as in Figure 2.3. Points pk+1, . . . , p2k define a unique polynomial g

11



x0

p1 p2 pk−1 pk pk+1

pk+2

p2k

g(x)

Figure 2.3: kth-order monotone point set with no global function for k even

of degree k− 1 (odd number) so that the g can be easily enforced to have exactly
three intersections with x-axis: one between pk and pk+1 and two between pk−1

and pk. The set p1, . . . , p2k is kth-order positive as can be shown using Lemma
2.3. If we want the (k + 1)-tuple q, pk+1, . . . , p2k to be positive, we need q to lie
above the polynomial g because k is now even. We fix an x-coordinate x0 between
two intersection of g with the x-axis between pk−1 and pk.

Assuming for contradiction that there is an f passing through all points
p1, . . . , p2k with k-th derivative everywhere non-negative, we consider the point
q := (x0, f(x0)). For the (k + 1)-tuple {p1, . . . , pk−1, q, pk} to be positive, q has
to lie below the x-axis, but the (k + 1)-tuple {q, pk+1, . . . , p2k} is positive only if
q lies above the graph of g — a contradiction.

2.5 Transitivity vs. kth-order monotonicity
In this section we prove that every coloring of k-tuples of points by their sign is
transitive. On the other hand, all transitive colorings have a set of points with
corresponding signs only in duples.

Lemma 2.8. Let P = {p1, . . . , pN} be a point set in k-general position. Then
the 2-coloring of (k + 1)-tuples K ∈

(
P

k+1

)
by their sign is transitive.

Proof. We consider a (k + 2)-tuple L = {p1, . . . , pk+2} with sgn{p1, . . . , pk+1} =
sgn{p2, . . . , pk+2} = +1, and we fix i ∈ {2, . . . , k + 1}. Let fi,k+2 be the polyno-
mial of degree at most k−1 passing through L\{pi, pk+2}, and similarly for f1,k+2.
Our goal is to show that fi,k+2(xk+2) < yk+2, since this gives sgn(L \ {pi}) = +1
by Lemma 2.3.

Since sgn(L \ {p1}) = +1, we have f1,k+2(xk+2) < yk+2 (Lemma 2.3 again),
and so it suffices to prove fi,k+2(xk+2) < f1,k+2(xk+2).

Let us consider the polynomial g := f1,k+2 − fi,k+2; as explained above, our
goal is proving sgn g(xk+2) = +1. To this end, we first determine sgn g(x1): We
have fi,k+2(x1) = y1 and sgn(y1 − f1,k+2(x1)) = (−1)k (using sgn(L \ {p1}) = +1
and Lemma 2.3). Hence sgn g(x1) = (−1)k−1.

Next, we observe that g is a polynomial of degree at most k − 1, and it
vanishes at x2, . . . , xi−1, xi+1, . . . , xk+1. These are k − 1 distinct values; thus,
they include all roots of g, and each of them is a simple root. Consequently, g
changes sign (k − 1)-times between x1 and xk+2. Hence, finally, sgn g(xk+2) =
(−1)k−1 sgn g(x1) = +1 as claimed.

Lemma 2.9. Let χ :
(

[n]
2

)
→ {−1,+1} be a transitive coloring. We can construct

a set of points p1, . . . , pn ∈ R2 such that sgn ∆(pi, pj) = χ(i, j) for all i, j ∈ [n].
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Proof. We set p1 := (1, 0) and continue by induction. We need to add the i-
th point, its x-coordinate will be i. Let P be a set of indices j < i such that
χ(j, i) = +1. Similarly N = {j < i | χ(j, i) = −1}. This means that points with
indices belonging to P should have smaller y-coordinate then pi and points with
indices belonging to N should have larger. Now we prove that for any l ∈ P and
m ∈ N the y-coordinate of pl is smaller then pm. If so, we can set pi = (i, yi)
such that yl < yi < ym for all l ∈ P and m ∈ N .

For contradiction suppose that there is l ∈ P and m ∈ N such that y-
coordinate of pl is larger then pm.

