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uvažovaných disků je zpracován ve druhé kapitole této práce. Zajímáme se zejména
o disky s konstantní hustotou momentu hybnosti a o tzv. Fisboneovy-Moncriefovy
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totou momentu hybnosti nás zajímá také vliv velikosti toroidálního magnetického
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Abstract: In the present work we study the properties of accretion tori orbiting
black hole. Our approach to this problem comes from the solving of general rel-
ativistic magnetohydrodynamic equations, which follow from conservation of the
energy-momentum tensor, the particle number and from Maxwell’s equations. We
solve these equations by numerical methods which are described in Chapter 1. The
formalism of tori which we consider here is described in Chapter 2. We are inter-
ested in tori with constant density of angular momentum and Fishbone-Moncrief
tori mainly. We study accretion rates in these tori when the mass of black hole is
increased suddenly and so the equilibrium in the torus is corrupted. For tori with
constant density of angular momentum we study the influence of the presence of
toroidal magnetic field on accretion rates.
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Introduction
It is commonly thought that many astrophysical systems contain relativistic plasma
with a dynamically significant magnetic field. Examples include accreting black
holes in black hole binaries, galactic nuclei, gamma-ray bursts, the cores of massive
stars undergoing core collapse, isolated neutron stars, and neutron stars in binary
systems. The kinematical gas analysis with HST (The Hubble Space Telescope)
makes a convincing argument that the masses of central black holes in galaxies ranges
from 105M⊙ to more than 109M⊙ (Kormendy & Richstone 1995). Astrophysical
black holes do not support their own magnetic field, however they are embedded in
cosmic magnetic field of external origin, with which they interact (Begelman et al.
1984). So we expect that the interaction of magnetized plasma with the gravitational
fields of black holes permeate the Universe and the astrophysical consequences should
be significant. From the observations of SgrA∗ it seems that the magnetic field
strength can reach the value around 40G (Eckart et al. 2008).

Fluid mechanics is well described by hydrodynamics but including magnetic fields
into the flow of fluids, gases and plasmas creates forces unknown to hydrodynamics.
Thus, we have much more complicated problem which requires a new subject, magne-
tohydrodynamics (MHD). Even more complicated situation occurs when we combine
both magnetic and gravitational interactions with plasma flows. The subject which
studies such problems is called GRMHD (General Relativistic Magnetohydrodynam-
ics) (Punsly 2008).

It is not surprising that there is an interest in numerical methods for solving the
equations of GRMHD. In this work we use program HARM developed by Gammie
et al. (2003) that solves hyperbolic partial differential equations in conservative
form. HARM has been configured to solve the relativistic magnetohydrodynamic
equations of motion on a stationary black hole spacetime in Kerr-Schild coordinates
to evolve an accretion torus model.

The thesis is arranged as follows. In Chapter 1 we describe the formalism and
we summarize the relevant equations as originally derived by Gammie et al. (2003).
These relations are needed in order to understand the numerical approach to the so-
lution. To this end we closely follow Gammie et al. (2003) and Noble et al. (2006).
In Chapter 2 we describe three different models of accretion torus: the Fishbone-
Moncrief torus, the torus with constant density of angular momentum l = const.
and l = const. torus with the presence of toroidal magnetic field. In this chapter we
follow Fishbone & Moncrief (1976), Abramowicz & Jaroszynski (1977) and Komis-
sarov (2006). In Chapter 3 we apply the code to study axially symmetric fluid tori
of Fishbone & Moncrief and Abramowicz et al. We first implement the appropriate
boundary conditions and reproduce the non-magnetized stationary solutions, includ-
ing the critical configurations with the relativistic cusp. Then we go over to study
the case of toroidal magnetic field permeating the stationary torus.
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1. General Relativistic MHD

1.1 Theoretical scheme
The conservative scheme means that the differential equations which need to be
integrated are of the following form:

∂tU(P ) + ∂iF
i(P ) = S(P ). (1.1)

U represents the vector of “conserved” variables, such as particle number density,
energy or momentum density, F i represents a vector of fluxes and S is a vector of
source terms that does not involve derivatives of P and therefore does not affect
the characteristic structure of the system. In the case when S = 0, the meaning of
conserved variables is obvious because the rate of change of the integral of U over
the volume depends only on fluxes at the boundaries, by the divergence theorem.
P is the vector of “primitive” variables as rest-mass density, internal energy densi-
ty, components of velocity and magnetic field. The fluxes and conserved variables
depend on P . Conservative numerical schemes advance U and then calculate P (U)
once or twice per time step depending on the order of the scheme.

In nonrelativistic conservative MHD schemes the conserved quantities are trivially
related to the primitive variables. The forward transformation P → U and also the
inverse transformation U → P have a closed-form solution. However, in GRMHD
the U(P ) is a complicated nonlinear relation and the inverse transformation has no
closed-form solution. So it must be treated numerically.

Throughout the whole text we adopt the geometrized units c = G = 1 and
assume metric of the signature −,+,+,+. We will also use the following numbering
of coordinates: (t, r, ϑ, ϕ)→ (0, 1, 2, 3).

The normal observer’s ( Zero Angular Momentum Observer) four-velocity is

nµ = (−α, 0, 0, 0) (1.2)

in coordinates t, x1, x2, x3. For the lapse function α one can write

α2 = − 1

gtt
. (1.3)

It is not trivial to see that α in equation (1.2) has the meaning of the lapse function
since lapse function is usually defined as

α2 ≡ −gtϕω − gtt, (1.4)

where
ω ≡ − gtϕ

gϕϕ
. (1.5)

3



Now we prove equation (1.3), especially that the α in this equation is the lapse
function according to definition (1.4). For the normal observer we can write the
contravariant indices of his four-velocity as follows

nµ = (nt, 0, 0, nϕ), (1.6)

where nϕ = ntω. Now we can use the normalization condition for four-velocities

gµνn
µnν = −1, (1.7)

from which it follows that

nt =

√
− 1

gtt + gtϕω
. (1.8)

For covariant indices one can write

nt = gtµn
µ = gttn

t + gtϕn
tω (1.9)

and
nϕ = gtϕn

t + gϕϕn
tω. (1.10)

Thanks to the definition of lapse (1.4) we can rewrite equation (1.9) into

nt = −α2nt. (1.11)

If we also realize that nt = ntg
tt we get

α =

√
−nt
nt

=

√
− 1

gtt
. (1.12)

So we have just showed that α2 = − 1
gtt

and that the expression (1.3) is consistent
with our definition of the lapse function (1.4).

The fluid is described by its four-velocity uµ, the rest mass density ρ0, the internal
energy per unit proper volume u and the pressure p. The electromagnetic field is
described by the antisymmetric field tensor F µν and its dual which is defined by

∗F µν ≡ 1

2
εµνκλFκλ, (1.13)

where εµνκλ ≡ − 1√
−g [µνκλ] is Levi-Cevita tensor. If we impose the ideal MHD

condition
uµF

µν = 0, (1.14)

which says that the Lorenz force vanishes in the rest frame of the fluid, the field
tensor has only three independent components now. So it is convenient to describe
the field by the magnetic field four-vector B̃µ ≡ −nν ∗F µν . The vector B̃µ differs
from magnetic field variables as follows:

Bi ≡ ∗F it =
B̃i

α
. (1.15)
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We can define projection tensors

hµν ≡ gµν + uµuν , (1.16)

which projects to the space perpendicular to four-velocity uµ and

jµν ≡ gµν + nµnν , (1.17)

which projects to the space perpendicular to normal observer’s four-velocity nµ. The
equations of GRMHD are :

T µν;µ = 0, (1.18)

which represents the conservation of energy-momentum tensor, the conservation of
particle number

(ρ0u
µ);µ = 0 (1.19)

and Maxwell’s equations
∗F µν

;ν = 0. (1.20)

For the gas we assume so called gamma law (Γ-law) with the equation of state

p = (Γ− 1)u. (1.21)

Now we are going to investigate what should our energy-momentum tensor look
like. First of all it is obvious that it consist of two parts

T µν = T µνfluid + T µνelmag. (1.22)

In a general meaning, the electromagnetic part of energy-momentum tensor is defined
as follows

T µνelmag ≡ F µλF ν
λ −

1

4
gµνF λδFλδ. (1.23)

This definition is valid for ∗F µν too. For the dual of electromagnetic field tensor we
can write ∗F µν = (nµB̃ν − nνB̃µ). Now we can write for the electromagnetic part of
the energy-momentum tensor following relation

T µνelmag =
(nµB̃λ − nλB̃µ)(nνB̃λ − nλB̃ν)(−nµuµ)(−nνuν)

γ · γ

− 1

4
gµν

(nλB̃δ − nδB̃λ)(nλB̃δ − nδB̃λ)(−nλuλ)(−nλuλ)
γ · γ

, (1.24)

where we used the expression for the Lorenz factor of the flow measured in the normal
observer’s frame:

γ ≡ −nµuµ. (1.25)

