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Abstrakt: Problematika extrakce pravidel pomocí neuronových sítí
byla během uplynulých desetiletí častým námětem výzkumných prací. Tato
diplomová práce navrhuje nový model rostoucí fuzzy inferenční neuronové
sítě, vycházejících z principu rostoucích neuronových struktur [5]. To síti
umožňuje postupný nárůst počtu skrytých neuronů až do velikosti potřebné
pro dané úlohy. Pro účely této sítě byla zvýšena citlivost již existujícího shlu-
kovacího algoritmu vůči požadovaným výstupním hodnotám. Je také před-
staven nový rychlý algoritmus adaptace vah, inspirovaný teorií fuzzy množin.
Vlastnosti navrženého modelu i nová metoda výběru signifikantních vstup-
ních příznaků podporuje extrakci relativně malého množství jednoduchých
fuzzy pravidel. Navržené techniky jsou experimenálně ověřeny na reálných
datech popisujících vztah mezi různým typem bydlení v okolí Bostonu a jeho
cenou. Data byla získána z databáze “Bostonské ceny bydlení”.



Chapter 1

Introduction

Over the last decades artificial neural networks have been used as a very
useful tool to solve many tasks. Their powerful learning capabilities prede-
termine them for difficult and not fully understood problems. Once a training
set is available for the task at hand, a very common approach is to train one
or more neural network models for it and then let the best model work. No
matter how, just let it work. Unfortunately, for many tasks the black-box
behavior may pose a serious problem. For example in medicine nobody can
take the risk of using a model, which can misjudge in some unknown case.
The behavior and application of neural networks stand in the opposition

to the classical if-then rules. If-then rules are well understood by every soft-
ware developer. Once there is a domain expert available, it is often feasible
to provide an initial set of rules. Later on, these rules can be refined.
On the other hand, the problem is how to obtain the set of rules for a given

task in a general case. An expert may not always be accessible or cooperative.
Furthermore, the size of the set of rules may increase dramatically with the
complexity of the task. The expert may not be able to communicate all rules.
She may not even know them all consciously.
Another problem is the “sharpness” of if-then rules. If the input changes

slightly, a completely different rule may become active and the output can
change significantly. This may lead to large undesired system oscillations.
A well-known solution to these if-then rules problems represent fuzzy

if-then rules. The central point of view shifts from the classical crisp logic
to the fuzzy logic. In fuzzy logic a term may be satisfied to a certain degree
instead of only being true or false. When using fuzzy logic, a rule may be-
come active to a certain degree. The consequents of rules are then combined
together with regard to the rule activations.
Yet another advantage of the fuzzy theory approach may be its stability

with no extreme oscillations. Furthermore, it still provides a set of rules and as
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such it can be created and verified by a domain expert. Although the presence
of fuzziness may allow to express the same in less rules, when compared with
their “crisp” if-then counterparts, the fuzzy rules interaction can become
very difficult to understand. While it remains possible for a human expert to
verify the rules (at least to a certain level), it may become extremely tedious,
if not impossible, to construct a fuzzy rule base just manually.
For these reasons author of this thesis expects that fuzzy neural networks

represent the right direction to eliminate the weaknesses of both neural ne-
tworks and if-then rules. In this thesis, several models of neural networks,
including existing fuzzy neural networks, are discussed. Their advantages
and disadvantages are used to motivate the introduction of a new growing
fuzzy inference neural network (GFINN). The nature of the model provides
a growing architecture for the task being solved. The constructed network
is considered to be sufficiently large in order to achieve the desired perfor-
mance and sufficiently small in order to yield adequate generalization.This
new model is based on structure of so-called growing neural gas. The basic
model is, however, substantially extended and improved. The final neural
structure can be transformed into a set of fuzzy rules, making the function
of the network verifiable. The GFINN structure supports an easy selection of
significant input features. As a result, the extracted rules will be simpler and
easier to understand, compared to other existing fuzzy neural networks. A
simple FOPT algorithm will be introduced for quick training of GFINN ne-
tworks. Supporting experiments performed so far have confirmed that FOPT
is capable of achieving an almost optimal performance, despite of the relati-
vely simple computations of the output weights.
The capabilities of the new model were tested both on an artificial dataset

and on real-world data - the Boston housing dataset, publicly available from
the UCI repository. Despite of a large amount of incorrectness in the data,
GFINN has been shown to extract a reasonably small set of fuzzy rules, which
are easy to understand.
Several different models of self-organizing neural networks, including the

growing structures, are described in the second chapter. The point of view of
the fuzzy set and fuzzy logic theory is brought in in the third chapter. This
chapter also describes existing fuzzy-neural techniques. The GFINN model
is introduced in the fourth chapter and experimentally verified in the fifth
one.
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Chapter 2

Self-organizing neural networks

2.1 Motivation

In the nature, self-organization can be seen as a process in which an or-
der emerges spontaneously. In such a process a large collection of simple
microscopic objects interacts locally. Few simple rules can give a raise to a
very complex macroscopic structure.
Self-organization in the human brain has been linked, among others, to

the evolution of speech [19, 18] and to human localization in space [21, 16].
In the hippocampus only few place cells fire for every space location. Nearby
locations activate close groups of neurons.
In the literature, there can be found several formal models resembling

this kind of natural brain processes [10, 1].
Few necessary terms such as clustering and vector quantization are intro-

duced in this chapter first. Later on, the basic self-organizing maps (SOM)
and related models are described and several improvements are suggested.

2.2 Background

2.2.1 Clustering

In the real world we can observe that certain objects may form groups based
on their similarity. A group of boxes will differ from a group of spheres.
A group of third world countries may be distinct from a group of highly
industrial countries.
Methods which aim at automatical discovering such groups of mutually

similar objects are called clustering techniques. The goal is to divide a finite
set of input patterns T = {−→ti : i = 1, 2, . . . , k}, −→ti ∈ <n into k pairwise
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Figure 2.1: A natural example of self-organization - A complex regular snow-
flake structure is determined by local molecule interaction.

disjoint subsets Tj, j = 1, . . . , k. At the same time, the subsets are required to
contain only mutually similar elements, while different subsets should contain
mutually dissimilar items. In general, the chosen similarity measure should
be considered to be domain specific, although though few general measures,
such as Euclidean metric, are used very often [10].

2.2.2 Vector quantization

Vector quantization is a classical signal-processing method that usually forms
a quantized approximation to the distribution of the input patterns −→x ∈ <n

[10]. A finite number of adequate reference vectors −→mi ∈ <n, i = 1, . . . , k is to
be found during vector quantization. Once the reference vectors are chosen,
the approximation of −→x means finding the reference vector −→mb closest to

−→x
(in the input space), usually using the Euclidean metric:

−→mb = argmin{‖−→x −−→mi‖} (2.1)

2.2.3 Artificially generated sample data

The following sections deal with the supervised and unsupervised variants
of self-organizing maps. To visualize their properties a sample dataset shown
in Figure 2.2 is used.
When used to illustrate the function of unsupervised methods, the input

data patterns are considered to come from the grey areas with a uniform
probability distribution. In such a case, white areas have a zero data density.
When used to illustrate supervised learning, the situation is slightly dif-

ferent. In this case the grey areas represent the data from the class labeled
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Figure 2.2: An artificially generated sample dataset.

with ’+1’, while the white areas represent the class labeled with ’0’. For su-
pervised learning, the data patterns are uniformly distributed over the whole
input space 〈0, 1〉 × 〈0, 1〉.

2.3 Unsupervised variants

2.3.1 K-means clustering

Figure 2.3: Cluster centers obtained by k-means clustering (k = 20)

The k-means clustering algorithm is generally not considered as belonging
to the SOM-family. This method is, however, very similar to the described
SOMs and brings an important insight into their function.
K-means is widely used as one of the most straightforward clustering algo-

rithms. For the given value of k and the training set
T = {−→xi : i = 1, 2, . . . , n}, −→xi ∈ <n it finds k centers −→m1, . . . ,−→mk of the clus-
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ters and divides the training set T into k disjoint subsets corresponding to
these clusters.

K-means algorithm [20]

Input: Training set T = {−→xi}, k ∈ N
Output: k cluster centers −→m1, . . . ,−→mk

Algorithm:

1. Initialize the cluster centers −→mi, 1 ≤ i ≤ k
randomly.

2. For every center −→mi find the set Ti of all the
training patterns from T, for which −→mi is the
nearest cluster center using the Euclidean metric.

