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Abstract 

 

Translation reinitiation is a gene-specific translational control mechanism exploiting 

the ability of some short upstream open reading frames (uORFs) to retain post-termination 

40S ribosomal subunit on the mRNA. Reinitiation efficiency depends on cis-acting sequences 

surrounding the uORF, translation elongation rates on the uORF, selected initiation factors, 

and the intercistronic distance of the short uORF from the main ORF. Although the precise 

mechanism of reinitiation is still not known, great progress in elucidating some of its details 

has been recently made with help of the GCN4 translational control model system. Among 

them, involvement of eIF3 was shown to play a critical role for efficiency of this process. 

In particular, it was proposed that eIF3 specifically interacts with sequences located upstream 

of a reinitiation-permissive uORF upon termination, and that this step is instrumental 

in stabilizing the 40S ribosomal subunit on the mRNA to allow subsequent resumption 

of scanning for reinitiation downstream. In this thesis, the current knowledge 

of the translation reinitiation mechanism is summarized. As a typical example, the yeast 

transcriptional activator GCN4 has been chosen, the mRNA of which is subjected to a tight 

translational control via the very reinitiation mechanism. 

 

Key words: translation reinitiation, eIF3, 40S subunit, GCN4, uORF 



Abstrakt 

 

Translační reiniciace je genově specifický mechanismus kontroly translace, který využívá 

schopnosti něktrých krátkých otevřených čtecích rámců (uORFs) předcházejících v mRNA 

hlavní otevřený čtecí rámec zadržet 40S ribosomální podjednotku na mRNA poté, co ribosom 

na tomto uORF translaci ukončil. Efektivita tohoto procesu je ovlivněna tím, jaké 

nukleotidové sekvence uORF obklopují a jak rychle je ribosomem překládán, zdali jsou 

přítomny vybrané iniciační faktory, a také vzdáleností tohoto uORF od hlavního otevřeného 

čtecího rámce. Přestože přesný mechanismus reiniciace není dosud zcela znám, v posledních 

letech byly některé jeho dílčí kroky objasněny za pomoci studia mechanismu translační 

kontroly genu GCN4. Ukázalo se například, že naprosto nezbytná pro tento proces je účast 

eIF3. eIF3 specificky interaguje s mRNA sekvencí předcházející uORF, a tím významně 

napomáhá zadržení 40S podjednotky na mRNA a následné reiniciaci. Cílem této práce je 

shrnutí současných poznatků týkajících se mechanismu reiniciace translace. Jako příklad byl 

zvolen kvasinkový transkripční aktivátor GCN4, translace jehož mRNA je přísně řízena právě 

mechanismem reiniciace.  

 

Klí čová slova: reiniciace translace, eIF3, 40S podjednotka, GCN4, krátký otevřený 

čtecí rámec 
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1. Introduction 

Protein synthesis is a fundamental process supporting life of every single cell. In order to cope 

with changing environmental conditions, cells have to be able to regulate their protein 

expression. This can be exerted at multiple levels and by numerous regulatory mechanisms. 

One of them is the gene-specific translational control mechanism called reinitiation. 

It exploits short coding sequences – uORFs (for upstream open reading frames) that precede 

sequences encoding a main gene product and can be found in numerous eukaryotic mRNAs. 

Ribosomes initiate in the normal way at the uORF’s AUG codon; however, at its termination 

codon, the 40S subunit remains bound to the mRNA, resumes scanning, and initiates again 

at downstream start site. This process requires a specific interplay between mRNA sequences 

surrounding this uORF and selected initiation factors.  

 Translational control of the S. cerevisiae GCN4 gene is one of the best characterized 

examples of reinitiation (Szamecz et al., 2008). GCN4 acts as a transcriptional activator 

of biosynthetic genes and its synthesis is stimulated by amino acid starvation conditions 

(Hinnebusch, 1984). GCN4 mRNA contains in its 5' leader four uORFs whose concerted 

action results in a very sophisticated regulatory mechanism (Abastado et al., 1991) ensuring 

that the GCN4 mRNA translation is stimulated under amino acid starvation conditions, 

despite the fact that the general translation initiation is shut down  (Dever et al., 1992).  

 As growing data indicate, translation reinitiation belongs to widely utilized regulatory 

tools employed in various eukaryotic organisms. However, the understanding of this process 

is still rudimentary. The aim of this thesis should be to summarize up-to-date knowledge 

of this topic and describe both cis and trans-acting players involved in this process primarily 

with the help of GCN4 mRNA regulatory system.  



 

 9 

2. Gene expression 

In living cells, information encoded by a particular gene is used in the synthesis of   functional 

gene product. In eukaryotes, this complex process called gene expression involves these 

consequential steps: transcription, mRNA splicing, mRNA export from the nucleus, mRNA 

stability mechanisms, translation, and post-translational modifications of a protein product. 

Regulation of gene expression is important for many cellular processes. In comparison 

with other steps, translational control of existing mRNAs enables rapid changes in cellular 

concentrations of the encoded proteins (Sonenberg & Hinnebusch, 2009). Translation consists 

of four subsequent steps (initiation, elongation, termination and ribosome recycling) but 

the most regulation is exerted at its first, rate limiting stage – translation initiation.  

