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The aim of this work is to investigate projection operator method of deriva-
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open quantum system. We gradually pass from quantum mechanical model
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of a molecule with one vibrational degree of freedom to an example of open
quantum system relevant in the theory of nonlinear spectroscopy. In the thesis
we present results of numerical simulations of the time evolution of the open
quantum system performed with a program written for this purpose. We are
specially concerned with simulations of the solution of the time-convolutionless
generalized master equation up to the a second order of the perturbation expan-
sion, and we show that under certain conditions it provides an exact solution of
the problem. The text also contains derivation of the recurrence relations for
the Franck-Condon factors for the most general case of two quantum harmonic
oscillators in one space dimension, i. e. transformation matrix between two
bases of the L2(R) space determined by the solutions of the time-independent
Schrödinger equation appropriate for these oscillators.

Keywords: open quantum system, projection operator method, nonlinear spec-
troscopy, quantum harmonic oscillator, Franck-Condon factors
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Chapter 1

Introduction

In quantum mechanics we very often describe a system like it was ideally iso-
lated from its environment.Quantum mechanical theory, which goes beyond this
approximation, is known as the theory of open quantum systems. The theory of
open quantum system therefore involves the general quantum mechanical topics
like quantum measurement process, decoherence or stochastic processes in quan-
tum mechanics. As an example of a field, in which the theory of open quantum
systems finds its applications, we could name nonlinear spectroscopy, theory of
energy transfer processes (e.g. photosynthesis) and properties of semiconductors.
In this work we are going treat a model open quantum system closely related to
the problems in molecular spectroscopy.

In the theory of open quantum system, the environment (for example heat
bath) influences the system through coupling terms appearing in the equations
of motion. One of the problems of the theory of open quantum systems is to
obtain the equations motion for the relevant - system part of the density matrix.
In this thesis we are going to study one of the methods, which leads to the
equations of motion for the system, the so-called projection operator technique.

The structure of the thesis is following:In the Chapter 2 we are going discuss
the necessary formalism for the treatment of the open quantum systems. In the
fist section of this chapter we will introduce quantum mechanical description of
the harmonic oscillator stressing its application in light-matter interaction with
a model two level molecule. This is going to lead us to definition of the so called
Franck-Condon factors, which will play an important role in our model system.
The recurrence formulas suitable for their computation are derived in Appendix
A in detail. In the next section we are going to convert to the more common
Dirac notation, which is going to be extensively used in the following chapters.
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In the section 2.6 we are going to introduce statistical description of the quantum
mechanical system by the density matrix. In this chapter we will also consider
equations of motion for the reduced density operators in various forms using
superoperator notation. In the last section of this chapter we will show the
application of the Franck-Condon factors in transformations of operators and
superoperators in different bases.

In the Chapter 3 we will continue with the general model of a system embeded
in thermodynamic bath. We will introduce the concept of a two-layer bath and
the appropriate two reductions of the total density matrix. In the first section
of this chapter we will concentrate on the Hamiltonian of the model system.
We are going to arrive at the Hamiltonian of the so-called spin boson model, in
which the relevant system is represented by two electronic levels, and the bath is
formed by infinitely many harmonic oscillators. In further section of this chapter
you can find how is the description by the density operator used to solve some of
the problems corresponding to light-matter interaction, and discuss the form of
the initial condition, which is going to be used for the computer simulation. The
influence of the environmental degrees of freedom in our open quantum system
are going to be described by the relaxation tensor in the so-called Haken-Stroble-
Reineker model (Ref. [7]).

In the Chapter 4 we will consider the projection operator techniques. We
will derive basic equations of motion for the relevant part of the density matrix
using the projection superoperors - in particular the Nakajima-Zwanzig equa-
tion and the time-convolutionless (TCL) form of the master equation. We will
introduce the perturbation expansion in terms of the reduced density matrix in
the interaction picture. Then we will treat the perturbation expansion for the
time-convolutionless equation.

In the Chapter 5 we are going to deal with a particular application of the per-
turbation expansion of the TCL equation to our open quantum system. We are
going to specify the concrete forms of the relevant Liouville superoperators used
in the expansion. Further we will prove an important relation binding the re-
duced density operator in the interaction picture with the one in the Schrödinger
picture. Further we will derive the analytical expression for the time dependence
of the twice reduced density operator. In the last section we will concentrate on
the derivation of the analytical solutions of the TCL equation up to the second
order under some simplifying conditions.

Finally in the Chapter 6 we will present numerical simulations performed by
a Fortran program written for this purpose and we will discuss numerical results.
We will close this work by discussion of the obtained results.
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Chapter 2

Model system and mathematical
formalism

2.1 Quantum harmonic oscillator

2.1.1 Solution of time-independent Schrödinger equation

First of all we would like to make a brief reminder of quantum harmonic oscillator
(possible to find in most of quantum mechanical textbooks). Let us discuss
solutions of time-independent Schrödinger equation

Eψ (x) = ĤBψ(x) = (
p̂2

2m
+
mω2

2
x̂2)ψ (x) , (2.1)

where in m is the mass and ω is the resonance frequency of the oscillator. The
ĤB is the Hamiltonian operator

ĤB =
p̂2

2m
+
mω2

2
x̂2 (2.2)

of the quantum harmonic oscillator. It is well known, that solutions of this
equation have discrete values of energy explicitly expressed as follows

En = ~ω
(
n+

1

2

)
, (2.3)

where n can take values 0, 1, 2, ... and ω is resonance frequency of the considered
oscillator. In the present work we are going to work with exact, normalized
solutions ψn for energy levels n
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ψn (x) =

√
1

2nn!

(mω
π~

) 1
4
e
−mω
2~ x2Hn

(√
mω

~
x

)
, (2.4)

where Hn are Hermite polynomials

Hn (x) = (−1)n ex
2

(
d

dx

)n
e−x

2

. (2.5)

As one can see, the solution (2.4) would have more simple form using a new
variable x̃ =

√
mω
~ x. Then these solutions take a form

ψn (x) =

√
1

2nn!

(
1

π

) 1
4

e
−x2
2 Hn (x) , (2.6)

where x̃ is replaced by original x (in this work we are going to use frequently
solutions of this form). This kind of transformation can be also understood as
taking new harmonic oscillator with mω = ~.

2.1.2 Hermite polynomials

Hermite polynomials are solutions of the following differential equation

d

dx
(e−x

2 d

dx
Hn(x)) = −2ne−x

2

Hn(x). (2.7)

It is possible to prove this using definition (2.5) by mathematical induction.
It follows from the definition (2.5) that even Hermite polynomials H2n (x)

are even functions and odd Hermite polynomials H2n+1 (x) are odd functions of
x.

The Hermite polynomials satisfy the following recurrence relation

Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0. (2.8)

Using this formula and letting the derivative act in the definition (2.5) you can
prove the following formula

d

dx
Hn(x) = 2nHn−1(x). (2.9)

Using the recurrence relation (2.8) in equation (2.6) we obtain recurrence
relation for the solution of time-independent Schrödinger equation

ψn(x) =

√
2

n
xψn−1(x)−

√
n− 1

n
ψn−2(x), (2.10)
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which together with

ψ0(x) =

(
1

π

) 1
4

e
−x2
2 , (2.11)

ψ1(x) =
√

2xψ0(x) (2.12)

is sufficient to calculate ψn(x) for every n.

2.1.3 Creation and annihilation operators

In the text we are going to make use of well known creation and annihilation
operators. After the above mentioned transformation (mω = ~) these have a
simple form

â =
1√
2

(
x+

d

dx

)
, (2.13)

â† =
1√
2

(
x− d

dx

)
. (2.14)

Creation and annihilation operators have the following properties

âψn (x) =
√
nψn−1 (x) , (2.15)

â†ψn (x) =
√
n+ 1ψn+1 (x) , (2.16)

âψ0 (x) = 0 (2.17)

and satisfy the commutation relation:

[â, â†] = 1. (2.18)

2.2 Excited and ground state of a molecule
Let us suppose a model molecule, in which the electrons belonging to the molecule
are in state of lowest energy of the molecule - ground state. In our model we
suppose that the ground state behaves as a quantum harmonic oscillator with
energy levels

Egn = Eg + ~ωg
(
n+

1

2

)
, (2.19)
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where ωg is eigenfrequency of the ground state. The oscillator represents the
internal nuclear motion of the molecule. Further we consider that electrons of the
molecule may occur in the excited state approximated similarly with quantum
harmonic oscillator with energy levels

Een = Ee + ~ωe
(
n+

1

2

)
, (2.20)

where ωe is analogously eigenfrequency of the excited state.
Now we are going to discuss several expressions of ψen (x). We can for ex-

ample assume that the ground and excited states behave as harmonic oscillators
with equilibrium positions shifted by x0 with respect to each other. For simplic-
ity we assume that the ground state has equilibrium position at x = 0 and the
excited at x = x0 and the eigenfrequencies are equal (ωg = ωe). From the physi-
cal point of view the corresponding probability distribution for every eigenstate
of the Hamiltonian of the shifted harmonic oscillator has to be the same as for
the original one shifted by x0. Thanks to this observation the solutions of the
Schrödinger equation for the ground state ψgn and for the excited state ψen have
the following form

ψgn (x) =

√
1

2nn!

(
1

π

) 1
4

e
−x2
2 Hn (x) = ψen (x+ x0) , (2.21)

ψen (x) = ψgn (x− x0) , (2.22)

where we used equation (2.4). We can also verify this by taking equation (2.1)
with different term for the wave-function in the excited state namely mω2

2
x̂2 →

mω2

2
(x̂− x0)2 and showing that equation (2.22) solve the new time-independent

Schrödinger equation. This can be proven for example by substitution x = x̃−x0

in the original equation.
We could also modify the assumption of wave-functions of the excited states

saying that the equilibrium position of the excited state is the same as for ground
state but the properties of harmonic oscillator are different, it has different mass
m (probably not in the case of excitation, but for the sake of generality let us
also include oscillators with different mass) and frequency ω. As we can see from
the expression (2.4) this could be understood as modifying parameter λ =

√
mω
~

in the solution. In this case the ψen (x) has the form

ψen(x) =

√
1

2nn!

(
λ2

π

) 1
4

e
−(λx)2

2 Hn (λx) =
√
λψgn(λx). (2.23)
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In the general case of one dimensional harmonic oscillator corresponding to the
excited state using the same reasoning we would obtain

ψen(x) =
√
λψgn(λ(x− x0)). (2.24)

2.3 Franck-Condon factors - definition
Let us assume that at time t = 0 the molecule is described by a linear combina-
tion ψ (x) =

∑
cn
n

ψgn (x), and somehow driven to the excited state (the theory

is going to be described later in section 3.5). What is its wave-function after
excitation? We assume that right after excitation the wave-function is given by
linear combination of ψen (x) which have the same values at x as the original
linear combination of ψgn (x) (in so called Condon approximation). Our next
aim is to determine coefficients of this linear combination.

The functions ψgn (x) form a base of a L2(R) space, therefore we can as-
sume that we can express every function ψgn (x) by a linear combination of the
functions ψen (x), i. e.

ψgn (x) =
∑
m

cmnψem (x) , (2.25)

coefficients cmn are called Franck-Condon (FC) factors . In other words FC
factors form transformation matrix from one base of Hilbert space to another
base of the same Hilbert space, in our case the Hilbert space is L2(R). The
two bases are solutions of time-independent Schrödinger equation for different
harmonic oscillators. We can express ψ (x) as follows

ψ (x) =
∑
n

cnψgn (x) =
∑
mn

cncmnψem (x) (2.26)

and the coefficients are determined by the sum
∑
n

cncmn . We have reduced our

problem of determining the wave function after excitation to determination of
the FC factors.

Let us suppose a scalar product of equation (2.25) with ψem (x). Thanks
to orthonormality of functions ψen (x) we can see that cmn is scalar product of
ψgn (x) and ψem (x)

cmn =

∞̂

−∞

ψ∗em (x)ψgn (x) dx (2.27)
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In this chapter we are going to show possible ways how to obtain cmn for the
cases described in the section 2.2.

2.4 Basic properties of the FC factors
Notice that the numbers cmn are real in our case, because everything in the
considered scalar product is composed of real numbers, the solutions are real
functions. Further cmn is usually not symmetric under interchange of m and n.

Another important property is, that matrix cmn reduces to unit matrix in
the case that the two basis are the same (the same harmonic oscillators). It
expresses the fact that coefficients appropriate to some function in any base are
determined unambiguously.

Because the solutions are normalized, the following equation holds

∞̂

−∞

ψ∗gk (x)ψgn (x) dx = δkn. (2.28)

Using completeness arguments1 we can rewrite the expression on the left hand
side as

∞̂

−∞

ψ∗gk (x)ψgn (x) dx =
∑
m

∞̂

−∞

ψ∗gk (x)ψem (x) dx

∞̂

−∞

ψ∗em (y)ψgn (y) dy. (2.29)

But considering definition of cmn (2.27) we can see that this is a matrix product∑
m

c∗mkcmn = (c†c)kn = δkn, (2.30)

therefore factors cmn form a unitary matrix. The c is a shortcut for matrix
with matrix elements cmn and the symbol (c†c)kn is similarly a shortcut for the
matrix element on the k-th row and the n-th column of the matrix product of
the Hermitian conjugate of c and c. We are going to use such shortcuts in order
to avoid too many indices and sums in the text.