3. Use the mean of each group Ti as a new cluster
center −→mi:

−→mi(t+ 1) =
1
|Ti|

∑
−→x ∈Ti

−→x (2.2)

4. Repeat steps 2 and 3 for a fixed number of steps.

Discussion

Figure 2.3 shows the result of the k-means algorithm with k = 20 on the sam-
ple dataset.
Learning can be stopped if the cluster centers do not change from one

learning cycle to the next one. In this case, all cluster centers remain stable
in the future.
Although k-means is used for clustering very often, it actually performs

vector quantization. Both these tasks are similar in that they both map input
patterns to a small set of representative vectors. It is, however, expected,
that in clustering coherent groups of patterns are mapped all together, onto
a single representant, no matter how big the coherent group of patterns
is. But it can be shown, that the k-means algorithm attempts to equally
distribute the input patterns over the representants with respect to their
distance, which is vector quantization task (see Figure 2.4).
The biggest difference between k-means clustering and self-organizing

maps is the lack of structure over cluster centers. The cluster centers are
completely self-sufficient. An input pattern −→x ∈ Ti does not affect the adap-
tation of another center −→mj, i 6= j.
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Figure 2.4: An illustration of the difference between vector quantization and
clustering. Both the expected outcome of a clustering algorithm and of the 2-
means algorithm are depicted on the figure.

2.3.2 Self-organizing feature maps - the standard mo-
del

In this text “standard” denotes the widely used SOM version described by
Kohonen [10]. Self-organizing feature maps represent a type of unsupervised
artificial neural networks. It has been inspired by biological processes similar
to those ones mentioned in the introduction. The goal is to map the pre-
sented input patterns to the corresponding small region of the network. In
the most common case, a single neuron should be active for the presented
input pattern. It is also desired that the SOM preserves the topological re-
lationships present among the input data - similar input patterns should be
mapped onto close network areas. This makes the method particularly sui-
table for low-dimensional visualization of high-dimensional data. In the past
it has been successfully used in various areas - for example to group sylla-
bles [18], similar groups of pictures [11], texts [12], countries [9] and many
other objects. Furthermore it may also show, which data clusters appear to
be similar.
The SOM consists of neurons N = {n1, . . . , nk} and a set of edges

E = {e1, . . . , em} interconnecting these neurons. Every neuron ni has an
attached reference vector −→mi ∈ <n with the same dimensionality as the input
patterns. During unsupervised learning the reference vectors are adapted to
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Figure 2.5: SOM grid structure trained on the sample dataset

produce low-dimensional representations of the training samples, while pre-
serving their topological structure present in the input space.
Kohonen suggests using a regular two-dimensional graph structure for

SOM. The most common one is the rectangular grid structure. The network
is organized into rows and columns of neurons. Every neuron is connected
by an edge with neurons in the next rows and columns. Another option is to
use a hexagonal structure.
The main advantage of these two-dimensional structures is that they can

be used for visualization easily. When the input patterns are used to calibrate
their best matching neurons during the drawing, the underlying data relati-
onships can be shown nicely. The resulting structure is easy to understand
and verify.

Recall

Let us consider the most common SOM model with a single neuron acti-
vation. After an input pattern −→x is presented to the network, the best
matching neuron nb is found. The best matching neuron nb is the closest
one to the input pattern −→x . The index b can be determined according to:

b = argmin
i

‖−→x −−→mi‖ (2.3)

−→mi denotes the reference vector of neuron ni.
All input patterns mapped on the same neuron are considered to form

one data cluster.
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The metric used throughout this thesis is the general Euclidean metric:

‖−→x −−→y ‖ =

√√√√ n∑
i=1

(xi − yi)2 (2.4)

Training

Basic SOMs are trained by self-organization. A training sample −→x is presen-
ted to the network. Afterwards the network adjusts the reference vectors in
order to reflect the occurrence of such a sample vector better.

SOM algorithm

Repeat the following steps for a fixed amount of
iterations or until another stop condition is met:

1. Present the next training pattern −→x from the
training set T.

2. Find the best matching neuron nb for the presented
input pattern −→x according to:

b = argmin
i

‖−→x −−→mi‖

3. Adjust the reference vectors using the following
rule:

−→mi(t+ 1) =
−→mi(t) + hbi(t)[

−→x −−→mi(t)] (2.5)

where

t . . . discrete time step

hbi(t) . . . neighborhood function

The trained network should preserve the topological structure of the input
data. This is supported by the neighborhood function hbi. Not only the best
matching neuron is adapted for the presented input pattern −→x , but also the
neighboring neurons in the network. One of the common approaches to the
definition of the neighborhood function hbi is to use the neighborhood set
Nb(t):

hbi(t) =

{
α(t) if i ∈ Nb(t)
0 otherwise

(2.6)
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where α(t) denotes the learning rates depending on time t. Both α(t) and
the size of the neighborhood set Nb(t) should decrease in time. The nei-
ghborhood set Ni contains neurons that are close to the neuron ni in the ne-
twork structure. Typically Ni(t) = {nj|∆(ni, nj) <= d(t)}, where ∆(ni, nj)
is the graph distance of neurons ni and nj and d(t) is a distance threshold
in time t.
Another approach to the definition of hbi is to use reference vectors instead

of the network structure. The often used Gaussian neighborhood is defined
by means of:

hbi(t) = α(t) ∗ e
− ‖−→mb−

−→mi‖
2

2σ2(t) (2.7)

where α(t) is the learning rate and the parameter σ(t) controls the neighbor-
hood width [10].
To guarantee the convergence of the algorithm, the neighborhood function

hbi should approach 0 with increasing time. This property can be achieved
by decreasing the distance threshold d(t) with time in the first approach, or
by lowering the σ(t) parameter in the second approach.

Discussion

Figure 2.5 shows a regular 10×10 self-organizing map grid covering the sam-
ple dataset.
One of the disadvantages of the standard approach is, that it should

be decided beforehand, which size of the network to use. If it is too small,
the network may not be able to handle the data appropriately. On the other
hand, a too big size can lead to overfitting.
A planar (2D) network structure represents an advantage for visuali-

zation, but it may make it more difficult to reflect complex relationships
present in multi-dimensional data. Then the two-dimensional network ne-
eds to “bend” in the multi-dimensional input space. Similar input patterns
may then be represented by neurons located very far one from the other
on the SOM grid.

2.3.3 Growing grid

Growing grid extends the standard self-organizing map by an ability to
change its structure based on the incoming training patterns. This removes
one of the mentioned problems of the standard SOMs- the predetermination
of their size. This method is suggested by Fritzke in [4].
Initially, the network is organized into a p× r grid of neurons:

N = [nij], 1 ≤ i ≤ p, 1 ≤ j ≤ r

14



Figure 2.6: The growing grid for the sample dataset

Each neuron nij ∈ N has an associated reference vector −→mij ∈ <n as
described in 2.3.2. There is also a resource variable τij associated with every
neuron nij. It stores a statistical information used to determine where to
insert a new row or column of neurons.

Algorithm

1. Start with a small grid (for example 1× 2).

2. Initialize all resource variables τij to 0.

3. Repeat the following steps for a fixed amount of cycles
or until another stop condition is met:

(a) Present the next training pattern −→x .
(b) Find the best matching neuron nb.

15



3. (c) Adapt all reference vectors according to:

−→mij(t+ 1) =
−→mij(t) + α(t)e

−
∆2(nij,nb)

2σ(t)2 (−→x −−→mij) (2.8)

where ∆(ngh, nij) is the Manhattan distance:

∆(ngh, nij) = |g − i|+ |h− j| (2.9)

[4] advises to keep both the learning rate α(t) and
the width parameter σ(t) constant during the whole
adaptation process to improve the on-line learning
capability.