2.1. Canonical translation initiation in eukaryotes  

Initiation of translation is a complex process resulting in the assembly 

of the elongation-competent 80S ribosome loaded with methionyl–initiator tRNA 

(Met-tRNAi
Met) whose anticodon is base-paired with the start codon (AUG) of mRNA (see 

Figure 1). The initiation process can be divided into several consequent steps that are 

masterminded by numerous proteins called eukaryotic initiation factors (eIFs).  

A critical step early in the translation initiation pathway is formation of the ternary 

complex (TC), comprised of eIF2, GTP and Met-tRNAi
Met, and its recruitment to the free 40S 

ribosomal subunit. In yeast, this step resulting in the 43S preinitiation complex (43S PIC) 

assembly was shown to be stimulated by eIF1, eIF1A, eIF3, and eIF5, both in vitro (Algire et 

al., 2002; Asano et al., 2001; Phan et al., 1998) and in vivo (Fekete et al., 2005; Jivotovskaya 

et al., 2006; Olsen et al., 2003). In the meantime, the mRNA 5' m7G-cap is bound by eIF4F 

protein complex, which consists of the cap-binding protein eIF4E, an ATP-dependent 

RNA helicase eIF4A, and the protein serving as a scaffold for other factors, eIF4G (Gingras et 

al., 1999). Subsequently, the 43S PIC contacts this eIF4F – m7G-cap structure to bring about 

the mRNA producing the 48S PIC. The mRNA recruitment step is mediated by eIF3, eIF4F 

complex and poly(A)-binding protein (PABP).  

The 48S PIC then scans 5' UTR (5' untranslated region) of the mRNA in the 5' to 3' 

direction until it encounters the first AUG (Kozak, 1989) which is recognized by base pairing 

with the anticodon in Met-tRNAi
Met (Cigan et al., 1988). In mammalian reconstituted system, 

scanning process was shown to be stimulated by eIF1, eIF1A, and eIF4F complex, out of 

which eIF4A and its cofactor eIF4B utilize the energy of ATP to unwind secondary structure 
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present in the 5' UTR of a given mRNA (Pestova & Kolupaeva, 2002). Genetic data from 

yeast suggest that also eIF5 and eIF3 participate in scanning process in vivo (Nielsen et al., 

2004; Yamamoto et al., 2005). The probability that a given AUG codon will be selected as 

the initiation codon by the scanning 48S PIC complex depends on the “strength” of nucleotide 

sequence flanking this AUG codon (so called the Kozak consensus sequence) (Kozak, 1986).  

In the scanning 48S PIC, the GTP bound to eIF2 is partially hydrolyzed to GDP and 

inorganic phosphate (Pi) which is stimulated by eIF5 (Das et al., 2001). Successful AUG 

recognition triggers dissociation of eIF1 from 40S subunit with subsequent irreversible 

Pi  release from eIF2-GDP-Pi, driving GTP hydrolysis to completion (Algire et al., 2005; 

Maag et al., 2005). eIF1 displacement induce an irreversible transition to a closed, 

scanning-incompatible conformation of the 48S PIC (Cheung et al., 2007), serving as 

the decisive step stalling the entire machinery at the AUG start codon. After eIF2-GDP 

ejection, leaving the Met-tRNAi
Met in the ribosomal P-site, eIF5B-GTP promotes joining of 

the 60S ribosomal subunit with the 40S-Met-tRNAi
Met-mRNA complex (Pestova et al., 2000). 

Subunit joining is thought to facilitate ejection of all other eIFs with the exception of eIF1A 

(Unbehaun et al., 2004) and eIF3 (Szamecz et al., 2008). Finally, after GTP hydrolysis and 

eIF5B dissociation, the 80S initiation complex is ready to accept the appropriate aminoacyl-

tRNA into the ribosomal A-site and synthesize the first peptide bond.  

For a new round of initiation, the eIF2-GDP released from the 40S must be recycled to 

eIF2-GTP by its guanine nucleotide exchange factor (GEF) eIF2B to reform the TC (Webb & 

Proud, 1997). This exchange reaction can be inhibited under conditions of amino acid 

starvation or other types of stress by phosphorylation of the α-subunit of eIF2 by specialized 

protein kinases (PKs) (see chapter 4.), owing to the fact that the phosphorylated eIF2-GDP is 

a competitive inhibitor rather than a substrate for eIF2B (Rowlands et al., 1988). Reducing the 

TC assembly rates leads to a general translational shutdown (Krishnamoorthy et al., 2001).  

In yeast, it was shown that eIF3, eIF5, eIF1 and TC physically associate with each 

other (Asano et al., 1999; Valasek et al., 2002; Valasek et al., 2003; Yamamoto et al., 2005) 

and together they form so called multifactor complex (MFC). This complex binds to the 40S 

subunit as a preformed unit, is able to exist free of ribosomes and thus represents an important 

intermediate in translation initiation in yeast (Asano et al., 2000). Detailed functional studies 

of mutual interactions among MFC components revealed that the MFC promotes the TC and 

mRNA recruitment to the 40S ribosome as well as the subsequent steps such and scanning 

and AUG selection (Nielsen et al., 2004; Valasek et al., 2002; Valasek et al., 2004). 
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Figure 1.  Model of the canonical pathway of eukaryotic transl ation initiation. 

