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Supervisor’s e-mail address: benesv@karlin.mff.cuni.cz

Abstract: The background theory of point processes, spatio-temporal point processes,
random measures and random closed sets is given in the beginning of the thesis. Then
the special case of spatio-temporal Cox processes constructed from Lévy basis is studied.
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Abstract: Na začátku práce je přehled základńı teorie bodových proces̊u, časoprostorových
bodových proces̊u, náhodných měr a náhodných uzavřených množin. Dále jsou studovány
časoprostorové Coxovy procesy, které jsou konstruovány pomoćı Lévyho báźı. Za použit́ı
vytvořuj́ıćıho funkcionálu jsou odvozeny základńı charekteristiky. Je definován a studován
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Cox̊uv proces na křivce. Analýza takovýchto proces̊u vede k nelineárńım filtrovaćım metodám.
Jsou diskutovány také metody umožňuj́ıćı výběr modelu. Tyto metody jsou použity na
simulovaných datech, nejdř́ıve na jednoduchém diskrétńım př́ıpadě a pak i na spojitém
př́ıpadě se spirálovitou křivkou. Poté je provedena analýza neurofyziologických dat. V
pr̊uběhu experimentu byla zaznamenávána aktivita neurových buněk z hippocampu u krysy
hledaj́ıćı j́ıdlo v omezeném prostoru zároveň s polohou zv́ıřete. Trasa zv́ıřete a akčńı
potenciály (spiky) představuj́ı křivku a body na ńı. Na konci práce jsou daľśı možné př́ıstupy
k neurofyziologickým dat̊um. Prvńı je odhad podmı́něné intensity časového procesu spik̊u
pomoćı rekurzivńıho filtrováńı. Ve druhém př́ıpadě je na trasu krysy spolu s náhodnou ř́ıd́ıćı
funkćı intenzity procesu spik̊u nahĺı̌zeno jako na náhodnou uzavřenou kótovanou množinu.

Kĺıčová slova: Filtrováńı, Cox̊uv bodový proces, Časoprostorový bodový proces, Náhodná
uzavřená kótovaná množina, Náhodná mı́ra, Lévyho báze
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Introduction

Point processes and especially spatio-temporal point processes are widely used in many
applications to model phenomena from the nature, for example in epidemiology ([7], [21]),
forest fires description ([37], [40]), urban development [23], earthquakes modelling ([38],
[17]), in weed species growth [12] or in evaluation of spiking activity of neuron [34]. In
the last application experiments reveal that the variance of the number of points is higher
than their expected value. This suggests the use of the Cox point process model.

The background theory of point processes is reviewed in Chapter 1, together with the
theory of random measures and random closed sets. The special case of random closed
set, the fibre process, is introduced. At the end of Chapter 1 there is a review of Markov
Chain Monte Carlo methods.

The class of the Cox processes with driving intensity function constructed from Lévy
basis is studied in Chapter 2. This work was published in our paper [29]. The theory
was developed simultaneously, but independently of [30]. Our approach is based on the
generating functional which enables us to derive the theoretical characteristics of the
process. We study the case when the Lévy basis is a Poisson measure in more details.
The ambit set [5] is used in the construction of the model, see Corollary 2.2 and 2.3. This
theory is applied to the process on a curve (Theorem 2.4). We consider two models for the
intensity function of the Poisson measure. The first one is the model of piecewise constant
function and the second model uses the Zernicke polynomials. We derived the formulas for
intensity measures and second-order factorial moment measures for both models (Corollary
2.5 and 2.6).

The solution of the nonlinear filtering problem of the driving intensity function of a
spatio-temporal Cox point process given its observed events is the conditional expectation.
The Bayesian Markov Chain Monte Carlo approach enables to simulate from the target
conditional distribution, the relevant methods are developed in Section 2.3. Model selection
methods are based on posterior predictive distributions. Summary statistics is computed
from the data and compared with the value of that statistics of Cox process with estimated
driving intensity function. Residual analysis is based on the innovation process. This
method suits well to our model of a point process on the curve and the formula for the
variance of scaled innovation, especially for Pearson innovation, is derived (Theorem 2.5).

Chapter 3 starts with a discrete simulation of the model from Section 2.2 on a grid.
The curve is represented by a random walk on a grid. The algorithm of the simulation
is described and the Fano factor and driving intensity function are estimated. This study
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contains also an analysis of approximation precision (Lemma 3.1) and it was published
in our paper [9]. Then there is a simulation in continuous space and time in Subsection
3.1.2. The real data from the neurophysiological experiment are evaluated in Section 3.2.
The experimental animal searching for food was moving in a bounded arena and its track
with times and locations of action potentials (spikes) was recorded. The aim is to model
the experiment mathematically and also a further hypothesis is studied in Chapter 4.
Numerical results are presented graphically, this study was published in our paper [8].

The last Chapter 4 discusses other approaches to the evaluation of neurophysiological.
The first one is known from the literature and it is based on sequential filtering of point
processes in time. Here, the data are viewed as a temporal point process with spatial
marks. The advantage of this method is that it enables us to work with a larger data set
since it is computationally faster. However it does not enable to evaluate point process
characteristics. In the final approach, the curve is random and together with the random
driving intensity function of the process of spikes forms a random marked closed set
(RMCS). We show that RMCSs of integer dimension (nonzero and not full) induce weighted
random measures. Then we introduce the concept of second-order intensity-reweighted
stationary weighted measure and develop a test of the random-field model. In this situation
it can be applied to the above inhomogeneous data from the neurophysiological experiment
to answer the question about the stochastic independence of the driving intensity on the
random track.

The research work was supported by the Grant Agency of the Academy of Sciences of
the Czech Republic, Project no. IAA101120604, ”Spatio-temporal point processes”.
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Chapter 1

Theoretical Background

1.1 Point processes

Spatial point processes are basic models in stochastic geometry which can describe various
spatial data. They are used in many applications like plant ecology, forestry (positions
of trees), computational neurophysiology (spiking activity), zoology (burrows or nests),
geography (position of towns), seismology etc.

Definition 1.1: Let (Ω,F ,P) be a probability space, X a locally compact complete separable
metric space with Borel σ−algebra B(X ), N the system of locally finite subsets of X with
σ−algebra N

N = σ (N ∈ N ,#(N ∩ A) = m,A ∈ B(X ),m ∈ N0) . (1.1)

A measurable mapping X from (Ω,A) to (N ,N) is called a point process.
Distribution of the point process X is a probability measure Π defined by

Π(F ) = P({ω;X(ω) ∈ F}) for F ∈ N

.

In the following text we will assume either X = R
d or X = S ⊂ R

d. We denote
Bd = B(Rd) the Borel σ−algebra and Bd0 ⊂ Bd system of bounded sets. From the Definition
1.1 we can see that for each Borel set A ⊂ X , X(A) ≡ #(X ∩A) (number of points of X
in A) is a random variable. Then X(.) is an integer-valued random measure. Also by X
we sometimes mean the image of the mapping X, i.e. a locally finite set of points.

Definition 1.2: If X(X ) is almost surely finite then the point process X is called finite.

Definition 1.3: The intensity measure Λ is defined as Λ(A) = E(X(A)) for each A ∈
B(X ).

If the intensity measure of a point process X on R
d is absolutely continuous with respect

to the Lebesgue measure, i.e. there is a non-negative function λ such that

Λ(A) =

∫

A

λ(x)dx (1.2)
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then the density λ is called an intensity function of X.

Definition 1.4: Probabilities P({ω;X(ω,A) = 0}), A ∈ B(X ) are called void probabilities.

Theorem 1.1: The distribution of a point process X is determined by its void probabilities.

Proof: See [36]. �

Definition 1.5: A point process X on R
d is called stationary if its distribution is invariant

under translations, i.e. the distribution of the translated process (X+x) = {(y + x), y ∈ X}
is the same as the distribution of X itself for all x ∈ R

d.
A point process X is called isotropic if its distribution is invariant under rotation around

origin. It means the distribution of the rotated point process OX = {Ox, x ∈ X} is the
same as the distribution of X for all rotations O around origin O ∈ R

d.
A point process is called motion invariant if it is both stationary and isotropic.

Lemma 1.1: If the point process X is stationary with an intensity measure Λ then Λ is a
multiple of the Lebesgue measure.

Proof: It follows since for a stationary point process it must hold that Λ(B) = Λ(B + y)
for all B ∈ B(Rd) and for all y ∈ R

d and the Lebesgue measure is the only measure (except
the multiple of it) which is invariant under translation. �

From previous lemma 1.1 it follows that a stationary point process has the intensity
function and this intensity function is constant. This constant is called for short intensity.

Definition 1.6: The n-order moment measure of a point process X is defined by

M (n)(A) = E

∑

X1,...Xn∈X

1[(X1,...,Xn)∈A], A ∈ (Bd)n. (1.3)

The n-order factorial moment measure of a point process X is defined by

α(n)(A) = E

6=∑

X1,...Xn∈X

1[(X1,...,Xn)∈A], A ∈ (Bd)n, (1.4)

where the symbol 6= means that Xi 6= Xj for i 6= j.

Obviously the first moment measure is equal to the first factorial moment measure
M (1) = α(1) and it is also the intensity measure Λ.

Definition 1.7: If the second-order factorial moment measure α(2)(A) can be expressed as

α(2)(A) =

∫ ∫
1[(ξ,ν)∈A]λ

(2)(ξ, ν)dξdν,
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where λ(2) is a non-negative function, then λ(2) is called the second-order product density.
If both the intensity function λ and the second order product density λ(2) exist, the pair

correlation function is defined by

ρ(ξ, ν) =
λ(2)(ξ, ν)

λ(ξ)λ(ν)
, ξ, ν ∈ X . (1.5)

The interpretation of λ(2)(ξ, ν)dξdν is as probability of observing a pair of points in two
infinitesimally small balls with centres ξ and ν.

A measure µ on X is called a diffusion measure if Λ({ξ}) = 0 for ∀ξ ∈ X .

Definition 1.8: Let Λ be a locally finite diffusion measure on X . The point process X
such that

1. random variable X(B) has the Poisson distribution with the parameter Λ(B), B ∈
Bd0;

2. X(B1), X(B2), . . . X(Bn) are independent random variables for each n ∈ N and each
B1, B2 . . . , Bn ∈ Bd0 disjoint Borel sets;

is called the Poisson point process (on X with intensity measure Λ). Such a process we will
denote Poisson process (X ,Λ).
If X is a Poisson process on S ⊆ R

d with constant intensity function then it is called a
homogeneous Poisson process. Otherwise it is called inhomogeneous.
The homogeneous Poisson process with the intensity measure equal to the Lebesgue measure
is called the unit Poisson process.
The random measure X(.) of a Poisson point process X is called a Poisson random measure.

Definition 1.9: Let µ be a locally finite diffusion measure on R
d and B ∈ Bd such that

0 < µ(B) < ∞. Let n ∈ N, X1, X2, . . . , Xn be independent identically distributed d-
dimensional random vectors such that:

P(Xi ∈ A) =
µ(A)

µ(B)

for each A ⊂ B,A ∈ Bd. Then X = (X1, X2, . . . , Xn) is called binomial point process on
B.

Theorem 1.2: Let X be a Poisson point process on B ∈ Bd with intensity measure Λ
such that Λ(B) <∞. Then, conditionally on X(B) = n, X is binomial process on B with
µ = Λ.

Theorem 1.3: Let Λ be a locally finite diffusion measure on R
d. Then Poisson process

with intensity measure Λ exists and it is uniquely determined by Λ.
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Figure 1.1: Poisson point process. Left a) - Homogeneous Poisson process with intensity
5 in observation window [0, 10] × [0, 10], Right b) - Inhomogeneous Poisson process with
intensity function λ(x, y) = 25 exp(−x/3) in observation window [0, 10] × [0, 10] .