(d) Increase the resource variable of the best matching
neuron nb:

τb(t+ 1) = τb(t) + 1 (2.10)

(e) If the current time t is a multiple of p(t) ∗ r(t) ∗ λ
(λ is an integer value influencing the growth of
the network), the network is extended by adding a
column or a row:

i. Find the neuron ng with the highest value of
resource variable τg. This is the most often
used (i.e. best-matching neuron) in the grid.
In order to distribute the input signals more
equally among the neurons, the grid shall be
changed around this neuron.

ii. Find the neuron nf, that is neighbor of ng with
the highest distance of its reference vector
‖mf − mg‖. This neuron is supposed to indicate
the direction of the highest variance in the
underlying data.

iii. Without loss of generality let us assume for
ng = nij that nf = ni(j+1), i.e. nf and ng

share the same row in the grid. The case of
shared columns is analogical. A new column j′

of additional neurons is placed between the
columns j and j + 1:

−−→mkj′ =
1
2
(−−→mkj +

−→mk(j+1)) 1 ≤ k ≤ p (2.11)
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3. (e) iv. Using this operation the number of columns
increases:

r(t+ 1) = r(t) + 1

v. Reset all resource variables τs to zero.

The growing grid algorithm constructs a 7× 13 structure for the sample
dataset (see Fig. 2.6).

2.3.4 Growing neural gas

Figure 2.7: A growing neural gas used for the sample dataset

The growing neural gas (GNG) [5, 14] employs a much more loose structure
than the growing grid and the standard SOMs do. The network graph does
not have to be two-dimensional any more. During the learning phase this
algorithm creates new neurons, new edges can be added and the old ones
deleted.
The resource variables τi are replaced by variables errori. A new agee

variable is attached to every edge e. This variable counts the time since the
last moment, when the two neurons on this edge were the two best-matching
neurons for a training pattern−→x . If it has been a long time since both neurons
on an edge were the best-matching pair, the two involved neurons are likely
to be located one too far from the other in the input space, and thus they
should not be connected by an edge.
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Growing neural gas algorithm

1. Start with two neurons placed randomly in the input
space and mutually inter-connected by an edge.

2. Take the next training pattern −→x .

3. Find the nearest neuron nb1 and the second-nearest
neuron nb2. The neuron nb2 will be used for the new
edge insertion or agee variable reset in step 7.

4. Increment age of all edges emanating from nb1:

agee(t+ 1) = agee(t) + 1

5. Add the squared distance between the input −→x and the
reference vector −→mb1 to the local error counter of the
neuron nb1:

errornb1
(t+ 1) = errornb1

(t) + ‖−→mb1 −−→x ‖2 (2.12)

6. Move nb1 in the direction of
−→x :

−→mb1(t+ 1) =
−→mb1(t) + αb(

−→x −−→mb1) (2.13)

And similarly for all the neighbors nk of nb1:

−→mk(t+ 1) =
−→mk(t) + αk(

−→x −−→mk) (2.14)

7. If nb1 and nb2 are connected by an edge, reset the age
of this edge to zero. Otherwise create such an edge
with an initial value 0.

8. Remove all edges with the age larger than agemax. If
there is a neuron without any emanating edge after this
operation, remove it as well.
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9. If the number of steps performed so far is a multiple
of the integral growing parameter λ, a new neuron is
inserted:

(a) Determine a neuron ng with the largest accumulated
local error.

(b) Find nf, a direct neighbor of ng with the largest
accumulated local error.

(c) Insert a new neuron nr halfway between ng and nf:

−→mr =
1
2
(−→mg +

−→mf )

(d) Replace the edge ng ↔ nf by two edges: ng ↔ nr and
nr ↔ nf.

(e) Decrease the error variable errorg and errorf by
a multiplication by a constant α. Initialize the
error variable errorr with the new errorg value.

10. Decrease all error variables by the multiplication by a
constant d ∈ (0, 1) (forgetting).

11. If the stopping criterion has not been met yet (network
size, fixed umber of steps, ...), repeat from the
second step.

Figure 2.7 shows the growing neural gas covering the sample dataset.

2.4 Supervised extensions

Although the basic self-organizing neural networks (SOMs) were designed as
an unsupervised model, it is very easy to extend them for the supervised
learning. One can just assign an output value yi to every neuron ni. After
the best matching neuron nb is found for the input data pattern

−→x , the
corresponding output value yb can be used as the network output.
This section deals with such extensions of the previously described SOM

methods. Several approaches to obtain the output values yi are shown. All
models in this section are described from the point of view of data classifi-
cation.
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2.4.1 LVQ1

Similarly like k-means, LVQ also does not belong to the SOM family. However,
it is, again, a very straightforward method similar to standard SOM methods,
that can be used to obtain some useful insight.
Before further processing the training set T is split into disjoint trai-

ning sets Tc = {−→x ∈ T : class(−→x ) = c}. For every Tc a separate k-means
clustering algorithm is run. The algorithm results in a set of cluster centers
Cc = {−−→mc1, . . . ,

−−→mck} [10]. In every cluster set Cc the output value yci of the
respective center mi is set to the class label c.
For an input pattern −→x the output value yb of the best matching center−→mb, with b = argmini ‖−→x −−→mi‖, is taken as the output of the network.

Figure 2.8: LVQ1 cluster centers for the sample data (left) and the classifi-
cation (right).

Figure 2.8 shows the cluster centers obtained for the sample data. The
centers for the “+1” class are squared, while the centers for the “0” class are
circular.
It is very important to note, that the clustering (resp. quantization) is run

for every data class ci completely independently of the data from different
classes cj, i 6= j. If two different classes have nearby located areas with
high data density, there are two different cluster centers assigned to them. If
the training set had not been divided, only a single cluster could have been
created. Unfortunately, this single cluster, representing data from different
classes could have a high classification error.
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2.4.2 Supervised standard self-organizing map

The crucial point is how to obtain an appropriate output value for every
neuron. Because the network is self-organizing anyway, the self-organization
can be used for learning of the outputs as well. Kohonen suggests to use

extended data patterns −→xk = (
−→
xin

k ,
−−→
xout

k ),
−→xk ∈ <m+n for this purpose [10].

The
−→
xin

k ∈ <m part of −→xk corresponds to the m-dimensional input space of

the data and
−−→
xout

k ∈ <n to the n-dimensional output space. The standard
self-organizing map with such (m+n)-dimensional reference vectors can be
trained using the “complete” training set T = {−→xk}.
To classify an input pattern

−→
xin ∈ <m, the best matching neuron nb is

found based only on the distance in the input space ‖
−→
xin −

−−→
min

b ‖. The
−−→
mout

b

part of the reference vector may then be considered to represent the output
of the network.

Discussion

Figure 2.9: 10× 10 grid used to classify the sample data (left) and the clas-
sification clusters (right).

Figure 2.9 shows the 10× 10 grid used for the sample data classification.
The color of the neurons reflects the output value used for classification later
on. The darker, the closer is the “class label” to +1; the lighter, the closer
to 0.
Figure 2.9 illustrates a problem as well. Although the input data are

two-dimensional, the network has to work with three-dimensional patterns
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(including the output). As a result, there may occur limitations mentioned
in section 2.3.2. The two-dimensional structure of the grid forces it to bend
over in the third coordinate in order to fill the whole extended pattern space.
Some neurons learn then a wrong output, just because they happen to have
“wrong” neighbors. The resulting classification is obviously far from being
perfect.

2.4.3 Supervised growing grid

The supervised growing grid algorithm also does not differ too much from
the unsupervised version. Only the resource variable τi is replaced by the
error variable errori, similar to the one in the growing neural gas [3]. Its
value accumulates the classification error. The grid grows in the direction of
wrong classification instead of a higher data density.
An approach different from the Kohonen’s “extra coordinates” may be

taken for the classification. It is suggested in this thesis, that the ratio of
classes of the data, for which the neuron ni is the best-matching neuron,
may be remembered for all the classes and used as an output class estimate
of the class c:

ηi(c) =
countci
counti

∈ 〈0, 1〉 (2.15)

where c is a class, ni is a neuron, countci is the amount of patterns with
best-matching neuron ni and class c. counti is the amount of all training
patterns with the best-matching neuron ni. The class c with the maximum
ηi(c) estimate is used as the output yi of the neuron ni. This is inspired by
the maximum-likelihood approach in probabilistic models.
Figure 2.10 shows the structure developed by growing grid for the sample

data. The darkness corresponds to the estimate ηi(+1) of the class labeled
“+1”. This figure also shows the weakness avoided by LVQ (as mentioned in
2.4.1). Because the learning reflects the data density and not the data class,
in the result the neuron positions may be inappropriate for the classification.

2.4.4 Supervised growing neural gas

The supervised growing neural gas algorithm combines the unsupervised
growing neural gas version with the error accumulation described in section
2.4.3 for the supervised growing grid.

