
Charles University in Prague

Faculty of Mathematics and Physics

BACHELOR THESIS

Tomáš Helešic

Investment Strategies Simulator

Department of Software Engineering

Thesis supervisor: RNDr. Ondřej Šerý

Study program: Computer Science, General Computer Science

2010

I would like to thank my supervisor, RNDr. Ondrej Šerý, for his time and
valuable guidance during my work on the thesis. Also, I would like to thank
my friends for their comments, which forced me to look into my work from
different perspectives, and a big thanks goes to my parents for their endless
support.

I declare that I have written this bachelor thesis on my own and entirely
using the cited sources. I agree to lending of this thesis and its publishing.

In Prague, December 8th, 2010 Tomáš Helešic

2

Contents

1 Introduction 6

1.1 Trading on the stock market 6
1.2 Project goals . 7

2 Analysis of automatization strategies 9

2.1 The market and stock exchange 9
2.2 The financial market valuation 11
2.3 Technical analysis . 12

2.3.1 Charts . 12
2.3.2 Technical indicators 13

2.4 Investment strategies . 13

3 Implementation and the application model 15

3.1 Data acquisition and storing 16
3.2 Charts . 17
3.3 Technical indicators . 17
3.4 Strategy representation and evaluation 18

3.4.1 Compilation and communication with the application 18
3.4.2 Request for data . 19
3.4.3 Evaluating the strategy 19
3.4.4 Strategy result . 20

3.5 Error processing . 21

4 User Documentation 22

4.1 Installation . 22
4.2 Starting the program . 23
4.3 Change application settings 24

4.3.1 Change a database 24
4.3.2 Create a new database 24

3

4.3.3 Select data provider 25
4.3.4 Set up initial date for downloading 25

4.4 Add or delete assets . 25
4.5 Chart . 25

4.5.1 Display chart . 26
4.5.2 Operate with chart 26
4.5.3 Zooming and scrolling 27

4.6 Apply indicator . 27
4.7 Apply simple strategy . 28
4.8 Create and run strategy scripts 28

4.8.1 Create a strategy . 28
4.8.2 Create and run strategy scripts 29

5 Conclusion 31

5.1 Comparison with another available implementation 31

Bibliography 33

A Scripts’ template 36

B CD contents 40

4

List of Figures

1.1 Technical analysis in use (taken from [4]) 7

2.1 Example of the supply and demand curve (Taken from [7]) . 10
2.2 Example of upward and downward trend 10
2.3 Two examples of chart representation 13

3.1 Internal model . 15

4.1 The layout of the main program 23
4.2 Application settings . 24
4.3 Add and delete assets . 26
4.4 Set up a simple strategy . 27
4.5 Set up a simple strategy . 28
4.6 Select a script . 29
4.7 Example of a strategy result 30

5

Název práce: Simulátor obchodńıch strategíı
Autor: Tomáš Helešic
Katedra (ústav): Katedra softwarového inženýrstv́ı
Vedoućı bakalárské práce: RNDr. Ondřej Šerý
e-mail vedoućıho: ondrej.sery@d3s.mff.cuni.cz

Abstrakt: Předmětem této práce je vytvořeńı simulátoru obchodńıch strategíı.
Výsledný program umožnuje uživatel̊um stahovat aktuálńı i historická bur-
zovńı data, vizualizovat je pomoćı graf̊u a implementovat na ně prostředky
technické analýzy. Tyto komponenty jsou navrženy a propojeny tak, aby
vytvořily plnohodnotné prostřed́ı pro psańı, vyhodnoceńı a zobrazeńı uživatelských
strategíı.

Kĺıcová slova: Obchodńı strategie; Technická analýza; Skriptováńı;

Title: Investment Strategies Simulator
Author: Tomáš Helešic
Department: Department of Software Engineering
Supervisor: RNDr. Ondřej Šerý
Supervisor’s e-mail address: ondrej.sery@d3s.mff.cuni.cz

Abstract: The goal of this thesis is the creation of an investment strategies
simulator. The resulting program allows users to download current and his-
torical stock data, visualize it using charts and implement on it the tools of
technical analysis. These components are designed and linked to create fully
worthwhile environment for the creation, evaluation and representation of
user strategies.
Keywords: Investment strategies; Technical analysis, Scripting;

6

Chapter 1

Introduction

1.1 Trading on the stock market

Trading on the stock exchange is an appealing way of investing funds. The
trading can be done in commodities, foreign, stock and future exchange. The
stock market brings profit by speculating on the rise or fall of the market,
but speculating is not the only way of gaining profit - holding shares can
also bring money from dividends. Dividends are the cash consideration of
joint stock companies, paid to its shareholders, which means that the portion
of company profits are paid out to stockholders [1]. Profit and only profit is
what the trader is looking for. It implies searching for better strategies to get
ahead of other traders. Due to the fact that the market is evolving rapidly,
the secure strategy for gaining profit does not exist. Success is achieved by
understanding the market and practicing, but nothing is guaranteed. The
success in trading is a combination of wisdom and common sense. When we
trade, we have to try to achieve both, realizing that wealth can be a result of
wisdom [2]. Technical analysis (Fig. 1.1) provides only a recommendation,
based on a survey of the market. It is a general advice made by skilled
brokers, but this advice still does not assure profit. The final decision has
to be made by the trader and here again it comes down to practice. Even a
good strategy applied in the wrong time can lead to bankruptcy.
Another very important fact is that the majority of people who trade are not
successful enough to justify being in the market. If the broker trades with the
majority, then he will be as good as the average, and the average does not
make money. [3]. This forces one not to be too dependent on analysis of
others.