There should be some constant, but it plays no role actually (the right hand side of
the equation of conservation is zero), so we do not write it here. Using the identity
B̃µnµ = 0 we can rewrite the equation (1.24) to the form

T µνelmag = b2uµuν +
1

2
gµνb2 − bµbν , (1.26)
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where bµ ≡ hµν
B̃ν

γ
. For details see appendix (A1). For the energy-momentum tensor

of ideal fluid we can write

T µνfluid = (ρ0 + u+ p)uµuν + pgµν (1.27)

and so the energy-momentum tensor has the form

T µν = (w + b2)uµuν +

(
p+

b2

2

)
gµν − bµbν , (1.28)

where w ≡ ρ0 +u+p. Hereafter the primitive variables are: ρ0, u, B̃
i and ũi ≡ jiµu

µ.
The choice of ũi is numerically convenient because it ranges from −∞ to +∞. Note
that ũt = 0. We want to express conservation laws in terms of conserved variables
U , fluxes F and source terms S. It is easy to see that:

T µν;µ = 0⇒ 1√
−g

(
√
−gT µν),µ = −ΓνρσT

ρσ. (1.29)

It can be rewritten as

∂t(
√
−gT tµ) + ∂i(

√
−gT iµ) = −

√
−gT κλΓλµκ. (1.30)

The associated conserved variable is
√
−gT tµ but for the next purposes it is conve-

nient to introduce a new conserved variable by

Qµ ≡ −nνT νµ = αT tµ, (1.31)

which is the density of energy and momentum in the normal observer’s frame. From
the Maxwell’s equations we get (note that ∗F µν = B̃νnµ − B̃µnν)

∗F 0i
;i = Bi

;i = 0, (1.32)

which is the condition of zero magnetic field divergence and

∗F iµ
;µ = ∗F i0

;0 + ∗F ij
;j = (niB̃0 − n0B̃i);0 + (niB̃j − njB̃i);j = 0. (1.33)

From the last equation it follows that(
B̃i

α

)
;t

+ (niB̃j − njB̃i);j = 0

and
∂t(
√
−gBi) = −∂j[

√
−g(uibj − ujbi)], (1.34)

where we used B̃i = γbµhiµ = γbi and γ ≡ −nµuµ = −ntut (in normal observer’s
frame). Finally there is a particle number conservation law

∂t(
√
−gρ0u

t) = −∂j(
√
−gρ0u

j). (1.35)
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The conserved variable for this equation is
√
−gρ0u

t, but as in the previous case
it is convenient to introduce a new conserved variable defined by D ≡ −ρ0nµu

µ =
ρ0αu

t = γρ0 which represents the mass density measured by the normal observer. So
we have 8 conserved variables: Qµ,D and B̃i. The transformation U(P ) is already
known:

p = (Γ− 1)u, (1.36)

w = ρ0 + u+ p, (1.37)

γ = (1 + gijũ
iũj), (1.38)

uµ =
(γ
α
, ũi − αγgti

)
, (1.39)

and

bµ = hµν
B̃ν

γ
. (1.40)

Then we can evaluate D and Qµ:

D = γρ0, (1.41)

Qµ = γ(w + b2)uµ −
(
p+

b2

2

)
nµ + (nνb

ν)bµ. (1.42)

D, Qµ and B̃i are both conserved and primitive variables. Later in the paper it will
be useful to use the identities

b2 =
1

γ2
[B̃2 + (B̃µuµ)2] (1.43)

and
nµb

µ = −uµB̃µ. (1.44)

So we have a system of five equations to be solved (one for D and four for Qµ).
Our approach to this problem is to evaluate some scalars from conserved variables to
reduce the dimensionality of our system of equations. We will use D, QµB̃

µ, Qµnµ
and Q̃2, where Q̃ν ≡ jνµQ

µ. Moreover we will use W ≡ wγ2, vi ≡ ũi

γ
. These new

variables simplify the equations and lead to a more robust numerical scheme.
Now we evaluate our scalars (for details see (A2) and (A3) in appendix):

B̃µQµ =
W

γ
(uµB̃

µ), (1.45)

Qµn
µ = −B̃

2

2
(1 + v2) +

(B̃µQµ)2

2W 2
−W + p. (1.46)

Now we evaluate Q̃2. It is easy to show that

Q̃µQ̃µ = (Qµ + nµQνnν) · (Qµ + nµnνQ
ν) = Q2 + (nµQ

µ)2. (1.47)
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We see that we must evaluate (nµQ
µ)2 and Q2. The first term we can get from (1.46)

by simple multiplication

(nµQ
µ)2 =

B̃4

4
(1 + v2)2 +

(B̃µQµ)4

4W 4
+ (p−W )2

− (1 + v2)
B̃2(B̃µQµ)2

2W 2
− B̃2(1 + v2)(p−W ) +

(B̃Qµ)2

W 2
(p−W ). (1.48)

For Q2 one can write

QµQ
µ = −W 2(1− v2) + 2Wp− p2 + B̃2

(
−W
γ2

+ p(1 + v2)− (B̃µQµ)2

2W 2γ2

)

+
(B̃µQµ)2γ2

W 2

(
−W
γ2

+ p(v2 − 1)

)
− 1

4γ4

(
B̃4 +

(B̃µQµ)4γ4

W 4

)
. (1.49)

For details see (A4). Now if we put the expressions (1.49) and (1.48) into (1.47), we
get

Q̃2 = v2(B̃2 +W )2 − (QµB̃
µ)2(B̃2 + 2W )

W 2
. (1.50)

From this equation we can express v2

v2 =
Q̃2W 2 + (QµB̃

µ)2(B̃2 + 2W )

(B̃2 +W )2W 2
. (1.51)

The 1DW scheme solves one nonlinear algebraic equation (1.46), which is a function
ofW since equation (1.51) is used to eliminate v2. When we know v2 andW already,
we can find w, ρ0 and u.

Finally we need to find ũi. We use Q̃i for this purpose.

Q̃µ ≡ jµνQν = γ(w + b2)jµνuν + (nµb
µ)bνj

µν

=
1

γ
(W + B̃2)ũµ +

(B̃µuµ)2

γ
uνj

µν + (uµB̃
µ)2nµ − uµB̃

µ

γ
hµνB̃

ν

=
1

γ
(W + B̃2)ũµ − (uνB̃

ν)

γ
B̃µ. (1.52)

We can use the equation (1.45) to solve ũi:

ũi =
γ

W + B̃2

(
Q̃i +

(QµB̃
µ)B̃i

W

)
. (1.53)

The equation (1.46) which is solved in 1DW scheme includes a quotient of polynomials
in W . This can be the reason of some numerical pathologies near roots. A good
approach to eliminating such problems is solving two simpler equations ( equation

8



(1.50) and equation (1.46) ) simultaneously for W and v2. This method is called the
2D scheme since it involves solving a two-dimensional algebraic system.

Using v2 instead of ũ2 or γ is appropriate for this method because equations
(1.50) and (1.46) are linear only in v2 and not in ũ2 or γ. The linear dependence on
v2 increases the rate of convergence for this quantity and is guaranteed to be well
behaved in the vicinity of a root.

1.2 Numerical scheme
There are many possible ways to numerically integrate the GRMHD equations. The
first choice which we can do is between conservative and nonconservative schemes.
In the HARM the conservative scheme is applied. The advantage of this choice is
that in one dimension total variation stable schemes are guaranteed to converge to
a weak solution of the equations by the Lax-Wendroff theorem (Lax & Wendroff
1960) and by a theorem due to LeVeque (1997). While no such guarantee is available
for multidimensional flows, this is a reassuring starting point. Furthermore, one is
guaranteed that a conservative scheme in any number of dimensions will satisfy the
jump conditions at discontinuities.

A conservative scheme updates a set of conserved variables at each time step.
Our vector of conserved variables is

U ≡
√
−g(ρut, T tt, T

t
i, B

i). (1.54)

These variables are updated using fluxes F . Also it is needed to choose a set of
primitive variables, which are interpolated to model the flow within zones. We use
variables with a simple physical interpretation:

P = (ρ, u, vi, Bi), (1.55)

where vi = ui

ut
is the 3-velocity. The functions U(P ) and F (P ) are analytic, but the

inverse operations are not. There is no simple expression for F (U).
Since we update U rather than P , we must solve P (U) at the end of each time

step. We use a multidimensional Newton-Raphson routine with the value of P from
the last time step as an initial guess. Since Bi can be obtained analytically, only five
equations need to be solved. The Newton-Raphson method requires an expensive
evaluation of the Jacobian ∂U

∂P
. In practice we evaluate the Jacobian by numerical

derivatives , but this is both expensive and a source of numerical noise.
The evaluation of P (U) is the crucial point of our numerical scheme. To evaluate

F , we use a MUSCL-type scheme with “HLL” fluxes (Harten et al. 1983). The
fluxes are defined at zone faces. A slope-limited linear extrapolation from the zone
center gives PR and PL, the primitive variables at the right and left-hand side of
each zone interface. The monotonized central limiter, the van Leer limiter and the
minmod limiter are implemented in HARM.
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In general a system of conservation laws with some extra source terms can be
written as

∂tU + ∂iF
i(U) = S(U), (1.56)

where U ,F and S are vectors of conserved variables, fluxes and source terms. ∂i
represents the spatial derivative in direction i and the summation is implied over
i = 1, 2, 3. In following text we closely follow Tóth (1998).

