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Abstract

Multivariate volatility models, such as DCC MGARCH, are estimated under

assumption of multivariate normal distribution of random variables, while this

assumption have been rejected by empirical evidence. Therefore, the estimated

conditional correlation may not explain the whole dependence structure, since

under non-normality the linear correlation is only one of the dependency mea-

sures.

The aim of this thesis is to employ a copula function to the DCC MGARCH

model, as copulas are able to link non-normal marginal distributions to create

corresponding multivariate joint distribution. The copula-based MGARCH

model with uncorrelated dependent errors permits to model conditional corre-

lation by DCC-MGARCH and dependence by the copula function, separately

and simultaneously. In other words the model aims to explain additional depen-

dence not captured by traditional DCC MGARCH model due to assumption of

normality. In the empirical analysis we apply the model on datasets consisting

primarily of stocks of the PX Index and on the pair of S&P500 and NAS-

DAQ100 in order to compare the copula-based MGARCH model to traditional

DCC MGARCH in terms of capturing the dependency structure.
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Abstrakt

Problémem v́ıcerozměrných model̊u pro volatility časových řad, jako je DCC

MGARCH model, je jejich předpoklad v́ıcerozměrného normálńıho rozděĺı zk-

oumaných řad. Mnohé empirické studie však poṕıraj́ı předpoklad normálńıho

rozděleńı akcíı na finančńıch trźıch. Z toho d̊uvodu mohou být odhadnuté

podmı́něné korelace zaváděj́ıćı, jelikož nemuśı vysvětlovat celou strukturu závis-

losti mezi zkoumanými veličinami. Je známé, že korelace je jen z jedńım z

nástroj̊u měřeńı závislosti nenormálně rozdělených dat.

Ćılem této práce je integrace copula funkćı do tradičńıho DCC MGARCH

modelu, protože právě copula funkce umožnuj́ı vytvořeńı v́ıcerozměrného rozdě-

leńı náhodných veličin pro v́ıce marginálńıch rozděleńı i v př́ıpadě, kdy ne-

jsou normálně rozdělená. Takzvaný Copula-based MGARCH model s neko-

relovanými závislými rezidui dovoluje modelovat jak korelaci mezi náhodnými

veličinami (pomoćı DCC MGARCH), tak i závislost mezi nimi (pomoćı cop-

ula funkce), oboj́ı odděleně avšak simultánně. Jinými slovy, model je schopen

vysvětlit dodatečnou závislost, která nebyla zachycena DCC MGARCH mod-

elem kv̊uli jeho předpokladu normálńıho rozděleńı. V empirické analýze ap-

likujeme tento model na r̊uzné data, zejmená na akcie českého PX index a dále

na pár likvidńıch amerických index; S&P500 a NASDAQ100 abychom mohli

srovnat MGARCH založený na copula funkci s tradičńım DCC MGARCH.

Zaměř́ıme se zejména na výkon model̊u při vysvětlovańı závislosti.

Klasifikace JEL C3, C5, G0
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of Prague Stock Exchange (PX Index) and New York Stock Exchange (NY
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• what model specification yields better results in explaining the data set

• whether C-MGARCH models estimates give better output than the MGARCH

models on the data set

For the purpose of multivariate modeling the following types of MGARCH are

going to be used:

• BEKK-GARCH model, where the conditional covariance matrix (CCM)

is modeled directly

• DCC-GARCH models, which tend to model the conditional variances and

correlation instead of CCM Both of the models can be used as copula-

based as introduced by (Lee & Long 2009)

Hypotheses

• DCC-GARCH model is more suitable for explaining our data set than

the BEKK-GARCH model

• Copula-based MGARCH are giving better results in explaining the de-

pendencies among the volatilities and co-volatilities comparing to the

corresponding normal MGARCH models

Methodology The theoretical part will provide, after a brief introduction of

the univariate GARCH, a theoretical discussion of the MGARCH model types

and will overview the BEKK and DCC specification proposed by literature.
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the copula-based GARCH for the case of BEKK and DCC volatility models.

The empirical part will fit the two types of MGARCH and C-MGARCH on

our data set. First, we shall evaluate the BEKK and the DCC model based

on the parsimony and on the ability to represent the dynamics of the condi-

tional variances and covariances. We focus on the estimated correlations, on

model errors testing against iid, and whether the model is correctly specified,

i.e. if describes the data set. Moreover, we take in consideration the Akaike’s
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Chapter 1

Introduction

Modeling of volatility and correlation among financial assets has been of much

attention in recent decades and is crucial for modern portfolio theory. Both

the Capital Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory

(APT) aims to determine an optimal portfolio selection assuming financial

returns to follow multivariate normal probability distribution. This assumption

allows them to use linear correlation coefficient as dependence measure between

different financial instruments.

Nevertheless, there is an overwhelming empirical evidence of non-normality

of financial assets returns. This non-normality became a source of financial

issues such as “heavy-tailedness”, which has been currently discussed by both

risk managers and regulators, or of “volatility smile” that has been commonly

used by traders to define their strategies (Cherubini et al. 2004). To put it

differently, in the real world, actors do not take the risk of overlooking non-

normality.

On the other hand, there is still an important issue when estimating correla-

tion – its interpretation under non-normality. It is well-known that correlation

is only one particular measure of dependence and in case of non-elliptical dis-

tribution it does not capture the whole dependency structure among random

variables.

Simply, non-normality of financial assets returns does not only bring a prob-

lem to usage of CAPM or APT but it also complicates usage of multivariate

volatility models that aim to estimate dependence (which is crucial for portfolio

theory) among multiple assets. If we consider the autoregressive conditional

heteroscedasticity (MGARCH) class of multivariate models, which is particu-

larly represented by the VEC MGARCH (Bollerslev et al. 1988) and its direct



1. Introduction 2

extension the BEKK MGARCH (Engle & Kroner 1995) or by the constant

conditional correlation (CCC) MGARCH model proposed by Bollerslev (1990)

or its improved “version” the dynamic conditional correlation (DCC) (Engle

2002), it must be noted that these models have a common drawback – they

built on multivariate normality. However, as we show below in motivation, this

is in conflict with empirical evidence.

To go even further, the estimated correlation by the MGARCH models

does not have to capture the whole dependence structure between financial

assets. In other words, there might be additional dependence not explained

by estimated correlation. For a better interpretation of stated problems, we

present the following motivation:

Figure 1.1: Scatter Plot of Multivariate Normal Distribution
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Source: author’s computations.

Motivation 1. We present two scatter plots in Figure 1.1 and in Fig-

ure 1.2 to demonstrate non-normality of financial returns; the upper plot

is a simulation of multivariate normal distribution for five thousand points

with correlation 0.6. On contrary the lower plot is a scatter of SP500 and

NASDAQ100 stock indices for the last two decades. As we can see, ac-

cording to the histograms, real data are not elliptically distributed, the

histograms signal excessive kurtosis and heavy tails.
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Figure 1.2: Scatter Plot of S&P500 and NASDAQ100
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Source: author’s computations.

Motivation 2. Following Embrechts et al. (2002) we show scatter plots

of one thousand bivariate realizations of two different probability models

of two random variables. Both models have identical gamma marginal

distributions Gamma(3, 1) and the same linear correlation ρ = 0.7. How-

ever, these two models differ in dependence between the random variables.

From Figure 1.3 it is evident, that the models on the right side display

much higher tail dependence. In an empirical application on financial

markets that would mean financial instruments show a higher probabil-

ity of extreme losses that have a tendency to happen together.

For the case of univariate modeling, effective answers to non-elliptical dis-

tribution of financial returns have been given in terms of risk management

or in pricing. Nevertheless, under the multivariate case overlooking the non-

normality may be problematic as we shown in motivation 2. On the one hand,

asset management such as hedge funds builds up on the non-normality and

makes it rather a investment tool than a econometric problem. On the other

hand, portfolio management (in terms of diversification) needs a correct estima-

tion of dependence between financial assets, i.e. it accounts for co-movements

among variables that are not normally distributed Cherubini et al. (2004).
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Figure 1.3: Simulation of bivariate distribution with the same correlation but
different dependence

Source: Embrechts et al. (2002).

Since multivariate analysis does not offer various probability distributions

in comparison to univariate case, many academic papers have recently pro-

posed a solution for multivariate modeling under non-normality – that lies in

integration of a copula function into the models. Copula can be interpreted as

a tool adopted from statistics, that allows to link N marginal (i.e. univariate)

probability distributions into a corresponding multivariate joint distribution.

Additionally, copulas carry all the dependence information between N vari-

ables. Therefore, if we apply a copula function in the MGARCH models, we

will be able to model non-elliptical multivariate dataset and to explain all the

dependence structure as well.

The goal of this thesis is to apply copula-based multivariate GARCH (C-

MGARCH) model with uncorrelated dependent errors (Lee & Long (2009))

on real datasets consisting primarily of the PX Index (and its main stocks)

traded on Prague Stock Exchange and of a pair of american stock indices;

S&P500 and NASDAQ100. The model is able to estimate both the correlation

(by MGARCH) and dependency (by a copula) separately and simultaneously.

Then, the results shall be compared to traditional DCC MGARCH without a

copula. There are three copulas for which we constructed the C-MGARCH;
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Gaussian, Clayton and Gumbel. We aim to show the copula-based models re-

veal additional dependence, that was not captured by estimated correlation of

traditional GARCH models. Moreover, we assume that models with copulas

dominate the common MGARCH in terms of goodness of fit since copula-based

models build up on an assumption of non-elliptical distribution of financial re-

turns. We focus on four bivariate datasets; PX Index & CEZ, Erste Group Bank

& Komercni banka, Unipetrol & Telefonica C.R. and on mentioned S&P500 &

NASDAQ100.

The structure of this thesis is as follows: Chapter 2 starts with an overview

of related literature and presents the evolution of univariate and multivariate

volatility models as well as models with copulas. In Chapter 3 we set up a

theoretical background for models used in the empirical analysis. Chapter 4

introduces copula functions and shows their importance, additionally copula-

based multivariate GARCH models are defined. In Chapter 5 we present needed

methodology and procedure for models estimation and comparison of results,

moreover we introduce datasets and ex-ante checking. Chapter 6 shows results

of estimated models and compare performance of copula-based and traditional

multivariate GARCH models focusing on correlation and dependence. In Chap-

ter 3 we summarizes our results and findings and conclude.