22



Figure 2.10: The growing grid structure for the sample data (left) and the
classification clusters (right).

Proposed improvements

In the original version of the algorithm described by Fritzke [3], there is no
limit for the size of the network. The only way to restrict its size is to put
it as a stop condition. Although the new neurons are inserted into areas
with the highest misclassification rates, they are naturally attracted to areas
with higher data density due to the standard self-organizing learning rule
afterwards.
To restrict this situation two suggestions are proposed in this thesis. First,

the applied learning rule should be changed from

−→mi(t+ 1) =
−→mi(t) + hbi(t)(

−→x −−→mi(t)) (2.16)

to
−→mi(t+ 1) =

−→mi(t) + hbi(t)ηi(c)(
−→x −−→mi(t)) (2.17)

adding an extra sensitivity to the class density of the data similarly to the
LVQ1 learning mechanism. −→mi is a reference vector of the neuron ni, nb is
the best-matching neuron for input −→x , hbi is the neighborhood function, t is
a discrete time step and c denotes the class the sample −→x belongs to. The
class estimates ηi(c) are determined according to equation 2.15. This way the
neuron does not get attracted to another class data, than it represents, so
strongly and it supports convergence to the center of the own class cluster.
The other extension suggested here is to prune redundant neurons. As

already mentioned the network grows infinitely. Furthermore, the new neu-
rons converge often to the “flat” areas of the input space - areas with a
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constant class membership and high data density. To identify redundant neu-
rons, let us define the ε-insignificance of a neuron: A neuron ni will be called
ε-insignificant, if ∀nj ∈ neighbors(ni); ‖−→ηi −−→ηj ‖ < ε, −→ηi = (ηi(c1), . . . ηi(ck)),
c1, . . . , ck are the data classes. The insignificance of a neuron is computatio-
nally easy to verify. If 0-insignificant neuron nr should be removed from the
network, the classification error of the entire network does not change. All
the data previously mapped to the currently removed neuron nr would be
mapped to one of its topological neighbors nj ∈ neighbors(nr) with exactly
the same class estimates −→ηr =

−→ηj . If an ε-insignificant neuron with ε > 0 is
removed, the new network error is affected not only by the ε value, but also
by the probability of the removed neuron to be the best-matching one for
the considered data inputs.

Figure 2.11: The supervised growing neural gas with pruning applied to the
sample dataset. The formed network structure is shown on the left, classifi-
cation clusters can be seen on the right.

Discussion

Figure 2.11 shows the network structure obtained with the extended super-
vised growing neural gas algorithm. The color of the neurons corresponds to
the maximum-likelihood class estimate ηi(+1).
Figure 2.12 shows (left), how the size of the network stabilizes at about

fifty neurons using the 0-insignificance pruning, although, according to the
algorithm, it had time enough to grow up to four hundred neurons.
As shown on Figure 2.12 (right) the crisp classification error of the ne-

twork keeps decreasing even when the network size is being reduced.
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Figure 2.12: The growth of the extended growing neural gas network (left),
the drop in the error values for crisp classification for the extended supervised
growing neural gas algorithm (right).

Despite the effort to reflect the class membership of the data more ca-
refully, the neurons get attracted to areas with a higher data density. For
the sample dataset, the neurons were moved out of the narrow peaks of the
data classes into flat areas. This does not only decrease the chance of ha-
ving a correct class representant where it is needed, but it can impact wrong
classification too. Both facts contribute to a higher classification error.
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Chapter 3

Fuzzy rules and fuzzy neural
networks

3.1 Motivation

In the self-organizing maps described in the previous chapter, an input pat-
tern is projected onto a single neuron in the network. In the supervised
scenario this neuron has an output value, which is used as the output of the
network. This approach, although straightforward and easy to understand,
has some drawbacks. One of them is, that the network has only a limited set
of possible outputs, which corresponds to the number of its neurons. This ren-
ders continuous output of the network impossible. Moreover, an even small
change of an input pattern may cause a different neuron activation and a
completely different output of the network. Such a behavior may be totally
unsuitable in many situations, such as motion control. Rash convulsions can
physically destroy the motion device.
An alternative solution to these problems represent fuzzy logic-based mo-

dels, motivated by the assumption, that some facts may be partially true.
Not just true or false. When combined with a neural network of a SOM type,
this point of view introduces a partial neuron activation, while retaining an
understandable theoretical background of fuzzy logic. The resulting models
of artificial neural networks may even resemble the biological counterparts
more, than the standard SOM models. The reason is that partial activation
of neurons makes distributed representation of data as well as continuous
output of the network possible.
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3.2 Fuzzy sets

In the classical set theory a membership of an item to the set is a “crisp”
function. An item either belongs to the set, or it does not. In the fuzzy set
theory the membership function is not so strict [25]. For example John, being
178 cm tall, does not fully belong to the set of tall people. But we can also
hardly say, that he is not tall at all. We could say that he belongs to the set
of tall people with a membership value 0.8.

Definition 1. Membership function µS of a set S assigns to every object a
value representing how much it belongs to the set.

µS : x → [0, 1] (3.1)

µ∅(x) = 0 (3.2)

µΩ\S(x) = 1− µS(x) (3.3)

µS∩T (x) = min{µS(x), µT (x)} (3.4)

3.3 Fuzzy logic

Similarly to the fuzzy membership a fuzzy proposition can also have values
between true and false.
The valuation of a compound formula is combined from the valuation of

its elementary items using the following rules:

ν(x) : x → [0, 1] (3.5)

ν(false) = 0 (3.6)

ν(¬x) = 1− ν(x) (3.7)

ν(x ∧ y) = min{ν(x), ν(y)} (3.8)

or with an alternative conjunction (t-norm):

ν(x ∧ y) = ν(x)ν(y) (3.9)

There are two commonly used approaches how to handle equality of real
numbers in fuzzy logic (see fig. 3.3) - the Gaussian equality and its partially
linear approximation.

3.4 Fuzzy rules

Fuzzy rule base is essentially a collection of fuzzy if-then rules, in which the
preconditions and consequents involve linguistic variables [13]. A collection of
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Figure 3.1: Gaussian fuzzy equality e
(x−4)2
2 and its partially linear approxi-

mation as fuzzy equality x =F 4.

fuzzy rules characterizes a simple input-output relation of the studied system.
For multi-input-single-output system, the general form (Zadeh-Mamdani form)
of the fuzzy rules is [26]:

IF ∧Fj
(xj op vi

j) THEN y = vali

• xi . . . input variables

• op . . . fuzzy operator, commonly one of the following: <F , ≤F , =F ,
≥F , >F

• vi
j . . . linguistic parameters of the model (for example low, medium or
very high with a known corresponding numeric value)

• vali . . . linguistic output value

A variant of this type are rules where the consequent is represented as a
function of the input variables:

If ∧F (xi op vi) Then y = f(x1, . . . , xn

having Takagi-Sugeno form of the rules as a special case [22]:

If ∧F (xi op vi) Then y =
∑

i

pixi

Where

• ∧F . . . fuzzy t-norm

• xi . . . input variables
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• op . . . fuzzy operator, commonly one of the following: <F , ≤F , =F ,
≥F , >F

• vi, pi ∈ R . . . parameters of the model

The above rules evaluate the input of the system, compute the output
and decide the corresponding action as a function of the input variables.
Both types of rules have linguistic values as their inputs and either lin-

guistic or “crisp” values as their outputs.

3.4.1 Weighted average defuzzification

In usual crisp expert systems, only a single rule “fires” for every input. In
fuzzy expert systems, due to the fuzzy set membership, all rules can po-
tentially fire. Some fire stronger, some weaker, depending on the degree of
membership of the input to the fuzzy set specified by the antecedent part of
the rule.
There are several widely used methods how to combine the consequent

outputs of the rules and activation levels of their antecedents [23]. The me-
thod used in this work is the weighted average:

y =
1∑

r∈Rules

ar

∑
r∈Rules

aryr =
∑

r∈Rules

νryr (3.10)

ar = ∧Fj
(xj op vr

j ) (3.11)

• ar . . . antecedent activation of the rule r

• yr . . . consequent value of the rule r

• νr . . . normalized activation of the rule r:

νk =
ak∑

r∈Rules

ar

(3.12)

3.5 Adaptive-network-based fuzzy inference
system (ANFIS)

Figure 3.2 shows the ANFIS network [8] for the following Takagi-Sugeno
fuzzy rules:

Rule 1 : If x1 op v11 ∧F x2 op v21 Then y =
∑

i p1ixi

Rule 2 : If x1 op v12 ∧F x2 op v22 Then y =
∑

i p2ixi

29



Figure 3.2: ANFIS network structure

Comparing the above rules with the structure of the network, it is easy to
recognize the correspondence. The structure is designed to match the Takagi-
Sugeno rules, which makes the extraction of the rules from the network trivial.

