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Introduction

The broken Sobolev spaces W'P(Q,7;,) are spaces of functions whose restrictions to ele-
ments K of a given mesh 7, belong to the corresponding classical Sobolev spaces W1P(K).
Broken Sobolev spaces are useful generalization of the spaces of piecewise polynomial
functions, which are employed as trial and test spaces in the discontinuous Galerkin (DG)
methods. Analysis of these spaces is unavoidable prerequisite when studying the DG meth-
ods. The properties of the norms and relations to the classical Sobolev spaces justify the
choice of penalization in the Interior Penalty discontinuous Galerkin (IPG) method.

In the first chapter, we review the properties of broken Sobolev spaces and the corre-
sponding mesh-dependent norms. We generalize the global multiplicative trace theorem,
published for W2(Q, 7;,) in (Dolejsi, Feistaner and Havld, 2009), to the spaces W2(Q, T;,)
with arbitrary p € [1, 00] (Theorem [[7). We also show that the spaces W1?(Q, 7;,) form a
scale of interpolation spaces, using the real K-method of interpolation (Theorem [CT0). Up
to author’s knowledge, interpolation between the spaces W?(Q,7;,) was not yet studied
in literature. As an example of application of the interpolation result, we prove imbeddings
of broken Sobolev spaces in certain Besov spaces (Lemma [C24]).

In the second chapter, we analyze the Interior Penalty discontinuous Galerkin methods
for a model elliptic problem. We review the results on convergence in the broken H!-
seminorm, but our main focus is the convergence in L2 norm. It is well known that the
non-symmetric variants, namely the so called Nonsymmetric Interior Penalty discontinu-
ous Galerkin method (NIPG) and the Incomplete Interior Penalty discontinuous Galerkin
method (ITPG) exhibit suboptimal order of convergence in L*norm. In general, the sub-
optimality is attributed to the lack of adjoint consistency of the method (see m,

). However, the adjoint consistency is not necessary condition for optimality. Moreover,
the optimality depends on the parity of the degree of piecewise-polynomial discontinuous
trial and test functions employed in the IPG methods (see ﬁ, M) The adjoint-
consistency clearly cannot explain this phenomenon.

Theoretical results concerning L?-convergence of NIPG and IIPG were limited only to

one-dimensional case and special multidimensional cases (see [L@Isgn_and_Njklasst, |2£H)_4|;
Burman_and_Stamm, 2008; Wang_et. all, 2009). Even in the one-dimensional cases, the

analysis was restricted to uniform meshes. We present full analysis of IIPG method on
one-dimensional non-uniform meshes (Theorem B8), which was originally published by

IDolejsi and Havle (2010).

Although the DG techniques are applicable to wide range of PDEs (see ICockburn e, all,
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m, and references given therein), the applications to hyperbolic systems of conservation
laws are most prevalent. In fact, the traditional Finite Volume (FV) method is a special
case of DG. When discretizing first-order hyperbolic equations with FVM or DG, we need
a so called numerical flux, which is consistent with the given PDE system.

In the third chapter, we present the construction of numerical flux for the Shallow Wa-
ter Equations (SWE), which was originally published in (Feleman and Havld, 2010). The
construction is inspired by the well-known Vijayasundaram flux from the context of com-
pressible Euler equations. We prove that the flux is consistent, conservative and continuous
(Theorem B4l). We show that FV method employing this numerical flux preserves certain
class of stationary solutions (Theorem BT).

Let us finish the introduction with few remarks about organization of the thesis. In
chapters 1 to 3, we formulate the original results in Lemmas and Theorems. The results
adopted from other authors are marked as Properties. In most cases, the Properties are
stated without proofs. In few cases, we include proofs of such Properties for clarity. The
appendix contain numerical experiments which illustrate the theoretical findings.



Chapter 1

Broken Sobolev Spaces

The spaces of piecewise polynomial functions play a crucial role in the analysis of discon-
tinuous Galerkin methods. It is useful to have results independent of the polynomial order.
That’s why we analyze first the more general functions, whose restrictions to elements K
of a given mesh 7, belong to the Sobolev space W1?(K). Spaces of such functions are the
so called called broken Sobolev spaces. The broken Sobolev space W'P(€, 7;) is defined by

WH(Q,T,) = {u € LP(Q) 1 u|, € WP(K), K €T, } (1.1)

The weak solutions of elliptic and parabolic PDEs belong to Sobolev spaces W?(§2), with
suitable p € (1, 00). The broken Sobolev spaces replace the spaces W1?(Q) for the purposes
of discontinuous Galerkin methods. Naturally, the broken Sobolev space W?(§2, 7;) should
in a sense approximate the Sobolev space WP(Q), at least in the limit A — 0. Later in
this chapter, we will see that many properties of the space W1?(Q) are shared by the space
WhP(Q,7;,) and our requirement is thus satisfied.

We have to respect this requirement when defining the norm in the space W'?(Q, 7).
Let us first show some heuristic arguments, which motivate the choice of norms. For the
sake of argument, suppose v is a piecewise constant function. Let vg = v} , denote the
value of the function on the element K and zx denote a representative point in K (e.g.
the center of gravity of the element K). Concerning the case p =1, Wh(Q,7;) C BV ().
The definition of norm on W(Q, 7;,) should respect this inclusion. One can show that

Wlsviey = X Mol - (1.2)

rer!

where the sum is taken over all interior faces I' of the partition 7, and [v] = vx — vy, is
the jump of the function v on the common face I' shared by two neighboring elements K
and L.

Concerning the case p = oo, the space W1>(Q) is equal to the space Lip(£2) of Lipschitz-
continuous functions on €2, that is

(@) —v(y)| < C ol |z —yl, for a. a. z,y € Q, v € WH®(Q). (1.3)



Obviously, W (Q, 7;,) ¢ Lip(2), since the functions from W>(Q, 7;) need not be con-
tinuous. The natural generalization of the Lipschitz condition is the inequality

‘UK—UL‘SM‘SL’K—SL’L‘, K,LE%, (14)

where M is a constant. Under suitable assumptions on the mesh 7;, (see section [Tl below),
it follows from () that
B < olon vl

hy \SUK —37L|

for all elements K, L sharing a common face I', where hr = diam (I") is the diameter of the
face I'.

In the discussion above, we considered only piecewise-constant function. When defining
the norm for arbitrary functions v € WHP(€, 7), we must take into account not only the
inter-element jumps, but also the behavior in the interior of each element. The equality
(CA) and the inequality ([CH) motivate us to define a norm in the space W'?(Q, 7;) by
following formulae

<CM, (1.5)

1/p
oy = (11 + Whasaz) (1.6)
1/p
[vlwisoz) = Z / Vs Z hr h ,  pE[l,c0), (1.7)
KeTy, rerf Cllze(r)
||’U||W1700(Q,’Th) = max (”UHLOO(Q) ) |'U|W1700(Q,’Th)) ; (1.8)
_ [v] B
|U\W1,oo(ﬂ,7h) = max (}(neaTX ‘U|W17°°(K) II%S}_)I( I . P = 00. (1.9)

In the rest of this chapter, we state and prove properties of the space WP(£2), equipped

with the norm (CG)-(TCH).

1.1 Basic assumptions and notation

We assume that Q C R, d € {1,2, 3}, is a given bounded domain with Lipschitz continuous
boundary. By LP(Q2) and W*P(Q), p € [1,00], s € {1,2,...} we denote the Lebesgue and
Sobolev spaces, respectively, equipped with standard norms and seminorms. We use the
standard abbreviations W%(Q) = LP(Q) and H*(Q2) = W*%(Q). By BV () we denote the

space of functions with bounded variation, equipped with the norm and the seminorm

[ull vy = lull i) + [ulgyi) (1.10)
lulpy@ = sup /udivsodx, u e BV(Q), (1.11)
pe(ci@)” 70
”‘P”(LOO(Q))dgl



where C§°(€2) is the space of continuously differentiable functions with compact support in

I(?@f’roper’mes of these function spaces can be found in (IAd_ams_a.nd_Bm_mmﬂ, 2003: IGiusti,
).

In order to keep proofs straightforward, we consider only conforming simplicial parti-
tions of the domain 2. We do not consider hanging nodes, general polygonal, polyhedral,
or curvilinear elements. We refer to i

, and references given therein).

Let us recall basic properties of simplexes. Consider d points a',a?,...,a%" € R% and

the convex hull K' = conv {al, Ceey ad“}. If the d-dimensional Lebesgue measure | K| is not

zero, we say that K is a simpler in R?. Then, the points a',...,a%"! are called vertices of
K. The sets

Y ) ) 7 Y

_ 1 J—1 _j+1 d R
F]-—conv{a,...,a , @ ,...,a}, g=1,...,d,

are called faces of the simplex K. The simplex K is a closed set. If d = 1, K is a closed
bounded interval. If d = 2, K is a triangle, and if d = 3, K is a tetrahedron. Consequently,
the faces are points (real numbers) for d = 1, line segments for d = 2 and triangles for
d=3.

By definition, every x € K is a convex combination of the vertices,

d+1

r=Y N\a' (1.12)
=1

Moreover, the coefficients A\; are unique, and satisfy

d+1
0<A<1 > N=1 (1.13)

The coefficients \; are called barycentric coordinates of the point x.

Definition 1.1. Let 7, be a finite set of simplices in R?. Let Fj, denote the set of all

(d — 1)-dimensional faces of all elements K € 7. We say that 7}, is a conforming partition
of Q if

(A) KNL=0forall K,L €Ty, K # L.
(B) Uker, K =9

(C) For each pair of elements K, L € 7y, either the intersection K N L is a face I' € F,,
or the (d — 1)-dimensional measure of K N L is zero.

(D) Let F7* ={T' € F,: T C 99} and Ff = F, \ F?2. There exist mappings

Kﬁ):fh—fﬁ, Kgg:féﬁﬂ
such that
KE+KE, KENKR=T, I'e F,
KfnoQ =T, I e 72
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(E) There exist mapping n( : F, — R, such that mr is a unit normal vector to the face
I', which points ,,outwards” of the element K&, i.e.

z+tnr & K5, forallz e I',t > 0.

The mappings K (E_), K (R) and n define a orientation of each face I'. The condition (B)
imply that Q is a polygonal (or polyhedral for d = 3) domain and (E) imply that for
[ € F?? mr is equal to the unit outer normal to the boundary 9.

For each element K € 7, we set hx = diam (K), and for each face I' € F},, we put
hr = diam (I'). We define the global mesh size h = maxger, hi. By px we denote the
radius of the largest d-dimensional ball inscribed into K. We define

DK)={LeT,:LNK #0}. (1.14)

Definition 1.2. Let C, > 0. We say that 7, is a C,-regular partition of €2, if 7, is
a conforming partition of €2, and

PK
max{hy, b} _ o, L=Kf, R=KF, T'eF. (1.16)

min{hL,hR} -

In the following considerations, we implicitly work with a family of partitions {7}, }re(0,ho)-
For simplicity of the notation, we assume that the partitions are parametrized with the
global mesh size h € (0, hg), where hy > 0. We assume the all partitions 7;, under consid-
eration are C,-regular, with fixed constant C,. The assumptions of shape regularity (LIH)
and local quasi-uniformity (CLI0) are standard in theory of the finite element method, see
(Ian_nm_and_Sm_tﬂ, |20ﬂﬂ; |Cj_aﬂﬁt|, h_&ﬂ) In the following, we will use the symbol C to
denote a generic constant, which does not depend on h or 7, but can depend only on 2
and the regularity constant C'.. The symbol C' might denote different constant on different
places. For example, we have

hr < hg < Chy, KeT, I'cF, I' COK, (1.17)

and
ri-t < ofry, hi. < C|K]| K € T,.T € Fi, (1.18)
hy < Chg, card D(K) < C, K eT, LeDK). (1.19)

Let us now turn to the definition of mesh-dependent function spaces. By P*(K) we
denote the space of d-variate polynomials of degree at most k restricted to the element

K € 7T,. We set

Spp={veL'(Q) v, e PHK)}, k=0,1,... (1.20)

11



For p € [1,00] and s =0, 1,..., we define the Broken Sobolev Space
W (Q,T,) = {u € LP(Q) :u|,, e W(K), K €T, } . (1.21)

For p = 2, we use the abbreviation H*(Q,7;,) = W2(Q, 7). For v € Wh1(Q, T;,), we set

v}ﬁ = the trace of U}KL on I, ' e Fy,
T
v‘;z: the trace ofv}Klé on T, re 7.

We define the mean value and jump of v on a face I' € F! by

(V)yp = % (v’fj + v}?) : (V] = v’fj — v’?, (1.22)

and for I € F by (v)p = [v]p = v’? By Sobolev trace theorem, (v)p, [v]p € LP(T) for all
veW(Q,T,) and T € Fj,. We often omit the subscript T' and abbreviate the notation
as (v) or [v]. The norm [|||lyy1,(q 7,) on the space WhP(Q,7,) is defined by (ICH)-(TC3).

Let us recall several properties of the spaces P*(K).

Property 1.3 (Inverse inequality). For all k, s1, sy € No and p1,ps € [1,00], there exists
C > 0 such that

(s2=i5)~(=-3)

|,U‘Wsl,pl(K) S ChK "U‘WSQ,Z;Q(K), IS Pk<K), K e % (123)

Proof. See (Brenner and Scotd, 2002, Lemma 4.5.3). O

Property 1.4 (Approximation properties of P*(K)). Let k € Ng,p € [1,00], K € T}, and
v e WHEP(K). Then there exists ¢ € P*(K) such that

k—j -

v = alwiw) < Chic” Ve s j=0,... k. (1.24)
Proof. Follows from the Bramble-Hilbert lemma, see (Brenner and Scottl, 002, Lemma
4.3.8). O

1.2 The multiplicative trace inequality

Lemma 1.5. Let G C R? be a bounded domain with Lipschitz continuous boundary. Then
there exists a vector-valued function ¢ € WH(G)¢ such that

p-n>1 almost everywhere on 0G, (1.25)

where m is the unit outer normal vector to the boundary 0G.
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Proof. Since G is bounded, it follows from the Lipschitz-continuity of G that there exist

a finite open cover {Uj};.n:l of OG. Moreover, for each 7 = 1,...,m, there exist a Cartesian
coordinate system X; = (&1,...,§;q4) and a Lipschitz-continuous function f; : A; C
R4 — R, such that the set 2N U; is represented by the inequality

§a < [, &a1)s (G oo &am1) €A (1.26)

The inequality ([C20) represents 2 N U; locally in the vicinity of the boundary 0f2, but
the definition of Lipschitz-continuity of the boundary is more involved, we refer to (Adams
and Fournier, , section 4.9) for details. We denote the coordinates of a point z € R¢
with respect to the coordinate system X; by {z} X, Since f; is Lipschitz-continuous, it is
differentiable almost everywhere in A;. The outer unit normal to the set G exists almost
everywhere (with respect to the (d — 1)-dimensional measure) and

1
{n(z)}y =
VIV e
where (&1, ..+, &) = {2}y, and §a = f5(&, - - -, §a-1)- Let L be the Lipschitz constant
of the functions fi, k = 1,...,m. Let z; be the vector, whose coordinates are {zj}xj =

(0,...,0,v/14 L?). Since the coordinate systems are Cartesian,
V14 L2
2 ne) = (=}, {n(0)}y, = _>1 (1)
VIHIVGEa - Ga)l

almost everywhere on 0G'NU;. By theorem on partition of unity (see |Adams and Fournietl,
m, Theorem 3.15), there exist functions ¢; € C5°(U;), j = 1,...,m, such that

(=Vfi(&a, - 6a-1),1), (1.27)

0<ty; <1 j=1...m Y ¥)=1 2€dG.
j=1
Now we define the function ¢ by
pe) =3 Uy()z,  weR’ (129
j=1

Obviously, ¢ € C5°(R%)4. Moreover, using ([LZ8) and the property supp1; C U, we have

Yi(z)z; - n(z) > j(x), for all j =1,...,m, and almost all z € 0G,
and . .
e(x) n(z) = vi(r)z; n(x) > Y ) =1, for a.a. = € AG. O
j=1 j=1

We can obtain the auxiliary function ¢ explicitly for particular examples of the domain

G.
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Example. Let G be interior of a simpler K in RY. Let g € G be arbitrary. Then the

function
T — Xg

p(r) = dist (0, 0C) (1.30)

satisfies (CZ0).

Proof. Let I'y, ..., 'zy1 denote the faces of the simplex K, and n; be the unit outer normal
vector on I';, i = 1,...,n. The proof is based on the observation of (IIEJ_eJSj_QLa.]J, |20ﬂﬂ),
that if € T';, then the scalar product (z — x) - n; is equal to the distance of xy to the
hyperplane containing I';. For each x € I';, we have

(l‘ — IL‘Q) N, o diSt(l‘o, 1—‘2)

. pr— . R — —_— > .
ple)-m=el)-n dist(zo, 0G)  dist(xo, 0G) =1 -

In comparison to the construction in Lemma [0 the formula ([C30) is surprisingly
simple. Moreover, similar formula is valid for more general domains. One can prove, that
if G C R? is bounded domain with Lipschitz continuous boundary and zy, € R?, py > 0,
then the following two assertions are equivalent

(i) The function @(x) = py'(r — o) satisfies ([CZH).

(ii) The domain G is star-shaped with respect to all points y € B (zq, po), where B (xo, po)
denotes the ball centered at xy with radius pg, i.e. the line segment conv{z,y} lies
in G for all z € G and y € B (xo, po).

n (Feng and Karakashiarl, 2001), the domains satisfying the assumption (i) are called

star-like. We will not present full proof of the equivalence of (i) and (ii). The main idea of
the proof is as follows. Let x € 0G, let i be the outer unit normal at x and y = xq+ pon €
B (xg, po). If G is star-shaped with respect to y, then the line segment connecting x with
y lies in G. Vaguely speaking, this means that the vector x — y points outwards of the
domain G, or (z —y) - n > 0. Then

(x —x0) - m=(x—y) - n+pmn-n>p.

Next, we use the auxiliary function (C30) and Gauss theorem to prove the local mul-
tiplicative trace inequality. Our proof follow closely (Dalejsi et all, 2004, Lemma 3.1), see

also (IFf.ng_a.JJd_KaJ“_a.kas.hJ.alJ2 |21m_]]) One can prove the theorem also using a finite element

scaling argument, see ).