TVD Lax-Friedrichs scheme

Some of the most popular methods for solving a hyperbolic system of PDE are
the total variation diminishing (TVD) type schemes. Although these schemes were
developed and used for compressible hydrodynamics, their application to MHD is
relatively recent. There are several variations and generalizations of TVD schemes,
like total variation bounded (TVB), essentially non-oscillatory (ENO) etc. methods,
but these are not discussed here. Even within the TVD family there are dozens
of variants, therefore we concentrate on the simplest versions. The simplest TVD
type scheme is based on the first order Lax-Friedrichs scheme, which discretizes a
conservation law according to

Un+1
j = Un

j −
∆t

∆x

(
Fj+ 1

2
− Fj− 1

2

)
+

1

2

(
φj+ 1

2
− φj− 1

2

)
, (1.57)

where
Fj+ 1

2
=
Fj + Fj+1

2
(1.58)

and
φj+ 1

2
= Uj+1 − Uj. (1.59)

The last two terms in (1.57) add numerical diffusion which corresponds to a term of
the form η∇2U with the diffusion coefficient η ∝ (∆x)2

∆t
. So the Lax-Friedrichs scheme

is only first order accurate. One can also show that the scheme is conditionally
stable for Courant number C < 1. The numerical diffusion can be reduced by using
a diffusive flux

φj+ 1
2

=
∆t

∆x
cmax
j+ 1

2
(Uj+1 − Uj), (1.60)

where the local Courant number C = cmax ∆t
∆x

(cmax denotes the fastest wave speed)
is used as a coefficient for the artificial diffusion. The scheme we have just described
is the first order TVD Lax-Friedrichs scheme.

Another way to look at the numerical flux terms φ is to realize that they modify
the centered flux difference formula to a one-sided upwinded difference formula, at
least for a single linear equation like the continuity equation ∂ρ

∂t
+∇ · (ρv) = 0. For

a fixed velocity, the maximum wave speed is cmax = |v|, and we can write

ρn+1
j = ρnj −

∆t

2∆x
[(ρv)j+1 − (ρv)j−1] +

∆t

2∆x
|v|(ρj+1 − 2ρj + ρj−1)
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= ρnj −
∆t

∆x

{
(ρv)j − (ρv)j−1 for v ≥ 0
(ρv)j+1 − (ρv)j for v < 0.

(1.61)

The upwinded difference formula is very appropriate for the advection equation, and
in general for hyperbolic equations, since physical information should propagate from
the upstream direction.

Second order spatial accuracy can be achieved by a linear approximation of U and
the corresponding fluxes at the boundary interfaces. The value of U at the interface
at xj+ 1

2
can be linearly extrapolated from the left and right cell center values as

UL
j+ 1

2
= Un

j +
1

2
∆U

n

j

and
UR
j+ 1

2
= Un

j+1 −
1

2
∆U

n

j+1, (1.62)

where the limited slopes ∆U will be defined later. The fluxes at the cell interface
are calculated as

Fj+ 1
2

=
F (UL

j+ 1
2

) + F (UR
j+ 1

2

)

2
, (1.63)

φj+ 1
2

=
∆t

∆x
cmax
j+ 1

2

(
UR
j+ 1

2
− UL

j+ 1
2

)
. (1.64)

The diffusive flux φ has been reduced since the difference between the left and right
extrapolation is proportional to (∆x)2 for a smoothly varying U . It still provides
proper upwinding for the flux difference formula. The maximum propagation speed
can be defined as cmax

j+ 1
2

= max[cmax(UR), cmax(UL)].
For explicit time stepping, temporally second order accuracy can be achieved by

some two step Runge-Kutta discretization, or a predictor-corrector scheme. Han-
cock’s predictor step is probably the best choice. First a time centered

U
n+ 1

2
j = Un

j −
∆t

2∆x

[
F (Un

j +
1

2
∆U

n

j )− F (Un
j −

1

2
∆U

n

j )

]
(1.65)

is calculated and then it is used for calculating the linear extrapolations

UL
j+ 1

2
= U

n+ 1
2

j +
1

2
∆U

n

j

and
UR
j+ 1

2
= U

n+ 1
2

j+1 −
1

2
∆U

n

j+1. (1.66)

This is a spatially and temporally second order TVDLF scheme which is stable
for Courant number C < 1. Contributions of source terms can be added easily
to the right hand side of (1.65). In multidimensional simulations the UL and UR

extrapolations should be determined for each interface, and the flux contributions
can be added at the same time, however this usually requires the Courant number
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to be reduced to about C < 0.5.

TVD-MUSCL scheme

The TVD-MUSCL scheme (MUSCL means the Monotonic Upstream Scheme for
Conservation Laws) differs from the TVDLF scheme in that the upwinding is applied
for characteristic variables rather than the conserved variables. The characteristic
variables ~rk are certain linear combination of the conserved variables that form the
right eigenvectors of the matrix ∂ ~F

∂~U
, ie.

∂ ~F

∂~U
~rk = ck~rk, (1.67)

where ck is the eigenvalue corresponding to the k-th eigenvector. For a linear system
of hyperbolic PDE-s, the characteristic waves consist of components ~rk that travel
at a speed ck. Hyperbolicity ensures that the eigenvectors and eigenvalues are real
and a complete orthogonal basis can be formed from them. The normalized left
eigenvectors ~lk are related to the right eigenvectors by the orthogonality relation
~lk · ~rm = δk,m.
Now we can modify the numerical diffusive flux vector ~φ to be

~φ =
∆t

∆x

∑
k

~rk|ck|~lk · (~UR − ~UL), (1.68)

where ~rk, ck, ~lk are calculated for the averaged ULR
j+ 1

2

state. The scalar product of the

k-th left eigenvector with ~UR − ~UL determines the jump in the k-th characteristic
variable, while the multiplication by ~rk transforms the result back to the conserved
variables. The gain relative to the much simpler TVDLF flux is the use of the
eigenvalue ck instead of the largest eigenvalue cmax. Therefore the upwinding is
accurate for each characteristic variable, which means less numerical diffusion. On
the other hand, the left and right eigenvectors need to be calculated for each cell
interface, which is rather expensive for the GRMHD equations.

Slope limiters

In the second order TVDLF and TVD-MUSCL schemes the ∆U slopes of the
conserved variables are limited by slope limiters denoted by ∆U . The slope limiter
is required to ensure the TVD property for the schemes. There are many versions
of slope limiters that satisfy both conditions for TVD property and second order
accuracy for smooth solutions. Here we define only three: the minmod limiter, the
van Leer limiter and superbee limiter. In our computation we use the van Leer

12



limiter which is defined by

∆Uj = minmod(2∆Uj− 1
2
, 2∆Uj+ 1

2
,
1

2
∆Uj− 1

2
+

1

2
∆Uj+ 1

2
). (1.69)

The minmod limiter is defined as

∆Uj = minmod(∆Uj− 1
2
,∆Uj+ 1

2
) (1.70)

and the superbee limiter by

∆Uj = s max[0,min(2|∆Uj+ 1
2
|, s∆Uj− 1

2
),min(|∆Uj+ 1

2
|, 2s∆Uj− 1

2
)], (1.71)

where ∆Uj+ 1
2

= Uj+1 − Uj, s = sgn(∆Uj+ 1
2
) and generalized minmod function for

argument n > 1 is defined as

minmod(w1, w2, ..., wn) ≡ sgn(w1)max[0,min(|w1|, sgn(w1)w2, ..., sgn(w1)wn)].
(1.72)

The definition of minmod function means that it takes the argument with the smallest
modulus when all arguments have the same signs and otherwise it is zero. The
minmod limiter is rather diffusive, while the superbee limiter can sharpen smooth
waves into discontinuities. In fact, the minmod and the superbee limiters are the
most and least diffusive of all acceptable symmetric two-variable slope limiters. The
van Leer limiter is between those two and it is often used as a good compromise.
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2. Fluid tori orbiting Kerr black hole

2.1 Fishbone-Moncrief model of accretion torus:
l∗=const.

The Fishbone-Moncrief torus (Fishbone & Moncrief 1976) is a model of a fluid torus
orbiting Kerr Black Hole. The spacetime can be expressed by

ds2 = −e2νdt2 + e2ψ(dϕ− ωdt)2 + e2λdr2 + e2µdΘ2, (2.1)

where ν, ψ, ω, λ, µ are functions of r and Θ. Four-velocity of the fluid uα satisfies:
a) ur = uΘ = 0,
b) gαβuαuβ = −1
and
c)ut, uϕ are functions of r and Θ only.
We are interested in thermodynamical functions such as p, ρ, baryon number

density n, entropy per baryon s, temperature T and enthalpy per baryon h which
satisfies

h =
p+ ρ

n
(2.2)

and
dp = ndh− nTds. (2.3)