Definition 1.10: Suppose that Z =
{
Z(ξ), ξ ∈ R

d
}

is a nonnegative random field so that
with probability one ξ → Z(ξ) is a locally integrable function. If the conditional distribution
of a point process X given Z = z is that of a Poisson process on R

d with the intensity
function z, then X is called a Cox process driven by Z. Z is called a driving intensity
function and Λ(B) =

∫
B
Z(ξ)dξ, B ∈ B is a driving (intensity) measure of the Cox process.

The Cox process is a generalization of the Poisson process. It is also called a doubly
stochastic Poisson point process (see [16]).

Example 1.1: [Mixed Poisson process] If any realization of the random field Z from
definition 1.10 is constant in R

d then the Cox process driven by random variable Z is
called a mixed Poisson process. You can see three realizations of a mixed Poisson process
in Figure 1.2.

Definition 1.11: Y : Ω×R
d → R is a Gaussian random field if all of its finite-dimensional

distributions are multidimensional normal distributions. Let X be a Cox process on R
d

driven by Z = exp(Y ) where Y is a Gaussian random field. Then X is called a log-
Gaussian Cox process (LGCP).

Definition 1.12: Let Xg be a point process and W be a complete separable metric space.
Let a random mark wi ∈ W be attached to each point xi ∈ Xg then

Xm = {(xi, wi)}

is a marked point process with points in R
d and marks in W. The process Xg is called a

ground process of the marked point process Xm. If the marks ki are identically distributed
with distribution Q on B(W), then Q is called the mark distribution.
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Figure 1.2: A mixed Poisson point process in observation window [0, 10] × [0, 10] ⊂ R
2.

The realization of driving intensity function is 3.44 (left), 6.42 (middle) and 1.67 (right).

Example 1.2: [Marked Poisson process] IfX is a Poisson process (X ,Λ) and conditionally
on X, the marks wi attached to each point xi ∈ X are mutually independent. Then
Xm = {(xi, wi) ;xi ∈ X} is called a marked Poisson process.

Definition 1.13: Let X be a point process with intensity measure Λ. Then the Campbell
measure of X is defined as

C(A) = E

∑

x∈X

1[(x,X)∈A], A ∈ Bd × N. (1.6)

The Campbell measure can be also characterized by the property

C(B × U) = EX(B)1[X∈U ], U ∈ N, B ∈ Bd (1.7)

Definition 1.14: Let (S,S) and (T, T ) are two measurable spaces. Then the function
P : S × T 7→ [0, 1] is called Markov kernel from (S,S) to (T, T ) if

1. P (., A) is non-negative measurable function for all A ∈ T ,
2. P (x, .) is a probability measure for all x ∈ S.

Lemma 1.2: Let X be a point process with a σ-finite intensity measure Λ. Then there
exists a Markov kernel P from (Rd,Bd) to (N ,N) such that

C(B × U) =

∫

B

P (x, U)Λ(dx) B ∈ Bd, U ∈ N. (1.8)

The Markov kernel P (x, U) = Px(U) is called a Palm distribution at the point x ∈ R
d.

Proof: See [18]. �
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Definition 1.15: Let X be a stationary point process with intensity λ. Then the reduced
second moment measure K is defined as

λK(B) =

∫

N

X(B \ {0})P0(dX) B ∈ Bd.

If X is stationary and isotropic define the K-function as

K(r) = K(b(0, r)), r > 0,

where b(0, r) is a ball centred in 0 with radius r.

1.1.1 Finite point processes with density

Let XP be a finite Poisson point process on R
d with a diffusion intensity measure ΛP . Then

ΛP (Rd) < +∞ and the distribution of XP can be expressed [36] as

Π(U) = P(XP ∈ U) =
∞∑

n=0

P
(
XP (Rd) = n

)
P
(
XP ∈ U |XP (Rd) = n

)
=

=
∞∑

n=0

ΛP (Rd)n

n!
exp{−ΛP (Rd)}

∫

Rd

. . .

∫

Rd

1[(x1,x2,...xn)∈U ]
ΛP (dx1)

ΛP (Rd)
. . .

ΛP (dxn)

ΛP (Rd)
=

= exp{−ΛP (Rd)}

[
1[∅∈U ] +

∞∑

n=1

1

n!

∫

Rd

. . .

∫

Rd

1[(x1,x2,...xn)∈U ]ΛP (dx1) . . .ΛP (dxn)

]

for U ∈ N.
Suppose that the distribution of a finite point process X can be expressed by

P(X ∈ U) = exp{−ΛP (Rd)}×

×

[
p(∅)1[∅∈U ] +

∞∑

n=1

1

n!

∫

Rd

. . .

∫

Rd

1[(x1,x2,...xn)∈U ]p(x1, . . . xn)ΛP (dx1) . . .ΛP (dxn)

]

=

∫

U

p(ϕ)Π(dϕ), (1.9)

for some non-negative function p.

Definition 1.16: Function p : N → R+ in (1.9) is called the density of X with respect to
XP .

Specially, if the intensity measure ΛP is the restriction of Lebesgue measure on some
bounded subset B ∈ R

d
0, then X is a point process on B with the density p with respect

to the unit Poisson process.
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Example 1.3: Let X be the Poisson point process on B ∈ Bd with intensity function λ.
Then

P(X ∈ U) =

= exp

{
−

∫

B

λ(x)dx

}[
1[∅∈U ] +

∞∑

n=1

1

n!

∫

B

. . .

∫

B

1[(x1,x2,...xn)∈U ]λ(x1) . . . λ(xn)dx1 . . . dxn

]
=

= exp

{
−

∫

B

1dx

}
exp

{
−

∫

B

(λ(x) − 1) dx

}
1[∅∈U ]+

exp

{
−

∫

B

1dx

} ∞∑

n=1

1

n!

∫

B

. . .

∫

B

1[(x1,x2,...xn)∈U ] exp

{
−

∫

B

(λ(x) − 1) dx

} n∏

i=1

λ(xi)dx1 . . . dxn

for U ∈ N. So the density of X with respect to unit Poisson process is

p (ϕ) = exp

{
−

∫

B

(λ(x) − 1) dx

} ∏

xi∈ϕ

λ(xi), ϕ ∈ N . (1.10)

1.2 Spatio-temporal point processes

Spatio-temporal point process can be considered as a point process in R×R
d or R+ ×R

d.
Each point represents time and location of some event (see [44]). Locations and times of
earthquakes in some region are example of such a process (see [38]). The important feature
of spatio-temporal point processes is the fact that there is the temporal coordinate and we
can see the evolutionary progress. Also in some cases the spatial coordinates can be seen
as d-dimensional marks in temporal point process and spatio-temporal point process is a
marked temporal process. The following background is from [46].

1.2.1 Conditional intensity

In the following we will consider a spatio-temporal process X = {(ti, ξi)} on R+ × X , X
bounded subset of R

d with positive Lebesgue measure |X | and such that its projections on
X (space) and on R+ (time) are point processes. Suppose that

t1 < t2 < . . . < tn < . . .

and process
Xt = {(ti, ξi) ∈ X : ti ≤ t} on St = [0, t] ×X

has a density gXt with respect to the unit Poisson process. Define two families of conditional
probability densities, {

pn(t|xtn−1) : n ∈ N
}

(1.11)

and {
fn(ξ|xtn−1 , tn) : n ∈ N

}
(1.12)
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with respect to the Lebesgue measure. The density pn is the density of the time of n−th
point given the history up to time tn−1 and the density fn is the density of the location of
n−th point given the history up to time tn−1 and the time of n−th point.

Theorem 1.4: The density of point process Xt on [0, t] ×X can be expressed as

gXt(x) = exp(t|X |)
n∏

i=1

pi(ti|xti−1
)fi(ξi|xti−1

, ti)Sn+1(t|xtn).

where

Sn+1(t|xtn) =

∫ ∞

t

pn+1(t|xtn)dt, t > tn

is the survival function of pn+1(.|xtn).

Proof:

P(Xt ∈ U) =

∫

U

gXt(z)Π(dz) = exp {−t|X |} gXt(∅)1[∅∈U ]+

+
∞∑

n=1

exp {−t|X |}
(t|X |)n

n!

∫

X

. . .

∫

X

∫ t

0

. . .

∫ t

0

1[z∈U ]
1

(t|X |)n
gXt(z)dz =

= exp {−t|X |} gXt(∅)1[∅∈U ]+ (1.13)

+
∞∑

n=1

exp {−t|X |}

∫

X

. . .

∫

X

∫ t

0

∫ t

t1

. . .

∫ t

tn−1

1[{t(n),ξ(n)}∈U ]gXt(t(n), ξ(n))dξ1 . . . dξndt1 . . . dtn

and

P (Xt ∈ U) =
∞∑

n=0

P (Xt ∈ U,Xt ([0, t] ×X ) = n) =

=
∞∑

n=1

∫

R+×X

. . .

∫

R+×X

1[{t(n),ξ(n)}∈U ]1[tn−1>t]×

×
n+1∏

i=1

pi
(
ti|t(i−1), ξ(i−1)

)
fi
(
ξi|t(i−1), ξ(i−1), ti

)
dξ1 . . . dξn+1dt1 . . . dtn+1 =

=
∞∑

n=1

∫

X

. . .

∫

X

∫ t

0

. . .

∫ t

tn−1

1[{t(n),ξ(n)}∈U ]× (1.14)

×
n∏

i=1

pi
(
ti|t(i−1), ξ(i−1)

)
fi(ξi|xti−1

, ti)Sn+1(t|t(n), ξ(n))dξ1 . . . dξndt1 . . . dtn

By comparing equations (1.13) and (1.14), we will get

gXt(x) = exp(t|X |)
n∏

i=1

pi(ti|xti−1
)fi(ξi|xti−1

, ti)Sn+1(t|xtn).

�
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Definition 1.17: For the spatio-temporal point process the conditional intensity function
is

λ∗(t, ξ|Ht) = λg(t)f
∗(ξ|t), if tn−1 < t ≤ tn, (1.15)

where

λg(t) =
pn(t|Xtn−1)

Sn(t|Xtn−1)
, if tn−1 < t ≤ tn,

f ∗(ξ|t) = fn(ξ|Xtn−1 , t), if tn−1 < t ≤ tn,

and Ht = σ{Xs, s < t} denotes the σ-algebra of the process until time t.

The interpretation of λ∗(t, ξ)dξdt is as the probability of observing a point at the
location (t, ξ) conditioned by the history up to time t. It can be shown that the density of
Xt can be written as

gXt(x) = exp

(
−

∫

[0,t)×X

[λ∗(s, ξ)|Hs) − 1] d(s, ξ)

) n∏

i=1

λ∗(ti, ξi|Hti),

where
x = {(t1, ξ1), . . . , (tn, ξn)} , t1 < . . . < tn.

Example 1.4: [Poisson process] If the process X is a Poisson point process then the
conditional intensity function λ∗ is non-random and equal to the intensity function λ and
thus the density of Xt is

gXt(x) = exp

(
−

∫

St

[λ(u) − 1] du

) n∏

i=1

λ(ti, ξi), (1.16)

(cf. (1.10)). The densities (1.11) and (1.12) are given by

pn(t|Xtn−1) = λg(t) exp

(
−

∫ t

tn−1

λg(s)ds

)
, t > tn−1

and

fn(ξ|Xtn−1 , tn) =
λ(tn, ξ)

λg(tn)
, ξ ∈ X

where

λg(t) =

∫

X

λ(t, ξ)dξ.

These results hold under the assumption that
∫ ∞

t

λg(u)du = ∞ for all t ≥ 0

Denote the time of arrival of n−th point by Tn. Then, given (ξn−1, tn−1),
∫ Tn

tn−1

λg(s)ds

is exponentially distributed with parameter 1.
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1.2.2 Cox processes

A spatio-temporal Cox process X is a Cox point process (cf. Definition 1.10 ) with the
intensity function given by λ(t, ξ) = E(Λ(t, ξ)), t ∈ R+, ξ ∈ X , where Λ is the random
driving intensity function. Because

M (2)(C ×D) = E

∑

X1,X2∈X

1[X1,X2∈C×D] = E

[
E

∑

X1,X2∈X

1[X1,X2∈C×D]|Λ

]
= EΛm(C)Λm(D),

where Λm(.) =
∫

Λ(x)dx, the pair correlation is given by

ρ ((t, ξ), (s, η)) =
E(Λ(t, ξ)Λ(s, η))

E(Λ(t, ξ))E(Λ(s, η))
.