Chapter 2

Literature Overview

In this section we briefly introduce the related literature on volatility modeling

using the ARCH/GARCH family of models. However there exist different types

of volatility models, such as Stochastic volatility, we focus only on the GARCH

class of models in this thesis.

We divide the topic overview into the following categories; univariate GARCH

models, multivariate GARCH models and copula-based multivariate GARCH

models.

2.1 Univariate GARCH Models

Before the Engle (1982)’s introduction of autoregressive conditional heteroscedas-

ticity (ARCH) in his seminal paper, traditional econometric models, such as

autoregressive moving average (ARMA) (Box & Jenkins 1970), were assuming

a constant, one-period forecast variance. In other words, the variance did not

depend upon the past information, i.e. we discuss an unconditional variance.

Moreover, the variance was assumed to be homoscedastic, i.e. with constant

mean.

Yet the ARCH model assumes the conditional variance to be dependent

on past errors and variances at time t and is designed to model time varying

volatility, to put it differently, this model is designed to model heteroscedastic

volatility - a volatility changing over time, hence non-constant. Additionally,

the model aims to explain a typical financial market feature; the volatility

clustering - “large changes tend to be followed by large changes, of either sign,

and small changes tend to be followed by small changes” (Mandelbrot & Taylor

1967))”.
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Considering the mentioned attributes, the ARCH model and its generaliza-

tions are applied to modeling interest rates, exchange rates, stock and stock

index returns and many others (Silvennoinen & Teräsvirta 2009).

The General ARCH (GARCH) was proposed by Bollerslev (1986) as an

extension of the ARCH model to allow for both a longer memory and a more

flexible lag structure. It has been shown in empirical applications that a rel-

atively long lag in the conditional equation of the ARCH model is often used

- Engle (1982), Engle (1983) and Engle & Kraft (1983) proposed a fixed lag

structure to avoid problems with negative variance parameters estimates. To

rephrase, the unconditional autocorrelation function of squared residuals of

ARCH model decays too rapidly compared to a typical time series behavior,

unless a large lag q is employed. On the contrary, GARCH allows for slow

decay, though exponential.

Subsequently, many variations to GARCH have been proposed; EGARCH,

FIGARCH, TGARCH, QARCH and many others. Yet, discussing these models

in not our purpose.

2.2 Multivariate GARCH Models

Multivariate GARCH models were initially developed in the late 1980s as a

direct extension of the univariate models.

A typical feature of the first class of MGARCH models is the direct modeling

of the conditional covariance matrix Ht, i.e. matrix that contains conditional

covariances of random variables on diagonal and conditional variances on off-

diagonals. The first model proposed is VEC by Bollerslev et al. (1988), which

models each element of Ht as a linear combination of the lagged squared errors

and cross-products of errors and lagged values of the elements of Ht (Bauwens

et al. 2006). However, the VEC model suffers two main problems; no assurance

of positive definiteness of Ht (i.e. no guarantee of positive values for variances

and covariances) and a high number of parameters. To correct the latter draw-

back, Bollerslev et al. (1988) introduce the Diagonal VEC model, which has

Ht positive definite for every t by assuming diagonality of each matrix in the

model’s form (see Bauwens et al. (2006) among others). Subsequently, Engle

& Kroner (1995) introduce the BEKK 1 model, which is basically a restricted

1The name is an acronym of all the contributors to the multivariate model; Baba, Engle,
Kroner and Kraft
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version of the VEC model, with properties ensuring positive definiteness of the

correlation matrix.

The second class of MGARCH, the Factor Models, proposes parameteri-

zation of the conditional covariance matrix using the following idea; the co-

movements of the stock returns are driven by a small number of common un-

derlying variables, the factors (Bauwens et al. 2006). The class is represented

by the factor GARCH (F-GARCH) model (Bollerslev & Engle 1993) and its

variation, the full-factor GARCH (FF-GARCH) model, proposed by (Vrontos

et al. 2003).

Recently, the multivariate GARCH models decomposing Ht, i.e. the third

class, has gained a lot of attention and become very popular approach to mul-

tivariate volatility - to summarize the members of this class; first, Bollerslev

(1990) presents Constant Conditional Correlation (CCC) model. Second, Engle

(2002) improves the model and introduces the Dynamic Conditional Correla-

tion (DCC). In the same year, Tse & Tsui (2002) present Varying Correlation

(VC). Subsequently, various extension of the DCC are proposed; the Flexible

Dynamic Conditional Correlation (FDCC) of Billio et al. (2006), the Asymmet-

ric Generalized Dynamic Conditional Correlation (AG-DCC) model of (Cap-

piello et al. 2006), Generalized Dynamic Conditional Correlation (GDCC) of

(Hafner & Franses 2009). Nevertheless, the empirical part of this paper applies

only DCC-MGARCH model and its variations with copula functions.

2.3 Copula Based Multivariate GARCH

The following paragraphs summarize an extension of the multivariate class of

GARCH models; we shall briefly overview proposed volatility models incorpo-

rating multivariate GARCH with a copula.

Distribution of the portfolio return depends on the univariate distribution of

each of the assets and of the dependency between each of them. This class sug-

gests to capture the dependency by a function called a copula. The name of the

function comes from a latin word for “linked” and was proposed by Sklar (1959)

who in his theorem showed, that any N -dimensional joint distribution function

may be decomposed into its N marginal distributions, and a copula function

that completely describes the dependence between N variables. Nelsen (1999)

in his introductory monograph for copula functions starts with the following

statement; “from one point a view, copulas are functions that join or ‘couple’

multivariate distribution functions to their one-dimensional marginal distribu-
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tion functions. Alternatively, copulas are multivariate distribution functions

whose one-dimensional margins are uniform on the interval (0,1).”

Employing copulas in finance has been subjected to enormous interest in

recent years. In 1999 a working paper of Embrechts et al. (2002) had been

already circulation, suggesting using copulas in finance as one of the first and

most influential papers of this topic. Following by comprehensive and read-

able introduction to copulas and their mathematical and statistical properties

published by Nelsen (1999) and Joe (1997), oped new opportunities to copula

usage not only in finance, but also in macroeconomics, microeconomics and in

developing the estimation and valuation theory required for these application

(Patton 2009). Considering our topic, we shall focus on application of copulas

on financial time series;

It has been known that returns of financial time series are, as well as resid-

uals obtained from a univariate GARCH model, generally non-normal, i.e. fat-

tailed distributions for errors have been introduced. However, specification of

a multivariate distribution relating to N non-normal univariate distribution is

not straightforward, yet it is often impossible. Based on that, copula based

GARCH models propose to use GARCH-type models for obtaining the uni-

variate distributions and then the joining distribution by a copula function.

It should be noted that copulas have been used for both univariate and

multivariate GARCH models; in the univariate analysis of time series, copulas

characterize the dependence between a sequence of observations of a scalar time

series process. A conditional cross-sectional dependence among time series is

subjected to multivariate modeling.



Chapter 3

The GARCH Class of Models

Working with the multivariate GARCH family of models is conditional upon

understanding of univariate GARCH models, therefore we shall start with a

brief summary of the ARCH and GARCH models. Subsequently we introduce

the multivariate GARCH, define it and describe its variations that are used in

the empirical part.

3.1 Univariate Volatility Modeling

For the multivariate estimation we first need an univariate estimation for each

series to get univariate residuals that are subsequently used for multivariate

modeling and copula building. The complete procedure is presented in Chap-

ter 5. Therefore in this section we define the ARCH and GARCH processes.

Even though the ARCH process in not directly used in the empirical part in

Chapter 6 we start with its definition in the sake of clarity before introducing

the GARCH model.

3.1.1 Autoregressive Conditional Heteroscedasticity

To define the ARCH model proposed by Engle (1983), assume εt to be a ran-

dom variable with a mean and a variance conditional on the information set

ψt−1 (the σ-field generated by εt−1, j ≥ 1), then ARCH model of εt follows

these properties; (1) conditional mean is described as E{εt|ψt−1} = 0 and (2)

the conditional variance ht = E{ε2t |ψt−1} is a nontrivial positive-valued para-

metric function of ψt−1. The sequence {εt} can be a innovation sequence of an

econometric model as shown in the equation below (Silvennoinen & Teräsvirta
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2009):

εt = yt − µt(yt) (3.1)

where yt is an observable random variable and µt(yt) = E{yt|ψt−1} is the

conditional mean of yt on ψt−1. In financial application εt is considered to be

a vector of log-returns of N assets. According to Engle, εt can be decomposed

as shown in the following equation:

εt = zth
1/2
t (3.2)

where the sequence zt has zero mean and unit variance and is independent,

identically distributed (iid) random variables. Then the ARCH(q) process is

defined by following equations:

yt|ψt−1 ∼ N(0, ht) (3.3)

ht = α0 +

q∑
j=1

αjε
2
t−j (3.4)

where q is the order of the ARCH process and α0 > 0, αj ≥ 0, j = 1,. . . ,q −
1, αq > 0, and where N stands for a normal distribution, yet a non-normal

distribution, such as student’s t or general error distribution can be applied.

3.1.2 General Autoregressive Conditional Heteroscedasticity

Knowing how the ARCH model is defined, it is not demanding to introduce

the GARCH model (Bollerslev 1986), since this model is a direct extension of

the ARCH model. Assume ε2t to be a discrete-time stochastic process and ψt−1

the σ-field information set, then GARCH is given as:

yt|ψt−1 ∼ N(0, ht) (3.5)

ht = α0 +

q∑
j=1

αjε
2
t−j +

p∑
j=1

βjht−j (3.6)

where p ≥ 0, q > 0, α0 > 0, αj ≥ 0, j = 1, . . . , q, βj ≥ 0, i = 1 . . . p. If p = 0

than GARCH(p, q) would be equal to the ARCH(q) process and if p = q = 0

then ε2t is a white noise. This model is preferred to simpler ARCH process since

it is a more parsimonious model of the conditional variance than a high-order

ARCH.
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3.2 Multivariate Volatility Modeling

Recently many studies have focused on extension of the univariate GARCH

model to the multivariate case, i.e. allowing for employing of multiple assets

returns for volatility modeling. The multivariate modeling framework brings

new possibilities to better decision tools in various areas, such as asset pricing,

portfolio selection, option pricing, hedging and risk management Bauwens et al.