For details, see chapter 2.1. (adapted from Hinnebusch, 2005).  

2.1.1. eIF3 

Among all initiation factors, eIF3 is the largest and the most complex one. In the budding 

yeast, eIF3 is formed by five core subunits (a/TIF32, b/PRT1, c/NIP1, i/TIF34 and g/TIF35) 

and one loosely associated, nonessential subunit, namely j/HCR1 (see Table 1). All these six 

subunits have the corresponding orthologs in the 13-subunit mammalian eIF3 (Phan et al., 

1998; Valasek et al., 1999). eIF3 was shown to stimulate nearly all steps of translation 

initiation pathway (see chapter 2.1.). Recently, it was also revealed that eIF3 plays the crucial 
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role in special reinitiation events (Szamecz et al., 2008) (see chapter 6.3.). Importantly, eIF3 

is thought to reside on the solvent side of the 40S subunit (Siridechadilok et al., 2005; 

Valasek et al., 2003). This location seems to be an ideal site with the respect to regulatory 

functions proposed for eIF3. 

 

                 Table 1. eIF3 subunits in Saccharomyces cerevisiae. 

unified nomenclature S. cerevisiae nomenclature  

eIF3a a/TIF32* 
eIF3b b/PRT1* 
eIF3c c/NIP1* 
eIF3g g/TIF35* 

               eIF3i i/TIF34* 
               eIF3j j/HCR1 
*core subunits 

2.2. Alternative translation initiation pathways 

As the majority of eukaryotic mRNAs are almost exclusively monocistronic, their translation 

is initiated by the canonical mechanism employing the scanning mechanism (Kozak, 1989) 

described above. However, there are several examples in eukaryotic traslation initiation that 

deviate from this general mechanism and start protein synthesis either without scanning or at 

internal sites of an mRNA. These involve translation initiated in a cap-independent manner at 

internal ribosome entry sites (IRESes) (Gilbert et al., 2007; Chen & Sarnow, 1995), ribosomal 

shunting (Rogers et al., 2004) and reinitiation after translation of short upstream open reading 

frame (uORF) (Rajkowitsch et al., 2004). Many of these mechanisms are utilized by viruses 

(Herbreteau et al., 2005; Kolupaeva et al., 2000; Pelletier & Sonenberg, 1988) or serve as 

regulatory tools for gene-specific translational control of transcription factors (Abastado et al., 

1991; Vattem & Wek, 2004).  

3. uORFs as regulators of translation initiation 

uORFs represent mRNA elements located in 5' UTR which contain a start codon (AUG) 

followed by at least one additional coding triplet and an in-frame termination codon (UAA, 

UAG, UGA) (see Figure 2).  

The latest reports indicate that uORFs are wide-spread among various organisms. 

A study of S. cerevisiae transcriptome revealed that 6% of yeast mRNAs contain short uORFs 

(Nagalakshmi et al., 2008). Surprisingly, it was predicted that in human and mouse cells 

the number of mRNAs containing short uORFs is even higher and reaches nearly 50% (Calvo 
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et al., 2009). It does not mean that all of them have regulatory functions, nevertheless, many 

examples of genes utilizing short uORFs to govern their own expression have already been 

published either in fungi (Luo & Sachs, 1996; Mueller & Hinnebusch, 1986) or in mammals 

(Vattem & Wek, 2004) including humans (Harigai et al., 1996) (see also below).    

 

 
Figure 2. A schematic picture of mRNA transcript co ntaining an upstream open 

reading frame (uORF). For details, see chapter 3. (adapted from Calvo et al., 2009) 

3.1. uORFs-linked pathologies 

It is noteworthy that mutations altering the surrounding sequences of some uORFs of human 

mRNAs disrupt their translational control and can cause various human diseases (Liu et al., 

1999; Wen et al., 2009; Wiestner et al., 1998). For example, it was also shown that 

translational control mediated by uORFs influences the emergence of atherosclerosis in 

diabetics (Griffin et al., 2001). Hence it is obvious that better understanding of the molecular 

details of the uORF-mediated regulation can significantly contribute to improvement of 

human health in the future. 

3.2. Types of mechanisms by which uORFs affect mRNA  translation 

Regarding the fact that the start codon is in eukaryotes selected by the scanning mechanism 

and that these short reading frames are situated upstream of a main coding sequence, uORFs 

are primarily considered to serve as a barrier severely reducing the expression of the main 

gene (Kozak, 1984; Kozak, 1999). Indeed, a global concurrent analysis of mammalian 

transcriptomes and proteomes revealed that the occurrence of uORFs in mRNAs closely 

correlates with significantly reduced protein expression of downstream ORFs carried by these 

mRNAs (Calvo et al., 2009). Importantly, not all uORFs impose such a negative effect on 

expression of a main ORF. In fact,  the degree of reduction of a  major ORF expression is 

determined by  the “Kozak strength” of AUG start codon of a particular  uORF (Kozak, 

1986). Intuitively, uORFs with  poor initiation context can be skipped by numerous 48S PICs 

via “leaky scanning”, which mitigates their negative effect on general translation initiation 

(Vivier et al., 1999).  
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On the other hand, several uORFs affect downstream translation through their ability 

to mediate ribosome stalling at coding or termination regions (Wang et al., 1999). This is 

usually a result of the action of the nascent peptide encoded by this uORF (Gaba et al., 2001). 

