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Abstract

This thesis focuses on the theory of asset pricing models and their usage in the
design of credit contracts. We describe the evolution of structural models start-
ing from the basic Mertonian framework through the introduction of a default
barrier, and ending with stochastic interest rate environment. Further, with
the use of game theory analysis, the parameters of an optimal capital struc-
ture and safety covenants are examined. To the author’s best knowledge, the
first EBIT-based structural model is built up that considers stochastic default
barrier. This set-up is able to catch the different optimal capital structures in
various business cycle periods, as well as bankruptcy decisions dependent on
the state of the economy. The effects of an exogenous change in the risk-free
interest rate on the asset value, probability of default, and optimal debt ratio
are also explained.
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Abstrakt

Tato práce se zabývá teoretickými modely pro oceňováńı finančńıch aktiv a je-
jich použit́ım při návrhu optimálńıch úvěrových smluv mezi dlužńıky a věřiteli.
V prvńı části je popsán vývoj strukturálńıch model̊u od základńıho Mertonova
modelu, který byl dále rozš́ı̌ren o defaultńı bariéru a zasazen do prostřed́ı se
stochastickou úrokovou mı́rou. Práce dále pomoćı teorie her hledá parame-
try optimálńıho zadlužeńı vzhledem k existenci dluhových kovenant̊u. Hlavńı
přidanou hodnotou práce je navržeńı modelu se stochatickou bariérou defaultu,
který využ́ıvá EBIT jako stavovou proměnnou a který tak lépe zohledňuje
aktuálńı makroekonomickou situaci při hledáńı optimálńı p̊ujčky a rozhodováńı
o možném úpadku. Práce také podrobně diskutuje následky exogenńıch změn
úrokové mı́ry na hodnotu aktiv, pravděpodobnost úpadku a optimálńı mı́ru
zadlužeńı.
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Chapter 1

Introduction

The present Rigorosus thesis is based on the author’s Diploma thesis de-

fended at the Institute of Economic Studies, Faculty of Social Sciences, Charles

University in Prague in 2010. During the winter semester of the academic

year of 2010/2011 an article has been written using the results of the original

Diploma thesis. Being presented both within the university and on the 6th

Biennial Conference 2010 of the Czech Economic Society, there was enough

scope for the article to absorb the colleague’s advices. An extra care has been

taken on the remarks of the Diploma thesis opponent, especially with respect

to the structure and grammar. The mentioned article is attached to the end of

this Rigorosus thesis.

In the past decades financial markets rapidly gain on complexity due to an in-

creased demand for risk diversification and hedging. A number of sophisticated

instruments was developed that capture various aspects of price movements,

correlations of assets, macroeconomical developments, and other changes that

might affect the future income generated by the considered securities. The

pricing of these securities was not sufficiently accurate using the traditional

asset pricing models. In the search for new methods two different approaches

appeared. One stream of literature (called the reduced-form approach) focused

on finding a purely mathematical way of asset pricing, without the effort of

finding any economical intuition behind the models. In contrast, the other

group of academics studied the firm and its evolution. These, so-called struc-

tural models have an intuitive connection to the underlying economics, and

therefore they can be helpful in understanding the reasons of price movements.



1. Introduction 2

This work fits in the category of structural approaches. First it gives a brief

overview to the development of these models, and proposes their extension to a

stochastic interest rate environment. Second, it uses these models to examine

the effects of parameter settings in debt contracts, and therefore gives a guid-

ance for the design of an optimal credit contract that maximizes firm value.

With the introduction of a stochastic interest rate environment, it is possible to

consider the implications of the business cycle period on the optimal debt ra-

tio, and—using stochastic default barrier—on the bankruptcy decision as well.

Game theory is also invoked, therefore agency costs arising from asymmetric

information are predicted and minimized with the help of safety covenants and

properly chosen parameters.

The thesis is structured as follows: Chapter 2 reviews the literature of struc-

tural models. Starting with Merton’s (1974) path-breaking article, it discusses

the basis of this framework. Section 2.2 begins with the contribution of Black

& Cox (1976), who modelled early bankruptcy by defining a default barrier,

and continues with subsequent works of Leland (1994), Longstaff & Schwartz

(1995), and Briys & de Varenne (1997). The mathematical properties of these

models are described in the last two sections of the chapter. Chapter 3 focuses

on the types and design of credit contracts, describing the reasons for debt

financing and the wide range of available debt securities that might be used.

Section 3.5 uses game theory analysis to describe how a credit contract should

be specified to maximize the overall firm value, and to mitigate the agency costs

arising from asymmetric information. Chapter 4 presents—to the author’s best

knowledge—the first EBIT-based model with stochastic interest rate and default

barrier. The main advantages of this set-up are a self-consistent description of

the cash flows to different claim holders, and the projection of the current

macro-situation to the distribution of the firm’s future earnings, and therefore

to the value of the different assets (i.e. equity and debt). Chapter 5 concludes

the findings and suggests areas where research should continue.



Chapter 2

Asset Pricing Models

The purpose of this chapter is to review asset pricing models developed dur-

ing the last four decades. An important factor that favoured the development

of these models is the availability of a sophisticated mathematical tool called

stochastic calculus. It allows continuous time modelling and together with

the idea of risk-neutral measure it is able to provide closed form solutions for

pricing risky assets.

We live in a risk-averse world, where the price of an asset is also dependent on

its riskiness (that is, on the volatility of its future returns), since investors price

assets below their expected payoff if they bare some risk. However, the idea of

a risk-neutral probability measure deals with this issue: it is possible to adjust

the probabilities of future states for risk in a way that assets are priced at their

expected values.1 To derive this risk-neutral probability measure we need the

assumption that market prices include all available information, since known

fair prices are needed in order to create a measure that produces expected values

equal to these fair prices. Furthermore this risk-neutral probability measure is

unique if markets are complete.

Models that require the assumption that market prices incorporate all avail-

able information are called market information based models. They can be

further divided to structural and reduced-form models.

Models representing the first category are based on Merton’s (1974) frame-

work that employs the option pricing theory presented by Black & Scholes

1 The probability measure that reflects the true probabilities is called the physical measure.
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(1973). In Merton’s work a company defaults at the maturity of its debt if the

value of its assets is below the sum of its liabilities. Default prior maturity is

not possible. The subsequent models relaxed this assumption as well as others

taken by Merton. The common attribute of these models is that they concen-

trate on the structural characteristics of a company, including asset volatility

and financial leverage.

By contrast, reduced-form (aka hazard rate) models ignore structural charac-

teristics, and treat bankruptcy as a possible exogenous event that is described

as the first jump time of a point process, without trying to explain the reason

of default. This approach was first proposed by Jarrow & Turnbull (1995) and

later extended in several works, for example Jarrow et al. (1997), Madan &

Unal (1998) or Duffie & Singleton (1999).

As our model demonstrated in Chapter 4 fits in the category of structural

models, we will focus on the description of this approach in the following sec-

tions. Since the understanding of the original Merton’s framework is crucial

for following its extensions, we will start with its description.

2.1 Merton’s Structural Model

In his pathbreaking pater, Merton (1974) paralleled the value of equity in

a leveraged firm to a European call option on the firm’s assets and used the

option pricing theory developed by Black & Scholes (1973) to value it. A

corresponding debt is a zero-coupon bond with finite maturity with a promised

terminal payoff B. This rather simplified description has many unrealistic

restrictions, however, because of its simplicity and new perspective Merton

built the basics of the framework used in structural models.

A large and growing body of literature has relaxed one or more assumptions

posed by Merton. Some of the most important extensions are: more complex

capital structure and safety covenants (Black & Cox 1976), interest paying

debt (Geske 1977), Bankruptcy costs and tax benefits (Leland 1994), short

and long term debt types (Vasicek 1984), or stochastic interest rate (Longstaff

& Schwartz 1995; Hull &White 1995; Briys & de Varenne 1997; Collin-Dufresne

& Goldstein 2001).
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The original framework’s assumptions, mainly coming from the Black & Sc-

holes (1973) option pricing theory are:2

(A.1) there are no transactions costs, taxes, or problems with indivisibilities of

assets.

(A.2) there are a sufficient number of investors with comparable wealth levels

so that each investor believes that he can buy and sell as much of an asset

as he wants at the market price.

(A.3) there exists an exchange market for borrowing and lending at the same

rate of interest.

(A.4) short-sales of all assets, with full use of the proceeds, is allowed.

(A.5) trading in assets takes place continuously in time.

(A.6) the Modigliani-Miller theorem that the value of the firm is invariant to

its capital structure obtains.

(A.7) the Term-Structure is “flat” and known with certainty. I.e., the price of

a riskless discount bond which promises a payment of one dollar at time

τ in the future is P (τ) = e−rτ where r is the (instantaneous) riskless rate

of interest, the same for all time.

(A.8) The dynamics for the value of the firm, V , through time can be de-

scribed by a diffusion-type stochastic process with Stochastic Differential

Equation (SDE)3

dV = (µV − C)dt+ σV dW (2.1)

where µ is the instantaneous expected rate of return on the firm per unit

time, C is the total dollar payout by the firm per unit time to either its

shareholders or liability-holders (e.g., dividends or interest payments) if

positive, and it is the net dollars received by the firm from new financing

if negative; σ2 is the instantaneous variance of the return on the firm per

unit time; dW is a standard Gauss-Wiener process.

2 The assumptions are written exactly in a way as Merton wrote them, except for the symbols
used

3 This process is called Geometric Brownian Motion. Its basic properties are described in
section 2.3.
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Suppose a security with market value, Y dependent on the value of a firm.

More specifically, its price can be written as a function of the firm value V , and

time t: Y = F (V, t). The dynamics of this security can be formally written

using a SDE as

dY = [µY Y − CY ]dt+ σY Y dWY , (2.2)

where µY , CY , σy andWY and defined similarly as in (2.1). Using the stochastic

equivalent of chain-rule, the so-called Itō’s Lemma we also have:

dY = FV dV +
1

2
FV V (dV )2 + Ft

=

[

1

2
σ2V 2FV V + (µV − C)FV + Ft

]

dt+ σV FV dW, (2.3)

where subscripts denote partial derivatives, and the second equation comes

from (2.1). Comparing terms in (2.2) and (2.3) we have

µY Y ≡ 1

2
σ2V 2FV V + (µV − C)FV + Ft + CY (2.4a)

σY Y ≡ σV (2.4b)

dWY ≡ dW (2.4c)

The last equation indicates that Yt and Vt are perfectly correlated, as they

are driven by the same stochastic parameter. This implies the existence of

such linear combination of these securities that the resulting payoff is non-

stochastic. Using this fact Merton constructed a portfolio of three securities V ,

Y and riskless debt in a way that the initial investment was zero.4 He showed

that for any security Y whose value can be written as a function of the firm

value and time has to satisfy the following equation:

0 =
1

2
σ2V 2FV V + (µV − C)FV − rF + Ft + CY (2.5)

As we can see, F depends on the value of the firm, time, interest rate, the

volatility of the firm’s value, the payout policy of the firm and the payout

policy to the holders of Y . It does not depend on the expected rate of return

neither the risk preference of the investors. This is the result where the idea

of risk-neutral valuation comes from. Also it should be noted, that the only

4 For the details about the construction of this portfolio, and for the complete derivation of
equation (2.5) see Merton (1974) pp. 451–452.
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thing that distinguishes one security from the other (debt vs. equity) is a pair

of boundary conditions.

For pricing a simple corporate bond Merton took four further assumptions:

(A.9) The corporation has two classes of claims, a single homogeneous class of

debt and the residual claim, called equity.

(A.10) The firm commits to pay $B to the bondholders at date T

(A.11) If the payment is not met at T , the bondholders immediately take over

the company, and so the shareholders receive nothing.

(A.12) The firm cannot issue any new claims that are not junior to the original

one nor can pay dividends or do share repurchase before T .

As it can be seen this set-up ensures no default prior to maturity. Using

equation (2.5) for the value of the debt, D, setting C = CY = 0 in line with

the assumptions and defining τ = T − t, so thus Dt = −Dτ we can write

0 =
1

2
σ2V 2DV V + rV DV − rD −Dτ (2.6)

Denoting the value of equity as E and using (2.1), we have V = D(V, τ) +

E(V, τ). As E and D are non-negative, we know:

D(0, τ) = E(0, τ) = 0

and also D(V, τ) ≤ V , that is for V > 0 we have the other boundary condition

D(V, τ)/V ≤ 1

As the payment is made exactly when V (T ) > B, the initial condition for the

debt at τ = 0 is

D(V, 0) = min[V,B]

The function D(V, τ) can be found using (2.6) and the above boundary condi-

tions using standard methods as separation of variables. However, as Merton

noticed, the problem can be transformed to another, already solved. For the

value of equity holds E(V, τ) = V −D(V, τ), so the solution for equity is given

by (2.5):

0 =
1

2
σ2V 2EV V + rV EV − rE − Eτ (2.7)
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with a corresponding initial condition

E(V, 0) = max[0, V − B]

and the boundary conditions E(0, τ) = 0 and E(V, τ)/V ≤ 1. This is identical

to the equations for an European call option on a non-dividend-paying stock

in the Black-Scholes option pricing model. The firm value corresponds to the

stock price, the equity to the option value and B to the exercise price.

Therefore the equity price is

E(V, τ) = V Φ(d1)−Be−rτΦ(d2), (2.8)

where

d1 =
ln(V/B) +

(

r + 1
2
σ2
)

τ

σ
√
τ

d2 = d1 − σ
√
τ

and Φ(·) is the cumulative standard normal distribution.

As D = V − E, the debt value can be expressed as

D(V, τ) = V Φ(−d1) +Be−rτΦ(d2) (2.9)

with same d1 and d2 as in (2.8).

2.2 First Passage Time Approach

The original Merton (1974) model described in the previous section uses

several assumptions that limit its practical implementability. One of the most

unrealistic restriction is the impossibility of default before maturity. To solve

this problem Black & Cox (1976) came with a set-up where default occurs

if the firm value touches a threshold level. This level is called the Default

Barrier (DB), and generally can be constant (Leland 1994; Longstaff & Schwartz

1995), deterministic (Black & Cox 1976; Leland & Toft 1996) or stochastic

(Briys & de Varenne 1997; Collin-Dufresne & Goldstein 2001) function of time.

Models with a DB not only explain early default, but are also able to produce
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a large variety of Recovery Rates (RRs) and therefore reflect more precisely

factors as bond covenants, bankruptcy costs or taxes.