Taking k = n we obtain
1The function ψgn (x) is in L2(R) space. Therefore it can be expanded in the base of

functions ψen (x). Thus ψgn (x) =
∑
m cmψem (x). Considering scalar product of this equation

gives cm =
´∞
−∞ ψ∗em (y)ψgn (y) dy. Putting this expression in the previous equation clarifies

the rearrangement in equation (2.29).

14



∑
m

|cmn|2 = 1. (2.31)

Thus in any such transformation matrix cmn every column has to give the sum
of squares of norms of numbers in the column equal to 1. In our case the matrix
is of infinite order, therefore the terms in the sum has to satisfy the following
consequence of the necessary condition of convergence

lim
m→∞

cmn = 0. (2.32)

By the same argumentation using (cc†)kn = δkn we can also prove equations∑
n

|cmn|2 = 1, (2.33)

lim
n→∞

cmn = 0. (2.34)

The reader can find the calculation of the Franck-Condon factors in various cases
in the Appendix A.

2.5 Converting to Dirac notation
In the previous text we have treated a molecule as a two level system with
vibrational states. Before we proceed further to the statistical description of
many such molecules in a heat bath, we are going to convert to the more common
Dirac formalism. For this purpose we introduce the following basic equations

ψgn(x) = 〈g|〈x|n〉|g〉, (2.35)
ψen(x) = 〈e|〈x|ne〉|e〉, (2.36)

where we treat the Hilbert space of our model system as a tensor product of
a Hilbert space of a two level system with kets |g〉 appropriate to the ground
state and |e〉 appropriate to the excited state, and the oscillator system with kets
|n〉 (n ∈ {0, 1, 2, . . .}) appropriate to the oscillator system described above with
wave-function ψgn(x) = 〈x|n〉. The kets |ne〉 similarly have the wave-function
ψen(x) = 〈x|ne〉.

For the sake of brevity we define

|n〉|g〉 = |ng〉, (2.37)
|ne〉|e〉 = |ne〉. (2.38)
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The kets |α〉 (α ∈ {g, e}) form a complete orthonormal system of their Hilbert
space and similarly kets |n〉 and |ne〉. Kets |n〉 and |ne〉 are related by the
equation

|n〉 =
∞∑
m=0

|me〉〈me|n〉 =
∞∑
m=0

|me〉
∞̂

−∞

ψ∗em (x)ψgn (x) dx =
∞∑
m=0

cmn|me〉, (2.39)

where we have used the definition (2.27). By the way we can state another
expression of the FC factors

cmn = 〈me|n〉 = 〈n|me〉. (2.40)

Thus kets |n〉|α〉 form an orthonormal base of our Hilbert space

〈β|〈m|n〉|α〉 = δmβnα , (2.41)

where we have introduced symbol δmβnα expressed by the usual Kronecker deltas
as δmβnα = δmnδαβ. We are going to use such symbols similarly for more indices.
In further text the Greek indices always denote g or e and the Latin indices
always denote the phonon states.

We are also going to make use of the creation and annihilation operators with
properties

â|n〉 =
√
n|n− 1〉, (2.42)

â†|n〉 =
√
n+ 1|n+ 1〉, (2.43)

[â, â†] = 1. (2.44)

In the Dirac formalism the Schrödinger equation has the following form

i~
d

dt
|ψ〉 = Ĥ|ψ〉, (2.45)

where |ψ〉 is state of the system and Ĥ is the Hamiltonian operator of the system.

2.6 Statistical description and the density matrix
In this work we are going to treat system of many molecules in a bath instead
of a single molecule. Standard quantum mechanical description of such systems
makes use of the density matrix (for introduction to the density matrix theory
is suitable for example Ref.[1]).
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Let us summarize some of the most important properties of the density op-
erator ρ̂ of the density matrix. Compared to quantum mechanics describing the
system by state |ψ〉, the density operator ρ̂ treats the system like we had many
such systems described by the set of states |ψi〉. Selecting randomly one of these
systems, the probability to obtain the state |ψi〉 is pi, where index i is taken from
some set (let us suppose that the set is countable). The density operator is then
given by

ρ̂ =
∑
i

pi|ψi〉〈ψi|. (2.46)

Let us define a trace of an operator Â acting on a Hilbert space spanned by
base |i〉 (in the case of the treated system the i would be interchanged to two
indices n and α, the base is composed from kets |nα〉) as the following sum

Tr(Â) =
∑
i

〈i|Â|i〉. (2.47)

Taking one of the states from the set |ψi〉, the probability of having some state
is 1. As a consequence of this fact we can state the equation

Tr(ρ̂) = 1. (2.48)

Performing a measurement of the mean value of a measurable quantity corre-
sponding to the operator Â on a system described by the density operator ρ̂ is
given by the equation

〈Â〉 = Tr(ρ̂Â). (2.49)

We can physically motivate such a description of our system for example assum-
ing, that the molecules obey Boltzmann distribution law. We would come to the
conclusion, that the probability to find a molecule in state |gn〉 is proportional
to e−

Egn
kT and similarly for the excited state.It is also going to be useful to define

matrix elements of the operator ρ̂ denoted by ρmαnβ as

ρmαnβ = 〈mα|ρ̂|nβ〉. (2.50)

Let us also introduce a so called reduced density matrix. We are going to
denote the appropriate operator by σ̂. To motivate consideration of such an
operator let us assume a Hilbert space as a tensor product of a two Hilbert
spaces - system with base of kets |α〉, and another system with base of kets |n〉,
which both are eigenstate of some operator of some measurable quantity. As
an example of this general case could be considered our model of a molecule
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described in section 2.5. Let us assume that we would like to measure in what
state |α〉 the system described by the density operator ρ̂ is independently on
state |n〉. Thus we would like to enumerate the sum

〈α|σ̂|α〉 =
∑
n

〈α|〈n|ρ̂|n〉|α〉, (2.51)

which defines the reduced density matrix. In our model system described earlier,
the elements of the reduced density matrix 〈g|σ̂|g〉 and 〈e|σ̂|e〉 have thus the
physical significance of probability for the molecule being found in the ground
or excited states, respectively, no matter what vibrational state the molecule is
in. Thus we define the reduced density operator σ̂ by the equation

σ̂ =
∑
n

〈n|ρ̂|n〉. (2.52)

The time evolution of state |ψ〉 is given by the Schrödinger equation (2.45),
and the description by the density operator preserves this evolution for every |ψi〉.
The Schrödinger equation for the state |ψ〉then implies the so called Liouville-von
Neumann equation

i~
d

dt
ρ̂ =

[
Ĥ, ρ̂

]
. (2.53)

This equation can be rewritten in the superoperator notation as

i
d

dt
ρ̂ = L0ρ̂, (2.54)

and the L0 we define as
L0ρ̂ =

1

~

[
Ĥ, ρ̂

]
. (2.55)

Similarly to the case of matrix elements of the operators, we can define matrix
elements of the superoperator L0 denoted by L0

mαnβ
pγqδ as

L0
mαnβ
pγqδ = 〈mα|(L0|pγ〉〈qδ|)|nβ〉. (2.56)

If the superoperator L0 is linear, we can express act of this superoperator on
some operator B̂ using their matrix elements as

〈mα|L0B̂|nβ〉 = (L0B̂)mαnβ =
∑
pγqδ

L0
mαnβ
pγqδ Bpγqδ (2.57)
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We can write a formal solution of the equation (2.54) as

ρ̂(t) = e−iL0tρ̂(0), (2.58)

where ρ̂(t) is the density operator at the time t, and the initial condition is
chosen at the time equal to 0.

Let us now discuss the form of this equation in the interaction picture. The
exponential of the superoperator in equation (2.58) is the known evolution su-
peroperator, which we are going to denote as U0, thus

U0(t) = e−iL0t. (2.59)

Further we are going to define the superoperator U†0 as

U†0(t) = eiL0t. (2.60)

Now we can define the density operator in the interaction picture by the equation

ρ̂I(t) = eiL0tρ̂(t) = U†0(t)ρ̂(t). (2.61)

Finally, let us assume that instead of the L0 in (2.53) we have added some time
independent interaction term LI (let us note that the following equations would
be true also in the case of time dependent LI) changing the equation to

i
d

dt
ρ̂ = (L0 + LI)ρ̂. (2.62)

Using the just mentioned definitions in this equation we can state the time
evolution equation for the density operator in the interaction picture as

i
d

dt
ρ̂I(t) = LI(t)ρ̂

I(t), (2.63)

where the LI(t) is defined by the equation

LI(t) = eiL0tLIe
−iL0t = U†0(t)LIU0(t). (2.64)

The solution of the equation (2.63) is

ρ̂I(t) = e−i
´ t
0 LI(τ)τdτ

← ρ̂(0), (2.65)

where ρ̂(0) = ρ̂I(0) and the e−i
´ t
0 L0τdτ

← is the well known positively time ordered
exponential defined by the infinite sum

e−i
´ t
0 LI(τ)dτ

← = 1+(−i)
ˆ t

0

LI(τ)dτ+(−i)2

ˆ t

0

ˆ τ

0

LI(τ)LI(τ
′)dτdτ ′+· · · . (2.66)
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2.7 Transformation matrices for the operators and
the superoperators

It turned out to be useful in this work to work sometimes in the base |nα〉 and
sometimes in the base |n〉|α〉. In this section we are going to define transforma-
tion operators and superoperators between these two bases. First of all consider
the equation

(〈mα|)(|p〉|γ〉) = δαγpggm + δαγee cmp, (2.67)

where we have used the equation (2.40). We can define the elements (〈mα|)(|p〉|γ〉)
as a new matrix

cmαpγ = δαγpggm + δαγee cmp. (2.68)

Notice that it is clearly distinguished from the FC factors, because it has two
more indices.

Let us define the matrix elements in the base |n〉|α〉 of some operator Â as

Ãmαnβ = 〈α|〈m|Â|n〉|β〉, (2.69)

where we use the tilde to mark the operators in the base |n〉|α〉. Using the
completeness relation in this equation and the equation (2.68) we can state

Ãmαnβ =
∑
pγqδ

cpγmαApγqδcqδnβ. (2.70)

This could motivate us to define superoperator C which transforms the operators
from one base to another. The corresponing matrix elements are

Cmαnβpγqδ = cpγmαcqδnβ, (2.71)

and then
Ãmαnβ =

∑
pγqδ

Cmαnβpγqδ Apγqδ. (2.72)

The superoperator C is unitary as it is possible to prove using the definition; in
other words

CCT = 1. (2.73)

Using this relation we can obtain the other transformation relation

Amαnβ =
∑
pγqδ

cmαpγÃpγqδcnβqδ (2.74)
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In the same way the superoperator L0 in base |n〉|α〉 have the matrix elements
defined by the equation

L̃0
mαnβ

pγqδ = 〈m|〈α|(L0|p〉|γ〉〈q|〈δ|)|n〉|β〉, (2.75)

where we again add the tilde to distinguish the superoperators in different bases.
Using four times the completeness relation in the definition (2.56) and the equa-
tion (2.68) we find the equation

L0
mαnβ
pγqδ =

∑
m′α′n′β′p′γ′q′δ′

cmαm′α′cnβn′β′cpγp′γ′cqδq′δ′L̃0
m′α′n′β′

p′γ′q′δ′ . (2.76)

We can rewrite this in a more compact from using the transformation superop-
erators C and CT , because we can see in this equation their matrix elements. Let
us therefore state another form of this equation

L0
mαnβ
pγqδ =

∑
m′α′n′β′p′γ′q′δ′

CTmαnβm′α′n′β′L̃0
m′α′n′β′

p′γ′q′δ′ C
p′γ′q′δ′

pγqδ . (2.77)

The inverse relation we can obtain by multiplying this equation by superopera-
tors C and CT from the left and the right respectively.
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Chapter 3

Model open quantum system

3.1 Hamiltonian of the model system
The Hamiltonian of a two level molecule with vibrational degree of freedom is

Ĥ =
∞∑
n=0

Egn|n〉|g〉〈g|〈n|+ Een|ne〉|e〉〈e|〈ne|. (3.1)

This forms a base of our Hilbert space in which the Hamiltonian operator Ĥ is
diagonal and has the form

Ĥ =
∞∑
n=0

∑
α∈{g,e}

Eαn|nα〉〈nα|. (3.2)

Let us rewrite the Hamiltonian operator to a different form, which clearly
divides it in parts which act only on the electronic states |α〉, the phonon states
|n〉 and on both of them. We can make use of the Hamiltonian ĤB defined by
equation (2.2) (replacing the ω by ωg). Considering the definition (2.19) we can
see that the Hamiltonian corresponding to the oscillator in the ground state can
be written in the base of eigenstates of this Hamiltonian as

∞∑
n=0

Egn|n〉|g〉〈g|〈n| = (
p̂2

2m
+
mω2

g

2
x̂2 + Eg)|g〉〈g| = (ĤB + Eg)|g〉〈g|, (3.3)

where we omit the subscript g in the m. Further we are going define operators
of the kinetic energy T̂ and the potential energy V̂ g for the vibrational states in
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the ground state by equations

T̂ =
p̂2

2m
, (3.4)

V̂ g =
mω2

g

2
x̂2. (3.5)

Thus we have
∞∑
n=0

Egn|n〉|g〉〈g|〈n| = (T̂ + V̂ g + Eg)|g〉〈g|. (3.6)

In the same way we can rewrite the operator Een|ne〉|e〉〈e|〈ne| as

∞∑
n=0

Een|ne〉|e〉〈e|〈ne| = (T̂ + V̂ e + Ee)|e〉〈e|, (3.7)

having the operator V̂ e defined by the equation

V̂ e =
mω2

e

2
(x̂− x0)2, (3.8)

where we omitted the subscript in m. Finally, we can rewrite the Hamiltonian
Ĥ in the form

Ĥ = (T̂ + V̂ g + Eg)|g〉〈g|+ (T̂ + V̂ e + Ee)|e〉〈e| = (3.9)

= (T̂ + V̂ g) + Eg|g〉〈g|+ Ee|e〉〈e|+ (V̂ e − V̂ g)|e〉〈e|. (3.10)

The part T̂ + V̂ g in this form is diagonal in electronic states, the part Eg|g〉〈g|+
Ee|e〉〈e| is diagonal in the phonon states |n〉 and the last part (V̂ e − V̂ g)|e〉〈e|
acts on both Hilbert spaces.