Such a stall at uORF termination codon prevents the scanning ribosomes from reaching 

another downstream start site.  

In addition to these “downregulation effects”, some uORFs influence expression of a 

main gene by affecting stability of its mRNA through so called nonsense-mediated mRNA 

decay (NMD), which is triggered by increased ribosome occupancy of a premature 

termination codon (Gaba et al., 2005). Conversely, many other short-uORF-containing 

mRNAs (like GCN4 and YAP1) are fully resistant to this destabilization pathway thanks to 

specific stabilizer elements (STE) contained in the 5' UTR (Ruiz-Echevarria et al., 1998; 

Vilela et al., 1998). These STEs were shown to interact with the RNA binding protein Pub1 

and this interaction is instrumental in mRNA stabilization as it prevents rapid NMD (Ruiz-

Echevarria & Peltz, 2000).  

The last but not least class of uORFs are those that permit 40S subunit to stay bound to 

the same molecule of mRNA after the elongating 80S terminated their translation (Abastado 

et al., 1991). The rest of this thesis will be focused on this last class of regulatory uORFs that 

allow efficient resumption of scanning followed by reinitiation at a downstream start site.  

3.2.1. Reinitiation after an uORF translation termi nation 

Historically, in an early study by M. Kozak (1987b) she showed that out of 699 vertebrate 

mRNAs encoding proto-oncogenes, nearly two thirds contained one or more uORFs 

preceding the start site of the main ORF. This led to the idea that such a regulation exerted at 

the translational level and mediated by uORFs might be a tool for limiting the expression of 

potentially harmful proteins if overproduced (Kozak, 1991). 

Reinitiation is exploited as a regulatory mechanism in many various eukaryotic 

organisms starting from yeasts (Abastado et al., 1991; Vilela et al., 1998), over plants 

(Futterer & Hohn, 1992; Wang & Wessler, 1998) up to mammals (Vattem & Wek, 2004). 

This mechanism of translation regulation is also greatly employed by invading viruses (Park 

et al., 2001; Powell et al., 2011). And, according to the newest bioinformatical data, the 

number of mRNAs proven to utilize the reinitiation mechanism for their translational control 

is expected to rise (Cvijovic et al., 2007; Selpi et al., 2009).  
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4. General requirements for reinitiation of transla tion 

The ability of an uORF to retain the 40S subunit on the mRNA after it has terminated 

translation at the uORF stop codon generally depends on: i) the time required for the uORF 

translation, which is determined by the length of the uORF and the translation elongation 

rates, ii) various initiation factors, and iii) special cis-acting mRNA features. Finally, 

reinitiation efficiency is also determined by iv) the intercistronic distance. 

The first two requirements are united in the idea that eIFs important for promoting 

efficient reinitiation remain at least transiently associated with the elongating ribosome, and 

that increasing the uORF length or the ribosome transit time increases the likelihood that 

these factors are dropped off (Kozak, 2001). Accordingly, reinitiation is most efficient after 

short uORFs translation and its efficiency declines as the uORF is lengthened (Kozak, 2001; 

Luukkonen et al., 1995). There is now an evidence for this hypothesis showing that in yeast S. 

cerevisiae eIF3 remains bound to elongating 80S for the first few elongating cycles and upon 

termination critically enhances reinitiation capacity of post-termination 40S subunits 

(Szamecz et al., 2008). Among other eIFs implicated in promoting efficient reinitiation in 

mammalian cells are eIF4A and eIF4G (Poyry et al., 2004), but the mechanism of their 

operation is not known. 

As for cis-acting mRNA features, with the exception of the uORF-mediated 

translational control of the S. cerevisiae GCN4 discussed below, there is nearly nothing 

known about what reinitiation-promoting mRNA features are required.  

Importantly, the reinitiation efficiency also directly depends on the distance between 

uORF termination codon and a downstream initiation codon (Grant et al., 1994; Kozak, 

1987a). This reflects the fact that the rescanning 40S subunit require a certain time for de 

novo recruitment of the TC necessary for another AUG recognition (Abastado et al., 1991). 

Owing to this, reinitiation event can be delicately regulated by manipulating eIF2-GTP 

availability in a cell via eIF2α phosphorylation by specific protein kinases s such as GCN2, 

the only PK in yeasts (Dever et al., 1992), or mammalian PERK (Harding et al., 2000). 

Importantly, reduction in the TC assembly decreases the rate of general translation but at the 

same time can paradoxically stimulate the translation of specialized mRNA, such as GCN4 or 

ATF4, which both encode stress-induced transcriptional activators of biosynthetic genes 

(Dever et al., 1992; Vattem & Wek, 2004). 
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5. The mechanism of GCN4 translational control 

The mechanism of GCN4 translational control represents the most studied example of 

translation reinitiation (Szamecz, 2008), thus, here it will be described in more details.  

5.1. GCN4 - a gene encoding specific transcriptional activat or  

Yeast cells, as well as other cells, govern their gene expression in response to various 

environmental stimuli. One of such important regulatory means in yeasts is known as General 

amino acid control which help the cells to cope with amino acid imbalancy (Niederberger et 

al., 1981). When a yeast cell suffers from amino acid starvation, it responses by mobilizing 

transcriptional activators in order to induce genes important for its survival (Delforge et al., 

1975; Mirande & Waller, 1988; Zhou et al., 1987). 