The name of the First Passage Time (FPT) models corresponds to the method

how the default is described mathematically: since the evolution of the firm

value is represented using a Geometric Brownian Motion (GBM), it is possible

to transform the probability distribution of the default to the FPT of a Wiener

process.5 These models can be also divided to two groups in dependence on

the determination of the DB: it can be set exogenously (Black & Cox 1976;

Longstaff & Schwartz 1995), or be an endogenous result of an optimization

process (Leland 1994; Ziegler 2004). This section gives a brief overview these

FPT models in order to describe the background of our model presented in

Chapter 4. The notation used throughout the section follows the one introduced

in the description of Merton’s model, unless it is explicitly defined otherwise.

2.2.1 Black and Cox Model

Black & Cox (1976) extended the original Merton (1974) framework to in-

clude several features of debt contracts, namely safety covenants, subordinated

bonds, and restriction on asset sales. Since this chapter discusses basic asset

pricing methods, only the introduction of a DB will be described.6

The evolution of the firm value is the the same as in Merton (1974), except a

restriction that the continuous dividend payment received by the stockholders

is a constant fraction of the firm value. Therefore equation (2.1) takes the form

dV = V (µ− c)dt+ σV dW (2.10)

with a constant c = C/V representing the payout ratio received by the equity

holders. Again, the short-term interest rate is assumed to be constant, and so

the interest-rate risk is disregarded. The original case described in Black &

Cox (1976) also assumes zero bankruptcy costs.

A safety covenant, that provides a right for the bondholders to force bank-

ruptcy if the firm is performing poorly, is introduced. This poor performance

5 A derivation that uses such transformation is described in section A.2
6 For pricing of more complex capital structures and the issue of contractural design see the
original work of Black & Cox (1976).
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is signalled by the fall of the firm value under a time-dependent default barrier

defined as v̄(t) = Ke−γ(T−t), t ∈ [0, T ) for some constants K > 0 and γ. The

creditors take over the firm as soon as the firm value hits this barrier. Conse-

quently default could be triggered in two ways: prior to maturity (by reaching

the threshold level) or at maturity, if the firm value was above the DB but is

below the debt principal at T . To simplify the notation let us set the default

barrier as one function:

vt =

{

v̄(t) for t < T ,

B for t = T .

The default time τ is

τ = inf {t ∈ [0, T ] : Vt < vt} .

We also assume the following:

V0 > v̄(0)

Ke−γ(T−t) ≤ Be−r(T−t), ∀t ∈ [0, T ]

i.e. the firm is not in default initially and the default barrier (and hence

the payment to the bondholder) is never higher than the present value of the

principal amount. This holds also for t = T , therefore K ≤ L.

Zero-Coupon Bond

In Merton’s model the debt pricing function solved equation (2.6). The

analogous Partial Differential Equation (PDE) for zero-coupon debt value with

default barrier is

0 =
1

2
σ2V 2DV V + (r − c)V DV − rD +Dt (2.11)

with the boundary condition

D(Ke−γ(T−t), t) = Ke−γ(T−t)

and terminal condition

D(V, T ) = min(V,B).
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Equation (2.11) can be solved using the classical methods used for PDEs or

with a probabilistic approach.7

Note, that similarly as the equity value in Merton (1974) corresponds to a

call option, it corresponds to a down-and-out barrier option here. Using the

in-out parity (i.e. the plain vanilla option price equals to the sum of down-and-

out and down-and-in barrier options price, all having the same strike price,

underlining asset, maturity and the last two having the same barrier as well),

the equity has a lower value by the price of a down-and-in barrier option in the

presence of a DB. As there are no bankruptcy cots, this value is transferred to

the bondholder.

Perpetual Coupon Bond

A perpetual coupon bond has infinite maturity and continuous coupon pay-

ment at a constant rate cD.
8 The net cost of the coupon is financed by issuing

additional equity. Its price DcD(t) equals

DcD(t) = lim
T→∞

E

(
∫ T

t

cDe
−r(s−t)1{s<τ̄}ds

)

+ lim
T→∞

E
(

Keγ(τ̄−T )e−r(τ̄−t)1{t<τ̄<T}

)

under risk-neutral probability measure with 1 used as a symbol for indicator

function. Since the coupon payments are constant it is straightforward to define

the default barrier constant as well, i.e. set γ = 0. With the assumption that

dividends paid to equity holders are zero (that is c = 0) DcD can be written

as9

DcD =
cD
r

(

1−
(

v̄

Vt

)α)

+ v̄

(

v̄

Vt

)α

, (2.12)

with α = 2r/σ2.

2.2.2 Leland’s model

Leland (1994) extended the perpetual coupon bond model described above

by incorporating bankruptcy costs and tax benefits. Now V is a variable for

the “asset value” of the firm; the total firm value is V less the expected costs

7 The solution of (2.11) can be found in Black & Cox (1976) p. 356
8 Here we use the subscript D in order to distinguish this pay-out from c, which was the
payout ratio to equity holders.

9 For the mathematical derivation see Bielecki & Rutkowski (2002) p. 81 and the preceding
calculations.
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of bankruptcy plus the value of the tax shield. V follows the same diffusion

process as in (2.10) with no dividend payments (c = 0):

dV = V µdt+ σV dW,

hence V is not affected by the financial structure of the firm, thus the difference

between coupon payments and tax benefits is financed by equity dilution.

When bankruptcy occurs at level Vt = VB a fraction 0 ≤ ω ≤ 1 is lost as

costs due to bankruptcy, and the debt holders receive the remaining (1−ω)VB

leaving the equity holders with nothing. The value of the bond can be written

as

DcD(Vt) =
cD
r

(

1−
(

v̄

Vt

)α)

+ (1− ω)v̄

(

v̄

Vt

)α

. (2.13)

Note that with ω = 0 this is identical to (2.12). If we denote pB = (v̄/Vt)
α

(2.13) becomes

DcD(Vt) =
cD
r

(1− pB) + (1− ω)v̄pB.

pB represents the value of a contingent claim that pays $1 when bankruptcy oc-

curs, ωv̄pB is the present value of expected bankruptcy costs, and cD/r (1− pB)

is the present value of expected coupon payments. Consequently the value of

the tax benefits is equal to:

TS = Tc

cD
r

(1− pB) ,

where Tc is the corporate tax rate.

The total value of the firm, denoted by G(Vt) is therefore equal to

G(Vt) = Vt − ω · v̄ · pB + Tc

cD
r

(1− pB) .

Since the total value of the firm is equal to the sum of its equity and debt value,

the shareholders’ claim can be found as

E(Vt) = G(Vt)−DcD(Vt)

E(Vt) = Vt − (1− Tc)
cD
r

(1− pB)− v̄ · pB.

Intuitively the value of equity is equal to the value of firm’s assets less the

present value of expected coupon payments reduced by tax and the contingent
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claim on v̄. Note that the value of equity is not dependent on the bankruptcy

costs, and so that is paid in full by the bondholders.

2.2.3 Models with Stochastic Interest Rates

One of the shortcomings of the Black & Cox (1976) model is the assumption

of constant and know risk-free interest rate. This restriction is relaxed in models

with stochastic interest rates. Because our work10 assumes stochastic interest

rate as well, we will make a review of the relevant literature at this point.

Longstaff and Schwartz

Longstaff & Schwartz (1995) price corporate bonds reflecting both interest

rate risk and credit risk using risk-neutral probability measure for both stochas-

tic processes. The evolution of the short-term interest rate is inherited from

the Vasicek (1977) model:

drt = (a− brt)dt+ σrdW̃t,

and the firm-s value is driven by the

dVt = Vt(rtdt+ σV dW
∗
t )

SDE. As we can see the constant drift from the Leland (1994) model is re-

placed by the stochastically evolving short-term interest. Furthermore, follow-

ing Longstaff & Schwartz we have the following properties:� Browninan motions W̃ and W ∗ are correlated with the instantaneous

correlation ρV,r.� DB is represented as a constant threshold level v̄.� Recovery Rate (RR) is independent on the default time, proportional to

the face value of the bond and paid out at maturity.� v̄ ≥ B, hence the debt is repaid in full if default does not occur prior

maturity.11

10 See Chapter 4
11 In fact this inequality is not explicitly wrote down by Longstaff & Schwartz, however it is
implicitly assumed.
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where ωi is the writedown rate for the ith class. The seniority of the

claims is already reflected in the writedown rates, and therefore does not

play essential role.12 It is natural to suppose the following relationship:

v̄ =
∑k

i=1(1 − ωi)Bi with Bi (
∑k

i=1Bi = B) representing the total face

value of debt from the ith class.

It we define τ , the time of default in the traditional way, that is

τ − inf{t ∈ [0, T ] : Vt < v̄},

than the bond’s payoff at T can be written as

Di(VT , T ) = B(1− ωi1{τ≤T}).

For finding an analytical solution of the bond value at time t < T with given

Vt there are basically two ways: by solving the fundamental PDE with the cor-

responding boundary and terminal conditions, or alternatively, by probabilistic

approach. A closed-form solution however, according to the best knowledge of

the author, has not yet been produced using any of them. For this reason—even

if some quasi-explicit results can be obtained analytically—numerical compu-

tations are required in order to obtain the results of the model. Such com-

putations were made by the authors as well as others (Lehrbass 1997; Collin-

Dufresne & Goldstein 2001). A shortcoming of this model is, that it produces

credit spreads close to zero for low debt maturities.

Briys and de Varenne

Briys & de Varenne (1997) submitted a model that addressed some restrictive

features and assumptions of the then available literature. For example, the

previously analysed Longstaff & Schwartz (1995) model cannot work with a

default barrier that would be lower than the present value of the debt principal.

Their work also assumes stochastic default barrier, as it is derived from the

instantaneous short-term interest.

12Note that this set-up can easily catch Absolute Priority Rule (APR) violations.
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The short-term rate dynamics follows the so-called generalized Vasicek model,

which is a mean-reverting stochastic function:

drt = a(t)(b(t)− rt)dt+ σ(t)dW̃t,

where a, b, σ : [0, T ] → R are known, deterministic functions. Consequently the

price of a default-free zero-coupon bond, P follows the dynamics

dP (t, T ) = P (t, T )(rtdt+ b(t, T )dW̃t)

for some deterministic b(·, T ) : [0, T ] → R. The firm value V is assumed to

follow the process

dVt

Vt

= rtdt+ σV (ρdW̃t +
√

1− ρ2dŴt),

with constant σV > 0, and mutually independent Brownian motions W̃ and

Ŵ . The local correlation coefficient between the risk-free rate and firm value

is ρ = ρV,r. If we denote W ∗ = ρdW̃t +
√

1− ρ2dŴt, it is visible that the firm

value process is defined in the same fashion as in Leland (1994).

The DB is defined as the price of a default-free bond with the same maturity

and some face value K ∈ (0;B] not greater than the defaultable bond principal:

vt =

{

K · P (t, T ) for t < T ,

B for t = T .

The default time is, as usually,

τ = inf{t ∈ [0, T ] : Vt < vt}.

The payoff at default is dependent on τ : for τ < T the bondholders receive a

(1− ω2) part of the remaining assets, whereas for τ = T this payoff ratio may

be different, and is represented as (1 − ω1). The remaining ω1 respectively ω1

part is lost as bankruptcy cost and/or paid out to equity holders (APR). The

bond’s final cash flow at T is therefore

D(Vt, T ) = (1− ω2)B1{τ<T} + (1− ω1)VT1{τ=T} +B1{τ>T}
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If the bond price volatility function b(t, T ) is known, than the price of a

defaultable corporate bond can be derived as a closed-from solution:

D(t, T ) = P (t, T ) · [B −D1 +D2 − ω2R2 − ω1R1] , (2.14)

where Ft = Vt/P (t, T )

D1 = BΦ(d1)− FtΦ(d2),

D2 = KΦ(d5)− (FtL/K)Φ(d6),

R2 = FtΦ(d4) +KΦ(d3),

R1 = Ft

(

Φ(d2)− Φ(d4)
)

+K
(

Φ(d5)− Φ(d3)
)

,

with

d1 =
ln(B/Ft) +

1
2
σ2(t, T )

σ(t, T )
= d2 + σ(t, T ),

d3 =
ln(K/Ft) +

1
2
σ2(t, T )

σ(t, T )
= d4 + σ(t, T ),

d5 =
ln(K2/(FtB)) + 1

2
σ2(t, T )

σ(t, T )
= d6 + σ(t, T ),

and

σ2(t, T ) =

∫ T

t

(

(ρσV − b(u, T ))2 + (1− ρ2)σ2
V

)

du.

Let us analyse (2.14) here: B −D1 corresponds to the Mertonian valuation

(i.e. risk-free bond less put-to-default option), D2 is associated with the value

brought to the debt holders by the possibility of early default triggered by

safety covenant. The last two terms, ω2R2 and ω1R1, are both positive,13 and

represent the costs of early default and default at maturity respectively. It is

therefore clear that the bond’s price is decreasing in ω1 and ω2.

2.3 Geometric Brownian Motion

As the reader have probably noticed, the Geometric Brownian Motion (GBM)

is often employed in modelling financial assets and is included in all of the

models described in this text. Consequently it is crucial to understand what

GBM is, and it is beneficial to be familiar with its basic characteristics.

13 See Bielecki & Rutkowski (2002) pp. 105–106



2. Asset Pricing Models 17

Geometric Brownian Motion is defined as

St = S0 · exp
{(

µ− σ2

2

)

t+ σWT

}

and corresponds to a SDE dSt = µStdt+σStdWt, where S0 is an arbitrary initial

value, µ is called the (percentage) drift , σ is the (percentage) volatility and

Wt is a Standard Wiener Process. It has the following properties:

E(St) = S0 · eµt

V ar(St) = S2
0 · e2µt(eσ

2t − 1)

As the Wiener process is symmetric with respect to the origin, we have

∀p : P

(

St ≥ S0 · exp
{

(µ− σ2

2
)t

}

· p
)

= P

(

St ≤ S0 · exp
{

(µ− σ2

2
)t

}

· 1
p

)

and thus

P

(

St ≥ S0 · exp
{

(µ− σ2

2
)t

})

= 0.5

that is, keeping the expected value constant and rising the percentage volatility

σ the median is decreasing. If the earnings are divided in a way that one party

(the borrower) earns on extremely high states and the extreme lows are suffered

by the other one (the lender), as it is the case of credit contracts, it is clear that

the expected earnings can be shifted if the volatility is changed. Actually, for

one of the parties (the borrower) it is desirable to set a higher volatility even

if the expected value decreases.

2.4 Alternatives to Geometric Brownian Motion

In the previous section we have seen the properties of the GBM. However,

understanding the mathematical models is only a part of our way towards

understanding how financial markets work. It is similarly important to realize

the limitations of these models, and to recognize how their predictions differ

from the asset prices observed on the markets.