Theorem 1.6 (Local multiplicative trace inequality). For each p € [1,00), there exist
a constant Cyr such that

bl

012500y < Cor (ohwoge el + b o) K € Tovw € WHP(K). (131)

14



Proof. There exists xq € K such that
Let ¢ be given by (L30). Let w € W(K) be arbitrary nonnegative function. Then,
il < | wip-mas by (@)
= / div(we) doe = / (¢ -Vw+wdive) de [ by Gauss theorem |
K

K
< el poe iy [l ey + 1@ s ey 1wl g e

h d
< by + -l [ by (T30 and (T32) |
< 1+ G, ([0l + ha 10l ) - [ by (CTH) |

We conclude the proof by putting w = |v|? and using the inequality |Vw| < plv[P~Vo|. O

Theorem 1.7 (Global multiplicative trace inequality). For each p € [1,00), there exists
a constant C'; such that

1-1/p
||U||Lp(agz) < Cly | vl 2(Q,T) <||v|| r) T Z hi ||U||Lp(aK)> + ||v||LP(Q (1.33)

KETh

holds for allv € WhP(Q,Ty,).

Proof. Let ¢ be a function satisfying (CZH). Let w € W11(Q, 7;,) be arbitrary nonnegative
function. Similarly to the proof of Theorem [, we use Gauss theorem on each element to
obtain the inequality

/E)K we - ndS < ”‘P”WLOO(K) <‘w|W171(K) + ”w”Ll(K)) : (1.34)

Summing ([L34]) over all elements K, we get

0l o0 < /a W ndS by @) |

= Z / w]p-ndS [ by the definition of [w] and nr |
respe’l
:Z/ w] ¢ - ndS—Z/ w] ¢ - ndS [ because Fj, = F U Fy. |
reF, rer!
Z/ we - naKdS—Z/ w| @ -ndS
KeT;, 70K rer; ’T

15



< [lellwro@) lwllwrigz) - [ by [(CZF) and the definition of the norm (L) |

We put w = |v[P. It remains to prove that the norm [wl[y1.1(q 7, is bounded by the right
hand side of (C33)). Again, we need the inequalities |Vw| < p|v[P~ V| and

vr,
/ |s|P~1 ds
VR

We estimate jump term of the norm [|wl|y1.1 g7, by

-1 -1
S Ul < 2 S Ml max (sl - lorllo )

|[wlp| = v — vkl =p < p/[v]p max (jor [~ [orl"") - (1.35)

res, res,
1/p 1-1/p
1—
<P (Z hp? HMHZ(F)) (Z hr max <”ULHII),P(F) , HURH]I),P(F)>> :
res, res,
1-1/p
< pllyren) (2 Z hi HUL”I;P(BK)> :
KETh

and the remaining terms of the norm [|w||y1.q 7,y by

-1
Y wlwrage < Molfae +2 Y lwllfoi ol -
KETh KeTh

O
The global multiplicative trace inequality (L33]) for p = 2 was used in m,

). However, with the help of (L31), we can easily prove a trace inequality in simpler

form
10l o ogy < Cllolwinz,y, v € WH(Q,Th). (1.36)

For p = 1, the result follows also from the imbedding W1(Q,7;) C BV (Q), see section
A If p > 1, (C3d) is not optimal with respect to the function space on 9. A sharper

bound @1
p —
||vh||Lp#(aQ) <C ||Uh||wl’p(g,7h) ) p# = d ——p S (lad)a

was proved for in (IB_].]_ff_a_a.ndﬂr_tnﬂﬂ, 2009, Theorem 4.4) for piecewise polynomial functions
vy € Spg. The proof in (IB.LLff.a_a.ndim;nﬂﬂ, |2D.O.g) is based on a reconstruction operator

Spr — WHP(Q), and is different from the proof presented here.

1.3 An interpolation result

In this section, we will discuss the relationship between the broken Sobolev spaces W'4(Q, 7;,)
for different g € [1,00]. We will show that, analogously to the case of classical Sobolev
spaces, the spaces W14(Q, 7;,) form a scale of interpolation spaces.
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Review of results on interpolation of Banach Spaces

Before discussing this topic further, let us first recall the notion of interpolation of Banach
spaces, namely the so called real K-method of interpolation.

Definition 1.8. (following m, 2007, Definition 22.1)) Let Xy and X; be two normed

spaces, continuously imbedded into a topological vector space X so that

Xo N X; is equipped with the norm ||x||XOle = max (||:1c||X0 , ||:L‘||X1) ,
Xy + X is equipped with the norm 12|l 5yt x, = x:imr(}ixl (lzll ., + NIzl x,) -

For x € Xy + X; and ¢t > 0 one defines
K(t,z, X0, X1) = inf (Nzollx, +tll1llx,) (1.37)

and for 0 < <1land 1 <p < oo (or for # =0,1 and p = 00), one writes

<X07X1)9,p = {ZL’ € XO + Xl : t_0K<t,I‘,X0,X1> S Lp<0, 0] dt/t)} y

= HtieK<t,I‘,X0,X1 (138)

with the norm [|z[| x,

o.p )HLI’(O,oo;dt/t) :

The notation Xy+ X; stands for the set of all vectors x € X', which can be decomposed
into a sum xy + x1, where ry € Xy and z; € X;. The infimum in (C37) is taken over all
such decompositions. The symbol LP(0, co; dt/t) denotes the weighted Lebesgue space for
p-integrable functions on the interval (0, c0), with the weight ¢ — 1/¢,

[t
LP(0,00; dt/t) = < f measurable function : /|f(t)|p7 < 00
0

The norm of ([L3Y) can be also written as

00 1/p
</ tfpefle(t,l’,Xo,Xﬁ d{;) , 1 <p< oo,
||x||(X0,X1)9’p - 0
€SS SUP;¢ (0,00) UKt x, Xo, X1), b = oo.

The basic result is following interpolation property of linear operators (see (Im,

2007, Lemma 22.3)).
Property 1.9. If A: Xo+ X7 — Yy + Y] is a linear operator and maps Xo to Yy with
[Azlly, < Mo l[z]lx, . =& Xo, (1.39)
and maps X1 to Y1 with
[Azlly, < My|lz]lx, ., =X, (1.40)
then A is linear continuous operator from (Xo, X1)g,p into (Yo, Y1)e, for all 0 and p and

1A oy, < MEOM el s @ € (Xow Xio (1.41)
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For various choices of the spaces Xy and X7, the exact characterization of the interpola-
tion space (X, X1)g,, is known. For example, the 1nterp01at10n space between X, = L'()
and X; = L>°(Q) with parameters p € (1,00) and § =1 — 5 is the space LP(f),

(1), L2(),_, , = 17(9), (142)

1_%7]7

and the corresponding interpolation norm is equivalent to the norm |[|-|| ., . Moreover, the
K-functional is

K(t, f; L), L=(Q)) = tf**(¢t), t >0, (1.43)
where
“(1) / (s (1.44)
f(s)=inf{r >0:m(r, f) <t}, (1.45)
m(r, f) =[{z € Q:|f(z)| > r}. (1.46)

The function f* is the non-increasing rearrangement of f and m(-, f) is the distribution
function of f. The function f* is non-increasing on the interval (0, c0) and is equi-measurable
to the function f, i.e.

{z e Q:[f(x)] >r} = s € (0,00): f"(s) >},

The function f** is continuous and nonincreasing on (0, c0). Moreover,
* *k p
1oy = 1F W ir0o0) < 1 Mioo.0) < 577 M llioey - f € L), (1.47)

See (Bergh and Lifstrom, 1976, sections 1.3 and 5.2) or (Adams and Fourniet, 2003, Corol-

lary 7.27) for proof and further properties.

A result similar to (L) was proved for Sobolev spaces in (DeVore and Schererl, [1979),
WhP(Q) = (WhH(Q), Wh())

k=1,2,..., pe(1,00), (1.48)

1—%,]0 ’
with the aid of a characterization of the K-functional:
Cit Y (Du)™(t) < K(t,u, WH(Q), WE=(Q)) < Cot Y (D u)™ (1), (1.49)
la| <k |a| <k
for all t > 0, where D* = %
o0

the multiindex a = (aq, ..., aq).

denotes the partial derivative of the order given by
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Proof of the interpolation theorem
We shall generalize ([LZ8)) to the broken Sobolev spaces.

Theorem 1.10. For each p € (1,00),

W90, ) = (W0, T) W0, T)

D’

(1.50)

with equivalent norms,

Ch ”uHWLP(Q,Th) < ”u”(lel(Q,Th),leoo(Q,Th))l_ . < Ch HU”WLP(Q,T}L) , ue WhH(Q).

B

The constants Cy, Cy do not depend on h.

The proof is given in a sequence of lemmas. The proof can be summarized in three
steps:

e Step 1. For each u € W'?(Q, 7}), we define an auxiliary function g, € L?(Q), which
represents the magnitude of u, and the derivative of u, including both the element-
wise part Vu and the jump part [u]. We define an auxiliary norm |-/, ,, equivalent
to the norm [|[|yy1, (0 7, and show that

[ellnp = Ngull Loy -

This step is covered by Lemmas [LTIl - [CT7A The definition of g, is given in (CEH).

e Step 2. We estimate the K-functional from above using the nonincreasing rearrange-
ment gy of the auxiliary function g,. To this end, we construct a suitable decompo-
sition v = v + w for each u € W'P(Q,T;,), depending on the parameter ¢ > 0. This
part of the proof is presented in Lemmas - 20

e Step 3. We prove the corresponding estimate of the K-functional from below (Lemma
[C2T)). We establish an inequality analogous to ([CZ9).

In this section, we denote the nonincreasing rearrangement of arbitrary function f € L'(Q)
by f*. We also use the notation ([CZ4))-(TZ4]).

Lemma 1.11. (%) For each cp > 0, there exists ¢, > 0 such that for all K,L € Ty,
K # L, and x € K, the following implication holds:

dist (x,0K) > cphy = dist (x, L) > cphy. (1.51)

(it) There exists a constant ¢ such that

dist [ K,Q\ |J L|=>chk, KeT (1.52)
LED(K)
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Figure 1.1: Ilustration for proofs of Lemma [T and Lemma T3 (a) The set D(K)
and an element L ¢ D(K). (b) Relation of supp ¢x = supp ¢, with By, for two elements
K+L

Proof. Let us prove (i). Let L, K € 7,, L # K, be arbitrary elements. Note that in
general, the elements L and K are not neighbors. Let ak, ..., a?l € R? be the vertices of
the simplex K. Every x € K is a convex combination of the vertices,

d+1

_ i
T = E iy,
i=1

where the coefficients \; are the barycentric coordinates of the point z, satisfying ([CI3).
First we prove following implication

x € K, dist (z,0K) > cphy = N\ >cp, i =1,...,d+ 1. (1.53)
Fix x € K, dist (z,0K) > ¢phg andi =1,...,d+1. Let 2’ € K be a point with barycentric
coordinates
0 =1,
N
= JF
Then
d+1 o dr ' gy
peaf = 30 = Xag = 0y~ Xk —aie) =~ >0 ().
j=1 =1 =1 ’
J#i
d+1
i
-2 <h Y = hy ).
|z — 2! < K; Y K
J#i

Since 2/ € 0K, we have cphyg < |v — 2’| < hg);, and cp < A;. This proves (CR3)
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Since 7}, is conforming, there exists a piecewise-linear function y; € Sp 1 such that
xr(z) =1, for z € L, and xr(x) = 0, for 2 € Q\ Ugrcppy K’ Obviously [[xz o) <
C1h; ', where C; depends only on C,. In virtue of the Lipschitz continuity of 02,

IXe(z) = x£ ()] < Ca Xkl wioeqo [z — y| < C1Ch7z -y, z,y € Q.
©)

where Cs depends only on €2. Now, let x € K be an arbitrary, and dist (x,0K) > cphg.
Since K # L, aj- ¢ L for some index j. By the definition of x, and ([Ch3),

d+1 d+1 d+1

XL (ZL‘) = Z)\ZXL(GIZK) = Z)\ZXL((I%) S Z)\Z =1- )‘j S 1-— Cp.
i=1 i=1 i=1
i#£] G

Let y € L be arbitrary. Then x(y) = 1 and
ly — 2 = CT'C3 M helxe(y) — xu(@)] = CT'C3 he, (1= xa(@)) = CT'Cy lephy.

Therefore, (CR) holds with ¢, = C;'Cy tep.

Let us prove (ii). Let K € 7, and y € Q\ Ugepx) K’ be arbitrary. There exists an
element L € 7, \ D(K), such that y € L (see Fig.[[Tl(a)). Let x be defined as in the first
part of the proof. Let x € K be arbitrary. Then

|z =yl = Cr 'Oy hexa (@) — xe ()| = Cy'Cy .
The assertion (CE2) holds with ¢ = C;1Cy . O

Definition 1.12. Let K € 7, and xx € K be the center of the ball B(xg,px) C K
inscribed into K with maximal radius px. We set

Lemma 1.13. For each K € Ty, there exists a Lipschitz continuous function Y such that

’QZ)K(ZL‘) = ]_, S BK, K e 7;” (155)

Qnsuwppyr ¢ ) K KeT, (1.56)
K'eD(K)

Vg ()] < Chyl, fora. a.xeQ, K €T, (1.57)

Moreover, the system {¢Yk }ker, is a partition of unity on €,

0 < () <1, > dh(x) =1, reQ, KeT,. (1.58)

LETh
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Proof. Let cp = C71/2 and let ¢}, be given by Lemma [CTTl We set
¢ () = dist (2, {y € R? : dist (y, K) > cphi }) | reRY K eT, (1.59)
The function ¢k is Lipschitz continuous, with the Lipschitz constant equal to 1. Moreover,
for each K, L € 7;,, L # K and x € By, we have dist (x,0L) > pr/2 > cphy, dist (z, K) >
cphi by ([CR) and ¢k (x) = 0 by (LX), see Fig. [CT(b). By (C22), ¢x(x) = 0 on the set
Q\ Ugrep) K- On the other hand, for x € K, we have ¢ (z) > 0.
We set o)
x
Vi (r) = =
ELETh ¢L(l‘)
The denominator is positive on ). The properties (L5H), (CRA), (C58) follow from the
properties of ¢x stated above.

Let us prove ([CRD). Let 2 € RY be arbitrary. If dist (z, K) > cphy, then Vi = 0.
Suppose dist (z, K) < ¢phk. By (L), x € L for some L € D(K). Then

Vo ()] drc () ) I
ZRGTh or(z) - (ZReTh <Z5R<$U))2 REZTh |Vér(z)| [ by diff tiating (CEO) |

EReTh Vor(v)l - card{ R : supp ¢g > z}

(1.60)

(Vb ()| <

<2 ZReTh o) = o1 (2) [ using |Vogr| <1 |
< QM < Chy. [ using (CIY) | O
CDhL

Definition 1.14. We define a projection operator P, : L'(2) — S0, a reconstruction
operator Ry, : Sy — Wheo(R?) and a variation operator G}, : Sho — Sho by

1

(Phu)}K = Bl /s u(x) dz, KeT, ue L'Q), (1.61)
K
(Rhuh)(:c) = Z Uhj(w[((l’), xr e Q, up € S}LQ, (162)
KeT,
(G’h(uh))’K = h,;(l LrenDaE)I(() |uh,L — uh,K|, K e 77“ up € Sh,O- (163)

where uy, g = uh’K denotes the constant value of u, € S, on K, By is given by ([Lhd)
and 1 is the function defined in Lemma [LT3 Moreover, for each p € [1,00] and u €
WP(Q,T,,), we define a norm ||-[, , by

= 1Py + G (B iy + 3 (R = Brtlfy + ) - (164
KeTy,

if p < 0o, and

[[ull,,, = max { [ Ptt]] oo 0y > |G (Prw) || Lo () ) jeg, nax (h’;{l [ = Pyuf| poo ) 5 ‘u|W17°°(K)>

(1.65)
if p = oo.
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Lemma 1.15. For each p € [1, 0], there exists a constant C' such that

||Phu||Lp(Q) <cC ||u||Lp(Q) ) u € LP(Q), (1.66)
1Gr(Brt)l| oy < Clulwivz,) u € WH(Q, Ty), (1.67)

Proof. The inequality ([CGH) follows from the definition (CGII) by Holder inequality.
Let us prove (C&M). For each element K € 7, and each face I' C 0K, we define
a functional Frp: WHH(K) — R by

1 1
FK,[‘(’U) = @ . vdr — m /deS, v E W1’1<K). (169)
K

By Property [C4, for each w € W(K) there exists q, € P°(K) such that
0 = qulyrr ey < Crhi " Wl k=0,1, 7 €[1,00], (1.70)

where C depends only on the dimension d and the mesh regularity constant C,.. We have
the estimate

|Frer(v)| = [Frr(v —gv)] [
< [Bg| ™ [lv — QvHLl(K) + 07 v — %HLI(F) [ by (&3
< (IBxl™ + Carhi IT7H) v = @ull ey + CurlT1 v = ol ey |
< C2h11:d ‘U‘Wl,l(K) ; [

where Cy depends on Cy, Cy; and C,.. Let u € WHP(Q,7;,) and T € ]—“,{ be arbitrary. Then
() — (Prao)] | < [P ) — ()| + 01 [l
< Chp (|U|w1,1(1<1§) + ulygry + ||[u]||L1(F)> :
For all K € 7;,, we get the estimate

Gu(Puu)|, < Cihy? Z |l + Z ZH ulll ey

LED(K) LED(K) TCIL

Using Holder inequality, we obtain

1/p
_d
Gh(Phu)‘K < C5h,Kp Z |U‘W1 (L) + Z Z hp Hh LP(F s for p < o0,
LeD(K) LeD(K)I'coL
Gh(Phu)}K §C5 Z ‘u|W1°°(L + Z Z Hh ]“LW(F) s fOI‘p:OO.
LeD(K LeD(K)T'CcoL
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Now (CED) follows immediately.
The inequality (CEY) follows from ([CZ0) and the fact P,(q) = 0 for all constant func-
tions q. 0

Lemma 1.16. For each p € [1,00], the norms |||y 7,y and |||, are equivalent.

Proof. The inequality [|lull; , < C'[|ully1qz7,) is immediate consequence of ([LGH)-([LTD).
The inequality ||ullyy100,7,) < C llull,, follows from

||u||W17P(Q,Th) < flu— PhUHWLp(Q,Th) + HPhuHWLP(Q,Th)

using multiplicative trace inequality (L31]) and (LCGH)- (CES). O

Lemma 1.17. There exists a constant C' such that

P N 1 Py KeT. (1.71)
[ Rnunllpce ey < CllGr(un)l poe sy » K €T, (1.72)
”RhuhHWLP(Q) <C HuhHWLP(Q,Th) ) p € [1,00], (1.73)

for all uy, € Shyp.