One of the most important positive regulators of General amino acid control of lower 

eukaryote Saccharomyces cerevisiae is that encoded by GCN4 gene (Hinnebusch, 1984). 

GCN4 specifically binds TGACTC sequence common in coregulated genes such as HIS3 

gene in S. cerevisiae encoding a histidine biosynthetic enzyme (Hope & Struhl, 1985). In 

amino acid starvation conditions, GCN4 activates at least 35 genes encoding amino acid 

biosynthetic enzymes (Hinnebusch, 1992). Genome-wide expression profiling analyses 

revealed that besides that, additional genes involved in cofactor biosynthesis, organelle 

biogenesis, mitochondrial transport, autophagy and others are induced by this yeast 

transcriptional activator during stress conditions (Natarajan et al., 2001).  

5.2. The regulation of GCN4 mRNA translation is exerted by four short 

uORFs 

GCN4 mRNA contains in its 5' UTR four short uORFs of two to three codons in length none 

of which is in frame with the long ORF of GCN4 downstream (see Figure 3). The regulation 

of GCN4 expression occurs at the translational level (Hinnebusch, 1984) and relies on 

sophisticated interplay between these short uORFs (Abastado et al., 1991).  



 

 17 

 

Figure 3. A schematic picture of GCN4 mRNA.  It contains four upstream reading frames 

all of which precede the main open reading frame encoding the GCN4 transcriptional 

activator. For details, see chapter 5.2. (based on Calvo et al., 2009). 

5.2.1. Regulatory functions of uORFs in GCN4 mRNA – the historical overview 

Many experiments were performed to elucidate precise functions of particular uORFs in 

GCN4 mRNA 5' leader (5' UTR). The theory that uORFs function as translational barriers 

(Kozak, 1984) was confirmed also in the case of GCN4 mRNA by removing of all four 

uORFs, resulting in a constitutive derepression of GCN4 synthesis (Hinnebusch, 1984). 

However, the first uORF (uORF1) later turned out to be a weak translational barrier. Instead, 

it performed a stimulatory role in GCN4 synthesis because it enabled the ribosomes to 

overcome the inhibitory effects of the remaining downstream uORFs (Mueller & Hinnebusch, 

1986). Another deletion mutagenesis in GCN4 mRNA 5' leader revealed that the presence of 

uORFs 1 and 4 is sufficient for significant degree of GCN4 expression regulation, comparable 

to the wild-type mRNA containing all four uORFs intact (Williams et al., 1988). This helped 

to simplify the subsequent analyses of uORFs functioning in GCN4 translational control.  

But the features of uORF1 underlying its intriguing properties still remained veiled. 

Start codons of uORFs 1 and 4 were shown to function as similarly efficient translational start 

sites in vivo, but uORF4 did not exhibit a positive effect on GCN4 synthesis when located 

upstream of uORF1 (Williams et al., 1988). Efficient initiation was therefore unlikely to be 

a sole determinant of the positive regulatory role of uORF1. Thus, it was proposed that a very 

important property of uORFs mediating GCN4 translational control is the ability to permit 

reinitiation following termination of translation and that the uORF1 is optimized for this 

function (Williams et al., 1988). 

Additional extensive genetic analyses of the GCN4 mRNA 5' UTR finally helped to 

provide a detailed model for GCN4 translational control (Abastado et al., 1991). An important 

support for the GCN4 translational control model came from the observation that increasing 

the distance between uORFs 1 and 4 to the wild-type spacing that separates uORF1 from 

GCN4 start site impaired the ability of uORF1 to derepress GCN4 mRNA translation. This 
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indicated that the time when ribosome reacquires certain factors needed for efficient 

reinitiation plays the crucial role in GCN4 translational control mechanism (Abastado et al., 

1991). Thus, it was suggested  that after a ribosome translates uORF1, 40S ribosomal subunit 

stay bound to the mRNA, resumes scanning and then reinitiates either at uORF4 start codon 

or GCN4 start codon, according to amino acid availability.  

5.2.2. The role of eIF2 phosphorylation in GCN4 translational control 

Although the model for GCN4 translational control suggested that in amino acid starvation 

conditions the reassembly of factors required for efficient reinitiation is much slower in 

comparison to nonstartavion conditions, the underlying mechanism of this phenomenon 

remained veiled.  

It was known that eukaryotic protein synthesis is regulated by common mechanism 

involving the phosphorylation of the alpha subunit of eIF2 (eIF2α) (Ranu, 1980). As 

phosphorylation of mammalian eIF2α occurs on serine residue at position 51 and amino acid 

sequence around this phosphorylation site turned out to be conserved among eukaryotes 

including the yeast S. cerevisiae (Cigan et al., 1989), it was suggested that phosphorylation of 

Ser-51 of eIF2α could be exploited as a tool for translation regulation also in yeasts. 

Additionally, the catalytic domain of protein kinase GCN2, which has been earlier identified 

as an activator of GCN4 synthesis (Hinnebusch, 1984; Tzamarias & Thireos, 1988), was 

shown to be related to catalytic domain of another eukaryotic protein kinase that 

phosphorylates eIF2α (Chen et al., 1991). This implicated GCN2 protein kinase to be 

an eIF2α kinase in yeast.  