3.5.1 Recall

Algorithm

1. Calculate the fuzzy memberships of inputs −→x to the
fuzzy partitioning of input values −→vij in the first
layer (the input layer is not counted). Gaussian
function is used if op is equality, sigmoidal
function might be used if op is <F or >F.

2. The second layer calculates the antecedents of the
rules. Π or min are mostly used as ∧F.

3. The third layer normalizes the sum of the second
layer outputs → wk.

4. The fourth layer calculates fuzzy rules consequents:

fk =
∑

i

pkixi (3.13)

where pki are the Takagi-Sugeno rule consequent
parameters.
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Figure 3.3: FINN network structure example

5. Output neuron defuzzifies the consequents of the
rules using the weighted average:

y =

∑
k wkfk∑

k wk

(3.14)

3.5.2 Training

A gradient descent algorithm, similar to backpropagation, and complex hyb-
rid learning are described by Jang in [8].

3.5.3 Discussion

The network structure is designed to closely resemble the operations on fuzzy
rules it represents. That is the strong and the weak point in the same time.
It is very easy to read out the network functionality. On the other it can be
extremely difficult to find right the structure of the network during training.
The original adaptation algorithms suggested by [8] suffers from many com-
mon weaknesses of multilayer artificial neural networks trained with gradient
descent. An optimal size of the network layer is not obvious in advance. And
gradient descent can converge to local optima, instead of the global one. This
risk increases with the size of the network.
Both mentioned problems can be at least partially avoided, if a rough

version of the fuzzy rules is known in advance. This knowledge can be encoded
into the network structure and the adaptation just fine-tunes the parameters
afterwards.
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3.6 Fuzzy inference neural networks (FINN)

While ANFIS is designed primarily for the fine-tuning of rules, Fuzzy in-
ference neural network (FINN) is designed to automatically extract fuzzy
if-then rules from the data [15].
Figure 3.3 shows the structure of the network. FINN is a RBF-like neural

network with local units in a single hidden layer. Every neuron ni in the
hidden layer has a reference vector −→mi = (mi1, . . . ,min), where n is the
dimensionality of input patterns −→xi = (xi1, . . . .xin).

3.6.1 Recall

Algorithm

1. The hidden layer calculates the fuzzy rules
antecedents activation ρj for every neuron nj:

ρj = min
i

e
−
(xi−mij)

2

σ2
ij (3.15)

2. The output layer defuzzifies the outputs using the
weighted average defuzzification:

y =

∑
j wjρj∑

j ρj

(3.16)

3.6.2 Training

The entire training process consists of two independent phases. In the first
phase the parameters for rule antecedents are to be found by the standard
self-organizing maps algorithm. Then those antecedent parameters close one
to another (closer than a given threshold) are merged together. After the
merge, the weights to the output neuron will be obtained using a supervised
learning algorithm. In the trained network, every neuron nj in the first layer
together with its weight wj to the output of the network represents a Zadeh-
Mamdami linguistic rule:

If −→x =F
−→mj Then y = wj
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3.6.3 Discussion

Jang and Sun have proved [7] that a functional equivalence between radial
basis function neural networks (RBF) and fuzzy inference systems can be
established under the following conditions:

1. The number of RBF local neurons is equal to the number of the fuzzy
rules.

2. The output of each fuzzy rule is a constant (zero order Takagi-Sugeno
rule).

3. The membership functions within each rule are chosen as Gaussian
functions with the same variance.

4. The t-norm operator used to compute the strength of the rule antece-
dent is multiplication.

5. Both the RBF network and the fuzzy inference system use the same
method to derive the overall output (i.e. the weighted average).

The FINN network is actually only one step away from satisfying these
conditions. One only needs to replace the fuzzy min-conjunction by the fuzzy
product-conjunction in the first network layer. Then the same approach and
methods known from the RBF networks research could be applied to the
representation of the FINN-like fuzzy rules.

33



Chapter 4

Growing fuzzy inference neural
network (GFINN)

4.1 Motivation

Using insight about FINN almost satisfying Jang&Sun conditions (section
3.6.3), together with the extensions of the SOM-model proposed in earlier
chapters, a novel growing fuzzy inference neural system (GFINN) is derived
in this thesis. The ANFIS model is adaptive, but requires to pre-specify a
fixed number of rules to be found. It is possible, though, to start with all
possible rule antecedents and prune those, that are not used, later, but this
brute-force approach remains computationally infeasible for many problem
domains. The FINN model, starts with a pre-specified size of the network and
similar rules are merged together later on. However, the maximum number
of the rules still has to be given in advance. The FINN model employs the
standard SOM model in the hidden layer. As it has been already mentioned
in this thesis, the standard SOMs were designed mainly for data visualization
and not for data classification or function approximation.
For these reasons, in this thesis it is suggested to use the growing neu-

ral gas with the proposed enhanced output sensitivity during learning and
with the developed pruning strategy to form appropriate hidden layers in
RBF-like networks. When using the weighted average to compute the output
of the network, the Jang&Sun conditions will be satisfied. As a consequence,
the network will be equivalent to a fuzzy inference system. Networks combi-
ning all these features can grow if necessary, but remain of a stable size when
the growth is considered to be completed. Furthermore, they can be inter-
preted in terms of fuzzy rules easily. To simplify the fuzzy rules, a method
for significant input feature selection is also proposed in the following text.
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Due to the nature of the fuzzy-rules, GFINN should preferably be used
for function approximation or binary-valued classification.

4.2 GFINN structure

Figure 4.1: GFINN structure

GFINN is a RBF-like structure - it consists of one hidden layer and one
output neuron. The hidden layer is formed by an extended growing neural gas
structure (with an improved output sensitivity and with pruning applied).
The output yk known from the extended supervised GNG corresponds in this
case to the weight wj to the output neuron. Similarly like for the standard
GNG model, every neuron nk in the hidden layer has a reference vector−→mk ∈ <n and the error accumulation variable errork. Every edge e has an
associated age variable agee. To support an easy features selection, every
hidden neuron nk has also a restriction set χk = {χ1k, χ2k, . . .}. This restriction
set denotes the significant input features used by the respective neuron. In
the beginning, the restriction set contains all available input features. In the
last step of training, restriction sets of all neurons in the hidden layer will be
reduced to contain only significant input features.

4.3 Recall

The activity of the hidden neurons corresponds to the activation of the ante-
cedent of a fuzzy rule. The computation of the output of the network reflects
the weighted average defuzzification.
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GFINN recall algorithm

1. For the presented input pattern −→x compute the
activation of hidden neurons:

ak(
−→x ) = e−

‖−→x−−→mk‖
2
χk

2σ (4.1)

using the restricted Euclidean distance computed on
input features from the restriction set:

‖−→x −−→mk‖2χk
=
∑
j∈χk

(xj −mj)
2 (4.2)

2. Compute normalized activations on hidden neurons:

νk(
−→x ) = ak(

−→x )∑
k′

ak′(
−→x )

(4.3)

3. Compute the output of the network using the weighted
average defuzzification:

y(−→x ) =
∑

k

νkwk (4.4)

4.4 Training

The entire training process of the GFINN model consists of two phases -
similarly to RBF networks and FINN model. In the GFINN model, however,
they are not supposed to follow independently one another only once, but
they should rather be repeated iteratively until the model is considered to be
trained. This supports an improved sensitivity of the activations of neurons
in the hidden layer to the output values.
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GFINN training algorithm

1. Initialize the network with a very small number
of hidden neurons (e.g. two neurons mutually
inter-connected by an edge). Set all the output
weights to the average output value computed over
the training set - these weights need to be pre-set
to some value, because they are involved in the own
adaptation procedure. Pre-set all χk = {1, . . . , n}.

2. Train the hidden layer using the improved growing
neural gas algorithm (section 2.4.4) - repeat the
following steps for all training patterns:

(a) Take the next training pattern (−→x , ŷ) ∈ T.