A broadly employed method of testing and calibrating theoretical schemes is

to use their computations backwards, that is to estimate the basic parameters

of the model with the help of the observed market data. Applying this idea to
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the Black & Scholes (1973) model, it is possible to estimate the asset volatil-

ity: the resulting figure is called “implied volatility”. It was shown (see, for

example Dumas et al. 1998), that options with different strike prices and ex-

pirations have different Black-Scholes implied volatilities—this is the so called

“volatility smile”—on the same asset. To explain this phenomenon, new, more

sophisticated stochastic processes were introduced, that can be used instead of

the relatively simple GBM.

2.4.1 Stochastic volatility

An easily observable weak point of the GBM modelling is the assumption of

constant volatility: following the evolution of the asset prices on market, it can

be noticed that there are time intervals with relatively small deviations from the

trend line, and on the contrary there are periods with large movements (market

crashes are a good example). Figure 2.1 shows the frequency distribution of

SPX daily log returns from 1/1/1990 to 31/12/1999 compared with the Normal

distribution. A high central peak and fat tails—that can be recognized in

the comparison with the normal distribution—are characteristic for mixtures

of distributions with different variations. These observations motivate to use

models with stochastic volatility.
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Figure 2.1: Frequency distribution of SPX daily log returns compared
with the normal distribution
Source: Gatheral (2002)
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Following Wilmott (1998)14, we suppose that the stock price S and it’s vari-

ance are described by the following SDEs:

dS(t) = µ(t)S(t)dt+
√

v(t)S(t)dZ1 (2.15)

dv(t) = α(S, v, t)dt+ ηβ(S, v, t)
√

v(t)dZ2 (2.16)

with

〈dZ1 dZ2〉 = ρdt

where µ(t) is the instantaneous drift of stock price, η is the volatility of volatility

and ρ is the correlation coefficient between the Wiener processes Z1 and Z2

representing the stochastic factor of stock price returns and changes in v(t).

2.4.2 Local Volatility

Since it is usually impossible to find closed-form solution for the stochastic

volatility models and the numerical computation is complex, simpler models

of option pricing were searched for. Breeden & Litzenberger (1978) derived a

risk-neutral probability distribution function form market prices of European

options. Later Dupire (1994) and Derman & Kani (1994) found a unique

diffusion process consistent with these distributions using a state-dependent

diffusion coefficient σL(S, t) called local volatility function.

Even if the local volatility does not describe how the real volatilities actually

evolve, it is a a good proxy representing some kind of average. It is rather a

simplification that allows to price exotic options consistently with the observed

prices of vanilla options.

2.4.3 Heston Model

A special case of stochastic volatility described in equations (2.15) and (2.16) is

the Heston model (Heston 1993). It defines functions α and β as α(S, v(t), t) =

−λ(v(t)− v) and β(S, v, t) = 1:

dS(t) = µ(t)S(t)dt+
√

v(t)S(t)dZ1

dv(t) = −λ(v(t)− v)dt+ η
√

v(t)dZ2

14Wilmott (1998), chap. 23, pp. 299–304



2. Asset Pricing Models 20

with

〈dZ1 dZ2〉 = ρdt

where ρ is the rate of reversion of v(t) to its long-term mean v.

Heston presented a “closed-form solution for options on assets with stochastic

volatility”.15 It is able to incorporate the first four moments of the spot return

compared the first two moments incorporated in the Black-Scholes model. In

the case of at-the-money options the two models produce identical option prices.

As the options are usually traded near-the-money, the Black-Scholes model is

able to get empirical support. However, in the case of far-from-the-money

options the two models predict significantly different prices. As bond (and

debt) valuation corresponds to far-from-the-money option pricing, this is an

important conclusion for the topic of this work.

15Heston (1993) p. 339



Chapter 3

Credit Contracts

This chapter explains the types of corporate financing, the reasons for issuing

debt, and gives an insight to the design of credit contracts. The most basic

issue of this design is the maximization of firm value and the prevention of

unexpected losses in the contracting parties’ claims. The answer to this problem

is given using the tools described in the previous chapter, where we briefly

introduced theoretical works that help us in pricing the two basic types of

claims on the firm’s assets: debt and equity.

The Modigliani-Miller theorem is the basic cornerstone of the corporate fi-

nancing theory, therefore the following text starts with its explanation. Second,

a wide range of debt types is listed and characterized in short, to demonstrate

the available ways of financing. We continue with the explanation of the pos-

sible firm states that are given by the financial condition of the company, and

with the description of the bankruptcy procedure. This knowledge will be

employed in the closing section, where the game theory aspects of credit con-

tracting are taken into account.

3.1 Capital Structure

The capital structure of a firm refers to the proportion of securities that

ensure the needed funds for financing the firm’s projects. These securities have

two basic types: a riskier asset called equity and a relatively safe one, the

debt. Equity has two further sub-groups (preferred and common), debt has

many flavours, and furthermore there exists a group called “hybrid securities”

including, for example convertible bonds. In this work we will concentrate on
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the two basic types only, however the model presented in Chapter 4 can be

easily extended to more complex capital structures as well.

The value of the firm is therefore the sum of the market value of its debts

and its equity: V = D + E. Proposition I of the Modigliani-Miller (M-M)

theorem (Modigliani & Miller 1958) says that the market value of the firm is

not dependent on its capital structure, if the following assumptions hold:� There are no taxes� The market is efficient (and consequently the bankruptcy costs are zero)� Absence of asymmetric information

Therefore under these assumptions capital structure does not matter. On the

contrary, when capital structure matters, at least one of the M-M assumptions

is violated. Consequently the M-M assumptions can guide us in finding the

determinants of an optimal capital structure.

The M-M theorem can be extended to an environment with taxes, where

interest payments are a tax deductible item. The amount saved on taxes due

to leverage is called the Tax Shield (TS) and can be expressed as TS = TC ·D,

where TC is the corporate tax rate and D is the value of a perpetual debt. The

tax shield is therefore increasing in the debt/equity ratio.

It was showed1 that the second assumption is violated as well: financial dis-

tress and bankruptcy have direct and indirect costs, such as loss of costumers,

suppliers, and employees due to uncertain future, need of immediate sale of as-

sets at lower prices, expenses on experts, and so on. As higher leverage means

higher interest payments and thus higher probability of not meeting them and

falling into financial distress, the expected distress costs are increasing in with

higher leverage. The effect on the overall firm value is therefore the opposite

as for the tax shield.

Asymmetric information—i.e. the violation of the third assumption—implies

agency costs, when the conflict of interest between different groups of stakehold-

ers cause suboptimal investment decisions.2 The typical examples of agency

1 See Opler & Titman (1994), or Bris et al. (2006)
2 More on this see, for example Ang et al. (2000)



3. Credit Contracts 23

costs are over-investment, under-investment, and cashing-out problem, all of

them gaining in significance in states of (or close to) financial distress. The neg-

ative effects of agency costs are increasing in leverage, and therefore shifting

the optimal indebtedness to lower values.

3.2 Classification of Corporate Debt

A company can choose several ways of debt financing, according to its size

other corporation-specific needs. Corporate debt can be classified3 by several

attributes:

by ownership

public debt traded on open market

private debt, usually a loan provided by a bank or a group of banks

by security

unsecured debt

secured debt - specific assets are pledged as collateral

by seniority

senior debt with higher priority of claims if bankruptcy occurs

junior debt with lower priority

subordinated debt issued with lower priority than the outstanding debt

at the time of issue

by residency of bondholders

domestic bond, with local issuer, traded in a local market, denominated

in local currency

foreign bond, with foreign issuer, traded in a local market, denominated

in local currency

Eurobond, denominated in foreign currency and not under national regu-

lation

by rating

investment-grade bonds, graded by rating agencies (Standard & Poor’s

AAA-BBB) as bearing low risk of default

speculative bonds with high risk of default (graded by Standard & Poor’s

as BB-D)

3 The structure of this section is based on Dedek (2009)
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Whereas the first four classifications are determined in the moment of debt

issue, the last one reflects the current situation, and therefore gives an estimate

for the current value of a specific bond.

3.3 States of a Firm

A company with financial obligations (e.g. interest payments and payables)

can be in several states, depending on its financial condition:

Solvent

The firm is able to meet its obligations on time.

Financial distress

The firm has difficulties to meet its obligations on time. In this state usu-

ally costs of distress arise. The situation can be handled through selling

assets, equity dilution, merger, reducing capital spending, renegotiation

of debt, or filing for bankruptcy.

Insolvency

The debtor is unable to meet its payment obligations.

Default

The debtor has not met its payment obligations.

Bankruptcy

Bankruptcy is legally declared inability of payment to creditors, usually

initialized by the debtor itself. In the United States it is regulated by

the Bankruptcy Code4, where two chapters are available for corporate

entities: protection under Chapter 11 or Chapter 7. Both types invoke

automatic stay that provides a period of time in witch any type of debt

collection is suspended.

Chapter 11 begins with filling a petition either by the debtor or by cred-

itors, if they meet certain requirements. The debtor in possession

receives the rights and powers of a Chapter 11 trustee. The trustee

has the right, with the court’s approval, employ professional per-

sons to assist during the bankruptcy procedure as well as acquire

new loans with higher priority than the outstanding debt. Some

4 Source: the official web pages of United States Bankruptcy Courts
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contracts (such as contracts with trade unions or leases) can be re-

jected if it is financially favourable to the entity.

After filling for Chapter 11 bankruptcy a plan of reorganization

needs to be accepted by the creditors. During the first 120 days

the debtor has exclusive right to file a plan of reorganization, after

this period any of the creditors in interest has the right to file a plan.

If the plan is confirmed by vote of creditors, it becomes binding and

so determines the treatment of debts. A liquidating plan is also pos-

sible, which allows the debtor to liquidate the business with higher

return as it would be possible under Chapter 7 bankruptcy.

Chapter 7 provides for liquidation. A trustee is appointed that adminis-

ters the liquidation of the debtor’s assets. After Chapter 7 liquida-

tion the company ceases to exists and therefore stops to operate. In

the case of larger entities complete divisions can be sold and so the

recovered value might be higher.

3.4 Absolute Priority Rule

Absolute Priority Rule (APR) is a concept that describes how the assets

should be divided among stakeholders after the event of bankruptcy. The basic

order of the APR is, that a junior creditor receives some fraction of the remaining

assets only in the case when senior creditors are paid in full. Similarly, equity

holders receive nothing, unless all the creditors (both secured and unsecured)

get the whole amount of their claim. Furthermore, when a class of stakeholders

have the same seniority, they all receive the same ratio of their principal.

A considerable amount of literature5 has been published on the violations

of the APR: while under Chapter 7 liquidation absolute priority is generally

enforced, in the case of Chapter 11 reorganizations6 violation of APR is rather

a rule than an exception. The reason is, that equity holders have the power

to enforce APR deviation during workout negotiations due to the structure of

Chapter 11 rules. The management can put the firm in Chapter 11 at a moment

when it is in the best interest of equity holders. As there is an automatic stay

5 See, for example, Meckling (1977), Miller (1977), Warner (1977), and Jackson (1986)
6 See Franks & Torous (1989) and Weiss (1990)
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on payouts to claimants under Chapter 11, a renegotiation could enhance the

situation of both equity and debt holders. In addition, the reorganization

plan needs to be accepted by the shareholders as well, and therefore they can

prolong the bargaining process, and therefore increase the costs of default.

This is clearly not in the interest of the senior claimants, and so they rather

distribute some value to equity holders and avoid long negotiations.

A large amount of empirical research have been done in the past two decades

about the consequences of these absolute priority violations, and the result

showed that APR deviations are beneficial ex ante. They decrease the sever-

ity of over-investment in assets requiring managers’ special skills and under-

investment in firm-specific human capital (Bebchuk & Picker 1993), might im-

prove the timing of bankruptcy (Povel 1999), hold back excessive risk taking

(Gertner & Scharfstein 1991) and help to resolve under-investment problem

(White 1989). On the other hand, negative effects of absolute priority vio-

lation arise through the problem of moral hazard with respect to investment

decisions (Bebchuk 2002).

3.5 Game Theory Analysis of Credit Contracts

As a typical company of our interest has complex capital structure with many

parties of interest, it is reasonable to examine the problem of financing from

the perspective of Game Theory. This section is therefore dedicated to this

topic, and is particularly based on the work of Ziegler (2004).

The method combines game theory and option pricing, so the maximized

value of an option (note the parallel of options and credit contracts) can be

calculated. The essence of the method is a three-step procedure:

1. The game between players is defined. The game tree is constructed.

2. The uncertain payoffs are valued using option pricing theory, where the

parameters are the player’s possible actions.

3. The game is solved using backward induction or subgame perfection.

The strengths of such a method are: taking into account the time value of

money and the market price of risk, and separating the valuation problem from

the analysis of strategic interaction.
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3.5.1 Credit and Collateral

In financial contracting two forms of moral hazard occur: risk-shifting in the

situation of hidden action, and observability problem in the situation of hid-

den information. In the following text these two basic problems are analysed,

whereas more complicated issues will be addressed in the upcoming parts of

the section.

The Risk-Shifting Problem

The origin of the risk-shifting problem is the borrower’s incentive to influence

the risk of the project, as he could increase his expected payoff on the expense

of the lender. If he is able to change the risk of the project without the credi-

tor’s notice, we are talking about hidden action. The lender usually anticipates

such behaviour, and requires higher interest rate that leads to adverse selec-

tion (see Stiglitz & Weiss 1981). An alternative solution is to closely monitor

the activities of the borrower, however this increases the costs of lending and

therefore the interest rate. The best option would be a contract designed in

a way that the borrower has no incentive for risk-shifting without the need of

monitoring.

Ziegler (2004) examined the situation when the borrower is able to set the

riskiness of the project after the debt contract have been signed and the final

payoff is observable to both parties with no cost. As it turned out, there

exists an infinite number of contracts that preclude risk-shifting, however only

contracts with proportional payout are renegotiation-proof (i.e. a situation,

when a renegotiation is desirable for both the creditor and the debtor cannot

occur). Renegotiation usually involves costs, and therefore both parties will

have an incentive to agree on a contract that is not changed over its whole life.

This means, that in the case of hidden action, only all-equity financing avoids

risk-shifting.

The Observability Problem

When the terminal value of the investment is not observable by both parties,

a problem arises how the final transfer should be determined. In fact, it can

be expected in many situations, that the borrower will have more accurate

information about the terminal value, and therefore he can report distorted

figures to minimize his payout to the lender.
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According to Townsend’s (1979) costly state verification model—where the

lender and the borrower agree in advance on situations when the verification

should be taken—the optimal contract has the following properties (pure strate-

gies allowed only):� If verification does not take place, the payment to the lender is equal to

some constant amount D.� Verification should be taken when the terminal value is below some pre-

defined threshold.