Two basic types of spatio-temporal Cox processes follow namely the shot noise Cox
process and the log-Gaussian Cox process.

Definition 1.18: Shot noise Cox process is a Cox process X driven by

Λ(t, ξ) =
∑

(u,c,γ)∈Φ

γk ((u, c), (t, ξ)) (1.17)

where k(., .) is a kernel function, i.e.
(∫

k(x, y)dy = 1
)

and Φ is a marked Poisson process
with points in R+ ×X and marks in R.

Log-Gaussian Cox process was defined in Section 1.1. In spatio-temporal applications
some variants were used.

In the analysis of weed data, Brix and Moller (see [12]) considered the following model
of the driving intensity

Λ(t, ξ) = m(t, ξ) exp(W (ξ)),

where m is a mean function satisfying

m(t′, ξ) ≤ m(t, ξ) for t′ ≤ t, ξ ∈ X ,

and W is a zero mean Gaussian process on X .
Brix and Diggle (see [11] ) considered a model

Λ(t, ξ) = λ(t, ξ) exp(S(t, ξ)),

where the mean of a Gaussian process S(t, ξ) on R+ × X is a constant. In the stationary
case, a convenient parametrisation is to set E [S(t, ξ)] = −0.5σ2, where σ2 = Var [S(t, ξ)].
This gives E [exp {S(t, ξ)}] = 1, and hence λ(t, ξ) is the unconditional space-time intensity.
S(t, ξ) has mean −0.5σ2 and covariance function σ2ρ(t, t′, ξ, ξ′). If we denote u = (ξ, ξ′) ∈
X 2 and v = (t, t′) ∈ R

2
+

ρ(v, u) = r(u) exp(−v/β),

where r is a function of a temporal coordinate.
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1.2.3 Mechanistic modelling

While the previous modelling is called empirical (see [21]), in the present subsection we
consider so called mechanistic modelling in which we would like to explain how the evolution
of the process depends on its past history. This leads to the investigation of the conditional
intensity λ∗, (see (1.15)). Given a parametric model of the conditional intensity of the point
process X on [0, T ] × X with parameter θ ∈ R

d and given data (ti, ξi) ∈ [0, T ] × X : i =
1, . . . , n, with t1 < t2, . . . < tn, the log-likelihood is

L(θ) =
n∑

i=1

log(λ∗(ti, ξi)|Hti−) −

∫ T

0

∫

X

λ∗(t, ξ|Ht)dξdt. (1.18)

Since the integral in (1.18) is difficult to compute Diggle ([21]) suggested instead maximizing
a partial likelihood for the inference. Let

pi =
λ∗(ξi, ti|Hti)∑n

j=i λ
∗(xj, yi|Hti)

. (1.19)

Then, the partial log-likelihood is

Lp(θ) =
n∑

i=1

log pi. (1.20)

This method was used with data of 2001 foot-and-mouth epidemic in England.

1.3 Random measures

A measure µ on (Rd,Bd) is said to be a locally finite measure if it is finite on bounded
Borel sets. By M ≡ M(Rd) we denote the set of all locally finite measures on (Rd,Bd).

Let M be the smallest σ-algebra on M with respect to which the function µ 7→ µ(B)
is measurable for all B ∈ Bd.

Definition 1.19: A random measure on R
d is a measurable mapping

Ψ : (Ω,F ,P) → (M,M).

The probability measure PΨ−1 is the distribution of the random measure Ψ and the measure
Λ(·) = EΨ(·) is called the intensity measure of Ψ.

Definition 1.20: Let Ψ be a random measure on R
d with distribution P and k ∈ N. The

measure

Mk(·) = EΨk(·) =

∫
µk(·)P (dµ)

on (Rdk,Bdk) is called the moment measure of k-th order of Ψ.
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Specially M1 ≡ Λ is the intensity measure of Ψ.

Definition 1.21: Let Ψ be a random measure on R
d with distribution P and intensity

measure Λ. The Campbell measure C corresponding to Ψ is a measure on R
d×M defined

by ∫

Rd×M

f(x, µ)C(d(x, µ)) =

∫

M

∫

Rd

f(x, µ)µ(dx)P (dµ),

where f is an arbitrary nonnegative measurable function on R
d ×M (cf. (1.6)).

Note that the Campbell measure C can also be characterized by the property (cf. (1.7))

C(A× U) = EΨ(A)1U(Ψ),

where A ∈ Bd0 and U a measurable subset of M.

Definition 1.22: Let Ψ be a random measure on R
d with distribution P and a locally

finite intensity measure Λ. Then there exists a probability kernel x 7→ Px from (Rd,Bd) to
(M,M) such that

∫

M

∫

Rd

f(x, µ)µ(dx)P (dµ) =

∫

Rd

∫

M

f(x, µ)Px(dµ)Λ(dx) (1.21)

for an arbitrary nonnegative measurable function f on R
d × M. The distribution Px is

called the Palm distribution of the random measure Ψ at the point x ∈ R
d (cf. (1.8)).

If (P ′
x : x ∈ X) is another probability kernel satisfying (1.21) then for any measurable set

U ⊂ M,
Px(U) = P ′

x(U) for Λ almost all x ∈ X.

For z ∈ R
d, let tz denote the corresponding shift operator on M defined by

tzµ(B) = µ(B − z), B ∈ Bd.

Definition 1.23: The random measure Ψ is called stationary if its distribution is shift
invariant, i.e., if tzΨ has the same distribution as Ψ for any z ∈ R

d.

A stationary random measure Ψ on R
d with intensity λ > 0 has Palm distributions

Px(U) = P0(t
−1
x U), x ∈ R

d, U ∈ M.

Definition 1.24: The reduced second moment measure K of a stationary random measure
is defined by

K(B) = λ−1

∫
µ(B \ {0})P0(dµ), B ∈ Bd0 . (1.22)

The K-function is defined by

K(r) = K(b(0, r)), r > 0. (1.23)
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We can also write

K(B) =
1

λ2|A|
E

∫

A

Ψ(B − x)Ψ(dx), (1.24)

with an arbitrary bounded Borel set A of positive Lebesgue measure.
We can introduce also an inhomogeneous reduced second moment measure Kinhom of a

random measure Ψ with intensity function λ > 0.

Definition 1.25: Let the measure

M(C,B) = E

[∫

C

Ψ(dy)

λ(y)

∫

B

Ψ(dx)

λ(x)

]
, C,B ∈ Bd0 ,

be finite. Ψ is a second-order intensity-reweighted stationary (SOIRS) random measure if
it holds

M(C,B) = M(C + x,B + x), x ∈ R
d.

Under SOIRS assumption we define (cf. [1] for point processes)

Kinhom(B) =
1

|A|
E

∫

A

∫
1B(x+ y)

λ(x)λ(y)
Ψ(dy)Ψ(dx)

independently of the choice of A. If there exists a second-order product density λ(2) such
that

M(C,B) =

∫

C

∫

B

λ(2)(u, v)

λ(u)λ(v)
dudv,

then ρ(u, v) = λ(2)(u,v)
λ(u)λ(v)

is the pair correlation function, cf. (1.5).

Definition 1.26: Let Ψ be a random measure in R
d, let C be its Campbell measure and

let W be a locally compact space. Let w be a measurable mapping (weight function)

w : suppC → W

(we consider the natural product σ-algebra on suppC ⊂ R
d ×M). Then, we call the pair

(Ψ, w) a weighted random measure in R
d with weight space W .

Note that a weighted random measure induces a random measure Ψ̃ on the product space
R
d ×W :

Ψ̃(B ×D) = Ψ{x ∈ B : w(x,Ψ) ∈ D}, (1.25)

B ∈ Bd, D ∈ B(W ).

Definition 1.27: We say that the weighted random measure (Ψ, w) is stationary if Ψ is
stationary and the weight function is translation covariant, i.e., w(x, µ) = w(x + z, tzµ)
for any (x, µ) ∈ suppC and z ∈ R

d.
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1.4 Random closed sets and fibre processes

The following theory is from [6]. Denote ωk the volume of a unit ball in R
k.

Definition 1.28: Let k ∈ {0, 1, . . . , d} be fixed. The Hausdorff measure Hk of order k in
R
d is defined as

Hk(A) = lim
δ→0+

inf
A⊂

⋃
i Gi

diam Gi≤δ

∑

i

ωk

(
diam Gi

2

)k
,

where diam Gi denotes the diameter of Gi and the infimum is taken over all at most
countable coverings of A with sets of diameters less or equal to δ.

A mapping f is Lipschitz if there exits a constant M such that ||f(x) − f(y)|| ≤
M ||x− y|| for any x, y from the domain of f .

Definition 1.29: We call a subset A ⊂ R
d k-rectifiable if it is a Lipschitz image of a

bounded subset of R
k. A is (Hk, k)−rectifiable if

1. A is Hk−measurable,

2. Hk(A) <∞,

3. A = ∪∞
i=0Wi with Hk(W0) = 0 and Wi k−rectifiable for i ≥ 1.

Finally A is Hk−rectifiable if A ∩K is (Hk, k)−rectifiable for any K ⊂ R
d compact.

Basic class of random elements used in stochastic geometry are random closed sets.

Definition 1.30: Let (Ω,F ,P) be a probability space, Cd be a system of all closed sets from
R
d and Cd = σ

{
CK : K is a compact subset in R

d
}

where CK =
{
D ∈ Cd; D ∩K 6= ∅

}
.

Then a random closed set X in R
d is measurable mapping from (Ω,F) to

{
Cd,Cd

}
.

To formalize the meaning of a k−dimensional random closed set, we use the general
concept due to Zähle [47] who introduced random Hk−sets as random closed sets in R

d

which are Hk−rectifiable. It is shown in [47] that the space

Cdk :=
{
F ∈ Cd : F is Hk − rectifiable

}

is an Cd−measurable subsystem of Cd.
For particular dimension, a random H1−set will be called a (random) fibre system and

a random Hd−1−set a (random) surface system.
Here we use also a definition of a random fibre process from [45] based on differential

geometry. It is less general, however suitable for us since we will need a curve parametrization
by time in Chapter 2.

Definition 1.31: Fibre y in R
d is a subset of R

d which is image of a curve y(t) =
(y1(t), . . . , yd(t)) such that
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1. y : [0, T ] 7→ R
d is once continuously differentiable,

2. ||y′(t)||2 =
∑d

i=1 |y
′
i(t)|

2 > 0 for ∀t ∈ [0, T ], where y′ is the derivative,

3. the mapping y is one-to-one, so that a fibre does not intersect itself.

We can define a length measure

y(B) =

∫ T

0

1B(y(t))

√√√√
d∑

i=1

|y′i(t)|
2dt

for any set B ∈ Bd.

Definition 1.32: The fibre system Y in R
d is a closed subset of R

d which can be represented
as a union of at most countably many fibres y(i) in R

d with the property that any compact
set K is intersected by a finite number of the fibres, and such that distinct fibres have only
endpoints in common:

y(i)((0, T )) ∩ y(j)((0, T )) = ∅ if i 6= j.

The length measure of the fibre system Y is a measure defined as

Y (B) =
∑

y(i)∈Y

y(i)(B), B ∈ Bd.

Denote the family of all fibre systems by D and generate the σ-algebra

D = σ
{
Y ∈ D : Y (B) < x, B ∈ Bd, x ∈ R

}
.

This σ-algebra is in fact the trace σ-algebra D ∩ Cd on the space of closed sets.