(b) Find the nearest neuron nb1 and the
second-nearest neuron nb2. They are both
involved in the manipulation with edges later.

(c) Increment value of the age variable for all
edges emanating from nb1:

agee(t+ 1) = agee(t) + 1

(d) Add the squared distance between the input −→x
and the reference vector −→mb1 to the local error
counter of the neuron nb1:

errornb1
(t+ 1) = errornb1

(t) + ‖−→mb1 −−→x ‖2 (4.5)

(e) Move nb1 and its direct neighbors nk in the
direction of −→x :

−→mb1(t+ 1) =
−→mb1(t) + αb(1− |ŷ − wb1|2)(−→x −−→mb1) (4.6)

−→mk(t+ 1) =
−→mk(t) + αk(1− |ŷ − wk|2)(−→x −−→mk) (4.7)

The similarity factor (1−|ŷ−wk|2) assumes ŷ, wk ∈
〈0, 1〉.

(f) If nb1 and nb2 are connected by an edge, reset
the age of this edge to zero. Otherwise create
such an edge with an initial agee = 0 value.
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2. (g) Remove all edges with the age larger than
agemax. If there is a neuron without any
emanating edge after this operation, remove
it as well.

(h) If the number of steps performed so far is a
multiple of the integer growing parameter λ, a
new neuron is inserted:

i. Determine the neuron ng with the largest
accumulated local error errorg.

ii. Find nf, a direct neighbor of ng, which has
the largest local error errorf among the
neighbors of neuron ng.

iii. Insert a new neuron nr halfway between ng

and nf:

−→mr =
1
2
(−→mg +

−→mf )

iv. Replace the edge between ng and nf by two
edges: an edge between ng and nr and the
other edge between nr and nf.

v. Decrease the error variable errorg and errorf

by a multiplicative constant α, because the
structure of the network has been altered
between these two neurons and it is time for
a limited ‘‘forgetting’’ of the accumulated
errors. Initialize the error variable errorr

with the new errorg value.

(i) Prune the ε-insignificant neurons in the hidden
layer (section 2.4.4).

(j) Decrease all error variables by a
multiplicative constant d ∈ (0, 1) - the network
‘‘forgets’’ old error.

(k) If the stopping criterion has not been met
yet (network size, fixed umber of steps, ...),
repeat from the second step.

3. Compute the output weights by one of the algorithms
described in the following section 4.4.1.
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4. Repeat steps two and three until the stop condition
is met.

5. Select significant input features (section 4.4.2) -
the restriction sets χk are altered.

A fixed amount of training cycles or a threshold of an average approxi-
mation error or classification error can be used as the stop condition.

4.4.1 Computation of output weights

To compute output weights in RBF-like networks, many methods aim at
minimizing some error function, often defined as an output error of the
network over the training set. The form of the objective function actually
used strongly influences the computation of output weights in the network.

Least mean square error (LMSE)

One of the most common error functions is the sum of squared errors between
the desired output and the output provided by the network:

E =
1
2

∑
(−→x ,by)∈T

(ŷ − y(x))2 (4.8)

Where (−→x , ŷ) denotes the training pattern with the input part −→x and the
desired output part ŷ, y(x) is the actual network output for the input −→x
(described in the section 4.3).
For this error function it is possible to obtain the partial derivative ∂E

∂wk
of

the error function E with respect to the output weights wk in the following
way:

∂E

∂wk

= −
∑

(−→x ,by)∈T

(ŷ − y(x))
∂y(x)
∂wk

= −
∑

(−→x ,by)∈T

(ŷ − y(x)) νk(
−→x ) (4.9)

One can put this term to be equal to zero for all output weights wk as a
necessary condition of the optimal solution, yielding a set of linear equations
of the following form, one equation for every wk:

0 = −
∑

(−→x ,by)∈T

(
ŷ −

∑
k′

νk′wk′

)
νk(
−→x ) (4.10)

Solving this set of linear equation by one of the standard methods gives
a solution that is guaranteed to be (locally) optimal.
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Gradient descent

Solving a set of linear equations can, however, be computationally expensive.
On the other hand, gradient descent approach could be applied instead. The
respective output weights do not have to be adapted in batch after every
cycle of the hidden layer training, but after presenting every training pattern
for the hidden layer adaptation.
In such a case, the output weights shall be changed in the direction oppo-

site to the gradient in every cycle, with the aim to find the (local) minimum
of the output error function:

wk(t+ 1) = wk(t) + (ŷ − y(−→x ))νk(
−→x ) (4.11)

wk denotes the adapted weight, t is a discrete time step, ŷ is the desired
output for the input pattern −→x and y(−→x ) is the actual output of the network.
Unfortunately, convergence to a minimum of the error function cannot be

guaranteed because of the enduring structural changes of the network.

Fuzzy optimal output weights computation (FOPT)

To circumvent the above drawbacks, a new approach is proposed in this
thesis. Similarly to standard SOM models, the hidden neurons can be consi-
dered to form clusters in the input space. However, unlike in SOMs, GFINN
is based on the assumption of the fuzzy set theory - a pattern membership to
a set can be expressed using a membership function. In the case of GFINN,
the normalized activation νj(

−→x ) of the hidden neuron nj denotes the mem-
bership of an input pattern −→x to a cluster corresponding to this hidden
neuron. From this point of view, the output weight wi can be considered
to be independent of other weights wj, i 6= j. Every hidden neuron nj shall
adapt its output weight wj independently, as an output value attached to the
respective cluster of input patterns. The input patterns with a higher value
of the membership function to this cluster shall have higher influence, than
the input patterns with a lower value of the membership function. The local
fuzzy error EFOPT

k (hence fuzzy optimal) of a hidden neuron nk is computed
as:

EFOPT
k =

1
2

∑
(−→x ,by)∈T

νk(
−→x )(ŷ − wk)

2 (4.12)

where ŷ is a desired output and wk is the output weight attached to neuron
nk.
Then the partial derivative of EFOPT

k with respect to wk can be computed
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easily:
∂EFOPT

k

∂wk

= −
∑

(−→x ,by)∈T

νk(
−→x )(ŷ − wk) (4.13)

Requiring this partial derivative ∂EFOPT
k

∂wk
to equal to zero, it can be conclu-

ded with the following equation to determine wk:

wk =
1∑

(−→x ,by)∈T

νk(
−→x )

∑
(−→x ,by)∈T

νk(
−→x )ŷ (4.14)

From this formula, it an be seen, that it may be feasible to use weighted
averages of the output values of the training patterns as the output weights.
The weights in each average correspond to the activation of the respective
hidden neuron. The O(np) time complexity of FOPT puts itself between the
one-step gradient descent and the possibly time consuming O(np+n3) LMSE
solution (n is a number of hidden neurons, p is a number of input patterns).
The resulting scheme differs in effect from the previous computations of

output weights, because a different error function is used. The local fuzzy
error functions EFOPT

k do not have the global impact of the global error
function E. Due to the weighted average output computation, the GFINN
model can also be considered to represent a voting scheme, where every voter
(hidden neuron) also estimates its own vote strength and specializes itself for
a subset of the input space.

4.4.2 Selection of input features

One of the great benefits of the GFINN representation is, that it supports
a straightforward method for the selection of significant input features. As a
consequence, the induced rules do not have to use all the input features. The
features they actually use may vary for different rules.
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Algorithm

1. Compute the overall activation Θk of every hidden
neuron nk:

Θk =
∑
−→x ∈T

νk(
−→x ) (4.15)

and sort the hidden neurons according to their
overall activation. The most active neuron becomes
n1, the least active neuron becomes nk. This is a
heuristic used to prefer the simplification of the
most commonly used rules to the rarely used ones.

2. Try the following features pruning for every hidden
neuron nk (in their sorted order):
Check for every input feature f ∈ {1, . . . , n}, whether
it can be omitted from the restriction set χk:

(a) Compute the output of the network y(−→mk).

(b) Temporarily remove feature f from the
restriction set χk.

(c) Create a set of verification patterns from the
reference vector −→mk. There is one verification
pattern −→vk′ for every other hidden neuron nk′.
They are same as −→mk, except that in every
pattern the f-th coordinate of −→mk is replaced
by the f-th coordinate of the vector −→mk′:−→vk′ = (m1k, . . . ,m

f
k′ , . . . ,m

n
k). Because of the Gaussian

local nature of the hidden neurons, these
verification patterns are expected to activate
the other neurons most.