(2006). Nevertheless, generalization of these models face two main drawbacks.

First, the number of parameters increases rapidly with the number of assets.

Second, it is not effortless to ensure positive definiteness of the covariance

matrix Tsay (2006). Considering the mentioned difficulties, many different

models have been introduced. The aim of this subsection is to provide an

overview of the multivariate GARCH models used in the empirical analysis.

Before defining MGARCH models, it is crucial to redefine the estimated

model and its disturbances, εt, as it differs from the univariate models stated

in the previous subsection. For the multivariate modeling, we assume yt to be a

stochastic process of dimension N×1 and θ to be a finite vector of parameters,

then:

yt = µt + εt (3.7)

where the µt is the conditional mean vector and

εt = H
1/2
t zt (3.8)

where the positive definite N × N matrix H
1/2
t is the conditional covariance

matrix of returns εt and zt. In other words, returns εt are conditionally ho-

moscedastic on ψt−1. Analogously to univariate models, ψt−1 is the σ-field

information set generated by εt. Furthermore, zt has zero mean and unit vari-

ance, i.e.:

E(zt) = 0

var(zt) = IN (3.9)

where IN is identity matrix of order N .

In the following subsections we define MGARCH models with Directly Mod-

eled Ht, which are subsequently used in Chapter 6.



3. The GARCH Class of Models 13

3.2.1 MGARCH Models with Conditional Variances and Cor-

relations

Models presented in this section do not model the conditional correlation ma-

trix Ht directly, but decompose the matrix into conditional standard deviation

and correlation. Since these models are nonlinear combination of univariate

GARCH models, one can model individual conditional variances and condi-

tional correlation matrix separately.

Generally, showing theoretical results on stationarity, moments and ergod-

icity is more demanding in comparison to models in previous subsection. On

the other hand, this kind of models does not face the problem of too many

parameters, hence are easier to apply.

Constant Conditional Correlation Multivariate GARCH

First, we start with the simplest multivariate correlation model, crucial for

other models in this class. Bollerslev (1990) introduces Constant Conditional

Correlation (CCC-) MGARCH, where conditional correlation matrix is time-

invariant, constant, hence the conditional covariances are proportional to the

product of the corresponding conditional standard deviations, which reduces

the number of unknown parameters Bauwens et al. (2006). Bollerslev defines

Ht in the following way:

Ht = DtRDt = (ρij
√
hiithjjt) (3.10)

where

Dt = diag(
√
h11t, . . . ,

√
hNNt) (3.11)

The non-diagonal elements of the conditional covariance matrix are defined:

[Ht]ij =
√
hit

√
hjTρij, i 6= j (3.12)

and R = [ρij] is a symmetric, positive definite matrix with ρii = 1 for i =

1, . . . , N . Any univariate GARCH model can be applied to define hiit. Nev-

ertheless, the CCC model is the usually modeled as the GARCH(p,q) model,

therefrom the conditional variance has the following form:

ht = ω +

q∑
j=1

Ajr
(2)
t−j +

p∑
j=1

Bjht−j (3.13)
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where ω is a N × 1 vector, Aj and Bj are diagonal N × N matrices, and

r
(2)
t = rt � rt. The model contains N(N + 5)/2 free parameters. The positive

definiteness of Ht is satisfied if and only if R is positive definite and all of the

N conditional variances is positive.

The quasi maximum likelihood method is used to estimate the model, as-

suming conditional normality. Drawback of the CCC model is the constant

conditional correlation assumption, which may be a problem for a practical

usage Ledoit et al. (2003).

Dynamic Conditional Correlation Multivariate GARCH

Second, we discuss another class of MGARCH proposed by Engle (2002) as

a generalization of Bollerslev (1990)’s CCC model presented above. Dynamic

Conditional Correlation (DCC-) MGARCH aims to utilize the GARCH models

flexibility but in a combination with parsimonious parametric models for the

correlations. These models are estimated with a two step method based on the

likelihood function, i.e. the two-stage maximum likelihood estimation. Engle

(2002) showed DCC model performs reasonably well in empirical applications

and gives sensible empirical results.

The DCC proposed the following form for Ht:

Ht = DtRtDt (3.14)

i.e. the difference lies in the allowing of R parametrization, in other words

R is time-varying in the model contrary to the CCC model. The correlation

matrix Ht is positive definite if the conditional correlation matrix Rt is positive

definite and the conditional variances hit, i = 1, . . . , N are well-defined.



Chapter 4

Copula Function and Copula-based

Multivariate Model

The structure of this chapter is as follows; first, we introduce basic theory

needed for understanding a copula function and the idea behind employing

copulas in financial modeling. Second, we present two measures of depen-

dence; traditional correlation and an alternative dependence measure based on

a copula function, again, we provide the nature behind copula employment.

Third, we introduce two classes of copulas and their particular representatives.

Finally, we establish the crucial model of the empirical part, the copula-based

MGARCH and show its main properties to highlight how it differs from tradi-

tional MGARCH models.

4.1 Copulas

Many empirical studies showed that the financial time series are not normal,

they are skewed, leptokurtic and asymmetrically dependent (see, for example,

Patton (2006)), therefore we cannot expect a financial dataset consisting of

multiple time series to be multivariate normal. Recently, not only as a reaction

to the issues of multivariate normality, many papers have proposed employing

a copula function in finance and modeling.

Copula is a function that links together univariate marginal distributions

in order to create corresponding joint multivariate distribution function. Ad-

ditionally, following Patton (2009), if all of the variables are continuously dis-

tributed, then the copula function is their joint multivariate distribution func-

tion with uniformly distributed, i.e. U(0, 1) uniform margins.
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This section shall present a formal definition of a copula function and the

Sklar’s Theorem. Subsequently, it defines two different dependency measures,

one traditional and one based on copula functions. Next, the elliptical and the

Archimedean class of copulas are presented. Finally, at the end of this section,

particular copulas and their properties will be introduced.

4.1.1 Copula Definition and Sklar’s Theorem

Let’s start with the formal definition of a copula function:

Definition 4.1 (Copula Function). A function C : [0, 1]2 → [0, 1] is a copula if it

satisfies:

• C(u1, u2) = 0 for u1 = 0 or u2 = 0

•
∑2

i=1

∑2
j=1(−1)i+jC(u1,i, u2,j) ≥ 0 for all (u1,i, u2,j) in [0, 1]2 with u1,1 <

u1,2 and u2,1 < u2,2

• C(u1, 1) = u1, C(1, u2) = u2 for all u1, u2 in [0, 1]

Next, we need to introduce a crucial theorem proposed by Sklar (1959) to

define the relationship between joint distribution and a copula function:

Sklar’s Theorem

Theorem 4.1 (Sklar’s Theorem). Let F1,2 be a joint distribution function with

margins F1 and F2. Then there exists a copula C such that for all η1, η2,

F12(η1, η2) = C(F1(η1), F2(η2)) = C(u1, u2) (4.1)

Conversely, if C is a copula and F1 and F2 are marginal distribution func-

tions, then the functions F12 defined above is a joint distribution function with

margins F1 and F2.

The equation (4.1) can be rewritten:

F12(η1, η2) = C(F1(η1), F2(η2); θ) = C(u1, u2; θ) (4.2)

where θ is the copula parameter of dependency.

Copula is sometimes referred as a “dependency function” since it contains all

of the dependence information between F1 and F2, because according to ?? the
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joint distribution F12 contains all the univariate and multivariate information,

while F1 and F2 contains only all the uniform information.

The theorem is very fundamental for a copula application in time series

modeling; it says given any marginal distribution (F1, F2, . . . , Fn) and a copula

function C then the theorem can be used to obtain the joint distribution func-

tion F . Or, on contrary, any joint distribution function can be decomposed

into marginal distributions and a copula function.

Suppose the joint distribution function F12 to be n-times differentiable, then

the following equations denote the 2nd cross-partial derivative of equation (4.1):

f12 =
∂2F12(η1, η2)

∂η1∂η2
=

=
∂2C(u1, u2)

∂η1∂η2
· ∂F1(η1)

∂η1
· ∂F2(η2)

∂η2
=

= c(F1(η1), F2(η2)) · f1(η1) · f2(η2) (4.3)

where c(u1, u2) = ∂2C(u1,u2)
∂η1∂η2

is the cumulative density function (CDF) of copula.

To give a simple example, the independent copula would be C(u1, u2) = u1u2

and c(u1, u2) = 1.

4.1.2 Dependence Measures

Following McNeil et al. (2005) we briefly introduce two kinds of dependence

measures; the traditional Paerson linear correlation, and the rank correlation.

The latter measure is based on a copula function, however both of the men-

tioned calculates scalar measurement for a pair of random variables. Neverthe-

less, the specification and the nature behind each of the them varies. This part

of the thesis aims to show, how these dependency measures are constructed

and what they indicate.

The idea behind incorporating copulas, when a traditional correlation mea-

sure exists lies in ability of Paerson correlation to explain the relation among

random variables only under a case of multivariate normality, or more gener-

ally, under elliptical distribution. These distribution are fully described by by a

vector of mean values, a covariance matrix and a characteristic generator func-

tion, i.e. since means and variances are products of univariate margins, copulas

for elliptical distribution are characterized by the correlation matrix and a gen-

erator function. Hence, we first present correlation and show its shortcomings
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when applied in non-elliptical models and, second, we present the rank corre-

lation and define its representative, the Kendall’s tau rank correlation.

Linear Correlation

According to Embrechts et al. (2003) we assume X and Y to be random vari-

ables with non-zero finite variances, than the linear correlation between than

is given as:

ρ(X, Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )
(4.4)

where Cov = E(XY )−E(X)E(Y ) denotes covariance of X and Y , and Var(X)

and Var(X) are the variances of X and Y .