We can further express this Hamiltonian in the form

Ĥ = (T̂ + V̂ g) + Eg|g〉〈g|+ (Ee + TrB((V̂ e − V̂ g)Ŵeq))|e〉〈e|+ (3.11)

+((V̂ e − V̂ g)− TrB((V̂ e − V̂ g)Ŵeq))|e〉〈e|,

where we define the operator Ŵeq as

Ŵeq =
1

Zg

∞∑
n=0

e−
Egn
kT |n〉〈n|, (3.12)
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Now we are going to redefine the individual terms of the Hamiltonian. The
mentioned ĤB reads

ĤB = T̂ + V̂ g. (3.13)

We further define

ĤS = Eg|g〉〈g|+ (Ee + TrB((V̂ e − V̂ g)Ŵeq))|e〉〈e|. (3.14)

ĤS is the so called system Hamiltonian. Finally, the Hamiltonian which causes
interaction between electronic and phonon states ĤS−B reads

ĤS−B = ((V̂ e − V̂ g)− TrB((V̂ e − V̂ g)Ŵeq))|e〉〈e|. (3.15)

We subtracted the equilibrium average of the difference of the molecular potential
energy from the interaction term in order to make sure that

TrB(ĤS−BŴeq) = 0. (3.16)

This relation will become important later. Let us also define

(V̂ e − V̂ g)− TrB((V̂ e − V̂ g)Ŵeq) = ∆V̂ (3.17)

Consequently, the original Hamiltonian Ĥ could be rewritten as

Ĥ = ĤS + ĤB + ĤS−B. (3.18)

Accordingly the Liouville superoperator L0 can be divided into three parts

L0 = LS + LB + LS−B, (3.19)

where the superoperators are defined as

LS =
1

~

[
ĤS, ρ̂

]
, (3.20)

LB =
1

~

[
ĤB, ρ̂

]
, (3.21)

LS−B =
1

~

[
ĤS−B, ρ̂

]
. (3.22)

Let us include in our model the environment of the molecule. The influence of
the environment could be described by adding infinite amount of other quantum
harmonic oscillators coupled to the vibrational states of the molecule to the
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Hamiltonian Ĥ as it was done for example in Ref. [3]. We are going to simplify
the treatment introducing standard dimensionless coordinates (and momenta)
as

X̂α =

√
mωα
~

x̂, P̂α =

√
1

mωα~
p̂, (3.23)

and similarly for the bath harmonic oscillators

X̂n =

√
mωn
~

x̂n, P̂n =

√
1

mωn~
p̂n, (3.24)

where the ωn are frequencies of these oscillators.
Further let us discuss the case, when ωe = ωg and X̂α = X̂ =

√
mωg
~ x̂,

P̂α = P̂ =
√

1
mωg~ p̂. Let us denote the terms corresponding to the kinetic energy

of the oscillators from the environment as T̂n and the potential energy terms as
V̂ α
n with meaning analogous to the operators T̂ and V̂ α above. The complete

Hamiltonian of a two level molecule with one vibrational degree of freedom in a
multimode bath is going to be denoted as Ĥζ and defined by the equation

Ĥζ = (
~ωg
2

[(X̂ +
∑
k

X̂kκk)
2 + P̂ 2)] + Eg)|g〉〈g|+

∞∑
n=1

(T̂n + V̂ g
n )|g〉〈g|+ (3.25)

(
~ωg
2

[(X̂ −X0 +
∑
k

X̂kκk)
2 + P̂ 2)] + Ee)|e〉〈e|+

∞∑
n=1

(T̂n + V̂ e
n )|e〉〈e|, (3.26)

where

X0 =

√
mω

~
x0. (3.27)

We included the fact that the bath oscillators would also change their potential
energy operators, therefore the superscripts g and e in the potential energy
operators V̂ α

n . We are going to split the Hamiltonian Ĥζ in the following parts

ĤBosc =
~ωg
2

[(X̂ +
∑
k

X̂kκk)
2 + P̂ 2) +

∞∑
n=1

(T̂n + V̂ g
n ), (3.28)

ĤSosc = Eg|g〉〈g|+ (Ee +
~ωg
2
X2

0 )|e〉〈e|, (3.29)

ĤS−Bosc = (V̂ e − V̂ g − ~ωgX0

∑
k

X̂kκk)|e〉〈e|. (3.30)

Consequently the total Hamiltonian could be rewritten as

Ĥζ = ĤBosc + ĤSosc + ĤS−Bosc. (3.31)
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3.2 Density operators of the model system
Let us treat the density operator appropriate to our model open quantum system,
which we are going to denote as ζ̂. This density operator is defined on the Hilbert
space appropriate to the Hamiltonian Ĥζ . Analogously to the preceding cases,
we can denote the base kets of this Hilbert space as |nnkα〉, where we added
the nk to include the infinite number of harmonic oscillators representing the
environment of the molecule.

Following the discussion from the preceding section we can define the density
matrix ρ̂ as the reduced density matrix of the total density matrix ζ̂. In other
words

ρ̂ =
∑
nk

〈nk|ζ̂|nk〉. (3.32)

And analogously we might be interested in the another density matrix σ̂ defined
by the equation

σ̂ =
∑
n

〈n|ρ̂|n〉 = TrB(ρ̂),

which also defines the TrB. Accordingly we have something like three “layers”
of our system. The total density operator ζ̂, the reduced density operator with
respect to the phonon bath ρ̂, and finally the density operator containing only the
electronic states σ̂. In the next section we are going to treat the first reduction
from the density matrix ζ̂ to the density operator ρ̂.

3.3 First reduction
In the electronic ground state, the dynamics is described by the Hamiltonian
ĤBosc (3.28). To obtain the dynamics of the density matrix ρ̂, we are going
to assume that the coupling to the environmental phonons is weak and the the
relaxation of the energy is slow. Then we can use the so-called Haken-Stroble-
Reineker model (Ref. [7]) and write down the equation of motion

i
d

dt
〈g|ρ̂|g〉 = 〈g|(L0 + iRgggg)ρ̂|g〉, (3.33)

where R is the so-called relaxation tensor. The explicit form of the R is going to
be discussed in the next section. We would obtain similar equation for relaxation
in the excited state, because it is another oscillator with the same coupling to
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the environmental phonons. Thus

i
d

dt
〈e|ρ̂|e〉 = 〈e|(L0 + iReeee)ρ̂|e〉.

There is also a part of the relaxation tensor responsible for dephasing emerging
from the Hamiltonian ĤS−Bosc (3.30). Let us just note that the part containing
the environmental phonon operators −~ωgX0

∑
k X̂kκk|e〉〈e| is insensitive to the

vibrational state of the system described by ρ̂, and therefore we can assume its
contribution to the relaxation dynamics of the form

Rgege = Regeg = −γ, (3.34)

independently on the phonon states the relaxation tensor acts on, γ is some
constant.

The second reduction, which should lead us to the dynamics of the density
operator σ̂ is going to be treated in the Chapter 4.

3.4 Relaxation process
Let us discuss the equilibrium density ρ̂geq matrix of our system. We are going to
consider the case when the energy difference Ee−Eg is big and the temperature
of the heat bath T is so low, that in thermal equilibrium the molecules are
approximately all in the ground state. Then the equilibrium density operator
ρ̂geq takes the form

ρ̂geq =
1

Zg

∞∑
n=0

e−
Egn
kT |ng〉〈ng|, (3.35)

where Zg =
∑∞

n=0 e
−Egn

kT is a partition function of the harmonic oscillator in the
ground state, and we used the assumption that the system obeys the Boltzmann
distribution law. By calculation of the trace this equation we can verify, that
the density operator is normalized according to (2.48). As the reader may see
(considering for example equations (3.2) and (2.53)), if we choose ρ̂(0) = ρ̂geq,
the density operator is invariant in time (as every density operator diagonal in
the same base as the Hamiltonian).

In this section we would like to include into our model relaxation processes
inside elecronic states |g〉 and |e〉. For this purpose we suppose that these relax-
ation processes can be described by addition of the superoperator R introduced
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in the previous section to the original Liouville superoperator L0 obtaining from
(2.54) the equation

i
d

dt
ρ̂ = (L0 + iR)ρ̂. (3.36)

The matrix elements (2.56) of the superoperator L0 are

~L0
mαnβ
pγqδ = δnβqδ Hmαpγ − δmαpγ Hqδnβ, (3.37)

as is possible to directly verify using this result in equation (2.55). What are the
matrix elements of the superoperator R? First of all, we are going to consider
how do the matrix elements of the ρ̂ change in time under influence of relaxation.
We are going to separate this influence into two parts - the diagonal (the elements
m = n, α = β of ρmαnβ) and the off-diagonal elements (the other elements of
ρmαnβ) and describe the time evolution by equations

d

dt
ρmαnβ =

{
−Knαnαρnαnα +

∑∞
p=0 Γnαpαρpαpα m = n, α = β

−γmαnβρmαnβ the rest
, (3.38)

where the matrices K, Γ and γ are constant. We are going to define these
matrices in the way to fulfill the following demands

• The probability of finding the system in some state does not change in
time - d

dt

∑
nα ρnαnα = 0

• The elements of the density matrix asymptotically approaches to the den-
sity matrix of the equilibrium - ρ̂αeq =

∑
α

∑∞
n=0

1∑∞
i=0 e

−Eαi
kT

e−
Eαn
kT |nα〉〈nα| ⇒

d
dt
ρ̂αeq = 0

• The condition of the detailed balance is satisfied -

ργeqmαmαΓnαmα = ργeq nαnαΓmαnα,

The first demand implies the equation

Knαnα =
∞∑
p=0

Γpαnα, (3.39)

the second and the third demand is satisfied if

γmαnβ > 0, (3.40)

Γmαnα = k̃α[(m+ 1)δmn−1 +me−
~ωα
kT δmn+1], (3.41)
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where k̃α is going to be a free parameter of our model (notice that for k̃α = 0
the relaxation tensor is 0). Notice, that the transitions between electronic states
|g〉 and |e〉 are not involved in this model.

Motivated by the observation, that in the case when the coherences do not
rise, the diagonal elements of the density matrix would decay like e−Kmαmαt, and
the off-diagonal elements ρmαnβ would then go like

√
ρmαmαρnβnβ w e−

1
2

(Kmαmα+Knβnβ)t,

we define
γmαnβ =

1

2
(Kmαmα +Knβnβ). (3.42)

All the terms in (3.38) are defined, now we would like to express this equation
as

d

dt
ρmαnβ =

∑
pγqδ

Rmαnβ
pγqδ ρpγqδ. (3.43)

By substitution of Rmαnβ
pγqδ into this equation it is possible to verify, that the

correct matrix elements can be expressed as

Rmαnβ
pγqδ = −(1− δαmβn )γmαnβδ

mαnβ
pγqδ + δαmβn (−Kmαnβδ

mαnβ
pγqδ + Γnαpαδ

αpα
γqδ ). (3.44)

Let us note that from the discussion in the preceding section it is clear that the
matrix γmαnβ could be in our model of multimode bath replaced by γ in the
cases α 6= β. In other words we would replace the matrix γmαnβ by matrix γ′mαnβ
defined as

γ′mαnβ = γmαnβδαβ + γ(1− δαβ). (3.45)

The γ is going to be treated as a new free parameter of our model. Closing this
section we are going to remark that the solution of the equation (3.36) can be
expressed as

ρ̂(t) = e(−iL0+R)tρ̂(0), (3.46)

where ρ̂(0) is the initial condition, which we are going to take as equal to ρ̂ex.
Matrix elements of the density operator ρ̂(t) can be calculated using ordinary
matrix multiplication of the superoperators L0 and R, which emerge from Taylor
expansion of the exponential of the superoperators.
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3.5 The density operator and the light-molecule
interaction

In this section we are going to use the density matrix description to treat the
interaction of light with molecules in our model system. We are going to make
use of the semi-classical description, which is possible to find for example in Ref.
[2] in more detail. Thus we are going to describe the electromagnetic field clas-
sically, restricting ourselves to the transverse part of the electric field denoted
by
−→
E (t). Let us note that the electric field is provided as function independent

on the position , we use the so called dipole approximation (supposing that the
wavelength of the field is much larger than the typical size of the molecule).
In quantum mechanics, the influence of the electric field is then described an
interaction Hamiltonian −

−→
µ̂
−→
E (t) (further we are going to omit the arrows con-

sidering the resulting mean value of the scalar product as Eµ̂). In our model
system, the new Hamiltonian ĤL−M would thus read

ĤL−M = Ĥ − µ̂E(t). (3.47)

Passing over to density matrix description would lead us to redefine the super-
operators L0 and LI in the form

L0ρ̂ =
1

~

[
Ĥ, ρ̂

]
, (3.48)

LI(t)ρ̂ = −1

~
[µ̂E(t), ρ̂] . (3.49)

The solution of the time evolution equation (2.63) is given by the equation (2.65).
The mean value of the dipole moment operator µ̂ corresponds to macroscopic

polarization of the medium and it is important for calculation of the resulting
absorption spectrum. Using the equation (2.49) and the already mentioned
solution we obtain for the mean value of the dipole moment

〈µ̂〉(t) = Tr(ρ̂(t)µ̂) = Tr((e−iL0te−i
´ t
0 LII(τ)dτ

← ρ̂(0))µ̂). (3.50)

Another important factor in the calculation of the spectrum is a form of the
dipole moment operator. In our model we are going to assume that the dipole
moment operator is defined as

µ̂ = dge|g〉〈e|+ deg|e〉〈g|, (3.51)
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where dge = d∗eg (operators of measurable quantities in quantum mechanics are
Hermitian).