This contract is similar to a debt contract with fixed payment D and verifica-

tion as a parallel to declaration of bankruptcy. Thus the observability problem

can be addressed with constant promised payment in no-bankruptcy states. As

risk-shifting can be solved only by proportional payment, there is no contract

that could avoid both problems simultaneously.

Collateral

Collateral is an asset, that can be—according to the credit contract—seized

in the event of default to limit the lender’s losses. A considerable amount of

literature has been published on the role of collateral in providing motivation for

the borrower to avoid default. For instance, in Barro (1976), the loan repayment

decision is dependent entirely on the relative values of the collateral and the

amount of outstanding debt, default occurring if the value of the collateral at

maturity is below the amount due. An inverse relationship between agency

costs and the amount of collateral available to borrowers has been shown by

Bernanke & Gertler (1989).

Chan & Kanatas (1985) mentioned two types of collateral: it is an existing

asset (for example the financed project) or it is an additional asset, normally

not available to the lender. Ziegler’s model examines the effects of the latter,

and concludes that risk-shifting problem disappears only when the loan is fully

collateralized, resulting riskless loan. However, collateral protects the lender in

two ways: grants higher recovery after bankruptcy and reduces the borrowers

incentives to risk-shifting behaviour.
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3.5.2 Endogenous Bankruptcy and Capital Structure

In the previous section the credit was a finite maturity contract with a single

payment to the lender at maturity. Although such approach is good to under-

stand project financing, it is less useful to model corporate financing. In reality

firms keep operating by issuing new debt to finance their new projects, or to

repay the maturing debt and therefore keep the ongoing projects alive. Bank-

ruptcy happens, when the entity is unable to meet its contractual payments.

In fact equity holders can decide at any point in time whether they want the

firm to make the agreed payments or default and trigger bankruptcy. Thereby

bankruptcy is an endogenous decision made by equity holders, even if it might

be initiated in principle by the creditor.

Ziegler (2004) analyses endogenous bankruptcy building on the base of Le-

land’s (1994) infinite horizon model with the introduction of several modifica-

tions. First, interest on the loan is divided to two distinct types, a continuous

effective payment and an increase in the face value of the loan. This divi-

sion allows to investigate the role of these two components in finding market

equilibrium. Second, endogenous bankruptcy is discussed as a principal-agent

problem and the agency costs of the equity holder’s socially suboptimal be-

haviour are quantified. Third, the effect of loan covenants and information

asymmetry are considered. Fourth, the properties of optimal capital structure

are studied, and finally, an incentive contract is developed that could influence

equity holder’s bankruptcy choice.

The Model

A lender and a borrower signs the following contract: at initial time the

lender transfers a loan of F0,
7 and in exchange the borrower pays instanta-

neous interest of φD(t)dt, where D(t) = D0e
κt is the face value of the debt at

time t and φ is the instantaneous interest rate to be effectively paid on the per-

petual debt. Asset sales are prohibited, therefore net cash outflows on interest

payments are financed by equity dilution. As κ is the rate of increase in the

face value of debt (and therefore the rate of increase in interest payments as

well), it is assumed, that κ < r, where r is the risk-free interest rate.8 Sinking

fund corresponds to the setting κ < 0.

7 F0 denotes the fair value of the loan at time 0, as it will be described in more details later.
8 Otherwise the present value of the interest payments would converge to infinity.
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If (and only if) the debtor defaults on his interest payments, the firm is

liquidated with costs proportional to the asset value. The creditor therefore

receives (1 − ω)SB in the event of default, where ω is the proportion lost due

to liquidation and SB is asset value at the time of bankruptcy.

The game has the following structure:

1. The amount of debt, D0, and interest rates κ and φ are determined,

the contract is signed. In exchange for its promised obligations the firm

receives the fair value of the loan, F0.

2. The firm makes its investment decision with the associated risk, repre-

sented by the volatility rate, σ. In the financing of additional (later)

projects under-investment problem might occur.

3. Equity holders choose their default strategy SB. In the event of bank-

ruptcy ωSB is lost, (1 − ω)SB is received by debt holders, and nothing

remains to the equity holders.

The management is assumed to fully represent the equity holder’s interest,

hence there is no conflict of interest between these two parties. Ziegler (2004)

assumes the asset value, S to follow the usual geometric Brownian motion, and

estimates the firm, equity and debt value using the standard framework based

on Merton.

In line with the principle of backward induction, the last stage of the game is

examined at first. In this step the equity holders choose optimal asset level SB

for triggering bankruptcy. This level can be found using first-order condition,

and is equal to

SB =
(1− θ)φD(t)

r − κ+ σ2/2
,

where θ is the corporate tax rate.

As it can be noted, this optimal level is linear in φD(t), and is independent on

current asset value S. Furthermore, higher asset risk (σ) implies lower optimal

bankruptcy boundary.
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The Principal-Agent Problem and Agency Costs

The principal-agent problem stems from the fact that the debtor (agent)

adopts a different bankruptcy barrier than it would be optimal from the credi-

tor’s (principal’s) view.9 The creditor would choose a default boundary either

to zero (to make his claim riskless) or as high as possible (to receive the firm’s

assets when they have a high value). The socially optimal bankruptcy strategy

turns out to be the one with the lowest possible level of bankruptcy triggering,

i.e. SB = 0. This comes from the positive cost of bankruptcy for any asset

value higher than zero.

In order to construct an incentive contract that would lead to socially optimal

bankruptcy the effectively paid interest on debt, φ has to be zero, since for any

other value the equity holders would trigger bankruptcy at a positive asset

level. However, setting φ = 0 means that the claim is worthless, as no interest

is paid out. In other words, because of the borrower’s limited liability, socially

optimal default level can not be reached.

Armed with the above results the agency costs arising from endogenous bank-

ruptcy can be expressed. The agency cost represents the expected deadweigth

loss caused by the expected costs of bankruptcy. Intuitively, these costs are

in direct relationship with the probability of bankruptcy (increasing in SB and

φD(t)), and with the proportional loss due to liquidation, ω.

The Investment Decision - Under-investment and Risk-shifting

Once we have investigated the equity holder’s optimal bankruptcy decision

SB, we should examine their investment choices. Two main issues are studied

in the following paragraphs: under-investment and risk-shifting. Myers (1977)

highlighted that firms may abandon profitable projects in the existence of debt

by refusing recapitalization of the firm. The reason of doing so is, that although

equity holders would bear the full costs of the project, debt holders also benefit

from this investment as the debt becomes less risky.

Ziegler (2004) analyses the under-investment problem with a model that

represents new investment as a scale up of the existing operations by some

9 The optimal default levels from the debtor’s and the creditor’s points of view are derived
in Ziegler (2004), pp. 48–49.
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factor w > 0. The investment requires therefore additional wS of funding

and increases the value of the firm’s assets to (1 + w)S. Since additional

(equity funded) investment reduces expected bankruptcy costs and increases

tax shield,10 it always increases the overall firm value.

The model’s calculated change in the value of the equity shows, that it is

always lower than the costs of the investment, and therefore the overall return

to equity holders is negative. Hence under-investment always arises. This

problem can be addressed by renegotiation of the debt (reduction of D, φ, or

κ) in order to ensure positive expected return on investment for the equity

holders, or alternatively by sharing the costs of the new investment.

So far in the model of endogenous bankruptcy constant and know asset risk

σ was considered, however in some cases this assumption might not hold. The

question is, whether the agent has an incentive to increase the asset risk if the

principal can not observe (and therefore control) his action. To answer this,

Ziegler (2004) examined the partial derivative of the equity value with respect

to σ2. The result shows, that a leveraged firm has always incentives to increase

asset risk. This has an implication for the optimal behaviour of the lender: he

should focus on monitoring asset risk instead of asset value, as the risk is the

relevant variable for the borrowers’ bankruptcy decision.

Agency costs of risk-shifting can be expressed as a difference between the

firm value at the social optimum less the firm value with the possibility of risk-

shifting. Since firm value decreases with bankruptcy costs, it can be maximized

by setting these costs to zero by approaching σ to zero. Agency cost is therefore

equal to

C = lim
σ→0

W (S)− lim
σ→∞

W (S),

where, again firm value is W . As Ziegler showed, the difference in the above

limits is

C =
θφD(t)

r − κ
,

i.e. to the value of the (safe) tax shields.

10Note that early bankruptcy means no tax deductibility in the future, and therefore it
decreases the current value of the tax shield.
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Effects of Loan Covenants

It was shown in the previous sections, that under certain conditions, a “plain

vanilla” debt contract11 might imply deadweigth loss that moves the result-

ing firm value below its socially optimal level. To mitigate these losses, loan

covenants might be introduced. A loan covenant is a condition agreed at debt

issue that has to be fulfilled by the debtor. Covenants can take many forms,

regulating operating activity, asset sale, cash payout and others. Here, so-

called safety covenants are analysed which give the bondholder the right to

force bankruptcy if certain conditions are met. More specifically, suppose a

covenant that forces the firm into bankruptcy, if its asset value falls below

some specified level SB. Reaching this level means transfer the ownership of

the assets to the lender. As it turned out, the risk-shifting incentive depends

on the level of this barrier: for low levels risk-shifting incentive is still present,

however for higher values the situation changes and the debtor will have an

incentive to decrease the risk of the investment. The breakpoint is naturally

higher than SB, the endogenous bankruptcy barrier set by the equity holders

only.12 Concluding the effects of such loan covenant, we should remark that

they protect the lenders in two ways:

First, they reduce losses of the creditors by setting the default barrier higher,

and

Second, they mitigate or even eliminate equity holder’s risk-shifting incentives.

Hence, setting a safety covenant with an agreed level has similar effects as using

collateral.

3.5.3 The Financing Decision

Using the results derived, we can investigate the way a firm should be fi-

nanced. We will analyse—under endogenous bankruptcy—the optimal capital

structure of a firm, and the effects of the way how the interest is divided be-

tween the interest effectively paid and growth rate in the face value of debt.

11Here “plain vanilla” refers to the absence of additional clauses defining loan covenants.
12 For the mathematical derivation of this statement see Ziegler (2004), pp. 58–59.
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Optimal Capital Structure

Assume that the asset risk is known to the lender and risk-shifting is not

possible, or alternatively, it is possible only within certain bounds. In the

latter case the lender would anticipate the borrower’s risk-shifting behaviour,

and therefore he will use the maximal available volatility value in his loan

pricing calculations, σ̄. We assume that the face value of the loan cannot be

changed after the initial agreement, and that the borrower takes the offered

interest rates κ and φ as given when selecting the initial face value of debt, D0.

The financing decision is made with respect to the equity holders’ effort to

maximize the value of their holdings after the initial investment, I. Ziegler’s

calculations show, that there exists an interior maximum of the net equity value

(that is the difference between the value of equity after the debt is taken and the

equity holders’ initial investment) in terms of optimal capital structure. As the

rate of effective interest payments, φ rises—and consequently so does the cost

of the debt service—the optimal face value of debt decreases. Similarly a higher

growth rate in the face value of debt, κ, means lower optimal face value of debt.

It also turns out, that changes in φ are perfectly offset by the endogenously

chosen face value of the debt, and so the continuously paid coupon remains the

same. Thus φ affects the nominal leverage (D0/S0), however it does not affect

the leverage in market terms (F0/S0).

Interest Payments vs. Increase in the Face Value of Debt

A natural question is, how the debt service should be divided between the

interest payments φ, and the growth rate of face value of the debt κ. As

the optimal leverage in market terms is not affected by φ, the borrower is

indifferent to the interest rate effectively paid. On contrary, the rate κ does

affect the optimal capital structure and the net equity value: with increasing

κ the optimal leverage ratio and the net equity value decreases. Consequently

equity holders prefer to pay higher effective interest instead of higher growth

in the face value of debt.

Expected Life of Companies

As the optimal capital structure and the conditions of the loan are given, it

is possible to express the mean time of default. Using the analysis of Inger-

soll (1987), we know that the mean time of passing the origin for a standard
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geometric Brownian motion dx = µdt+ σdWt with initial value x0 is given by

τ̄ =
x0

µ

With the help of this formula—after some computations—the mean time

of default under endogenous bankruptcy can be revealed13. This value turns

out to be independent on the parameter φ, in line with the finding that the

borrower offsets the changes in the effective payout rate by changing the face

value of debt. Again, the important parameter is κ, that influences mean time

to bankruptcy.

An Incentive Contract

It is worth to consider whether the lender can set the contract parameters

φ and κ in a way that influences the borrower’s bankruptcy strategy SB. As

it is in the lender’s interest to have a higher default barrier, we will examine

the possibilities of an incentive contract that induces the borrower to declare

bankruptcy at a higher asset value. Early bankruptcy is interesting for the

borrower for several reasons. First, the lender might be himself an agent and

so he might have restrictions on the maximum he can take. Second, early

liquidation may increase beliefs about the lender’s solvency and therefore avoid

some problems such as bank runs. Third, it enables the lender to save on

monitoring costs as he can use early information provided by default on interest

payments.

At first, the effective interest rate’s influence on bankruptcy level is consid-

ered. As the optimal instantaneous coupon payment φD(t) is independent on

φ, in has no effect on time to bankruptcy either. However, it has influence

on the nominal losses, and therefore it is possible to set φ to a hight level,

and therefore imply low face value of debt. More specifically, zero nominal

losses in the event of bankruptcy can be reached by setting φ in a way that

SB = D(t)/(1− α). Of course such a contract protects only in nominal terms,

and has no effect on the losses in market value terms, as well as on the amount

initially received by the borrower.

13 See Ziegler (2004), pp. 67–68
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Unlike the effective interest rate, the rate of growth in the face value of debt,

κ does influence the borrower’s optimal bankruptcy strategy. As a lower κ

means faster debt repayment (through higher face value or equivalently higher

φ), the resulting optimal bankruptcy triggering level is higher. It is important

to note, that the rate of growth in debt affects the evolution of the default

triggering level as well. Consequently, as time passes, this barrier will be lower

in absolute terms as it would be with a higher κ. However, in relative terms

D(t) and SB growths at a same rate, therefore this should be of no concern to

the lender.



Chapter 4

The Model’s Framework

Chapter 3 gave an insight to the design of credit contracts, and showed the us-

ability of game theory in pricing of corporate assets and predictions of rational

actions taken by the parties concerned. Here, we extend the available literature

of asset pricing models introduced in Chapter 2, and build up a framework with

stochastic interest rate. This framework than serves as a valuation method for

a similar game theory analysis as was introduced in Section 3.5. The starting-

point of this work is the Goldstein et al. (2001) EBIT-based model, that will

be extended by the relaxation of the constant (or deterministic) interest rate

requirement.