This well-known measure of correlation has the following properties:

(i) ρ(X, Y ) ∈ 〈−1, 1〉,

(ii) ρ(X, Y ) = |1| means perfect correlation, positive or negative,

(iii) ρ(X, Y ) = 0 indicates no correlation between the random variables

However, it needs to be stated that if two random variables are not corre-

lated, it does not mean they must be independent. No correlation indicates

no dependency only under normality. Correlation is considered to be only one

particular measure of stochastic dependence among many others (Embrechts

et al. 2002).

Another drawback of linear correlation is its assumption of finite variances

of X and Y . This could be a problem when we apply this measure on a heavy-

tailed distributions (which are typical for financial returns), where the variance

of random variables may not exist.

Though linear correlation is a popular measure of dependence, it is of-

ten misinterpreted. Its popularity is given by the ease with which it can be

computed, moreover it is a natural scalar measure of dependence for elliptical

distributions (for example for multivariate normal distribution). Nevertheless,

as far as we know most of the joint, hence multivariate, distributions are not

elliptically distributed. Then, interpreting linear correlation as a measure of

dependence would produce misleading results (Embrechts et al. 2003).

Rank Correlation

Yet we have presented linear correlation and stated its pitfalls. In this section

we aim to briefly introduce the first of copula-based measures of dependence



4. Copula Function and Copula-based Multivariate Model 19

considered in this thesis, the rank correlation. Unlike linear correlation, rank

correlation do not depend on marginal distribution but only on bivariate copula.

We introduce one of the two important measures of dependence, which is known

as Kendall’s tau. The other one, Spearman’s rho, is not used in the thesis.

According to Cherubini et al. (2004), these measure are probably the best

alternatives to linear correlation when a dependence of a non-elliptical distri-

bution is measured, as we mentioned above, linear correlation coefficient would

not be appropriate and would provide a misleading information.

The name for this class comes from its standard empirical estimator that

can be calculated by looking at the ranks of the data alone, i.e. the ordering of

the sample for each variable is crucial for the coefficient (McNeil et al. 2005).

The rank correlation used in Chapter 6 is Kendall’s tau; it is a measure of

concordance for bivariate random vectors.

Assume we have two vectors (X1, Y1) and (X2, Y2) both coming from the

same distribution and the copula function, then we say they are concordant if

X1 > X2 whenever Y1 > Y2 and X1 < X2 whenever Y1 < Y2. When opposite,

we say they are discordant.

Hence, we define Kandall’s tau as follows:

τ(X1, X2) = P ((X1− X̃1)(X2− X̃2) > 0)−P ((X1− X̃1)(X2− X̃2) < 0) (4.5)

It should be noted it is a symmetric dependency measure and takes val-

ues τ ∈ 〈−1, 1〉, where −1 signals a perfect negative correlation, 1 displays

a perfect positive correlation and 0 shows no correlation, however, similarly

to linear correlation, it does not mean independency. Additional reason to use

Kendall’s to is to compare parameters of different copulas, since they restricted

on different areas as it is shown in subsequent subsection.

Elliptical copulas are simply the copulas of elliptically contoured (or ellip-

tical) distributions. The most commonly used elliptical distributions are the

multivariate normal and Student-t distributions. The key advantage of ellip-

tical copulas is that one can specify different levels of correlation between the

marginals.

4.1.3 Elliptical Copulas

Here we present a class of copulas constructed of elliptically countered distri-

butions. A typical representative of this class, which we employ into the DCC



4. Copula Function and Copula-based Multivariate Model 20

MGARCH model, is the Gaussian (normal) copula constructed of multivariate

normal distribution. Another important representative would the Student’s

copula, nevertheless it is not employed in the empirical part, yet not discussed

in this thesis.

Gaussian Copula

Assume R to be the symmetric, positive definite correlation matrix, than the

Gaussian copula has the following probability distribution function:

cGaussian(u1, u2) =
1

|R| 12
· exp(−1

2
η′(R−1 − I)η) (4.6)

where η = (Φ−1(u1),Φ
−1(u2))

′ and Φ−1(·) is the inverse of the univariate

normal CDF. Then the bivariate Gaussian copula has the following form:

CGaussian(u1, u2, R) = ΦR(Φ−1(u1),Φ
−1(u2)). (4.7)

4.1.4 Archimedean Copulas

This section presents Archimedean class of copulas used for the C-MGARCH

model. Nelsen (2006) discuss several reasons why these copulas are popular in

various applications: (1) a typical feature of these copulas is the ease of their

construction; (2) the class is represented by various different copulas; and (3)

there are many nice properties of Archimedean copulas.

Definition 4.2. Let φ be a continuous, strictly decreasing function from I to

〈0,∞〉 such that φ(1) = 0. The pseudo-inverse of φ is the function φ[−1] with

Dom φ[−1] = 〈0,∞〉 and Ran φ[−1] = I given by

φ[−1](t) =

φ−1(t), 0 ≤ t ≤ φ(0)

0, φ(0) ≤ t ≤ ∞.

Note that φ[−1] is continuous and non increasing on 〈0,∞〉, and strictly de-

creasing on 〈0, φ(0)〉. Furthermore, φ[−1](φ(u)) = u on I, and

φ(φ[−1](t)) =

t, 0 ≤ t ≤ φ(0)

φ(0), φ(0) ≤ t ≤ ∞
= min(t, φ(0)).



4. Copula Function and Copula-based Multivariate Model 21

Finally, if φ(0) =∞, then φ[−1] = φ−1.

Knowing the definition, we present a necessary lemma for construction of a

copula from the Archimedean class.

Lemma 4.1. Let φ be a continuous, strictly decreasing function from I to 〈0,∞〉
such that φ(1) = 0, and let φ[−1] be the pseudo-inverse of φ defined above. Let

C be the function from I2 to I given by

C(u, v) = φ[−1](φ(u) + φ(v)). (4.8)

Then C satisfies the following boundary conditions for a copula:

C(u, 0) = 0 = C(0, v), (4.9)

C(u, 1) = u, (4.10)

C(1, v) = v (4.11)

The function φ is called generator. In this paper, we consider two different

copulas, the Gumbel (G) Copula and the Clayton (C) Copula. Next paragraphs

defines the copulas and explains differences between them.

Clayton Copula. The Clayton’s copula was proposed by Clayton (1978)

with the following generator

φθ(t) =
t−θ − 1

θ
(4.12)

The copula’s PDF is

CClayton(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−
1
θ
−2 (4.13)

And the CDF is defined as

cClayton(u1, u2; θ) =
(1 + θ)(u−θ1 + u−θ2 − 1)−1/θ−2

(u1u2)θ+1
(4.14)

The copula parameter θ is defined on the range (0,∞). We say the marginals

are independent when θ = 0 and more the dependent as θ goes to infinity. The

Clayton’s copula is specific with it’s asymmetric tail dependency treatment, i.e.

copula is characterized by strong left dependence and, on contrary, with a weak

right tail dependence. Moreover, it accounts only for positive dependency.

Gumbel Copula. Opposed to the Clayton’s copula the Gumbel’s copula
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(Gumbel 1960) has a strong right tail dependence and weak left tail depen-

dence. Otherwise the properties of θ are similar; Gumbel’s copula considers

only positive dependence and its parameter θ is restricted at the range 〈1,∞).

The generator has the following form

φθ(t) = (−lnt)−1 (4.15)

The PDF function is defined

CGumbel(u1, u2; θ) = exp{−[(−lnu1)
θ + (−lnu2)

θ]
1
θ } (4.16)

And the CDF is following

cGumbel(u1, u2; θ) =

=
CGumbel(u1, u2; θ)(lnu1lnu2)

θ−1{[(−lnu1)
θ + (−lnu2)

θ]
1
θ }+ θ − 1

u1u2[(−lnu1)θ + (−lnu2)θ]
2− 1

θ

(4.17)

For better understanding, Figure 4.1 below depicts iso-probability contour plots
1 of two normal marginal distributions connected with Gaussian, Student’s,

Clayton’s or Gumbel’s copula to demonstrate their tail dependency for copula

parameters corresponding to Kendall’s τ = 0.33 for each copulas, i.e.

ρGaussian = 0.5, (4.18)

ρStudent′s = 0.5, ν = 3, (4.19)

θClayton = 1, (4.20)

θGumbel = 1.5 (4.21)

Moreover, in Figure 4.2 we simulated one thousand points of Clayton’s and

Gumbel’s uniform marginal distributions to demonstrate differences in their

tail-dependence treatment. As for copula parameters we used θ = 3 for both

copulas.

1The source code of the copula contour plots for the MatLab software, created for
the purposed of research in Patton (2009), can be downloaded from A.J.Patton’s website:
http://public.econ.duke.edu/ ap172/code.html

http://public.econ.duke.edu/~ap172/code.html
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Figure 4.1: Gaussian, Student’s t, Clayton and Gumbel Contour Plots
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Source: author’s replication of Patton (2009), page 770.

Figure 4.2: Simulation of Clayton and Gumbel Uniform Margins
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Source: author’s computations.
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4.2 Copula-based Multivariate GARCH models

The multivariate models presented in the previous subsections assume the con-

ditional multivariate normality - the extension of the normal (Gaussian) uni-

variate distribution to higher dimensions. Since a highly significant evidence

of non-normality in both marginal and joint distributions of stock returns and

market-model residuals have been reported in related literature, the multivari-

ate normal distribution cannot be justified (Richardson & Smith 1993).

The aim of this paper is to employ Copula-based Multivariate GARCH (C-

MGARCH) model proposed by Lee & Long (2009), which allows for modeling

conditional correlation (by MGARCH) and dependence (by a copula function)

separately and simultaneously for non-normal distributions. In other words,

the model removes linear correlation from the dependent variable and forms

uncorrelated dependent errors which are controlled by copula, while the cor-

relation is controlled by MGARCH. The following part defines the model and

explain the differences from the traditional MGARCH.