In order to define a physically reasonable initial condition for our later treat-
ment of the vibrational relaxation in the electronically excited state, we could
also treat the time evolution of the density matrix itself

ρ̂(t) = e−iL0te−i
´ t
0 LII(τ)dτ

← ρ̂(0). (3.52)

Let us expand the positive time ordered exponential in the equation (3.52). We
obtain up to the first two orders in LII(τ)

ρ̂(t) = 1− i
ˆ t

0

dτTrB(U0(t− τ)LI(τ)ρ̂geq− (3.53)

−
ˆ t

0

dτ ′
ˆ τ

0

dτU0(t− τ)LI(τ)U0(τ − τ ′)LI(τ ′)ρ̂geq + . . . =

= 1 +
i

~

ˆ t

0

dτU0(t− τ)[µ̂, ρ̂geq]E(τ)−

− 1

~2

ˆ t

0

dτ ′
ˆ τ

0

dτU0(t− τ)[µ̂,U0(τ − τ ′)[µ̂, ρ̂geq]]E(τ ′)E(τ) + . . . .

To simplify the treatment, let as assume a special form of E(t) (in the so-called
impulse limit), namely

E(t) = E0δ(t+ ε), (3.54)

where E0 is a constant, δ(t) is the Dirac delta function, and ε is some infinitesimal
positive number. Then we can rewrite our equation (in the limiting case ε→ 0)
as

ρ̂(t) = 1 +
i

~
U0(t)[µ̂, ρ̂

g
eq]E0− (3.55)

− 1

~2
U0(t)[µ̂, [µ̂, ρ̂

g
eq]]E

2
0 + . . . . (3.56)

Let us now separately treat term with the first power of the E0 and the term
with the second power of the E0. From the definition of the commutator follows
that the first power term reads

i

~
U0(t)(µ̂ρ̂

g
eq − ρ̂geqµ̂)E0, (3.57)

and the second power term reads

− 1

~2
U0(t)(µ̂

2ρ̂geq − 2µ̂ρ̂geqµ̂+ ρ̂geqµ̂
2)E2

0 . (3.58)
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In these expressions we can see the time evolution of the operators µ̂ρ̂geqµ̂, µ̂ρ̂geq
or ρ̂geqµ̂. Terms like U0(t)µ̂ρ̂

g
eqµ̂ or U0(t)ρ̂

g
eqµ̂ appear in the above equation (2.58)

if we consider in the equation µ̂ρ̂geqµ̂ or ρ̂geqµ̂ as the initial conditions.
We can use the definitions of ρ̂geq and µ̂ (equations (3.35) and (3.51)) to write

the operator µ̂ρ̂geqµ̂as

µ̂ρ̂geqµ̂ =
1

Zg

∞∑
n=0

e−
Egn
kT µ̂|ng〉〈ng|µ̂ =

|dge|2

Zg

∞∑
n=0

e−
Egn
kT |e〉|n〉〈n|〈e|. (3.59)

We find that this corresponds to population of electronically excited state. Sim-
ilarly we can express µ̂ρ̂geq, as

µ̂ρ̂geq =
dge
Zg

∞∑
n=0

e−
Egn
kT |n〉|e〉〈ng|, (3.60)

ρ̂geqµ̂ =
d∗ge
Zg

∞∑
n=0

e−
Egn
kT |ng〉〈n|〈e|, (3.61)

and we find that they correspond to optical coherences. Finally, with the use of
the FC factors we obtain(

µ̂ρ̂geqµ̂
)
mene

= |dge|2
∑
i

Zg
i

Zg
cmicni, (3.62)

(
ρ̂geqµ̂

)
mgne

= d∗ge
Zg
m

Zg
cnm, (3.63)(

µ̂ρ̂geq
)
nemg

= dge
Zg
m

Zg
cnm. (3.64)

Every of these operators are nonzero only in one of the possible combinations of
α, β. To have normalization of the initial condition to unity we are going to point
out the factors like dge. Let us conclude that the suitable initial condition for
calculations (further denoted as ρ̂ex) could be defined by the following equations

ρexmgng = 0, (3.65)

ρexmene =
∑

i
Zgi
Zg
cmicni , (3.66)

ρexmgne = ρexnemg = Zgm
Zg
cnm , (3.67)
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where we have used symbol Zg
i to denote the i-th element of the partition sum

Zg. Considering the trace of this density operator (and the relation (2.31))∑
m

ρexmeme =
∑
im

Zg
i

Zg
cmicmi =

∑
i

Zg
i

Zg
= 1 (3.68)

we can see, that the density operator ρ̂ex is correctly normalized.
We might be interested also in the evaluation of the〈µ̂〉(t). Let us note that

using the same argumentation we would obtain in the first power of E0 the
equation

〈µ̂〉(1)(t) =
i

~
Tr(µ̂U0(t)[µ̂, ρ̂

g
eq])E0, (3.69)

where the superscript (1) reminds that this is the term with the first power.
We can see again the terms like U0(t)ρ̂

g
eqµ̂ motivating the choice of our initial

condition.
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Chapter 4

Projection operator method

4.1 Derivation of the equation of motion for the
relevant part of the density matrix

In this chapter we are going to describe the projection operator techniques
(POT). As a source of further information about POT could be recommended
for example Ref. [4].

As the title prompts, the use of this technique is to derive the equations of
motions for some projection of the total density matrix ρ̂. To be concrete, let
us suppose a superoperator P and a supplemental superoperator Q which have
the ordinary features of the projection superoperators. These are summarized
by the equations

P + Q = 1, (4.1)

P2 = P, (4.2)

Q2 = Q, (4.3)

PQ = QP = 0. (4.4)

Further we are going to derive the equations of motion not for the original
density operator ρ̂ but for the density operator in the interaction picture ρ̂I as
they were described in section 2.6. For the sake of brevity we are going to omit
the superscript I in the interaction picture density operator. Thus we can state
the equation of motion as

∂

∂t
ρ̂(t) = −iLI(t)ρ̂(t). (4.5)
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We are going to call the projection Pρ̂ the relevant part of the density matrix
and the projection Qρ̂ the irrelevant part of the density matrix. Letting these
projection superoperators act on the equation of motion and assuming that the
projection superoperators are time independent we obtain a pair of equations

∂

∂t
Pρ̂(t) = −iPLI(t)ρ̂(t), (4.6)

∂

∂t
Qρ̂(t) = −iQLI(t)ρ̂(t). (4.7)

Inserting the identity superoperator P + Q = 1 between the Liouville superop-
erator and the density matrices we get

∂

∂t
Pρ̂(t) = −iPLI(t)Pρ̂(t)− iPLI(t)Qρ̂(t), (4.8)

∂

∂t
Qρ̂(t) = −iQLI(t)Pρ̂(t)− iQLI(t)Qρ̂(t). (4.9)

To obtain the equation of motion for the relevant part of the density matrix, we
are going to solve the second equation and insert it into the first. The formal
solution of the second equation is

Qρ̂(t) = T(t, 0)Qρ̂(0)− i
ˆ t

0

dsT(t, s)QLI(s)Pρ̂(s), (4.10)

where ρ̂(0) is the initial condition, and where we introduce the superoperator
T(t, s) defined by the equation

T(t, s) = e−i
´ t
s ds
′QLI(s′)

← , (4.11)

where we use the positively time ordered exponential introduced in the section
2.6. This superoperator is a solution of the differential equation

∂

∂t
T(t, s) = −iQLI(s)T(t, s) (4.12)

with the initial condition
T(s, s) = 1. (4.13)

Inserting the equation (4.10) into the equation (4.8) we obtain the wanted equa-
tion of motion for the relevant part of the density matrix

∂

∂t
Pρ̂(t) = −iPLI(t)Pρ̂(t)− iPLI(t)T(t, 0)Qρ̂(0)+ (4.14)

+ PLI(t)

ˆ t

0

dsT(t, s)QLI(s)Pρ̂(s). (4.15)

This equation, which is still exact, is known as the Nakajima-Zwanzig equation.
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4.2 Time-convolutionless form of the master equa-
tion

The just derived Nakajima-Zwanzig equation contains the convolution in the
last term, which complicates her solution. In this section we are going to show
the way how to obtain a time-convolutionless form of the equation of motion
for the relevant part of the density operator. For this purpose we introduce a
superopartor H(t, s) which solves the equation

ρ̂(s) = H(t, s)(P + Q)ρ̂(t). (4.16)

It is similar to the case of time evolution superoperator, but this superoperator
propagates this system back in time. We may write

H(t, s) = ei
´ t
s ds
′LI(s′)

→ , (4.17)

where the → indicates the negative time ordering. Inserting the equation (4.16)
into the equation (4.10) we obtain

Qρ̂(t) = T(t, 0)Qρ̂(0)− i
ˆ t

0

dsT(t, s)QLI(s)PH(t, s)(P + Q)ρ̂(t). (4.18)

For the sake of brevity we also introduce a superoperator Σ(t) defined by the
relation

Σ(t) = −i
ˆ t

0

dsT(t, s)QLI(s)PH(t, s). (4.19)

Using this superoperator in the previous equation we get

(1− Σ(t))Qρ̂(t) = T(t, 0)Qρ̂(0) + Σ(t)Pρ̂(t). (4.20)

Let us suppose that he superoperator Σ(t) can be inverted (it can be for small
time t for example). Thus we may rewrite this equation as

Qρ̂(t) = (1− Σ(t))−1T(t, 0)Qρ̂(0) + (1− Σ(t))−1Σ(t)Pρ̂(t). (4.21)

It should be stressed that for large couplings or large t it may happen that the
equation (4.20) could not be solved uniquely for Qρ̂(t) such that the inverse of
(1− Σ(t)) does not exist.

Let us now insert the equation (4.21) into the equation (4.8)

∂

∂t
Pρ̂(t) = −iPLI(t)Pρ̂(t)− iPLI(t)((1− Σ(t))−1T(t, 0)Qρ̂(0)+ (4.22)
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+(1− Σ(t))−1Σ(t)Pρ̂(t)) =

= −iPLI(t)((1−Σ(t))−1T(t, 0)Qρ̂(0)−iPLI(t)(1−Σ(t))−1Σ(t)Pρ̂(t))− (4.23)

−iPLI(t)(1− Σ(t))−1(1− Σ(t))Pρ̂(t) =

= −iPLI(t)((1− Σ(t))−1T(t, 0)Qρ̂(0)− iPLI(t)(1− Σ(t))−1Pρ̂(t)). (4.24)

We can shorten this equation introducing the superoperators

K(t) = −iPLI(t)(1− Σ(t))−1P (4.25)

and
I(t) = −iPLI(t)((1− Σ(t))−1T(t, 0)Q (4.26)

into the form
∂

∂t
Pρ̂(t) = K(t)Pρ̂(t) + I(t)Qρ̂(0), (4.27)

which is the desired time-convolutionless form of the master equation (We are
going to call it further the TCL equation.).

4.3 Perturbation expansion for the TCL equation
In this section we are going to find the perturbation expansion for the equation of
motion of the relevant part of the total density matrix. Because in the application
of the perturbation expansion we are going perform later, the irrelevant part of
the density matrix at initial time is zero, let us restrict ourselves to the case

Qρ̂(0) = 0. (4.28)

In this case the TCL equation (4.27) simplifies to

∂

∂t
Pρ̂(t) = K(t)Pρ̂(t). (4.29)

The perturbation expansion is going to be performed in orders of LI(t). First of
all we are going to expand the term (1− Σ(t))−1 in

(1− Σ(t))−1 = 1 + Σ(t) + Σ2(t) + Σ3(t) + . . . .

Inserting this expression into equation (4.25) we obtain

K(t) = −iPLI(t)(1 + Σ(t) + Σ2(t) + Σ3(t) + . . .)P. (4.30)
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Let us restate the equation of motion for the relevant part as

∂

∂t
Pρ̂(t) =

∑
i

Ki(t)Pρ̂(t), (4.31)

where the i denotes the order in LI(t) in the K(t) we consider. Further expanding
the Σ(t) in orders of LI(t) we could show that the first several Ki(t) terms are

K1(t) = −iPLI(t)P, (4.32)

K2(t) = −
ˆ t

0

dsPLI(t)QLI(s)P, (4.33)

K3(t) = iPLI(t)(

ˆ t

0

dsQLI(s)P)2+ (4.34)

+ iPLI(t)[

ˆ t

0

ds

ˆ s

0

ds′(QLI(s)QLI(s
′)P−QLI(s

′)PLI(s)]P. (4.35)

The higher order terms are also possible to obtain by this method. Let us mention
the fact that the form of the K1(t) is possible to guess using the equation (4.6).
Too see this, consider the derivative ∂

∂t
Pρ̂(t) at time 0. With our initial condition

the equation (4.6) gives

∂

∂t
Pρ̂(0) = −iPLI(0)Pρ̂(0). (4.36)

Because all the higher order terms of the perturbation theory vanish at time 0,
the K1(t) has to be equal at time 0 to −iPLI(0)Pρ̂(0).