Sections 4.1–4.5 define the model and take the necessary assumptions. Sec-

tions 4.6–4.8 explain the basic implications of this model and compare this

results with the available literature. Finally sections 4.9 and 4.10 demonstrate

the contributions of a stochastic interest-rate environment, showing the added

value of our construction.

4.1 Assumptions

First of all we take the following assumptions:

(i) The management fully represents the equity holders’ interest.

(ii) The APR is never violated.

(iii) Asset sales are prohibited, interest payments are financed by earnings

and equity dilution.
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(iv) When the earnings are above the paid interest, the difference is paid out

as dividend.

(v) Paid interest is a tax deductible item, however no tax carry-back or carry-

forward exists.

(vi) There is a sufficiently large number of investors, and only a limited

amount of projects.

Assumptions (iii), (iv), and (v) imply the unimportance of the historical

cash flow in the asset pricing. The current values of the two memoryless

processes—the risk-free interest rate and the EBIT—are the only two stochastic

variables that affect the debt, equity and firm value. Assumption (vi) has the

consequence that the provided loan is always fairly priced, since the financial

institutions perfectly compete with each other. Next to these initial assump-

tions we will use further suppositions in the subsequent sections, particularly

during the description of the stochastic evolution of the variables: the risk-free

interest follows an Ornstein-Uhlenbeck process, the Earnings Before Interest

and Taxes (EBIT) is supposed to follow a GBM, and so on.

4.2 Risk-free Interest Rate

Most of the models assume constant risk-free interest rate in order to simplify

the calculation. However, in reality this interest rate does change in time,

reflecting the situation of the overall economy. Modelling the interest rate

stochastically allows us to include the possibility of a macro-level change and

catch the correlation between the overall market and the modelled asset. Using

this correlation the model could be extended to a risk averse measure, where

higher return is expected just for the market risk—the one that can not be

diversified (in line with Modern portfolio theory, see Markowitz 1952).

The risk-free interest rate r(t) follows an Ornstein-Uhlenbeck process sug-

gested by Vasicek (1977), and used by, for example in the Longstaff & Schwartz

(1995) approach:

dr = α(γ − r)dt+ σrdWt (4.1)

where α > 0 indicates the force pulling the interest rate back to its long-term

mean γ at speed α(γ−r) per unit of time. The stochastic element is a standard

Wiener process Wt times the volatility σr.
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The expected value and variance at time s given r(t) are

Et[r(s)] = γ + (r(t)− γ)e−α(s−t), t ≤ s (4.2)

V art[r(s)] =
σ2
r

2α
(1− e−2α(s−t)), t ≤ s

respectively. The distribution of r(s) given r(t), t ≤ s can be written as

r(s) = r(t)e−α(s−t) + γ(1− e−α(s−t)) +
σr√
2α

Wt(e
2α(s−t) − 1)e−α(s−t)

Having the assumption of risk-neutral measure (i.e. the yield to maturity is

not dependent on the maturity date and thus there is no risk premium), the

value of $1 received at time s ≥ t has the value of

P (t, s) = Et

[

exp

{

−
∫ s

t

r(τ)dτ

}]

(4.3)

received at t. Vasicek (1977) gave a closed-form solution for the above expres-

sion:

P (t, s, r(t)) =

exp

[

1

α
(1− e−α(s−t))(R(∞)− r)− (s− t)R(∞)− σ2

r

4α3
(1− e−α(s−t))2

]

,

where

R(∞) = γ +
σ2
r

2α2
.

Unfortunately we cannot use this solution, as the earnings are correlated with

the interest rate1, and therefore we can not simply discount by the expected

value.

Figure 4.1 shows a possible evolution of the risk-free interest rate with differ-

ent initial values. This evolution was simulated using our base values γ = 0.03,

α = 0.25, and σr = 0.005. As it can be noted, the effect of the initial value

disappears in 10 to 15 years.

1 See equation (4.4)
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Figure 4.1: Interest rate evolution with different initial values

4.3 Earnings Before Interest and Taxes

Traditional models—building on the basis of Merton’s (1974) framework,

including those introduced in Chapter 2—take unlevered equity as primitive

variable with log-normal dynamics. However, for some models it seems to be

more straightforward to use earnings instead of unlevered equity. Mella-Barral

& Perraudin (1997) considers a firm that produces output and sells it on the

market, where the price of the sold product follows a geometric Brownian mo-

tion. Mello & Parsons (1992) use a similar framework with a mining company

and stochastic commodity price movements. Graham (2000) models EBIT flow

as a pseudo-random walk with drift, Goldstein et al. (2001) and Broadie et al.

(2007) use geometric Brownian motion for the evolution of EBIT.

To see the advantages of such approach, we should review some of the main

shortcomings of the traditional framework. First, unlevered equity ceases to

exist as a traded asset when debt is issued. This problem is one of the moti-

vating factors behind the frameworks of Kane et al. (1984; 1985) and Fischer

et al. (1989). Second, they treat tax payments in a different fashion as they

deal with cash flows to debt and equity holders. In fact, they count tax benefit

as capital inflow instead of using it for reduction of outflows. This implicitly

assumes that it is always possible to deduce fully the interest costs from the

tax payments, however, this is not the case when the cost of debt service is

higher than the current EBIT. Leland (1994) deals with this issue introduc-
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ing an asset level under which there is zero deductibility. This is basically a

hybrid approach that converts firm value to current EBIT, however it ignores

partial deductibility. Another problem with the tax benefit approach is, that

it implies higher firm value through higher tax shield as the tax rate increases.

This is not only contra-intuitive, but it has been also found to be invalid by

Lang & Shackelford (2000), who investigated the stock price movements during

a decision process of change in capital gains tax. Third, as Goldstein et al.

(2001) noted, these models may significantly overestimate the risk-neutral drift,

consequently underestimate the probability of bankruptcy and so the optimal

leverage ratio.

Our model assumes an EBIT evolution with log-normal dynamics, and there-

fore is able to address the mentioned issues. It abolishes the problem of un-

observable and multiple (unlevered and levered) equity values, in treats the

different claims (coupon payments, dividends and tax) in a self-consistent fash-

ion and it is more flexible in implementing different set-ups, such as more

sophisticated capital structures.

As mentioned, the evolution of the firm’s instantaneous EBIT, δt is modeled

using geometric Brownian motion with risk-neutral measure Q, similarly as

Broadie et al. (2007):

dδt
δt

= µdt+ σdXt(Q), (4.4)

where

Xt = ρWt +
√

(1− ρ2)Zt.

Wt is the same process as in (4.1), Zt is a standard Wiener process and ρ is the

correlation coefficient between the risk-free interest rate and EBIT.

If the δt is known at t = 0, the differential equation (4.4) has the solution

δt = δ0 · exp
{(

µ− σ2

2

)

t+ σXt

}

(4.5)

Assuming no taxes and zero leverage, the value of the firm is the sum of

discounted earnings. Using the notation V 0
t for unlevered equity value at time t,
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Figure 4.2: An example firm with high growth: the evolution of EBIT,
discounted EBIT, and risk-free interest rate

we have

V 0
t =

∫ ∞

t

δt · exp
{(

µ− σ2

2

)

(s− t) + σXs −
∫ s

t

r(τ)dτ

}

ds,

in line with (4.3).

Figure 4.2 plots an example of a high-growth firm; Figure 4.3, in contrast, is

an example of a poor performance.2 In the low performance firm, for instance,

it is visible how between the 5th and 10th years the EBIT and the risk-free

interest rate move together. It can be also noted, that the discounted EBIT is

rather stable even if the firm performs well. In an average case—as it could be

expected—it is decreasing.

2 In order to produce telling plots, we have modified the basic parameters: µ = 0.02, σ = 0.1,
and ρ = 0.4.
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Figure 4.3: An example firm with poor growth: the evolution of EBIT,
discounted EBIT, and risk-free interest rate

4.4 Debt

The debt issuance and repayment is similar as in Ziegler’s (2004) model

with endogenous bankruptcy, although several modifications are implemented.

Most importantly, as the risk-free interest rate is considered to be stochastic,

the interest payments are stochastic as well. Second, Ziegler considered a debt

service divided between effective interest payments and growth in Face Value of

debt (FV). As he proved that changes in effective interest rate are compensated

by changes in face value of debt, its scalability will be left out from our model.

The debt is therefore set up it the following way:

1. The rate of growth in face value of debt, κ is chosen

2. The borrower (i.e. the firm) chooses the initial face value of debt, FV0

3. The lender calculates the fair value of this debt, given the face value and

κ, and provides a transfer to the borrower equal to this fair value.
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Table 4.1: Notation

Symbol Explanation Base value

Interest rate

r(t) Risk-free interest rate r(0) = γ
γ Long-term mean of risk-free interest rate 3%
α Speed of expected risk-free interest rate convergence to γ 0.25
σr The volatility of risk-free interest rate 0.5%
P (t, s) The price of a $1 face value riskless zero-coupon bond at time t,

maturing at time s

Firm

δt EBIT δ0 = 100
µ Drift of EBIT under Q 0.01
σ Volatility of EBIT 20%
ρ Correlation coefficient between r(t) and δt 0.2
V 0 Firm value with no leverage and the assumption of zero taxes
TC Corporate tax rate 35%

Debt

FVt Face value of debt
κ Growth rate of the face value of debt FVt 1%
D(δt) Debt value
ct Coupon rate, equals to FVt · r(t)

Default

DBt Default Barrier
τ Time of default
RR Recovery rate defined as a multiple of yearly EBIT 10×

After receiving the funds, the borrower starts to serve the interest payments.

The FV at any point in time is given as:

FVt = FV0 · eκt

The interest is continuously paid out at a rate ct = FVt · r(t) (coupon rate)

with infinite horizon. We assume κ < γ, similarly as Ziegler, otherwise the dis-

counted FV , and consequently the interest payments would growth to infinity.

The economic intuition behind this model is a floating coupon perpetual bond

issue, where this corporate bond is (usually) sold below par. In order to catch

constructions as a sinking fund, or alternatively a growth in debt principal, the

parameter κ is introduced as well.
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4.5 Default

The event of default corresponds to the situation, when the firm does not

meet its obligation on interest payments. We assume, similarly as Ziegler,

that creditors take over the firm immediately after the default. Such default

is associated with losses (due to liquidation, reorganization or other costs as-

sociated with the takeover). Absolute priority rule is enforced, therefore after

bankruptcy equity holders receive nothing, whereas creditors have to pay the

(either Chapter 7 or 11) bankruptcy costs.

As the state variable is the instantaneous EBIT, it is convenient to define the

recovery value as a multiple of the EBIT at the moment of default. Since a firm

effectively becomes unlevered after bankruptcy (as its debt holders become the

new equity holders), and we calculate the unlevered value during the iterations,

this multiplier can be easily transformed to Loss Given Default (LGD)—a ratio

that expresses the asset value lost due to bankruptcy.

4.5.1 Default Barrier

It is sensible to define the Default Barrier (DB) on the state (primitive)

variable, since all the other values can be written as a function of this state

variable. As we have an EBIT based model, DB will be defined on earnings.

When the primitive variable is firm (or unlevered equity) value, DB is usually

a function of the face value of debt, optionally with some other parameters

involved as well (see Ziegler’s 2004 Endogenous Bankruptcy model, or Briys &

de Varenne 1997 for stochastic interest rate environment). A straightforward

modification for our model is to make the DB dependent on the instantaneous

coupon rate.

Such modification would imply a lower barrier in recession (low risk-free

rate), and thus work counter-cyclically. There are several facts that support

this design: in recession the number of bankruptcies increases (see, for example

Altman et al. 2005), thus banks experience losses in connection with other loans

and might prefer immediate payments instead of triggering bankruptcy that

yields uncertain income later. Furthermore as Altman et al. (2005) also showed,

the recovery rate is significantly lower in recession. Exactly the opposite holds

for economic boom and high interest rates, therefore higher default barrier is

reasonable.
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For the above mentioned reasons (even if in our model the recovery rate is

assumed to be constant and therefore independent from the risk-free interest

rate) we decided to search optimal default barrier level as a linear function

of the actual coupon rate ct. To justify that this decision is consistent with

our model, we have run simulations with a default barrier that is dependent

only on the actual face value of debt, and therefore is not influenced by the

interest rate. For the results of these simulations, see Section 4.10, where this

deterministic default barrier is compared with the otherwise used stochastic

barrier.

4.5.2 The Bankruptcy Decision

The decision of bankruptcy; i.e., the determination of the default barrier

can be made in several ways. The concrete realization is dependent on the

transparency of the firm, on the credit contract, and possibly on other factors.

When the state variable is not publicly observable, the firm’s management

(who represents the equity holders interests, as we assume no conflict of interest

between these two parties) is the one who makes the decision whether to default

on interest payments—and therefore trigger bankruptcy—or keep the equity

holder’s option on firm’s assets alive. Note, that if the EBIT is not sufficiently

large to cover the interest payments, they need to be financed through equity

dilution (as asset sales are prohibited) in order to avoid bankruptcy. This is

modelled as negative dividend, since it effectively lowers equity holders’ payoff

by diluting their claim.

On the contrary, when the state variable is observable, bankruptcy decision

can be declared in the credit contract, and therefore support more favourable

debt financing. This is in fact a safety covenant for the creditors, that ensures

them the right to force bankruptcy if the firm performs poorly. This poor

performance is indicated by crossing the DB in our case. The last, rather theo-

retical option is to set up a socially optimal default barrier, one that maximizes

the aggregate payoff of all involved parties.
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4.6 Method and Calculations

Since the model is so complex, that it is hardly possible to find closed form

solutions to determine the values of the claims, the probability of default and

other properties, we decided to use numerical calculations in order to uncover

the model’s sensitivity on its parameters. The core of the Monte-Carlo sim-

ulations is the following: after the parameters are set (see Table 4.1 for their

base values) a large number3 of iterations is run. Every iteration calculates a

randomly4 chosen EBIT trajectory and a correlated interest rate evolution. Fol-

lowing the realizations, the discounted sum of cash and asset flows is calculated

for both debt and equity holders. In order to observe the payoffs’ sensitivity on

the DB and FV, several combinations of these parameters are examined in each

iteration. Consequently every iteration produces matrices, where every matrix

contains the result of one output parameter:5 different rows correspond to dif-

ferent debt face values while different columns correspond to different default

barrier levels. The generated matrices are then averaged and so the expected

values are obtained. These results are then used as payoff valuation for game

trees analysed in Section 4.7. A sample result matrix for equity values can be

found in Table 4.2, for the complete output see Section B.1. An illustrative

pseudo-code is presented in Section B.3.