Proof. Bounds (L)) and (LZ2) follow from the definition (C62) of R, using the properties
(C2H)- (ChY) of the functions ¢k. The last inequality (LZ3) follows from (CZ), (CZ2) and

Lemma [[L10

Lemma 1.18. There exists a constant C' such that

inf <||vh||h1+t||wh||hoo) < Ctgr(t), t € (0,00), up € Spp, (1.74)
(Uhiﬂh)esh,o ’ ’
vpFwp=up

where gn(x) = |up(z)| + Gp(up)(z), x € Q.

Proof. Let tg,e > 0 be arbitrary. Put v = Rjuy. From ([CZ9) there exist functions v €
Wh(Q) and w € WH>(Q) such that

Crtog* (t0) < lollyagay + fo l0llynm (@) < Catog™(to) + <, (1.75)

where g(z) = |u(x)|+|Vu(z)|. Let v, = Py,v and wy, = Pyw. Using (L), (CZ2), we obtain
the estimate
90) < Caple),  weQ (1.76)

By ([LE2) and (L3,
Vp + Wp = PhU + Phw = Ph<U —|—w) = Phu = Pthu = Up.
Moreover,

[onllpy + to lwnllh oo = 10nll L1y + 1GR(WR) 10
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+ tomax { [wnll e gy G ()| gy} [ since v, wn € Sio |

< C (0l + o I lyrmqey [ by (II0), (D) |

< Clog™(to) + Ce [ by (CZ3) ]
< C'to g*(to) + Ce. [ by [CTG) ]
Since ty and e were arbitrary, the proof of (L) is thus finished. O

Lemma 1.19. For each K € T, uw € WHY(K), and t > 0 there exist v € WHH(K) and
w € WH(K) such that u = v +w, and

HU”LI(K) + hk |U‘W1’1(K) + ¢ max <”wHL°°(K) s hie ‘w|W17°°(K)> < Ctgg.(t), t>0,
(1.77)
where g u(z) = |u(z)| + hg|Vu(z)| and C' does not depend on h, u, K.

Proof. Let K be a fixed simplex in R?. There exists an affine mapping Fr : R? — R? such
that Fi(K) = K. We put @ = uo Fi'. Let t,e > 0 be arbitrary. Let

i &
K]
By ([CZJ), there exist & € W (K) and @ € W (K) such that
1ol iy + Eldllyre iy < ClgH™ +e, >0, (1.78)

where )
9(2) = |a(2)| + |Va(z)], 2€K. (1.79)

We put v = v o F and w = W o Fg. Using the shape regularity ([CTH), standard scaling
argument gives us

R ol ey + R ol ey < C Mol gy (1.80)

max (Hw”LOO(K) yhie ‘w|W1’°°(K)> <C ”w”wl,w(f() : (1.81)

Note that if f € L'(K) and f = f o Fy', then the corresponding distribution and rear-
rangement function (recall the definitions (([CZ4)-(C46)) satisfy

- :g:m(r, f)a r >0, f*(f) — f*(t), f**(f) _ f**(t). (1.82)

m(r, f)

In consequence

g7 (1) < Cg™ (). (1.83)
The assertion (CT77) follows immediately from (C78)-(C81) and (LCX3)). O
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Lemma 1.20. For each u € WYY(Q,T,) and t > 0 there exist v € WYY, T,) and
w € Wh=(Q,T;) such that u= v+ w and

[0y + tlwll o < CLgr (@), (1.84)
where C' does not depend on h, u, t and g, € WH1(Q,T;,) is defined by
9u| (2) = [Pyul@)| + Gu(Puu)(x) + hig'lu(z) — Pyu(@)] + [Vu(@)]. (1.85)
Proof. Let to > 0 and v € WH(Q,7;,) be arbitrary. We set u° = Pyu, u' = u — u?,

g"(x) = [Pyu(z)] + Gu(Pyu)(z), z e,
gx(x) = hi'lu(x) = Puu()| + [Vu()], r €K, K €T,
Let g' € WH(,7,) be such a function that ¢'|, = gj for all K € T, Let uj = u'| ..
For each element K, we define real number tx > 0 and functions v}, w} in the following
way:
(a) If esssup,cp gk < g"**(to), we set tx =0, vj, =0, wi = uk.

(b) Otherwise, we can find ¢ > 0 such that ¢g'**(tg) = gi*(tx). According to Lemma
[T there exists a decomposition uk = 9L + @}k such that

185y 15 s + e e (B 0l ey |l e ) < Cticgi ()

We set
N 1 .
vg (@) = O () — Brl /s g (y) dy, (1.86)
K
. 1 .
wi () = Wi (x) — Bl /s Wi (y) dy, reK. (1.87)
K

Since P,u' = 0, we have

oke(2) + whe(z) = ul(x) - @ [ it dy = (o)

Moreover, ||v}(||L1(K) <2 ||2~’K||L1(K)a ||w}(||L°°(K) <2 ||U~}}(||L°°(K)a and

hie Hv}(HLl(K) + ’v}(}wl,l(K) + 1k max (h;(l Hw}(HLOO(K) ’ wHWLw(K)> < Ctrgr™(tx)-
We define o' € WHH(Q, 7,) and w' € W*(Q,T,) such that v'| . =o', w!|, = w'. Note
Ph’l}1 = Phwl = 0.

We claim that

o= Y tx <t (1.88)

KETh
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The inequality ([C88) holds in the case 0 = 0. Let us assume o > 0. From the definition of
tx and ¢, we get

ti
treg™™ (fo) = trglt*(tx) = / g2 (r) dr. (1.89)
0

By summing (LX) over K € 7j, we get (using the fact that g'* is nonincreasing rearrange-
ment) the inequality

oot = Y ["akar< [ m)ar= o o).

KeTy,

We have g'**(to) < ¢"*(0). The function ¢g"** is nonincreasing, therefore t, > o. The

inequality (C8Y) is proven.
We estimate

Hleh,l - Z <h;<1 HU}(HLl(K) + ‘U}(‘Ll(K)> [ using Pyo' =0 |
KeTy,
<C Z tr g (ty) [ by the definition of vy |
KeTy,
=C Z tre g™ (to) [ by the definition of tx ]
KeTy,

< Ctog™* (to). [ by (=Y |

From the definition of wk., we get

WfMWZ%%mm@?Wﬁmﬂm,V@Ammggﬁfwy

From Lemma [[I] we get the decomposition u® = v° + w°,
021y + to [1®]], o = Cto g™ (t0).

We conclude the proof by setting v = 0% + v, w = w® + w?. O

Lemma 1.21. There exists a constant C' such that
tor () < C it (ol +tlwl,q) (1.90)

for allu € WHHQ,T;,) and t > 0, where g, is defined by (CIA). The infimum is taken over
all decompositions u = v +w, with v € WH(Q, T;) and w € W (Q, 7).

Proof. Let v e WH(Q,T;,) and w € WH>(Q, 7;) be arbitrary functions such that u = v+w
holds. Let g,, gu, respectively be defined by (LX) with u replaced by v, w, respectively.
Then

|gu('r) - gv('r)‘ < C\gw(x)\, S Qv (1'91)
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with a constant C' independent of u, v, w, h, and

tgr(t) = K (t, 9., L'(Q), L*()) [ by (C33) ]
< lgoll e () + 9w = goll oo (g [ by (3D ]
< [lgollzr (€2) + Ctllgwll L (q) [ by (D) |

< C (Jlelly +t ol - [ by (TTJ), (IC53) |

The inequality (CI0) follows by taking infimum over all decompositions u = v + w. O

Lemma [[Z]], together with Lemma [C20, give a similar characterization of the K-
functional for interpolation between W1(Q, 7;,) and W>°(Q,7;,), as in ([LZJ). The proof

of Theorem [LT{ is finished by following chain of norm equivalences:

HUH(Wl,l(Q,Th),v[/l,zo(njh))l_l L ||QZ*HLp(0700) [ by Lemmas [20, [C2T] |
1
~ ng”m(g) [ by (CZD) |
~ ull, [ by definition (ICX3) of g, ]
~ ||u||W17P(Q7Th) [ by Lemmaﬂ]ﬂ] .

1.4 Imbedding theorems

The definition of spaces W'P(,7;,) depend on the partition 7;,. If 75, and 75, are two dif-
ferent partitions of €2, the spaces WP(§, 75,) and W'P(Q, T;,) are different as well. There
exist examples of partitions such that W2(Q, 7, )NW'P(Q, T,,) = WP(Q). However, the
broken Sobolev spaces are imbedded into some mesh-independent function spaces, such as
BV (), the Lebesgue spaces LP"(Q) for suitable p* > p, and Besov spaces BY/PiP>(Q).
Besov spaces are defined by interpolation

B¥PUQ) = (LP(Q),W'(Q)), ., s€(0,1), p,q € [l,00], (1.92)

87q

see (IAd.a.ms_aﬁd_&uu:nj:;ﬂ, 2004, Section 7.32).

Property 1.22. For each p € [1,00], WYP(Q2,T;) C BV () and

lullpy) < Cllulwrirozy). — w€W(QT). (1.93)

Proof. The imbedding was proved in Lemma 2), see also (Pietro
and Ern, ‘m, Lemma 6.2) and references therein. The proof reduces to the estimate of

the BV-norm ([CI). For each u € WH(Q) and ¢ € [CL(Q)]4,

/Qudivgodx = Z /[u]cp-ndx— Z / @ Vudr < ||<P||Loo(ﬂ) |u|W1’1(Q,Th)'
r K

rerf KeT,

Taking supremum and substituting the result into ([CI0), we get (CI3J) for p = 1 with the
constant C' = 1. For p > 1, we use the inequality [[ully 1107, < C ullyrsz,)- O
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Property 1.23 (Broken Sobolev imbedding). Let p € [1, 00| and
(i) p*=dp/(d—p), if p€[1,d),
(ii) p* € (p,00) be arbitrary, if p = d,

(iii) p* = oo, if p > d.

Then WiP(Q,T,) C L' (), and

lull o @) < Cllullwrnazy, — w€WP(QT), (1.94)

Proof. The choice of the exponent p* ensures the imbedding W?(Q) C L*"(Q) and also

W (K) ¢ LP(K) for all K € 7T, (see (Adams and Fournied, 2003, Theorem 4.12)).
Therefore, the set inclusion W?(Q,7,,) € LP"(Q) follows immediately. The bound (C34)

follows from the inequalities

[ = Prull e ) < Cllu = Prullyrnqz,) (1.95)
[Pl o ) < ClIPhullyrniz,) » (1.96)
[Phullwrng) < Cllullwioqz) - (1.97)
First, we prove ([C94). Recall, that by definition (CEI) of Py,
/ (u— Pyu) dz = 0.
B
A standard finite element scaling argument yields
1-4+4
lw = Poullpor ey < Chye * 7 = Prtt|ypi ey < C'lu— Prtly gy K e 1T,

If p < 00 and p* < oo, then

lu = Pyull},. g < C > lu—= Paafp, g

KETh
P =p
P ! P
< O max [u — Pyuly, g E |u = Prulg g
KeT, KeT,
h

<03 o= Al |

KeTy,

*

b
< Cllu— Phu”y@l,p(gjh)

The other cases p = 0o or p* = oo are similar.
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Now, let us prove (CHG). Since P,u = Ry, P,u on By,

K]
”PhUHLp*( <|B | ||RhPhU||Lp*(BK) < CHRhPhuHLP*(K)'

By definition, R, Pyu € W1*°(2). Using standard Sobolev imbedding, and ([CT3)), we obtain
||thhu||LP*(Q) <C ||RhPhUHW1,p(Q) <C ||Ph“||W1,p(Q,Th) :

The last inequality (C97) follows from (C6H)-([CEY), similarly to the proof of Lemma
CT4 O

Property [L23, for the case (i) and u € Sy, was proved in (Buffa_and Ortner, 2009),

using a different reconstruction operator. A more direct proof of Property for the
cases (i), (ii) can be found in (Pietro and Ern, 2010). We have included the case (iii) for

completeness.

n (Brenner and Scotd, 2002, Section 14.5), authors note that piecewise smooth functions

lie in the space (L*(Q2), W"*(Q)), ... Concerning the broken Sobolev space, we formulate

an analogous property as a continuous imbedding into the Besov space B'/P>°(Q).
Lemma 1.24. Let p € (1,00). Then W'(Q,T,) C BYPP>(Q), and

HuHBl/p;p,oo(Q) <C ||u||W1,P(Q7Th) ) u € Wl’p(Qaﬂ)a (1.98)
were C' does not depend on h and u.

Proof. Since Q) has Lipschitz continuous boundary, the elements of the space B*P4(€)) are

restrictions of functions of the space B*?4(R%), see (Adams and Fournier, 2003, Section
7.32). By (Adams and Fourniet, 2003, Theorem 7.47), v € B*?°°(R%) if and only if

v e LP(RY), esssup,egd [2|7° | A v]| ppgay < 00, (1.99)

where A, denote the finite difference operator
Aw(z) =w(zr) —w(x — z), w e LYRY), z € R

For each u € L*(Q), we define Eyu € L'(R?) as a zero extension of the function u.
Obviously,
A Eoull poe ) < 2 ||ullyroeem, - (1.100)

Using similar technique as in the proof of ([C33]), we can prove

||E0U||BV(Rd) <C ”uHWl»l(Q,Th) : (1.101)
By m, m, Lemma 37.4),
||AZU||L1(Rd) < 2| |U|BV(Rd)7 v € BV(RY). (1.102)
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Combining ([CTO0)- (CT0Z), the the interpolation Theorem [LT0 and the operator interpola-
tion property ([CAI) with Xy = WHH(Q, 7)), X, = Wh>(Q,Tp), Yo = LY(Q), Y1 = L=(Q),
0=1-— %, we get

I8 Byl oy < 120 [l - (1.103)

Therefore, Egu € BY/PiP>°(RY) and u € BY/PP>(Q). O

Recall that [|Av]l g = O (|2]) for v € WW(R?), see (Evand, 1998, Section 5.8.2).
The bound in (CI3) is only of order O (|z|'/7). As the following lemma shows, it can be
sharpened. However, the sharper bound is no longer h-independent.

Lemma 1.25. Let u € WYP(Q,T,), z € RY. Let Q' be a subset of 2 such that
dist(Q',09Q) > |z|.
Then
1-1
() = u(- = 2l oy < CLY (121 + )™ ull sz (1.104)

Proof. Let us consider the case p = oco. Let x € ' be arbitrary. Put y = = — z. There exist
elements K, L € 7, such that x € K, y € L. Let i denote the center of the ball Bx and
yr, denote the center of the ball By. Then

u(z) — u(z — 2)| < |u(z) — Pyu(z)| + [u(y) — Pou(y)| + [RnPru(zk) — Ry Pyulye))|
< 2Ju = Pyull poo(oy + C [BrPrullycc ) 12K — vl
< Clh+ |z —yl) lullwroe .z, - [ by (LEY), (CTD), [T |
Taking essential supremum over x € €2 gives us ((CI04).

Now, let us consider the case p = 1. By (IE‘ng_am_Q‘u_alJ 2000, Lemma 6.9, see also
Martal, P007, Lemma 37.4),

Ju(-) = u(- - Z)HLl(Q’) < 7| |u|BV(Q) ; u € BV(Q). (1.105)

Using the imbedding (C33), we get ([CI04).
Finally, we prove (LI for p € (1,00). So far we have

[Azul| 1oy < Cla] lullyrigz,) - [Azul| ooy < Cl2] + h) [ullpre .7, -
By the interpolation Theorem [T and the operator interpolation property ([CZTI),
1A ull ooy < Cl (2] + W) P l[ullyprmo.z,) -
O

Remark. The bound ([CI04]) was proved for p = 2 and for piecewise constant functions in

(Eymard et _all, 2000, Lemma 3.3).
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The inequality (CI04) shows that the imbedding WP(Q,7;,) C LP(Q2) is compact in
following sense

Property 1.26. Let C, > 0 and p € (1,00). Let {Tn}yc(op, e a family of Cp-regular
partitions of Q. Let {up}tneny) be a family of functions w, € W'P(Q,T,). Suppose there
exists M > 0 such that

||uh||W1»P(Q7Th) < M, h € (0, hg).
Then there exist u € WHP(Q) and a sequence {h;}32, such that up, — u in LP(Q) and

||U||W1,p(g) < C.M, (1.106)
where C.. depends only on 2, C,. and p.

Proof. Let us prove Property [[L20 using ([LT04). Another proof can be found in (Buffa and
Ortner, 2009; Pietro and Errl, M)
Let {h;}5°; be an arbitrary sequence of real numbers satisfying 0 < h; < hg and h; — 0.

lBﬁm) the set {uy : h € (0,hg)} is precompact in LP(Q), see (I.Ad.a.ms_a.nd_ﬂnmm.e.ﬂ,
, Theorem 2.32). Considering the sequence {uy,}°,, there exists a LP-convergent sub-

sequence {Uhij 132, Let w € LP(€2) be the limit function. By (CT0I),

() = u( = 2l oy < OM lim |27 (B + [2])' 717 < CM]2],

for all subdomains €' C Q, dist (€', 09Q) > |z|. By m, 1998, Section 5.8.2, Theorem
3), u € WH(Q) and [[ul[yy1q) < CM. O
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Chapter 2

Interior Penalty Discontinuous
Galerkin Method

The Discontinuous Galerkin (DG) method is a versatile technique for numerical solution of
partial differential equations. DG is characterized by piecewise polynomial, discontinuous
approximate solution. From the historical perspective, DG is a generalization of the more
traditional finite element (FE) and finite volume (FV) techniques. The DG combines the
local conservation properties of F'V and the high-order approximation properties of FE.
Although the computational cost is often high, the flexibility with respect to local mesh
refinement and domain decomposition make DG attractive in various applications. The DG
method is applicable to hyperbolic systems of conservation laws and also partial differential
equations of elliptic and parabolic type, (see ICockburn_et_all, 2000; [Arnold et all, 2009,
and references given therein).