Definition 1.33: A measurable mapping Y from (Ω,F) to (D,D) is called a fibre process.
Distribution of the fibre process Y is a probability measure Π defined by

Π(F ) = P({ω;Y(ω) ∈ F}) for F ∈ D.

The length measure Y(.) of a fibre process is a random measure in the sense of
Section 1.3. Thus we obtain the notion of the intensity measure Λ(B) = EY(B), second
moment measure, stationarity, reduced second moment measure (Definition 1.24), SOIRS
(Definition 1.25), Kinhom which are related to both fibre process and its length measure.

Definition 1.34: Inhomogeneous K-function of SOIRS fibre process Y is

K(t) =
1

|B|
E

[∫

B

∫
1(||y−x||≤t)

λ(y)λ(x)
Y(dx)Y(dy)

]
(1.26)

for B ∈ Bd0 , |B| > 0. This expression does not depend on the choice of B.
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1.5 Markov Chain Monte Carlo

Consider that we need to simulate from a target probability distribution on a measurable
space and we do not know how to do it directly. In this case we can use the Markov Chain
Monte Carlo methods (MCMC) [32]. The idea is based on simulating of a Markov chain
with a state space X and with stationary distribution equal to the target distribution.
Metropolis-Hastings algorithm and Gibbs algorithm are basic MCMC algorithms.

Markov chain is a sequence X = (X0, X1, . . .) of a random elements in a complete
separable metric space space (X ,B(X )) such that conditional distribution of Xn+1 given
(X0, . . . , Xn) is equal to the conditional distribution of Xn+1 given Xn, n ∈ N. The Markov
kernel

Pn(x,A) = P(Xn+1 ∈ A|Xn = x), n ∈ N, x ∈ X , A ∈ B(X )

is called a transition kernel of the Markov chain X. If Pn = P does not depend on n,
X is called homogeneous Markov chain. The n-th power of the kernel P is defined by a
recursive formula

P n(x,A) =

∫

X

P n−1(y,A)P (x, dy),

where we set P 0(x,A) = δx(A) (the Dirac measure). It is interpreted as the probability
that the chain gets from state x to A in n steps.

Definition 1.35: Let X be a homogeneous Markov chain on X with a transition kernel
P . A probability distribution Π on B(X ) is called a limiting distribution of X if

lim
n→∞

P n(x,A) = Π(A) for Π-almost all x ∈ X and ∀A ∈ B(X ).

Definition 1.36: A probability distribution Π on B(X ) is called a stationary distribution
of a homogeneous Markov chain X with the transition kernel P if

Π(A) =

∫

X

P (x,A)Π(dx) for all A ∈ B(X ).

Theorem 1.5: If Π is a limiting distribution of a homogeneous Markov chain X then Π
is also stationary distribution of X.

Homogeneous Markov chain X with the transition kernel P is reversible with respect
to a distribution φ on B(X ) if

∫

A

P (x,B)φ(dx) =

∫

B

P (y,A)φ(dy)

for A,B ∈ B(X ). Markov chain X is irreducible with respect to a distribution φ if

φ(A) > 0, A ∈ B(X ) ⇒ P(min {n ≥ 1 : Xn ∈ A} <∞|X0 = x) > 0

for all x ∈ X .
Irreducibility and reversibility with respect to the target distribution imply that the

chain has a limiting distribution which is according to Theorem 1.5 the desired target
distribution.
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1.5.1 Metropolis-Hastings algorithm

Let Q(x, .) be a Markov kernel and Q(x, dz) = q(x, z)dz, x, z ∈ X , q is called the
proposal density. Let the target distribution have probability density f . Define acceptance
probability by

α(x, z) = min

{
1,
f(z)q(z, x)

f(x)q(x, z)

}
.

The Metropolis-Hastings algorithm of MCMC with T iterations is:

1. Choose x(0) ∈ X and put t = 0,

For t < T

2. generate z from the distribution Q(x(t), .) and put x(t+1) = z with the probability
α(x(t), z), otherwise put x(t+1) = x(t).

Example 1.5: [Gaussian random walk] Let X = R and q(x, y) = q0(y−x) where q0 is the
density of Gaussian distribution. This proposal is called a Gaussian random walk.

Theorem 1.6: The target distribution is a stationary distribution of the Markov chain
generated by the Metropolis-Hastings algorithm.

1.5.2 Gibbs algorithm

Gibbs sampling uses the full condition distributions on a finite product X of complete
separable metric spaces Xi, i = 1, . . . , d. Assume that the target density (w.r.t. a σ−finite
Borel measure on X ) is f(θ) where θ = (θ1, . . . , θd) ∈ X and consider that full condition
distributions

f(θj|θ1, . . . , θj−1, θj+1, . . . , θd) = f(θj|θ−j), 1 ≤ j ≤ d,

are known and we are able to sample from them. Gibbs sampling can be described in the
following way:

1. Choose θ(0) ∈ X and put t = 0,

For t < T , for 1 ≤ j ≤ d

2. generate θ
(t+1)
j from the distribution

f(θj|θ
(t+1)
1 , . . . , θ

(t+1)
j−1 , θ

(t)
j+1, . . . , θ

(t)
d ).
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1.5.3 Simulation of point processes

Often we need to simulate a realization of the point process X. In this part we will show
how to do that for some of the finite point processes X on B ∈ Bd (see [36]).

The easiest case is when X is homogeneous Poisson process on B with intensity λ. To
simulate this process we need to simulate a random variable N from Poisson distribution
with parameter λ|B|. Conditionally on N = n, according to Theorem 1.2 n independent
uniformly distributed d-dimensional random vectors X1, X2, . . . , Xn on B are simulated.
Then {X1, X2, . . . , Xn} is the realization of X.

Another case is if X is the inhomogeneous Poisson process with intensity function
λ(x) ≤ λ0 on B. Then we can simulate the homogeneous Poisson process Y on B with
intensity λ0 and then we accept each point xi of Y with probability λ(xi)/λ0.

For more complex processes we can use Markov Chain Monte Carlo methods. Suppose
that X is a finite point process on B with target density p with respect to the unit Poisson
process on B. Let X(0) be the initial realization of a point process (e.g. unit Poisson
process). Then if we have X(n−1) we can simulate X(n) by adding or deleting a point or
put X(n) = X(n−1) (birth and death algorithm, see [36], Chapter 7).

Let Q(X(n−1)) be the probability of proposing adding a point ψ to X(n−1), ψ has a
birth density b(x(n−1), ψ) on B. We accept the new realization with the new point ψ with
probability

αb(x
(n−1), ψ) = min

(
1, hb(x

(n−1), ψ)
)
,

where

hb(x
(n−1), ψ) =

p(x(n−1) ∪ ψ)

p(x(n−1))

1 −Q(X(n−1))

Q(X(n−1))

d(x(n−1) ∪ ψ, ψ)

b(x(n−1), ψ)
, (1.27)

where d(y, ψ) is a death probability of ψ ∈ y, y ∈ N .
Then 1 − Q(X(n−1)) is the probability of proposing reducing a point ψ from x(n−1).

If x(n−1) = ∅ then put x(n) = ∅. Otherwise sample a point ψ ∈ x(n−1) according to
probabilities d(x(n−1), ψ). We accept the new realization x(n−1) \ {ψ} with probability

αd(x
(n−1), ψ) = min

(
1, hd(x

(n−1), ψ)
)

where

hd(x
(n−1), ψ) =

p(x(n−1) \ ψ)

p(x(n−1))

Q(X(n−1))

1 −Q(X(n−1))

b(x(n−1) \ ψ, ψ)

d(x(n−1), ψ)
. (1.28)

We can simplify the equations (1.27) and (1.28) by setting Q(.) = 1/2, b(., .) = 1
|B|

and

d(x ∪ ψ, .) = 1
x(B)+1

. Then

hb(x
(n−1), ψ) =

p(x(n−1) ∪ ψ)

p(x(n−1))

x(n−1)(B) + 1

|B|
(1.29)

and

hd(x
(n−1), ψ) =

p(x(n−1) \ ψ)

p(x(n−1))

|B|

x(n−1)(B)
. (1.30)
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Also we can see that the probabilitiy of accepting the new realization does not depend on
the normalizing constant of the density p so it is enough to know some function f such
that p ∝ f .

Under mild conditions birth and death algorithm yields the chain which is reversible
and irreducible with respect to the target distribution, see [36], Chapter 7.
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Chapter 2

Spatio-temporal Cox processes

2.1 Lévy based Cox processes

In this Chapter we will study the type of spatio-temporal point processes which are
constructed from Lévy basis (see [5],[30]), which is a generalization of Lévy process. The
background theory of Lévy processes can be found in [15] and [42].

Definition 2.1: A random variable Y with a distribution F on R
d is said to be infinitely

divisible if for any integer n ≥ 2, there exist i.i.d. random variables Y1, . . . , Yn such that
Y1 + . . .+ Yn has the distribution F .

Definition 2.2: A stochastic process {Xt}t≥0 on (Ω,F ,P) with values in R
d such that

X0 = 0 is called an additive process if

1. [Independent increments] for every increasing sequence of times t0, . . . , tn the random
variable Xto , (Xt1 −Xt0), . . . , (Xtn −Xtn−1) are independent,

2. [Stochastic continuity] ∀t ≥ 0, ∀ǫ > 0, limh→0P (|Xt+h −Xt| > ǫ) = 0,

3. ∀ω ∈ Ω the trajectory Xt(ω) is right continuous function for ∀t ≥ 0 and have left
limits for ∀t > 0.

Definition 2.3: An additive process {Xt}t≥0 is called a Lévy process if the distribution of
Xt+h −Xt does not depend on t for any h > 0, t ≥ 0.

Theorem 2.1: Let {Xt}t≥0 be a Lévy process, resp. an additive process, then Xt has
infinitely divisible distribution for ∀t > 0.

Proof: See [42].

Theorem 2.2: Let X be a random variable with infinitely divisible distribution on R
d.

Then
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log(E(exp (iζX))) = −
1

2
〈Aζ, ζ〉 + i 〈a, ζ〉 +

∫

Rd

(
exp(i 〈ζ, x〉) − 1 − i 〈ζ, x〉1[|x|≤1]

)
ν(dx)

where ζ ∈ R
d, A is a symmetric positive definite d× d matrix, a ∈ R

d and ν is a positive
measure on R

d verifying:

ν({0}) = 0 and

∫

Rd

(
|x|2 ∧ 1

)
ν(dx) <∞.

Proof: See [42].

Definition 2.4: The triplet (a,A, ν) from Theorem 2.2 is called the generating triplet (of
the distribution of X) and the measure ν is called the Lévy measure. The generating triplet
of the Lévy process {Xt}t≥0 is the generating triplet of X1.

Consider R
d with the Borel σ-algebra Bd. Let Z = {Z(A); A ∈ Bd} be an independently

scattered random measure. That means that for every sequence {A1, . . . , An;n ∈ N0} of
disjoint sets in Bd, the random variables Z(An) are mutually independent and Z(∪nAn) =∑

n Z(An) almost surely. Moreover assume that Z(A) is infinitely divisible for all A ∈ Bd,
in this case Z is called a Lévy basis. Then the cumulant transform of the Lévy basis Z
C{ζ ‡ Z(A)} = log E(eiζZ(A)) can be written as

C{ζ ‡ Z(A)} = iζa(A) −
1

2
ζ2b(A) +

∫

R

{eiζx − 1 − iζx1[|x|≤1]}ν(dx,A), (2.1)

where a is a signed measure, b is a positive measure and ν(dx,A) is a Lévy measure on R

for fixed A ∈ B and a measure on Bd in the second variable. The triplet (a, b, ν) is called
the generating triplet of the Lévy basis.

Example 2.1: [Poisson Lévy basis] The example of Lévy basis is Poisson basis for which
Z is a Poisson process with intensity measure λ. Because Z(A) has a Poisson distribution
we have

C{ζ ‡ Z(A)} = iζλ(A) +

∫

R

{eiζx − 1 − iζ1[|x|≤1]}δ1(dx)λ(A) = λ(A)
(
eiζ − 1

)
,

where δ1 is the Dirac measure at 1. The generating triplet of this basis is (λ, 0, δ1λ).