7

Do something different, even if it’s wrong.

Charles B. Goodman

The next section describes the key components of the project, which can
improve the trader’s skills and make him more successful in real-time trading.

Figure 1.1: Technical analysis in use (taken from [4])

1.2 Project goals

The main goal of this thesis was to create an application which enables
the testing of different strategies on the historical stock exchange data. The
application contains methods and structures allowing the user to:

8

• download and store stock exchange data from various sources

• create and apply technical indicators

• create and evaluate strategies

• chart these records, technical indicators and results of applied strate-
gies

The next chapter analysis the automatization process of investment strate-
gies. Chapter 3 describes the analysis and decisions which had to be made
during the project development. This process covered dividing the assign-
ment into smaller modules, their processing and creation of appropriate in-
terfaces. The greatest challenge was to design and implement the modules’
interfaces such that they cooperate in a clear and simple way. This chapter
also explains the steps needed to extend the program. Chapter 4 explains the
installation process, running the program and recommendations on how to
achieve maximum serviceability. The last chapter concludes and summarizes
the effort in analyzing and processing the given task, providing a comparison
with the available programs of similar purpose, and discusses the possibili-
ties of expanding the program in the future. Appendix A contains a template
of the script and describes the process of its creation. Appendix B contains
a list of contents on the accompanying CD.

9

Chapter 2

Analysis of automatization

strategies

This chapter contains the definition of market behavior, positions, funda-
mental and technical analysis, which determine the trading strategies and
their automatization.

2.1 The market and stock exchange

The market is a space where the exchange of economic goods and cash is
made. The developed economies do not have the barter type of trade, where
goods are exchanged for other goods directly. The Stock exchange is an
institution which organizes the market with investment tools. It is one of the
elements of capital market. Exchange takes the form of double auction, where
the supply and demand create the final price of the traded instrument[5].
As the supply and demand change, the price moves towards the equilibrium
(Fig. 2.1). The buyers are competing and pushing the price up. The buyer
compares the price with his marginal utility - if the price is higher than the
marginal utility, the buyer loses interest. On the other hand, the sellers, who
are also competing amongst themselves, are pushing the price down [6]. This
results in upward (bull) and downward (bear) market trends (Fig. 2.2). Bull
and bear trends can make the greatest profit, since if a trader goes with the
trend, he can continuously make money.

Position in the stock exchange trading is a commitment to buy or sell
a financial instrument for a given price. By entering a position, the price
and volume of the transaction need to be specified. The volume in financial

10

Figure 2.1: Example of the supply and demand curve (Taken from [7])

Figure 2.2: Example of upward and downward trend

11

trading is called a lot - it represents the standardized amount of a traded
financial instrument. There are two types of positions:
Long Position

• If the market is in a upward trend, the trader will make a profit

• Buying an instrument opens a position

• Selling closes the position

Short Position

• If the market is in a downward trend, the trader will make a profit

• Selling an instrument opens a position

• Buying closes the position

It is possible to speculate on a downward trend of a financial instrument.
The broker can lend this instrument to the trader who obliges to buy the
instrument back at a later date in return.

2.2 The financial market valuation

A financial instrument valuation is the process of calculating theoretical
values, which in other words means predicting potential market prices. Rate
the instrument as undervalued or overvalued so that the market will move
in particular trend towards the equilibrium. There are 3 main approaches of
market valuation[8]:

• Fundamental analysis

• Psychological analysis

• Technical analysis

Fundamental analysis represents the examination of price-fixing factors and
information which are available for the traders. It uses economical, statisti-
cal, accounting, historical, political and demographic circumstances as input
values. Prices derived from these conditions are compared with the current
price and the trader can decide if the particular instrument is worthy of
investment [9]. Psychological analysis examines the human behavior during
trading. Investing is a collective matter and this analysis concentrates on
the psychology of crowds and impulses to mass selling and buying [10].

12

2.3 Technical analysis

Unlike fundamental analysis, technical analysis uses only data generated by
the market, such as price, volume, volatility, number of opened positions
and cross-market correlation. It is used to estimate the price trend and the
probability of its reversion by searching for price patterns in charts. The
technical analysis is based on certain expectations [11]:

• All events and information affecting the market are already covered in
the price. This results in a fair price and the analysis can build on it.

• The prices are not moving randomly, but in trends.

• The history tends to repeat. This is caused by traders, whose reactions
are similarly often repeated.

• What is more important then Why. Fundamental analysis tries to ex-
plain and predict events, but technical analysis cares only about the
price.

Technical analysis critics claim that it lacks sufficient theoretical base in
order to be credible. However, some techniques have their own justification.
The best practice is to use fundamental analysis to pick an instrument and
technical analysis to decide on timing [12].

2.3.1 Charts

The charts are a very useful tool in searching for price patterns such as Head
and Shoulders[13] and Double top, bottom reversal patterns [14].
Line charts display a single value on the Y-axis. This value is, in general,
the closing price of an instrument.
Candlestick charts present four values of an instrument in a given time
frame. These values are open, close, high and low. The filling color of the
body represents the relationship between the opening and closing prices, as
shown in Fig. 2.3(a).
Bar charts are similar to Candlestick, as they also display open, close, high
and low prices. The only difference is in their graphical representation (see
Fig. 2.3(b)).