For the sake of simplicity, we shall use the model for two assets, hence

m = 2. Then, for returns rt = (r1,t, r2,t)
′, MGARCH standardized errors

et = (e1,t, e2,t)
′ and for uncorrelated dependent errors η = (η1,t, η2,t)

′ the C-

MGARCH is defined as:

η|ψt−1 ∼ F12(η1,t, η2,t; θt), (4.22)

et = Σ
−1/2
t ηt, (4.23)

rt = H
1/2
t et, (4.24)

where E(et|ψt−1) = 0, E(ete
′
t|ψt−1) = I, E(et|ηt−1) = 0 and E(ηtη

′
t|ψt−1) =

Σ = (σij,t). By the Sklar’s theorem

F12(η1,t, η2,t; θt) = C(F1(η1,t; θ1,t), F2(η2,t; θ2,t); θ3,t), (4.25)

where C(·, ·) is the copula function.

The approach and the main contribution of proposed C-MGARCH model

consists of modeling a dependent copula for ηt keeping et uncorrelated, i.e.

C(u1, u2) 6= u1u2 (4.26)

In other words the model estimates conditional correlation and dependence

structure separately and simultaneously. On contrary, conventional approach
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of the multivariate GARCH models is to assume independent normality for ηt,

hence C(u1, u2) = u1u2 and σ12 = 0.

The conditional covariance matrix of ηt, Σt, is modeled using the Hoeffd-

ing’s lemma (1940) (reprinted in Hoeffding et al. (1994)) as an integral of the

covariance between two (or more) random variables in terms of the difference

between their marginal distributions F1 and F2, and joint distribution F12.

Hoeffding’s Lemma

Lemma 4.2 (Hoeffding’s Lemma). Let η1 and η2 be random variables with the

marginal distributions F1 and F2 and the joint distribution F12. If the first and

second moments are finite, then

σ12(θ) =

∫ ∫
R2

[F12(η1, η2; θ)− F1(η1; θ)F2(η2; θ)]dη1dη2 (4.27)

Putting Hoeffding’s Lemma and Sklar’s Theorem together, the off-diagonal

element of Σt, i.e. the covariance between η1 and η2 at time t can be expressed

as:

σ12,t(θt) =

∫ ∫
R2

[C(F1(η1; θ1,t), F2(η2; θ2,t); θ3,t)

−F1(η1; θ1,t)F2(η2; θ2,t)]dη1dη2 (4.28)

Furthermore, Lee and Long (2008) assume, for simplicity, the marginal

standard normal distribution (for which θ1 and θ2 are known) and the copula

parameter θ3 is not time-varying: θt ≡ θ = θ3, hence σ12,t(θt) ≡ σ12(θ) and

Σt(θt) ≡ Σ(θ).

4.2.1 The C-MGARCH Model Description

The main C-MGARCH contribution lies in introduction of an additional step

in separating the remaining dependence from the correlation and model it both

simultaneously. Put differently, the model first removes correlation from errors,

i.e. the model first creates uncorrelated dependent error by transformation

rt = H
1/2
t et and then the extra step consists of further transformation, et =

Σ−1/2ηt, to explain the remaining dependency not captured by the conditional

correlation matrix Ht. More precisely, the uncorrelated dependent errors et =

(e1,te2,t)
′ and the transformed errors η = (η1,tη2,t)

′ have the following properties:
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• under the normal distribution assumption et are conditionally correlated,

i.e. E(e1,te2,t|ψt−1) = 0

• under the non-normal distribution assumption et should stay condition-

ally correlated, i.e. E(e1,te2,t|ψt−1) = 0, however et can be dependent

• the transformed errors η = (η1,tη2,t)
′ can be, on contrary, correlated and

dependent, i.e. E(η1,tη2,t|ψt−1) 6= 0 and F12(η1, η2) 6= F1(η1)F2(η2) re-

spectively

Considering the properties, the covariance of η1 and η2 does not neces-

sary have to be equal to zero. Due to non-normality of F12(η1, η2) and rt =

H
1/2
t Σ−1/2ηt we can say returns rt = (r1,tr2,t)

′ are non-normally distributed, yet

can be modeled by the presented copula-based MGARCH.

Knowing that et = Σ−1/2ηt and assuming the copula parameter θ3 to be

time invariant, hence Σ
−1/2
t ≡ Σ1/2 = (σij), the uncorrelated dependent errors

can be expressed as:

e1,t = σ11η1,t + σ12η2,t (4.29)

e2,t = σ12η1,t + σ22η2,t (4.30)

In other words, et are a linear combination of two dependent random variables

η1 and η2. According to Lee & Long (2009) even if the errors η1,t and η2,t were

normally distributed, since they are dependent (i.e. σ12 6= 0), the marginal

distribution of e1,t and e2,t would not be normal.

The authors of the model also show, that the proposed C-MGARCH model

includes each of existing MGARCH models as a special case; more specifically

let’s assume the independent copula for ηt (i.e. C(u1u2) = u1u2), then there

is no dependency between η1 and η2 and Σ is diagonal. Under this scenario,

et and ηt would be the same. In addition, let’s assume ηt margins are nor-

mally distributed, then the C-MGARCH would be identical with the traditional

MGARCH with bivariate normally distributed returns rt. The C-MGARCH

model can be created for each of the MGARCH model class.

The C-MGARCH Model Contribution

To summarize the model and its contribution, we briefly note, how it solves

the two problems this thesis discusses, i.e. the non-normality and additional

dependence:
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i) The model is constructed to estimate dependencies and volatilities on

multivariate data under non-elliptical distribution. Meanwhile the uni-

variate class of GARCH models can be applied to model volatility of

non-normally distributed returns of a financial assets, the traditional

representatives of the multivariate class, such as DCC, are not able to

cope with the non-normality, since they assume multivariate normal or

student’s t distribution. Thus, integration of a copula function into the

MGARCH models, based on Equation 4.1 in Sklar’s Theorem, solves the

problem of multivariate non-normality.

ii) By employing a copula the model explains additional dependence be-

tween assets with the Σ matrix according to Equation 4.28. The tradi-

tional DCC estimates conditional correlations with errors et, which are

uncorrelated, however, may be still dependent (under non-normality).

The C-MGARCH aims to estimate the whole dependence structure among

et by the following procedure; first the model estimates univariate GARCH

on each series to get standardized univariate residuals. Second, the resid-

uals are used for the DCC MGARCH estimation of parameters and of the

conditional correlation. Given the correlation matrix, the DCC residuals

are transformed to uncorrelated. Third, simultaneously to the previous

step, a copula function is employed into Hoeffding’s lemma to determine

Σ which shows the remaining dependence among variables and to pro-

ceed the innovative transformation et = Σ−1/2ηt to separate the remaining

dependence from correlation.



Chapter 5

Methodology

This section introduces data used for the empirical analysis in Chapter 6 and

the methodology needed for model parameter estimation. Additionally, we

present diagnostics for ex-ante data checking as well as for ex post comparison

of models. Finally, log-likelihoods functions for estimation of DCC and copula-

based DCC MGARCH are presented.

5.1 Data Description

The main goal of the empirical analysis is to show that copula-based MGARCH

models explain additional errors dependency not captured by common multi-

variate GARCH models. For this purpose we present several different datasets

to demonstrate their correlation and the mentioned additional dependency

when C-MGARCH applied. The datasets are primarily extracted from the

PX index traded in the Czech Republic. Since we build our analysis on the

bivariate specification of copulas, our datasets are presented as pairs of two

financial time-series;

• PX Index (PX) & CEZ (CEZ)

• Erste Group Bank (ERS) & Komercni Banka (KB)

• Unipetrol (UNIP) & Telefonica C.R. (TEL)

CEZ has the biggest weight among others index shares representing for

than 20%1, therefore we focus on estimating its correlation and dependency

with the PX index applying the PX–CEZ dataset. Next, dependence between

1According to BCPP actual on 5th April 2012

http://www.bcpp.cz/Statistika/Burzovni-Indexy/
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the stocks of the two banks traded on the Prague Stock Exchange (PSE) shall

be determined based on ERS–KB. These banks together weights more than

35% of the PX index. The UNIP–TEL dataset will be used for determination

of the relation between Telefonica C.R and Unipetrol, these two stocks stand

for more than 20% weight of the index.

Additionally, we present one pair of two stock exchange indices traded in the

United States. Since stocks of both the indices are frequently traded equities,

we refer this dataset as a reference liquid pair;

• S&P500 (SP) & NASDAQ 100 (NAS)

Figure 5.1: PX–CEZ Daily Returns
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Source: author’s computations.

NASDAQ 100 is a capitalization-wighted index, which lists the top 100

stocks of non-financial institutions traded on the National Association of Se-

curity Dealers Automated Quotation system (NASDAQ). On contrary SP 500

lists 500 large-cap2 common stocks traded on New York Stock Exchange (NYSE),

American Stock Exchange (AMEX) and on the NASDAQ, and is free-float cap-

italization based.

Evolution of the PX–CEZ pair is depicted in Figure A.2 to give a basic

notion of daily prices evolution on the PSE. Figures of daily plots of the other

2Over $10 billion
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datasets are shown in the Appendix. Nevertheless, the datasets need to be

transformed to take the following form:

Rt = log(
Pt
Pt−1

) (5.1)

where Pt stands for the daily closing prices at time t and Rt for logarithmic

returns (log-returns). The transformation is necessary since the evolution of

closing prices is usually non-stationary, yet log-returns eliminate the source of

non-stationarity. To demonstrate the stationarity we present Table 5.1.

Table 5.1: ADF and ARCH-LM Test

Test: ADF Test ARCH-LM Test
Variable t-stat. t-stat. p-value

PX -28.8588 445.4734 0.0000
CEZ -29.5795 434.2074 0.0000
ERS -28.533 252.6865 0.0000
KB -29.1993 117.1587 0.0000
UNI -29.0697 211.9228 0.0000
TEL -29.0093 86.3726 0.0000
SP -28.8255 380.1273 0.0000
NAS -28.0124 302.3798 0.0000

Source: author’s computations.