Example 2.2: [Gaussian Lévy basis] The other example of a Lévy basis is Gaussian Lévy
basis which has the generating triplet (a, b, 0). Then for A ∈ Bd

C{ζ ‡ Z(A)} = iζa(A) −
1

2
ζ2b(A).

and Z(A) has a Gaussian distribution N(a(A), b(A)).
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The following background comes from [41]. Let (a, 0, ν) be a generating triplet of a
Lévy basis.. Zero in the second place of the triplet implies that the cumulant transform
(2.1) is

C{ζ ‡ Z(A)} = iζa(A) +

∫

R

{eiζx − 1 − iζx1[|x|≤1]}ν(dx,A), ζ ∈ R.

It is important that ν can be factorized with no essential loss of generality as

ν(dx, dξ) = µ(dx, ξ)U(dξ), (2.2)

where µ(dx, ξ) is a Lévy measure on R for fixed ξ ∈ R
d and U(dξ) is a measure on Bd.

Then assuming that the density a′ exists, a(dη) = a′(η)U(dη), η ∈ R
d, we can write

C{ζ ‡ Z ′(η)} = iζa′(η) +

∫

R

{eiζx − 1 − iζx1[|x|≤1]}µ(dx, η), (2.3)

ζ ∈ R, for an additive process Z ′(η). For a fine discussion about the correspondence of Z
and Z ′ see [39]. We will in the end consider the situation when Z ′ is a compound Poisson
process which is based on a Poisson process of jumps in R

d, possibly inhomogeneous, and
a fixed distribution of jump sizes (jump size being independent of location). In this case
µ(A, ξ) is a finite measure for each ξ ∈ R

d.
An integral of a deterministic function f with respect to a Lévy basis is defined as

a limit (in probability) of integrals of simple functions fn → f. Necessary and sufficient
conditions for the existence are known.

Lemma 2.1: Assuming that the following integrals exist for a measurable function f, it
holds

C{ζ ‡

∫

Rd

fdZ} =

∫

Rd

C{ζf(ξ) ‡ Z ′(ξ)}U(dξ). (2.4)

Proof: See [41]. �

We will apply Lévy basis to the theory of simple point processes in R
d and specially in

space and time [18]. Consider a Lévy basis Z on R
d with triplet (a, 0, ν) and assume that

a nonnegative locally integrable random field is obtained as

Λ(ξ) =

∫

Rd

g(ξ, η)Z(dη), ξ ∈ R
d, (2.5)

where g is a measurable function on R
2d. For the compound Poisson process a sufficient

condition for local integrability follows from the Campbell theorem [36]: the mean jump
size distribution has to be finite and h(ξ) =

∫
g(ξ, η)U(dη) should be an integrable function

of ξ on each bounded set. See also [30] for the discussion of this issue.
For a Cox process in R

d (see Definition 1.10) let Λm be the driving measure and Λ its
driving intensity function. The generating functional of a point process is defined as

G(u) = E

(
N∏

i=1

u(xi)

)
,
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for measurable functions u : R
d 7→ [0, 1] with bounded support, where xi, i = 1, . . . N are

events of the point process observed within the support of u. For a Cox process X the
generating functional has form

G(u) = E exp

(
−

∫

Rd

(1 − u(σ))Λ(σ)dσ

)
.

Theorem 2.3: Consider a Lévy basis Z on R
d with triplet (a, 0, ν) and a nonnegative

locally integrable random field Λ (2.5). Then the generating functional of a Cox point
process X driven by Λ is

G(u) = exp

[
−

∫

Rd

f(ξ)a′(ξ)U(dξ)+ (2.6)

+

∫

Rd

∫

R

(
e−rf(ξ) − 1 + rf(ξ)1[−1,1](r)

)
µ(dr, ξ)U(dξ)

]
,

where

f(ξ) =

∫

Rd

(1 − u(σ))g(σ, ξ)dσ. (2.7)

Proof: For h(ξ) = i
∫

Rd
(1 − u(σ)) g(σ, ξ)dσ

C{1 ‡

∫

Rd

hdZ} = log E

[
exp

{
−

∫

Rd

∫

Rd

(1 − u(σ)) g(σ, ξ)dσdZ

}]
= logG(u).

From the Lemma 2.1 we have

C{1 ‡

∫

Rd

hdZ} =

∫

Rd

C{h(ξ) ‡ Z ′(ξ)}U(dξ)

∫

Rd

{
ih(ξ)a′(ξ) +

∫

R

{eih(ξ)x − 1 − ih(ξ)x1[|x|≤1]}µ(dx, ξ)

}
U(dξ)

�

Corollary 2.1: Specially for a′(ξ) =
∫ 1

−1
rµ(dr, ξ) (zero drift) it holds

G(u) = exp

[∫

Rd

∫

R

(e−rf(ξ) − 1)µ(dr, ξ)U(dξ)

]
. (2.8)

The distribution of a point process is determined by void probabilities (Theorem 1.1). The
void probabilities

P(X(D) = 0) = G(1 − 1D) = Ee−Λ(D), D ∈ B

have under the assumptions of Theorem 2.3 form (2.6) with u = 1 − 1D, i.e.

f(ξ) =

∫

D

g(σ, ξ)dσ.
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Moment characteristics of a point process are obtained by means of differentiation of the
generating functional, the intensity measure

M(D) = EX(D) = −
∂

∂z
G(1 − z1D) |z=0, D ∈ Bd, (2.9)

and the factorial second moment measure

α(2)(C) = E

6=∑

ξ,η∈X

1[(ξ,η)∈C], C ⊂ B2d (2.10)

as

α(2)(D1, D2) =
∂

∂z1

∂

∂z2

G(1 − z11D1 − z21D2) |z1=z2=0, (2.11)

D1, D2 ∈ Bd.
By [5] positive Lévy bases have Lévy-Itó representation

Z(D) = ā(D) +

∫

R+

xΦ(dx,D),

where ā is a diffuse measure on R
d and Φ is a Poisson random measure (integer-valued

random measure on R+ × R
d). This leads to an expression

Λ(ξ) =

∫

Rd

g(ξ, σ)

(
ā(dσ) +

∫

R+

rΦ(dr, dσ)

)
(2.12)

and a connection with the class of shot-noise Cox processes (SNCP), see Definition 1.18.
The class of non-Gaussian Ornstein-Uhlenbeck processes was extended by means of

superpositions in [4] to achieve possibly a long range dependence. For spatio-temporal
Cox processes this property (still in temporal sense) can be studied by means of second
order characteristics. Superposition for driving intensities

Λ = Λ1 + Λ2,

where Λi is driven according to (2.5) by Zi, i = 1, 2 independent, respectively, leads to the
corresponding relation

G(u) = G1(u)G2(u)

for Cox process generating functionals. Using (2.11) we obtain for u = 1 − z11A − z21B

α
(2)
Λ (A, B) = α

(2)
Λ1

(A, B) + α
(2)
Λ2

(A, B)+ (2.13)

+

[
∂

∂z1

G1(u)
∂

∂z2

G2(u) +
∂

∂z1

G2(u)
∂

∂z2

G1(u)

]

z1=z2=0

.
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In the following we will mainly study a special case of the model (2.5) suggested for
the purpose of spatio-temporal modelling by [5]. They define an Ornstein-Uhlenbeck (OU)
type process Λ(t, σ), t ∈ R (time), σ ∈ R

d (space) by

Λ(t, σ) =

∫ t

−∞

eγ(s−t)Z(Bs−t(σ) × ds), σ ∈ R
d, t ∈ R, (2.14)

where γ > 0 a parameter, Z is a Lévy basis and {Bs(σ)}, s ≤ 0 is a family of subsets on
R
d which we will assume to be of the form

Bs(σ) = {ρ ∈ R
d; χ(ρ, σ) ≤ −us}

for a metric χ on R
d, u > 0 is a parameter. The form of Bs(σ) determines the ambit set

At(σ) [5] for which

Λ(t, σ) =

∫

At(σ)

eγ(s−t)Z(d(s, ξ)).

Definition 2.5: A spatio-temporal Cox process driven by nonnegative locally integrable
Ornstein-Uhlenbeck type process is denoted OUCP.

Corollary 2.2: On R
d ×R consider a Cox process X with driving intensity (2.14). Then

the generating functional has form (2.6) with

f(s, ρ) =

∫ ∞

s

∫

Bs−t(ρ)

(1 − u(t, σ))eγ(s−t)dσdt. (2.15)

Denote Dt = {σ ∈ R
d; (t, σ) ∈ D}, t ∈ R. Void probabilities of X have form G(1− 1D) in

(2.6) with

f(s, ρ) =

∫ ∞

s

|Bs−t(ρ) ∩Dt|e
γ(s−t)dt.

Proof: (2.14) is of type (2.5) with

g(ξ, η) = g((t, σ), (s, ρ)) = 1[−∞,t](s)1Bs−t(σ)(ρ)e
γ(s−t) (2.16)

and so

f(s, ρ) =

∫ ∞

s

∫

Rd

(1 − u(σ, t))1Bs−t(σ)(ρ)e
γ(s−t)dσdt

and using the properties of Bs(σ) we obtain the result. �

Corollary 2.3: Let

Λj(t, σ) =

∫ t

−∞

eγj(s−t)Zj(Bs−t(σ) × ds), j = 1, 2,
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Zj be independent identically distributed. Under the conditions (2.8) and ν(dx, dξ) =
µ(dx)dξ for the superposition Λ = Λ1 + Λ2 it holds

α
(2)
Λ (A,B) = α

(2)
Λ1

(A,B) + α
(2)
Λ2

(A,B) +m2
1[F1(A)F2(B) + F1(B)F2(A)],

where m1 =
∫

R
xµ(dx) and for C = C1 × C2, C1 ⊂ R

Fj(C) =

∫ ∫ ∫

C1∩[s,∞]

eγj(s−t)Leb(Bs−t(φ) ∩ C2)dtdφds.

Proof: Use (2.13), (2.8) and (2.15). �

2.2 Cox processes on a curve

Consider a differentiable map y : [0, T ] 7→ R
d, where [0, T ] ⊂ R is a compact interval.

Denote
Y = {(t, yt), t ∈ [0, T ]} ∈ R

d+1. (2.17)

Let Λ be a locally integrable random function with realizations

Λ : [0, T ] × R
d 7→ R+. (2.18)

Definition 2.6: Denote XY a Cox point process on [0, T ] × R
d with driving intensity

measure

ΛY ([t1, t2] ×B) =

∫ t2

t1

1B(yt)Λ(t, yt)dt, 0 ≤ t1 ≤ t2 ≤ T, B ∈ Bd. (2.19)

The process XY is called a Cox process on the curve.

Events of XY lie on Y since outside Y we have ΛY zero. The measure ΛY does not
have the density w.r.t. Lebesgue measure on [0, T ] × R

d.
For Λ given in (2.18) we will consider also a driving intensity function Λ(t, yt), t ∈ [0, T ],

of a temporal Cox process. Finally put

Λ̃(yt) =
1

v(t)
Λ(t, yt),

where

v(t) =

√√√√1 +
d∑

i=1

(
dy

(i)
t

dt

)2

. (2.20)

Proposition 2.1: Let
Yt = {(s, ys), s ∈ [0, t]}, t ∈ (0, T ].