13

(a) Candlesticks (b) Bars

Figure 2.3: Two examples of chart representation

2.3.2 Technical indicators

The technical indicators can be any class of metrics whose value is derived
from an instrument’s price activity. Indicators strive to estimate the future
price and direction by considering past patterns. They filter the small market
fluctuations which could be confusing. They are divided into four groups,
based on their orientation:

• Volume

• Oscillators

• Trend indicators

• Bill Williams

Technical indicators are widely used in technical analysis, as they simplify
the process of evaluating and specifying investment strategies for the trader
[15]. Automatization of investment strategies can not be done without tech-
nical analysis.

2.4 Investment strategies

Investment strategy is a set of rules, procedures and behaviors, designed to
aid in choosing individual investments and creating an investor’s portfolio.

14

Different investment strategies reflect individual investors’ personalities and
decisions in trying to achieve profit. Some traders may prefer riskier invest-
ments to achieve higher returns in a short term (Momentum investing [16]),
others may choose to invest in an instrument with a consistent long term
growth (Growth [17] and value investing [18]). The procedure of choosing a
strategy is dependent on the investor’s requirements. The trading process is
simple, but difficult to apply successfully:

1. Create a strategy

2. Find instruments that are consistent with the strategy

3. Create a portfolio

In automating this process, fundamental and psychological analysis can not
be used. Only technical analysis and its tools lend themselves well to being
transformed into computer algorithms. The strategy can then collect the
signals generated by the individual indicators and decide on investing into
the given instrument.

15

Chapter 3

Implementation and the

application model

This chapter elaborates on the implementation of the program. It presents
the application model, interfaces and external libraries used. Figure 3.1 rep-
resents the internal model of the application. The project can be separated
into smaller tasks, which are implemented independently. These modules are
linked through interfaces to enable future extendability of the application.

Figure 3.1: Internal model

16

3.1 Data acquisition and storing

The first task was to gain access to historical stock exchange data. Immediate
data generated by the stock exchange are very valuable and highly charged.
This program was designed to test strategies in long or relatively short terms.
The immediate data were therefore not necessary. Yahoo and Google finance
servers provide daily data. Both enable the user to download historical data
in a .csv format. All the historical values of stocks are available on Yahoo
automatically, but non-stock instruments together with all other data from
Google are available only for the previous year. The application stores the
data in the database. It comes at an additional disk space cost, but this
approach is much faster then repetitively downloading data. The user is not
expected to have any advanced computer skills, such as managing a database
server, and for that reason the underlying database is embedded in the
application itself (Microsoft SQL Compact Edition 3.5 [19]). Another benefit
of this approach is that the program will work even if there is no internet
connection (provided that the data was downloaded to the local database in
the past). The database schema has consists of only two tables. The first,
CompanyTicks table, stores names of instruments and their symbols (unique
identifiers). The second table contains the instruments records:

• Date, date and time of the record, type DateTime

• OpenPrice, opening price, type Double

• High, highest price, type Double

• Low, lowest price, type Double

• ClosePrice, closing price, type Double

• Volume, transactions volume, type Long

• AdjPrice, adjacent price, type Double

Adjacent price is sometimes ignored by the data providers. The data can
be requested and downloaded via libraries with implemented Downloader
Interface. These libraries are dynamically plugged in after launching the
application and are stored in a public collection during the program session.
Classes DownloaderServices and DownloaderPlugins are used. The process
of dynamically loading the library is the same as with indicators:

17

1. create an assembly

2. check if the assembly implements the required interface

3. create an instance of the object an add its reference to the collection

DB class implements the methods for managing the database, such as creat-
ing, deleting and updating an instrument. It calls a plug-in method, GetH-
istory(), declared by the interface, and receives a table with an instrument
records. The program freezes during the process, therefor background worker
is created and the process of downloading and updating the database runs
in the background. Both plug-ins use the Webclient class to download the
data. They parse the values and store them in a table.

3.2 Charts

Chart is the base element of technical analysis. Technical indicators are
calculated from the instrument values and use either the same or a different
chart area to display their records. They also need to be aligned with the
instrument chart to be correctly interpreted by the user. These were the main
requirements when selecting the appropriate charting control. The Microsoft
Chart Control fulfills these demands and provides even more methods for
processing and visualizing records, such as setting labels, tool tips, grouping
values, zooming and scrolling charts [20]. The instruments and indicators
records are stored in a structure called Data table, and these records are
binded to the chart data points. When the user chooses a new time frame,
the records are refiltered and binded again.

3.3 Technical indicators

Technical indicators implement the technical analysis as is written in the
Analysis section. The indicators take the form of a plug-in, which means
that they are dynamically loaded when the application starts. They imple-
ment the Analysis Interface. This enables the user to create new indicators
and enrich the possibilities of applying technical analysis in the program. The
interface specifies the method called by the application. Graph, GraphType
and ColumnNames store the information for MS Chart Control to correctly
interpret the indicator in a chart. Calculate receives the instruments records

18

and calculates indicators values. The indicator itself stores calculated val-
ues for the current instrument, in order to improve the performance of the
application. The program takes the indicator from a collection of linked
indicators, calls the Calculate method and records together with Graph,
GraphType and ColumnNames values as parameters, and calls the Insert-
IntoGraph() method. This method processes the parameters, aligns values
with the instrument chart and displays them into the same chart area or a
different one. The application implements 4 indicators: Simple and Weighted
moving average[21] are Trends indicators, On Balance Volume[22] is an ex-
ample of a Volume indicator and Relative Strength Index[23] represents the
Oscillator indicator.