Let us now discuss the case, when we can assume that

PLI(t1)LI(t2) . . .LI(t2n+1)P = 0. (4.37)

Then the first order contribution K1(t) is zero. Further we can rewrite the second
order contribution in the form

K2(t) = −
ˆ t

0

dsPLI(t)LI(s)P. (4.38)

The K3(t) can be also simplified. Because QP = 0, the term containing

(

ˆ t

0

dsQLI(s)P)2 = (

ˆ t

0

dsQLI(s))PQ(

ˆ t

0

dsLI(s)P) (4.39)

38



is zero, and because of the demandPL(t1)L(t2) . . .L(t2n+1)P = 0, andPLI(t)Q =
PLI(t), all the terms vanish, i. e.

K3(t) = 0. (4.40)

By similar argumentation we would find out that the fourth order contribution
reads

K4(t) = PLI(t)[

ˆ t

0

ds

ˆ s

0

ds′
ˆ s′

0

ds′′LI(s)LI(s
′)LI(s

′′)− (4.41)

− LI(s)PLI(s
′)LI(s

′′)− LI(s
′)PLI(s)LI(s

′′)− LI(s
′′)PLI(s

′′)LI(s)]P. (4.42)
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Chapter 5

The second reduction - expansion
for the TCL equation

We have developed the model open quantum system and the perturbation ex-
pansion for the TCL equation in the preceding chapter. In this chapter we would
like to show how would the POT work in our case. In the first section of this
chapter we are going to discuss particular form of the Liouville superoperators.
In the second section we are going to show the explicit expressions for the equa-
tion of motion in several orders of the interaction Liouville superoperator for
a given projection superoperator. Further in the third section we are going to
show relation between the reduced density matrix σ̂ and the reduced density ma-
trix in the interaction picture to simplify the obtained equations for the relevant
part of the density matrix. In the fourth and the fifth section we are going to
treat analytical solutions of the original equations of motion and also the TCL
equation for several cases.

5.1 Liouville superoperators
We have already performed the first reduction, which led us to equation of motion
containing only L0 and the relaxation tensor R. The LS−B part of the Liouville
superoperator L0 is going play a role of the interaction Liouville superoperator
LI . We are also going to separate the relaxation tensor R in several parts from
reasons, which we are going to be clear later. Let us define the matrix elements
of the relaxation superoperators Rg and Rg

e by equations

Rgmαnβ
pγqδ = δαβgg (Rmgng

pγqδ ), (5.1)
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R̃gmαnβ
e pγqδ = δαβee (Rmgng

pγqδ ), (5.2)

where the tilde has the meaning explained in section 2.7. To conclude this section
we are going to define the Liouville superoperators LI(t) and L0, which we are
going to use in the TCL equation

L0 = LS + LB + Rg + Rg
e, (5.3)

LI = LS−B + R−Rg −Rg
e, (5.4)

LI(t) = eiL0tLIe
−iL0t = U†0(t)LIU0(t), (5.5)

where we instead of the addition of superscript I in the last equation denote the
interaction picture by the time dependence of LI . Let us note that we are going
to specially treat the case of the relaxation tensor with the γ′mαnβ instead of the
γmαnβ.

5.2 The equations of motion in the interaction
picture

The last thing we need to do to use the TCL equation is to define the projection
superoperatorP. We are going to use the so called Argyres and Kelley projection
superoperator (see for example Ref. [5]), which we define as

Pρ̂ = TrB(ρ̂)Ŵ .

As we have already mentioned, the ρ̂denotes the density operator in the inter-
action picture, thus following the equation (2.52), which defines the reduced
density operator σ̂, we are going to define the reduced density operator in the
interaction picture σ̂I by the equation

σ̂I = TrB(ρ̂). (5.6)

Thus we can now state the perturbation expansion for the TCL equation as

∂

∂t
σ̂IŴ = −iPLI(t)σ̂

IŴ −
ˆ t

0

dsPLI(t)QLI(s)σ̂
IŴ+ (5.7)

+ iPLI(t)[

ˆ t

0

ds

ˆ s

0

ds′(QLI(s)QLI(s
′)P−QLI(s

′)PLI(s))]σ̂
IŴ (5.8)
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in the first three orders in LI(t). We have performed the second reduction of our
system obtaining the equations of motion for the reduced density matrix σ̂I . In
the next subsection we are going to show how is the σ̂I connected with σ̂. Thus
we started with the total density matrix ζ̂, then we obtained the equations of
motion for the reduced density matrix ρ̂ and now we have performed the second
reduction obtaining the equations of motion for the reduced density operator σ̂I .

5.3 Transformation of the reduced density matrix
to the interaction picture

Let us now show the connection between the reduced density operator in the
interaction picture and the ordinary one. We are going to consider the definition
of the σ̂I (5.6) and the definition of the interaction picture density matrix (2.61)
(now denoted by the same symbol ρ̂) and state the equation

σ̂I = TrB(eiL0tρ̂). (5.9)

Considering our form of the L0 defined in the equation (5.3) we can show that
the following equation holds

σ̂I = eiLStTrB(ρ̂) = eiLStσ̂. (5.10)

To prove this, it is sufficient to prove the following equations

TrB(LBρ̂) = 0, (5.11)

TrB(Rgρ̂) = 0, (5.12)

TrB(Rg
eρ̂) = 0, (5.13)

because then in the expansion of the exponential in the equation (5.9) there are
only terms LS giving nonzero, these terms than form an exponential eiLSt. Be-
cause this exponential does not act on the phonon states, it can be interchanged
with the TrB operand. The first equation follows from the diagonal form of ĤB,
the second and the third equation follows from the equation (3.39). Therefore
we can obtain the reduced density matrix from the knowledge of the reduced
density equation in the interaction picture inverting the relationship (5.10).
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5.4 Analytical solution of the equations of motion
for the twice reduced density matrix

Considering the form of the superoperator LS we can directly write down the
transformation relation

σαβ(t) = e−
i
~ (〈α|ĤS |α〉−〈β|ĤS |β〉)tσIαβ(t). (5.14)

Let us also write down the analytical solution for the matrix elements of
the reduced density matrix at time t. Using the expression (3.46) for the exact
solution and the relations

TrB(〈α|Rρ̂|α〉) = 0, (5.15)

TrB(〈α|L0ρ̂|α〉) = 0, (5.16)
we can see that the diagonal elements of the reduced density matrix σ̂ are time
independent, thus

σαα(t) = σαα(0). (5.17)
We are going to use the initial condition (3.66), thus the elements are σgg(t) = 0
and σee(t) = 1. We can also express the time dependence of the off-diagonal
elements of σ̂. From the equations (3.2), (3.38) and (3.36) follows that the
matrix elements ρmgne satisfy the differential equation

d

dt
ρmgne(t) = (− i

~
(Emg − Ene)− γmgne)ρmgne(t). (5.18)

This equation has a solution

ρmgne(t) = e(− i
~ (Emg−Ene)−γmgne)tρmgne(0). (5.19)

Further using the relation (2.70) we can express the element σge as

σge(t) =
∑
nq

ρngqe(t)cqn (5.20)

and for the initial condition (3.66) we finally obtain

σge(t) =
∑
nq

e(− i
~ (Eng−Eqe)−γngqe)tZ

g
n

Z
cqncqn. (5.21)

Because the reduced density matrix is Hermitian σge(t) = σ∗eg(t), we have ob-
tained analytical solutions for every element of the reduced density matrix σαβ.

We assumed the more complicated case, when the γmgne depends on the
phonon indices. In the section 3.4 we noted that we can set γmgne = γmeng = γ.
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5.5 Simplifying and solving the TCL equation
We would like to show that the equation (5.7) leads to set of equations for
matrix elements of the reduced density matrix in the interaction picture, which
are independent for every element of the reduced density matrix. To see this,
we consider TrB of this equation yielding

∂

∂t
σ̂I = −iT rB(LI(t)σ̂

IŴ )− TrB(

ˆ t

0

dsLI(t)QLI(s)σ̂
IŴ )+ (5.22)

+ iT rB(LI(t)

ˆ t

0

ds

ˆ s

0

ds′(QLI(s)QLI(s
′)P−QLI(s

′)PLI(s))σ̂
IŴ ). (5.23)

Now notice that in the perturbation expansion, if we restrict ourselves to the
electronic part of the Hilbert space, every term is composed of commutators
with operators diagonal in the electronic states (for the case of zero relaxation
term often denoted as ĤI(t)) and sometimes there also occur superoperators Rg

and Rg
e. Because acting of a diagonal operator does not “mix” different matrix

elements of the operators it acts on, and the superoperators Rg and Rg
e also

do not cause transition between different electronic states, we can regard this
equation as four independent equations for matrix elements σ̂I .

Thus we may rewrite this equation in the first two orders in a form

∂

∂t
σIαβ = −i

∑
npq

(L̃nαnβ
I pαqβ(t)σIαβŴpq)− (5.24)

−
∑

npqrtp′q′

(

ˆ t

0

dsL̃nαnβ
I pαqβ(t)Q̃pαqβ

rαtβ L̃
rαtβ
I p′αq′β(s)σIαβWp′q′), (5.25)

or if we define K1αβ(t) and K2αβ(t) by the equations

K1αβ(t) = −i
∑
npq

(L̃nαnβ
I pαqβ(t)Wpq), (5.26)

K2αβ(t) = −
∑

npqrtp′q′

(

ˆ t

0

dsL̃nαnβ
I pαqβ(t)Q̃pαqβ

rαtβ L̃
rαtβ
I p′αq′β(s)Wp′q′), (5.27)

we can rewrite the equation as

∂

∂t
σIαβ = (K1αβ(t) +K2αβ(t))σIαβ. (5.28)

44



As we have already mentioned, the diagonal elements of the reduced density ma-
trix are in our model time independent, thus we would expect that the functions
K1αα(t) and K2αα(t) are 0 and they really are (it follows from the definition of
L̃nαnβ
I pαqβ(t)). We can also note that in the first order, following the definitions

(5.3), (5.4), (5.5) and the diagonality of Ŵ we can show that∑
npq

(L̃ngne
I pgqe(t)Wpq) =

∑
np

(eiL̃0tR̃e−iL̃0t)ngnepgpeWpp. (5.29)

Thus in the case with no relaxation, the first order contribution is zero or in other
words all the terms PLI(t)P are zero. The only part of the relaxation tensor,
which gives a nonzero contribution in the first order is the part responsible for
decay of the off-diagonal (in electronic states) elements of the density matrix
ρmαnβ.

From now on, we are going to suppose γmgne = γmeng = γ. From the expres-
sion (5.21), we can see that the analytical solution is

σge(t) = e−γt
∑
nq

e−
i
~ (Eng−Eqe)tZ

g
n

Z
cqncqn. (5.30)

To simplify the perturbation expansion we can suggest to assume γ = 0, solve
the equations of motion from the TCL equation and then multiply the resulting
σge(t) by factor e−γt.

In the case γ = 0, the equation (5.29) is zero, and therefore the first order of
the perturbation theory (5.26) is zero as well. We can even prove (at least in the
case ωg = ωe) that the condition (4.37) holds. From the equation (5.29) follows
that

PL(t)Pρ̂ = 0.