The curvilinear integral
∫
Yt

Λ̃(y)dc is the driving intensity measure of the temporal Cox
process on [0, t].
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Proof: From the definition of the curvilinear integral, we have ∀ 0 ≤ t ≤ T
∫

Yt

Λ̃(y)dc =

∫ t

0

Λ̃(ys)v(s)ds =

∫ t

0

Λ(s, ys)ds

�

Λ̃ can be interpreted as a driving intensity function on the curve Y . Denote the intensity
measure M(.) = EXY (.) = EΛY (.). According to [34] define the Fano factor [26] for XY as

Fa = 1 +
var

(∫ T
0

1B(yt)Λ(t, yt)dt
)

∫ T
0

1B(yt)EΛ(t, yt)dt
(2.21)

which is the event number variance to mean ratio, B ∈ Bd, since

var(XY ([0, T ] ×B)) = E [var(XY ([0, T ] ×B))|Λ] + varE [(XY ([0, T ] ×B))|Λ]

= M([0, T ] ×B) + var

(∫ T

0

1B(yt)Λ(t, yt)dt

)
.

Fa is equal to 1 for a Poisson process and it is a measure of overdispersion.
Further Λ is of form Λ =

∫
gdZ, (cf. (2.5)), with deterministic function g and a Lévy

basis Z with zero drift condition (2.8). Let

ν(dx, dξ) = µ(dx)ρ(ξ)dξ, (2.22)

where µ is a finite measure. This corresponds to the compound Poisson process Z ′ where
normalized µ is the jump size distribution and ρ the spatio-temporal intensity (density of
the measure U). Denote mj the j−th moment of µ i.e.

mj =

∫
xjµ(dx), j = 1, 2, . . . .

We will use in the following product sets C1 × C2 where C1 ⊂ [0, T ] is a temporal set
(typically an interval) and C2 ⊂ R

d is a bounded spatial set.

Theorem 2.4: Denote

fC(ξ) =

∫

C1

1C2(yt)g((t, yt), ξ)dt, ξ ∈ R
d+1 (2.23)

C = C1 × C2, similarly fD, D = D1 ×D2. It holds

M(C) = m1

∫
fC(ξ)ρ(ξ)dξ, (2.24)

and the factorial second moment measure of XY

α(2)(C, D) = M(C)M(D) +m2

∫
fC(ξ)fD(ξ)ρ(ξ)dξ. (2.25)
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Proof: Using the formula for the generating functional of a Cox process we have

G(1 − z1C) = E

[
exp

(
−z

∫

C1

1C2(yt)λ(t, yt)dt

)]
.

Using (2.5) and Fubini Theorem we obtain

G(1 − z1C) = exp

(
C

{
iz ‡

∫
fCdZ

})

and from Lemma 2.1 we have

G(1 − z1C) = exp

{∫ ∫
(e−zrfC(ξ) − 1)µ(dr)ρ(ξ)dξ

}
.

By differentiating the result for intensity follows. Analogously we obtain

G(1 − z1C − v1D) = exp

{∫ ∫
(e−r(zfC(ξ)+vfD(ξ)) − 1)µ(dr)ρ(ξ)dξ

}

and by differentiating the factorial second moment measure. �

Since the measure µ is finite we get from (2.5) a representation

Λ(ξ) =
∑

j

wjg(ξ, ηj) (2.26)

where ηj are events of a Poisson process with intensity function ρ and wj are jump sizes.
In fact formula (2.24) follows then from the Campbell Theorem

EΛ(ξ) = m1

∫
g(ξ, η)ρ(η)dη.

We can extend the Definition 2.5 of OUCP to a Cox process on a curve Y by using an
Ornstein-Uhlenbeck type process Λ in (2.18). Specially we have

Corollary 2.4: Consider the random function Λ from (2.14) and an OUCP XY . For the
intensity measure M(.) of a product set C = C1 ×C2 and for the factorial second moment
measure formulas (2.24), (2.25) of Theorem 2.4 hold, respectively, with

fC(s, σ) =

∫

C1∩[s,∞)

eγ(s−t)1C2∩Bs−t(σ)(yt)dt. (2.27)

Proof: Put (2.16) into (2.23). �

We will consider two models for the intensity function ρ in the special case of dimension
d = 3. For the model of a piecewise constant ρ in R

3

ρ(ξ) =
∑

ijk

ρijk1Aijk(ξ), (2.28)

where Aijk = Ai × Ajk, Ai a temporal interval, Ajk ⊂ R
2 we obtain specially
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Corollary 2.5: Under the assumptions of Corollary 2.4 and with the model (2.28) it holds

M(C) = m1

∫

C1

1C2(yt)
∑

ijk

ρijk

∫

(−∞,t]∩Ai

eγ(s−t)|Bs−t(yt) ∩ Ajk|dsdt (2.29)

and

α(2)(C,D) = m2

∫

C1

1C2(yt)

∫

D1

1D2(yu)
∑

ijk

ρijk× (2.30)

∫

Ai∩[−∞,min(u,t)]

eγ(2s−t−u)(|Ajk ∩Bs−t(yt) ∩Bs−u(yu)|dsdudt+M(C)M(D).

Proof: Formula (2.29) follows putting (2.28) and (2.27) in (2.24) and similarly using Fubini
Theorem we obtain (2.30). �

Another way how to model intensity function ρ is using the Zernicke polynomials.
Consider that intensity function ρ is inhomogeneous in space R

2 and homogeneous in time
and ρ is given by

ρ(t, x, y) = exp

{
n∑

j=0

j∑

i=−j

ψj,iRi
j(x, y))

}
, (2.31)

whereRi
j is the i−th component of j−th order Zernicke polynomials and ψj,i are parameters

of the model. When (r, ϕ) are the polar coordinates of (x, y) in the plane, we have

R0
0(x, y) = 1

R−1
1 (x, y) = r sin(ϕ)

R0
1(x, y) = 0

R1
1(x, y) = r cos(ϕ)

R−2
2 (x, y) = 2r2 sin(ϕ)

R−1
2 (x, y) = 0

R0
2(x, y) = 2r2 − 1

R1
2(x, y) = 0

R2
2(x, y) = 2r2 cos(ϕ).

Corollary 2.6: In this case

M(C) = m1

∫

C1

1C2(yt)

∫

(−∞,t)

eγ(s−t)
∫

Bs−t(yt)

exp

{
n∑

j=0

j∑

i=−j

ψj,iRi
j(x, y))

}
dxdsdt (2.32)

and

α(2)(C,D) = M(C)M(D) +m2

∫

C1

1C2(yt)

∫

D1

1D2(yu) (2.33)

∫

(−∞,min(u,t))

eγ(2s−t−u)
∫

Bs−t(yt)∩Bs−u(yu)

exp

{
n∑

j=0

j∑

i=−j

ψj,iRi
j(x, y))

}
dxdsdudt.
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2.3 Bayesian Markov Chain Monte Carlo

One of important questions in the analysis of Cox point processes is the inference on the
driving intensity and its characteristics. A rigorous approach to this problem is the filtering,
see [28], [35]. Filtering and transition together yield prediction, cf. [11] for a log-Gaussian
spatio-temporal point process. Transition density is available for the OU processes which
are Markov (in time), e.g. for Λ(t, σ) in (2.14).

Generally given a realization of a spatio-temporal Cox point process X driven by Λ,
the solution of the nonlinear filtering problem is the conditional expectation E[Λ|X].

Since E[Λ|X] is not explicitly available the Bayes formula for probability densities enters

f(λ|x) ∝ f(x|λ)f(λ). (2.34)

From the definition of the Cox process f(x|λ) is a known density of type (1.16) of an
inhomogeneous Poisson process with intensity function λ, f(λ) is a prior density. The
aim is to simulate a sample from the density f(λ|x) which enables to solve the filtering
problem and estimate empirically any characteristics of Λ. Simulation is possible using
Markov Chain Monte Carlo (MCMC) techniques, see Section 1.5.

The benefit of this approach for applications would become mostly evident in case of
spatio-temporal data rather than for data on a curve. When the curve is known it yields
further information which enables other approaches that may probably be more efficient,
especially for long time measurements. See Section 4.1 for an approach based on sequential
methods [24]. Here we will develop filtering for the Cox process on a curve using the model
from Section 2.2.

Let W = [0, T ] ×A, A ∈ B2 be a bounded window, Y ⊂ W a known curve. In W we
observe the data x = {τj}, a realization of a Cox process XY driven by ΛY (see Definition
2.6, where Λ is unknown random function). Each τj reflects time and location of an event
on Y . We have now in Bayesian setting

f(ψ, b|x) ∝ f(x|ψ, b)f(ψ|b)f(b), (2.35)

where ψ = {tj, zj, wj} represents the auxiliary compound Poisson process Z ′, tj are times,
zj are locations, wj are jumps of points of Z ′. Further b is a vector of unknown parameters
of models for the intensity function ρ in (2.28) or (2.31), the jump size distribution and
for function g in Λ (2.26).

Since the Cox process is conditionally Poisson we used the likelihood in the form

f(x|ψ, b, y) = eT exp

(
−

∫ T

0

λ(t, yt)dt

)∏

τi∈x

λ(τi),

which corresponds to a density (w.r.t. a unit Poisson process on the time axis) of the
temporal Poisson process on Y given Λ = λ. The second term on the right side of (2.35)
can be approximate by

f(ψ|b) ≈ e|W0| exp

(
−

∫

W0

ρ(v)dv

) ∏

(tj ,zj ,wj)∈ψ

ρ(tj, zj)h(wj),
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where h is the probability density of jump size. Theoretically unbounded domain of ρ is
substituted by some W0 bounded, W ⊂ W0, containing also events at negative times tj.
See Fig. 2.1 for a scheme of this model. Finally f(b) is a prior distribution of parameters.

The ”Metropolis within Gibbs” method can be used to simulate an MCMC chain
(ψ, b)(l), l = 0, . . . , J, which tends in distribution to the desired conditional distribution
(2.35). For ψ the birth-death algorithm (1.27)- (1.30) is available. Parameters, which are
real numbers, are updated by a Gaussian random walk (1.5). Geometric ergodicity of the
chain follows under mild conditions, cf. [35].

Consider a compound Poisson process Z ′ and the model (2.14) (with d = 2, γ = 1).
From (2.26) and (2.16) we have a representation

Λ(t, v) =
∑

tj≤t

wje
tj−t 1Btj−t(v)(zj). (2.36)

Let the jumps have an exponential distribution with density h(w) = 1
α

exp(−w
α
), w ≥ 0,

where α > 0 is a parameter. Further let

Bs(x1, x2) = [x1 + us, x2 − us] × [x2 + us, x2 − us], s ≤ 0.

Alternatively we can use Bs(x1, x2) = b((x1, x2), us) a ball. Consider a cubic subdivision
of W0, denote the cubes Aijk = Ai × Ajk, Ai is a time interval. For the model (2.28) the
vector of parameters is

b = (α, u, {ρijk, i, j, k = 1, . . . , n}).

The prior distributions are chosen one-dimensional exponential with fixed hyperparameters
lα, lu, lijk >> 0 for random α, u, ρijk, respectively.

Under these assumptions, denoting Nψ the number of events of ψ in W0, we can rewrite
(2.35) as

f(ψ, b|x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
tj−t1Btj−t(yt)(zj)dt


× (2.37)

×
∏

τi∈x

λ(τi)
∏

ijk

exp (−ρijk|Aijk ∩W0|)α
−Nψ exp

(
−
∑

i

wi
α

)
×

×



∏

(t,z)∈ψ

∑

jlk

ρjlk1Ajlk(t, z)


 l−1

α e−
α
lα l−1

u e−
u
lu

∏

jk

l−1
ijke

−
ρijk
lijk .

The full-conditional distributions for the Gibbs sampler are then

f(ψ|b, x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
tj−t1Btj−t(yt)(zj)dt



∏

τi∈x

λ(τi)×
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0

max

Figure 2.1: A simplified representation of the model (2.36). Here the horizontal axis
presents time and the vertical axis space. In the window W (the rectangle delimited by
the dashed white line) the track with spikes (circles) is drawn. The crosses denote events of
the auxiliary point process ψ, which lie theoretically within the whole space and time. For
numerical evaluation they are limited to W0 (region delimited by the white full line). The
numerical contribution of each event of ψ to the intensity (2.36) is expressed by spectral
colours.
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×α−Nψ exp

(
−
∑

i

wi
α

)

∏

(t,z)∈ψ

∑

jlk

ρjlk1Ajlk(t, z)


 ,

f(ρijk|ψ, u, α, x) ∝ exp (−ρijk|Aijk ∩W0|)



∏

(t,z)∈ψ

∑

jlm

ρjlm1Ajlm(t, z)


×

×e
−
ρijk
lijk , i, j, k = 1, . . . , n,

f(u|ψ, ρ, u, x) ∝ exp


−

∫ T

0

∑

tj≤t

wje
tj−t1Btj−t(yt)(zj)dt



∏

τi∈x

λ(τi)e
− u
lu ,

f(α|ψ, ρ, u, x) ∝ α−Nψ exp

(
−
∑

i

wi
α

)
e−

α
lα .