3.4 Strategy representation and evaluation

One of the challenges was to create the aforementioned modules in such a
way that they provide a solid base for creating and evaluating strategies. The
strategy automatization process needs to collect signals from the indicators
and instrument records. The task was to analyze and think of a way of
compiling the script and aligning it to the interface during runtime, creating
a method of passing data to it, evaluating that data and saving the results
for further representation. User friendly specification of the script was an
important constraint for technically less inclined users.

3.4.1 Compilation and communication with the appli-

cation

The application compiles and links the scripts during runtime. An alter-
native solution was to pre-compile the scripts with csc.exe and load them
during the application launch. This solution needed additional intervention
from the user, and was refused, since the user cannot edit and run the script
again with different settings. The script needed to be aligned to the interface
to clearly specify what can be demanded and what can be offered. The com-
pilation process creates an assembly and this assembly needs to be added
into the application domain. If the assembly is loaded into the domain, it
cannot be removed. This implies the need to create a temporary domain and
unload it after the script is evaluated to enable running different scripts. The
temporary domain limits the communication between the script and the pro-

19

gram such that all method calls can only be made between the host and the
script, but the host can use every method from the main application. The
CS-Script library enables the main program to compile the script, create a
temporary domain, align the script to an interface and unload the domain
after the execution [24]. CSScript.Compile() method compiles the selected
script and creates the assembly into the temporary domain by creating an
instance of AsmeHelper class. Method CreateAndAlignToInterface <Istrat-
egy>() aligns the script to the Istrategy interface and creates an instance of
the script class. The host can then call methods and set properties in the
compiled script. The script can also call methods and set properties to the
host, but the host object has to set its reference to the script first script.host
= this;.

3.4.2 Request for data

The script has to inform the application which data it needs for evaluation.
All instrument and indicators records are of type DataTable. The script
therefore needs to specify which records it needs and it does so by specify-
ing the column names. The host method Demands(params string[] demand)
enables the script to request values for evaluation. This method is imple-
mented with variable parameters so the user is not limited by the number
of different indicators. The script sets everything it needs, such as Opened-
Price, High, Low, Volume etc.. from an instrument and indicators like RSI,
OBV, SimpleMA. The script also has to specify which record will be used for
opening the position. host.PriceColumn = OpenPrice or other instruments
record will do it. The host processes the parameter array by calling the
PrepareRecords() method. This method removes from an instrument those
columns which are not set in the list. The indicators values are merged with
the filtered instrument table. These records are filtered by a specific time
frame set by the user and are ready for the EvaluateStrategy() method.

3.4.3 Evaluating the strategy

There are various methods for evaluating the strategy. The first method is
to send all of the records to the script at once, but this method is unsuit-
able since the script has to implement while or for loops and operate with
the DataRows and index them. Another disadvantage is that the script has
the full image of values and can cheat by using future records. This strat-

20

egy therefore cannot be applied, as it violates the prerequisites of technical
analysis. A better approach is to send only one row at a time without the
date time record. The for cycle is then implemented in the host, and the
user does not know if the record is one month or 20 years old. The strat-
egy then follows the rules of technical analysis, and can only react to the
current or historical records. The data are transfered from DataRow into
Dictionary <string, double> so the user can index them by string, and the
script is more transparent. Finally, the user can create the logic in the Eval-
uate method. The logic is based on the instrument and indicators records,
it can open or close the position by calling host.OpenPosition(direction) or
host.ClosePosition(). The opening or closing price is picked from the speci-
fied record as mentioned in Request for data section. For secure trading, the
methods Stop loss [25] and Trailing stop loss [26] are also implemented with
the TakeProfit [27] method. After being set, this method controls the price
of the instrument, and can close the position if the conditions are met. Only
a single long or short position can be opened at once. The StrategyInter-
face declares all the methods and properties for script and host as a way of
enforcing communication conventions.

3.4.4 Strategy result

The user needs to obtain a clear and transparent result of applying the
strategies. Except for the requested records from the script and the open-
ing/closing price, he needs to know which condition has been met, that
caused the position to be closed. This is achieved by adding a message into
the result table. The method Stop loss and several others set the unique
identifier and bool value StopedByFunction to true when their condition is
met. The host can then recognize what caused the close event and output
this information. The result table is not sorted and the opening and closing
events are not grouped together. The CalculateProfit() method groups the
related opening and closing events and calculates the total profit, together
with the number of Long/Short positions which gained profit or created
a loss, and the overall profit and loss for the Long/Short positions. Every
transaction costs money, therefore all closed positions deduct a fee, which
the scripts sets before execution of its logic. All these records are visualized
in the FrmStrategyOutput form. Another important task was storing the
results of strategies for further comparison with other results. The Excel ap-
plication is the most suitable for this because of its table representation. The

21

data are exported into the Excel spreadsheet by filling the cells with result
table records and with values calculated in the CalculateProfit() method.
The conditional cell formating is used for better visualization. The appli-
cation uses the Microsoft.Office.Interop.Excel.dll library to accomplish this
task. Exporting to .csv format is used for long therm record storing and
further evaluation and comparison with other results in future application
extensions.