Since our model has infinite time horizon, that cannot be calculated with

the numerical approach, we had to approximate the results using finite number

of years considered. We decided to encounter 150 years in our calculations, as

the earnings in these first 150 years represent approximately 99% of the firm

value.6

Because simulating 150 years would require time-consuming computations,

we divided this time period into two parts: while the first 50 years are computed

3 The number of iterations is set in a way to produce stable results. It is typically between
5,000 and 120,000, depending mainly on σ, the variance of the EBIT process.

4 The probability distributions that drive the simulated random values are described in
equations (4.1) and (4.4).

5 These output parameters are: Debt payoff, Equity payoff, Total payoff, Debt ratio, and
Default time (zero indicates no default).

6 The discount of 150 years with constant 3% continuously compounded interest rate is
1/ exp(0.03 · 150) ≈ 0.011. This is a rough estimate only, as the EBIT is expected to grow,
and on the other hand default in the first 150 years is possible. Considering the calculated
default rate, that is above 30% in the first 50 years even for firms with low leverage, the
time horizon of 150 years is sufficiently high.
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using high-precision simulations7, the last 100 years are calculated using lower

precision and then added to the first 50. Such division is faster for a given

number of iterations, and produces results with smaller deviation, consequently

a lower amount of iterations is sufficient.

4.6.1 The Effects of Debt Face Value

The Face Value of debt (FV) is the most basic parameter of a corporate loan:

it is the figure that appears on the firm’s balance sheet and in other reports

and statistics. It is also the exclusive right of the borrower to specify the loan’s

FV directly or through the amount of borrowed funds. The main questions

addressed in the following lines are, whether it pays off to issue debt at all,

whether there is a maximal firm value an if so, what level of FV corresponds to

this maximum, and how this optimal value is dependent on the DB.8

Since the obtained matrices contain a large amount of figures—and therefore

it is hard to follow the key numbers—we use line charts to produce lucid output.

Figure 4.4 illustrates the dependence of debt, equity and firm values on credit

contracts with different face values.

As it is visible, when the leverage is low, firm value can be enhanced if a

debt with higher face value is issued. The reason behind this observation is the

increasing tax shield, in conformance with the theory known from corporate

finance. However, after some point the rising bankruptcy costs offset and later

exceed the growth rate of tax savings. Consequently there is an optimal face

value of debt that maximizes the overall firm value. With a low DB9 equal to

0.3, for example the firm value can reach 35 times the yearly EBIT if a debt

is issued with face value between 20 and 30 yearly earnings. This means an

optimal debt ratio of circa 60−80%. As the DB rises, this optimal ratio declines

due to higher Probability of Default (PD): with DB = 0.7 the maximal firm

7 Here precision refers to the sampling frequency of the generated Wiener processes. “High-
precision” calculations are sampled every trading day (i.e. 250 times a year), “lower
precision” calculations are sampled once per ten days (i.e. 25 times a year). The two
methods produce similar results with small differences in the produced output.

8 At this point we do not concentrate on the problem how the DB is chosen; that issue will
be covered in Section 4.7.

9 Recall that a default barrier of 0.3 means triggering default when the instantaneous earn-
ings are at 30 percent of the coupon rate.
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Figure 4.4: Debt, equity and total value with different face values of
debt

value declines below 3200 (i.e. 32 times the yearly EBIT) with debt ratio of 30%

only. The effects of changes in the DB are described in details in Section 4.6.2.

From the point of the debt value, there are two FV levels that might be

interesting. The first, rather symbolic one is at which the bond value is equal

to the par value. This equality is at approx. at 2000 for DB = 0.3, at 1500 for

DB = 0.4 and at 1000 for DB = 0.6. Lower debt values are priced above par

and vice versa. The second, and more important level of FV is where the debt

value reaches its maximum: this is the highest possible amount of money that

could be reached with debt financing only. Consequently this is the maximum

reasonable FV of the debt contract, as higher values would increase the interest

payments and the PD, but it would cut back the amount of money received.
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The third examined output parameter is the equity value, which is a strictly

monotonically decreasing function of the FV. This might be misleading, since

the equity holders do not necessarily book loss with increase in debt: they are

compensated with capital inflow from the creditors. To illustrate this, assume

a simple example: an unlevered firm with value of $1000 issues debt in volume$400 and the obtained funds are paid out as dividends. The levered firm has

the same assets, however, due to a tax shield it has a higher value, say $1100
with $400 debt and $700 equity value. Even if the nominal equity value has

declined, the equity holders’ payoff is

$400 (dividends) + $700 (new value of equity) = $1100.

As the above example illustrates, it is in the equity holders’ interest to sign a

credit contract that maximizes the overall firm value. Intuitively, as the debt is

fairly priced, the only party who could gain on debt issue is the equity holder.10

4.6.2 The Effects of Default Barrier Level

Next, we should explore how the output variables react on different levels of

default barriers. To do so, we have plotted our basic calculation,11 where no

extreme values distort the picture. Figure 4.5 shows how the level of default

barrier affects the equity, debt and overall firm value.

The overall firm value has the most unequivocal trend: it is declining as the

barrier rises: the FV affects only the slope, not the tendency. Intuitively, setting

the DB lower implies drop in the number of bankruptcies, later occurrence of

the expected bankruptcy, and shrink of the LGD in absolute terms. Recall that

the expected costs of bankruptcy equal to the product of these three factors:

PD, LGD and the discount.

The value of debt is rising with lower DB level. Again, this is intuitive,

since default occurs later, therefore more money flows to creditors through

equity dilution. If we examine the curves of the debt value on Figure 4.5, a

convergence in this value can be observed, as the DB rises. Because the initial

EBIT is set to 100 and the base value of the RR multiple is 10, the debt value

10This holds only at the moment when the contract is signed. Later on both the debt and
equity holders profit from an increase in the firm value.

11That is the one with parameters set to their base levels.
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Figure 4.5: Debt, equity and total value dependence on the DB with
FV 1000 and 2750

needs to be 1000 for sufficiently high DB that triggers default immediately.

Consequently this needs to be the level where debt value converges to. In fact

the same holds for a given DB and sufficiently high FV, as it can be seen on

Figure 4.4.

The third curve—the one that demonstrates the equity value sensitivity on

shifts in the DB—is somewhat different: it has a “quadratic” shape with a

maximum around 0.5. This means that, from the equity holders’ point of

view, there exists an optimal non-zero default decision. This result is highly

important for our game theory analysis in Section 4.7, where we examine the

rational behaviour of the involved parties. This conclusion, as well as the results

related to the firm and debt values, is in line with Ziegler’s (2004) findings

derived using closed form calculations in constant interest rate environment.

4.7 Agency Costs

4.7.1 Observable Actions

With observable actions, the creditor is able to control the parameters that

affect the probability distribution of the EBIT flow, most importantly σ, which

is determined by the riskiness of the firm’s projects. This situation significantly

simplifies the arrangement of the credit contract, since the lender does not need

to study the set of possible actions that might be done by the debtor. In other
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words, the probability distribution of the payoffs is given, and therefore risk-

shifting is not possible.12

Observable State Variable

The simplest situation is, when the firm is completely transparent, and there-

fore the creditor can observe the management’s actions and also the state of

the firm. In this case a debt contract can be signed with such covenants that

enforce both an agreed volatility and defines a default barrier at which bank-

ruptcy will be triggered.

In this case such a combination of debt face value and default barrier will be

chosen that maximizes firm value. (In our basic calculation with results printed

in Table 4.3, this corresponds to the setting DB = 0.313, FV = 3000, with total

firm value of circa 35.5 yearly EBITs.) There is however, one natural limitation:

logically, both the resulting equity and debt value need to be positive. This

leads to a highly leveraged firm (to maximize the value of tax shield), and to

low default barrier (to minimize the bankruptcy costs). Note, that it might be

not always possible to specify an arbitrarily low DB: when the EBIT decreases so

drastically, that the equity becomes worthless, it is not possible to finance the

interest payments trough equity dilution. In a stock company the shareholders

cannot be forced to transfer additional funds to the distressed firm. In contrast,

when the considered firm is owned by a parent company, the interest payments

can be guaranteed by the mother.

Not Observable State Variable

Similarly as in the previous case, actions are observable, and therefore risk

shifting is not possible. However, as the state variable is not followed by the

creditor, a bankruptcy barrier as safety covenant can not be included in the

credit contract, because it would be impossible to enforce it. Consequently

the debtor will choose the default barrier in a way that maximizes its equity

12More about risk shifting in the next section, where—in contrast with the present
situation—it is possible.

13We did not calculate cases with even lower barrier. These would have produced higher
total values, however it is hard to imagine that the firm would be kept alive with extremely
low earnings. Furthermore there are usually some fixed assets owned by the company
(immovable property, etc.) that cannot lose their values completely. Consequently the RR

might be higher for firms with extremely low EBIT flow. Since we assume constant RR, we
decided to leave out these extreme cases.
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holders’ value under the given circumstances. This decision is the bottom level

of the game tree, and therefore it determines the expected payoffs under certain

credit contract parameters. Table 4.2 shows an equity value matrix for several

debt face values calculated using the base parameter setting.14 As it can seen,

the equity holders will choose to default on interest payments when the EBIT

will be between 40 and 50% of the coupon rate (bold values in Table 4.2).

Table 4.2: Equity values - Basic parameters

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 3037 3037 3037 3037 3037 3037 3037

500 2618 2623 2623 2619 2614 2604 2593
1000 2233 2246 2246 2234 2213 2187 2151
1500 1881 1904 1903 1881 1848 1792 1727
2000 1558 1595 1595 1562 1504 1404 1281
2500 1264 1319 1316 1257 1162 1037 865
3000 990 1063 1050 971 853 669 477
3500 742 837 813 725 563 354 121
4000 510 623 610 483 304 73 0

Default barrier on the X-axis and debt face value on the Y-axis

As the lender anticipates the borrower’s behaviour in the bankruptcy trigger-

ing decision, he prices the loan according to this action. We have discussed in

Section 4.6.1, that the equity holders want to maximize the overall firm value,

and so they will choose FV that implies this highest possible value. auto4.3

gives the valuation of this step in the game: the creditor offers loans priced

according to the equity holders’s default decision, therefore the equity holders’

can choose total firm value only within the column specified by the planned

(by shareholders) respectively assumed (by bondholders) DB. In this case the

optimal face value of debt is 2000 for DB = 0.4 and 1500 for DB = 0.5. The

corresponding firm values are 3400 and 3300 respectively.15 The resulting total

value, equal to 33–34 yearly EBITs is significantly higher than the unlevered

14 See Table 4.1
15All these values are rounded: as we want to illustrate the decision process, the accurate
numbers are not important. In real the DB is one number (between the mentioned 0.4 and
0.5) not an interval, and the FV that corresponds to the maximal firm value given this DB

is determined unambiguously as well.
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value with 30 EBITs only. On the other hand, the maximally possible 3550 is

not reached due to agency costs caused by asymmetric information.

Table 4.3: Total firm values - Basic parameters

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 3037 3037 3037 3037 3037 3037 3037

500 3234 3222 3207 3191 3175 3156 3137
1000 3375 3336 3292 3240 3186 3133 3072
1500 3471 3393 3306 3211 3118 3010 2897
2000 3525 3404 3270 3122 2966 2778 2582
2500 3543 3375 3173 2952 2714 2463 2179
3000 3531 3306 3029 2725 2406 2057 1731
3500 3499 3203 2839 2454 2049 1632 1203
4000 3429 3045 2613 2123 1650 1147 1000

Default barrier on the X-axis and debt face value on the Y-axis

Paradoxically, the equity holders’ ex post effort to increase the value of their

claim decreases the total firm value (and so their total payoff) ex ante. This

problem can be solved if they manage to ensure the lender, that they will

default on their payments when the EBIT truly crosses the DB. Such contract

requires monitoring with some associated costs, however if these costs are below

the agency costs then monitoring should be introduced.

4.7.2 Hidden Actions

When the management’s actions are not observable, the debtor is able to

modify the parameters driving the EBIT flow, and so to change the expected

payoffs of the involved parties. More specifically, he is able to shift the risk

to the creditor, and consequently to enhance the value of his claim on the

creditor’s costs. Such behaviour is called risk-shifting or, in a wider sense,

moral hazard.

To demonstrate this problem, recall section 2.1, where we described how

Merton (1974) proved that the value of equity in a leveraged firm can be ex-

pressed as European call option, and (using put-call parity) the value of debt

is equal to a riskless bond with appropriate parameters less the value of a Eu-

ropean put option. When the volatility of the asset’s value rises, both options
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become more valuable, and therefore the equity value rises while the debt value

declines. This model is valid only when there is no default prior debt matu-

rity (and other assumptions made by Merton hold), however it illustrates the

principle of risk-shifting.

To find out whether risk-shifting appears in our model, and if so, what are its

consequences, we have run simulations16 with several different EBIT volatility

parameters. With higher σ values we observed the following (see Figure 4.6):

Equity value was rising, with steeper slopes for lower DB settings. In conse-

quence the equity holders try to increase the EBIT volatility as much as

they can, however they have a lower incentive to do so when the DB

is higher. This means that if there are some additional costs of higher

volatility paid by the equity holders17, than they will not set the volatility

to such high levels as they would so with lower DB.

Debt value was declining, however this decline was moderate for high DB set-

tings. There are two reasons that support lower losses in debt value:

First, and most importantly, default occurs at higher firm value, and

therefore the firm has higher residual value after the bankruptcy that is

transferred to the creditor. Second, default occurs earlier, therefore the

asset value received has a smaller discount.

Probability of default rose.

Total firm value was decreasing due to increased PD.

Default barrier chosen by the equity holders was decreasing: their option on the

firm’s assets become more valuable with the increased volatility.

All of these observations are in line with the conclusions of Ziegler (2004),

who based his analysis on game theory and gave closed-form results for his

model with constant risk-free interest rate. Next we examine how the observ-

ability of the instantaneous EBIT affects the credit contract’s design and the

behaviour of the involved parties.

16 For some of the results, see Subsection B.2.2.
17This could be lower expected EBIT growth, or some risk of being exposed, for example.
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Figure 4.6: Firm value dependence on σ

Observable State Variable

If the state variable is observable, it is feasible to mitigate the equity holders’

risk-shifting incentive by setting a sufficiently high DB as a safety covenant.

For a better understanding of the mechanism of this safety covenant we extend

the Mertonian parallel of the equity value and a European call option. After

the introduction of an exogenous default barrier the European call option is

replaced by a down-and-out call barrier option.

Such an option has a similar price as a plain vanilla option if the DB is far

below the spot price, and the volatility is not extremely high. However, as

the spot price approaches the barrier, the option values begin to significantly

differ. Figure 4.7 shows18 the prices of down-and-out barrier and plain vanilla

call options as a function of the volatility, assuming a strike price 1000, barrier

900, constant risk-free interest 3% and time to maturity 1 year. As we can see,

the equity holders’ incentive to increase the volatility is mitigated when the

firm value approaches the DB.