To draw from these densities we use Metropolis-Hastings steps, i.e. in each iteration
proposal distributions yield new candidates, we evaluate Hastings ratiosH and the proposals
are accepted with probability equal to min{1, H} each, respectively.

2.4 Model Selection

Using ergodicity properties of the MCMC we can try to estimate statistical characteristics
of Λ. Denote Λ(l)(t, v) from (2.36) evaluated in the l−th iteration of the MCMC chain. J
is the number of iterations, K, 0 < K < J, the burn-in of the chain, put k = J −K. The
filtered conditional expectation of Λ given all data X and the curve Y is estimated by the
average value

Λ̂(t, v) =
1

k

J∑

l=K+1

Λ(l)(t, v), (2.38)

analogously we get estimators of higher moments and conditional variance of Λ.
In the Bayesian framework there exist several tools for model selection including Bayes

factors, posterior predictive distributions or an extended Bayesian analysis. We restrict
attention to the consideration of posterior predictive distributions. Consider a summary
statistics V (x, Y ) [36] computed from the data and compare it with V (X,Y ) where X is
a Cox process with the estimated driving intensity.

We can use summary statistics corresponding to the first order and the second order
characteristics of the spatio-temporal point process. Those of the first order are the counts,
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i.e. numbers of pointsN(Cj) ofX in subregions Cj ⊂ W hitting Y , j = 1, . . . , k. A measure
of discrepancy of the model is e.g.

C =
k∑

j=1

(M(Cj) −N(Cj))
2, (2.39)

We approximate the mean value M(.) = EΛY (.) as

Λ̂Y ([t, s] ×B) ≈ △
m∑

p=1

1B(ytp)Λ̂(tp, ytp), (2.40)

where tp = t + p△, △ = (s − t)/m, where Λ̂(tp, ytp) is evaluated from (2.38). Thus we
obtain an estimate of M([t, s]×B) based on the auxiliary process iterations since Λ comes
from (2.36).

For the second-order analysis we can evaluate the factorial second moment measure
α(2) for pairs of subsets of the window and compare it with the estimator

α̂(2)(C,D) =

6=∑

ξ,η∈X

1[ξ∈C,η∈D], C, D ⊂ R
2 (2.41)

unbiased from (2.10). The statistics

∑

i6=j

(α(2)(Ci, Cj) − α̂(2)(Ci, Cj))
2

is another measure of discrepancy.
Fix M large integer, let △ = T

M
. Denote

E(B) =
△

M

M−1∑

q=0

Λ̂(q△, yq△)1[yq△∈B], B ⊂ A

and

V(B) =
1

k

J∑

l=K+1

(
△

M

M−1∑

q=0

Λ(q△, yq△)1[yq△∈B]

)2

− E(B)2.

Then we can estimate the Fano factor as

F̂ (B) = 1 +
V(B)

E(B)
. (2.42)
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2.5 Residual analysis

Another way to quantify the fit of the model and data is the residual analysis. For temporal
and spatio-temporal point processes it is well developed, see [35], based on the conditional
intensity and martingale theory in time. The purely spatial case is more complicated and
the Papangelou conditional intensity is recommended as the basic tool by [2]. The authors
of that paper note that spatial Cox processes are hard to analyze since with the exceptions
when the density w.r.t. unit Poisson process exists in a closed form, the Papangelou
conditional intensity is not computationally tractable.

For a Cox point process X either temporal, spatial or spatio-temporal with driving
intensity measure Λm we can define an innovation process generally as

I(B) = X(B) − E[Λm(B) | X], B ∈ B, (2.43)

it holds
EI(B) = 0.

Given a model for Λm depending on a parameter θ ∈ R
p we obtain its estimator θ̂ and we

can observe how the residual process

Rθ̂(B) = X(B) − Eθ̂[Λm(B) | X] (2.44)

oscillates around zero. A possibility to perform a statistical test depends on the way
how exactly the conditioning in (2.43),(2.44) is defined. In the temporal case denoting
Nt, t ≥ 0 the counting process corresponding to X and Λ the density of Λm, assuming that
the conditional intensity λ∗ exists and

λ∗t = lim
△t↓0

1

△t
E[Nt+△t −Nt | Ns, s < t] =

= lim
△t↓0

1

△t
E[E[Nt+△t −Nt | Ns, s < t; Λp, t ≤ p < t+ △t]] =

= lim
△t↓0

1

△t
E

[∫ t+△t

t

Λ(s)ds | Ns, s < t

]
= E[Λ(t) | Ns, s < t]

the innovation process Nt−
∫ t

0
λ∗sds is a martingale [28]. In the spatio-temporal case denote

Ns(C) = card{x ∈ X; x ∈ [0, s] × C}, C ∈ Bd. Analogously the conditional intensity λ∗

(see Subsection 1.2.1 for a definition)

λ∗(t, ξ)dtdξ = E[N(dt× dξ) | Ns(C), s < t, C ∈ Bd]

of a Cox process corresponds to

E[Λ(t, ξ) | Ns(C), s < t, C ∈ Bd] (2.45)

and

Nt(C) −

∫ t

0

∫

C

λ∗(s, ξ)dsdξ
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is a martingale with mean zero, C ∈ B. Scaled innovations

Vh =

∫

R×Rd

H(t, ξ)[N(dt× dξ) − λ∗(t, ξ)dtdξ],

where H is a predictable process, are investigated.
For the Cox process on a curve studied in this thesis we have an analogous argument.

Define
λ∗s = E[Λ(s, ys)|Nu, u < s], (2.46)

Nt −
∫ t
0
λ∗sds is a martingale with mean zero. For C ∈ B, C ⊂ A and a random process

{H(t), t ∈ [0, T ]} the scaled innovation VC is defined as

VC =

∫ T

0

1C(yt)H(t)[N(dt) − λ∗tdt].

Theorem 2.5: For a nonnegative predictable process {H(t), t ∈ [0, T ]} the scaled innovation
has variance

varVC = E

[∫ T

0

1C(yt)H
2(t)λ∗tdt

]
.

Proof: Denote G(t) = 1C(yt)H(t), {G(t), t ∈ [0, T ]} is a predictable process. Since by
[12], Theorem 4.6.1

E

(∫ T

0

G(t)[N(dt) − λ∗tdt]

)
= 0

we have (integral limits 0, T are omitted)

varVC = E

([∫
G(t)N(dt)

]2
)

+

+E

([∫
G(t)λ∗tdt

]2
)

− 2E

[∫
G(t)N(dt)

∫
G(t)λ∗tdt

]
.

Using Fubini and Theorem 1 from [25] we have

varVC = E

∫
G2(t)λ∗tdt+

−2E

[∫
G(s)λ∗sds

∫
G(t)[N(dt) − λ∗tdt]

]

and the second term vanishes again by [12], Theorem 4.6.1. �

The choice
H(t) = 1D(t)(λ∗t )

− 1
2 , D ∈ B1
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leads to the Pearson innovation

Vp =

∫

D

1C(yt)[(λ
∗
t )

− 1
2N(dt) − (λ∗t )

1
2dt] (2.47)

with
varVp = |{t ∈ D; yt ∈ C}|

The residual data analysis based on a realization of the Cox process on the curve

x = {τj} = {sj, ηj}j=1,...,k, sj ∈ R, ηj ∈ R
2

follows. Denote Λ̂(s) the MCMC estimator of λ∗s. The Pearson residual corresponding to
(2.47), time t and a measurable set C ⊂ A is then

Rθ̂(t, C) =
∑

(sl,ηl)

sl≤t, ηl∈C

Λ̂(sl)
− 1

2 −

∫ t

0

1C(ys)[Λ̂(s)]
1
2ds, (2.48)

Evaluation of the sum desires k MCMC chains conditioned up to time sj, j = 1, . . . , k.
A problem is the integral approximation in (2.48) which desires either more chains (and
this is computationally demanding) or the approximation of values of Λ̂(s) from chains
conditioned at times larger than the argument s.

Finally Pearson residuals can be plotted at times 0 < t1 < · · · < tn = T with bounds
2σi at ti,

2σi = 2[|{t ≤ ti; yt ∈ C}|]
1
2 . (2.49)
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Chapter 3

Numerical results

A spatio-temporal point process on a curve is a mathematical model for an experiment in
neurophysiology. Consider a bounded arena A ∈ R

2 and an experimental animal (typically
a rat) moving in time in the arena. Action potentials (spikes) of a neuronal cell in the
brain are discrete events during the movement, so that the time and the location of each
spike can be monitored. The curve represents a track of the rat.

In Section 3.1 we present simulations corresponding to the stochastic model, in Section
3.2 real data from an experiment are evaluated.

3.1 Simulation

It is desirable to simulate models from Chapter 2 in order to test various methods (filtering,
model selection, residual analysis) before evaluating real data.

A simple simulation on a grid demonstrates some properties of the model in Subsection
3.1.1. In Subsection 3.1.2 a numerical study of the model from Chapter 2 is presented with
evaluation of simulated data based on MCMC.

3.1.1 A model on a grid

Consider that the random function Λ generating driving intensities is homogeneous in time
and inhomogeneous in space, i.e.

E(Λ(x, t)) = µx

and
var(Λ(x, t)) = σ2

x, x ∈ A,

do not depend on t. Assume that A ⊂ R
2 bounded is divided in l boxes where µx is

piecewise constant and denote µi intensity mean in i−th box. Consider experimental data
in a form (tij, nij), i = 1, . . . , l; j = 1, . . . , ki, ([27]) where tij is the duration of j−th stay
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of the animal in i−th box and nij is the number of events during this stay. A natural
estimator of the expected intensity µi is then

µ̂i =

∑
j nij∑
j tij

. (3.1)

Consider Λ in a bounded window W = A× [0, T ]

Λ(t, u) =

∫ t

−∞

es−t Z(Bs−t(u) × ds). (3.2)

To simulate the model we need to consider a larger region W0 (see Fig. 3.1). The shape of
this region is derived from the form of sets Bs in (3.2). where Z is the Poisson basis. We
put

Bs(x1, x2) = [x1 + s, x1 − s] × [x2 + s, x2 − s], s ≤ 0. (3.3)

Lemma 3.1: For Bs given by (3.3) and the homogeneous Poisson basis Z with intensity
constant a we have

EΛ(t, u) =

∫ t

−∞

es−t(2(s− t))2ads =

∫ 0

−n

es(2s)2ads+

∫ −n

−∞

es(2s)2ads

and ∫ −n

−∞

es(2s)2ads = e−na(4n2 + 8n+ 8). (3.4)

Because of the Lemma 3.1 we can substitute −∞ in the integral in (3.2) by a finite
time, which leads to a good approximation.

Let us start with a discretization step △ > 0 in space and △′ > 0 in time. Here W is a
parallelepiped divided into cubes, each (i, j, k)-th cube is represented by its central point.
We get an approximation of (3.2) in the form

Λ̃(k, i, j) =
k+n∑

r=k

e(k−r)△
′

i+r−k∑

l=i−r+k

j+r−k∑

q=j−r+k

Z̃(r, l, q), (3.5)

where Z̃(r, l, q) are independent Poisson distributed random variables with mean equal to
a constant multiple of the volume of a cube. To simulate an inhomogeneous Λ we may
vary the parameter of the Poisson distribution in cubes.