Indeed, it proved true. In 1992 (Dever et al.), it was discovered that GCN2 

phosphorylates the α-subunit of eIF2 and mediates translational control of the yeast 

transcriptional activator GCN4 . 

5.3. The final generally accepted model of GCN4 translational control  

Independent of amino acid availability, most ribosomes translate the first uORF supporting 

the retention of 40S subunit on the mRNA and, after termination, about a half of 40S subunits 

resumes scanning downstream (Abastado et al., 1991).  

Under nonstarvation conditions, eIF2-GDP is fast recycled to eIF2-GTP by eIF2B 

resulting in high levels of TC formation. Thus, rescanning 40S subunits readily reassamble 

TC and preferentially reinitiate at uORF4, blocking another reinitiation downstream. 

However, under starvation conditions, uncharged tRNAs accumulating in amino acid-starved 

yeast cells stimulate eIF2α kinase GCN2 (Dong et al., 2000). As a result, the TC levels drop 
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and the rescanning 40S subunits have to travel for a longer period till they have rebound the 

TC. This significatnly increases the likelihood that they bypass uORF4 and reinitiate 

translation at GCN4 start site instead (Dever et al., 1992) (see Figure 4).  

The critical biochemical evidence for the GCN4 translational control mechanism, 

which was initially deduced from genetic data, was provided later on by mapping the 

positions of ribosomes translating GCN4 mRNA in vitro using toeprinting (Gaba et al., 2001). 

The ultimate proof was presented recently by a novel technique based on the deep sequencing 

of ribosome-protected mRNA fragments (Ingolia et al., 2009). Also this method detected a 

decrease in ribosome occupancy of the reinitiation-nonpermissive uORFs as well as an 

increase in translation of GCN4 coding region during starvation.  

 

 

Figure 4.  Model of translational control of GCN4 in yeast.   

For details, see chapter 5.3. (adapted from Hinnebusch, 2005). 
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5.4 Phenotypes linked to GCN4 expression 

It is noteworthy that the impairment of translational control of GCN4 expression can be 

monitored by specific phenotypes. These phenotypes then serve as a valuable genetic tool in 

defining various contributions of individual eIFs to translation initiation (Cuchalova et al., 

2010; Nielsen et al., 2004; Szamecz et al., 2008). Mutant cells defective in TC formation 

and/or its recruitment to 40S subunit constitutively derepress GCN4 expression and thus 

produce so called Gcdˉ (General control derepressed) phenotype. By contrast, mutants that 

fail to derepress GCN4 under starvation conditions embody a Gcnˉˉ (General control 

noninducible) phenotype implicating a defect in one or more of the steps following assembly 

of 48S PIC such as scanning processivity, start codon recognition, or subunit joining 

(Cuchalova et al., 2010).  

6. Reinitiation mechanism after translation termina tion on uORF1 of 

GCN4 mRNA 

6.1. The influence of the sequences downstream of u ORF1 in the 

historical perspective 

The probable importance of sequences surrounding the stop codons of uORFs in GCN4 

mRNA 5' leader in determining their distinct functions in translational control was shown 

already in 1989 (Miller & Hinnebusch). The replacement of uORF1 stop codon plus 10 

nucleotides immediately following it with the corresponding downstream sequences from 

uORF4 was sufficient to convert uORF1 into a much stronger translational barrier in 

comparison with its former positive properties. The presence of thus altered uORF1 upstream 

of uORF4 in the 5' leader also reduced GCN4 mRNA translation rate suggesting that 

the 3' sequences flanking uORF1 is required for ribosome ability to resume scanning afer 

uORF1 translation.  

More extensive analysis of the last codon of uORF1 and 10 nucleotides following it 

revealed that a high content of A+U bases in this uORF1 termination region might cause 

a higher propensity of ribosome to reinitiate at GCN4 start site (Grant & Hinnebusch, 1994). 

This led to a presumption that the presence of G+C-rich sequences in uORF1 termination 

region would prevent a fast resumption of scanning as a result of higher stacking energies of 

C+G pairs in comparison to A+U base pairs. Accordingly, the replacement of C+G-rich 

sequences flaking the uORF4 termination region with A+U-rich sequences restored a high 

reinitiation rate at the GCN4 start site (Grant & Hinnebusch, 1994). Based on that  it was 
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postulated that stable interactions between the termination region of an uORF and sites either 

on the rRNA, tRNA or elsewhere in the GCN4 mRNA prevent fast exit of the ribosome from 

the termination region, increasing the probability that ribosome dissociates from the mRNA 

(Grant & Hinnebusch, 1994).  

6.2. The influence of the sequences upstream of uOR F1 in the historical 

perspective 

For a while it seemed like the sequences surrounding the stop codons of uORF1 and uORF4 

could be the only determinants of their different abilities to permit reinitiation at GCN4 start 

site. However, in 1995 (Grant et al.), it turned out that uORF1 loses it ability to support 

reinitiation when inserted in the mRNA leader in place of uORF4, even when transferred part 

of uORF1 included the critical 13 nucleotides downstream previously assigned to be 

important for reinitiation (Grant & Hinnebusch, 1994). Furthermore, deletion of sequences 

located more than 20 nucleotides upstream of the uORF1 start site resulted in its conversion 

into an inhibitory element and blocked efficient reinitiation downstream (Grant et al., 1995). 