18 Source: author’s calculations using Financial Derivatives Toolbox
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Our model shows a similar behaviour: when the DB is high (80–90% of

the coupon rate), the equity value is not increasing significantly with higher

volatility. A high DB can be used therefore as a safety covenant in order to

avoid risk-shifting. This implies a loan with low FV (about 5 yearly EBITs

in our basic setting; recall Figure 4.4), and consequently results a total firm

value of only circa 3150 (31.5 yearly EBITs). Comparing this number with the

theoretical maximum of a fully transparent firm (3550), the losses caused by

risk-shifting are equal to the firm’s four yearly earnings. Similarly as in the

case of not observable state variable, it might pay off to introduce monitoring

on the management’s actions, and therefore to avoid risk-shifting.

Not Observable State Variable

If the state variable is not observable, equity holders will increase the EBIT

volatility and default on interest payments later. Since the creditor anticipates

such behaviour, he prices the loan with respect to higher expected volatility.

Consequently the resulting firm value (as it is depicted in Figure 4.6) is lower

than the value of the unlevered firm. The shareholders’ ex-post behaviour

therefore disables debt financing, and hence making the possible tax benefits

unavailable.

4.8 Sensitivity on Parameters

In the following section we will investigate the reactions of the model to

changes in different parameters. This is important for several reasons:
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First, it helps to understand the model and its implications more properly.

Second, effects of possible or expected changes in macro environment can be

predicted.

Third, it facilitates to ascertain the equity holders’ incentives to change these

parameters if it rises their expected payoff. Therefore effective safety

covenants can be introduced to avoid risk-shifting and incentive contracts

can be developed that mitigate motives to such behaviour.

4.8.1 Growth Rate in Face Value of Debt

The growth rate in face value of debt is denoted as the κ parameter, and next

to the face value is one of the two exogenously set parameters that determine

the interest payments and therefore present their value. To see the influence of

κ on the rate of growth in coupon payments recall the formula that determines

them:

c(t) = FVt · r(t) = FV0 · eκt · r(t)

The only stochastic variable in this equation is r(t), therefore using (4.2) we

can express the expected value of c(t) as

E[c(t)] = FV0 · (γ + (r(0)− γ)e−αt) · eκt

and so

lim
t→∞

E[c(t)] = FV0 · γ · eκt

The growth rate in expected values of interest payments thus converges to κ as

time passes, however in the early years it is dependent on the initial risk-free

interest rate level: with rate below the long term average (γ) the growth in

expected interest payments is higher and vice versa. A precise calculation can

be found in the appendix, Section A.1.

The value of κ also influences the probability of default: it occurs when

δt ≤ DB · FV0 · eκt · r(t)

holds for the first time (as both sides are continuous, equality can be used as

well). Assuming constant r(t) = r, the probability of default is19:

19 For the derivation of this result see A.2
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P {τb < ∞} =

{

1 if µ− σ2

2
≤ κ

exp
[

−2µ̂b̂
]

if µ− σ2

2
> κ

(4.6)

where

b̂ = − ln
(

DB · FV0 · r/δ0
)

σ

µ̂ =

(

µ− σ2

2
− κ

)

σ

and τb is the time of default.

As equation (4.6) shows, default is sure if µ − σ2

2
≤ κ and is otherwise

increasing in the DB, initial face value of debt, volatility and growth rate in

face value of debt, κ.

On the other hand it seems to be reasonable to keep κ above some level:

as the EBIT and the total firm value are supposed to growth at a rate µ, the

leverage ratio is expected to decline for κ < µ. Since the equity value, debt

value and total firm value are homogeneous function of degree one with respect

to the instantaneous EBIT, the optimal proportion of EBIT to debt face value

is constant. The question is, what is the breakpoint of κ at which the gain

from smaller expected distance to optimal leverage in the future is offset by

increased probability of bankruptcy.
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Figure 4.8: Firm value dependence on κ, DB = 0.3
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Figure 4.9: Firm value dependence on κ, DB = 0.5

We have run simulations in order to see the effect of changes in the κ param-

eter in our model. The results are consistent with the theoretical calculations

and our expectations. Figures 4.8 and 4.9 illustrate the evolution of the firm

value as κ changes for two different DBs and three different initial FVs. As it

noticeable, the κ maximizing total firm value is lower for higher DB and higher

initial FV. This means that when the other parameters are increasing the prob-

ability of default it is optimal to offset this by lower κ value. Consequently,

for companies with high probability of default (due to high leverage, default

barrier, volatility or any other factors) it pays off to establish a sinking fund.

4.8.2 Tax Rate

Debt financing in our model exists only because of the presence of a positive

corporate tax:20 interest payments are not taxed, and therefore debt financing

creates a tax shield that increases the value of the firm. Consequently a higher

tax rate implies an incentive for higher debt issue in order to reduce tax pay-

ments. The other natural effect of a higher tax is decrease in overall firm value.

Even if the increase in tax payments is compensated by lower leverage (or by

changing other parameters), the maximum firm value is lower in situations with

higher corporate tax.21

20However, there might be other reasons for preferring debt financing to equity issue. An
important example is the situation when the current owner wants to keep his full control
over the company, however he has not enough funds to finance the ongoing or new projects.

21This statement can be easily proved: consider a firm with optimized parameters in a
country with some given tax rate. If the tax rate suddenly decreases, the firm becomes more
valuable due to the reduced tax burden. Later, when the firm optimizes its parameters
for the new tax environment, the firm value will not be lower than without optimization.
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Figure 4.10: Firm value dependence on tax rate

Figure 4.10 depicts the sensitivity of firm, debt and equity values on the rate

of corporate tax. The top chart suggests, that the results are in line with the

theoretical expectations. The FV maximizing the firm value is increasing in

the tax rate, whilst the maximal firm value decreases with higher tax. The

bottom chart shows how the values of the involved parties react on a change

in the corporate tax for different DBs. As it was demonstrated in Section 4.7,

the peak in the equity value curve determines the bankruptcy level chosen by

the debtor. This DB level is the same for both tax rates, and therefore the

bankruptcy decision is not affected by the tax burden. This is an important

reason, since the probability of default is not affected by a change in corporate

tax rate, and therefore leaves the debt value unaffected. According to this, the

debt is priced independently on the tax burden, as the debt value is the same

for given FV and DB. This is the reason why there is just one curve for debt.

According to this two-step procedure the maximal possible value of a firm with lower tax
rate needs to be higher.



4. The Model’s Framework 62

4.8.3 Recovery Rate

In traditional models22 the Recovery Rate (RR) represents the fraction of firm

value that remains to the owners after the the costs of a bankruptcy are booked.

In our case, however, it is more convenient to define RR as a multiple of the

yearly EBIT at the moment of default in order to simplify the calculations. This

can be done without the loss of generality, as our RR can be easily transformed

to the classical one: the asset value is equal to the value of an unlevered firm,

what is calculated in our simulations as an EBIT multiple. For example, our

basic set-up has unlevered equity value 30 yearly EBITs (see Table 4.2), therefore

RR = 5, RR = 10, and RR = 20 corresponds to “classical” recovery rate of

17%, 33%, and 66% respectively.

Since we assume no APR violations, the bankruptcy costs are born solely by

the debt holders, similarly as in Leland’s (1994) model. Consequently the value

of the share holders’ claim is independent on the RR whereas the debt and so

the total value are increasing in RR.

Since equity holder’s bankruptcy decision is not affected by the RR (as the

value of their claim is independent on RR), we will not deal with changing DB for

different RRs. On the contrary, the firm value is dependent of the RR, and so FV

that maximizes its might be sensitive as well. To find out the optimal debt ratio

dependence on the RR we have simulated firms with three different (5,10, and

20) recovery rates, all other variables leaving unchanged. The obtained values

are plotted on Figure 4.11, with maximal firm values visualised. According to

the calculated results, the optimal debt ratio declines as the RR decreases. This

is an intuitive outcome: the expected costs of default are decreasing in the RR,

and therefore (leaving the tax rate constant) the optimal FV shifts to higher

levels.

4.9 Initial Interest Rate Level

An important advantage of the introduced mean-reverting interest rate en-

vironment is, that it can deal with a risk-free interest rate that is not on its

long-term average (γ). In such case the interest rate is expected to return to

γ, however, this takes some (random) time. In models with constant interest

22 For example those presented in Chapter 2.
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Figure 4.11: Firm value dependence on Recovery rate, DB = 0.4, 0.6

rate it is not possible to cover this situation. With a stochastic interest rate

model though, it is just a question of different initial value r(0) in the SDE (4.1).

Furthermore, the effects of exogenous changes in this initial level can be exam-

ined. These exogenous changes in the risk-free interest rate correspond to the

decisions of the central bank, and therefore we are able to predict the effects

of the monetary policy on microeconomical level.

To see the effects of changes in the initial interest rate, we have run calcu-

lations with r(0) = 1%, r(0) = 3%, and r(0) = 5%. Figure 4.12 demonstrates

the obtained results for two different FVs. The tick lines show the total firm
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Figure 4.12: Firm value dependence on initial interest rate

value dependence on the DB for three different initial interest rate levels. The

gap between these lines represent the loss—ceteris paribus—when the interest

rate suddenly increases to the next examined level. This drop in firm value is

caused by two factors: higher discount for all future earnings and increased PD

due to higher interest payments.23 The mentioned gap is a sum of declines in

equity and debt value, and therefore we can divide this area to distinguish the

losses of the two involved parties.24

23Higher interest payments imply higher DB in absolute terms. The DB of the x axis on
Figure 4.12 is a ratio of the instantaneous interest payments.

24 For the calculated debt and equity values, see Subsection B.2.1.
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For a better understanding of the forces driving these changes, we have plot-

ted the PD in the first 50 years25 and the mean times of defaults happened

before year 50 (E[ τ | τ < 50 ], where τ is the time of default, as usually). As

it can be seen on Figure 4.13, both the PD and the expected time of default

seem to be insensitive to changes in the initial interest rate, when the FV and

the DB are low.26 On contrary, when the default probability is high due to

other parameters, both PD and E[τ ] become sensitive to initial interest rate

movements.

FV = 2000

DB

%

40

50

60

70

80

90

100

0.3 0.5 0.7 0.9

FV = 2000

DB

%

0
10
20
30
40
50

ye
ar

s
E [τ | τ < 50] r(0)=1%
E [τ | τ < 50] r(0)=3%
E [τ | τ < 50] r(0)=5%
PD r(0)=1%
PD r(0)=3%
PD r(0)=5%

FV = 3000

DB

%

40

50

60

70

80

90

100

0.3 0.5 0.7 0.9

FV = 3000

DB

%

0
10
20
30
40
50

ye
ar

s

Figure 4.13: PD and default time dependence on initial interest rate

A larger fraction of the firm losses is booked by the equity holders (recall

Figure 4.12). Their claim is depreciated by the factors that affect the firm

value (i.e. higher discount of future income and increased PD), and also by one

additional: higher interest paid out to debt holders.

We can see that the debt value is insensitive to changes in initial interest

rate, when the probability of early default is close to zero due to low FV and

DB. Our conclusion is, that increased coupon payments perfectly offset higher

discount on future cash flows.27 Consequently the only factor that decreases

25 It is mentioned in Section 4.6 where this 50 comes from. Also we saw on Figure 4.1, that
the effect of different initial interest rate disappears in circa 10 to 15 years, therefore it is
sufficient to deal with defaults in the first 50 years only.

26A more precise description would be, that the difference of these values is below the level
of significance.

27 For κ = 0 this is intuitive: the defaultable corporate bond can be represented as a risk-free
bond with the same parameters minus the expected losses caused by default. Since the
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the bond’s value is the increased default probability and its earlier expected

occurrence.

Note, that this section explains how the central bank’s interventions work.

In economical downturn the monetary policy can support the companies by

targeting a lower short-term rate. This increases the value of both traded and

non-traded assets, reduces the number of defaults, and supports debt financing

through the decrease of interest paid on the outstanding principal. The latter

is favoured by two factors: the risk-free interest is low, and the risk-premium

drops due to lower PD. On the contrary, an overheated can be cooled down

with higher risk-free interest.

4.10 Comparison of Stochastic and Deterministic

Default Barrier

Stochastic risk-free interest rate and DB are the two features of our model that

distinguish it from other EBIT-based works (Goldstein et al. 2001; Broadie et al.

2007). The contribution of a stochastic interest rate is intuitive: a constant or

deterministic risk-free rate is hardly acceptable. Its usefulness was presented

also in Section 4.9, where our model have easily dealt with different initial

interest rate levels and it was able to predict the implications of such macro-

level shocks. The benefits of a stochastic DB were however not proved. In the

description of the DB for our model (see Section 4.5.1) we mentioned why banks

might prefer a DB that is dependent on the interest rate. We saw however, that

it is not the bank who sets the default triggering level: it is the debtor or it is

specified in the debt contract, that is designed by both parties.

In order to examine whether it is correct to base our model on stochastic DB

we simulated two firms with identical parameters28 but different DB settings:

one stochastic, driven by the instantaneous risk-free interest rate, and one

deterministic DB, dependent only on FVt.

price of a riskless bond that pays continuous interest is always equal to its face value, it is
not dependent on the current interest rate.

28These parameters were the same as in the basic setting, with the exception of lower recovery
rate (5 yearly EBITs), and higher correlation between the EBIT and interest rate processes
(ρ = 0.5). These modifications were made in order to make the results more sensible on
the selection of the DB. Furthermore the number of iterations was doubled to increase the
significance of small deviations between the two settings.
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Figure 4.14: Stochastic vs. Deterministic DB

The default triggering levels were therefore set to FVt · r(t) · DB in the

stochastic case and to FVt · γ · DB in the deterministic case, where DB > 0

is the same variable in both cases. Figure 4.14 visualizes the comparison of

results obtained by stochastic and deterministic DB setting. For the first sight

it is apparent that the total firm value is higher when the DB is defined as a

deterministic function.

To understand the reason of this better performance, let us take an example

macro-level shock. Assume a firm with our basic parameters, that is near the

defined DB with the parameter DB = 0.3: set the EBIT to δt = 100, the Face

Value of debt to FVt = 10, 000 and the risk-free interest rate to r(t) = 3%. The

default triggering level is in both cases 10, 000·0.03·0.3 = 90, as r(t) = γ = 0.03.

Now take a jump in the W Wiener process, so that dWt = 1 for a very short

time frame, that is dt is close to zero. Using (4.1) and (4.4) we can calculate

the changes in the earnings and the interest payments:
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dr = α(γ − r)dt+ σrdWt = 0 + 0.005 · 1 = 0.005

and

dδt = δt(µdt+ σdXt) = 100 · (0 + 0.2 · dXt),

as dt ≈ 0. Using Xt = ρWt +
√

(1− ρ2)Zt we can write

dδt = 100 · 0.2 · (ρdWt +
√

(1− ρ2)dZt).