• if l < m then χ(l,m) = −1 but χ(m, i) = −1 and from transitivity also
χ(l, i) = −1 — a contradiction with choice of l

• if l > m then χ(m, l) = +1 but χ(l, i) = +1 and from transitivity also
χ(m, i) = +1 — a contradiction with choice of m

Lemma 2.10. For every k ≥ 2 there is a transitive coloring χ :
(

[k+2]
k+1

)
→

{−1,+1} such that there is no set of points p1, . . . , pk+2 such that for every (k+1)-
tuple {i1, . . . , ik+1} ∈

(
[k+2]
k+1

)
is χ(i1, . . . , ik+1) = sgn ∆(pi1 , . . . , pik+1

).

Proof. We set χ(1, . . . , k+1) := +1 and χ(2, . . . , k+2) := −1. Now we can define
colors of the rest of the (k + 1)-tuples arbitrarily and χ will be still transitive.
We set just χ(1, . . . , k, k + 2) := −1 and χ(1, 3, . . . , k + 2) := +1; the coloring of
other (k + 1)-tuples is not important.

Assume for a contradiction that there exists a set of points P = {p1, . . . , pk+2},
pi = (xi, yi), x1 < · · · < xk+2 such that for all i = 1, 2, k+ 1, k+ 2 following holds:
sgn ∆(P \ {pi}) = χ([k+ 2] \ {i}). We denote fi,j a polynomial of degree at most
k−1 interpolating points of P \{pi, pj}. The point pk+1 must lie above the graph
of fk+1,k+2 thanks to Lemma 2.3. Since sgn ∆(P \ {pk+1}) = −1 the point pk+2

must lie bellow the graph of fk+1,k+2 and since sgn ∆(P \ {p2}) = +1, pk+2 must
lie above the graph of f2,k+2.

We know that p1, p3, . . . , pk are the only intersections of fk+1,k+2 and f2,k+2 as
they are both of degree at most k − 1. But f2,k+2 passes through the point pk+1

which lies above fk+1,k+2 and therefore f2,k+2(x) > fk+1,k+2(x) for all x > xk. But
we need fk+1,k+2(xk+2) > yk+2 > f2,k+2(xk+2) — a contradiction.
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Chapter 3

Ramsey numbers for transitive
colorings

In this chapter we provide bounds for Ramsey numbers for transitively colored
hypergraphs. We denote Rtrans

k (n) the corresponding Ramsey function. We have
an asymptotically matching bounds for k up to 4. For greater k there is an upper
bound Rtrans

k (n) = twrk−1(O(n)) and the only known lower bound for k ≥ 4 is
Rtrans

k (n) ≥ Rtrans
4 (n− k + 4).

3.1 Upper bounds
We know that coloring of k+1-tuples of points in plane by their signs is transitive
(Lemma 2.8). Now we will explore properties of transitive colorings. Firstly
we will show, that both Erdős-Szekeres theorems hold for transitively colored
hypergraphs.

Theorem 3.1 (Erdős-Szekeres theorem for transitively colored duples).

Rtrans
2 (n) ≤ (n− 1)2 + 1

Proof. Let χ be a transitive coloring of H([N ],
(

[N ]
2

)
. Thanks to Lemma 2.9 we

can construct a sequence of points p1, . . . , pN ∈ R2 such that for i < j a point
pi has lower y-coordinate then pj whenever χ(i, j) = −1 and greater whenever
χ(i, j) = +1. Using Theorem 1.4 we find a monotone subsequence pi1 , . . . , pin
and the set of indices {i1, . . . , in} is a requested monochromatic subset of H.

Transitivity and ordering of vertices by x-coordinate are the only properties
of convex sets in the plane that are used by original proof of Erdős and Szekeres
so the proof of the next theorem is simply repeating it word by word. We provide
it for completeness.

Theorem 3.2 (Erdős-Szekeres theorem for transitively colored triples). For any
n ∈ N there is N of size O(2n), that every hypergraph H

(
[N ],

(
[N ]
3

))
with linearly

ordered vertices and a transitive coloring of its edges have a monochromatic subset
of size at least n.