We have already discussed that the terms Knαα(t) are zero thus (because of the
Hermiticity) it is sufficient to prove that

〈g|PLI(t1)LI(t2) . . .LI(t2n+1)Pρ̂|e〉 = 0. (5.31)

Using the definitions of the superoperators in this expression we would arrive at

〈g|PLI(t1)LI(t2) . . .LI(t2n+1)Pρ̂|e〉 ∼ (5.32)

∼ TrB(ŴeqD̂2n+1∆V̂ D̂′2n+1 . . . D̂2∆V̂ D̂′2D̂1∆V̂ D̂′1)σgeŴeq,
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where the symbol ∼ denotes proportionality and the operators D̂2n+1, D̂′2n+1 are
some diagonal operators (in the base |n〉, dependent on times t1, t2, . . . t2n+1).
From the definition of ∆V̂ (3.17) it follows that

∆V̂ ∼ â+ â†. (5.33)

But then the expression contains trace over product of a diagonal matrices and
odd products of the creation and annihilation operators, which is always zero,
thus the statement PLI(t1)LI(t2) . . .LI(t2n+1)Pρ̂ = 0 is proven. We have already
shown in the section 4.3 that having this relationship, the K1(t) and the K3(t)
are zero. Now let us calculate the non-vanishing K2ge(t) analytically using the
equation (5.27). As we have already said, we can omit the Q and after some
rearrangements we obtain

K2ge(t) = − 1

~2
TrB(

ˆ t

0

ds∆V̂∆V̂ (s)Ŵeq), (5.34)

where
∆V̂ (s) = Û †B(s)∆V̂ ÛB(s), (5.35)

and
Û †B(s) = e

i
~ ĤBs. (5.36)

From the definition of the operator ∆V̂ follows that in our case

∆V̂ = −mω2
g x̂x0 = −~ωgX̂X0 = −~ωg√

2
X0(â+ â†),

where we made use of the creation and annihilation operators defined in section
2.5 and the dimensionless coordinates X̂ and X0 defined by equations (3.23) and
(3.27). We can express the K2ge(t) as

K2ge(t) = −X
2
0

2
ωgTrB(

ˆ t

0

ds(â+ â†)(â(s) + â†(s))Ŵeq), (5.37)

where the â(s) reads
â(s) = Û †B(s)âÛB(s), (5.38)

and the â†(s) is Hermitian conjugate of this operator. After calculations con-
sidering the definition of Ŵeq, the definition of Û †B(s), and the properties of the
creation and annihilation operators we would obtain

K2ge(t) = −iX
2
0

2
ωg(1− eiωgt − n̄(eiωgt − e−iωgt)), (5.39)
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where the n̄ is defined by the equation

n̄ =
∑
n

〈n|Ŵeq|n〉n =
1

e
~ω
kBT − 1

. (5.40)

Considering this relation in equation (5.28) and its consequence

σIge(t) = e
´ t
0 K2ge(s)σIge(0), (5.41)

we can after integration of the involved exponential functions write down the
solution following from the second order expansion of the TCL equation

σIge(t) = e
X2

0
2

((1+n̄)(e+iωgt−1)−iωgt+n̄(e−iωgt−1))σIge(0). (5.42)

We are going to show that at least for limiting case T → 0, this solution
is identical with the analytical solution (5.21). In the low temperature limit,
when Zg

n = δn0, we can write down the analytical solution (in the considered
case γ = 0)

σge(t) =
∑
nq

e−
i
~ (Eng−Eqe)tZ

g
n

Z
cqncqn =

∑
q

e−
i
~ (E0g−Eqe)tcq0cq0. (5.43)

Further using the relation (A.28) in this equation we have

σge(t) =
∑
q

e−
i
~ (E0g−Eqe)te−

X2
0
2

(
X2

0

2

)q
1

q!
. (5.44)

Passing to the interaction picture (equation (5.14)) and using the definitions of
Eng and Eqe we obtain

σIge(t) =
∑
q

eiωgqt−i
X2

0
2
ωgte−

X2
0
2

(
X2

0

2

)q
1

q!
= (5.45)

= e
X2

0
2

(eiωgt−1−iωgt). (5.46)

This expression is equal to the expression (5.42) in the low temperature limit,
when n̄ = 0 with our initial condition σIge(0) = 0. The solution of the TCL
equation in the second order gives at least in the low temperature limit solution
identical with the analytical solution.
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Let us now discuss the special case case, when the frequencies of the oscillators
are equal (ωg = ωe), and they have identical equilibrium position X0 = 0. Then
the operators V̂ e and V̂ g would take the from

V̂ g =
~ωg
2
X̂2, (5.47)

V̂ e =
~ωg
2
λ4X̂2, (5.48)

where the λ = ω2
e

ω2
g
(we use the λ from the subsection A.4.1). By the same argu-

mentation as in the preceding case we could prove that the relationPLI(t1)LI(t2)
. . .LI(t2n+1)Pρ̂ = 0 (valid also for nonzero temperatures). We are going to re-
strict ourselves to the case T → 0. Then we can state the equation

∆V̂ =
~ω
4

(λ4 − 1)((â+ â†)2 − 1). (5.49)

Considering again in the same way the second order of the TCL equation we
would obtain

σIge(t) = e
´ t
0 K2ge(s)σIge(0) = e

(λ4−1)2

32
(e2iωgt−1−2iωgt)σIge(0). (5.50)
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Chapter 6

Results of the numerical
simulations

6.1 Description of the used program
The program was written in Fortran 95. It can be compiled by standard Fortran
compilers with no supplemental libraries. The Runge-Kutta method in the fourth
order was used for the integration of systems of differential equations (description
of these methods can be found for example in Ref. [6]) and for the evaluation of
the integrals. To make the number of phonon states finite, a cutoff denoted in the
program by N, was chosen. For the simulations the cutoff was chosen big enough
to have negligible influence on the numerical simulations. This was tested by
variation of the cutoff and observation of the differences in the resulting figures.

The program also contains a routine calculating the FC factors based on the
recurrence formulas described in the subsection A.4.2 in the Appendix A. The
routine calculates the matrix cmn=̂C(m, n) for given λ=̂W0 and x0=̂x0 with cuttoff
N.

The Runge-Kutta method of the fourth order is used to solve the equation
(5.27) and to perform the integration with step denoted in the program as ha.
In the program, the matrix elements of the operators and the superoperators
in different bases are distinguished instead of tilde by last letter w (for example
LLI=̂LI , LLIw=̂L̃I). All the mathematical objects from this text are similarly
marked in the program (for example the transformation superoperator C=̂CCC).
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6.2 Parameters of the model system
In this section we are going to discuss, what could be typical parameters of our
model system to treat. From the definitions and (3.44) and (3.2) it is possible to
see that we should specify parameters T - temperature of the bath, k̃α - reorgani-
zation energy (with units of frequency), Eg−Ee - energy difference of the ground
and the excited state of the molecule, ωg and ωe vibrational eigenfrequencies of
the molecule in the ground and excited state, respectively. To determine the FC
factors, we should also add the values of λ and x0, as defined in the discussion
in (A.4.1).

Because here we are not interested in a particular molecules, we are going
to discuss only range of possible parameters relevant to “common” physical pro-
cesses. We are going to consider temperature in range between 0 and 103K.
Further, the energy difference Ee − Eg is going to be in range of transitions ap-
propriate to visible light. The energy of one phonon ~ωg. will be taken about
100 times smaller then than that of the optical transition. Visible light has the
frequency ranging from 405 to 790 THz. The frequency ωg is thus going to be
one or two orders of magnitude under the frequency of visible light, thus in range
about 2π(1012 to 1013) Hz. The ωeis going to be taken equal or very similar to
ωg. In the next sections, we choose the frequency of light corresponding to the
difference Ee−Eg as 500 THz, thus the appropriate ω of the light is π fs−1. We
consider the ωg hundred times smaller, thus ωg = π

100
fs−1.

Finally, we are going to discuss the reasonable range for parameters x0 and
λ. To obtain a reasonable guesses for these dimensionless parameters, we could
use the definitions (A.72) and (A.73). For the x0 we are going to choose some
values in range between 0 and 2. The parameter λ is also going to taken between
0 and 2.

We are going to use the spectroscopic units, which follow from the demand

2π~c = 1. (6.1)

In these units it is usual to use inverse centimeter as unit of the energy, because

2π~c = 1.98645× 10−23J cm (6.2)

We have specified the range of parameters of our model and the results in
particular cases are going to be discussed in the next section.
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6.3 Numerical results for second order TCL equa-
tion

In this section we are going to discuss several figures obtained by the simulations
with our Fortran program for various parameters. Everywhere in this section we
are going to omit the superscript I writing σ̂ instead of σ̂I . The parameters x0

(in previous chapters sometimes denoted as X0) and λ denote in this section the
dimensionless parameters of the FC factors defined by the equations (A.73) and
(A.72). The resulting figures do not depend on the energy difference Ee − Eg,
therefore we are not going to mention the value of this difference. We have
plotted the real part of the off-diagonal element σge of the reduced density matrix
in the interaction picture (interaction picture was chosen in order to avoid fast
oscillations depending on the difference Ee − Eg). In all simulations mentioned
in this section, the cutoff N was chosen equal to 11.

The temperature dependence of the time evolution of the σge(t) element of
the reduced density matrix is presented in Figures 6.1 and 6.2. We have already
proven that in the case of zero temperature, and ωg = ωe, the perturbation
theory gives in the first two orders in LI(t) identical results as the analytical
expression (5.21). Performing further numerical simulations we have observed
this behavior also in higher temperatures. Therefore you can see in the figures
only analytical solutions.

51



Figure 6.1: Real part of the matrix element σge obtained by the numeri-
cal simulations. The parameters of the model system were chosen as ~ωg =
~ωe ≈ 166.78 cm−1, x0 = 0, 2, for the temperature T ≈ 0 K, T ≈ 239 K and
T ≈ 300 K. The results of the perturbation theory in the second order are
identical with the results of the analytical calculation.
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Figure 6.2: Real part of the matrix element σge for the same parameters as the
figure 6.1. The dynamics is presented in a time range 10 times larger then in
Fig. 6.1.

In the Figs. 6.3 and 6.4 you can see the the dependence of σge(t) on another
parameter x0. As in the preceding case, the analytical solutions were identical
with the solutions following from the second order perturbation theory.

The case of parameter x0 = 1, 2, is shown in the Figs. 6.5 and 6.6. As we can
see, the changes of the parameter x0 lead to significant changes in the resulting
dynamics.

Let us now discuss the case, when the oscillators have the same equilibrium
position, but different frequencies. It turned out that the results of the second
order perturbation of the TCL equation leads to different result than the ana-
lytical expression. The results are in the figures 6.7 and 6.8 for the temperature
T ≈ 239 K and in the Figs. 6.9 and 6.10 for the temperature T ≈ 0 K.

Thus we can conclude that in the case of the shifted harmonic oscillators, the
second order of TCL equation gives the solution reproducing the exact dynamics
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of the system. In the case of oscillators with different frequencies, the second
order perturbation theory gives time dependence, which is satisfactory only for
very short times. Higher orders of the perturbation theory would be necessary
to faithfully reproduce the exact dynamics.

Figure 6.3: The parameters of the model system were chosen as ~ωg = ~ωe ≈
166.78 cm−1, x0 = 0, 6, for the temperature T ≈ 0 K, T ≈ 239 K and T ≈
300 K. The results of the perturbation theory in the second order are identical
with the results of the analytical calculation.
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Figure 6.4: Same parameters as the Fig. 6.3. The time range of this figure is 10
times larger then in Fig. 6.3.
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Figure 6.5: The parameters of the model system were chosen as ~ωg = ~ωe ≈
166.78 cm−1, x0 = 1, 2, for the temperature T ≈ 0 K, T ≈ 239 K and T ≈
300 K. The results of the perturbation theory in the second order are identical
with the results of the analytical calculation.
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Figure 6.6: Same parameters as the Fig. 6.5. The time range of this figure is
doubled with respect to Fig. 6.5.
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Figure 6.7: The parameters of the model system were chosen as ~ωg ≈
166.78 cm−1, ~ωe = 1, 1~ωg x0 = 1, 2, λ =

√
ωe
ωg
≈ 1, 05 for the temperature

T ≈ 239 K.
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Figure 6.8: Same parameters as in Fig. 6.7. The time range of this figure is 10
times larger then in Fig. 6.7.
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Figure 6.9: The parameters of the model system were chosen as ~ωg ≈
166.78 cm−1, ~ωe = 1, 1~ωg x0 = 1, 2, λ =

√
ωe
ωg
≈ 1, 05 for the temperature

T ≈ 0K.
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Figure 6.10: Same parameters as Fig. 6.9. The time range of this figure is 10
times larger then in Fig. 6.9.

6.4 Simulations of the relaxation processes
In this section we are going to discuss several plots of the exact numerical simu-
lation of the relaxation process. We have assumed the equation of motion for the
density operator ρ̂ of the form (3.36) with γmαnβ defined by equation (3.42). The
first plot you can find in the figure 6.11. As you can see, the diagonal elements
of the density matrix asymptotically approach the canonical equilibrium . The
diagonal elements of the density matrix at time t = 0 are not identical with
the equilibrium density matrix, because of the nontrivial FC factors x0 6= 0. In
the figures we can observe, how big difference the transformation using the FC
factors caused for the parameter x0 = 1, 2.
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Figure 6.11: The parameters for the simulation of the relaxation process were
chosen as k̃g~ = k̃e~ = ~ωe = ~ωg ≈ 166.78 cm−1, x0 = 1, 2, for the temperature
T ≈ 239K, Ee − Eg = 100~ωg ≈ 16 678 cm−1, x0 = 1, 2. In the figure you can
see the time dependence of the first three diagonal elements in the excited state
ρ0e0e(t), ρ1e1e(t), ρ2e2e(t) and the appropriate elements of the equilibrium density
matrix ρeeq 0e0e, ρeeq 1e1e, ρeeq 2e2e.

As we discussed in section 3.4, the off-diagonal elements should decay to zero.
The numerical simulation of this process is in the figure 6.12, which confirms this
assumption. The cutoff N was chosen in all the figures in this section equal to
10.
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Figure 6.12: The parameters for the simulation of the relaxation process were
chosen as k̃g

10
~ = k̃e

10
~ = ~ωe = ~ωg ≈ 166.78 cm−1, x0 = 1, 2, for the temperature

T ≈ 239K, Ee−Eg = 100~ωg ≈ 16678 cm−1, x0 = 1, 2. In the figure you can see
the time dependence of three off-diagonal elements of the density matrix ρ0e0e(t),
ρ0e1e(t), ρ0e2e(t).
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Chapter 7

Conclusion

In this work we have studied a two-level electronic system coupled to quantum
harmonic oscillators an example of a model open quantum system. It turned out
to be important to calculate the FC factors, which can be found in the Appendix
A.Physically our model system can be understood as a two level molecule with
one internal nuclear vibrational degree of freedom in a phonon bath. The phonon
bath interacts directly only with the internal vibration of the molecule. We per-
formed two formal reductions of the system. First reduction was performed with
the help of Haken-Stroble-Reineker model (Ref. [7]), obtaining from equations
of motion of ζ̂ the equations of motion for the reduced density matrix ρ̂.