There exist several variants of DG discretizations of linear elliptic problems (see Arnold
et al., |20ﬂﬂ) We focus on the approaches based on the primal formulation, namely SIPG
(symmetric interior penalty Galerkin, see l@), NIPG (nonsymmetric interior
penalty Galerkin, see Riviere ef. all |]_9_9_£]), and IIPG (incomplete interior penalty Galerkin,
see [Dawson_et._all |20_O_4|) techniques. These interior penalty methods are characterized by
the presence of interior and boundary penalties of order O(h~1), where h is the mesh size.

As a model problem, we consider the Poisson equation with Dirichlet and Neumann
boundary conditions. The classical formulation of our model problem reads: Find u : Q — R
such that

—Au = f, in Q, (2.1)
U = Uup, on 8QD, (22

ou
8_7], = gN- on 8QN, (23)

where 2 C R?, and the boundary 0 is a disjoint union of the Dirichlet part 92y and the
Neumann part Q. We assume [0Qp]| # 0.

Moreover, we assume that a C,-regular partition 7, of € is available (see Definition [Z).
We assume that the set of boundary faces FP is equal to disjoint union of the Dirichlet
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boundary faces F? and Neumann boundary faces Fj\,
FP={T e 7" |LNnoQp| # 0}, (2.4)
F={TeF?: L noQy| #0}. (2.5)

The set of Dirichlet boundary faces FP is not empty. We set /P = F/ UFP. The discrete
problem reads: Find u;, € S, such that

Bh(uh,vh) = Lh(’l}h), v € Shvp' (26)

where

w(Un, Un) Z / Vuy, - Vo, de — Z / n - Vuy) [vn] + 60 (n - Vo) [ug]) dS

KeT, FE]—"ID
—+ Z / uh Uh dS (27)
rerp
n(vn) Z / fo,dx + Z /nghdS+9 Z / n - Vop)up dS
KeT, reryy rerp
+ Z —uDvh ds. (2.8)
rerp

In order to L be well-defined, we require f € L?(Q), up € L*(Q) and gy € L*(Q).
Moreover, let us assume that (ZI))-([E3)) admits a strong solution u € H?(Q). Then, the

discrete problem () is consistent with (Z1I)-([23),
Bh(u, Uh) = Lh(vh), vy € Shvp' (29)

We can derive (ZJ)) by multiplying ([Z1) by arbitrary test function v, € S, applying the
Green theorem and using the fact [u] = 0. Now, the Galerkin orthogonality property

Bh(uh — U, Uh) = 0, vp € S]%p. (210)
follows easily. Until now, we did not impose any constraints on the parameters 6, ¢y and

hr, T € FIP.

Penalty parameters hr. Let us first discuss the penalty parameters hr. The term
uh,vh Z / uh Uh dS (211)
rerP

in (27) penalizes both the inter-element jumps and the deviation of the discrete solution
from the Dirichlet boundary condition. Let us consider the seminorm associated with the
bilinear form J, (-, -),

\Uh|J = Jn(vn, vn) = cw Z / S, vy, € Shp.

rerlp
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In Chapter [l we have seen such term in the norm of the broken Sobolev space H'(,7;,) =
Wh2(Q,7,), with hp = diam (I"). However, other choices are possible, for example

_hp+hgr

hy 5

, Hmax (hL7h'R)7 ‘F|1/(d71)7 etc. ,

where h;, = diam (Kf?) and hp = diam (Krl‘:) The resulting seminorms |-, are equivalent,
since 7y, is C,-regular, see section [Tl The choice of Ar plays a important role in the analysis
of convergence L? norm (see section ). In the following, we assume that there exists a

constant C'p such that
Cilhg < hy < Cphyg, (2.12)

whenever I' € F, is a face of the element K € 7,. We will not discuss over-penalized

variants, where hp = (diam (T'))®, o > 1 (see Riviere et all, [1999; Brenner et all, 2008).

Parameters 6§ and cyr.  Note that the term

-0 Z /F<n - Vop) [ug] dS (2.13)

rerlp

in (Z7) is added artificially, in order to obtain special properties of the bilinear form By, (-, ).
There are only three meaningful choices for parameter 6.

(i) @ =1 : Symmetric Interior Penalty Galerkin Method (SIPG).
If 6 = 1, the bilinear form Bj(-,-) is symmetric, i.e.

Bp(w,v) = Bp(v,w), w,v € W*2(Q,Ty,). (2.14)

Thus the symmetry of the Laplace operator A is preserved in the discretization. Let
us note that when applied to more general PDEs, the SIPG discretization is adjoint
consistent in the sense of (Arnold et all, 2009). Later, we will show that in order
to get well-posed discrete problem (E26), the penalty parameter ¢y must be large
enough.

(ii) # = —1 : Nonsymmetric Interior Penalty Galerkin Method (NIPG).
If & = —1, the bilinear form By (-, -) is positive definite for all choices of the penalty
parameter ¢y > 0. However, the theoretically attractive symmetry of By(-,-) is lost.

(iii) 6 =0 : Incomplete Interior Penalty Galerkin Method (IIPG).
If & = 0, the bilinear form By,(+,-) does not contain the artificial term (ZI3)). The
penalty parameter cy must be large enough. The ITPG might be more suitable for
some physical problems (see Dawson_et._all, |2DDA) Moreover, IIPG gives simpler
discretization than SIPG or NIPG for nonlinear problems.
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2.1 Apriori Error Analysis

The error estimates for interior penalty discontinuous Galerkin methods are now standard
(IALIJDJd_e.LaLl, |20_Qﬂ) We present these results for completeness. We assume that u is the
strong solution of (II)-(3)) and v € H*(2), where s > 2. However, the following theory
remains virtually unchanged, even if we use weaker assumption s > 3/2 (see m, M)

In the analysis, we use the results on broken Sobolev spaces presented in Chapter
M We use the shorter notation H*(Q,7;,) = W*?(Q,73), s = 1,2,... and ||-||H1(Q7Th) =
H~HW1,2(Q7Th). To avoid confusion, we emphasize that in this chapter, the symbol p denotes
the degree of polynomial approximation, related to the discrete space S ,. We assume
p=1

Definition 2.1.

Cw
lol* = > Tolinge + D 5 )l - v € H(Q,T), (2.15)
KeT, reFip "
hr
oz = loll® + > — [ln- Vo)llza v € H(Q,T). (2.16)
rerip

By the broken Poincare-Friedrichs inequality (Brennei, 2003)
[0llZey < Cllol®, v e HYQ, Th), (2.17)

Il - ]| is a norm on the space H?(2,7;,). The norm || - || is stronger than the norm RIS
introduced in Chapter [l The space H'(Q, 7;,), equipped with the norm || ||, is an analogue
to the the space

HY(Q) = {u e H'(Q) : ul,, =0}

Using the trace inequality (C3T]) and the approximation properties ([C24), we obtain

inf  flop —vlls < CW o]y, ve H (T, ¢=1,2,. .. (2.18)

UhESh’q
First, we prove an auxiliary estimate:

Lemma 2.2. There exists a constant C'4 > 0 such that

> kel Vo)lzaey < O3 Y lonltngy s b € Supe (2.19)

reFiP KeT,

Proof. Let vy, € S, be arbitrary. Then

Z hr ||(ne - Vvh>||i2(r)

rerlp
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2 2
< 3 e[l e 2 e el
rerfp rer]

LQ(F)d
KETh
<C>  hg (HwhHLQ(K)d Vonl g pe + i vahHiz(md) [ by trace ineq. (3T) |
KETh
<C Z (vah”ig(K)d + h3 |Vvh|§{1(K)d> [ by Young inequality ]
KeTy,
<C Z VR 2 e - [ by inverse ineq. (CZ3) |
= L (K)d
KeTy,
]
The inequality (ZZI9) implies following norm equivalence
loall* < lowlly < (1 + e CONvRll®,  vn € Shy. (2.20)

Moreover, the inequality (ZI9) is a key ingredient for the coercivity of the bilinear form
By (-, ) on the discrete space Sp, .

Property 2.3 (Boundedness and coercivity). There exists cw,o > 0 and C. > 0 such that
for each cy > Cy,

By(w,v) < Cllwl. ], w,v € H*(Q,T,), (2.21)
Joull? < C.Bu(on w0, oh € Sy, (2.22)

Proof. By repeated use of Cauchy-Schwarz inequality, we obtain
| Br(w,v)| < (14 [0)[wll ]l

The inequality (Z2Z1I) holds with the constant C' = 2, since 6 € {—1,0, 1}.
Now, let us prove [Z22). If § = —1, then By, (vy,, vs) = |Jun||?. In this case, (Z2Z2) holds
with the constant C' = 1. Let us now turn to the case § € {0, 1}. First, we estimate

Z /F n - Vo) [vp] + 60 (n - Vo) [vh]) ds

rerip
1/2 1/2
hr
<A+ | D —ln- Vo)l > o llelliaey | [ by Canchy-Schwarz
rerip Fe]-‘,{D

(1+6) " "

14+6)Cy ( 2 Cw 2
<=2 D lonlivrepo > IRl [ by ET9) ]

cw KeT, rerip for
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(1+6)C

< NG lloall?. [ by Young inequality |
Then,
(1+6)Ca )
B > (1 - — .
o) > (1= L gy
The constant is positive, if ey > Cyyo := (1 + 0)*C%/4. O

Property 2.4 (broken H' error estimate). Let u € H*(Q) with s > 2, s € N. Then there
exist unique solution uy € Sy, of the discrete problem (ET), and

lun — ull < CH*~ Jlul

Ho () 0 pp=min{p +1,s}. (2.23)

Proof. Since dim Sy, < oo, the discrete problem (E0) is equivalent to a system of linear
equations. The coercivity property (Z22)) implies that the linear system is nonsingular, and
thus uniquely solvable.

Let uy, be the solution of the discrete problem (28). Consider arbitrary decomposition
of the error

eh;:uh—u:€+7’,, fzuh—thShJ,,nzvh—uEHQ(Q,%).

By triangle inequality
lenll < i€l + linll < i€l + Nl (2.24)

By coercivity (222), Galerkin orthogonality ([ZI), boundedness (ZZ]), and norm equiv-
alence (ZZ00) properties,

1
Il < Bu(€,€) = =Bu(& ) < Cllellinll. < CllERInll. (2.25)

Combining (Z24)) and (Z2H), and taking infimum over all approximations vy, of u, we get

lerll <€ infJlop — ul.. (2.26)
UhEShyp

Therefore, the discretization error, measured in the mesh-dependent broken HJ-seminorm,
is bounded by approximation error in the auxiliary norm | - ||.. Using the approximation

property (EI8), we obtain

. . —1 -1
o=l <t o= ull € R il gy € Ol (2:27)

O

If u is sufficiently regular (v € HP™1(Q)), then ([ZZ3) gives us an error estimate of order
O (h?) in the broken H'-norm || - ||. Moreover, the error estimate is optimal, because the
best approximation of u in Sy, is of the same order, i.e.

inf |lu—wsf| = O (RP).

U, GSh,p
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By applying the broken Poincaré-Friedrichs inequality (ZI1), we immediately get
[[un — U||L2(Q) = O (h"). (2.28)
However, (Z2]) is not optimal, since

1Ilf H'Uh U/HLQ(Q) = O (hp+1) .

vp €Sy "

In order to prove an optimal error estimate O (h**1) in the L?-norm, the Aubin-Nitsche
trick is usually employed. However, there the symmetry of the corresponding bilinear form
is required which is satisfied only for the SIPG method.

Property 2.5 (L? error estimate). Let § = 1 and u € H*(2). Moreover, assume following
reqularity of the homogeneous continuous problem EI)-E@3): For each r € L*(Q) there
exists 1 € H?(Q) such that

. o
—AY=rinQ, Pl =0, ]mN (2.29)
Then
Jun = ull 2 < CR* [|ull o) p=min{p+1,s}. (2.30)
Proof. Let r := e, = up, — u and let 1) be the solution of (29). Then
||€h||i2(g) = / ren = Bp(1, en) [ by consistency ) ]
Q
— Baen ) [ by symmetry @) of Ba(-,-) ]
= By(en, v — ). [ by Galerkin orthogonality (ZI0), v, € Sp1 arbitrary |
< Cllenll , inf v = ¢ull  [by boundedness @2ZI) of Bu(-, ) |
h h,1
< Chllen|l 191 g2(q) - [ by approximation property (ZIS) ]
< OR* [[ull oy 191 2y - [ by the broken H'-estimate [ZZ3) ]
U

Numerical experiments carried out on uniform grids for NIPG and IIPG techniques
(with sufficiently regular exact solution u) give the L?-experimental orders of convergence

EOC) equal to O(h?) for even p but O(h?*1) for odd p (see Bahuska et all, [1999; Rivierd,

, and references given therein). The optimal order of convergence for the odd degrees
of approximation was theoretically justified in (ILa.LsQn_and_Nj_kla.ssQ_d, |20£J_4), where NIPG
and IIPG methods were analyzed for uniform partitions of the one-dimensional domain.
Similar result were presented in (m, M)

On the other hand, several examples of special non-uniform (but quasi-uniform) meshes

were presented in (IGJ.lzm.a.n_and_Buumﬁl, |20ﬂg), where NIPG method gives EOC in the

L*-norm equal to O(h?) even for odd p. The sub-optimal EOC can be obtained also for
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ITPG method using these meshes, see (@, m, Section 1.5, Table 1.2). Optimal error
estimates were shown for ITPG on arbitrary locally quasi-uniform meshes in 1D by (Dolejsi
and Havle, 2010). This result will be presented in the next section.

Theoretical results concerning NIPG and [TPG for 2D and 3D problems are very limited.
In (IBlum.an_a.nd_SLamlﬂ, |201)8), the optimal order of convergence in L?-norm was proved
for NIPG in 2D and 3D, with slightly modified penalization term. However, the proof is
valid only for piecewise-linear approximation (p = 1) and simplicial meshes, which are
asymptotically uniform, i.e.

||KE| - |KF|| < Chi|Kf|, T eF,

where ¢ does not depend on A, and ( > 2. In (h&ang_&t_al], |20ﬂg), optimal estimates
was proved for NIPG and IIPG on uniform rectangular meshes with piecewise bilinear
approximation in 2D and piecewise trilinear approximation in 3D.

2.2 L?-norm Error Estimate for IIPG Method in 1D

In this section, we show that if the penalty parameter hr is specially chosen then IIPG
method gives optimal error estimates in the L?-norm for odd degrees of polynomial approx-
imation for arbitrary locally quasi-uniform partitions. Moreover, we prove that any other
choice of the penalty parameter of order O(h) depending on the size of two neighboring
elements does not lead to the optimal order of convergence in the L?-norm. However, a
choice of hr for NIPG method, which guarantees optimal order of convergence in the L2-
norm for odd degrees of polynomial approximation, is still open. Numerical experiments
which verify theoretical results can be found in appendix [Al

Let d =1 and 2 = (0,1) be the one-dimensional computational domain. We consider
the Poisson problem with mixed boundary conditions:

—u'=f inQ, —u(0)=gn, u(l)=up, (2.31)

where f: Q — R, up € R and gy € R are given. If f € H*((2), s > 0, then there exists
uw € H¥2(Q) which is the unique strong solution of ([Z31).

Remark. It is possible to consider the Dirichlet boundary conditions in both endpoints,
i.e. u(0) = u(l) = 0. In this case Theorem (the main result of this chapter) is valid.
However, the proof of (A) = (B) has to be slightly modified, the proof of (B) = (A)
rests the same.

Since €2 is one-dimensional, the elements of the partition 7, are intervals
T ={Ky:k=0,...,N—1}, where Ky = [zk, Tp11]-
We assume that the nodes xj are ordered by

O=ap <1 < - <any_1 <ay =1
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We set hy = 241 — x5. Obviously, h = maxy—o__n—_1 hi is the maximal element diameter.
The partition 7j, is C,-regular in the sense of ([[LIH), (CIG), if and only if

hy < Crhgry, k=0,...,N —2, hy < Crhg—y, k=1,...,N —1. (2.32)
Let x; denote the characteristic function of element K, k =0,..., N — 1, i.e.
( ) 1, T e Kk,
€Tr) =

The jumps and mean values, defined by ([C22), reduce to

v(071), k=0,

Wl = (o], = 4 vlap) —v(ad), k=1 N1,
v(17), k=N
v(0T), k=0,

(V) = (), = & W) +o@l), k=1,...,N-1,
v(17), k=N,

where

v(:pk)—xlg%cv(x) k=1,...,N,
<)

v(z)) —mIL%lkv(x) k=0,....N—1
r>T)

We abbreviate the notation for the penalization parameters by Hy := hr where [' = z;.
We consider the [IPG method (6 = 0), thus the DG forms are

N-1 o N
By (up,vp) = Z/ up vy, dr — Z (up)y [vnl,
k=0 v Tk k=1

Mz

ﬁW uh [Uh]k (233)
k=1
' ‘w
Li(vy) = / fopdx + gnop(07) + H—uDvh(l ), Up, U, € Shp,  (2.34)
0 N
and the discrete problem reads: Find uj, € S, such that
Bh(uh, ’Uh) = Lh(’l}h), Vp, € Sh7p. (235)

All results of section EZIl namely the broken H!-error estimate (ZZ3)), apply. In the
following we deal with the optimality of the L?-error estimate. Here, the choice of the
parameters Hy, kK =1,..., N is important. We assume that the parameters Hj are given
by means of a given function H : (0,00) x (0,00) — R,

Hy, = H(ho_1, i), k=1,...,N—1, (2.36)
Hy =H(hn-1,hn-1).
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We assume that the function H(-, ) is continuous and satisfies
H(a,b) >0, (2.37)

H(a’ b) = H(b, a’)7
H(ka, kb) = kH(a,b), k,a,b> 0.

The assumptions ([Z37) imply that inequalities ([ZI2) are satisfied with

1
Cp— HED), —— ) .
F ge[c“?‘?fcr]ma% ¢ >H<§,1>)

The assumptions [Z36) - [Z37) are natural, e.g., in (Guzman and Rivierd, 2009) the values
Hy = (hj_1+hg)/2, k=1,...,N —1and Hy = hy_; are used.
The main result of this chapter reads:

Theorem 2.6. Let p € N and a continuous function H(-,-) satisfying &30 be given.
Then two following assertions are equivalent.