Proof. Let N := f2(k, l) be a number that any transitively colored hypergraph
H
(
[N ],

(
[N ]
3

))
has a positive subset of size k or a negative subset of size l for

k, l ≥ 3. It is clear that f2(3, l) = f2(k, 3) = 3.

14



We will prove the following recursion:

f2(k, l) = f2(k − 1, l) + f2(k, l − 1)− 1

We suppose by induction that the theorem is proved for f2(k − 1, l) and for
f2(k, l−1). LetN = f2(k−1, l)+f2(k, l−1)−1. We consider arbitrary hypergraph
H
(
[N ],

(
[N ]
3

))
and his transitive coloring χ. Let us suppose that H does not

contain a negative set of size l. Then H must contain a positive set of size k− 1.
We denote E = {p | p is the last vertex of some positive set with k − 1 vertices}.
Then [N ] \ E does not contain a positive subset of size k − 1 which implies
that

∣∣[N ] \ E
∣∣ < f2(k − 1, l) and therefore |E| ≥ f2(k, l − 1). If E contains a

positive set of size k, then we are done. Else it must contain a negative set N =
{p, y, y3, . . . , yl−1}. There should be a subset P = {x1, . . . , xk−3, x, p} ⊆ [N ]. Now
we show that if χ(x, p, y) = 1 then set P ∪ {y} is positive and if χ(x, p, y) = −1
then set {x} ∪N is negative.

W. l. o. g. let χ(x, p, y) = 1. For every x′ ∈ N \ {x, p} there is χ(x′, x, p) = 1
and χ(x, p, y) = 1 so from transitivity also χ(x′, p, y) = χ(x′, x, y) = 1. For every
x′, x′′ ∈ N \ {x, p}, x′′ < x; there is χ(x′′, x′, p), χ(x′, x, p) = 1 and χ(x′, x, p) = 1.
And therefore from transitivity χ(x′′, x′, y) = 1. We have considered all triples
containing y so the theorem is proved.

Now we know the value of Rtrans
3 (n). We use proof of Ramsey’s theorem for

hypergraphs by Erdős and Rado [ER52]. Nevertheless our induction has a better
start thanks to Theorem 3.2. We will use the following lemma:

Lemma 3.3. Let χ be a transitive coloring of k-tuples of set [n] so that for
all i1 < · · · < ik−1 < n and every ik ≥ ik−1 + 1 there is χ(i1, . . . , ik−1, ik) =
χ(i1, . . . , ik−1, ik−1 + 1). We define χ∗ coloring of (k − 1)-tuples by following:

χ∗(i1, . . . , ik−1) := χ(i1, . . . , ik−1, ik−1 + 1)

Then χ∗ is transitive on [n− 1].

Proof. Let we chose i1 < i2 < · · · < ik < n. From the definition of χ∗ we now
that following holds:

χ∗(i1, . . . , ik−1) = χ(i1, . . . , ik)

χ∗(i2, . . . , ik) = χ(i2, . . . , ik, ik + 1)

In the case that χ∗(i1, . . . , ik−1) equals χ(i1, . . . , ik), the colloring χ(i1, . . . , ik)
must be equal to χ(i2, . . . , ik, ik + 1). If we chose arbitrary (k − 1)-tuple A from
i1, . . . , ik, we know, that

χ∗(A) = χ(A ∪ {ik + 1}) = χ(x2, . . . , xk, xk + 1) = χ∗(i2, . . . , ik)

because χ is transitive.

Theorem 3.4 (Ramsey theorem for transitively colored hypergraphs). For any
k ∈ N there exist N ∈ N of size twrk(O(n)) such that in every hypergraph H =(
[N ],

(
[N ]
k

))
with a transitive coloring χ there is a monochromatic set of size n.
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Proof. We proceed by induction. For k = 3 this is implied by Theorem 3.2. We
set M := Rtrans

k (n), N := 2Mk and show that Rtrans
k+1 (n) ≤ N for k > 3.