We derived basic equations of the projection operator technique and the
perturbation expansion of the time-convolutionless equation and we applied these
equations for the second reduction of our model system, passing to the twice
reduced density operator σ̂. In this way we could obtain a quasi exactly solvable
open quantum system problem.

To obtain the desired reduced matrix σ̂ from the time-convolutionless equa-
tion, we derived many helpful relations in Chapter 4. We showed that the the
density operators σ̂ and σ̂I are related by equation (5.10). We also derived the
exact, analytical time dependence of the σ̂. We analytically solved the differ-
ential equations following from the time-convolutionless equation for the case
of shifted harmonic oscillators with the same eigenfrequency up to the second
order. For the special case of very low temperatures we showed that the second
order leads to analytical solution of the equations of motion for the operator σ̂.

Using our Fortran program we tested the quality of these equations up to the
second order of the perturbation expansion of the time-convolutionless equation
for an optical coherence. The results of the numerical simulations showed, that
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the perturbation expansion to the second order of the time-convolutionless equa-
tion leads to exact time evolution of the coherence element of the reduced density
matrix for the case of shifted harmonic oscillators with the same frequencies in
arbitrary temperatures. For the cases of frequency shift, the perturbation theory
in the second order led only to dependencies, which were exact only for small
times. We also plotted the relaxation process of the density operator ρ̂ obtaining
the expected relaxation to equilibrium density operator.

The exactly solvable model of an open quantum system presented in this
work can be used to investigate the validity of various perturbation schemes in
general. We performed this study for the dynamics of an optical coherence which
has a direct application in absorption spectroscopy. Further work is needed to
develop understanding of the validity of these schemes e.g for population transfer
and non-linear spectroscopy.
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Appendix A

Calculation of the Franck-Condon
factors

A.1 Recurrence relations for the Franck-Condon
factors

For computational calculations it is useful to express Franck-Condon (further FC
factors) factors by recurrence formulas which we are going to derive now. First
of all we are going to consider the case of two harmonic oscillators with shifted
equilibrium positions with wave-functions ψgn (x) and ψen (x) as described in
section 2.2 by equations (2.21) and (2.22).

Let’s start with definition of the FC factors using formula (2.22)

cmn =

∞̂

−∞

ψ∗em (x)ψgn (x) dx =

∞̂

−∞

ψgm (x− x0)∗ ψgn (x) dx (A.1)

Now we are going to make use of the Taylor expansion of ψgn (x− x0):

ψgm (x− x0) = (1− x0
d

dx
+

(−x0)2

2!

d2

dx2
+ . . .)ψgm (x) = e−x0

d
dxψgm(x) (A.2)

It is possible to rewrite the operator d
dx

in this expression using definition rela-
tions (2.13) and (2.14)

d

dx
=

1√
2

(â− â†). (A.3)
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Therefore cmn may be rewritten as

cmn =

∞̂

−∞

(
e
− x0√

2
(â−â†)

ψgm(x)
)∗
ψgn (x) dx. (A.4)

Using the relation (2.16) we may rewrite this as

∞̂

−∞

(
e
− x0√

2
(â−â†)

ψgm(x)
) â†√

n
ψgn−1 (x) dx (A.5)

=
1√
n

∞̂

−∞

(
âe
− x0√

2
(â−â†)

ψgm(x)
)
ψgn−1 (x) dx, (A.6)

where we omitted the asterisk, because the function is real. We used integration
by parts in this equation to change the creation operator to the annihilation
operator acting on from the most left.

To proceed further we are going to use the special case of Campbell-Baker-
Hausdorf formula

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂], (A.7)

which is valid if
[
Â, B̂

]
commutes with Â and B̂. In our case Â = − x0√

2
â,

B̂ = x0√
2
â† and

[
Â, B̂

]
=

x20
2

[â, â†] =
x20
2
, where we used linearity of commutator

and equation (2.18). The commutator
[
Â, B̂

]
is a multiple of identity operator,

therefore the condition [[
Â, B̂

]
, Â
]

=
[[
Â, B̂

]
, B̂
]

= 0 (A.8)

is satisfied and we can use the relation (A.7) in the equation (A.5). The operator
identity in our case is

e
− x0√

2
(â−â†)

= e
− x0√

2
â
e
x0√
2
â†
e−

x20
4 . (A.9)

Now we can see that in the equation (A.5) we may express the act on the
annihilation operator as follows

âe
− x0√

2
â
e
x0√
2
â†
e−

x20
4 = e

− x0√
2
â
âe

x0√
2
â†
e−

x20
4 , (A.10)
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because the exponential e−
x0√
2
â commutes with â. Using the identity

ââ†N = â†N â+Nâ†N−1, (A.11)

which can be proven with the aid of commutation relation (2.18), we may also
rewrite the expression âe

x0√
2
â† as follows

âe
x0√
2
â†

= â(1 +
x0√

2
â† +

(
x0√

2

)2
â†2

2!
+ . . .) = (1 +

x0√
2
â† +

(
x0√

2

)2
â†2

2!
+ . . .)â+

+ (
x0√

2
+

(
x0√

2

)2

â† +

(
x0√

2

)3
â†2

2!
+ . . .). (A.12)

This expression could be rewritten as

âe
x0√
2
â†

= e
x0√
2
â†
(
â+

x0√
2

)
. (A.13)

Using equations (A.9), (A.10), (A.11) we get

âe
− x0√

2
(â−â†)

= e
− x0√

2
(â−â†)

(
â+

x0√
2

)
. (A.14)

Let’s use this expression in equation (A.5)

1√
n

∞̂

−∞

(
âe
− x0√

2
(â−â†)

ψgm(x)
)
ψgn−1 (x) dx = (A.15)

=
1√
n

∞̂

−∞

(
e
− x0√

2
(â−â†)

(
â+

x0√
2

)
ψgm(x)

)
ψgn−1 (x) dx (A.16)

Now we obtain the recurrence relation

cmn =
x0√
2n
cmn−1 +

√
m

n
cm−1n−1, (A.17)

if we use equation (2.15), definition (2.27) and realize that e−
x0√
2

(â−â†)
ψgm(x) =

ψem(x). For the special case m = 0 we obtain using the equation (2.17)

c0n =
x0√
2n
c0n−1. (A.18)
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We could also consider equation

cmn =

∞̂

−∞

(
e
− x0√

2
(â−â†) â

†
√
m
ψgm−1(x)

)
ψgn (x) dx (A.19)

instead of equation (A.5) and then proceed in a very similar way proving the
relationship

e
− x0√

2
(â−â†)

â† = (â† − x0√
2

)e
− x0√

2
(â−â†)

, (A.20)

and then in the same way use the integration by parts to let the appropriate
annihilation operator act on the ψgn (x) and finally obtain recurrence relations

cmn =

√
n

m
cm−1n−1 −

x0√
2m

cm−1n (A.21)

cm0 = − x0√
2m

cm−1 0. (A.22)

The recurrence relations we derived are sufficient to determine the whole matrix
cmn when we know c00. If we knew c00 we could determine the first column of
the matrix by relation (A.22) and the first row by relation (A.18) and the rest
of the matrix by relation (A.17) or (A.21) one row by one. Now we are going
to calculate c00. It is possible to express the corresponding scalar product (see
equation (2.27)) as follows

c00 =

∞̂

−∞

ψ∗e0 (x)ψg0 (x) dx =

∞̂

−∞

(
1

π

) 1
2

e
−(x−x0)

2

2 e
−x2
2 dx, (A.23)

where we made use of equations (2.27), (2.21), (2.22). Further we can simplify
the expression

∞̂

−∞

(
1

π

) 1
2

e
−(x−x0)

2

2 e
−x2
2 dx =

∞̂

−∞

(
1

π

) 1
2

e
−
(√

2x− x0√
2

)2
−
x20
2

2 dx = e−
x20
4 , (A.24)

where we used the standard substitution method to calculate the Gaussian in-
tegral. The general formula to calculate such integrals provable by this method
is

∞̂

−∞

e−ax
2+bxdx =

√
π

a
e
b2

4a , (A.25)

which we will use later on (a > 0).
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A.2 Resulting formulas

Finally using c00 = e−
x20
4 we can summarize this section by recurrence relations

suitable for calculation of the elements cmn

cmn =
x0√
2n
cmn−1 +

√
m

n
cm−1n−1, (A.26)

c0n = x0√
2n
c0n−1 = e−

x20
4

(
x0√

2

)n
1√
n!
, (A.27)

cm0 = − x0√
2m
cm−10 = e−

x20
4

(
− x0√

2

)m
1√
m!
. (A.28)

It should be noted that the obtained recurrence relations determine cmn with
all the properties derived in section 2.4. Taking x0 = 0 the functions ψgn and
ψen are the same, therefore the matrix should be matrix of an identity. Looking
at the three equations above you can see that cmn = δmn really satisfies the
recurrence relations. Another example could be verification of the relationship
(2.31) for the zero column

∑
m

|cm0|2 =
∑
m

e−
x20
2

(
x2

0

2

)m
1

m!
= 1, (A.29)

where we made use of well known Taylor expansion of exponential. It is in-
teresting to see that this could be also regarded as a way how to prove that∑

m

(
x20
2

)m
1
m!

= e
x20
2 . We are not going to prove in this text that the other

properties are also satisfied.

A.3 FC factors for oscillators with different mass
and frequency

A.3.1 The first three recurrence formulas

In this section we are going to calculate matrix cmn for the case that the harmonic
oscillators have the same equilibrium position but different mass and frequency,
i. e. different λ =

√
mω
~ . From the definition of cmn (2.27) and the expression
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for ψen(x) (2.24) we can get

cmn =

∞̂

−∞

ψ∗em (x)ψgn (x) dx =
√
λ

∞̂

−∞

ψgm (λx)ψgn (x) dx. (A.30)

We can immediately calculate one half of the matrix cmn if we realize that integral
over odd function and symmetric interval with respect to x = 0 is zero and
that the functions ψgn(x) and ψen(λx) are even for n even and odd for n odd
(as discussed in the first chapter). Therefore c2m2n+1 = 0 and c2m+12n = 0,
because in these cases we integrate product of an odd and of an even function,
consequently odd functions and we can use this reasoning.

As in the preceding section we can obtain needed recurrence formulas by
rearrangement certain integrals in different ways. First of all we are going to
derive interesting relationship used in our calculation. Let us suppose a smooth
function f(x) and function f(λx). We can say that the function f(λx) is actually
f(x) with argument shifted by some x′

f(λx) = f(x+ x′), (A.31)

then we can make use of a Taylor expansion around point x

f(x+ x′) =

(
1 + x′

d

dx
+
x′2

2!

d2

dx2
+ · · ·

)
f(x). (A.32)

Now these equations are correct in the case that x + x′ = λx or equivalently
x′ = (λ− 1)x, therefore we can finally write

f(λx) =

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
f(x). (A.33)

Notice that the expression in the bracket is not an exponential of operator (λ−
1)x d

dx
, because for operators equation ÂN B̂N =

(
ÂB̂
)N

is generally not true
against the case of numbers, when we would understand it as an exponential
automatically. In our case this equation does not hold, so it is not an exponential
of (λ− 1)x d

dx
.

To calculate one of the recurrence relations we are going to consider following
integral

√
2

∞̂

−∞

xψ∗em (x)ψgn (x) dx =

∞̂

−∞

ψ∗em (x) (â+ â†)ψgn (x) dx =
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=
√
ncmn−1 +

√
n+ 1cmn+1, (A.34)

using the definitions (2.13), (2.14) of creation and annihilation operators and
their properties acting on the base functions (2.15), (2.16). On the other hand
we can rewrite the ψem(x) function in this integral as in equation (A.30)

√
2

∞̂

−∞

xψ∗em (x)ψgn (x) dx =
√

2λ

∞̂

−∞

xψgm (λx)ψgn (x) dx (A.35)

and then use the expression (A.33) for the case of ψgm (λx)

√
2λ

∞̂

−∞

xψgm (λx)ψgn (x) dx = (A.36)

=
√

2λ

∞̂

−∞

(
x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
ψgm (x)

)
ψgn (x) dx.

(A.37)
Let us treat the emerging operator

x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
(A.38)

Using commutation relation [
d

dx
, x

]
= 1 (A.39)

and another commutation relation which follows from the mentioned one

x

(
d

dx

)N
=

(
d

dx

)N
x−N

(
d

dx

)N−1

, (A.40)

the considered operator can be rewritten as

x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
=

=

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
x−
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− (λ− 1)x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
. (A.41)

By subtraction x
(

1 + (λ− 1)x d
dx

+ ((λ−1)x)2

2!
d2

dx2
+ · · ·

)
and rearrangement we

can simplify this equation to the form

x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
=

=

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
x

λ
. (A.42)

Now we can get back, use this operator equation in equation (A.36) and rewrite√
2x in terms of creation and annihilation operator

√
2λ

∞̂

−∞

(
x

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
ψgm (x)

)
ψgn (x) dx =

=
√

2λ

∞̂

−∞

((
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
x

λ
ψgm (x)

)
ψgn (x) dx =

=
√
λ

∞̂

−∞

((
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
â+ â†

λ
ψgm (x)

)
ψgn (x) dx.