(A) For each C, > 0 there exists Cyo > 0 such that for all ey > Cwyo, f € HP(0,1),
gn,up € R there exists a constant C'g > 0 such that for any C,.-reqular partition Ty
the discrete problem ([Z3H) with the problem data f, gy, up and the parameters cy
and Hy, k=1,...,N given by 30) has unique solution uy, € Sy, satisfying

”uh - uHL2(071) < CEhp+17 (238)
where u is the strong solution of (Z3).

(B) The degree of approximation p is an odd number and the function H is a multiple of

aPt+1 _ppt1
=, a#b
Hp(a, b) = {p+alpbp ’ 7& ’

T(l, a = b

(2.39)

Theorem [Z8 implies that ITPG method gives optimal order of convergence for p = 1 if
and only if H(a,b) = c(a+b), ¢ > 0, ¢ = const. Hence for p = 1 the penalty parameters

have to be chosen in the same was as, e.g, in (IGJ.lmlan_a.nd_Bmmd, Imad) However, for

p > 1 the relation for “optimal” H is different.

Auxiliary results

Within this section we derive several auxiliary results which are the base of the proof of

Theorem P20 In order to examine the penalization term, we construct representations of
the jump functionals

Op(vn) = 2 [vnly,  Oh €Shp,  k=1,...,N. (2.40)



Since the bilinear form By (-, -) is not symmetric, there are two natural choices of represen-
tation:

Whpk € S/m,, : Bh(wh7p7k,vh) = (I)k(’l}h), Vp, € thp’ k= 1, ceey N, (241)
w,*hp,k c Sh7p . Bh<vh7 w,;p’k) = @k(vh), Vp, € Sh7p, k= 1, cey N. (242)

The existence and uniqueness of functions wy,;x and wy ,, immediately follow from the
coercivity ([ZZZ), using the same reasoning as in the proof of Property 271
The functions wy, , ; take a particularly simple form

k—1
wh,p,k = Z Xj' (243)
7=0

The functions wy, , ;. can be expressed analytically for p =1,

1 /(x—ax_ r—T
wip@) = = [ @) + —2 (@) ), k=1,...,N—1, (244
v 2 hi—1 hy1
* T — Tk—1
wpan(T) = The, xXn-1(). (2.45)

For general p > 2, the analytical expression of wy , is not easy to obtain, see also (Larson
and Niklasson, , paragraph 3.3), for special cases and different formulation. However,
two following lemmas will be sufficient for our purposes.

Lemma 2.7. For each p =1,2,... there exists a polynomial w, € P?(0,1) such that

N 1 R o Ty — T
= — —_— _ — —_— 24
wh,p,k('r) 9 (wp ( hkfl ) Xk 1(.1’) wp ( hk ) Xk(x)) ) ( 6)
E=1,...,N—1,

) xn-1(2), (2.47)

r — TN-1

%n@—w(

hn-1

where wy, ., k=1,...,N are defined by ([Z32).

Proof. For p =1, we use (Z244]), [ZZ3). The polynomial wj(t) = ¢ satisfies (Z40)), [247).
Let us now consider the case p > 2. Let V, = PP(0,1) N Hy(0,1). Let w, € V, be

the solution of the following symmetric, positive definite, finite-dimensional variational
problem

1
Awﬁ%@&:%m, v, € V.

We define
w;(t) =1+ wy(t). (2.48)



First, we prove following auxiliary relation

/Ol(w;)’(t)v’(t) dt =v'(1),  wve Pr0,1). (2.49)

Let v € PP(0,1) be arbitrary. There exist real numbers ¢y, ¢; and a polynomial v, € V,,
such that v(t) = co + 1t + v,(t). We have v,(0) = v,(1) = w,(0) = w,(1) = 0 and

1

/O(w;)'@)v'(t)dt:/ (14, (8)) (e + (1)) dt = ¢ +v/)(1) = v'(1)

0

Let us now prove (Z46). Let v, € Sp,, be arbitrary. Let 2, denote the right-hand side
of ([Z24), where we set w7 as defined by [ZZ). Using [ZZJ), we get

o By [ o (o
[ iwtatordr =" o+t = S
Tk—1
Th+1 h 1 o (+
/ v (2) 2 (2) do = 7’6/ V(g1 — thy) (wi(t)) dt = h<2k),
T 0
[ZhJﬁ]k - ]-7
and
1 / — ! + ’ CW CW
Bh(vhu zh,k) - = (Uh<xk) _'_ Uh<xk )) - <Uh>k [zh7k]k‘ _'_ e ['Uh]k [’Zh,k]k e — [/Uh]k i

This proves the equation (2240). We omit the proof of (A7), since it is quite similar. [

Lemma 2.8. The functions wy, . defined by ([22) have following properties
[wipi], = 0ke k=1, N (2.50)

[ wia@@rar =0 ge PR, p22 2.51)
K,

(=0,....N—1,k=1,..., N.

Proof. Putting vy, == wy; ;. in (Z4), vy 1= wppy in [(Z22) and using (Z40) and ZZ3), we

obtain

cw cw

cw
" Fk [wh7p7£]k - E5k7£’

(Wi il , = Pe(wh i) = Bu(Whpt, Wh 1) = Pr(whpe) =

which immediately gives (Zh0).
Moreover, let £ =0,..., N —1 and let g be an arbitrary polynomial of degree less than
or equal to p — 2. Let ¢ € H*(Q) be the solution of the following boundary-value problem

—"(z) = g(x)xe(x),  x€(0,1),
U'(0) = (1) = 0.
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Obviously, ¢ € S, and [¢], = 0. We have

[ @iy o)do = Bul i) = @ul0) = B w1, = 0.
Ky k

O

The representation wj, , ;. allows us to express and estimate jumps of the approximate

solution wuy,. Substituting wj, ,, as a test function to (E35), we get

— [unl, = Bulun, wy, ;) = Ln(wj; 1), k=1,...,N.

(2.52)

In the following lemma, we identify the leading term on the the right-hand side Ly (wy ;).

Lemma 2.9. Let wy ., k=1,..., N be defined by ZZ2). Then

Lh(wz,p,k) = Kop ((_1)p_1h£71 B hi) f(p_l)(xk) + K per, k=1...

* c - —
Ll ) = Foup + Kap(—17 R f7 (1) + Koy,
where

lex| < P Hf(p)HLl(l'k—lvkarl) ’

|5N‘ <n? Hf(p)HLl(fl'N—lymN) ’

Ko p, K1 p, Koy € R are constants and Koy, # 0.
Proof. Let k=1,..., N — 1. Using the Taylor theorem, we have

Pl () (o , ’ "
@0 =S 0 Gy rw, R@ = / o=

From (234), (236), (2X50) and ([ZEI) we get

N —1, (2.53)
(2.54)
2.55)
(2.56)

_ g)p

e

T+1
Ln(wypn) = | f(@)wy,,(x) da
Tp—1
Tr+1 Tl
f(p_l) (xk) _ . .
= (p o 1)| ('Z‘ - xk:)p 1wh,p,k(x) dx + R(l‘)wh%k(:[) dl‘
Tr—1 Th—1
Using (Z44]), we obtain
T+1 1

—1)P~th? . — P
[ @ rrtug @y ar = SRR fo g

2

Thk—1 0
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Finally, we estimate third term by
Tk+1

* h? *
R<x>wh,p,k('r) dz| < E prHLoo(o,1) Hf(p)HLl(xk,l,mkH) ’

Tp—1

Therefore, (Z53) holds with the constants

1

1 -1, 1 *
Ko, = 55T /(1 — 1P (t) dt, Ky = o [wpll oy (2.57)
0

Now we prove by contradiction that Ky, is not zero. Let us assume that Ky, = 0 then
it follows from (Z0T), [Z40) and @31) that wy is orthogonal to PP~'(0,1). Thus w}
is a multiplicand of p'" element of the orthogonal basis of PP(0,1) and according, e.g.,
, , Theorem 12.2) all roots of w} are simple and lie in the interior of (0,1).

Then w;(0) # 0, but by Z48) w;(0) = 0 which is in contradiction and thus K, # 0.
The proof of ([Z354]) can be done by the similar technique. O

The representation wy, i is useful to quantify the influence of discretization parameters
cw and {H Y, to the approximate solution uy. Let us consider two sets of discretization
parameters (cyy, { Hy, 1Y) and (¢, { H,}2_,) and the corresponding approximate solutions
Up, 'th.

Lemma 2.10. Let wy, and 1y, be the unique solutions of the discrete problem ([Z33) with
the discretization parameters (cy, { Hi}2_,) and (Cw,{Hg}i_,), respectively. Then

N ~
- cwH,
up — Up = Z <1 — EWHk> [wp ]y, Wi p k- (2.58)
w

k=1

Proof. By By(-,-), Ly(-) we denote the bilinear and linear forms (E233))- 234 corresponding
to the discretization parameters (¢éy,, { Hy ;). Without any loss of generality, we assume
Up = gn = 0. Then

Bh(uh, Uh) = Lh<Uh) = Eh(vh) = Bh<ﬁh, Uh), Up € Sh,p. (259)

By (EZ4TI), the representation function wy,,; does not depend on the choice of penalization
parameters, and (ZZ1]) holds with the form By, replaced by Bj. Let 1, be the right-hand
side of (Z1J). Let v, € Sp,;, be arbitrary. Then

By(rp,vp) =

H . _
(1 —_— k) [un],, Br(whpk, vn) [ using bilinearity of By, ]
cw Hy,

M= 11

CWf{k 6W
(1 — 6WHk> [uh]kﬁ—k [Un) [ by 210 |

i

1
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w

[Uh]k [Uh]k - . [Uh]k [Uh]k

T
(1=
O
-

I
] =
IssUE

1

n(Un, vp) — Bp(up,

n (U, vp) — Bp(Up, vy,

i

[ using the definition ([233)) of By, ]
[ by @23) ]

We have Bh('r’h — (up, — up),vp) = 0 for all v, € Spp. Substituting vy, = ), — (up, — Up,) and
using the coercivity ([Z22), we get ry, — (up — @p) = 0. O

<

~— ~— =

h

3 oo

Proof of (B) = (A)

Assume (B). Without any loss of generality, we assume H(a,b) = H,(a,b). We put e, =
up, —u € L*(Q). Let ¢ € H*(Q) be the weak solution of the boundary-value problem

—¢" = ep in, (2.60)
P'(0) = 0, (1) =0.

The function 1 is continuous and [¢], =0 for all £ =1,..., N. A straightforward manip-
ulation yields

€h7

HMZ

wlenly = Br(¥,en) = / epen do.
Q

The solution u of (Z31]) is continuous as well. Therefore

N N
lenll2iy = Bulen, ) = > (W'Y, [enly, = Bulen, ¥ — vn) = Y (¥ (2.61)
k=1 k=1
where 1, is a discontinuous piecewise linear approximation to 1 satisfying
lvn =¥l < Ch[Y] g, (2.62)

e (ZI3). So far, we followed the standard Nitsche trick. It is clear that we need to prove

the inequality
N

2

k=

since then we are able to estimate the right-hand side of (&) using (Z62), (ZZ11), ZZ3)
and (Z63) by

< ChP Moo 1 ooy » (2.63)

2
||6h||L2(Q) < Chllexn|| |77Z)|H2(Q) +Cht ||77Z)||H2(Q) ||f||Hp(Q)
< C (el sy + 1 aniey ) 27 llenll ey
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In order to prove (&), we use the functions wy , ,, k= 1,..., N given by ([Z22). From
B - @), we get
H, N H,

[en]y = [unl), = JBh(Uhawh,p,k) - JLh(wZ,p,k)
K K
_ 0,ka ((_1)P_1h£71 — hi) f(p_l) (l’k) + ﬂHkEka

Cw cw
k=1,...,N—1,

len]y = [un]y — up

K K
= PN (=1 R, fP D () + C—Qmj’HNgN.

cw
By the assumption (B) of Theorem X6 p is odd and Hj are given by (Z30) and (Z39).
Note that

(-0 W, — ) =W 7, k=1 V-1

Therefore,

K, K.
Co,p (W2 — W) fP D () + =22 Hyey, k=1,...,N 1.
w cw

Let v(z) = ¢'(x) f®~Y(z). Using summation by parts

len]), =

N—-1 N-2
(BT = W) () = D B (Y(wian) — (@) + Ry (21) — PR v (an-s)
k=1 k=1
N-2 Thtt
= hi—’—l / ’yl(x)+hg+1 ( ) hp 1’)/(1']\[ 1) (264)
k=1

Tk

Using the imbedding W*'(0,1) € L*(0, 1), equivalence of | - |y1.1(0,1)-seminorm with || -
l[w.1(0,1-norm for v(0) = ¢/(0) f®=Y(0) = 0 and the Cauchy inequality, we obtain

||7||LO°(071) <Ol ||L1(0,1) =C H@Z)/,f(p_l) + w,f(p)HLl(O,l) <C ||@Z)”HQ(OJ) HfHH”(O,l) ’

which together with ([Z64) yields
N-1

D (M2 = B ()

k=1

We complete the proof of ([Z63)) using (255), [(Zh4).

< ChPtt ||¢||H2(o,1) ||f||HP(O,1)

Proof of (A) = (B)
The assertion A = B is proved in two steps:
e Step 1. by a contradiction we show that if (A) is valid then p has to be odd

e Step 2. assuming that (A) is valid and p is odd we show that H is a multiple of H,

given by (239).
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Step 1. We prove by the contradiction, that the optimal L*-estimate (ZZ38) does not
hold for even p. Let us assume that (A) holds and p is even. Let C, = 1, f(z) = 27!,
up = gy = 0. Let Cyyp and Cg be the constants from (A). Let ey = Cwo, éw = 2Cwp.
Let N € N be arbitrary and let 7, be an uniform partition with N elements, i.e. h =
1/N. Let uy, and 1y, respectively be the solution of ([Z3H) with discretization parameters
(ew, {Hx}YY_,) and (&, {H}Y_,), respectively, where Hy, = Hy, = hH(1,1), k=1,...,N.
Let ry, = up — @y,. From (2238), we have

”ThHLQ(O,l) < lun — UHL2(0,1) + [Ju— ah”LQ(O,l) < 20ph"*. (2.65)

On the other hand, ([Z58) and ([ZZ3)) implies, that the function rj, is constant on each
element Ky, {=1,..., N,

N N k—1 N
1

Pl () = 5 S il il (0 = 5 S Sl () =5 3 o (266)

k=1 k=1 §=0 k=0+1

Using (Z52) — [Z30), the fact fPY(z) = (p — 1)l and f®(z) = 0, we get

[uh]k:Mlhp+17 k':l,...,N—]_, Ml #07
Cw
[up] v = Moh?™ M,y = Kyp(p —DIH(L 1)
N ) cw '
Therefore,
N—-2 N—-2
Irall 201y = Irnll oy = D Irall sy = D 2 [MA(N = £ = AP 4 Mph?*!
=0 =0
N—-2 N—-2
> My B2 (N == 1) = [My| P2 1
=0 (=0
N(N —1
> (182 - v - ) e

%p p+1
> W+ O (R,

which is in contradiction with (E2GH).

Step 2. Let us assume that (A) holds and p is odd. Let C,. > 1 is arbitrary, but fixed. Let
f(z) =271 up = gy = 0. Let Cyyo and Cg be the constants from (A). Let ¢y = Cyyo+1,

cw = 2Cwyp. Let B € (Cf1/2, 1). Let N € N be arbitrary multiple of three and let 7, be a
partition with N elements, such that

hajre = 35°
Y0+ N

j=0,...,N/3—-1,(=0,1,2.
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This partition satisfies (2232) and

Mo(3) 3
N where My(3) = 1+ 8+ 3

hsjie=hB' j=0,....,N/3—1,£=0,1,2.

h:

(2.67)

Let uy, and 1y, respectively be the solution of (Z3H) with discretization parameters (cw, { Hx } ;)
and (G, {Hx}2_,), respectively, where H;, = Hy = H(hy_1,hy), k = 1,...,N. Let rj, =
Up — 'L~Lh.

Similarly as in Step 1, we have (Z63) and (60) and

K —1)!
[uh]k:MlHk<h’Z—1_hz>7 k= 1,...,N—1, M1 IM,
Cw
K!(p—1)!
[U‘h]N = MQHNhZA{])\[,D M2 = M
Cw
We estimate 74|11,y from below by
N/3—-1 N-1
Hrh”Ll(O,l) 2 Z hae—1 Z [unly + [un]y| = Ms(h, B) — Ma(h, 3), (2.68)
=1 k=3¢
where
\M | N/3—1
M;s(h, ! Zh?.élZHk k1_hp)
k=3¢
N/3 1
M.
My(h, _ 1] 2' Z heH Y,
The term My(h,3) is O (hP™!) since
M N <
My(h, B) < =2H(L DR, Y he < 22 H(1,1)hPH
=1

It remains to estimate term M3(h, 3). Using hgr_1 = hsrio and the homogeneity as-
sumption ([Z31), we get

N—-1 N/3—1 2
Z Hi(hyp_y — hy) = Z Z H3k+j(h§k+jfl - h§k+j)
k=3¢ k=t j=0

N -3¢

N/3-1
= Y Glhsk, hapsr, haro) = WHG(L, B, 5%,
k={

50



where
G(ag, a1, @) = H(ap, an)(ap — of) + H(a, az)(af — af) + H(ag, ap)(ah — af)  (2.69)

Therefore,

N/3-1

> haea
(=1

e N/3—1

F i, 6,5 N -3¢
= |<,ﬂ,ﬁ>\;< —30)

2 P _ ;+1 2

where My(3) is given by ([ZED). Then term Ms(h, 3) satisfies

2 hP — hp+1 2

However, estimates (Z268) and [Z63) implies that term Ms(h, 3) is O (k). Since My(3) #
0 and M; # 0, it follows that

G(1,8,6*) =0, Be(CH1). (2.70)

N-—1
> Hy(hy =)
k=3¢

M3(ha ﬁ)

Finally, we have to prove that the property (Z70) implies that function H is a multiple of
@39). Let us prove a technical lemma.