Let χ :
(

[N ]
k+1

)
→ {±1} be an arbitrary transitive 2-coloring of [N ]. We it-

eratively construct a sequence a1 < · · · < aM so that χ has all properties de-
manded by lemma 3.3 on A = {a1, . . . , aM}. At the beginning we set Ak−1 :=
{1, 2, . . . , k − 1} and Xk−1 := [N ] \ Ak−1. For i = k, k + 1, . . . ,M we construct
sets Ai, Xi ⊆ [N ] in the following way:

1. We say that x and y are equivalent if for all T ∈
(
Ai−1

k−1

)
is χ(T ∪ {x}) equal

to χ(T ∪ {y}). Let C be the largest of the equivalence classes.

2. We chose ai the smallest element of C and Xi := C \ {ai}.

In i-th step there are 2( i
k−1) < 2Mk−1 equivalence classes and therefore |Xi| ≥

|Xi−1| · 2−( i
k−1) − 1 ≥ |Xi−1| · 2Mk−1 . Clearly we can make M steps because

|XM | ≥ N · (2−Mk−1
)M = 2Mk · 2−Mk

= 1. We set A := AM .
Coloring χ restricted to A is clearly transitive. Let x be the smallest element

of XM (x does not belong to A). Coloring χ satisfies requirements of Lemma 3.3
on A∪ {x}. Now we define a coloring χ∗ :

(
A
k

)
→ {±1} by χ∗(K) := χ(K ∪ {x}).

Then by Lemma 3.3 we know that χ∗ is transitive. From inductive hypothesis
there is a monochromatic n-element subset of A with respect to χ∗. Clearly A is
monochromatic also with respect to χ.

3.2 Lower bounds
Lower bounds for Rtrans

2 and Rtrans
3 are direct consequences of Theorems 1.4, 1.5

and Lemma 2.8:

Theorem 3.5 (Lower bounds for Rtrans
2 and Rtrans

3 ). For all n ∈ N following
holds: Rtrans

2 (n) ≥ (n− 1)2 + 1 and Rtrans
3 (n) = Ω(2n).

Proof. We know that the coloring of duples resp. triples of vertices by their sign
is transitive (Lemma 2.8). Therefore the examples giving the lower bounds of 1.4
and 1.5 can be directly transformed to examples which imply lower bounds for
Rtrans

2 and Rtrans
3 .

Now we provide a construction of a large 4-uniform hypergraph with only a
small monochromatic subset.

Theorem 3.6 (Lower bound for Rtrans
4 ). For all n ≥ 2 we have

Rtrans
4 (2n+ 1) ≥ 22n−1

+ 1

This means that Rtrans
4 (n) = twr3(Ω(n)).

Proof. Inductively we construct a 4-uniform hypergraph Hn with no monochro-
matic subgraph of size 2n + 1. We begin with H2 on 22n = 4 vertices with one
hyperedge which has clearly no monochromatic set of size 5.

In the inductive step we replace every vertex of Hn with a new copy of Hn.
Formally we can write that V (Hn+1) = {(u, v) | u, v ∈ V (Hn)}. Vertices will be
ordered in an alphabetic ordering, which is illustrated in Figure 3.1. The copies of
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Hi+1

Hj
i Hj+1

i Hj+2
i

<

Figure 3.1: vertex ordering in Hn+1

***|* **|*|*

**|**

*|*|***|***

*|**|*

*|*|*|*

****

Figure 3.2: Coloring of quadruple types: symbol ’|’ means border of a cluster,
oval frame means negative and square frame means positive color. All potentially
subsequent types are connected with an arrow.