Interestingly, the 5' leader of uORF1 of the GCN4 mRNA  is also unusually long (~200 

nucleotides) when compared to other yeast mRNA leaders with an average length of 52 

nucleotides (Cigan & Donahue, 1987). Therefore, it was anticipated that in contrast to 

sequences downstream of uORFs 1 and 4, sequences upstream of uORF1 might enhance 

reinitiation by a more active process, such as by the facilitation of rebinding of certain factors 

which could be necessary to resume scanning for efficient reinitiation downstream (Grant et 

al., 1995). It took over ten years to resolve this puzzle (see below). 

6.3. eIF3 as the key reinitiation-supporting factor  

The key finding concerning the role of 5' sequences of uORF1 in translation reinitiation came 

when the largest eIF3 subunit, a/TIF32, was shown to play a critical role for the efficiency of 

this process. Previously, the N-terminal domain (NTD) of a/TIF32 was demonstrated  to 

interact with the C-terminal domain (CTD) of the 40S ribosomal protein RPS0A situated near 

the mRNA exit channel (Valasek et al., 2003). Strikingly, a partial deletion of the RPS0A-

binding domain of a/TIF32 not only decreased binding of eIF3 and associated eIFs to native 

preinitiation complex in vivo but also greatly impaired the induction of GCN4 mRNA 

translation. Detailed analysis of this defect revealed that it resulted from an inability of 40S 

subunits to resume scanning after uORF1 translation and, most importantly, implicated 

the a/TIF32-NTD in establishment of a post-termination interaction with the sequences 5' of 
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uORF1. It is important to note that the NTD of a/TIF32 is ideally positioned (near the exit 

channel) to contact mRNA sequences emerging from the mRNA exit pore (Valasek et al., 

2003). Indeed, this interaction proved to critically contribute to efficient reinitiation (Szamecz 

et al., 2008).  

6.4. The generally accepted model of the molecular events preceding 

efficient reinitiation after a short uORF translati on 

 GCN4 mRNA provides the most detailed eukaryotic translation reinitiation model, whose 

current overview is described in Figure 5. (A, B) eIF3 associates with scanning 48S PIC and 

their connection is stabilized by eIF1, eIF1A, eIF5 and TC. (C) After uAUG recognition and 

60S subunit joining, eIF3 (and possibly also eIF4F, based on work in mammalian in vitro 

systems (see chapter 6.5.)) remains bound to the 40S subunit. Since eIF3 resides on the 

solvent-exposed side of the 40S subunit, it does not prevent the 60S subunit to join. Post-

initiation 40S-binding of eIF3 is mediated by several contacts between the head ribosomal 

proteins and some eIF3 sub-domains such as that between the a/TIF32-NTD and RPS0A. (D) 

In the course of elongation, weakly bound eIF3 stays 80S-bound for several elongation 

cycles; however, the more time it takes to translate a particular uORF, the higher is the 

probability of eIF3 dissociation. (E, F) After translation of an ideally short uORF, some of 

80S ribosomes terminating at its stop codon still carry eIF3. (E, G) The specific sequences 

upstream of uORF1 contact the a/TIF32-NTD to stabilize the post-termination 40S on the 

mRNA after 60S dissociation. Thus stabilized 40S subunit probably recruits scanning-

promoting factors such as eIF1 and eIF1A and resumes scanning for reinitiation downstream. 

(F, H) Lack of these specific sequences upstream of uORF4 and thus an absence of the 

a/TIF32-NTD – mRNA stimulatory interaction results in completion of ribosomal recycling 

by 80S ribosome and 40S release from the mRNA at uORF4.  
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Figure 5. The generally accepted model of the molec ular events preceding efficient 

reinitiation after a short uORF translation.  For details, see chapter 6.4. (adapted from 

Szamecz et al., 2008).  

6.5. Other eukaryotic initiation factors implicated  in translation 

reinitiation mechanism 

Till today, another one essential eIF3 subunit, g/TIF35 was shown to directly promote 

the reinitiation mechanism after uORF1 translation. The g/tif35-KLF mutation in the RRM of 

the g/TIF35 subunit induced a strong Gcnˉ phenotype also owing to an inability of 
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the post-termination 40S subunits to resume scanning after the first uORF translation 

(Cuchalova et al., 2010). However, detailed analysis revealed that the g/TIF35-RRM probably 

ensures efficient resumption of scanning by a different mechanism than by that of 

the a/TIF32-NTD described previously. It was shown that the g/TIF35-RRM does not 

cooperate with the 5' sequences of uORF1 and instead it was hypothesized that 

the g/TIF35-RRM may interact with GCN4 3' UTR (Cuchalova et al. 2010). In any case, 

a precise mechanism of g/TIF35 function in reinitiation mechanism remains to be elucidated.  