Knowing that E[dZt] = 0, we obtain the expected change in the EBIT process:

E[dδt] = 100 · 0.2 · 0.2 · 1 = 4

If this shock was positive, the new interest rate is 3.5%, and therefore the

stochastic default triggering level increases to 10, 000 · 0.035 · 0.3 = 105. The

EBIT grows to 104,29 as we calculated, and consequently default occurs with

stochastic DB, whereas it does not occur with deterministic DB that remains at

level 90, independently on the interest rate.

A macro-shock with the same magnitude, but opposite direction produces

δt = 96 and stochastic default barrier level of 75, using similar calculations as

above. Therefore there is no default neither with stochastic nor with determin-

istic DB.

A deterministic DB therefore softens the default triggering bound, and hence

increases the firm value. The problem is however, that when the primitive

variable is not observable30, default is triggered by the equity holders in a way

to maximize the value of their claim. Recall Figure 4.14: a stochastic DB bears

higher equity value for barrier ratios below 0.5. Since the equity-maximizing

DB is below 0.5 (as we have seen in Sections 4.6.2 and 4.7), the equity holders

will prefer triggering default according to a stochastic barrier. In fact this is a

logical conclusion: the situation of the overall economy, as well as the size of

the interest payments is taken into account.

29 It is expected to grow to 104. However, as the considered time interval approaches to zero,
the grow will converge to 4 independently on the realization of Zt.

30As it was discussed in Section 4.7, observable primitive variable implies low default trig-
gering level. Consequently there is insignificant difference in the values produced by the
two DB types.
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Conclusion

Our work extends the available literature of asset pricing by an Earnings Be-

fore Interest and Taxes (EBIT) based model with stochastic interest rate. This

framework is able to price equity and debt in a way consistent with the cash

flow of the firm, and therefore to address some defects of the current frame-

works. It solves the “delicate” issue of Leland (1994), that the unlevered firm

value might not be a traded asset, and deals with the problem of partial tax de-

ductibility. The stochastic interest rate assumption contributes the possibility

of analysing the effects of changes in the central bank’s monetary policy, and

it is able to answer the question how the macroeconomical situation affects the

optimal capital structure. The default is triggered using a stochastic interest

barrier, that is shown to be more accurate then its deterministic equivalent.

We also analyse the design of credit contracts, focusing on the finding of

firm-value maximizing parameters and safety covenants. With the help of the

game theory apparatus actions taken by the involved parties can be predicted.

Using this scheme the agency costs arising due to asymmetric information are

computed, and methods are suggested for the minimization of these losses.

Since we use numerical calculations, the model can be easily extended and

modified in many aspects. A natural candidate is a more complex capital

structure, with several debt classes, contracts with finite horizon and absolute

priority violations. Also, following Broadie et al. (2007) it would be fruitful to

examine a two-barrier model, where reorganization and liquidation are distin-

guished.
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A weak point in our design is the assumption that the EBIT process is driven

by a GBM, and therefore it cannot handle negative earnings. It might be argued

that employing arithmetic Brownian motion would be a better choice for this

reason, however it should be noted that our model has an infinite time horizon.

As the prices of the commodities grow exponentially, it is hard to accept a linear

model for the EBIT evolution. Finding better alternatives for the EBIT process

will be the subject of further research. A promising idea is to model the earnings

as a difference of two correlated GBMs (representing revenues and expenses):

it has a clear economic intuition, it is able to produce negative values, has an

exponential expected evolution, and works with observable figures.
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Appendix A

Calculations

A.1 Growth Rate of Interest Payments

We know, that

E[c(t)] = FV0 · (γ + (r(0)− γ)e−αt) · eκt,

therefore the growth rate can be calculated as

∂E[c(t)]
∂t

E[c(t)]
=

FV0 · (γκ+ (r(0)− γ)(κ− α)e−αt) · eκt
FV0 · (γ + (r(0)− γ)e−αt) · eκt =

γκ+ (r(0)− γ)(κ− α)e−αt

γ + (r(0)− γ)e−αt
= κ+

−α(r(0)− γ) · e−αt

γ + (r(0)− γ) · e−αt
.

A.2 Probability of Default as a Function of κ

Recall the definition of processes involved:

Risk-free interest rate:

dr = α(γ − r)dt+ σrdWt

r(t) = r(0)e−αt + γ(1− e−αt) +
σr√
2α

Wt(e
2αt − 1)e−αt

EBIT:
dδt
δt

= µdt+ σdXt

Xt = ρWt +
√

(1− ρ2)Zt



A. Calculations II

δt = δ0 · exp
{(

µ− σ2

2

)

t+ σXt

}

Default occurs at:

δt = DB · FV0 · eκt · r(t)

δ0 · exp
{(

µ− σ2

2

)

t+ σXt

}

= DB · FV0 · eκt · r(t)

exp

{(

µ− σ2

2
− κ

)

t + σXt

}

=
DB · FV0 · r(t)

δ0
(

µ− σ2

2
− κ

)

t + σXt = ln

(

DB · FV0 · r(t)
δ0

)

Xt =
ln
(

DB · FV0 · r(t)/δ0
)

σ
−

(

µ− σ2

2
− κ

)

σ
· t

Note that the first term is negative as the initial EBIT is supposed to be higher

than the initial level of the DB (otherwise default would occur immediately).

Now assume a constant r(t) = r, and see the probability that this equality will

hold within a finite time horizon. As Xt is a standard Wiener process, and so

has a symmetric probability density function with respect to the origin, we can

multiply the right side without changing the calculated probability. Therefore

the first constant term will be positive.

Denote

b̂ = − ln
(

DB · FV0 · r/δ0
)

σ

µ̂ =

(

µ− σ2

2
− κ

)

σ

and the first time of reaching the barrier as τb = inf
{

t : Xt = b̂+ µ̂t
}

. We

want to calculate the probability

P {τb < ∞} .

This is a simple boundary crossing problem, and has the following solution:

P {τb < ∞} =

{

1 if µ̂ ≤ 0, i.e.; µ− σ2

2
≤ κ

exp
[

−2µ̂b̂
]

if µ̂ > 0, i.e.; µ− σ2

2
> κ



Appendix B

Simulations

The simulations were run in the GNU R software environment on several

computers with Gentoo Linux operating system. The number of iterations was

set in a way to produce stable (and therefore significant) results, and it was

typically 5,000. In simulations with higher asset volatility (i.e. σ > 0.2) the

number of necessary iterations was higher: for σ = 0.6 we iterated 120,000

times.

Section B.1 contains the results produced by the basic setting. In the subse-

quent section some alternative settings are presented, that produced important

or interesting output. For further results see the enclosed media,1 where both

the R source code and its output are provided.

The tables present the referred values for different FV and DB settings. The

rows represent the different FVs (see the first column), whereas the columns

correspond to different DB ratios (see the first row). For more information about

the calculations, see Section 4.6, and Section B.3 for a pseudo-code illustrating

the calculation.

B.1 Basic Setting

Parameters:

ρ = 0.2, σ = 0.2, µ = 0.01, κ = 0.01, RR = 10, TC = 35%,

α = 0.25, γ = 0.03, σr = 0.005, r(0) = γ

For equity and total values, see Table 4.2 and Table 4.3.

1 Or contact the author via e-mail on address martin@dozsa.cz.



B. Simulations IV

Table B.1: Debt value

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0 0 0 0 0 0

500 616 599 584 572 561 552 544
1000 1142 1090 1046 1006 973 946 921
1500 1590 1489 1403 1330 1270 1218 1170
2000 1967 1809 1675 1560 1462 1374 1301
2500 2279 2056 1857 1695 1552 1426 1314
3000 2541 2243 1979 1754 1553 1388 1254
3500 2757 2366 2026 1729 1486 1278 1082
4000 2919 2422 2003 1640 1346 1074 1000

Table B.2: Debt ratio (Debt value/Total value)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00

500 0.19 0.19 0.18 0.18 0.18 0.17 0.17
1000 0.34 0.33 0.32 0.31 0.31 0.30 0.30
1500 0.46 0.44 0.42 0.41 0.41 0.40 0.40
2000 0.56 0.53 0.51 0.50 0.49 0.49 0.50
2500 0.64 0.61 0.59 0.57 0.57 0.58 0.60
3000 0.72 0.68 0.65 0.64 0.65 0.67 0.72
3500 0.79 0.74 0.71 0.70 0.73 0.78 0.90
4000 0.85 0.80 0.77 0.77 0.82 0.94 1.00

Table B.3: Percentage defaulted

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

500 11.0 16.6 21.2 25.6 29.9 33.8 37.4
1000 25.6 33.8 40.8 47.1 52.7 57.3 61.6
1500 37.4 47.1 55.0 61.6 66.8 71.6 75.5
2000 47.1 57.3 65.1 71.6 76.6 81.4 85.1
2500 55.0 65.1 73.1 79.0 84.1 88.5 92.2
3000 61.6 71.6 79.0 85.1 90.2 93.6 96.1
3500 66.8 76.6 84.1 90.2 94.0 96.8 99.2
4000 71.6 81.4 88.5 93.6 96.8 99.4 100.0



B. Simulations V

Table B.4: Average time of default
during the first 50 years

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500 37.9 36.7 35.2 34.2 33.2 32.2 31.1
1000 34.2 32.2 30.1 28.5 26.9 25.4 24.0
1500 31.1 28.5 26.1 24.0 22.1 20.2 18.3
2000 28.5 25.4 22.7 20.2 17.8 15.6 13.4
2500 26.1 22.7 19.5 16.6 13.9 11.5 9.1
3000 24.0 20.2 16.6 13.4 10.5 7.7 5.1
3500 22.1 17.8 13.9 10.5 7.2 4.2 1.4
4000 20.2 15.6 11.5 7.7 4.2 1.0 0.0

B.2 Modified Parameters

These calculations generally differ from the basic setting in one parameter

only. For the sake of simplicity, we will note explicitly only this one different

parameter.

B.2.1 Different Initial Interest Rate

Initial level 1% r(0) = 0.01

Table B.5: Debt value

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0 0 0 0 0 0

500 625 608 593 579 567 557 548
1000 1162 1104 1059 1019 983 951 924
1500 1604 1506 1411 1329 1262 1210 1160
2000 1986 1810 1663 1548 1445 1365 1293
2500 2287 2038 1847 1681 1548 1447 1366
3000 2530 2221 1960 1753 1609 1476 1380
3500 2728 2339 2028 1805 1609 1479 1374
4000 2894 2420 2062 1792 1600 1451 1334



B. Simulations VI

Table B.6: Equity value

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 3249 3249 3249 3249 3249 3249 3249

500 2824 2829 2829 2825 2817 2807 2794
1000 2430 2442 2442 2432 2409 2379 2342
1500 2074 2099 2098 2075 2035 1980 1905
2000 1751 1791 1789 1754 1690 1610 1514
2500 1460 1517 1513 1461 1381 1283 1181
3000 1196 1267 1261 1202 1120 999 879
3500 958 1043 1039 982 871 771 665
4000 736 846 847 778 688 589 487

Initial level 5% r(0) = 0.05

Table B.7: Debt value

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 0 0 0 0 0 0 0

500 608 592 580 568 559 550 543
1000 1135 1089 1047 1012 981 952 928
1500 1587 1493 1409 1335 1264 1206 1151
2000 1971 1813 1669 1536 1409 1283 1141
2500 2295 2054 1827 1598 1329 1017 1000
3000 2554 2203 1844 1390 1000 1000 1000
3500 2739 2241 1627 1000 1000 1000 1000
4000 2864 2132 1049 1000 1000 1000 1000

Table B.8: Equity value

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 2820 2820 2820 2820 2820 2820 2820

500 2408 2412 2412 2408 2404 2395 2385
1000 2025 2036 2036 2027 2010 1980 1935
1500 1674 1698 1698 1666 1615 1536 1435
2000 1347 1385 1371 1310 1210 1009 628
2500 1034 1079 1057 954 657 53 0
3000 734 795 762 447 -0 0 0
3500 470 559 425 -0 0 0 0
4000 231 341 28 0 0 0 0



B. Simulations VII

B.2.2 High Asset Volatility

40% volatility σ = 0.4

Table B.9: Results

(a) Debt value

0.5 0.9
0 0 0

1500 755 713
3000 1065 968

(b) Equity value

0.5 0.9
0 2901 2901

1500 2042 1727
3000 1397 499

(c) Total value

0.5 0.9
0 2901 2901

1500 2797 2440
3000 2462 1467

(d) Debt ratio

0.5 0.9
0 0.00 0.00

1500 0.27 0.29
3000 0.43 0.66

(e) % defaulted

0.5 0.9
0 0.0 0.0

1500 92.6 96.5
3000 97.1 99.3

(f) Avg. def. time

0.5 0.9
0

1500 14.3 9.2
3000 8.2 2.4

60% volatility σ = 0.6

Table B.10: Results

(a) Debt value

0.5 0.9
0 0 0

1500 508 560
3000 765 876

(b) Equity value

0.5 0.9
0 2682 2682

1500 2020 1625
3000 1434 576

(c) Total value

0.5 0.9
0 2682 2682

1500 2528 2185
3000 2199 1452

(d) Debt ratio

0.5 0.9
0 0.00 0.00

1500 0.21 0.26
3000 0.36 0.61

(e) % defaulted

0.5 0.9
0 0.0 0.0

1500 99.1 99.6
3000 99.6 99.9

(f) Avg. def. time

0.5 0.9
0

1500 8.1 5.1
3000 4.5 1.4



B. Simulations VIII

B.3 Illustrative Code

For a better understanding, how the simulations are calculated, we present here

a simple pseudo-code.2

1 repeat the iterations

2 generate a random EBIT and interest rate evolution

3 follow the evolutions in time starting at t=0

4 set the possible values of DB to 0.3, 0.4 .. 0.9

5 set the possible values of FV to 0, 500, .. 5000

6 for all possible combinations of DB and FV do

7 if EBIT > DB then

8 if EBIT > interest payment

9 pay out the coupon to debt holders,

10 pay out the rest of the EBIT as dividends

11 else

12 pay out the coupon to debt holders,

13 compensate cash deficit by equity dilution

14 end if

15 else

16 trigger default,

17 transfer the remaining assets (EBIT*RR)

to the debt holder

18 end if

19 end of for all possible...

20 end of follow

21 end of repeat

22 average the results of all iterations

23 print out this average

2 A pseudo-code is a compact description of a programming algorithm. It is easier for
understanding, however it cannot be run by the computer.
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