Hn are called clusters. Since |V (Hn+1)| = |V (Hn)|2 we have |V (Hn+1)| = 22n+1 .
Coloring of a quadruple depends on its type. The type is an ordered partition

of 4 given by the distribution of the quadruple among clusters. All quadruples
whose vertices belong to the same cluster (type 4) have the same color as in Hn.
All quadruples which have all vertices from a different cluster (type 1+1+1+1)
also have the same color as in Hn. For the rest of the types, there is a constant
color for each type. The colors are following:

• 3+1 has color −1

• 2+2 has color +1

• 1+3 has color −1

• 2+1+1 has color +1

• 1+2+1 has color −1

• 1+1+2 has color +1

The coloring of the types is illustrated in Figure 3.2
Now we need to show that every monochromatic set in Hn+1 can be of size at

most 2n+ 2 and that suggested coloring is transitive.
Let X be a monochromatic subset of V (Hn+1) and Y be the largest subset

of X which is contained inside a single cluster. From induction we know that
|Y | ≤ 2n and that X can cross at most 2n clusters.

If |Y | = 1, then every points of X belongs to a different cluster and therefore
|X| ≤ 2n.

If |Y | ≥ 3 then we will show, that X contains only one point smaller and only
one point greater than all points of Y . For a contradiction, assume that there
are points x1 < x2 ∈ X \ Y such that for all y ∈ Y x1, x2 are smaller than y.
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Let y1 < y2 < y3 be points of Y . Then (x2; y1, y2, y4) is a quadruple of type 1+3,
but (x1, x2; y1, y2) is a quadruple of type 2+2 which has the opposite color — a
contradiction. Similarly for two points of X \ Y greater than all points of Y .

If |Y | = 2 and there is at most one different cluster which contains two points
of X, then |X| ≤ 2n+ 2. Otherwise let a1 < a2 < b1 < b2 < c1 < c2 be points of
X such that a1 and a2 belong to the same cluster, similarly for b1, b2 and c1, c2.
Then (a2; b1, b2; c1) is a quadruple of type 1+2+1 and (a1, a2; b1, b2) is a quadruple
of type 2+2 which has the opposite color — a contradiction.

Theorem 3.7 (Lower bound for Rtrans
k , k > 4). For any k > 4 the following

holds:
Rtrans

k (n) ≥ Rtrans
4 (n− k + 4)

Proof. We proceed by induction. The case k = 4 is proved due to Theorem 3.5.
We have a transitive coloring χ :

(
[Rtrans

k (n)]
k

)
→ {−1,+1} with no monochromatic

n-point set and we construct a transitive coloring of (k + 1)-tuples of the same
set of points with no monochromatic (n+ 1)-point set.

We define χ∗, the coloring of (k + 1)-tuples, as follows:

χ∗(i1, . . . , ik, ik+1) := χ(i1, . . . , ik)

Now we prove that χ∗ is transitive. Let χ∗(i1, . . . , ik+1) = χ∗(i2, . . . , ik+2) = c.
Then χ(i1, . . . , ik) = χ(i2, . . . , ik+1) = c and by transitivity also every k-tuple
K ∈

({i1,...,ik+1}
k

)
have the same color. Let I be a (k + 1)-tuple of elements

from {i1, . . . , ik+2} and K be a set of first k points of I. It is clear that K ⊆
{i1, . . . , ik+1} and therefore χ(K) = c and by the definition of χ∗ also χ∗(I) = c.

Let S = {i1, . . . , in+1} be a monochromatic set with respect to χ∗. Then by
the definition of χ∗ the set {i1, . . . , in} is monochromatic with respect to χ — a
contradiction.
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Chapter 4

Ramsey numbers for kth-order
monotone subsets

The upper bound is a simple corollary of Theorem 3.4.

Theorem 4.1 (Upper bound for ESk). For every k ≥ 2 the following bound
holds:

ESk(n) = twrk(O(n))

Proof. We know that every coloring of (k + 1)-tuples by their signs is transitive
(Lemma 2.8) so that the bound of the Theorem 3.4 applies also on kth-order
monotone subsequences of points.

Now we use the Theorem 3.6 to construct a point set with only a small 3rd-
order monotone subsets.

Theorem 4.2 (Lower bound for ES3). For all n ≥ 2 we have

ES3(2n+ 1) ≥ 22n−1

+ 1

The proof of this theorem can be found in the end of this chapter after details
of the construction are provided.