3.5 Error processing

The application distinguishes two types of errors: user errors and runtime
errors. User errors can be recovered from, the user is informed about the
cause of error, and is given the chance to correct it. Runtime errors are not
recoverable and cause the application to exit. Before exiting, the user is also
informed about the cause of the crash.

22

Chapter 4

User Documentation

This chapter presents the end user documentation, which contains instal-
lation instructions, as well as instructions for running and operating the
program.

4.1 Installation

Target platform for this project is Windows. The installation folder Setup
contains two files: Setup.exe and StockEval.msi. Setup.exe is the main in-
stallation file, which checks the prerequisites, .Net Framework 3.5 with SP1
and Windows Installer 3.1, and if they are missing, it tries to connect to the
Internet, download these programs and install them. The installation pro-
cess has to be run with the administrator’s privileges. After this first step,
the user chooses the target folder for the main program and the installation
process is then completed, creating a shortcut to the program on the desk-
top. Src folder contains the source files of the application also with libraries,
certificate keys for the assemblies which are necessary to compile the code.
The program was written in Visual studio 2008. The main directory of the
installed program contains the following folders:

• \Databases database files, new databases are created here

• \DataProviders libraries used to download stock market data from the
remote servers

• \Indicators contains technical indicators

• \Resources icons

23

• \Output primary folder for saving records of evaluated strategies in
Excel and CSV files

• \Scripts primary folder for loading scripts into the program

4.2 Starting the program

The program is started by running the file StockEval.exe which can be found
in the main installation directory. After starting the program, it searches for
the data providers and the indicators, and loads the default database. If the
database is not found, the program opens the Settings form and prompts
the user to select the database manually or to create a new one. Changing
the settings is described later in this chapter. The main program is shown
in figure 4.1. The main form layout:

Figure 4.1: The layout of the main program

1. displays all assets stored in the database

2. enumerates all available technical indicators

3. provides controls which operate the charts

24

4. displays the chart area

5. provides controls for adding/deleting assets, selecting and applying
strategies and changing application settings

4.3 Change application settings

Figure 4.2: Application settings

This form contains some important settings for obtaining and storing
data: changing and creating a new database as well as selecting a data
provider, which sets the stage for strategy testing.

4.3.1 Change a database

In the Group box named Set up Database, clicking on the Browse button
opens up a form which displays a list of databases from the folder \Databases.
The user can then select one of these and confirm his selection by pressing
the Select button. Next, he types the password for the selected database
and confirms the change of the database by pressing the Confirm button. A
message box then appears, containing the confirmation or an error message
describing what went wrong.

4.3.2 Create a new database

In the Group box Create a new database, the user inputs the name and pass-
word for the new database. The password is optional and can be left empty.
Upon pressing the Confirm button, the program checks if the database name

25

contains valid characters. If yes, it creates the database in the \Databases
folder and selects it immediately.

4.3.3 Select data provider

A data provider can be chosen from the drop down box in a Group box
called Select Data Provider. This drop down box is filled with names of
libraries from the folder DataProviders, that are implementing the IAnalyzer
interface. Clicking on the Details button displays a brief description of the
selected provider. For example, the GoogleProvider library provides only one
year old historical stock exchange data. Again, the Confirm button sets up
the chosen provider as the application default.

4.3.4 Set up initial date for downloading

Unlike Yahoo, Google does not provide historical data older then one year.
The user can set up a date representing the starting point for historical data.
This tells the provider to ignore older records. Setting the date can be done
by clicking on the date-time picker and selecting a date.

4.4 Add or delete assets

The user can add or delete assets by clicking on the Assets label in the
Menu, and selecting the desired operation. There are two different forms -
Add Asset form (Fig. 4.3(a)) and Delete Assets form (Fig. 4.3(b)). To add a
new asset, the user needs to possess the unique symbol under which the asset
represented on the market. The name can be filled randomly. By clicking on
the Add button, the application tries to download the historical data and
add the asset to the database. If an error occurs, a notification is displayed
on the screen.
Deleting assets is as simple as selecting their names in the Delete Assets
Form, and clicking on the Delete button. All of the records belonging to the
selected assets will be removed from the database.

4.5 Chart

In this section we discuss how to draw a chart and work with it.

26

(a) Add Asset (b) Delete Assets

Figure 4.3: Add and delete assets

4.5.1 Display chart

The chart of the instrument is drawn by clicking on the name of the in-
strument or on its symbol in the top left list view. The application loads
the data from the database, filters them and displays them into the chart
control (see 4.1). Two default charts are displayed representing instruments
price and volume.

4.5.2 Operate with chart

The figures 4.4 represent controls for changing the chart appearance and
group values. The instrument value chart can be represented as:

• Line chart, showing the opening price

• Bar chart, representing the records as an Open-High-Low-Close bar
(see Fig. 2.3(b))

• Candlestick chart, representing the records as in the Bar chart but
in a different format (see Fig. 2.3(a))

The values can be grouped in the following way:

• B1 no grouping, only display the data from the database

27

• W1 grouping the values into the week interval. For the line chart, this
calculates the average of the closing prices. For OHLC and Candle-
stick, this calculates the average for open and close prices. Takes the
maximum value from the highs and minimum value from the lows.
Calculates the average for the indicators’ values

• M1 grouping the values into the month interval in the same way as
W.