Lemma 2.11. Let G be defined by [ZE9) and there exists 0 < & < 1 such that

G(1,8,8%) =0, B e (g1).
Then

_ H(lal) 2 —2
H(a,b) = o, 1)’Hp(a, b), a,b>0, e <bla<e?, (2.71)

where H,, is given by (Z39).
Proof. Let F(B) = H(1, ). A straightforward algebraic manipulation shows that
G(1,8,5%) = (1= 8°) [(1+ 8" ) F(B) — (1 + 5°)F(5)] -

Therefore, the function F' satisfies the equation

L+ NFB) = 1+ 8)F(F),  BE(el). (2.72)
Let F,(8) = H,(1,3). The function F), satisfies the equation [ZZ2) as well,
1+ F(B) = 1+ AP F(8%),  BER. (2.73)

Dividing &2) by [Z3) we found that the ratio Q(3) = F(8)/F,(() satisfies
QB)=Q(3),  BE(e).
By continuity,

Q) =Q(H =Q(/B)==1m (V5 =Q1), Fe(&)
The equation (ZTT) follows easily from the properties (237). O

51



Let us finish the proof of the main theorem. The equation (Z71) holds with ¢ = C, 12
The number C, > 1 was arbitrary. Therefore H is indeed a multiple of H,,

H(1,1)

H(a,b) = 77‘(1,(1, 0

H,(a,b), a,b> 0.

Remark on the analysis of the NIPG method

There is a natural question if it is possible to use a similar technique for the determination
of the penalty parameters which give optimal order of convergence for odd p also for the
NIPG method on non-equidistant grids. Recall the one-dimensional form of the NIPG
bilinear form 1) with § = —1

and the corresponding NIPG linear form

1
c
LY (vy) = / fon dz + gnon(0) 4+ upup (1) + H—WuDvh(l), (2.75)
0 N
where cyy > 0 and Hy, k=1,..., N are the given penalty parameters.

Replacing B, by By in (A1) ~ Z2), we can define functions wy,p and w} ;. rep-
resenting the jump functionals (240) for NIPG method. However, it is rather difficult to
derive similar results as in Lemma 27 for NIPG method. Using Green’s theorem and some

technical manipulations, we obtain from (Z74l) and [Z40) — Z2) the identity

Cw *
I [vn]), =®x(vn) = By (vn, wy, )

N—-1 N-—1

SR DY IR AUTNORS ST
j=0 7 Ki j=1
N N c
* W *
+ z; <(wh,p,k)/>]~ [Uh]j + Z; E [Uh]j [wh%k]j Yoy, € Shp.
J= J=

By a contradiction it is possible to prove that function wy ,, has not support [Tr_1, Ta1]
in contrast to the IIPG case (the proof is technical and it is based on suitable choices of
vy, € Spp which imply that wj = 0). This difference represents the main obstacle in the
use of the jump functionals for the determination of the penalty parameters which give
optimal order of convergence for the NIPG method.
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Chapter 3

Finite Volume Methods for Shallow
Water Equations

In this chapter, we present a finite volume discretization of the Shallow Water Equations
(SWE) based on a Vijayasundaram numerical flux.

The SWE system (also called Saint-Venant equations) is an incompressible sub-model
of the general governing equations for the dynamics of fluids. The system is derived from
the incompressible Euler equations of fluid dynamics, neglecting the variations with respect
to the vertical direction (see IE, @, pg. 33). The equations represent the free-surface
gravity flow in the three-dimensional channel with the bottom z3 = z(z1, x2) assumed fixed
in time, and the free surface under gravity x3 = H (1, x9,t) which depends on space and
time (see Fig. Bl). The flow is described by the height h = h(zy,x9,t) = H(xq,x9,t) —

iL"g,A
H(a?l, T2, t)
h = h(l’l, T2, t)
z(x1,2)
|
T
X2

Figure 3.1: Notation for Shallow Water Equations.

z(xq,x2) and the two components of velocity v; = v;(z1,x9,1t), i = 1,2. The SWE system
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reads

oh 0 0

d(hwvy) 0 s 1 0 B 0z

T + o (hvi + 2gh )+ s (hvyvg) = gh@xl’ (3.2)
O(hvy) 0 0 o 1o 0z

5 + o (hvivs) + 8x2(h02 + 29h ) = —ghaxQ. (3.3)

The symbol g denotes a constant gravitational acceleration (g &~ 9.8ms~2). The first equa-
tion (Bl represents the conservation of mass, ([B2)-(B3) represent the conservation of
both horizontal components of the momentum.

We rewrite ([B0)-(B3) as

2

0 0
= > g w) = sl w), (3.4)

where w = (h, hvy, hvy)T, and

h’Ul h’UQ 0
futw) = 1t bt | g = | hoe | st = (00 0) 69
hU1U2 h’U% + %ghQ ghVZ(.ﬁL’)

The fluxes f, are defined on the domain D = {(h, hvy, hvy) € R3 : h > 0}.

If the channel bottom is flat (z = const.), then (B2l becomes a system of conservation
laws. Conservative methods, such as the Finite Volume or discontinuous Galerkin schemes,
are natural choices for numerical solution. We present the construction of Finite Volume
scheme for the flat bottom case in section B2, and for the general case in section

It should be noted, that there is an important difficulty which we do not address in this
work. During the evolution of the model, a state h = 0 may appear. The fluxes ([BX) are
not well defined for h = 0. In this case, the numerical schemes discussed later may break
down.

3.1 The continuous problem

Rotational Invariance. Let us consider an arbitrary orthogonal coordinate transfor-
mation

Zi:Q0{E+Zi‘Q

where Qy € R?*? is orthogonal matrix, Qf Qy = QyQ¢ = I, and 7y € R%. The correspond-
ing transformation of the vector w of conserved variables is

w = Qw, Q= <é &)) e R33,
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The SWE system (B) is rotationally invariant, i.e. a function w = w(x,t) solves B2 if
and only if the function

w(i,t) = Qu(Qq ' (& — &), 1)

solves the system (B4), with the topography function z replaced by 2(7) = 2(Qy (7 — )).
The rotational invariance can be also stated as a property of the fluxes f.. The flux (of

the quantity w) in the direction 1 = (ny,n,)7 is (see [Feistaner et all, 2003, section 3.1)

Plw,n) =Y n,f(w). (3.6)

The flux is rotationally invariant, if
P(Qw,Qyn) = QP(w,n) (3.7)

for all n € R? and all orthogonal matrices Qp. Let us prove (BX) directly. Recall that
w = (h, hv)T = (h, hvy, hvy)T and set g = ho.

q1 q2 T
n h 1 0
Pw,m) =n; | h'qf + %ghQ + N9 hlqige = Tq (q) + §gh2 (n) )

h ' q1ge hq3 + sgh?
T

_nlg  (h) 1 0 _
== <q) + ighQ(@ (n) = QP(w,n).

This proves ([BI). The consequence of relation (B) is the following

Property 3.1. Let w € D and n € R?, |n| = 1. Then

P(w,n) = Q' f,(Qw), Q= Qo(n) = ( m ") | (3.8)

—MNo N

Proof. The matrix Qy is orthogonal and Qyn = (1,0)” (matrix-vector product). It follows

from (B1)
P(w,n) =Q "P(Qw,Qn) =Q" | (Qn); f,(Qw) + (Qn)s £2(Qw)| =Q ' f,(Qw).

=1 =0

O
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Hyperbolicity. Consider the case z = const.. Then (B is a system of conservation laws.
Hyperbolicity is an important property of system of conservative laws, which is crucial to
the stability and well-posedness. By (IE«j.sLa;m_eﬁ_a.l], 2003, Definition 2.3), the system
is hyperbolic, if the Jacobi matrix (with respect to w) of the directional flux BH) is
diagonalizable and has real eigenvalues. By virtue of (B, it is sufficient to consider only
the flux f,.

Property 3.2. For all w = (h, hvy, hvy) € D, the matrix

0 1 0
Aj(w)= | —vi+gh 2v; O (3.9)
—U1V2 V2 U1

is the Jacobi matrix of f,. With the notation ¢ = +\/gh, the eigenvalues and the correspond-
ing eigenvalues of Ai(w) are

A(w) =0 —c, Ao(w) = vy, A3(w) = vy + ¢, (3.10)
1 0 1

ri(w)=|vi—c], ro(w)= (0], rs(w)=|vi+c]. (3.11)
() 1 V2

Moreover, the matriz A, (w) is diagonalizable,

Aj(w) =TAT, (3.12)
where
vi—c 0 0 1 0 1 ute -1 0
A = 0 U1 0 ., T=|vy—c 0 vy+c], Tl = —-v, 0 1
0 0 v+ec ve 1 vy —are L0
(3.13)
Proof. By direct computation. O

The diagonal decomposition ([BIZ) shows that the system of conservation laws is hy-
perbolic. The explicit formulas for eigenvalues and eigenvectors (BI0)-(BITl) are important
for the construction of numerical fluxes based on approximate Riemann solvers, such as
the Vijayasundaram flux (see section B2).

Further properties of the continuous problem. We will make only few remarks.
For example, one can show that the eigenvalues \{, \3 are genuinely nonlinear, and A\ is
linearly degenerate. Also, theoretical results for the general case z # const. can be found
in literature, e.g. (Bernetti et all, 2008).

However, up to our knowledge, there are no results on global existence and uniqueness of
the solution to (B). Therefore well-posed weak formulation of the PDE and the boundary
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conditions remains an open problem. Unfortunately, such questions are largely unsolved for
systems of multidimensional nonlinear hyperbolic conservation laws, except certain special
cases, 1D problems and Riemann problems (see [Feistauer_et_all, 2003, section 2.3).

In order to have a starting point for the discretization, we need a formulation of the
initial-boundary value problem (IBVP) on a bounded domain 2 and finite time interval
(0,7). Our treatment of the IBVP is rather formal. We will not discuss possible weak
formulations, regularity assumption, and so forth. Without global well-posedness results,
these discussions would be meaningless.

The initial-boundary value problem The shallow water equations represent a two-
dimensional model. We consider the two-dimensional system (B4 and the corresponding
one-dimensional simplification (the so called split 2D version). Both cases are covered by
the formulation

ow < 0
EjLsz:;a—%fS(w)—s(:c,w), veq, te(0,T). (3.14)

where d € {1,2} and Q C R? Note that in both cases, the vector of conserved variables
has three components w = (h, hvy, hvg). We prescribe the initial condition

w(z,0) = w’(z), x €Q, (3.15)
where w? is a given function.
The question of boundary conditions for nonlinear systems of conservation laws is del-

icate (see [Dubois and FlocH, [1988). Our notation closely matches the implementation on

the numerical level. We prescribe boundary conditions in the form

w(z,t) — B(z,w(z,t)) =0, (3.16)

where B : 00 x D x D — D is a given mapping. The motivation for this notation will be
clear later in section B2, see (B:53). The mapping B represents the extrapolation procedure
used in the finite volume method. In this way, several types of boundary conditions are
possible, namely

(i) Prescribed water height
B (% (h, q1, CJQ)T) =B (5757 (hD(x)a q1, CJQ)T) ) r € 09, (h> qi, 612) €D. (3-17)
where hP : 9Q — R is a given function.

(ii) Prescribed discharge

B (x, (h, q1, qg)T) =B (x, (h, qF (), qu(x))T) : x €0, (h,q1,q2) € D. (3.18)

where g : 9Q — R? is a given vector-valued function.
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(iii) Outflow boundary conditions
B(z,w) =w, r €00, weD. (3.19)
Nothing is prescribed.

The zero-flux boundary conditions (e.g. impermeable wall) are not covered by (BIH). For
simplicity, we do not consider such boundary conditions.

3.2 FV method for the case z = const.

We consider first the flat bottom case z = const.. A standard finite volume (FV) method
(Ilﬂl(ﬂ);]ﬁl, 11990; [Eymard et. all, 2000; [Feistaner et all, |20£)3) can be applied. We retain the
notation of Chapter [l Let 7, be a partition of Q C R?%. The elements of 7}, are called finite
volumes in this context. For the purposes of FV discretization, the requirements concerning
T, from section [ can be relaxed. If d = 2, we assume that the finite volumes K € 7}, are
closed polygons with mutually closed interiors. We introduce the notation

EL)={T e F,:I'nL|#0}, L e, (3.20)

For each I' € £(L), we denote the outer unit normal to 0L restricted to the face I' by np r.
We construct a partition 0 = t° < ¢! < ... < ¢’ = T of the time interval [0, 7] and denote
by 7; = /1 — #/ the time step between ¢/ and /.

Recall the derivation of the FV method. We integrate (BI4]) over a finite volume L € 7,
and a time subinterval (#/,#7!) and use Green’s Theorem:

i+l

/w(:p,tj+1)dx—/w(x,tj)dx+ / /P(w(x,t),n) dSdt =0,

L ti 0L

P(-,-) is the directional flux ([BH). Now, we introduce the approximate solution
w(z,t) ~ w, reK, KeT, tc[t/, /), j=0,1,...,Np — 1,

and replace the directional flux with the numerical flux

?(w,n)’FzH(wi,w%,nLI), I'=LNRec&L)NF.
We discretize the boundary conditions (BIG) by
P(w(z,t), 'n,)}F ~H ('wi, B (;Up, 'wJL) ,nLI) ; I'c&(L)NFX, (3.21)

where xr is the center of gravity of the face I'. After simple algebraic manipulations, we
obtain the explicit finite volume scheme

: . A r L
w™ =wl — 7 Z %H (w, wh, nr) (3.22)
re&(L)nF}
P=LOR,
ReTy,
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—Tj Z E[JH(’LU%,B(IL‘r,’lU%),”Qr), LEZL,jZO,l,.-.,NT—l,
res(L)mf;'jﬂl |

1

w) = — / w’(x) du, LeT,. (3.23)
L] Jr

It remains to specify the numerical flux H : D x D x R — R? and the time step 77.

Let S; = {n € R?:|n| =1} be the unit sphere in R?. Following (Feistaner_et_all, 2003,

section 3.3.3), we require that

(i) The numerical flux is defined and continuous on D x D x ;.
(ii) The numerical flux is consistent with the fluxes f,,

H (w,w,n) =P(w,n), weD, neS. (3.24)

(iii) The numerical flux is conservative,

H(wp,wgr,n) = —H (wg,wy,—n), wr, wr €D, n€S,. (3.25)

Moreover, in analogy to the rotational invariance of the fluxes and ([BH), we assume that
the numerical flux is given by means of a mapping g : D x D — R? such that

H (w[n WER, n) = @71g (@U)L, @wR) ) wpr,WR S D7 n = (n17 n2)T S R27 (326)
1 0 0
where Q=0 n; no

0 —TNo N

There are two fundamental approaches to construction of the numerical fluxes. The
numerical flux can be derived from finite difference approximations to (BI4l). This approach
leads to central schemes, e.g. the Lax-Friedrichs flux, or the FORCE schemes m,
|2D_0_g bamiﬂhﬁ_aﬂ |20Qg) The other approach is based on analysis of the solution of
the Riemann problem. Examples are the Godunov numerical flux (exact Riemann solver)
and various approximate Riemann solvers, e.g. the Roe-type fluxes (Iﬂaﬂmw_al] |2£H)3
and the Osher-Solomon flux (Zhao et all, |J_9_Qd :

We present a numerical flux, which is based on the well-known Vijayasundaram flux

from the context of the compressible Euler equations !|yjja¥as]]ndaxani ||982; Feistauer

et al., M) The Vijayasundaram flux for the Euler equations reads
wy, +w wy, +w
g(wp,wg) = AT (u) wy, + A7 (u) Wk, (3.27)

where AT (or A]) is the positive part (or the negative part, respectively) of the matrix A;.
For scalar arguments, we set

at = max(a,0), a” = min(a,0). (3.28)
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We generalize (B25) for matrix arguments using the diagonal decomposition A; = TAT™!,
A\ = dlag {)\1, )\2, )\3}, by

A = Tdiag {7, A5, A5 T (3.29)

The use of (BZZ7) as a numerical flux is justified by the fact that (B27) is an approx-

imate Riemann solver. The formula (BZ1) is equivalent to the exact Riemann solver for

linear hyperbolic systems. We formulate this property for a scalar linear problem, but it

is readily generalized to hyperbolic linear systems using the diagonal decomposition (see,

e.g. Ilﬂkxmd, hﬁ%j)

Property 3.3. Let us consider the Riemann problem for a scalar linear equation

ou ou

__ I R .
5 TAg- =0, wER >0, (3.30)
u(z,0) = {“L’ z<0, (3.31)
ugr, x> 0.

Then, the value of the linear flux fy(u) = Au on the line x =0 is
Fa(u(0,8)) = Aug + A ug. (3.32)

Proof. The solution is u(x,t) = ug(x — At). If A > 0, then u(0,t) = ur. If A < w, then
u(0,t) = ug. In both cases, (B32) holds. O

The Vijayasundaram flux (B22Z1) is consistent in the sense of (B24) if and only if f,(w) =
Aj(w)w for all w € D. This homogeneity property is valid for linear systems and for the
Euler equations (IEPJ_sLaJ.m_QLaJJ, 2003, Lemma 3.1), but it does not hold for SWE. Using
B3), we can show

Malw)w = f(w) ~ Jghes, (3.33)

where w = (h, hvy, hvy)T and e, = (0,1,0)T. We propose the new numerical flux of Vi-
jayasundaram type, defined by

wr +w _(wp +w h; +h 2
g(wp,wp) = Af (%) wp, + A (%) wR—g( L2 R) er. (3.34)

The following theorem shows that the numerical flux (B27) is suitable for use in the FV
scheme.

Theorem 3.4. The numerical fluz of Vijayasundaram type defined by [B34) and [B20)

18 continuous, consistent and conservative.

Proof. The continuity of is obvious consequence of the continuous dependence of eigen-
values and eigenvectors on the entries of the matrix A;. The consistency (B24]) follows
easily

H (w,w,n) = Q 'g (Qw, Qw) [ by (BE2T) |
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1 . .

— 0 (Ai(Qu)(@w) - 39*) [ by @, wsing A1 = AT + 47 )

= Q7' f1(Qw) [ by B33) ]

=P(w,n). [ by B ]

Before proving the conservation property (B2H), we need following lemma.
Lemma 3.5. Let Z = diag{1, —1,—1}. Then it holds

A (Zw) = —ZAT (w)Z, (3.35)
Al (Zw) = —ZAT (w)Z. (3.36)

Proof of the lemma. Let Aj(w) = TAT be the diagonal decomposition of the matrix A;.
First we transform the matrix A;(Zw) to the diagonal form. For n = (—1,0)”, the matrix
Q from ([BX) satisfies Q = Q7! = Z and the rotational invariance property gives

—fi(w) = P(w,n) = Q' f,(Qw) = Zf ,(Zw).
By differentiating this identity with respect to w, we get —A;(w) = ZA;(Zw)Z, and
by (Zw) = ZT(w) [~ ()] [ZT ()]

For all a € R,

(a)" =—a",  (-a)” =—a",

and this property holds for diagonal matrices as well. So

AT (Zw) = ZT(w) [~ A\(w)]*[ZT(w)] ™ = —ZT(w)) A\ (w)~[ZT(w)] " = ~ZA] (w)Z,
Al (Zw) = ZT(w) [ A\ (w)]” [ZT(w)] ™ = —ZT(w)A\(w) " [ZT(w)] " = —ZA] (w)Z.