The Euler equations follows from energy-momentum tensor conservation

Tαβ;β = 0, (2.4)

where
Tαβ = (p+ ρ)uαuβ + pgαβ. (2.5)

One more equation we can obtain from the baryon number conservation law

(nuα);α = 0. (2.6)

The Euler equations (2.4) reduces to

d[lnh+ ν]−
(
T

h

)
ds = u(ϕ)

2d(ψ − ν)− u(ϕ)[1 + u(ϕ)
2]

1
2 eψ−νdω, (2.7)

where
u(ϕ) = e−ψuϕ

and
u(t) = −[1 + (u(ϕ))

2]
1
2 = e−ν(ut + ωuϕ) (2.8)
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are projections of four-velocity uα onto orthonormal vectors of locally nonrotating
frame (Bardeen et al. 1972) defined by

e(t) = e−ν
(
∂

∂t
+ ω

∂

∂ϕ

)
, e(ϕ) = e−ψ

∂

∂ϕ
,

e(r) = e−λ
∂

∂r
, e(Θ) = e−µ

∂

∂Θ
. (2.9)

We are interested only in cases for which ds = 0. Defining χ ≡ ψ−ν and φ ≡ lnh+ν,
the equation (2.7) reduces to

dφ ≡ d[lnh+ ν] = (u(ϕ))
2dχ− u(ϕ)[1 + (u(ϕ))

2]
1
2 eχdω. (2.10)

We can see that φ must always be expressible purely as a function of χ and ω. Let’s
suppose first that χ and ω are independent variables. Then from the equation (2.10)
it follows that

∂φ

∂χ
= (u(ϕ))

2

and
∂φ

∂ω
= −u(ϕ)[1 + (u(ϕ))

2]
1
2 eχ, (2.11)

which implies a relationship between ∂φ
∂χ

and ∂φ
∂ω
, which we obtain by eliminating

u(ϕ) from these expressions. If χ and ω are linearly dependent in some region then
equations (2.11) do not follow from equation (2.10). But we can impose these equa-
tions as a means of eliminating the lack of uniqueness in the representation of φ as
a function of χ and ω. If χ and ω are linearly dependent functions of r and Θ, the
representation of φ = φ(χ, ω) is not unique since we can reexpress ω in terms of χ
or vice versa. This convention is very useful because if we adopt it we can treat
both dependent and independent cases in the same way. From equation (2.11) we
get Hamilton-Jacobi differential equation for φ(χ, ω)

− ∂φ

∂ω
=

[
∂φ

∂χ

(
1 +

∂φ

∂χ

)] 1
2

eχ. (2.12)

We took a positive sign in the expression u(ϕ) = ±
(
∂φ
∂χ

) 1
2 . Solution for the negative

choice could be generated by replacing ω with (−ω). If we view χ as a canonical
coordinate and ω as the time, then equation (2.12) is the Hamilton-Jacobi equation
for the time-independent Hamiltonian

H(χ,Π) = [Π(1 + Π)]
1
2 eχ, (2.13)

where Π is the momentum conjugate to χ. The solutions of Hamilton’s equations
are

dχ

dω
=
∂H

∂Π
=
eχ

2

[(
1 + Π

Π

) 1
2

+

(
Π

1 + Π

) 1
2

]
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and
dΠ

dω
= −∂H

∂χ
= −H. (2.14)

Let χ0 and Π0 be the initial values of χ and Π at time ω = ω0 and set

H0 = H(χ0,Π0). (2.15)

Since H is conserved one can write

H(χ(ω),Π(ω)) = H(χ0,Π0) (2.16)

and equation (2.14) gives

Π(ω) = Π0 − (ω − ω0)H0. (2.17)

When we put equations (2.13),(2.16) and (2.17) together, we obtain

e−χ(ω) = e−χ0

[
Π0 − (ω − ω0)H0

Π0

] 1
2
[

1 + Π0 − (ω − ω0)H0

1 + Π0

] 1
2

, (2.18)

which, together with equation (2.17), provides the general solution of Hamilton’s
equations. Along a characteristic curve (it means the solution of Hamilton’s equa-
tions) φ obeys

dφ

dω
=
∂φ

∂χ

dχ

dω
+
∂φ

∂ω

= Π
dχ

dω
−H(χ,Π). (2.19)

We will integrate equation (2.19) along the characteristic curves to determine φ as
a function of χ and ω. Letting φ0(χ0) = φ(χ0, ω0) represent the values of φ at initial
points (χ0, ω0), we have for the initial momentum

Π0(χ0) =
dφ0

dχ0

≡ φ0
′. (2.20)

Moreover we can write thanks to equations (2.13),(2.17),(2.18) and (2.20)

Π(χ0, ω) = φ0
′ − (ω − ω0)eχ0 [φ0

′(1 + φ0
′)]

1
2 (2.21)

and

exp[−χ(χ0, ω)] = e−χ0

[
1− (ω − ω0)eχ0

(
1 + φ0

′

φ0
′

) 1
2

] 1
2

·

·

[
1− (ω − ω0)eχ0

(
φ0
′

1 + φ0
′

) 1
2

] 1
2

. (2.22)
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Along the characteristic curve we get from the equation (2.19):

dφ

dω
= Π

dχ

dω
−H(χ,Π) = −H(χ,Π)

2(1 + Π)
, (2.23)

where we have used Hamilton’s equation for dχ
dω
. Since H is conserved and Π depends

linearly on time along characteristics, we can easily integrate equation (2.23) and get

φ(χ, ω) = φ0(χ0) +
1

2
ln

(
1− (ω − ω0)eχ0

[
φ0
′(χ0)

1 + φ0
′(χ0)

] 1
2

)
. (2.24)

Equations (2.24) and (2.22) constitute a parametrized form of the general solution
to the Hamilton-Jacobi form of Euler’s equations. Another important view to our
problem can be gained from equations (2.11) and (2.12), because from these two
equations it follows that the Hamiltonian H can be expressed in the form

H = uϕ[1 + (uϕ)2]
1
2 eχ = −u(ϕ)u(t)e

χ = uϕu
t, (2.25)

where we have used equations (2.8) and the inverse metric gµν . Killing equations
for the vector field ξ = ∂

∂ϕ
combined with Euler equations Tαβ;β = 0 imply the

conservation of the flow of angular momentum

Lz =

∫ √
−gξµT µtd3x =

∫ √
−g(p+ ρ)uϕu

td3x, (2.26)

where we integrate over entire volume of the fluid in a t = const. hypersurface. It
is natural to call the value

√
−g(p + ρ) the density of inertial mass. Then from the

equations (2.25) and (2.26) it is easy to see that H = uφu
t is the flow of angular

momentum per unit inertial mass. Since H is a constant of motion (Hamiltonian
which is not explicitly dependent on time is always constant of motion thanks to
Poisson brackets identity) we are going to assume H to be a constant throughout
entire volume of a torus. We want to find a solution of equation (2.10). We will use
an identity

(u(ϕ))
2 =

∂φ

∂χ
=
−1 + (1 + 4l2e−2χ)

1
2

2
, (2.27)

where we have used equations (2.11),(2.13), (2.25) and the definition l ≡ uϕu
t. Then,

after integrating we get

φ(χ, ω) ≡ lnh+ ν =
1

2
ln[1 + (1 + 4l2e−2χ)

1
2 ]− 1

2
(1 + 4l2e−2χ)

1
2 − lω + φin, (2.28)

where φin is a constant. Now we are going to specify solution (2.28) to the Kerr
background gravitational field. The appropriate metric functions are

e2ν =
Σ∆

A
, e2ψ =

Asinϑ2

Σ
, ω =

2aMr

A
, (2.29)
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where
∆ ≡ r2 − 2Mr + a2,

Σ ≡ r2 + a2cosϑ2,

A ≡ (r2 + a2)2 −∆a2sinϑ2. (2.30)

The solution (2.28) now becomes

lnh =
1

2
ln

(
1 + [1 + 4l2Σ2∆(A sinϑ)−2]

1
2

Σ∆A−1

)
− 1

2

[
1 +

4l2Σ2∆

(Asinϑ)2

] 1
2

− 2aMrl

A

− 1

2
ln

(
1 + [1 + 4l2rin

2(rin
2 − 2Mrin + a2)(rin

3 + rina
2 + 2Ma2)−2]

1
2

rin(rin2 − 2Mrin + a2)(rin3 + rina2 + 2Ma2)−1

)

+
1

2

[
1 +

4l2rin
2(rin

2 − 2Mrin + a2)

(rin3 + rina2 + 2Ma2)2

] 1
2

+ l

[
2aM

(rin3 + rina2 + 2Ma2)

]
. (2.31)