Figure 4.4: Set up a simple strategy

4.5.3 Zooming and scrolling

The chart can be zoomed in and out by using the + and - keys or by using
the mouse wheel. The chart is reset to its initial view by pressing the small
circular button on the left side on the Y-axis scrollbar and over the X-axis
scrollbar. We can zoom a specific part of the graph by clicking and dragging
the mouse. The actual mouse selection is shown in light gray color.

4.6 Apply indicator

The list of available indicators shows the loaded and linked indicators. The
application supports 3 different chart areas, with more than one indicator
in the same chart. The indicator is calculated and inserted into the chart by
clicking on its name. The indicators will not be calculated and displayed if
there is no instrument selected. Before the calculation of the indicator, the
application opens a form with the settings if the indicator needs them. For
example MA needs to set up time frame and shift, but On Balance Volume
does not need any additional attributes, and is calculated and displayed
immediately. If the user wants to change indicator settings, he has to click
on it again to unload itfrom the chart and click again to repeat the procedure.

28

4.7 Apply simple strategy

To apply a simple strategy an instrument’s chart has to be drawn. The user
then clicks on the Strategies ⇒ Simple. It opens the frmCreateStrategy form
(Fig. 4.5) where the strategy can be set up. The user can choose if he want to

Figure 4.5: Set up a simple strategy

enter a Long or Short position. In the Value group box, he is informed about
the start date. The Open Position on value holds the start dates’ opening
price, but it can be changed. The closing price and the Deadline date, which
tell the application about the last possible date to close the position, also
need to be filled. Clicking the Apply button starts evaluation of the strategy.
The application then displays the results and eventually marks in the chart
the opening and closing position.

4.8 Create and run strategy scripts

4.8.1 Create a strategy

The Chapter 3 discusses the strategy scripts’ background. The scripts tem-
plate is shown in the Appendig A. The script has to implement the IStrat-
egy interface and MarshalByRefObject. The user has to set the fee amount
for the transaction. To simplify his work, he can sets the constants. Method
RequestDemands() enables user to set the fee, request data and set the value,
which will be used for Open or Close the position. The Evaluate(Dictionary

29

<string, double> value) method represents the place to implement strat-
egy logic. The user receives requested data in an array indexed by string
for transparent representation of the particular value. The user can call
host.OpenPosition(direction), where direction means Buy or Sell. The posi-
tion can be closed by the methods or by the script itself. The methods Stop
loss, Trailing Stop loss, Take profit are implemented. The description how
to use them is specified in the Appendig A. Method host.Trailing(value)
in a if condition enables this function to close position, same as for Stop loss
and Take profit.

4.8.2 Create and run strategy scripts

Chapter 3 discusses the strategy scripts’ background. There are two ways of
loading a script. The first is by clicking on the Strategies ⇒ Scripts (Fig. 4.6).
By clicking on the Browse button, the file input dialog will be shown and

Figure 4.6: Select a script

the script can be selected for evaluation. The default folder for the scripts is
em \Scripts but the user can browse to another directory. After the selection
has been made, the script can be edited by clicking the Edit Script button.
It will start the default program for creating and editing the *.cs files on the
user’s computer. The Test button starts evaluating the script. The second
way of loading a script is by clicking on the Test Strategy button. The button
opens the same form as in the previous example. The script eventually opens
the indicators’ settings form. If no error has occurred the table with results
(example in Fig. 4.7) is displayed. The table contains all information about
the values and events which caused opening and closing of the positions.
Under the table is the summary of the strategy, which displays the total
strategy profit, the number of Long/Short positions which gained profit or
created a loss, and the overall profit and loss for the Long/Short positions.
The application marks these events into the chart. The user can export the

30

results into CSV or Excel files by selecting these options and by clicking the
Export button. The user can change the name of the file to the description of
the strategy. The files are exported into \Output folder in the main directory
of the program.

Figure 4.7: Example of a strategy result

31

Chapter 5

Conclusion

The program provides stock exchange data from the remote server only by
specifying the instrument’s symbol and creates an extendable platform for
plug-in based indicators and data provider. If a new subject appears on the
market, which can provide more frequent data with less latency, the user
can simply create a new class library which downloads this new data, and
add it to the program without additional changes in the code. The new
indicators, can be easily distributed among users. Scripts and databases
are portable and not dependent on the user’s locale settings. We have also
managed to maximize the benefits of the chart control, which is very flexible,
but can get slow for large sets of data. We have also created instruments
to evaluate strategies by transforming them into scripts. We have made a
background support for creating and running scripts. One of the areas that
can be improved in the future is strategy script writing, which could be done
by using pseudocode which is closer to natural language.

5.1 Comparison with another available im-

plementation

On the market there are various business application designed for trading
in real time on the stock exchange. Some of them, like XTB or MetaTrader
focus on the novice users. They provide robust platforms for trading with
fictional money, making the beginnings more attractive for users since they
can immediately experience the actual trading environment. Still this ro-
bustness can bring confusion to the novice by distracting him from the un-

32

derlying principles of trading. This program is aimed exactly at those users
who want to focus on the basics and slowly build their way up to commercial
trading software. Our program tries to simplify and filter only the necessary
tools for creating and testing strategies and as such can find its place in the
crowded space of educational trading software.