(d) Compute the network output y(−→vk′) for every
verification pattern −→vk′. If the difference
|y(−→vk′) − y(−→mk)| exceeds a given threshold δ,
the feature f cannot be pruned. If the output
difference never exceeds the threshold, the
feature f can be removed from the restriction
set χk as δ-irrelevant.
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Chapter 5

Supporting experiments

5.1 Artificial data

5.1.1 Data

First, the proposed methods were tested on an artificially generated data set.
This data set was formed according to a few assumed rules stated below in
Table 5.1. The goal of the first experiment is to verify, if the network finds
rules similar to those actually used to generate the training patterns.

5.1.2 Results

Accuracy

Figure 5.1 shows the comparison of the correct output values and their ap-
proximation achieved by the GFINN network.

Extracted rules

The rules discovered by GFINN for the artificial data are in table 5.2.

1. IF x1 = low THEN y = high
2. IF x1 = medium AND x2 = low THEN y = high
3. IF x1 = medium AND x2 = medium THEN y = medium
4. IF x1 = medium AND x2 = high THEN y = low
5. IF x1 = high THEN y = low

Table 5.1: The hand-written rules used to generate the artificial dataset.
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Figure 5.1: The generated artificial data (left), and their approximation by
the network (right).

5.1.3 Discussion

From the comparison of the tables 5.1 and 5.2 it is obvious, that there are
more discovered rules than rules used to create the dataset. On the other
hand, it is also easy to spot the duplicate discovered rules. For example
the second, seventh, tenth and twelfth rule in the table 5.2 - they all corre-
spond to the first rule used to generate the dataset (tab. 5.1) - IF x1 =
low THEN y = high. After analyzing the similarity of the rules, it is possi-
ble to conclude, that the discovered rules indeed correspond to the rules
underlying the data.

5.2 Real-world data

5.2.1 Data

Even though experiment performed for artificial data shows promising re-
sults, it is also very important to check the network behavior on real world
data. In the real world the method needs to handle noise and incorrect values.
The GFINN network is tested on the housing dataset available from the

UCI machine learning repository [2]. The dataset contains 506 patterns of
housing values in Boston Area. It is based on the U.S. census in the year 1978.
Every pattern has thirteen numerical (including the housing value) and one
binary attribute:
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1. IF x1 = high THEN y = low
2. IF x1 = low THEN y = high
3. IF x1 = medium AND x2 = medium THEN y = medium
4. IF x1 = medium AND x2 = medium THEN y = medium
5. IF x1 = medium AND x2 = low THEN y = high
6. IF x1 = high THEN y = low
7. IF x1 = low THEN y = high
8. IF x1 = medium AND x2 = high THEN y = low
9. IF x1 = high THEN y = low
10. IF x1 = low THEN y = high
11. IF x1 = high THEN y = low
12. IF x1 = low THEN y = high

Table 5.2: The discovered fuzzy rules for the artificial dataset.

1. CRIM . . . per capita crime rate by town

2. ZN . . . proportion of residential land zoned for lots over 25,000 sq. ft.

3. INDUS . . . proportion of non-retail business acres per town

4. CHAS . . . Charles River dummy variable (= 1 if tract bounds river; 0
otherwise)

5. NOX . . . nitric oxides concentration (parts per 10 million)

6. RM . . . average number of rooms per dwelling

7. AGE . . . proportion of owner-occupied units built prior to 1940

8. DIS . . . weighted distances to five Boston employment centers

9. RAD . . . index of accessibility to radial highways (lower value reflects
better accessibility)

10. TAX . . . full-value property-tax rate per $10,000

11. PTRATIO . . . pupil-teacher ratio by town

12. B . . . 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town

13. LSTAT . . . % lower status of the population

14. MEDV . . . Median value of owner-occupied homes in $1000’s
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Figure 5.2: The Boston housing data values distributions

The data distribution

Figure 5.2 shows the distributions of the values in the Boston housing dataset.
It is very important to note the extraordinarily high amount of houses with
the $50.000 price as opposed to just slightly cheaper houses. It comes from
the original data censoring, as explained in [6]. All houses costing $50.000 or
more are set an artificial price of $50.000. This fact is met again later in this
thesis.
[6] also discovered, that there are eight miscoded variables in the dataset.

They do not correspond to the values actually collected by the census bureau.
In this experiment these wrong values are left untouched, because they just
represent noise in the data.
The housing dataset exhibits all properties of real world data:

• real-world data distribution

• noise (including the miscoded variables)

• utterly wrong patterns (censoring)

Correlations

Some features of the data can seem to be correlated to other. Table A in Ap-
pendix A shows the input features correlations calculated on all the patterns
in the dataset.
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There is a very high correlation between taxes (TAX) and the index
of accessibility to radial highways (RAD) - 0.91. A high correlation can be
observed between concentration of nitric oxides (NOX) and the industri-
alization level (INDUS) - 0.76 - together with a high negative correlation
between the nitric oxides (NOX) and distance to employment centers (DIS)
- −0.77. The predicted housing value (MEDV ) is highly correlated with the
average number of rooms (RM) - 0.71 - and highly negatively correlated with
a lower status of population (LSTAT ) - −0.74.

5.2.2 Methodology

Goal

The goal of this experiment is to predict theMEDV value based on the other
thirteen attribute values. The proposed growing fuzzy inference neural system
is also requested to discover the fuzzy rules describing the approximation
method.

Data preprocessing

Before any other processing all values are normalized into the 〈0, 1〉 interval:

x′ =
x− xmin

xmax − xmin

(5.1)

For every input variable its highest and lowest values in the dataset are
used as the normalization boundaries.

Error calculation

Both the root mean squared error:

RMSE(Fi) =
1
|Fi|

√ ∑
(−→x ,by)∈Fi

(y(−→x )− ŷ)2, Fi ⊆ T (5.2)

and the mean absolute error:

MAE(Fi) =
1
|Fi|

∑
(−→x ,by)∈Fi

|y(−→x )− ŷ|, Fi ⊆ T (5.3)

are computed for the the 10-fold cross-validation. The dataset is randomly
split into ten mutually disjoint folds Fi of about the same size. In every of
the ten rounds one of the folds is used as a test set while the other nine folds
form together a training set.
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Figure 5.3: Root mean square error and mean absolute error of various sized
RBF networks for the housing dataset.

5.2.3 Results

RBF performance

Because GFINN is a type of RBF-networks, which is modified for a rule
extraction, it is important to realize, how much of a performance is lost or
gained in comparison to the basic RBF model. Figure 5.3 shows the approxi-
mation error of normalized RBF networks with different numbers of hidden
neurons. These results were obtained using the RBF network implementation
in the Weka toolkit (http://www.cs.waikato.ac.nz/ml/weka/). This RBF
network reaches a maximum performance with about thirty neurons in the
hidden layer.

GFINN with LMSE and FOPT output weights computation

Parameters Both tested GFINN variants share the basic parameters. They
grow after every third pass through the training set (λ = 3). The lear-
ning speed starts at α(0) = 0.9 and decreases in every step according to
α(t + 1) = 0.997 ∗ α(t). In all cases the Gaussian widths were experimen-
tally set to 0.05. The ε parameter of the ε-insignificance pruning is varied,
while the δ parameter of the δ-irrelevant input feature pruning is set to a
low value od 0.001. This δ value was selected because it allows to remove
a feature from the rule, only if the change of the network output is smaller
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ε LMSE FOPT
RMSE MAE Size RMSE MAE Size

0.01 0.1389 0.0989 37 0.1399 0.1013 36
0.03 0.1437 0.1018 25 0.1458 0.1048 25
0.05 0.1482 0.1082 21 0.1454 0.1035 226
0.07 0.1507 0.1071 18 0.1580 0.1155 18
0.09 0.1627 0.1204 10 0.1629 0.1204 11
0.11 0.1675 0.1229 8 0.1711 0.1260 8
0.13 0.1715 0.1263 7 0.1740 0.1286 7
0.15 0.1927 0.1392 4 0.2368 0.1886 5
0.17 0.2018 0.1462 3 0.3583 0.3089 2

Table 5.3: GFINN performance with the least mean square error (LMSE)
and FOPT output weights computation for various ε-insignificance pruning
levels. The Size column shows the average final network size over ten folds
in cross-validation.

than the resolution of the MEDV values in the dataset. Both variants use
the Nbi-based neighborhood hbi with the constant distance threshold d = 1.
The neighbors are adapted using the αk(t) = α2(t) learning speed, while the
best matching neuron is adapted using the αb(t) = α(t) learning speed.