The last three terms in this equation are the negatives of the first three evaluated at
the point r = rin, ϑ = Π

2
. For the equations of state which we consider here, the tori

would consist of a region of positive values of lnh bounded by a surface at which
lnh = 0. To show that such tori exist, it is necessary to investigate the qualitative
behavior of the lnh expression. We can limit this investigation to the values of lnh
on the equatorial plane, because the dependence on ϑ is simple to understand. As
ϑ→ 0 or Π, sinϑ→ 0, the dominant behavior in this limit occurs through the second
term in expression (2.31). This leads to a large negative contribution to lnh and
causes any otherwise acceptable torus (for which lnh > 0 at ϑ = Π

2
) to be bounded

by some nonzero value of ϑ.
That lnh depends only on sin2ϑ in a sufficiently regular way also means that

the inner and outer surfaces of any torus will have no cusps at the equator. This
follows by taking the derivative with respect to ϑ of the boundary-defining equation
lnh(r, ϑ) = 0. The resulting equation has the form dr

dϑ
= cosϑ · g(r, ϑ), where g is

some complicated function that is, nevertheless, regular at ϑ = Π
2
. Thus dr

dϑ
= 0 at

Π
2
, so the boundary is smooth where it crosses the equator.
From the inner boundary of a torus at r = rin, lnh must increase from zero

(since this corresponds to increasing pressure), reach a maximum at a radius where
pressure-gradient forces vanish and where the flow is geodesic and finally decrease
to zero at the outer boundary. Whether lnh increases or decreases from zero and
whether or not it finally decreases to zero depends on the value of the constant l. If
l is too small, lnh will decrease as r increases from rin, while if l is too large, lnh
will not return to zero for any r > rin. Neither of these facts is simple to ascertain
in the complete generality of the Kerr metric.

We are interested here in the case where [lnh(r, Π
2
)],r = 0. A useful expression is[

lnh

(
r,

Π

2

)]
,r

= −1

2
(ψ + ν),r − lω,r +

1

2
χ,r(1 + 4l2e−2χ)

1
2 . (2.32)
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By equating this expression to zero, we find after some algebraic manipulation that

l = l(r) ≡ ±
(
M

r3

) 1
2

[
r4 + r2a2 − 2Mra2 ∓ a(Mr)

1
2 (r2 − a2)

r2 − 3Mr ± 2a(Mr)
1
2

]
. (2.33)

Now we can construct the torus of l = const. by evaluating l at some radius (which
will be the point of maximal pressure according to the fact that [lnh(r, Π

2
)],r = 0 for

l obtained from (2.33)).

2.2 Abramowicz et al.model of accretion torus:
l=const.

In this section I provide a short introduction to the relativistic von Zeipel’s theorem
at first, because I will refer to it later. The general relativistic von Zeipel’s theo-
rem (Abramowicz 1971) tells us about the sufficient and necessary condition for the
coincidence of isobaric and equidensity surfaces in the interior of an isolated, axial-
ly symmetric rotating mass of a perfect fluid in a steady state (“star”). We adopt
following assumptions:

a) The spacetime manifold of the star is asymptotically flat at radial infinity.
b) The star and its manifold are stationary, and so a Killing vector field η (which

is timelike at radial infinity and has a unit lenght) exists there.
c) The star and its manifold are axially symmetric, so that there exists a Killing

vector field ξ, which is spacelike at radial infinity and furthermore it is orthogonal
to η.

d) The star is made of a perfect fluid, which rotates only in the ξ direction so
that

Lξu = 0, (2.34)
where L denotes the Lie derivative and u denotes the four-velocity of the fluid.

We call the object satisfying properties a),...,d) the star. For the rotating star
we have

ξµp,µ = ηµp,µ = uµpµ = 0, (2.35)
where coma denotes the partial derivative. We want to show that following theorems
are valid:

1) The surfaces of constant density of angular momentum per unit inertial mass
l(r, ϑ) and the surfaces of constant angular velocity of rotation Ω(r, ϑ) coincide with
each other in the interior of the rotating star if and only if the star is barotropic:

p = p(ρ0)⇔ F (l,Ω) = 0. (2.36)

2) The surfaces of constant density of angular momentum per baryon j and the
surfaces of constant angular velocity of rotation Ω coincide in the interior of the
rotating star if the star is isentropic:

σ,µ = 0⇒ F (j,Ω) = 0. (2.37)

19



Proof. We will use a coordinate system in which

ηµ = δµt , (2.38)

ξµ = δµϕ (2.39)

and
ds2 = gttdt

2 + 2gtϕdϕdt+ gϕϕdϕ
2 + gABdx

AdxB, (2.40)

where A=1,2 and B=1,2. In this coordinate system we have following expressions for
angular velocity of rotation, density of angular momentum per baryon and density
of angular momentum per unit inertial mass:

Ω =
uϕ

ut
=
dϕ

dt
, (2.41)

j =
p+ ρ0

n
uϕ, (2.42)

l =
uϕ
ut
. (2.43)

n denotes the density of baryon number. It is not difficult to show that the equations
of energy-momentum tensor conservation, T µν;µ = 0, for a hydrodynamical case of
tensor

Tµν = (p+ ρ0)uµuν + pgµν (2.44)

can be put into the form

(p+ ρ0)uνuµ;ν = −p,µ − uµuνp,ν . (2.45)

We will use following expressions to rewrite the last equation.

uνuµ;ν = −uνΓσµνuσ = −1

2
gνρ,µu

νuρ, (2.46)

gνρu
νuρ = −1⇒ (gνρu

νuρ),µ = 0, (2.47)

which implies that
gνρ,µu

νuρ = −gνρ(uν,µuρ + uνuρ,µ). (2.48)

If we put the last three equations together we will get

uνuµ;ν =
1

2
(uν,µuν + uρu

ρ
,µ) = utu

t
,µ + uϕu

ϕ
,µ. (2.49)

Thanks to the fact that uµp,µ = 0, we have

(p+ ρ0)−1p,µ = −utut,µ − uϕuϕ,µ = −uϕuϕ,µ −
utu

tut,µ + ut,µ − ut,µ
ut

=
ut,µ
ut
−
utuϕu

tuϕ,µ − utuϕuϕutµ
(ut)2

= (lnut),µ − (utuϕ)Ω,µ. (2.50)

20



Now we apply the covariant derivative on this equation and furthermore we multiply
the result of this operation by the completely antisymmetric tensor εκλµν . Then we
obtain:

(p+ ρ0)−2ρ0,νp,µε
κλµν = (utuϕ),νΩ,µε

κλµν . (2.51)

From the last two equations we see that in the case of the rigid rotation (Ω,µ = 0)
the gradients of ρ0, p and ut are parallel and so the surfaces of their constant values
must coincide. From equation (2.51) it follows that the gradients of density and
pressure are parallel if and only if

(utuϕ),νΩ,µε
κλµν = 0, (2.52)

or equivalently written in another form

f(utuϕ,Ω) = 0, (2.53)

where f is a function of Ω and utuϕ only. From the normalization condition for
four-velocity we obtain

utuϕ = −(Ω + l−1)−1 (2.54)

and
F (l,Ω) = 0 (2.55)

as a result of equations (2.54) and (2.53). One can see that we have just proven a
statement (2.36).

I will not demonstrate the proof of the second statement here.

Relativistic concept of angular momentum density

The most frequently used definitions of angular momentum density in a relativis-
tic case are:

l = −uϕ
ut
, (2.56)

l0 = −uϕ, (2.57)

l∗ = −uϕut. (2.58)

The relativistic angular momentum velocity is defined by

Ω =
uϕ

ut
. (2.59)

From the expressions (2.56) and (2.59) it follows that

l = −gtϕ + Ωgϕϕ
gtt + Ωgtϕ
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and
Ω = − gtϕ + lgtt

gϕϕ + lgtϕ
. (2.60)

We will call the surfaces of constant l and Ω the von Zeipel’s cylinders. If the
background gravitational field is known and a special form of the von Zeipel’s formula
is assumed one can easily find the explicit form of the functions

l = l(r, θ)

and
Ω = Ω(r, θ) (2.61)

by solving equation (2.60).
In the barotropic case the surfaces of l = const. and the surfaces of Ω = const.

coincide so one can introduce the function

F = (1− Ωl) exp

∫ l

lin

(1− Ωl)−1Ωdl, (2.62)

where lin denotes the value of l on the inner edge of the torus. The time component of
four-velocity ut = A is called the redshift factor and ut = U is the energy of the fluid
element per unit inertial mass. From the normalization condition for four-velocity
we get:

A = (−gtt − 2Ωgtϕ − gϕϕΩ2)−
1
2 , (2.63)

U = (gϕϕ + 2lgtϕ + l2gtt)
− 1

2 (gtϕ
2 − gttgϕϕ)

1
2 , (2.64)

AU = (1− Ωl)−1. (2.65)

For details see (A5a) and (A5b) in appendix. The solution of relativistic Euler
equation (2.50)

p,µ
p+ ε

= (lnA),µ −
lΩ,µ

1− Ωl
, (2.66)

where ε denotes the total energy density in the rest frame, can be rewritten in two
equivalent forms:

W −Win ≡ ln(FA)in − ln(FA) = −
∫ p

0

dp

p+ ε
, (2.67)

and

W −Win = lnU − lnUin −
∫ l

lin

Ωdl

1− Ωl
= −

∫ p

0

dp

p+ ε
, (2.68)

where we have used (2.65) and (2.62). The quantity W = W (p) is equal to the total
potential in Newtonian limit (expressed in the units of c2). Therefore W = 0 at
infinity. In the isentropic case considered by Fishbone & Moncrief (1976) we get∫ p

0

dp

p+ ε
= ln

(
h

hin

)
, (2.69)
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where h = p+ε
n

is the specific enthalpy. In any case the isobaric (equipotential)
surfaces are given by the equationW = const. For a known background gravitational
field and a given von Zeipel’s relation it is easy to determine the explicit form of the
equationW (r, θ) = const. from (2.61) and (2.68). Thus, the problem of constructing
the model of torus is completely solved.