We start with P2 as an arbitrary set of 221
= 4 points in R2 in 3-general

position. Now we proceed similarly as in the proof of Theorem 3.6: when con-
structing the set Pn+1 from Pn we replace each point of Pn by a tiny and deformed
copy of Pn. We use the deformation to enforce the same coloring of the types of
quadruples as in the Theorem 3.6.

1. By an affine transformation we make sure that Pn is inside [1, 2]× [0, 1] or
better inside [1, 1.9]× [0, 0.9] so that we have enough room for perturbation.

2. There is a small δ such that in a set P ′ obtained from Pn by moving each
point arbitrarily by at most δ, the P ′ stays in general position and moreover
the ordering of vertices by x-coordinate and signs of all quadruples of points
stays the same.

3. We choose a sufficiently large number A = A(Pn) as in Lemma 4.4 and we
set ε := 1

A2 .
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0 1 2

ε

ε2 Qp

Q̆p

y = ψp(x)

p

Figure 4.1: A schematic illustration of the construction of Pn+1.

4. For every point p ∈ Pn let Qp be the image of Pn under the affine map
that sends the square [1, 2]× [0, 1] to the axis-parallel rectangle of width ε,
height ε2 and the lower left corner at p, see Figure 4.1.

5. Let ψp(x) = Ax2 +Cp be a quadratic function where Cp is a constant chosen
so that ψp(xp) = 0 (xp is an x-coordinate of the point p). Let Q̆p be the
set obtained by “adding ψp to Qp”, i.e., by shifting each point (x, y) ∈ Qp

vertically upwards by ψp(x). We set Pn+1 :=
⋃

p∈Pn
Q̆p. We call the Q̆p

the clusters of Pn+1. As these transformations does not affect a 3-general
position of Q̆p, the whole Pn+1 is also in 3-general position.

Lemma 4.3. Each Q̆p is contained in an O(
√
ε )-neighborhood of p.

Proof. Writing p = (x0, y0), the set Qp obviously lies in the 2ε-neighborhood of
p, and the maximum amount by which a point of Qp was translated upwards is
at most

ψp(x0 + ε) = A
(
(x0 + ε)2 − x2

0

)
= A(2x0ε+ ε2) = O(

√
ε ).

Lemma 4.4 (Slope lemma). There is a constant A depending only on Pn such
that following holds: Whenever λ is a parabola passing through three points of Pn+1

each from a different cluster or a line passing through two points from different
clusters and µ is a parabola passing through points inside a single cluster or a
line passing through two such points then the maximum slope of λ on the interval
[1, 2] is smaller then the minimum slope of µ on [1, 2].

Proof. Clearly, the maximum slope of any such λ can be bounded above by some
finite number depending only on Pn itself. It suffices to show that in every Q̆p

the parabola or line µ defined by points of Q̆p has the minimum slope on [1, 2]
bounded from below by A.

First let us assume that µ is a parabola passing through three points of Q̆p,
where p = (x0, y0), let µ̃ be the parabola passing through the corresponding three
points of Pn, and let the equation of µ̃ be y = ax2 + bx+ c.
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Figure 4.2: Determining the signs of quadruples by type

By the construction of Q̆p, the affine map transforming Pn to Qp sends a point
with coordinates (x, y) to the point (ε(x− 1) + x0, ε

2y + y0). Calculation shows
that the image of µ̃ under this affine map has the equation y = ax2 + (2aε+ bε−
2ax0)x+ c′, where the value of the absolute term c′ need not be calculated since
it doesn’t matter. Hence the minimum slope of this curve on [1, 2] is bounded
from below by −(8|a| + 4|a|ε + 2|b|ε + 8|a|). Finally, µ is obtained by adding
ψp(x) = Ax2 + Cp to this curve, and the minimum slope of ψp on [1, 2] is at
least 2A.

Next, let µ be a line passing through two points q, r ∈ Q̆p. Let us choose
another point s ∈ Q̆p and consider the parabola µ′ through q, r, s. By Mean
Value Theorem, the slope of µ equals the slope of µ′ at some point between q and
r, and the latter is at least A by the above. The lemma is proved.