(A.43)
Letting the creation and annihilation operators act on the ψgm (x) and using the
relation (A.33) and definition of cmn (A.30) we finally obtain

√
2

∞̂

−∞

xψ∗em (x)ψgn (x) dx =

√
m

λ
cm−1n +

√
m+ 1

λ
cm+1n. (A.44)

Comparing this equation and equation (A.34) we have the wanted recurrence
relation

√
ncmn−1 +

√
n+ 1cmn+1 =

√
m

λ
cm−1n +

√
m+ 1

λ
cm+1n. (A.45)
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The derivation leads to this recurrence relation unless we take m and n equal
to 0. Then we would obtain in the same way but using (2.17) the following
recurrence relations √

nc0n−1 +
√
n+ 1c0n+1 =

c1n

λ
, (A.46)

cm1 =

√
m

λ
cm−10 +

√
m+ 1

λ
cm+10. (A.47)

A.3.2 Other recurrence formulas

By similar reasoning we are going to obtain another recurrence relations for cmn.
This time we are going to use integral

√
2

∞̂

−∞

(
d

dx
ψem (x)

)
ψgn (x) dx. (A.48)

By integration by parts we can prove that the integral is equal to

−
√

2

∞̂

−∞

ψem (x)
d

dx
ψgn (x) dx. (A.49)

Further we can express the derivative (using definitions of creation and annihi-
lation operators (2.13), (2.14)) as

√
2
d

dx
= â− â†, (A.50)

use this operator equation in the integral and then (standardly using (A.30),
(2.15), (2.16), (2.23)) get

√
2λ

∞̂

−∞

(
d

dx
ψgm (λx)

)
ψgn (x) dx = −

√
ncmn−1 +

√
n+ 1cmn+1. (A.51)

As before, we can rewrite the left hand side of the equation according to (A.33)

√
2λ

∞̂

−∞

(
d

dx

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
ψgm (x)

)
ψgn (x) dx.

(A.52)
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We could treat with an operator of the form

d

dx

(
1 + (λ− 1)x

d

dx
+

((λ− 1)x)2

2!

d2

dx2
+ · · ·

)
(A.53)

and then obtain the recurrence relation in a very similar way1 but this time we
are going to try different approach. Combining equations (2.13), (2.14), (2.15),
(2.16), (2.17) and realizing that ψgn (x) = ψn (x) we obtain relations

1√
2

(
x+

d

dx

)
ψgn (x) =

√
nψgn−1 (x) , (A.54)

1√
2

(
x− d

dx

)
ψgn (x) =

√
n+ 1ψgn+1 (x) , (A.55)

1√
2

(
x+

d

dx

)
ψg0 (x) = 0. (A.56)

Now we can interchange the variable x to λx and rewrite ψgn (λx) to ψen (x) and
use equation (2.23) having

1√
2

(
λx+

d

λdx

)
ψen (x) =

√
nψen−1 (x) , (A.57)

1√
2

(
λx− d

λdx

)
ψen (x) =

√
n+ 1ψen+1 (x) , (A.58)

1√
2

(
λx+

d

λdx

)
ψe0 (x) = 0. (A.59)

To simplify our notation let us define creation and annihilation operators for
excited state

âe =
1√
2

(
λx+

d

λdx

)
, (A.60)

â†e =
1√
2

(
λx− d

λdx

)
, (A.61)

which have the same properties acting on ψen (x) as creation and annihilation
operators have acting on ψgn (x). Using these definitions and basic properties of

1The appropriate operator relation would be d
dx

(
1 + (λ− 1)x d

dx + ((λ−1)x)2
2!

d2

dx2 + · · ·
)
=

=
(
1 + (λ− 1)x d

dx + ((λ−1)x)2
2!

d2

dx2 + · · ·
)
λ d
dx .

75



creation and annihilation operators of excited state we can rewrite the integral
(A.48) as

√
2

∞̂

−∞

(
d

dx
ψem (x)

)
ψgn (x) dx = λ

∞̂

−∞

(
(âe − â†e)ψem (x)

)
ψgn (x) dx =

= λ

∞̂

−∞

(√
mψem−1 (x)−

√
m+ 1ψem+1 (x)

)
ψgn (x) dx =

= λ(
√
mcm−1n −

√
m+ 1cm+1n). (A.62)

Comparing this equation with equation (A.51) we finally obtain the recurrence
relation

−
√
ncmn−1 +

√
n+ 1cmn+1 = λ(

√
mcm−1n −

√
m+ 1cm+1n). (A.63)

As in the previous case we have to consider the special cases when m or n equals
to 0. The appropriate recurrence formulas are

cm1 = λ
√
mcm−10 − λ

√
m+ 1cm+10, (A.64)

−
√
nc0n−1 +

√
n+ 1c0n+1 = −λc1n. (A.65)

We could now show that the 6 obtained recurrence formulas (A.45), (A.46),
(A.47), (A.63), (A.64), (A.65) after several additions of equations and explicit
expressions of some integrals defining cmn are sufficient to determine the whole
matrix cmn, but this way there would arise an overlap with the following section,
therefore we are going to end here in order to avoid repeating similar calculations.

A.4 General case of two oscillators in one space
dimension

A.4.1 Calculation of recurrence formulas

In the previous sections we have derived recurrence formulas for the matrix cmn
in cases of shifted oscillators with respect to each other and oscillators with
different mass and frequency. In this section we are going to obtain recurrence
formulas for cmn in the case of two general harmonic oscillators in one dimension
and determine formulas to determine all elements of cmn.
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The behavior of harmonic oscillator is determined by three parameters - by
mass m of the oscillating entity, by resonance frequency ω and by Cartesian
coordinate of the equilibrium position x0. As discussed before, we can absorb
the first two parameters into one parameter λ =

√
mω
~ , therefore we are left with

two parameters for one harmonic oscillator. To stay within the same notation
we are going to describe the two sets of appropriate solutions of Schrödinger
equation described in the first chapter (see section 2.2) as

ψgn(x) =

√
1

2nn!

(
λ2
g

π

) 1
4

e
−(λg(x−xg))2

2 Hn (λg (x− xg)) =
√
λgψn (λg (x− xg)) ,

(A.66)

ψen(x) =

√
1

2nn!

(
λ2
e

π

) 1
4

e
−(λe(x−xe))2

2 Hn (λe (x− xe)) =
√
λeψn (λe (x− xe)) ,

(A.67)
where λg and xg are the mentioned parameters for ground state and λe and
xe are the parameters for the excited state and we have used ψn(x) defined by
equation (2.6). Our task is to calculate the matrix cmn, which has now the form
(using the defining integral for cmn (2.27))

cmn =

∞̂

−∞

ψ∗em (x)ψgn (x) dx =
√
λeλg

∞̂

−∞

ψm (λe (x− xe))ψn (λg (x− xg)) dx.

(A.68)
Now we are going to reduce number of parameters using substitution x →
λg (x− xg)

cmn =

√
λe
λg

∞̂

−∞

ψm

(
λe
λg
x+ λe(xg − xe)

)
ψn (x) dx =

√
λ

∞̂

−∞

ψm (λ(x− x0))ψn (x) dx, (A.69)

where we use parameters λ = λe
λg

and x0 = λg(xe − xg). We have just obtained
equation (2.24). In other words the matrix cmn for the case of one harmonic
oscillator in the origin with

√
mω
~ = 1 and the other with equilibrium position

in x0 and
√

mω
~ = λ is the same as the general matrix cmn we want to determine
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in this section. Therefore in what follows we can consider

ψgn (x) = ψn (x) , (A.70)

ψen (x) =
√
λψn (λ(x− x0)) (A.71)

and then at the end of our calculations change the variables to

λ =
λe
λg
, (A.72)

and
x0 = λg(xe − xg). (A.73)

As in the calculation in preceding section we are going to define creation and
annihilation operators for the excited state. Repeating the same considerations,
which led us to definitions (A.60) and (A.61) we would obtain

âe =
1√
2

(
λ(x− x0) +

d

λdx

)
, (A.74)

â†e =
1√
2

(
λ(x− x0)− d

λdx

)
, (A.75)

which has the standard properties of creation and annihilation operators acting
on ψen (x).

To obtain the first three recurrence relations analogous to the relations in
preceding section we consider an integral

√
2

∞̂

−∞

(x− x0)ψ∗em (x)ψgn (x) dx =

∞̂

−∞

ψ∗em (x) (â+ â† −
√

2x0)ψgn (x) dx =

=
√
ncmn−1 +

√
n+ 1cmn+1 −

√
2x0cmn, (A.76)

where we have proceeded in the same way as in the preceding chapter. On the
other hand we can rewrite this integral using âe and â†e

√
2

∞̂

−∞

(x− x0)ψ∗em (x)ψgn (x) dx =
1

λ

∞̂

−∞

(
(âe + â†e)ψ

∗
em (x)

)
ψgn (x)

=
1

λ
(
√
mcm−1n +

√
m+ 1cm+1n). (A.77)
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By comparison of the last two equations we have the recurrence relation

√
ncmn−1 +

√
n+ 1cmn+1 −

√
2x0cmn =

1

λ
(
√
mcm−1n +

√
m+ 1cm+1n) (A.78)

and standardly considering the cases when m or n are equal to 0 we have
√
nc0n−1 +

√
n+ 1c0n+1 −

√
2x0c0n =

c1n

λ
, (A.79)

cm1 −
√

2x0cm0 =
1

λ
(
√
mcm−10 +

√
m+ 1cm+10).(A.80)

The next recurrence relations we are going to obtain considering this integral

−
√

2

∞̂

−∞

ψem (x)
d

dx
ψgn (x) dx =

∞̂

−∞

ψem (x)
(
â† − â

)
ψgn (x) dx =

=
√
n+ 1cmn+1 −

√
ncmn−1, (A.81)

where we have used standard rearrangements from preceding section. Further
using integration by parts and operators âe and â†e we have

−
√

2

∞̂

−∞

ψem (x)
d

dx
ψgn (x) dx =

√
2

∞̂

−∞

(
d

dx
ψem (x)

)
ψgn (x) dx =

= λ

∞̂

−∞

(
(âe − â†e)ψem (x)

)
ψgn (x) dx = λ(

√
mcm−1n −

√
m+ 1cm+1n). (A.82)

By comparison of these equations we finally obtain

−
√
ncmn−1 +

√
n+ 1cmn+1 = λ(

√
mcm−1n −

√
m+ 1cm+1n) (A.83)

and for the special cases when m or n are equal to 0 we have

cm1 = λ(
√
mcm−10 −

√
m+ 1cm+10), (A.84)

−
√
nc0n−1 +

√
n+ 1c0n+1 = −λc1n. (A.85)

To close this subsection let us consider special case when m = n = 0, when we
would obtain in the same way relations

c01 = −λc10 (A.86)
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and
c01 −

√
2x0c00 =

c10

λ
. (A.87)

Excluding c10 from these equations we have

c01 =
λ2
√

2x0c00

1 + λ2
. (A.88)

A.4.2 Determining cmn
In this subsection we are going to use the recurrence relations to obtain ex-
pressions able to determine the matrix cmn, which use only few elements of cmn
calculated explicitly as “initial conditions”.

To calculate the zero row of the matrix cmn we can make use of the recurrence
relations (A.79) and (A.85). Let’s exclude from these equations c1n. We get

√
nc0n−1

(
λ2 − 1

)
+
√
n+ 1c0n+1

(
λ2 + 1

)
= λ2

√
2x0c0n. (A.89)

We can see that it is sufficient to determine c00 and c01, the other elements of
the zero row is possible to determine one by one using this recurrence relation.

Similarly to obtain suitable recurrence relation to determine the zero column
of the cmn, we are going to exclude cm1 from equations (A.80) and (A.84) getting

λ
√

2x0cm0 =
√
mcm−10(λ2 − 1)−

√
m+ 1cm+10(λ2 + 1). (A.90)

Thanks to this equation it is sufficient to calculate c00 and c10 to have the zero
column.

Supposing we have calculated the zero column or the zero row we are now
going to derive the recurrence relations, which would directly determine the
whole matrix cmn. Two solutions are offering, we can exclude from recurrence
relations (A.78) and (A.83) cm−1n to obtain recurrence relation which could
determine cmn row by row or cmn−1 and determine cmn column by column. These
expressions look this way in the first case

2λ
√
m+ 1cm+1n = −λ2

√
2x0cmn +

√
n+ 1cmn+1(λ2 − 1) +

√
ncmn−1(λ2 + 1)

(A.91)
and this way

2λ
√
n+ 1cmn+1 =

√
2x0λcmn+

√
mcm−1n(λ2+1)+

√
m+ 1cm+1n(1−λ2) (A.92)

in the second case.
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Thanks to relations (A.88) and (A.86) there is one number we have to calcu-
late to obtain the matrix by recurrence formulas - c00. We are going to calculate
c00 using expression (A.69) and (2.6)

c00 =
√
λ

∞̂

−∞

ψ0 (λ(x− x0))ψ0 (x) dx =

√
λ

π

∞̂

−∞

e
−(λ(x−x0))

2

2 e
−x2
2 dx. (A.93)

This integral we can evaluate using (A.25) for a = λ2+1
2

, b = x0λ

c00 =

√
λ

π

∞̂

−∞

e
−(λ(x−x0))

2

2 e
−x2
2 dx =

√
2λ

λ2 + 1
e
− x20λ

4

2(λ2+1) . (A.94)
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