The ADF Test column show t-statistic of ADF unit root test for each of

the series. Since the value of t-statistic from which one can reject the null

hypothesis of presence of unit root at 1% level of significance, i.e. non of non-

stationarity, is equal to −2.56, it is clear that logarithm of first differencing

leads to stationarity for each series.

Table 5.2: Datasets Overview

Dataset Starting Date Ending Date Sample

PX—CEZ 17-Mar-1999 24-Aug-2011 3113
ERS—KB 03-Oct-2002 24-Aug-2011 2237
UNI—TEL 16-Mar-1999 23-Aug-2011 3119
SP—NAS 02-Jan-1992 05-Apr-2012 5107

Source: author’s computations.

The other column of the Table 5.1 shows t-statistic of ARCH-LM test of each

univariate dataset. Since none of the presented series has a higher p-value than
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the 1% significance level, we can reject the null hypothesis of no presence of the

ARCH effect. Outputs from the Ljung-Box Q test for serial autocorrelation are

stated in Table 5.3 displaying serial correlation in the TEL returns, the other

series can reject the null hypothesis at the 1% level of significance.

Table 5.3: Ljung-Box Q and Jarque-Bera Test

Test: Ljung-Box Q Jarque-Bera
Variable t-stat. p-value t-stat. p-value

PX 61.7040 0.0000 20404.8823 0.0000
CEZ 51.2654 0.0001 13365.2449 0.0000
ERS 89.4340 0.0000 16061.8068 0.0000
KB 72.4577 0.0000 5453.2186 0.0000
UNI 79.2851 0.0000 13941.2106 0.0000
TEL 23.4485 0.2673 19089.1791 0.0000
SP 108.3363 0.0000 10092.6039 0.0000
NAS 88.1333 0.0000 3794.2819 0.0000

Source: author’s computations.

Next, corresponding date-sets and sample ranges are showed in the Ta-

ble 5.2. To summarize the descriptive statistics for each univariate dataset,

we present Table 5.4, where stylized facts of the assets returns, such as mean,

skewness, kurtosis, are presented. Additional, looking at results of Jarque-

Bera test results in Table 5.3 reveals that the series are not normal, yet they

are leptokurtic with fat tails, i.e. a typical financial returns feature.

Table 5.4: Descriptive Statistics

Returns Mean Min Max Std. Dev. Kurtosis Skewness

PX 0.0003 -0.1619 0.1236 0.0154 14.7559 -0.5326
CEZ 0.0009 -0.2383 0.1990 0.0214 15.2719 -0.5326
ERS 0.0001 -0.2510 0.1783 0.0259 16.1034 -0.4659
KB 0.0003 -0.1898 0.1422 0.0226 10.5919 -0.4659
UNI 0.0004 -0.2145 0.2175 0.0254 12.2333 -0.2131
TEL 0.0000 -0.1553 0.1467 0.0207 9.4003 -0.2131
SP 0.0003 -0.1017 0.1325 0.0160 8.5194 -0.2393
NAS 0.0002 -0.0947 0.1096 0.0120 11.5949 -0.2393

Source: author’s computations.
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5.2 Testing Data for Multivariate Normality

The idea of testing multivariate dataset (in our case a bivariate one) is based on

a well-known implication; if returns are multivariate normally distributed, then

they have to be univariate normally distributed. However, this implication is

not valid vice versa. Following that, one can reject multivariate normality if

univariate normality is rejected. It comes from the results of Jarque-Bera test

that none of our univariate datasets matches a normal distribution, i.e. we can

reject multivariate normality for the bivariate datasets.

However, the multivariate normality can be checked through a test proposed

by Doornik & Hansen (2008); results are displayed in Table 5.5. P-values for

each of the pairs rejects the null hypothesis of multivariate normality at the

level of significance of 1%.

Table 5.5: Doornik & Hansen (2008) Test

Dataset Test Stat. p-value

PX–CEZ 897.1425 0.0000
ERS–KB 679.4775 0.0000
UNI–TEL 15890.5207 0.0000
SP-NAS 93.8506 0.0000

Source: author’s computations.

Additionally, in the Figure Figure A.3, we provide a visual interpretation of

a test proposed by Wichern & Johnson (1992) applied on PX–CEZ dataset. The

output shows a deviation from multivariate normality for these returns, since

they do not follow the depicted discontinuous line but significantly deviates

from it. The line represents a combination of Mahalanobis distance and χ2

distribution for which data are considered multivariate normal. Figures for

other datasets are depicted in the Appendix.

5.3 Estimation

The aim of this section is to summarize the estimation method, the two-

stage maximum likelihood estimator for the following two models; the DCC

MGARCH model and DCC C-MGARCH model.

Source codes for both the traditional DCC MGARCH and copula-based

MGARCH with Gaussian, Clayton and Gumbel copulas have been written in
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Figure 5.2: Multivariate Normality Visual Test for PX–CEZ
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Source: author’s computations.

the MatLab software. Most of it is for the purpose of the empirical study in

Chapter 6 and is available upon demand.

5.3.1 The DCC Model Estimation

We estimate the model using the log likelihood estimator proposed by Engle

(2002):

rt|ψt−1 ∼ N(0, Ht) (5.2)

L = −1

2

∑
t

(nlog(2π) + log|Ht|+ ε′tH
−1
t εt)

L = −1

2

∑
t

(nlog(2π) + log|DtRtDt|+ ε′tD
−1
t R−1t D−1t εt)

L = −1

2

∑
t

(nlog(2π) + 2log|Dt|+ log|Rt|+ ε′tR
−1
t εt) (5.3)

According to Engle Equation 5.3 can be simply maximized over the models’

parameters. Additionally more estimation methods are proposed to ensure

easier model estimation for a case of a large covariance matrix. Following (Engle
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2002), the likelihood estimator can be decomposed into two step procedure:

L(θ, ψ) = LC(ψ, θ) +QLU(θ) +
∑
t

ε′tεt/2 (5.4)

where

LC(ψ, θ) = −1

2

∑
t

(log(1− ρ2t ) +
(ε21,t + ε22,t − 2ρtε1,tε2,t)

(1− ρ2t )
) (5.5)

QLU(θ) = −1

2

∑
t

(nlog(2π) +
n∑
i=1

(log(hi,t +
r2i,t
hi,t

))) (5.6)

using the correlation estimator:

ρi,j,t =
qi,j,t√
qi,i,tqj,j,t

(5.7)

Equation 5.5 assumes a two-dimensional case, for a higher-dimension case

one would use LC(ψ, θ) = −1
2

∑
t(log|Rt| + ε′tR

−1
t εt) instead. These equations

denote the parameters in D as θ and in R as ψ, and furthermore assume that

consistent estimates of θ can be found.

Equation 5.6 is the univariate quasi-likelihood function, which is the sum

of the QLU for each individual asset; parameters of these assets can differ,

hence need to be estimated as univariate models to assure the standard QMLE

properties are hold. “Thus consistent estimates of all the parameters can be

obtained by estimating the univariate models and then using these models to

define the standardized residuals and finally using one of the listed methods to

estimate the parameters of the correlation process” (Engle 2002).

To obtain the maximum likelihood, we use the fmincon optimizer in Mat-

Lab. The initial points for optimization are set to α0 = 0.01 are β0 = 0.97,

where α0 and β0 represent the corresponding DCC parameters α and β, respec-

tively.

5.3.2 The Copula-based DCC MGARCH Model Estimation

An important property of copulas is their invariance to the increasing and

continuous transformation, hence to obtain a log-likelihood function for {ηt}nt=1

used for parameters estimation, one can transform Equation 4.3:
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Lη(θ) =
n∑
t=1

logf12(η1,t, η2,t, θ)

=
n∑
t=1

logf1(η1,t) + logf2(η2,t) + log(c(F1(η1,t), F2(η2,t); θ)) (5.8)

Log-likelihood function for returns {rt}nt=1 has the following form:

Lr(θ, α) = Lη(θ) +
n∑
t=1

log|Σ1/2(θ)H
−1/2
t (α)|, (5.9)

where |Σ1/2H
−1/2
t | is the Jacobian of the transformation from ηt to rt, and,

generally, α is the parameter vector in the MGARCH model for Ht, particularly

in this paper, α stands for parameter of the DCC MGARCH model.

Similarly to DCC MGARCH, we set the initial values for optimization of

the model to α0 = 0.01, β0 = 0.97 and additionally to θClayton = 0.01 or

θGumbel = 1.01, where θ′s represent corresponding copulas, Clayton and Gum-

bel, respectively. The values of copulas parameters are set according to each

parameter’s restriction. The normal copula does not contain θ, however we

consider conditional correlation matrix R as its parameter (see Equation 4.6

and Equation 4.7).

5.4 Models Selection Criteria

When estimated parameters are presented, we shall decide which model per-

forms better in fitting on a real data. For this purpose we introduce information

criteria which are considered in the empirical part to determine performance

of each model.

Information Criterions

Here we define selection criteria for comparison among the copula-based and

traditional MGARCH models; the value of log-likelihood function (LogL) and
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the Akaike (AIC) and Schwarz Information Criteria (SIC). Suppose that

(θ̂n, α̂n) = arg max
θ,α
Lr(θ, α)

=
n∑
t=1

log f(ηt; θ) + log |Σ1/2(θ)H
−1/2
t (α)| (5.10)

where k is the number of parameters in each model and θ̂n and α̂n are MLE

of θn and αn, respectively. Furthermore, assume n to be the length of the

estimated dataset. Than the selection criteria are defined following way:

log L = Lr(θ̂n, α̂n) (5.11)

AIC = −2 log L + 2k/n (5.12)

SIC = −2 log L + k log(n)/n (5.13)

The information criteria shall provide a better comparison tool then the

ordinary value of the log-likelihood function, since they consider number of

parameters in the models as well as number of observation in the dataset.