Now we are ready to give explicit solutions for tori with following properties:

l = const. (2.70)

or
l∗ ≡

l

1− Ωl
= const. (2.71)

The second relation was used by Fishbone & Moncrief (1976). In the case of l =
const. it is easy to see from equation (2.68) that

W = − ln[A(1− Ωl)] = lnU. (2.72)

In the case l∗ = const. we get

W = − lnA+ l∗Ω. (2.73)

(For details see Abramowicz & Jaroszynski (1977)). So for the case of l = const we
have

W −Win = lnU − lnUin = −
∫ P

0

dp

p+ ρ0 + u
, (2.74)

where pmeans the pressure, ρ0 is the rest mass density and u is the density of internal
energy.

2.3 Magnetized torus with the toroidal magnetic field
We now assume that the magnetic field is present in the torus. In this case the
energy-momentum tensor can be written in this form:

T µν = (w + b2)uµuν +

(
p+

1

2
b2

)
gµν − bµbν , (2.75)

where w is the specific enthalpy (w = ρ0 + p + u), p is the pressure and bµ is the
projection of magnetic field vector defined in section 1.1. Our assumptions of the flow
are same as in the previous chapter. We will restrict ourselves in the cases of pure
azimuthal magnetic fields ( satisfying br = bϑ = 0 ). The covariant equations of ideal
relativistic MHD are energy-momentum tensor conservation, continuity equation and
Maxwell’s equations. In our case the only non-trivial result follows from energy-
momentum tensor conservation T µν;ν = 0. Contracting this equation with projection
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tensor hµν defined in section 1.1 we obtain (see appendix in Komissarov (2006) for
details)

(w + b2)uνu
ν
,i +

(
p+

b2

2

)
,i

− bνbν,i = 0, (2.76)

where i = r, ϑ. We can rewrite this equation in terms of the angular velocity Ω = uϕ

ut

and the angular momentum l = −uϕ
ut
. Then we get

(ln |ut|),i −
Ω

1− lΩ
l,i +

p,i
w

+
(Lb2),i
2Lw

= 0, (2.77)

where L(r, ϑ) ≡ gtϕ
2−gttgϕϕ. When b2 → 0 then equation (2.77) reduces to equation

(2.66). For a barotropic equation of state (w = w(p)) from equation (2.77) it follows
that

d

(
ln |ut|+

∫ P

0

dp

w

)
− Ω

1− lΩ
dl +

d(Lb2)

2Lw
= 0 (2.78)

In the non-magnetized torus case, this equation implies that Ω = Ω(l) and so the
surfaces of constant Ω and l coincide. But there is no reason to be fulfilled this
relation for magnetized tori case. However, if we still assume that Ω = Ω(l) from
some reason, then we can rewrite equation (2.78) as

ln |ut|+
∫ P

0

dp

w
−
∫ l

0

Ωdl

1− Ωl
+

∫ p̃m

0

dp̃m
w̃

= const., (2.79)

where w̃ ≡ Lw, p̃m ≡ Lpm and pm = b2

2
is the magnetic pressure. On the surface of

the torus and also on its inner edge there is

p = pm = 0, ut = utin , l = lin. (2.80)

So we can find the constant of integration as

const. = ln |utin | −
∫ lin

0

Ωdl

1− Ωl
. (2.81)

Now we assume (as in the section 2.2) that l is the constant through the torus. Then
we can rewrite equation (2.79) into following form

W −Win +

∫ P

0

dp

w
+

∫ p̃m

0

dp̃m
w̃

= 0. (2.82)

In (A6) in appendix there is shown that for the non-zero components of bµ the
following expressions are valid:

bϕ = ±
√

2pm
A

and
bt = lbϕ, (2.83)

where A ≡ gϕϕ + 2lgtϕ + l2gtt.
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3. Results: axi-symmetric accretion
of magnetized tori

3.1 The dependence of accretion rates on magnetic
field

We will assume at first the non-magnetized Abramowicz et al. model of accretion
torus (l = const.) with the polytropic equation of state:

p = κργ0 ,

u =
p

γ − 1
. (3.1)

For the special choice of γ = 4
3
and κ = 10−2 , which are physically relevant, we can

solve the right hand side of equation (2.74) analytically and write the result as

lnU − lnUin = − ln

(
1 +

p
1
4

0.25 · 10
3
2

)
. (3.2)

In our scheme of constructing the torus, we need to express the thermodynamical
variables as a function of the metric only. So we rewrite the last equation into
following form:

p =

(
Uin
U
− 1

)4

· 254 · 10−2. (3.3)

From equation (3.3) we can obtain the value of pressure at each point of the torus
and via equations (3.1) the rest mass density and density of internal energy too.

If we want to assume a magnetic field in the torus we must solve equation (2.82),
which is more complicated than equation (2.74). We could solve this equation nu-
merically of course but it would be a next possible source of numerical noise. We
impose the relation between the both integrals in equation (2.82) so, that∫ P

0

dp

w
= const. ·

∫ P̃m

0

dp̃m
w̃

. (3.4)

The solution of the first integral is already known and so the equation (2.82) reduces
to

ln

(
Uin
U

)
=

(
1 +

1

const.

)
ln

(
1 +

p
1
4

0.25 · 10
3
2

)
, (3.5)

from which it follows that

p =

[(
Uin
U

) const.
1+const.

− 1

]4

· 254 · 10−2. (3.6)
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Since we need to know the magnetic pressure at each point of the torus, we must
impose the dependence of p̃m on w̃. From equation (2.78) it is obvious that the last
term is a total differential and so one can write

p̃m = Kmw̃
η, (3.7)

where Km and η are constants. Now it is easy to see that∫ P̃m

0

dp̃m
w̃

=
η

η − 1
Km

1
η p̃m

η−1
η . (3.8)

Since we have analytically evaluated both integrals, we can rewrite p̃m in terms of p.
We get following expression:

p̃m =

[
1

const.

η − 1

η
Km

− 1
η ln

(
1 +

p
1
4

25 · 10
1
4

)] η
η−1

. (3.9)

One can see that there are three free parameters: const., η and Km. We must
be very careful which values of these parameters we take. For some special choices
of these parameters we can get too big gradients of magnetic field which causes
a numerical noise. In our computation we adopted these values: const. = 100,
η = 4

3
. Changing the value ofKm we were getting different ratios of thermodynamical

pressure to magnetic pressure β.
In Figure 3.1 there is shown an image produced by HARM. There is expressed

l = const. torus which ranges from rin = 5MB.H. to rout = 10MB.H. (hereafter we
will use units in which the black hole mass MB.H. is equal to one and c = G = 1),
where rin and rout denote the inner and outer edge of the torus. Different colors
represents the rest mass density values which are normalized to the maximum value.
The red color corresponds to the maximum and blue to the minimum. Especially
for the torus in Figure 3.1 the maximum value of rest mass density is 100, 000 times
bigger than the value on the surface of the torus. Since we adopted a Kerr spacetime
and assume that the torus does not influence it, the total rest mass of tori that we
studied here was about 2% of black hole rest mass MB.H.. There is a special choice
of coordinate system in these images, where on the x-axis there is ln r and on the
y-axis there is a special function of ϑ so that vertical line on this picture corresponds
to a contant r. The left-side corner of the picture corresponds to r = 1.96MB.H. and
right-side corner corresponds to r = 20MB.H. (this is valid for all images of accretion
torus in Schwarzschild spacetime).

In Figure 3.2 there is the same torus as in Figure 3.1 but in “usually used”
Schwarzschild coordinates. On x-axis there is r · sinϑ and on y-axis there is r · cosϑ.
So we can see realistic shape of the torus.

Now we investigate the dependence of accretion rate on the magnetic field. At first
there is a purely azimuthal flow in the torus in both non-magnetized and magnetized
tori. We perturb this state by increasing the black hole mass. At first we focus on
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Figure 3.1: Demonstration of image produced by HARM.