Proof of theorem 4.2. We know that |Pn+1| = |Pn|2 and therefore |Pn| = 22n−1 .
Now we prove that in every induction step the coloring of all types of quadruples
is the same as in the proof of Theorem 3.6 and thereby Pn does not contain any
3rd-order monotone subset of 2n+ 1 points.

Several types are illustrated in Figure 4.2. We denote the points in a quadruple
p1, p2, p3, p4.

• type 1+1+1+1: thanks to the definition of δ and Lemma 4.3 we know that
the sign of this type as was in Pn is preserved

• type 4: affine transformation and adding a polynomial to the point set does
not change the signs of quadruples

• type 3+1: from Lemma 4.4 we know that the parabola through p1, p2, p3

lies above p4 and from Lemma 2.3 the sign of the quadruple is −1.

• type 1+3: the parabola through p2, p3, p4 lies belove p1 and therefore the
sign is −1.

• type 1+1+2: the segment p3p4 is steeper then the parabola through p1, p2, p3

as in Figure 4.2 and the sign is +1.

• type 2+1+1: the segment p1p2 is steeper then the parabola through p1, p3, p4

which means that p2 is above this parabola and by Lemma 2.3 the sign is
+1.

• type 1+2+1: the segment p2p3 is steeper then the parabola through p1, p2, p4

as in Figure 4.2 and the sign is −1

• type 2+2: This is the most complex case: We know that the segment p1p2

is steeper than p2p3 thus the parabola through p1, p2, p3 must be concave.
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Therefore its slope by p3 is no larger than the slope of segment p2p3 which
is smaller then the slope of segment p3p4. Thus, the point p4 lies above the
parabola through p1, p2, p3 and the sign is +1.

We have analyzed all possible types and the proof is finished.
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Chapter 5

Applications

5.1 Order type problem
There does not seem to be any kind of transitivity in order types and therefore
the only upper bound we know is that of Theorem 1.7. Although all examples for
kth-order monotone subsets can be converted to examples for order type. This
way we get the same lower bounds as for ESk(n).

Theorem 5.1 (Lower bound for Order types). For all d ≥ 1 following holds:

OTd(n) ≥ ESd(n)

Specially OT3(n) = 22Ω(n).

Proof. Let p1, . . . , pESd(n) ∈ R2 be a sequence of points ordered by x-coordinate
with no dth-order monotone subset of length n + 1 as in Theorem 4.2. We
denote pi = (xi, yi). Now we construct a set of points q1, . . . , qESd(n) ∈ Rd where
qi = (xi, x

2
i , . . . , x

d−1
i , y).

The proof of the theorem follows from the fact that the sign of the orientation
of every (d + 1)-tuple qi1 , . . . , qid+1

is the same as the sign of the (d + 1)-tuple
pi1 , . . . , pid+1

where i1 < · · · < id+1.
To prove this we use Vandermonde interpolation to get the sign of the coef-

ficient near xd of the polynomial interpolating points pi1 , . . . , pid+1
. This is the

Vandermonde matrix of these points:

V :=


1 xi1 x2

i1
· · · xdi1

1 xi2 x2
i2
· · · xdi2...

...
... . . . ...

1 xid+1
x2
id+1

· · · xdid+1


Let a = (a0, . . . , ad) be the coefficients of the interpolating polynomial, this means
a is a solution to the system V a = y where y = (yi1 , . . . , yid+1

) are y-coordinates
of points pi1 , . . . , pid+1

. For the coefficient ad we get the following equation by
Cramer’s rule:

ad =
detV(d+1)→y

detV

Thanks to Lemma 1.13 the determinant detV is always positive because xi1 <
· · · < xid+1

. So that sgn ∆(pi1 , . . . , pid+1
) = sgn ad = sgn detV(d+1)→y. Moreover
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the matrix V(d+1)→y is in fact transposed matrix M(qi1 , . . . , qid+1
) and therefore

sgn ∆(pi1 , . . . , pid+1
) = sgn detM(qi1 , . . . , qid+1

)T = sgn detM(qi1 , . . . , qid+1
)

and this is the definition of the orientation of qi1 , . . . , qid+1
.