33

Bibliography

[1] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-12-02]. Dividend. Avail-
able on WWW: http://en.wikipedia.org/wiki/Dividend.

[2] Ross Joe. Trading By The Book 5 edition.USA : Ross Trading, 1985.
How To Get Wisdom, p. 10-11. ISBN 976810824X

[3] DALTON, James F.; JONES, Eric T.; DALTON, Robert Bevan. Power
Trading With Market Generated Infromation. 2 edition. USA : Traders
Press, 1999. Introduction, p. 1-6

[4] ARUN, Arun. Market Trends [online]. 2009-
02-07 [cit. 2010-12-02]. Stock Market Position,
http://weblogsurf.com/february-2009-stock-market-position.

[5] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-
12-02]. Trh (ekonomie). Available on WWW:
http://cs.wikipedia.org/wiki/Trh_(ekonomie).

[6] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-
12-02]. Stock valuation. Available on WWW:
http://en.wikipedia.org/wiki/Stock_valuation.

[7] O’Neill, Michael. BUS 106 [online]. 2010 [cit. 2010-12-
02]. Canadian Market Economy - Demand and Supply,
http://www.mhoneill.com/106/chap/ch1/ch1_c.html

[8] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-12-02]. Burza. Available
on WWW: http://cs.wikipedia.org/wiki/Burza.

[9] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-12-
02]. Fundamental analysis. Available on WWW:
http://en.wikipedia.org/wiki/Fundamental_analysis.

34

http://en.wikipedia.org/wiki/Dividend
http://weblogsurf.com/february-2009-stock-market-position
http://cs.wikipedia.org/wiki/Trh_(ekonomie)
http://en.wikipedia.org/wiki/Stock_valuation
http://www.mhoneill.com/106/chap/ch1/ch1_c.html
http://cs.wikipedia.org/wiki/Burza
http://en.wikipedia.org/wiki/Fundamental_analysis

[10] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-12-
02]. Psychologická analýza. Available on WWW:
http://cs.wikipedia.org/wiki/Psychologicka_analyza.

[11] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-
12-02]. Technical analysis. Available on WWW:
http://en.wikipedia.org/wiki/Technical_analysis.

[12] moneyterms.co.uk. moneyterms.co.uk [online]. 2010 [cit.
2010-12-02]. Technical analysis. Available on WWW:
http://moneyterms.co.uk/technical-analysis/.

[13] LANGAGER, Chad; MURPHY, Casey. Investopedia [online].
[cit. 2010-07-09]. Analyzing Chart Pattern: Head and Shoulders,
http://www.investopedia.com/university/charts/charts2.asp

[14] LANGAGER, Chad; MURPHY, Casey. Investopedia [online]. [cit. 2010-
07-09]. Analyzing Chart Patterns: Double Top And Double Bottom,
http://www.investopedia.com/university/charts/charts4.asp

[15] Investopedia. Investopedia [online]. 2010 [cit. 2010-
12-02]. Technical Indicator. Available on WWW:
http://www.investopedia.com/terms/t/technicalindicator.asp.

[16] moneyterms.co.uk. moneyterms.co.uk [online]. 2010 [cit.
2010-12-02]. Momentum Investing. Available on WWW:
http://moneyterms.co.uk/momentum-investing/.

[17] moneyterms.co.uk. moneyterms.co.uk [online]. 2010 [cit.
2010-12-02]. Growth Investing. Available on WWW:
http://moneyterms.co.uk/growth_investing/.

[18] moneyterms.co.uk. moneyterms.co.uk [online]. 2010 [cit.
2010-12-02]. Value Investing. Available on WWW:
http://moneyterms.co.uk/value_investing/.

[19] Microsoft SQL Compact edition 3.5,
http://www.microsoft.com/Sqlserver/2005/en/us/compact.aspx.

[20] MSchart Control for .NET 3.5,
http://msdn.microsoft.com/en-us/library/3ks53324(VS.71).aspx.

35

http://cs.wikipedia.org/wiki/Psychologicka_analyza
http://en.wikipedia.org/wiki/Technical_analysis
http://moneyterms.co.uk/technical-analysis/
http://www.investopedia.com/university/charts/charts2.asp
http://www.investopedia.com/university/charts/charts4.asp
http://www.investopedia.com/terms/t/technicalindicator.asp
http://moneyterms.co.uk/momentum-investing/
http://moneyterms.co.uk/growth_investing/
http://moneyterms.co.uk/value_investing/
http://www.microsoft.com/Sqlserver/2005/en/us/compact.aspx
http://msdn.microsoft.com/en-us/library/3ks53324(VS.71).aspx

[21] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-
12-02]. Moving average. Available on WWW:
http://en.wikipedia.org/wiki/Moving_average.

[22] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-
12-02]. On-balance volume. Available on WWW:
http://en.wikipedia.org/wiki/On-balance_volume.

[23] Wikipedia. Wikipedia [online]. 2010 [cit. 2010-12-
02]. Relative Strength Index. Available on WWW:
http://en.wikipedia.org/wiki/Relative_Strength_Index.