Figure 3.2: Profile of l = const. torus in Schwarzschild coordinates.

the case of Schwarzschild spacetime and the torus with cusp (rin = 5.0, l = 5
√

5
3
).

The torus has cusp if on its inner edge the following relation is fulfilled:

l = lK =
r2 − 2a

√
r + a2

r
3
2 − 2

√
r + a

, (3.10)

where lK denotes the Keplerian angular momentum. In the stationary situation there
is no accretion as we can see from Figure 3.3 where is the non-magnetized torus and
from Figure 3.4 where is magnetized torus with the ratio of pressure to magnetic
pressure β equal to β = 31.009. The orbital period at the inner edge of the torus
(rin) is approximately equal to 70.

Now we assume that the black hole increases its mass somehow from 1MB.H. to
1.01MB.H. so we have not the purely azimuthal flow and the torus will start to ac-
crete on black hole as we can see in Figure 3.5 and Figure 3.6. In Table 3.1 there is
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(a) t=0 (b) t=200

Figure 3.3: Non-magnetized torus, a = 0.

(a) t=0 (b) t=200

Figure 3.4: Magnetized torus, a = 0, β = 31.009.

expressed the dependence of accretion on the value of β in this perturbed case. We
express the accretion in terms of how much rest mass of the torus in t = 0 is accreted
in t = 200. It means how much rest mass of the initial torus is closer to black hole
than the inner edge of the initial torus (5MB.H.).
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(a) t=0 (b) t=200

Figure 3.5: Non-magnetized torus, a = 0, perturbed version.

(a) t=0 (b) t=200

Figure 3.6: Perturbed version, a = 0, β = 3.891.

β accreted mass [%] in t = 120 accreted mass [%] in t = 200
3.891 7.84 19.55
13.133 6.37 17.63
31.129 5.96 17.05
105.060 5.74 16.73
486.391 5.66 16.62
∞ 3.43 12.23

Table 3.1

Now we leave the Schwarzschild spacetime and step forward to Kerr spacetime

29



with a = 0.1. We employ the torus with the cusp again. The inner edge of the
torus is on rin = 5.0 the outer edge is rout = 7.7536. The orbital period of inner
edge of the torus is approximately 72. In the figures the left corner corresponds to
r = 1.955 and the right corner corresponds to r = 10. In Figure 3.7 there is the
torus in stationary state without magnetic field and in Figure 3.8 there is the torus
in stationary state with β = 23.192. One can see that the profile of the torus in
t = 120 is not as smooth as in t = 0, but there is still no accretion since the mass of
the torus remains constant. The non-smooth profile of the torus in t = 120 is caused
by numerical noise. For comparison with the torus in Schwarzschild case (a = 0),
there are profiles of both these tori in Figure 3.9 in Schwarzschild coordinates .

We turn our attention on the perturbed case again. We assume that the black
hole mass was increased from 1MB.H. to 1.01MB.H.. In Figure 3.10 there is the
perturbed case with zero magnetic field.

In Figure 3.11 there is the perturbed version of magnetized torus with β = 23.297.
The dependence of accretion rate on the value of magnetic field is shown in Table
3.2, where is expressed the relative lost of mass in t = 60 and t = 120 (the orbital
period of inner edge of the torus is approximately 72).

β accreted mass [%] in t = 60 accreted mass [%] in t = 120
2.912 2.32 33.24
23.297 1.83 31.50
78.626 1.78 31.25
186.374 1.78 31.19
364.011 1.77 31.18
∞ 1.77 31.18

Table 3.2

If we compare the data from Tables 3.1 and 3.2 in t = 120 and realizing that the
orbital periods does not differ very much (Ta=0 = 70.2 and Ta=0.1 = 72.1) we can
see that the accretion for a = 0.1 case is more significant than in the case of a = 0.
The main reason is probably the fact that the torus in a = 0.1 case is smaller
and its maximal rest mass density is closer to black hole. So the bigger value of
rest mass can pass through the torus and leave it. We can also see from Table 3.2
that for smaller times the relative differences of accreted mass between the cases of
different β are more significant than for bigger times. So it appears that the magnetic
field plays more important role for earlier phases of accretion. It is surprising if we
realize that the accretion causes the magnetic field not to be toroidal anymore and
so the “chaotic” magnetic field should increase the corruption of initial equilibrium
in the torus. One could expect that the magnetic field will be more chaotic in time
and so the accretion will be faster. From these simulations it appears that even
if the magnetic field strength is significant (it means that the magnetic pressure is
comparable with the thermodynamical pressure) it does not play very important
role in cases when the significant part of the accretion torus is accreted. But if
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(a) t=0 (b) t=120

Figure 3.7: Non-magnetized torus, a = 0.1.

(a) t=0 (b) t=120

Figure 3.8: Magnetized torus, a = 0.1, β = 23.192.

the accretion is small (the addition of mass to black hole is small) the presence of
magnetic field plays important role. From the observations of SgrA∗ we know that
the magnetic field strength can reach the value around 40G (Eckart et al. 2008).
When we take as the black hole mass the mass of SgrA∗ (approximately 4 · 106M⊙)
the biggest values of magnetic field which we get (in the center of torus, where is
the biggest thermodynamical pressure too) are several thousands of Gauss. These
values corresponds to β = 1. It means that for β ≈ 100 we could get the magnetic
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Figure 3.9: Tori of l = const for a = 0 and a = 0.1.

(a) t=0 (b) t=40

(c) t=80 (d) t=120

Figure 3.10: Perturbed version of non-magnetized torus, a = 0.1.
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(a) t=0 (b) t=40

(c) t=80 (d) t=120

Figure 3.11: Perturbed version of magnetized torus, a = 0.1, β = 23.297.

field strength which would be comparable with observed magnetic field strength. On
the other hand the maximal value of rest mass density (and so the value of maximal
thermodynamical and magnetic pressure) depends on rin and l strictly. For example
for the torus of rin = 5.8 and l = 4.156 which we consider in next section the maximal
magnetic field strength (for β = 1) would be several Gauss roughly.
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3.2 Comparison of l=const. and l∗=const. tori
If we want to compare the Fishbone-Moncrief torus and l = const. torus we have to
mention that, thanks to a different dependence of angular momentum in these two
cases, for a given rin, l and l∗ according to equation (2.71) these tori have a different
range and in some cases both of them do not exist. It is a straight consequence
of equation (2.31) from which one can see that the value of angular momentum l
influence the increasing or decreasing of lnh from the inner boundary. From (2.71)
we can also see that if l is constant through the torus, l∗ is decreasing with the radial
distance r or, if l∗ is constant, the corresponding l is increasing.

In Figure 3.12 there is l = const. torus with rin = 5.8, l = 4.156 and in Figure
3.13 there is a Fishbone-Moncrief torus with rin = 5.8, l∗ = 5.0. We did this choice
to have both tori with the same rin and rout (rout = 149.98 ). The orbital periods
of these two types of accretion torus are: Torbit = 77.6 for l = const. torus and
Torbit = 87.6 for Fishbone-Moncrief torus. The left-side corner of following images
corresponds to r = 1.96 and the right-side corner corresponds to r = 200.

Figure 3.12: Torus of l = const..

Another significant difference between l = const. torus and Fishbone-Moncrief
torus is the presence of cusp because Fishbone-Moncrief tori have no cusps (Fishbone
& Moncrief 1976). It is a consequence of the fact that lnh in (2.31) depends on sin2ϑ
in a sufficiently regular way as we discussed in section 2.1. We want to compare
accretion rates of these tori when the mass of black hole is enhanced from 1MB.H. to
1.1MB.H . In Figure 3.14 there is Fishbone-Moncrief torus and in Figure 3.15 there
is l = const. torus.

34



Figure 3.13: Fishbone-Moncrief torus.

t accreted mass [%] for l = const. torus accreted mass [%] for F.-M. torus
50 0.0004 0
100 0.426 0.063
150 0.911 0.160
200 1.311 0.251
300 1.912 0.390
400 2.413 0.488

Table 3.3

We can see that the Fishbone-Moncrief torus is more resistant against the pertur-
bation caused by increasing the black hole mass. It is not surprising since we know
that in the Fishbone-Moncrief torus with l∗ = const. the angular momentum den-
sity l increase its value from the inner boundary. At this place it is important to
emphasize that we have compared two special cases of accretion torus and so we can
not give some general conclusions which would determine some relations between
the Fishbone-Moncrief and l = const. tori. We compared two tori with same rin
and rout which had different angular momentum density dependence and so different
distribution of rest mass density and pressure. In Table 3.3 there is expressed the
time dependence of accreted rest mass. In Figures 3.15 and 3.14 we can nicely see the
different properties of accretion process. In the Fishbone-Moncrief case the accretion
flow decreases itself from t = 150 to t = 400 in contrast to l = const. case.
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(a) t=50 (b) t=100

(c) t=150 (d) t=200

(e) t=300 (f) t=400

Figure 3.14: Perturbed version of Fishbone-Moncrief torus.
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(a) t=50 (b) t=100

(c) t=150 (d) t=200

(e) t=300 (f) t=400

Figure 3.15: Perturbed version of l = const. torus.
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Conclusion
In this diploma thesis we summarized two models of accretion torus: the torus
with constant density of angular momentum (Abramowicz & Jaroszynski 1977) and
Fishbone-Moncrief torus (Fishbone & Moncrief 1976). The properties of these tori
were treated by solving General Relativistic MHD whose theoretical and numerical
scheme was described in Chapter 1. We studied behavior of these tori when the mass
of black hole, which the torus is orbiting, is increased suddenly and the purely az-
imuthal flow of the torus is corrupted and the accretion occurs. From the simulation
it is obvious that for our special choice of parameters the Fishbone-Moncrief torus
is influenced less than l = const. torus by this perturbation.