O
Now we can finish the proof of the theorem. We set w, = %(wL +wg) and h, =
% (hr, + hg). We rewrite the numerical flux in the form H = H; — Hy, where
H, (wp,wg,n) =Q ' [Af (Qw,) Qw., + A} (Qw,) Quwg], (3.37)
H2 (wL7 WR, n) = gh’%@*162 (338)

It is sufficient to prove the conservation property separately for H; and Ho.

For H, we express Q = Q,, defined in (B8) with the aid of Q_,, and Z defined in
Lemma as

Qn=2Q-,, Q,'=Q_,Z
By (B33), (B34)
H; (wy,wg,n) = Q°,Z[A] (ZQ_pw,) ZQ_nwy + A] (ZQ_pw,) ZQ_pwg]
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= —Q,Z[A] (ZQ_pw,) ZQ_nwp + A} (ZQ_pw,) ZQ_,wr|
= —H; (wg,wy,—n).

The conservation property of H follows immediately from the identity Qey = (0,11, n2)7,

1 0 1 0
H; (wp, wr,n) = §gh3 (n) = —aghi ( n) =H, (wg,wy, —m).

O

Finally, we specify the time step 77 in (B22) using the Courant-Friedrichs-Levy (CFL)
stability condition (see [Feistaner et all, 2003, Section 3.3.11). We approximate the Lipschitz
constant of the numerical flux H (-, -, -) (with respect to the first two arguments) and the

mapping g (-, -) by

L (wp, wr,n) = Ly (Quwp, Qup), (3.39)
L, (wy, wg) = max | A, (%) ' , (3.40)

where the eigenvalues \; are given by (BI0). Then, we approximate the maximal speed of
propagation in the finite volume L by

; r . . T , .
g= Y ea(hwhn) Y e (] B (e w)) ) 341

re&(L)nrt ‘L‘ re&(L)NFo |L|
h h
I=LNR,
RET,
The CFL condition reads
. CFL
T — j=0,1,...,Npr — 1, (3.42)

where CFL € (0,1).

3.3 FV method for the case z # const.

We now consider the general case z # const. We seek a finite volume scheme, which
preserves a class of stationary solutions:

h(x,t) = Hy — z(x), v(z,t) = 0. (3.43)

The function w = (h, hv)? with components given by [BZ3) is a solution to ([E4) (the lake
at rest solution). As in (IGaJ_]mLéLQLal], |2D_O_ﬂ), we use piecewise-constant approximation of
the topography function z,

2K = L/ z(x) dz, K eT,. (3.44)
K] Jx
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The discrete version of [BZ3) is
W = Hy — 2, vl =0, KeT, j=0,1,...,Np — 1. (3.45)

In the previous section, we have presented a discretization of the “convective” fluxes
fs(-). It turns out that the numerical flux defined above must be extended in order to
preserve the stationary solution (BZH). Then, we must approximate the source term s(-)
as well.

Assuming the piecewise-constant topography (B44l), the source term —ghVz is a Dirac
distribution concentrated on the mesh faces. We start with the analysis of linear Riemann
problem similar to (B30), (B31), with Dirac distribution 0 (concentrated at the point
x = 0) as the source term.

Lemma 3.6. Let A, B,uy,ur € R. Consider the Riemann problem

% + A% —Bs,  inRx(0,00), (3.46)
u(,0) = uo(x) = {Z; T (3.47)
Then there ezists u, which solves(BZ0), [BAH) in the following sense:
(i) uwe C(]0,00),D"), where @ is the space of distributions on R,
(ii) u satisfies [BAG) in the sense of distributions,
(tit) u(0) = up.
Moreover, the solution is unique. If A # 0, then
u(z,t) = {Zzg ) ig,+ B/|A], g - igi ; 8 (3.48)

Proof. 1f A # 0, then the method of characteristics gives (B4F]). If A = 0, then the solution
is u = ug + Btd. By direct computation, one can show that (i) - (iii) indeed holds. The
uniqueness can be shown also using the method of characteristics. O

In order to derive an approximate Riemann solver, we need the value of the flux Au
on the line z = 0. We neglect the fact that, unlike the homogeneous case, the flux is not
continuous on the line z = 0 and use mean value,

1 1
— ( lim Au(z,t) + lim Au(z, t)) = Atup + A ug + §B sgn A.

z—0+ z—0—

Note that the result is equivalent to the Vijayasundaram flux (B21) with additional correc-
tion term %B sgn A. We generalize the correction term to the full system using the diagonal
decomposition of A;. We put

Bd = —gh(n -Vz) =~ —gh(zg — z1)0
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and thus derive the derive the numerical flux for the convective part of the inhomogeneous
shallow water equations.

Beonv (WL, Wg, 21, 2r) = Af (w)wy + AT (w,)wg
- %gh*(zR — zp)(sgn Ay (w,))es — %ghf*eQ (3.49)
The matrix sgn A; is defined analogously as the matrices AT,
sgn A, = T diag {sgn A1, sgn Ay, sgn Az} T~1 (3.50)

where T and A = diag {\1, A2, A3} are given by [BI3). As before, we put w, = 3 (w, + wg)
and h, = % (wr + wg). We will specify the value h,, = hy(wp,wg) later.

Now we are ready to derive finite volume discretization. We integrate (BI4l) over the
finite volume L € 7, and time subinterval (#/,#/t1). On the left hand side, we follow the
same path as in section B2

I+l 9
ow 0
ti L 5=

R ‘L‘ [w];rl - wJL] + Tj Z |F‘Hconv (w]L7 wg«zu ZLs 2R, nL,F)
re&(L)nFi

I'=LNR,
RET),

+77 Z T Heony (’wi, B (fEFa 'ij) yZLs 2L, ’nL,F) ) (3.51)

reg(L)nFPs

where Hconv (wL7 WR, 2L, ?R, n) - Qilgconv (QwLa QwR7 2Ly ZR)a with @ given by (B:m)
On the right hand side, we approximate
ti+1

/ / s(z,w)dzdt = —17gh’}, / <V20(x)) dz = —17gh’, / 2(z) (2) ds

OL

o 0
Pt —TjghjL Z |F|Z*(ZL,ZR) (n ) R (352)

re&(L) Lr
where 2, (21, 2r) = 3 (21 + 2g) is an approximation of z on the face I'. Using the fact
Q 2 = ey, we can put the terms from [BXI) and BXI) together and rewrite the FV

method as follows

, A , T o
’lUJL'i‘l — w]L — 7J Z %Htoml (’l_UJL, wﬂ%, 2L, ZR, nL,F) (353)
re&(L)nF}
I'=LNR,
ReTy,
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]

— 7 Z —Hiotal (’w]L,B (xp,'wi) ,ZL,ZL,’I’LLI) , LeT,, j=0,1,..., Ny —

L]

where the “total” flux is defined by

re&(L)nFPe

Htotal ('I.UL, WR, 2L, R, n) - Qilgtotal (@’LUL, QwRa 2L, ZR) ’ (354>
gtotal (wLa WRr, 2L, ZR) - gconv (wLa WRr, 2L, ZR) + ghLZ*eQ’ (355)
So far, we did not specify the value h,,. In (B34), we used the arithmetic mean h,, =

% (hr + hg). In the following, we show that this choice is no longer sufficient in the case
z # const.

Theorem 3.7. Assume
hi + h%
2

Consider the boundary condition BIR) with ¢”(z) = 0, or the boundary condition (BIJ).
Then ([B21) is the discrete solution of (B53).

Proof. We first analyze the numerical fluxes Hy,; on the interior interfaces. Let I' =
LNReFland j=0,1,..., Ny — 1. We put

hy(wp, wg) = , whenever wy, = (hz,0,0)",wg = (hg,0,0)". (3.56)

1 . ,
w, = (h*,O,O)T — 5 (wJL + ’w%{) y
¢ =/ ghy,
i\ 2 2
\ :WL) + (1)
*k 2 ?
2*25(2L+ZR).
By B3)-BI3), we have A;(w,) = TAT™!, where
—c 0 0 1 01 s —5 0
AN=|[0 00/, T=|-c 0 ¢, T'={0 o0 1],
0 0 ¢ 0 10 -3 = 0
Direct computation gives
c 10 L [—c 10 0 ¢t 0
A+<w*):§ ? c 0 ,A’('w*)zi A —c 0], sgnAt(w,)=1c 0 0
0 00 0 0 0 0 0 0

For the sake of brevity, we omit the time index j, hy = h]i and hgr = hzg. We get

c(hy — hg) — ghyc™ (zg — 21)
Stotal (WL, WR, 2L, 2R) = 3 & (hy + hg) — ghZ, +2ghpz, | =
0

N |

(2hf —h2 + 2hLz*) es.
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Moreover,

hy +he\> (B2 + 02
2h3 _ hz* +2hpz, =2 <%) _ (%) + 2hLZ’L + ZR
= hphg + hr (21 + 2R)
= hL<hR -+ ZR) + hLZL.
= hLHO + hLZL.
Then,
Hyoa (W, wh, 21, 2p, mpr) = g (heHo+ hpzp)npr. (3.57)

Due to the choice of boundary conditions, we get the same result for the boundary faces

[ =LNoN e F*,

Hiora (w), B (w1, ’ij) 2L, 2L, MLT) = g (heHo+ hpzp)npr. (3.58)
Now,
18 i
Z |L| Htotal (wL7 W, 2L, ZR; nL,F)
re&(L)nF}
I'=LNR,
RET,,

r j j
+ Z HHtomz (w1, B (zr,w}) , 21, 21, nLr)
Lef(L)NFP
g

= m (h,LHO + hLZL) Z |F"I’LL,F = 0

reé(E)

Since w}, = w’" by BZH), the equation B3 holds, and {w} } 17, j—o...ny is indeed the

discrete solution. O
We set
where p = &,
Ca
h’R7 M < _17 v V1L + ViR
e = —F—,
hoo(wp,wi) = /5283 + 5003, 1< p <1, ) h2 (3.59)
hL, ,u>1, G = V 9
hr + hg
hy = —

The choice (BD9) satisfies ([BAH). The derivation presented above was motivated by our
requirement that the stationary solution ([BZ3)) is preserved. The stationary solution (B43])
is an example of sub-critical (|v| < ¢) flow. Numerical experiments (see appendix [Bl) suggest
that the scheme works well also in trans-critical modes (|v| > c¢).
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Conclusions

In the first chapter, we have shown that many of the well-known properties of classical
Sobolev spaces W'P(Q), such as trace theorems and imbedding theorems, remain valid for
the broken Sobolev spaces W1P(Q,7;,). Obviously, the theory is not complete. It is well
known that the traces of functions from W1?(Q) belong to certain fractional-order Sobolev
spaces on JS). The fractional-order Sobolev spaces (the Sobolev-Slobodetskii spaces, and
more generally, the Besov Spaces) can be also obtained from the Sobolev Spaces by inter-
polation.

Concerning the broken Sobolev spaces W*?(€), 7},), we only considered the interpolation
with respect to the exponent p € [1, 00]. Let us now discuss the interpolation with respect
to the derivative order k. Naturally, we can define the broken Besov Space by interpolation

BSP9(Q, T;) = (Lp(Q),Wl’p(Q,Th))Sqa s€(0,1), p,q € [1,00].

It is not clear to us, whether it is possible to give a direct characterization of this space,
i.e. to give a formula for the norm. For simplicity, let us consider the case p = ¢ = 2. Then,
B#P1(Q) is the Sobolev-Slobodetskii space H*(2), with the norm

)=t
Hs(Q) — ||'U||L2 () + |d+23 ray.
Qx

x

(el

How can one generalize the Sobolev-Slobodetskii norm (&) to the context of broken spaces?
Motivated by ([CI04]), we are tempted to replace the singular factor |z — y| by | — y| + h.
This simple idea itself certainly does not work, but we can use it at least for the “jump
penalization” part of the norm. Analogously to (CG4]) we express the “jump penalization”
part of the norm with the help of the piecewise-constant projection FP,. We hypothesize
that the norm in the space H*(2,7,), s € (0,1), is equivalent to the following norm (at
least if the mesh is globally quasi-uniform):

|[(Phv) (@) — (Pho)(y)?
He(Q,T3) Z ol H*(K) / |x—y| t fy)dres dz dy.
KeTy,

loll7

However, we have no proof that it is actually the case.
The second open question of the theory of broken Sobolev spaces we consider important
is, whether the traces of functions of W?(2,7;) belong to a suitable fractional-order
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broken space on 0f2. Again, we have no proof that the analogy between classical and
broken spaces goes so far.

In the second chapter, we have analyzed the convergence of one-dimensional incomplete
interior penalty Galerkin (ITPG) method, with the error measured in the L?-norm. We have
shown that the order of convergence is optimal, if and only if the degree of polynomial
approximation is an odd number, and the penalization parameters are chosen in suitable
way. We were not able to prove similar result for the NIPG method.

Also, the theory presented here does not extend to multidimensional discretizations.
The proof of the one-dimensional Theorem is based on two key ingredients: the test
functions wy; , (see [ZZZ) and below), and the summation by parts ([ZG4]). Note that
the test function wy ,, is continuous at all faces (mesh points in 1D) except one. It can
be verified that such functions do not exist in 2D or 3D. These considerations suggest
that in order to obtain optimal convergence in L?, the penalization term (EII) should be
modified, as in (IBJ.]_rma.n_and_SLa.m_rﬂ, |2£H)8) Even with such modification, the analysis of
the multidimensional interior penalty methods on nonuniform meshes with higher-order
polynomial approximation appears to be plagued with technical obstacles which are not
easy to overcome.

In the third chapter, we have constructed a numerical flux of Vijayasundaram type for
shallow water equations. Regarding the accuracy, the numerical experiments show that
the Vijayasundaram flux is less diffusive than the Lax-Friedrichs flux and the results are
comparable with the Osher-Solomon flux. We have proved that the resulting finite vol-
ume scheme preserves the stationary solution of type “lake at rest”. We did not consider
other stationary states. Moreover, it would be interesting to analyze the stability of the
discrete stationary state. Certainly, higher order methods are needed. The Vijayasundaram
numerical flux can be also employed in the discontinuous Galerkin method.
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Appendix A

Numerical evidence for Chapter 2

Within this section we present numerical examples of 1D Poisson problem with Dirichlet
boundary conditions, for simplicity, namely

—u"(z) =2 z€(0,1), z(0) = z(1) = 0. (A1)

For completeness, we employ IIPG, NIPG and SIPG variants of discontinuous Galerkin
method although only the IIPG method was analyzed in section We carried out com-
putations using p-th degree polynomial approximations, p = 1,...,5, on two types of
partitions:

e uniform with h = 1/N, where N =24 -2% k=0,...,11,

e non-uniform with hs; = 16 N, hsiv1 = 16 N, haipo = 03 1,...,N/3, where

N =24-2% k=0,...,11, similar grids were used in (IG_].lzm.a.n_and_B.Jm_e_rﬁl Imud

We investigate the computational errors and the experimental orders of convergence
(EOC) measured in the [| - || 12(q)-norm. We employ the several settings of the penalization
parameters Hy,

(1) uniform grids, H, = h, k=1,..., N, Table [A]]

(ii) non-uniform grids, Hy = max(hy_1,ht), k=1,..., N — 1, Table [A2]
(iii) non-uniform grids, Hy = hy_1 + hg, k=1,...,N — 1, Table[A3
(iv) non-uniform grids, Hy, k=1,..., N — 1 given by (Z39), Table [A4]

The case (i) is presented for completeness, the cases (ii), (iii) exhibit the usual choices of
the penalty parameters and the case (iv) corresponds to the optimal choice of Hj, (for odd
p) introduced in Theorem

All computations were carried out with the aid of Objective Caml language (Leroy et al],
2008) and the GNU MP library (Granlund et all, 2007; Monniaux and Filliatrd, 200d), in
extended precision where the floating-point numbers have at least 300 bits (standard double
precision uses 64 bits).

We observe that
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SIPG method has always optimal order of convergence which is in agreement with
theoretical results,

NIPG and ITPG methods have optimal order of convergence for odd p on uniform
grids, which is in agreement with results of other authors, see, e.g., m
Section 1.5, Table 1.2).

Y Y

ITPG method has optimal order of convergence for odd p on non-uniform grids only
if the penalty parameters Hj, are chosen according (239), which is in agreement with

Theorem 6.

I[TPG method with Hy, = hy_1 + hy gives optimal order of convergence for p = 1. This
is caused by the fact that cases (iii) and (iv) are identical for p = 1.