Model (in comparison with others on a same dataset) with the highest LogL

and the lowest AIC and SIC should be chosen as the most proper one.
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Empirical Results

Empirical application of the DCC MGARCH, DCC C-MGARCH and BEKK

MGARCH is presented in this chapter. We apply the models on our datasets

presented in Section 5.1 and report the estimates. All the results were ob-

tained through the multi-stage maximum likelihood estimation presented in

Section 5.3

The following sections report on results of different models and copulas

employed on our datasets. We present the results on a single dataset across

different models to emphasize differences among them. Focus is paid to results

of copula-based MGARCH, since we expect the models show additional depen-

dence between the time series not captured by traditional MGARCH type of

models.

Additionally, we shall report Kendall’s τ for each C-MGARCH model to

transparently compare copula parameters θ. Otherwise it would be difficult to

state which C-MGARCH model presents higher dependence, since the copula

parameters are not restricted on the same range. Discussion covering copulas

and their parameters is held in Chapter 4. Furthermore, as we discussed, Clay-

ton’s copula focuses on the lower-tail dependence, meanwhile Gumbel’s copula

on the higher-tail, therefore according to Kendall’s τ we determine whether the

tested dataset has rather lower or higher-tail dependence, i.e. which of the two

copulas imply a higher dependency.

For tables in this section, we use denotation as follows:

• α, β are the parameters of the estimated multivariate model

• θ is the copula parameter

• τ is the Kendall’s τ , the rank measure of dependence
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• σ is the additional covariance between the two time-series of a dataset

implied by the corresponding copula

• LogL stands for the value of log-likelihood function in the optimum

• AIC, SIC are Akaike and Schwarz Information Criteria of the multivari-

ate model, respectively

It should be clarified that we expect low values for additional dependence σ

implied by a copula function and for both the copula parameter θ and Kendall’s

τ for each dataset, since these parameters control the remaining dependence in

uncorrelated errors.

6.1 The PX Index & CEZ Dataset

This section reports results on dataset consisting of the PX Index and CEZ

stocks (as a sub-element of the index). As we reported in the Section 5.1, CEZ

is the most influential stock among others within the index, therefore a strong

positive correlation is expected. Table 6.1 summarizes models output.

Table 6.1: Results for PX − CEZ
PX–CEZ DCC DCC Gaussian DCC Clayton DCC Gumbel

α 0.0448 0.0526 0.0410 0.0415
se(α) 0.0001 0.0002 0.0119 0.0004
β 0.9389 0.9298 0.9414 0.9401
se(β) 0.0002 0.0002 0.0166 0.0004
θ - - 0.0654 1.0212
se(θ) - - 0.0180 0.0002
τ - - 0.0317 0.0208
σ - - 0.0513 0.0342

LogL -19,516 -18,353 -18,374 -18,376
AIC 3.9033 3.6707 3.6749 3.6753
SIC 3.9033 3.6707 3.6749 3.6753

Source: author’s computations.

Additionally, Figure 6.1 shows the conditional correlation estimates com-

puted by DCC MGARCH to demonstrate the correlation between the PX Index

and CEZ. The figure shows the correlation reached more than 90% in the years

2002 and 2005 and have been oscillating around value of 65% till 2010. How-

ever, 2011 shows a significant drop reporting correlation in 3Q less than 20%.
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The overall decreasing trend in the conditional correlation can be a subsequence

of emerging of new companies traded on the Prague Exchange and covered by

the PX Index.

Figure 6.1: PX-CEZ DCC Conditional Correlation
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Source: author’s computations.

Both of the copula-based MGARCH models proposed additional depen-

dence not explained by DCC MGARCH, since the σ’s are equal to 0.0513 and

0.0342 for Clayton and Gumbel copula, respectively. As we expected, σ of the

Clayton copula is higher than the σ of the Gumbel’s - since the prior copula

focuses on explanation of lower tail dependence and the latter on the upper

tail, we can state the dataset of PX–CEZ has a higher lower tail dependency,

which is consistent with empirical findings (see for example Longin & Solnik

(2001)).

Looking at the value of log-likelihood function and on the information cri-

teria, C-MGARCH with Gaussian copula seems to fit best on the dataset, since

it has the lowest AIC and SIB among others. However attention needs to be

paid to other C-MGARCH models as well; their value of logL outperformed the

traditional DCC and moreover parameters show some additional dependency

between returns.

The table also states the sum of estimates of parameters α̂ + β̂ is close to

1, yet not equal. That signals a high persistence in correlation between the

two series, i.e. a long-run average of the correlation can be push away for a

considerably long period by shocks. The standard errors of the parameters and

of θ’s are very small, that corresponds to the large number of observations for

each dataset.

Finally, we can graphically demonstrate the performance of the copula-

based MGARCH model with clayton copula; Figure 6.2 show bivariate residuals

of the univariate GARCH(1,1) and of clayton C-MGARCH. It is obvious that

residuals of the copula model are much less dependent (and uncorelated) and

closer to normality, however the figure on the right shows several outliers - the
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reason why these points are not explained may be that these points seem to be

far too extreme.

Figure 6.2: Scatter Plots of Residuals for PX–CEZ
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Source: author’s computations.

6.2 ERS & KB Dataset

Our second dataset consists of shares of the two banks traded on the Prague

Stock Exchange. Again, similarly to the previous dataset, we do expect a

higher correlation between these two stocks. Table 6.2 display the estimation

and selection criteria.

As Figure 6.3 shows, the conditional correlation estimated by the traditional

DCC is relatively oscillating around 0.4, yet at the end of 2011 we seen a

significant drop - correlation decreased to below 0.1. That, compared to 0.5

correlation in the 1Q 2011, is a noteworthy change.

Both AIC and SIC propose the C-MGARCH with Clayton copula with

higher relative goodness of fit. Again , similarly to previous dataset, both

Archimedean copula-based MGARHC models indicates additional dependency,

since their σ’s are 0.0462 for Clayton and 1.0125 for Gumbel. Additionally,

τClayton is higher than τGumbel, i.e. Clayton copula reveals a higher dependency

and, since it focuses on lower-left quadrant, lower-tail dependence. It is also

worth mentioning than each of the C-MGARCH models dominates traditional

DCC MGARCH model on ERS–KB dataset.
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Table 6.2: Results for ERS −KB
ERS–KB DCC DCC Gaussian DCC Clayton DCC Gumbel

α 0.0330 0.0353 0.0268 0.0265
se(α) 0.0002 0.0002 0.0026 0.0002
β 0.9240 0.9233 0.9587 0.9592
se(β) 0.0007 0.0006 0.0046 0.0006
θ - - 0.0462 1.0125
se(θ) - - 0.0039 0.0002
τ - - 0.0226 0.0123
σ - - 0.0366 0.0203

LogL -11,499 -11,499 -11,494 -11,496
AIC 2.3012 2.2998 2.2988 2.9910
SIC 2.3012 2.2998 2.2988 2.9910

Source: author’s computations.

Figure 6.3: ERS-KB DCC Conditional Correlation
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Similarly to other datasets we can see a high persistency of β̂. The scatter

plots of univariate residuals of GARCH(1,1) for both ERS and KB and of

residuals of DCC C-MGARCH with clayton copula are displayed in Figure 6.4

to show, how the copula-model capture the dependence structure; we can see

the C-MGARCH residuals to be much less dependent.

Figure 6.4: Scatter Plots of Residuals for ERS–KB
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Source: author’s computations.

6.3 UNIP & TEL dataset

Results of estimation on the dataset of UNI–TEL are shown in Table 6.3.

It is obvious that the traditional DCC-MGARCH has the highest LogL and

the lowest AIC and SIC and, in this case, it outperforms the C-MGARCH

models. Nevertheless, this outcome is rational, since the correlation between

UNI and TEL is by far the lowest compared to the other dataset. Moreover

both σ’s of Clayton and Gumbel have the lowest values compared to other pair

of stocks. Hence we can state the traditional DCC performs better since there

is no additional dependence to explain as these two stocks are only slightly

correlated.

Yet, we compared the most influential stock CEZ and the overall index

in Section 6.1 and the two banks traded on Prague Stock Exchange in Sec-

tion 6.2, both of the pairs significantly correlated, however this section show

models behavior on dataset with considerable lower correlation as can be seen in
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Table 6.3: Results for UNIP − TEL
UNIP–TEL DCC DCC Gaussian DCC Clayton DCC Gumbel

α 0.0499 0.0436 0.0555 0.0545
se(α) 0.0002 0.0002 0.0010 0.0002
β 0.8905 0.9124 0.8865 0.0004
se(β) 0.0005 0.0004 0.0007 0.0004
θ - - 0.0833 1.0097
se(θ) - - 0.0002 0.0001
τ - - 0.0400 0.0096
σ - - 0.0240 0.0158

LogL -15,479 -16,038 -16,103 -16,101
AIC 3.0958 3.2077 3.2206 3.2203
SIC 3.0958 3.2077 3.2206 3.2203

Source: author’s computations.

Figure 6.5, where the conditional correlation fluctuates approximately around

0.3 and seams to be very stable.

Figure 6.5: UNIP-TEL DCC Conditional Correlation
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Source: author’s computations.

At the end of this section we add Figure 6.6 to graphically illustrate de-

pendence and performance of C-MGARCH. We provide a scatter plot of resid-

uals from univariate GARCH models (standardized) and of residuals from C-

MGARCH model with Clayton copula to demonstrate virtually no dependence

among residuals, in other words, for this dataset a copula function does not

yield any benefit in terms of capturing the dependency structure.

6.4 SP & NAS dataset

Results reported in this section relates to SP-NAS dataset, i.e. we are compar-

ing two american popular indices. Estimated correlation of the DCC MGARCH
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Figure 6.6: Scatter Plots of Residuals UNIP-TEL
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Source: author’s computations.

model in Figure 6.7 demonstrates a high correlation between these two indices.

The sample starts in 1992 and till Q2 2004 it evinces very stable estimated

conditional correlation around 0.9. Nevertheless, the subsequent period shows

a much higher jumps in correlation, yet at the end of 2011 the correlation is

still significantly high. The overall decreasing trend is related to the overall in-

crease in the number of stocks and indices on the market, hence in decreasing

correlation among the two indices and the market.