Performance Table 5.3 shows the performance achieved by the GFINN
variants with several ε values for the ε-insignificance pruning. For an easier
visual comparison the result of the better GFINN variant is always highli-
ghted by bold font. The obtained performance is fully comparable with the
performance of the standard RBF network with the same size - the pressure
on the GFINN model to express itself in terms of fuzzy rules does not have
any negative impact.

Rules The discovered rules are visualized in Figure 5.5. Because the ru-
les can become quite complex and unreadable, the following visualization
approach is used:

• Every column shows one rule.

• Every row corresponds to a feature.

• Each feature value is shown as a height of a filled bar inside a unit-sized
square.
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Figure 5.4: Progress of GFINN (LMSE) with 0.09-insignificance pruning lear-
ning averaged over the ten folds.

• No bar for a feature in a column means this feature is not used in that
particular rule - it is considered to be insignificant.

• Because not all the rules become activated equally over the whole trai-
ning set, the overall rule activation is also shown. The rules are ordered
from the most active one on the left, to the least active one on the right.
The background color of every rule also corresponds to this activation
frequency. The more green background signifies the higher overall acti-
vation. The activation of the most active rule (the left-most one) forms
a unit of measurement.

The first four rules expressed in the form of rules sound as:

1. IF INDUS = medium AND CHAS = false AND NOX = low AND
RAD = low THEN MEDV = medium

2. IF CRIM = low AND ZN = medium AND INDUS = very low
AND AGE = medium AND DIS = high AND RAD = very low
AND TAX = low AND PTRATIO = high AND B = very high
AND LSTAT = low THEN MEDV = high

3. IF CHAS = false AND RAD = very high AND B = very high
THEN MEDV = low

4. IF RAD = very high AND TAX = very high AND B = low THEN
MEDV = low
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Figure 5.5: Fuzzy rules discovered for the housing dataset
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5.2.4 Discussion

There is no other way how to verify the discovered rules than to use a
common-sense. From this point of view the fifth rule - “If it is by the ri-
ver, it is expensive” - is the easiest one. The first rule, according to its overall
activity, seems to capture the most common case. This observation is further
supported by its predicted lower medium MEDV value. This rule says that
the most “common” housing areas with a low medium housing price are away
from the river, with a medium industrialization and low nitric oxides con-
centration, while still being easily accessible from a highway (low index of
accessibility to radial highways).
The second and the third rule complement one another. The rule 2 de-

scribes areas with atypical proportion of black inhabitants, with a medium
proportion of large mansions, away from the main employment centers, but
accessible from a highway, with only a small proportion of lower status inha-
bitants. Houses in these areas are proposed to be among the more expensive.
On the opposite, rule 3 describes areas with a typical proportion of black inha-
bitants, far away from highways and the Charles river as cheap for housing.
This “far from highways ⇒ cheap” view is also expressed by the rule 4.

According to the overall activation, the rules 5 to 9 seem to capture rare and
special cases, including the most expensive living by rule 9.
Counterintuitively and unexpectedly, the average number of rooms per

dwelling (RM) is never used (except for the special-case rule 9). Although
the correlation shows and the intuition suggests a strong bind between the flat
size and its price, the network seems to ignore the fact. Why is it so remains
an open question. One common-sense hypothesis suggests that the flat price
is really affected by the location more than by the size. This hypothesis does
not, however, explain the high correlation between RM and MEDV .
An interesting fact is also revealed, when the patterns from the dataset

are sorted according to the network prediction error: The set of the fifteen
worst approximated housing patterns is almost identical to the set of housing
patterns with the upper bound housing value (MEDV = $50.000). In all ca-
ses the neural network underestimates the housing value. It may be caused
by the fact, that these values are both extreme and rare. There are, however,
other patterns in the dataset, that have only a slightly lower MEDV value,
are even rarer, but still do not appear in the worst prediction set. Another
hypothesis may be, that the network may have troubles with the fact, that
these upper-scaled housing values were censored [6]. They may lack regu-
larities underlying other patterns. Other authors also stumbled upon this
problem with their methods, some of them had even removed these patterns
from the considered data, claiming them “wrong” [24].
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An interesting question remains, whether the discovered rules will be the
same or at least similar for slightly changed training sets. Unfortunately,
already the first visual inspections of the rules obtained during 10-fold cross-
validation reveals, that the extracted rules can differ - for example no rule
similar to the fifth one appears for the second fold.
Only the results obtained for LMSE and FOPT are shown in Table 5.3.

Results for the gradient descent method computation of the output weights
are omitted because of a very low performance. The algorithm was very
sensitive to the choice of the learning speed parameter α. The underlying
hidden layer changes much faster, than the gradient descent can react to. It
could, however, be possible to use the batch mode for gradient descent.
When comparing the two methods - LMSE and FOPT, LMSE usually

yields better results. But while providing slightly worse results, FOPT requi-
res much less processing time. Another advantage of the FOPT approach
consists in the form of values for the output weights, which can be used im-
mediately as the consequents of the fuzzy rules. LMSE, while being optimal
with respect to the training set, sometimes offers output weights that are out
of the interval 〈0, 1〉 allowed for the output values. For the considered training
set, these “out-of-bounds” consequents may not become fully activated and
they may be compensated for by other rules. Unfortunately, this behavior
cannot be guaranteed outside of the training set and may be considered to
be unacceptable for many tasks. The FOPT method, on the other hand, can
never induce rule consequents outside of the interval allowed for the output
values.

53



Chapter 6

Summary

6.1 Summary

In this thesis, a new model of the growing fuzzy inference neural network has
been proposed. It is based on the idea of growing neural gas networks, impro-
ved by a strategy for nodes pruning and in increased sensitivity to adequate
output classes. Further, this system can be treated as a fundament inducing
a transparent system of fuzzy rules. This combination provides the network
with an unmatched capability of finding the size necessary for the task at
hand autonomously first and explaining how the network works in terms of
fuzzy rules later on. The fuzzy-set-theory point of view also motivates the
new FOPT algorithm for the computation of the output weights, which has
been shown to yield almost optimal results in much shorter time, than e.g.
the computation of the optimal weights performed by the least mean squares
estimations. The output weights computed by FOPT are guaranteed to stay
within the output values interval, unlike the output weights computed by
LMSE. The FOPT method can be also parallelized easily, supporting the ul-
timate idea of distributed information processing in neural networks. A new
technique for pruning of irrelevant features in the antecedents of the rules
has been introduced too.
The proposed GFINN model has been tested both on the artificial and the

real-world datasets. The experiments withe the artificial dataset experiment
reveal, that the new model of neural networks is capable of discovering the
knowledge and structure underlying the training data and that the extracted
knowledge can be interpreted in the form of fuzzy rules. The experiments
with the Boston housing data tested the ability of the model to deal with
larger and noisy data. Also in this case, the network succeeded in discovering
a small amount of understandable fuzzy rules describing the housing data.
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6.2 Future work

Despite of several advantages of the introduced model summarized in the
preceding section, important areas worth of improvements can be also seen
- namely the correct position of hidden neurons and the form of the induced
fuzzy rules. New neurons, which are created in the areas of high output
error, tend to migrate to areas with high data density. This artifact has been
inherited from the vector quantization property of original self-organizing
maps. The techniques introduced in this thesis restrict this behavior, but are
not capable of avoiding it completely. On the other hand, it also remains an
open question, whether it is a good idea to get rid of vector quantization.
Even small discrepancies in the input space areas with a high data density
may impact a high overall error at the output of the network.
When the housing rules obtained for different runs of the model during

cross-validation are compared, they clearly differ from run to run completely.
Obviously, this network belongs to “high-variance” models, such as decision
trees. From this point of view, it might be worth it to compare the GFINN
model with fuzzy decision trees [17] with regard to training speed and the
sensitivity to the noise in training patterns.
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Appendix B

Contents of the enclosed CD

Directory Content
animations animations of the training of growing grid and growing

neural gas for the sample data
data artificial and housing datasets
source source codes of the neural networks (not a part of this thesis)
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