NIPG method has only suboptimal order of convergence for odd p on non-uniform
grids for all three tested choices of the penalty parameters. The optimal choice of Hy,
for NIPG (similarly as (Z39) for IIPG) remains an open problem.
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p=1 NIPG PG SIPG
N ||€h||L2(Q) EOC ||€h||L2(Q) EOC ||€h||L2(Q) EOC
1536 | 6.956E-08 2.000 | 1.410E-08 1.997 | 8.406E-09 1.994
3072 | 1.739E-08 2.000 | 3.529E-09 1.999 | 2.106E-09 1.997
6144 | 4.347E-09 2.000 | 8.826E-10 1.999 | 5.271E-10 1.998
12288 | 1.087E-09 2.000 | 2.207E-10 2.000 | 1.319E-10 1.999
24576 | 2.717E-10 2.000 | 5.518E-11 2.000 | 3.297E-11 2.000
49152 | 6.792E-11 2.000 | 1.380E-11 2.000 | 8.244E-12 2.000
p= 2
1536 | 2.182E-08 2.001 | 8.206E-10 2.005 | 2.999E-12 2.998
3072 | 5.452E-09 2.001 | 2.048E-10 2.003 | 3.750E-13 2.999
6144 | 1.363E-09 2.000 | 5.114E-11 2.001 | 4.689E-14  3.000
12288 | 3.407E-10 2.000 | 1.278E-11 2.001 | 5.863E-15 3.000
24576 | 8.516E-11 2.000 | 3.194E-12 2.000 | 7.329E-16 3.000
49152 | 2.129E-11 2.000 | 7.985E-13 2.000 | 9.161E-17 3.000
p= 3
768 | 1.025E-13 4.009 | 2.861E-14 3.998 | 2.078E-14 3.997
1536 | 6.383E-15 4.005 | 1.789E-15 3.999 | 1.300E-15 3.998
3072 | 3.983E-16 4.002 | 1.119E-16 3.999 | 8.133E-17 3.999
6144 | 2.488E-17 4.001 | 6.994E-18 4.000 | 5.084E-18 4.000
12288 | 1.554E-18 4.001 | 4.372E-19 4.000 | 3.178E-19 4.000
24576 | 9.711E-20 4.000 | 2.732E-20 4.000 | 1.987E-20 4.000
49152 | 6.069E-21 4.000 | 1.708E-21 4.000 | 1.242E-21 4.000
p=4
768 | 2.077E-14 4.000 | 8.492E-16 4.009 | 1.031E-17 4.999
1536 | 1.298E-15 4.000 | 5.290E-17 4.005 | 3.223E-19 4.999
3072 | 8.114E-17 4.000 | 3.301E-18 4.002 | 1.008E-20 5.000
6144 | 5.071E-18 4.000 | 2.062E-19 4.001 | 3.149E-22  5.000
12288 | 3.169E-19 4.000 | 1.288E-20 4.001 | 9.840E-24 5.000
24576 | 1.981E-20 4.000 | 8.048E-22 4.000 | 3.075E-25 5.000
49152 | 1.238E-21 4.000 | 5.030E-23 4.000 | 9.610E-27 5.000
p= 5
768 | 1.663E-20 6.005 | 5.211E-21 5.999 | 4.436E-21 5.999
1536 | 2.594E-22 6.002 | 8.145E-23 6.000 | 6.934E-23 5.999
3072 | 4.050E-24 6.001 | 1.273E-24 6.000 | 1.084E-24 6.000
6144 | 6.326E-26 6.001 | 1.989E-26 6.000 | 1.694E-26 6.000
12288 | 9.882E-28 6.000 | 3.108E-28 6.000 | 2.646E-28 6.000
24576 | 1.544E-29 6.000 | 4.856E-30 6.000 | 4.135E-30 6.000
49152 | 2.412E-31 6.000 | 7.588E-32 6.000 | 6.461E-32 6.000

Table A.1: Computational error and EOC for uniform partitions, H, =h, k=1,..., N
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p= NIPG IIPG SIPG
N HehHLz(Q) EOC HehHLz(Q) EOC HehHLz(Q) EOC
1536 | 1.462E-06 0.760 | 1.830E-07 1.149 | 2.144E-08 1.995
3072 | 7.887E-07 0.890 | 8.663E-08 1.079 | 5.370E-09 1.998
6144 | 4.090E-07 0.947 | 4.212E-08 1.040 | 1.344E-09 1.999
12288 | 2.082E-07 0.974 | 2.076E-08 1.020 | 3.360E-10 1.999
24576 | 1.050E-07 0.987 | 1.031E-08 1.010 | 8.403E-11 2.000
49152 | 5.275E-08 0.994 | 5.136E-09 1.005 | 2.101E-11  2.000

1536 | 2.136E-08 2.026 | 1.086E-09 2.018 | 1.794E-11 3.002
3072 | 5.290E-09 2.013 | 2.700E-10 2.009 | 2.241E-12 3.001
6144 | 1.316E-09 2.007 | 6.728E-11 2.004 | 2.801E-13 3.000
12288 | 3.283E-10 2.003 | 1.680E-11 2.002 | 3.501E-14 3.000
24576 | 8.198E-11 2.002 | 4.196E-12 2.001 | 4.375E-15 3.000
49152 | 2.048E-11 2.001 | 1.049E-12 2.001 | 5.469E-16 3.000

768 | 2.546E-11 2.886 | 2.992E-13 3.806 | 1.988E-13 4.005
1536 | 3.307E-12 2.944 | 2.446E-14 3.613 | 1.240E-14 4.003
3072 | 4.213E-13 2973 | 2.357E-15 3.375 | 7.744E-16 4.001
6144 | 5.317E-14 2.986 | 2.584E-16 3.189 | 4.838E-17 4.001
12288 | 6.677E-15 2.993 | 3.040E-17 3.088 | 3.023E-18 4.000
24576 | 8.366E-16 2.997 | 3.694E-18 3.040 | 1.889E-19 4.000
49152 | 1.047E-16 2.998 | 4.557E-19 3.019 | 1.181E-20 4.000

768 | 6.598E-14 4.055 | 3.501E-15 4.041 | 2.003E-16 5.006
1536 | 4.043E-15 4.029 | 2.159E-16 4.019 | 6.246E-18 5.003
3072 | 2.501E-16 4.015 | 1.341E-17 4.009 | 1.950E-19 5.001
6144 | 1.555E-17 4.007 | 8.356E-19 4.005 | 6.091E-21 5.001
12288 | 9.695E-19 4.004 | 5.214E-20 4.002 | 1.903E-22 5.000
24576 | 6.052E-20 4.002 | 3.256E-21 4.001 | 5.946E-24 5.000
49152 | 3.780E-21 4.001 | 2.034E-22 4.001 | 1.858E-25 5.000

p= 5

768 | 1.835E-17 4.916 | 1.675E-19 5.980 | 1.507E-19 6.005
1536 | 5.902E-19 4.959 | 2.722E-21 5.944 | 2.351E-21 6.003
3072 | 1.871E-20 4.980 | 4.682E-23 5.861 | 3.670E-23 6.001
6144 | 5.887E-22 4.990 | 9.080E-25 5.688 | 5.731E-25 6.001
12288 | 1.846E-23 4.995 | 2.101E-26 5.434 | 8.953E-27 6.000
24576 | 5.780E-25 4.997 | 5.667E-28 5.212 | 1.399E-28 6.000
49152 | 1.808E-26 4.999 | 1.663E-29 5.091 | 2.185E-30 6.000

Table A.2: Computational error and EOC for non-uniform partitions, Hy = max(hy_1, hy),
k=1,...,N—1
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p=1 NIPG 1IPG SIPG

N ||€h||L2(Q) EOC ||€h||L2(Q) EOC ||€h||L2(Q) EOC
1536 | 2.265E-06 0.791 | 5.846E-08 1.994 | 2.082E-08 1.989
3072 | 1.211E-06 0.903 | 1.464E-08 1.997 | 5.224E-09 1.995
6144 | 6.256E-07 0.953 | 3.665E-09 1.999 | 1.308E-09 1.997
12288 | 3.178E-07 0.977 | 9.167E-10 1.999 | 3.274E-10 1.999
24576 | 1.602E-07 0.989 | 2.292E-10 2.000 | 8.189E-11 1.999
49152 | 8.040E-08 0.994 | 5.732E-11 2.000 | 2.048E-11 2.000
p= 2
1536 | 2.312E-08 2.029 | 1.444E-09 2.032 | 1.751E-11 2.998
3072 | 5.720E-09 2.015 | 3.569E-10 2.016 | 2.191E-12 2.999
6144 | 1.423E-09 2.008 | 8.870E-11 2.008 | 2.740E-13  2.999
12288 | 3.547E-10 2.004 | 2.211E-11 2.004 | 3.426E-14 3.000
24576 | 8.856E-11 2.002 | 5.520E-12 2.002 | 4.282E-15 3.000
49152 | 2.212E-11 2.001 | 1.379E-12 2.001 | 5.353E-16 3.000
p= 3
768 | 2.701E-11 2.887 | 3.878E-13 3.306 | 1.964E-13 4.001
1536 | 3.508E-12 2.945 | 5.540E-14 2.807 | 1.227E-14  4.000
3072 | 4.469E-13 2.973 | 7.672E-15 2.852 | 7.671E-16 4.000
6144 | 5.639E-14 2.986 | 1.013E-15 2.921 | 4.794E-17 4.000
12288 | 7.082E-15 2.993 | 1.301E-16 2.960 | 2.996E-18 4.000
24576 | 8.873E-16 2.997 | 1.649E-17 2.980 | 1.873E-19 4.000
49152 | 1.110E-16 2.998 | 2.076E-18 2.990 | 1.170E-20 4.000
p=14
768 | 6.746E-14 4.056 | 4.660E-15 4.065 | 1.984E-16 5.003
1536 | 4.131E-15 4.029 | 2.846E-16 4.033 | 6.195E-18 5.001
3072 | 2.556E-16 4.015 | 1.759E-17 4.017 | 1.935E-19 5.001
6144 | 1.589E-17 4.008 | 1.093E-18 4.008 | 6.046E-21  5.000
12288 | 9.905E-19 4.004 | 6.811E-20 4.004 | 1.889E-22 5.000
24576 | 6.182E-20 4.002 | 4.251E-21 4.002 | 5.903E-24 5.000
49152 | 3.861E-21 4.001 | 2.655E-22 4.001 | 1.845E-25 5.000
p= 5
768 1.877E-17 4.916 | 3.349E-19 5.172 | 1.498E-19 6.003
1536 | 6.036E-19 4.959 | 1.117E-20 4.906 | 2.337E-21 6.002
3072 | 1.913E-20 4.980 | 3.696E-22 4.918 | 3.650E-23 6.001
6144 | 6.021E-22 4.990 | 1.193E-23 4.953 | 5.702E-25 6.000
12288 | 1.888E-23 4.995 | 3.793E-25 4.975 | 8.908E-27 6.000
24576 | 5.911E-25 4.997 | 1.196E-26 4.987 | 1.392E-28 6.000
49152 | 1.849E-26 4.999 | 3.753E-28 4.994 | 2.175E-30 6.000

Table A.3: Computational error and EOC for non-uniform partitions, Hy, = hi_1 + hg,
k=1,...,N—1
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p= NIPG IIPG SIPG
N HehHLz(Q) EOC HehHLz(Q) EOC HehHLz(Q) EOC
1536 | 2.265E-06 0.791 | 5.846E-08 1.994 | 2.082E-08 1.989
3072 | 1.211E-06 0.903 | 1.464E-08 1.997 | 5.224E-09 1.995
6144 | 6.256E-07 0.953 | 3.665E-09 1.999 | 1.308E-09 1.997
12288 | 3.178E-07 0.977 | 9.167E-10 1.999 | 3.274E-10 1.999
24576 | 1.602E-07 0.989 | 2.292E-10 2.000 | 8.189E-11 1.999
49152 | 8.040E-08 0.994 | 5.732E-11 2.000 | 2.048E-11 2.000

1536 | 2.202E-08 2.029 | 1.196E-09 2.028 | 1.781E-11 3.000
3072 | 5.451E-09 2.015 | 2.961E-10 2.014 | 2.226E-12  3.000
6144 | 1.356E-09 2.007 | 7.367E-11 2.007 | 2.783E-13  3.000
12288 | 3.380E-10 2.004 | 1.837E-11 2.004 | 3.479E-14 3.000
24576 | 8.440E-11 2.002 | 4.587E-12 2.002 | 4.349E-15 3.000
49152 | 2.109E-11 2.001 | 1.146E-12 2.001 | 5.437E-16 3.000

768 | 2.572E-11 2.884 | 2.620E-13 4.002 | 1.984E-13 4.004
1536 | 3.344E-12 2.943 | 1.637E-14 4.001 | 1.238E-14 4.002
3072 | 4.262E-13 2.972 | 1.023E-15 4.000 | 7.735E-16 4.001
6144 | 5.379E-14 2.986 | 6.390E-17 4.000 | 4.833E-17 4.000
12288 | 6.755E-15 2.993 | 3.993E-18 4.000 | 3.020E-18 4.000
24576 | 8.465E-16 2.997 | 2.496E-19 4.000 | 1.887E-19 4.000
49152 | 1.059E-16 2.998 | 1.560E-20 4.000 | 1.180E-20 4.000

768 | 6.614E-14 4.056 | 3.590E-15 4.051 | 2.001E-16 5.005
1536 | 4.051E-15 4.029 | 2.205E-16 4.025 | 6.242E-18 5.002
3072 | 2.506E-16 4.015 | 1.367E-17 4.012 | 1.949E-19 5.001
6144 | 1.558E-17 4.007 | 8.507E-19 4.006 | 6.088E-21 5.001
12288 | 9.714E-19 4.004 | 5.306E-20 4.003 | 1.902E-22 5.000
24576 | 6.063E-20 4.002 | 3.313E-21 4.001 | 5.944E-24 5.000
49152 | 3.787E-21 4.001 | 2.069E-22 4.001 | 1.857E-25 5.000
p= 5
768 | 1.837E-17 4.916 | 1.679E-19 6.005 | 1.507E-19 6.005
1536 | 5.907E-19 4.958 | 2.620E-21 6.002 | 2.350E-21 6.002
3072 | 1.873E-20 4.979 | 4.090E-23 6.001 | 3.669E-23 6.001
6144 | 5.893E-22 4.990 | 6.389E-25 6.001 | 5.731E-25 6.001
12288 | 1.848E-23 4.995 | 9.980E-27 6.000 | 8.952E-27 6.000
24576 | 5.786E-25 4.997 | 1.559E-28 6.000 | 1.399E-28 6.000
49152 | 1.810E-26  4.999 | 2.436E-30 6.000 | 2.185E-30 6.000

Table A.4: Computational error and EOC for non-uniform partitions, Hy, k=1,...,N—1

given by (Z39)
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Appendix B

Numerical evidence for Chapter 3

Test problems with z =0

We compare the Vijayasundaram flux proposed in section with the Lax-Friedrichs flux
and the Osher-Solomon flux (Zhao et all, [1996). We employ the Riemann problem for one-
dimensional Shallow Water equations (B2, restricted to the spatial domain Q = (—1,1)

ow 0

w(a,0) = § e e v )€ (21,0), (B.2)
(hg, hrvig, hrver)', x € (0,1),

with the boundary conditions ([BI). We present numerical solution for two sets of ini-
tial datums. In both cases, we compare the discrete solutions computed with the aid of
the above mentioned fluxes with analytical solution. The computations are performed on
uniform mesh with Ngppy = 100,200, 400, 800, 1600, 3200 elements, and C'FL = 0.9.

Test problem with continuous solution. The initial datum for the first test problem
is given by

hL = 1, h’R = 2,
vip =0, ViR = 2 (\/ ghr — \/ghL) ;
Var, :0, UQRZO.

The solution of the Riemann problem (BI),([BJ) reads

hL7 % < )\3L7
X 2 X

h(z,t) = é [\/ghL + % (; - )\3L)] , Az < § < Asg,
hg, T > Asr,
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0, T < A3,
vi(z,t) = 2 (2= Ns) . Mg < £ < Asg,

V1R, T > Asr,
vo(z,t) =0,

where \3;, = v ++/ghr and A\sg = v;, + v/ghg. In this case, the solution is 3-rarefaction
wave. The solution is a continuous function.

The numerical results computed on a mesh with Ngpgy = 100 elements are shown in
Fig. Bl The numerical results for finer meshes are summarized in Tab. [BJl

Test problem with discontinuous solution

. The initial data and the exact solution
of the second test problem are given by

h T <3
hy =2, he=1, hiz,t)=1{"1 1 9
hR7 %> 397
1 . 2 < \/3g,
v = 5\/3 , iR =0, wv(z,t)= {UIL . g
uir, 7> V39,

'UQL::[, ’UQR:]_, ’UQ(ZL‘,t):l.

In this case, the solution is 3-shock wave, with a discontinuity at the line x — /39t = 0.
The numerical results computed on a mesh with Ngpgy = 100 elements are shown in Fig.
[B2 The numerical results for finer meshes are summarized in Tab.

Test problem with z # 0

The numerical method based on Vijayasundaram flux proposed in section was tested

on a problem with topography from (IG_aJJmLéLe.LaJJ, |2ﬂ03) The computation domain,
topography function, boundary conditions and initial condition were

Q= (0,25),
2-—0. —10.0)? 2.0, 8.
oa) = 0 0.05(z — 10.0)*, =z € ( 9,80),
0, otherwise

h’U1<.§L’ = O,t) = Qm = 153,
h(x = 25,t) = huy = 0.66,
(h, hvy, hva)T (2, = 0) = (hou, 0,0)7.

The computation was carried out using an uniform mesh of Ng;gy = 1000 elements, with
CFL = 0.9. The stationary solution is depicted in Fig. B3

76



exact solution
> | Vijayasundaram ——
Lax-Friedrichs ---------
Osher-Solomon ~ x

18
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0.1

0.01

0.001

0.0001

le-05

le-06

Vijayasundaram ——
x Lax-Friedrichs ---------
Osher-SoI(I)mon x

1e-07 ! .
-1 05 0 Py )

Figure B.1: Rarefaction wave test problem. Top: water height h at ¢t = 0.1. Bottom: Dis-
cretization error.
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exact solution
Vijayasundaram ——

Lax-Friedrichs ---------
Osher-Solomon X

0.1

0.01

0.001

0.0001
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Vijayasundaram ——
Lax-Friedrichs ---------
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1e-07 : L :
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Figure B.2: 3-shock wave test problem. Top: water height h at ¢ = 0.1. Bottom: Discreti-
azation error.
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Ngren | Lax-Friedrichs  Osher-Solomon  Vijayasundaram
100 3.443e-01 2.495e-01 2.569e-01
200 2.196e-01 1.570e-01 1.607e-01
400 1.362e-01 9.639e-02 9.822e-02
800 8.241e-02 5.787e-02 5.876e-02
1600 4.873e-02 3.406e-02 3.449e-02
3200 2.825e-02 1.971e-02 1.992e-02
EOC 0.79 0.79 0.79

Table B.1: 3-rarefaction wave test problem. Discretization error at ¢ = 0.1 measured in the
L'-norm, and the corresponding experimental order of convergence (EOC).

Ngrey | Lax-Friedrichs  Osher-Solomon  Vijayasundaram
100 2.407e-01 1.481e-01 1.407e-01
200 1.279e-01 7.612e-02 7.248e-02
400 6.412e-02 3.784e-02 3.600e-02
800 3.168e-02 1.810e-02 1.711e-02
1600 1.604e-02 9.060e-03 8.567e-03
3200 7.916e-03 4.718e-03 4.485e-03

EOC 1.01 0.94 0.93

Table B.2: 3-shock wave test problem. Discretization error at ¢ = 0.1 measured in the
L'-norm, and the corresponding experimental order of convergence (EOC).
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Figure B.3: The free surface H about the bottom z.
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