We studied the influence of the value of toroidal magnetic field on accretion rate
in the perturbed case. At first we focused on Schwarzschild spacetime and then on
Kerr spacetime with a = 0.1. The tori were in equilibrium initially, but with different
values of magnetic pressure. It occurred that the magnetic field plays important
role at the beginning of accretion, but for higher times t the relative differences in
accreted mass between tori with different value of magnetic pressure are smaller than
for earlier times t.

Models of magnetized accretion flows are relevant for the discussion of processes
taking place in Galactic center. Naturally, while the conditions in the Galactic
center are generally very complex, with turbulent sub-equipartition magnetic fields
permeating a highly diluted medium, we have considered an idealized case. The
main simplification adopted in our work is the assumption about axial symmetry of
the flow, although we took time-dependence of the flow and the magnetic field into
account and we evolved both toroidal and spoloidal components of the flow velocity.
Hence, going to full three-dimensional motion is one possible direction of generalizing
our approach, which many people consider as necessary to capture correctly the
effects of magneto-rotational instability and to reproduce astrophysically realistic
situations. Further, one should include also the role of radiation in the computations
by coupling GRMHD equations to radiation transfer equations. These are of course
much more complicated and computationally expensive systems, likely necessary to
explain local enhancement of the field strength that have been reported in Galactic
center flaresm reaching up to tens Gauss, i.e. greatly above the mean level.

One may, however, proceed further also with the restricted axisymmetric models.
For example, we first intend to continue in our axisymmetric study of magnetized
tori especially to focus on investigating the runaway instability for magnetized tori.
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Appendix

A1 equation (1.26)

T µνelmag =
nµB̃λnνB̃λ · (−nµuµ)(−nνuν)

γ · γ

− 1

4
gµν

(nλB̃δnλB̃δ + nδB̃λnδB̃λ) · (−nλuλ)(−nλuλ)
γ · γ

=
B̃λB̃λu

µuν

γ · γ
+

1

4
gµν

2 · B̃δB̃δu
λuλ

γ · γ

= hλµb
µhσµb

µgσλu
µuν +

1

2
gµνhδµb

µhσµb
µgσδu

λuλ

= gλµb
µgσµb

µgσλu
µuν +

1

2
gµνgδµb

µgσµb
µgσδu

λuλ

= b2uµuν − 1

2
gµνb2

= b2uµuν +
1

2
gµνb2 − bµbν (A1)

where we used bµuµ = 0, B̃ν = 1
3
γhνµb

µ, and gµνb2 = gµνbµbµ = bµbν .

A2 equation (1.45)

B̃µQµ = γ(w + b2)uµB̃
µ + (nνb

ν)
1

γ
h ν
µ B̃νB̃

µ

= γ(w + b2)uµB̃
µ + (nνb

ν)
1

γ
(B̃µB̃µ + uµB̃µu

νB̃ν)

= γ(w + b2)uµB̃
µ +

1

γ2
nν(B̃

ν + uνuµB̃
µ)(B̃2 + (uµB̃

µ)2)

=
W

γ
(uµB̃

µ) (A2)
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A3 equation (1.46)

Qµn
µ = −γ2(w + b2) +

(
p+

b2

2

)
+ (nνb

ν)2

= −γ2

(
w +

1

γ2

[
B̃2 + (B̃µuµ)2

])
+

(
p+

1

2γ2

[
B̃2 + (B̃µuµ)2

])
+ (uµB̃

µ)2

= −W − B̃2 − (B̃µuµ)2 + p+
B̃2 + (B̃µuµ)2

2γ2
+ (uµB̃

µ)2

= −B̃
2

2
(1 + v2) +

(B̃µQµ)2

2W 2
−W + p (A3)

A4 equation (1.49)

QµQ
µ = −γ2(w + b2)2 −

(
p+

b2

2

)2

+ (nνb
ν)2b2 − 2γ(w + b2)

(
p+

b2

2

)
uµn

µ

+ 2γ(w + b2)(nνb
ν)uµb

µ − 2

(
p+

b2

2

)
(nνb

ν)nµb
µ

= −γ2

(
w +

1

γ2

[
B̃2 + (B̃µuµ)2

])2

+ 2γ2

(
w +

1

γ2

[
B̃2 + (B̃µuµ)2

])
·

·
(
p+

1

2γ2

[
B̃2 + (B̃µuµ)2

])
−
(
p+

1

2γ2

[
B̃2 + (B̃µuµ)2

])2

− 2p · (uµB̃µ)2

= −

(
W

γ
+

1

γ

[
B̃2 +

(B̃µQµ)2γ2

W 2

])2

+

(
2W + 2

[
B̃2 +

(B̃µQµ)2γ2

W 2

])
·

·

(
p+

1

2γ2

[
B̃2 +

(B̃µQµ)2γ2

W 2

])
−

(
p+

1

2γ2

[
B̃2 +

(B̃µQµ)2γ2

W 2

])2

− 2p
(B̃µQµ)2γ2

W 2

= −W 2(1− v2) + 2Wp− p2 + B̃2

(
−W
γ2

+ p(1 + v2)− (B̃µQµ)2

2W 2γ2

)

+
(B̃µQµ)2γ2

W 2

(
−W
γ2

+ p(v2 − 1)

)
− 1

4γ4

(
B̃4 +

(B̃µQµ)4γ4

W 4

)
. (A4)
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A5 equations (2.63) and (2.64)

From the normalization condition for four-velocity

uµu
µ = −1

and realizing that
uµ = (ut, 0, 0, uϕ)

and
uϕ = utΩ

we get
A2(gtt + 2Ωgtϕ + gϕϕΩ2) = −1,

from which follows:
A =

1√
−(gtt + 2Ωgtϕ + gϕϕΩ2)

. (A5a)

For uϕ we can write:
uϕ = gtϕA+ gϕϕAΩ

and using the normalization condition we obtain

utA = −1− (gtϕA
2Ω + gϕϕA

2Ω2).

From the last equation we get

ut(≡ U) =
−1− gtϕA2Ω− gϕϕA2Ω2

A
.

Now we will use equation (A5a) to rewritte U into form:

U =
√
−(gtt + 2Ωgtϕ + gϕϕΩ2) · −gtt − 2Ωgtϕ − gϕϕΩ2 + gtϕΩ + gϕϕΩ2

gtt + 2Ωgtϕ + gϕϕΩ2

=
−gtt − gtϕΩ√

−(gtt + 2Ωgtϕ + gϕϕΩ2)
.

We employ an expression for angular velocity Ω = − gtϕ+lgtt
gϕϕ+lgtϕ

, insert it into the last
equation and after a simple algebraic manipulation we finally get:

U =

√
gtϕ2 − gttgϕϕ√

gϕϕ + 2lgtϕ + l2gtt
. (A5b)
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A6 equation (2.83)

From the normalization condition for four-velocity and assuming the symmetries
for our problem it follows that

(ut)2 = −(gtt + 2gtϕΩ + gϕϕΩ2)−1

and
utut = − 1

1− lΩ
.

From the last two equations and expression for Ω we get

(ut)
2 =
L
A
,

where L and A are defined in section 2.3. From the property of bµ that uµbµ = 0
and assuming that ur = uϑ = br = bϑ = 0 we have

utbt + uϕbϕ = 0⇒ utbt + utΩbϕ = 0⇒ bt = −Ωbϕ

and
bt = lbϕ.

Now one can write
b2 = bϕbϕ(1− Ωl)

and
b2 = (bϕ)2A.

Finally we get

bϕ = ±
√

2pm
A

(A6)

43


	Introduction
	General Relativistic MHD
	Theoretical scheme
	Numerical scheme

	Fluid tori orbiting Kerr black hole
	Fishbone-Moncrief model of accretion torus: l=const. 
	Abramowicz et al.model of accretion torus: l=const.
	Magnetized torus with the toroidal magnetic field

	Results: axi-symmetric accretion of magnetized tori
	The dependence of accretion rates on magnetic field
	Comparison of l=const. and l=const. tori 

	Conclusion
	Bibliography
	Appendix