Table 6.4: Results for SP −NAS
SP-NAS DCC DCC Gaussian DCC Clayton DCC Gumbel

α 0.0337 0.0365 0.0261 0.0264
se(α) 0.0001 0.0001 0.0000 0.0000
β 0.9632 0.9603 0.9702 0.9698
se(β) 0.0001 0.0001 0.0001 0.0000
θ - - 0.0670 1.0271
se(θ) - - 0.0003 0.0002
τ - - 0.0324 0.0264
σ - - 0.0524 0.0433

LogL -37,181 -35,719 -35,739 -35,737
AIC 7.4363 7.1437 7.1478 7.1474
SIC 7.4363 7.1437 7.1478 7.1474

Source: author’s computations.
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Estimations presented in Table 6.4 show additional dependency as the esti-

mated coefficients σ’s take values of 0.0524 and 0.0433 for Clayton and Gumbel

copulas respectively. According to the selection criteria, the C-MGARCH with

Gaussian copula yields the best estimates. Furthermore, lower tail depen-

dence is evident since τClayton is higher than τGumbel. Both of the Archimedean

copula-based MGARCH dominates the traditional DCC in terms of informa-

tion criteria.

Figure 6.7: SP-NAS DCC Conditional Correlation
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Source: author’s computations.

Finally, in Figure 6.8 we demonstrate performance of the copula-based

MGARCH, particularly with the clayton copula. The scatter plot shows uni-

variate residuals of GARCH(1,1) to be correlated, dependent and non-normal.

Contrary, residuals from the C-MGARCH model display virtually no depen-

dence if we do not consider several extreme outliers, i.e. the graphical demon-

stration aims to show, how the C-MGARCH models perform in controlling of

the dependence between financial assets.

6.5 Summary

To summarize results and compare performance of traditional DCC against

copula-based DCC, we provide Table 6.5 to compare estimated additional de-

pendencies in dataset.

When comparing dependence, we focus on one copula type across different

datasets to make the comparison transparent, however, both of the copulas

show the same output, yet on a different scale.

We can see C-MGARCH models with Archimedean copulas propose higher

dependence, which was not captured by DCC, in PX–CEZ and SP–NAS. This

result is reasonable, since we expect the amount of unexplained dependence to

be directly related to correlation between returns, and as we show, these two
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Figure 6.8: Scatter Plots of Residuals SP-NAS
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Source: author’s computations.

Table 6.5: Results Summary of Unexplained Dependence

Dataset σClayton σGumbel

PX–CEZ 0.0513 0.0342
ERS–KB 0.0366 0.0203
UNIP–TEL 0.0240 0.0158
SP–NAS 0.0524 0.0433

Source: author’s computations.
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datasets have the higher conditional correlation among others in this thesis.

Similarly, decent dependence have been reported even in ERS–KB.

On contrary, relatively lower unexplained dependence have been observed

in UNIP–TEL dataset. Although the conditional correlation between these two

stocks have been reported very low, it should be noted data still may show some

dependence implied by a copula, however its lower than in the other dataset.

Table 6.6: Results Summary of Kendall’s tau

Dataset τClayton τGumbel

PX–CEZ 0.0317 0.0208
ERS–KB 0.0226 0.0123
UNIP–TEL 0.0400 0.0096
SP–NAS 0.0324 0.0264

Source: author’s computations.

Additionally, in Table 6.6 we summary estimated Kendall’s tau for Clayton

and Gumbel copulas. It is evident τClayton is higher than τGumbel for each of our

datasets, hence we can say, since estimated parameters display a higher depen-

dency reported by Clayton copula, our datasets are rather dependent in the

lower left quadrant, i.e. lower-tail dependent. In other words, Gumbel copula,

which is designed to create a joint distribution with higher-tailed dependence,

yielded lower values of copula parameter θ compared to Clayton copula.

As a next step we evaluate particular models. Table 6.7 summarizes AIC

of each model across datasets. We choose AIC since it generated very similar

outputs to SIC, and it has a better informative value than simple value of LogL,

which does not consider number of parameters.

Table 6.7: AIC Results Summary

Dataset DCC DCC Gaussian DCC Clayton DCC Gumbel

PX–CEZ 3.9033 3.6707 3.6749 3.6753
ERS–KB 2.3012 2.2998 2.2988 2.9910
UNIP–TEL 3.0958 3.2077 3.2206 3.2203
SP–NAS 7.4363 7.1437 7.1478 7.1474

Source: author’s computations.

The only dataset, where traditional DCC outperformed copula-based DCC,

is UNIP–TEL. We interpreted the issue as consequence of very low correlation
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between obviously not-related stocks. However, in all of the other dataset C-

MGARCH models clearly dominated common DCC. Reported AIC shows for

PX–CEZ, ERS–KB and SP–NAS an obvious superiority of C-MGARCH model

no matter what copula employed. To be more specific, for the PX–CEZ and

SP-NAS datasets the lowest criterions propose C-MGARCH with Gaussian

copula. For the ERS–KB dataset it is C-MGARCH with Clayton copula that

yields lowest AIC.



Chapter 7

Conclusion

In this thesis we focus on applying copula-based multivariate GARCH model

(C-MGARCH) with uncorrelated dependent errors Lee & Long (2009) on bi-

variate datasets consisting of index and its stocks trade on the Prague Stock

Exchange, namely PX Index and CEZ, Erste Bank and Komercni banka, and

Unipetrol and Telefonica. Additionally, we apply a dataset constructed from

American Stock Exchange markets; SP500 and NASDAQ100.

There are two main problems that need to be considered when a multivariate

dataset is analyzed:

(i) It is well-known that financial returns do not follow normal distribu-

tion, yet they are leptokurtic, skewed and dependent. If we consider a

multivariate dataset a problem arises as we need to know its joint distri-

bution. Contrary to univariate case, not many multivariate distributions

have been proposed since it is not possible to simply extend each uni-

variate distribution to corresponding multivariate case. Although not

always valid, multivariate normality is assumed by traditional class of

MGARCH models. Under this assumption, results of such a model can

be misleading.

(ii) Despite popularity of linear correlation coefficient, one needs to recall

that zero correlations between two random variables does not necessarily

means no dependency between them. When a common DCC MGARCH

model is estimated and outputs conditional correlation matrix, one can-

not be sure the matrix explained all the dependency between returns,

since correlation is considered to be only a part of dependency. Thus, the

second problem lies in detecting this unexplained dependency.



7. Conclusion 50

Both of the issues are being solved by employing a copula function into

model. Copulas, sometimes referred as dependency functions, can create a

corresponding joint distribution function of any two (or more) marginal dis-

tribution. Furthermore, copula function applied into the models carry all the

dependency information between random variables, therefore can be used to

control the mentioned dependence not captured by traditional MGARCH mod-

els.

The copula-based DCC MGARCH model was proposed to separately and si-

multaneously model both conditional correlation matrix (by MGARCH model)

and dependency (by a copula). The idea behind the model is to estimate DCC

MGARCH conditional correlation and subsequently to remove the correlation

from its residuals. These uncorrelated residuals however may be dependent,

therefore a copula is used to control the additional dependence. The model is

estimated via multistage maximum likelihood estimator.

Following that, the aim of the thesis is was to compare performance of

traditional DCC MGARCH and C-MGARCH model on real data. Our goal was

to show that copulas reveal additional dependence between returns. Moreover,

we expected C-GARCH models to produce better estimates since they assume

non-elliptical distribution (again due to a copula function). Thus, we provided

results of estimation of each model and focused on interpreting findings. Models

were evaluated according to information criterions.

The results of the empirical application show that for each dataset, the

copula-based DCC MGARCH models evince dependence not captured by the

traditional DCC M-GARCH. Furthermore, for the PX–CEZ, ERS–KB and

SP–NAS datasets we show the C-MGARCH clearly outperforms the common

model according to the selection criteria. To be more specific, for the PX–CEZ

pair, the C-MGARCH model with Gaussian copula yields the best estimates,

moreover both the C-MGARCH with Clayton or Gumbel copula have lower

information criteria than the DCC MGARCH and both proved additional de-

pendence σClayton = 0.0513 and σGumbel = 0.0342. The estimated copula pa-

rameters are θClayton = 0.0654 and θGumbel = 1.0212.

According to selection criteria, the best model for the ERS–KB pair is the

C-MGARCH with Clayton copula and its parameter θClayton = 0.0462, the

additional dependence implied by the copula is σClayton = 0.0366. Moreover, it

shall be emphasized the performance of the C-MGARCH models with Gaussian

or Gumbel copula; both of them yield better information criteria than DCC.

The last dataset where the C-MGARCH models performed better than the
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DCC is the SP–NAS pair. The model with Gaussian copula show slightly better

performance, but it shall be stated that the difference between the copula-based

model and the traditional one is noteworthy. Again, both Archimedean cop-

ulas reported additional dependence; σClayton = 0.0524 and θClayton = 0.0433.

Conversely, the UNIP–TEL pair is the only dataset on which the DCC with-

out copula outperformed the C-MGARCH models. We explained that by a

very small correlation between the two stocks and expect a small unexplained

dependence.

In conclusion, we showed the DCC copula-based MGARCH with uncorre-

lated dependent errors outperform the tradition DCC MGARCH. Moreover,

we demonstrated how the model with a copula is able to explain the whole de-

pendence structure among random variables in multivariate modeling. A real

application of these copula-based models may be in modern portfolio theory

such as in CAPM for determination of dependence among assets in a portfolio,

To give an example, estimation of dependence is crucial for investors seeking for

a diversified portfolio or for risk managers, who aim to compute multivariate

Value-at-Risk.
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Appendix A

Additional Figures

Here we present figures of DCC conditional correlations, daily returns and

multivariate visual normality tests for each dataset.

Figure A.1: DCC Conditional Correlations (PX–CEZ, ERS–KB, UNIP–TEL,
SP–TEL clockwise ordered)
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A. Additional Figures II

Figure A.2: Daily Returns (PX–CEZ, ERS–KB, UNIP–TEL, SP–TEL top-
down ordered)
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A. Additional Figures III

Figure A.3: Multivariate Normality Visual Test (PX–CEZ, ERS–KB, UNIP–
TEL, SP–TEL top-down ordered)
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