5.2 One-sided sets of hyperplanes
The situation is similar to the order type problem. The only known upper bound
is that of Theorem 1.8 although the lower bounds for ESd−1(n) apply also on
OSHd(n).

Theorem 5.2 (Lower bound for one-sided sets of hyperplanes). For any d ≥ 2
following holds:

OSHd(n) ≥ ESd−1(n)

Proof. Let N := ESd−1(n) and P = {p1, . . . , pN} where pi = (xi, yi) be a set of
points in (d − 1)-general position with no (d − 1)th-order monotone set of size
n+ 1. We define a collection H = {h1, . . . , hN} of hyperplanes in Rd such that

hi =

{
(ξ1, . . . , ξd) ∈ Rd

∣∣∣∣ d∑
j=1

xj−1
i ξj = yi

}
.

The intersection point ξ = (ξ1, . . . , ξd) of, say, h1, . . . , hd is the solution of
the linear system V ξ = y, where V is the d × d Vandermonde matrix this time,
vij = xj−1

i . Cramer’s rule then gives that the dth coordinate ξd, whose sign we
are interested in, equals (detV(d+1)→y)/(detV ).

As we saw in the proof of Theorem 5.1, (detV(d+1)→y)/(detV ) also expresses
the leading coefficient in the polynomial of degree d−1 passing through p1, . . . , pd,
and thus its sign equals sgn ∆d−1(p1, . . . , pd). It follows that one-sided subsets of
H precisely correspond to (d−1)th-order monotone subsets in P , and the theorem
is proved.
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Chapter 6

Open problems

Lower bounds for ESk(n). We have obtained reasonably tight bounds for
ES3(n), but the gaps are much more significant for ESk(n) with k ≥ 4. According
to the cases k = 1, 2, 3, one may guess that ESk(n) is of order twrk(Θ(n)), and
thus that stronger lower bounds are needed, but a possibility of a better upper
bound shouldn’t also be overlooked. This question looks both interesting and
challenging.

Lower bounds for Rtrans
k (n). A perhaps more manageable task might be a

better lower bound for Rtrans
k (n), k ≥ 4. A natural approach would be to imitate

the Stepping-Up Lemma used for lower bounds for the Ramsey numbers Rk(n)
(see, e.g., [CFS11]). But so far we have not succeeded in this, since even if we
start with a transitive coloring of k-tuples, we could not guarantee transitivity
for the coloring of (k + 1)-tuples.

Bounds for Order types. For OT3(n) we have the lower bound of 22Ω(n) , but
upper bound only twr4(O(n)) directly from Ramsey’s theorem. It seems that the
colorings given by the order type are not transitive in any reasonable sense, and
we have no good guess of which of the upper and lower bounds should be closer
to the truth.

Bounds for One-sided sets of hyperplanes. Similar comments apply to the
problem with one-sided subsets of planes in R3 (concerning OSH3(n)), and the
higher-dimensional cases are even more widely open.

Monotone paths. Another interesting question is whether n log n can be re-
placed by n in the upper bound for the quantity N`(2, n) considered by Fox et
al. [FPSS11].

Characterization of sets having global function. In our definition of kth-
order positivity, every (k+1)-tuple of points should lie on the graph of a function
with a nonnegative kth derivative, and different functions can be used for different
(k + 1)-tuples. In an earlier version of this paper, we conjectured that, assuming
k-general position, a single function should suffice for all (k + 1)-tuples; in other
words, that every kth-order monotone finite set finite set in k-general position lies
on a graph of a k-times differentiable function f : R → R whose kth derivative
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is everywhere nonnegative or everywhere nonpositive. However this is disproved
now in Section 2.4. Naturally, this opens up interesting new questions: How can
one characterize point sets lying on the graph of a function whose kth derivative
is positive everywhere? Is there a Ramsey-type theorem for such sets, and if yes,
how large is the corresponding Ramsey function?
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