Interestingly, the reinitiation-supporting role of eIF3 was also demonstrated in other 

organisms besides the yeast S. cerevisiae . For example, , the conserved h subunit of eIF3 was 

shown to ensure efficient reinitiation after uORF translation in Arabidopsis thaliana (Roy et 

al., 2010). Also, it was proposed that the recruitment of eIF3, and in particular its g subunit, 

by the cauliflower mosaic virus transactivator TAV enables translation of polycistronic viral 

mRNAs by reinitiation (Park et al., 2001). Although budding yeast lacks eIF3h, these findings 

show again that eIF3 plays a pivotal role in reinitiation events.  

Besides eIF3, other initiation factors were also implicated in promoting efficient 

reinitiation in mammalian cells, namely eIF4A and eIF4G. It was proposed that an efficient 

reinitiation occurs only if the eIF4 family of initiation factors (either eIF4F or just the central 

domain of eIF4G plus eIF4A) have participated in the primary initiation event at the uORF 

start codon (Poyry et al., 2004). However, the precise molecular mechanism is unknown.  

7. Future perspectives 

7.1. The secondary structure of mRNA preceding uORF 1 supports 

efficient translation reinitiation 

The most recent computational modeling data indicate that the a/TIF32-NTD-interacting 

mRNA sequences located 5' of uORF1 most probably progressively fold into a specific 

secondary structure as they leave the mRNA exit pore of the elongating ribosome (Munzarova 

et al., 2011). It is assumed that establishment of a such specific fold of these cis-acting 

sequences is critically required for making the interaction with a/TIF32 to support retention of 

40S subunit on the mRNA. Importantly, a similar secondary structure was predicted to form 

also upstream of yet another reinitiation-permissive uORF occuring in the 5' leader of 

the yeast YAP1, the gene encoding a transcription factor important in cell response to stress 

(Vilela et al., 1998). The fact both these uORFs operate in the a/TIF32-dependent manner 
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(Munzarova et al., 2011) may suggest that the underlying mechanism of reinitiation after 

short uORFs translation is conserved, at least in yeasts.  

7.2. Does the 3' UTR of GCN4 contribute to the intrigue regulation of its 

expression? 

In 1980s it was shown that insertion of the GCN4 mRNA 5' leader containing all four uORFs 

into the GAL1-lacZ fusion construct conferred the GCN4-like translational control upon 

the GAL1-lacZ transcript (Mueller et al., 1987). It is surprising that whereas the absence of 

the sequences upstream of uORF1 led to a substantial reduction in the GCN4-lacZ expression 

(by approximately 8-fold) (Grant et al., 1995), deletion of the very similar region in 

the recombinant GAL1-lacZ construct containing GCN4 mRNA 5' leader resulted in less than 

2-fold reduction (Mueller et al., 1987). This discrepancy has never been resolved. Since 

besides the coding region, the recombinant GAL1-lacZ construct differs from the original 

GCN4-lacZ construct also in the 3' UTR following the coding region, it is conceivable that 

3' UTR also contributes to the overall translational control of GCN4 expression. Its inhibitory 

effect, however, is negligible when sequences upstream of uORF1 are present and interact 

with the a/TIF32-NTD. Thus, the mechanism by which the 3' UTR of GCN4 mRNA 

contributes to the overall regulation of GCN4 translational control is still unknown and should 

be subjected to future investigations.  

8. Conclusion 

Undoubtedly, there has been huge progress in unveiling several details of the reinitiation 

mechanism in the recent years. Above all, the indispensable role of eIF3 in translational 

control mechanism of GCN4 expression, and perhaps some other genes as well,  has 

confirmed the complexity and multifunctionality of this initiation factor, whose roles thus 

extend beyond canonical translation initiation. Particularly intriguing observations are those  

indicating that eIF3 remains transiently bound to the elongating 80S ribosome in some sort of 

a metastable state as it gradually drops off during successive elongation cycles. If this 

hypothesis that is mostly based on genetic data receives further biochemical support by future 

experiments, the currently favored textbook model declaring that all initiation factors 

dissociate from the 40S ribosomal subunit upon subunit joining will require a substantial  

revision to take this fact into account.   

This special ability of eIF3 proved to play a critical role for the reinitiation mechanism 

by the virtue of its contact with the 5' sequences of REI-permissive uORFs that stabilizes 
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the 40S subunit on mRNA and allows it to resume scanning. But here again, most of 

the supporting evidence is based on genetic epistasis experiments obtained in yeasts and thus 

a clear biochemical proof of the direct contact between the NTD of a/TIF32 and uORF’s 

5' sequences is needed to strengthen the current model.  

Even though several hypotheses picturing the molecular contribution of 

the 3' sequences of uORF1 of GCN4 to efficient reinitiation exist, the true mechanism is 

unknown and will require other analyses. Similarly, the actual role of the 3' UTR of the GCN4 

mRNA is also a completely unexplored field that should be studied in the future.  

Finally, as it appears now, the most of the features concerning reinitiation mechanism 

are highly conserved from lower to higher eukaryotes. The outstanding example supporting 

this claim is mammalian ATF4, a transcription factor representing a functional homologue of 

yeast GCN4. ATF4 expression involves participation of two differently acting uORFs located 

in 5' leader of ATF4 mRNA, and its regulation strongly resembles GCN4 translational control 

mechanism (Vattem & Wek, 2004).  

Thus, a very exciting theme to explore in the future will be the focus on biochemical 

and genetic analysis of the molecular mechanism of reinitiation in higher eukaryotes.  
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