[24] CS-Script - The C Sharp Script Engine, http://www.csscript.net

[25] Investopedia. Investopedia [online]. 2010 [cit.
2010-12-02]. Stop-Loss. Available on WWW:
http://www.investopedia.com/terms/s/stop-lossorder.asp.

[26] Investopedia. Investopedia [online]. 2010 [cit.
2010-12-02]. Trailing Stop. Available on WWW:
http://www.investopedia.com/terms/t/trailingstop.asp.

[27] Investopedia. Investopedia [online]. 2010 [cit. 2010-12-
02]. Take-Profit Order - T/P. Available on WWW:
http://www.investopedia.com/terms/t/take-profitorder.asp.

36

http://en.wikipedia.org/wiki/Moving_average
http://en.wikipedia.org/wiki/On-balance_volume
http://en.wikipedia.org/wiki/Relative_Strength_Index
http://www.csscript.net
http://www.investopedia.com/terms/s/stop-lossorder.asp
http://www.investopedia.com/terms/t/trailingstop.asp
http://www.investopedia.com/terms/t/take-profitorder.asp

Appendix A

Scripts’ template

using System;

using System.Data;

using System.Collections.Generic;

using StrategyInterface;

using StockEval;

class Script : MarshalByRefObject, IStrategy

{

//This part cannot be changed and it is used to inform

//the script with whom it can communicate

IStrategyHost host = null;

public IStrategyHost Host

{

get

{

return host;

}

set

{

host = value;

}

}

//set the fee amount for the transaction

double fee = 0.1;

37

//These constants simplify user’s work with data

private const string OPEN = "OpenPrice";

private const string CLOSE = "ClosePrice";

private const string BUY = "Buy";

private const string SELL = "Sell";

//Sets the values for Stop Loss, Take Profit and Trailing stop

//loss function

//Can be changed or the values can be manually inserted into

//the function calls

private const double RISK = 2;

/// <value>

/// Request the data from the application

/// </value>

public void RequestDemands()

{

//Set the fee for the transaction

host.Fee = fee;

//Inform the application about which values we want

host.Demands(OPEN, CLOSE, "RSI");

//Set the value that will be used for Open or Close the position

host.PriceColumn = OPEN;

}

/// <summary>

/// Evaluating function for the script, this function is

///called from the application

/// The logic of the script must be here

/// </summary>

/// <param name="value">Collection of values, which were

requested in the previous step</param>

public void Evaluate(Dictionary<string, double> value)

{

//Some conditions for opening the position

//Functions (Take Profit, Stop Loss) have to be set when

//opening the position

if (value["RSI"] > 70)

{

//Example of using StopLoss function

//SetStopLoss initializes the function and needs to have 2 values -

38

//StopLoss value and the specification of the position

host.SetStopLoss(value[OPEN] + RISK, SELL);

//Same as StopLoss

//Example of function call without constants:

//host.SetTakeProfit(value[OPEN] - 12.50, "Sell");

host.SetTakeProfit(value[OPEN] - RISK, SELL);

//Open a short position

host.OpenPosition(SELL);

}

//Condition for opening a long position

if (value["RSI"] < 30)

{

//This function enables the user to work with TrailingStopLoss

//It has 4 parameters:

// 1.Initial Open price of the position

// 2.Stop Loss value

// 3.First value when the Stop Loss has to be changed

// 4.Percentage of the gain added to the Stop Loss

// 5.Specification of the position we are in

host.SetTrailing(value[OPEN], RISK - 1, RISK, 70, BUY);

//Open a Long position

host.OpenPosition(BUY);

}

//Condition to test if the TakeProfit function for this value

//is activated or not

//Eventually close the position

if (host.TakeProfit(value[OPEN]))

{

//Close the position

host.ClosePosition();

}

//Condition to test if the Trailing Stop Loss function

//for this value is activated or not

if (host.Trailing(value[OPEN]))

{

//Close the position

host.ClosePosition();

}

39

//Condition to test if the StopLoss function for this value

//is activated or not

if (host.StopLoss(value[OPEN]))

{

//Close the position

host.ClosePosition();

}

}

}

40

Appendix B

CD contents

The accompanying CD has the following structure:

• \Txt

– \Latex - Latex source files with used images

– Thesis.pdf

• \Setup

– Setup.exe

– StockEval.msi

• \Doc

– StockEval.CHM - documentation generated by the Sandcastle

• \Src

– StockEval - Visual studio 2008 solution with all source files

41

	Introduction
	Trading on the stock market
	Project goals

	Analysis of automatization strategies
	The market and stock exchange
	The financial market valuation
	Technical analysis
	Charts
	Technical indicators

	Investment strategies

	Implementation and the application model
	Data acquisition and storing
	Charts
	Technical indicators
	Strategy representation and evaluation
	Compilation and communication with the application
	Request for data
	Evaluating the strategy
	Strategy result

	Error processing

	User Documentation
	Installation
	Starting the program
	Change application settings
	Change a database
	Create a new database
	Select data provider
	Set up initial date for downloading

	Add or delete assets
	Chart
	Display chart
	Operate with chart
	Zooming and scrolling

	Apply indicator
	Apply simple strategy
	Create and run strategy scripts
	Create a strategy
	Create and run strategy scripts

	Conclusion
	Comparison with another available implementation

	Bibliography
	Scripts' template
	CD contents