A simple model of the curve Y is considered on a discrete square arena A = {1, . . . ,m}2

putting Yt a symmetric random walk on A with reflecting walls. The animal starts from
the position (m+1

2
, m+1

2
),m odd, with constant speed in each time interval moves a step △

in a random direction on the square grid with equal probability 1
4
. Y is here random and

independent of Λ.
Finally we simulate the spatio-temporal Cox point process X. Given Λ, the number of

points during time interval [q, q + △′] is Poisson distributed with mean △′Λ̃(q, yq).

47



A

W

0

T

W0

Figure 3.1: The enlarged window W0, points outside this region have no or very small
contribution to the driving intensity measure.

Simulation:

1. Simulate a symmetric random walk Yi, i = 1 . . . ,M ,

2. for r = −n, . . . ,M
for q, l = −ir, . . . , ir sample a random variable Z̃(r, l, q) with Poisson distribution
with parameter ρlqr△

2△′,

3. for i = 1, . . . ,M compute Λ̃(i, yi) from equation (3.5),

4. for i = 1, . . . ,M simulate random variable pi Poisson distributed with parameter
Λ̃(i, yi)△

′ and for j = 1, . . . pi simulate random variable x∑i−1
k=1 pk+j

with uniform

distribution on [(i− 1)△′, i△′).

For the evaluation of Fano factor in (2.21) we get an approximation

∫ T

0

1B(yt)Λ(t, yt)dt ≈ △′
M∑

i=1

1B(yi)Λ̃(i, yi), (3.6)

where yi is the location at time i. Empirical mean and variance is substituted in (2.21),
obtained from N realisations of Λ, respectively.
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Figure 3.2: 3 × 3 grid of boxes, a) simulated random walk with spikes, b) a simulated
inhomogeneous intensity, c) Fano factors, d) histogram of the numbers of spikes, e)
histogram of time units spent in a box, f) estimated expected intensity.

We present numerical results of the simulation for the grid size m = 9. The grid A is
subdivided onto boxes Aij, i, j = 1, . . . , 3, see the thick lines in Fig. 3.2a. The parameters
are M = 1000 (number of time steps), △ = 0.1, △′ = 0.1, n = 65 in (3.5). Then the
approximation of the term (3.4) is equal to 0.38a which is relatively small compared to
EΛ = 8a and N = 20 (number of realizations of Λ).

The data and results (estimation of Fano factor and intensity) are in Fig. 3.2. The
histograms in d) and e) are naturally of a similar shape resulting from a). The Fano
factors estimated in c) are clearly above 1. Using (3.1) the estimated expected intensity in
f) corresponds to the theoretical intensity in b). Unfortunately for further characteristics
estimation, e.g. for the variance of the driving intensity, there are no simple estimators
available. Therefore we proceed using the filtering techniques.

3.1.2 Cox process on a curve

Let A be a circle b(0, r) ⊂ R
2, W = A× [0, T ], consider a spiral curve

Y = {t, t cos(βt), t sin(βt)}, 0 < t < T, (3.7)
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β > 0 a parameter. Here the parametrization leads to the function v(t) in (2.20) of form

v(t) =
√

2 + β2t2.

We simulated realization of a Cox point process on the curve Y (see Section 2.2) in the
following way. The intensity of the auxiliary point process ψ generating the Poisson basis
Z was homogeneous with parameter ρ = 0.125, further parameters were put β = 0.375,
γ = 1 and u = 1. First we simulated auxiliary Poisson point process in space and time
with intensity ρ and then we computed the function Λ

Λ(t, v) =
∑

(sj ,zj)∈ψ

sj≤t

esj−t 1Bsj−t(v)(zj)

for (ti, yti) i = 1, . . . , 1000, ti = 0.08i. Finally we simulated the process on a curve
analogously to algorithm from previous subsection. In Fig. 3.3 there are points of a
realization projected onto the plane together with Y .

We tested the method from Section 2.3 based on Bayesian MCMC. The number of
iterations was equal to 4 × 103 and we obtained estimators of Λ̂ in (2.38), see Fig. 3.3.

0 20 40 60 80

0
1

2
3

4
5

6

Figure 3.3: Left a) Simulated realization with 50 events (circles) of a point process on the
curve (3.7) projected on the plane. Right b) The evolution of the input events (circles) in
time (horizontal axis) and the filtered graph of Λ̂(t, yt).

The posterior predictive distributions in space and time were evaluated using formula
(2.40). In Fig. 3.4 the empirical counts N(C) and theoretical values M(C) are compared
in planar subregions and finally in time in Fig. 3.5a left. We observe a reasonably good fit
in both space and time for given data.

3.2 Analyses of neurophysiological data

In this section experimental data [33] of times of occurences of action potentials of a
hippocampal neuron together with the track of a rat are investigated.
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Figure 3.4: Left a) - the counts N(D) (increasing with grey level), Right b) - evaluation of
M(D) from (2.40), here D = [0, T ]×Aij, {Aij} is 10×10 planar grid restricted by circular
A.
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Figure 3.5: Left a) - N(C) (grey dotted curve) and M(C) (black curve) from (2.40) for
C = A × [0, t] with increasing time t (horizontal axis). Right b) (parameter estimation)
5 × 105 iterations (with step 1000) of parameter γ .

The shape of action potentials is considered to be irrelevant. Therefore the pulses may
be seen as a realization of a spatio-temporal point process. The spikes were recorded with
0.1µsec precision from a rat searching for food and at the same time avoiding a northern
part of a 75 cm wide circular arena A. Each 1

60
s the location of the rat was monitored. We

chose first the recording of length 35 sec., there were 51 spikes observed, the average firing
rate at this segment was 1.46 Hz. In Fig. 3.6a there is a planar plot of the measurement
in space. The neuron fires mostly when the rat visits the east part of the arena. The
temporal behaviour of the recorded neuron is such that short periods of high activity are
separated by longer periods of small activity (Fig. 3.6b), there is an apparent clustering
and suggests a Cox process model.

For this data we used the measurement of length 37 sec. with 101 spikes, see Fig.
3.6. The model of ρ based on Zernicke polynomials (see (2.31)) was used. The graph of
filtered function Λ̂(t, yt) is presented in Fig. 3.7a. The posterior predictive distribution is
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evaluated in Fig. 3.7c and compared with data counts in Fig. 3.7b.
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Figure 3.6: Positional firing of the hippocampal neuron. Left a) - rat’s track in the arena
is displayed by the line. Places at which the neuron fired are indicated by dots. Right b) -
the temporal evolution of spikes with graphical presentation as a point process realization.
At each spike time the graph is increased by 1 so that at each time it corresponds to the
total number of spikes.([33])
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Figure 3.7: Left a) - Circles on the horizontal (temporal) axis denote spikes from Fig. 3.6,
the results of filtering are presented by a graph of Λ̂(t, yt), cf. (2.38). The intensity function
was based on Zernicke polynomials, Middle b) - the counts N(D), (increasing with grey
level), Right c) - evaluation of M(D) from (2.40), here D = [0, T ] × Aij, {Aij} is 15 × 15
planar grid restricted by circular A.

Summarizing our computational efforts a variability of results shall be admitted, espe-
cially for the real data. Therefore we study also other approaches in the next chapter.

52



Chapter 4

Discussion: other approaches

In this chapter we will discuss other approaches how to deal with the neurophysiological
data. The first approach is known from literature (in Section 4.1) and it is based on
recursive equations ([24]). In the second section we apply recently introduced theory of
random marked sets ([3]) and show its connection with weighted random measures from
Section 1.3. A test for the so-called random-field model is developed.

4.1 Recursive filtering

Suppose a parametric shape of the conditional intensity λ∗ of a temporal point process
with parameter vector ψ ∈ R

d. An approach which enables to evaluate large data set of
events {τi, i = 1, . . . , n} is such that the parameters of the model vary in time.

Consider △ > 0 small such that there is at most one event in each interval of length
△. Let △Nk be an indicator of an event (spike) in the interval ((k− 1)△, k△], k ≥ 1. Let
N1:k = [△N1, . . . ,△Nk] and ψ1:k = [ψ1, . . . , ψk] be the values of ψ in each subinterval of
length △. The conditional intensity λ∗(k△|ψk, N1:k−1) is denoted λ∗k. The state equation
is

ψk = Fψk−1 + ηk (4.1)

with fixed system evolution matrix F and zero mean Gaussian noise ηk with covariance
matrix Qk. In the Bayesian approach parameter ψ is random.

The recursive system for computing the posterior density p(ψk|N1:k) is

p(ψk|N1:k) =
p(ψk|N1:k−1)p(△Nk|N1:k−1, ψk)

p(△Nk|N1:k−1)
(4.2)

p(ψk|N1:k−1) =

∫
p(ψk|ψk−1)p(ψk−1|N1:k−1)dψk−1. (4.3)

Here the transition probability density p(ψk|ψk−1) is defined by the state equation (4.1)
and

p(△Nk|N1:k−1, ψk) = λ△Nkk exp(−λk△)
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is an approximation to the point process interval likelihood, valid for small △. Eden et
al. in [24] developed stochastic state point process filter, an algoritm using Gaussian
approximation to both equations (4.2) and (4.3). Denoting ψk|k,Wk|k the mean vector and
covariance matrix of the posterior distribution (4.2), ψk|k−1,Wk|k−1 the mean vector and
covariance matrix of the posterior distribution (4.3), the algorithm is given by the following
equations (F ′ is the transponse of F ):

ψk|k−1 = Fψk−1|k−1, Wk|k−1 = FWk−1|k−1F
′ +Qk

W−1
k|k = W−1

k|k−1 +

[(
∂ log λ∗k
∂ψk

)′

λ∗k△
∂ log λ∗k
∂ψk

− (△Nk − λ∗k△)
∂2 log λ∗k
∂ψk∂ψ′

k

]

|ψk|k−1

ψk|k = ψk|k−1 +Wk|k

[(
∂ log λ∗k
∂ψk

)′

(△Nk − λ∗k△)

]

|ψk|k−1

for k = 1, 2, . . .
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Figure 4.1: Positional firing of the hippocampal neuron. Left a) - rat’s track in the arena
is displayed by the line. Places at which the neuron fired are indicated by dots. Right b) -
the temporal evolution of spikes with graphical presentation as a point process realization.
At each spike time the graph is increased by 1 so that at each time it corresponds to the
total number of spikes.([33])

This algorithm was evaluated with the data of length 35 sec. with 51 spikes (Fig. 4.1).
For the model of conditional intensity λ∗ we used Zernicke polynomials (see (2.31)).

λ∗(x, z) = exp

{
n∑

j=0

j∑

i=−j

ψj,iRi
j(x, z))

}
,

whereRi
j is the i−th component of j−th order Zernicke polynomials, (x, z) planar coordinates,

ψj,i parameters.
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Figure 4.2: Left a) - Conditional intensity estimated by sequential analysis - temporal
graph, Right b) - Residual analysis based on sequential Monte Carlo - graph of Pearson
residuals (2.48) with bounds (2.49). We observe a good fit on a short interval.

So we can compute λ∗k as

λ∗k = exp

{
n∑

j=0

j∑

i=−j

ψj,ik R
i
j(y(k△))

}
, (4.4)

y(k△) is the location on the track and ψj,ik the value of parameters at time k△. The
resulting graph is in Fig. 4.2a, residual analysis in Fig. 4.2b.

We can also compute the function λ∗k in the whole arena A according to (4.4) once we
have parameters ψj,ik estimated. Thus planar maps are produced at each time k△. To see
the temporal evolution we divide the time interval of observations into subintervals and
average estimated coefficients over each subinterval. The graph of resulting planar function
is in Fig. 4.3 for two subsequent subintervals of length 18.5 sec.

The Gaussian approximation of posteriors can be further relaxed using sequential Monte
Carlo [22]. Particle filter was applied in [25] to evaluate data from the experiment.

4.2 Random marked sets

At this section we model the Cox process on a curve as a random marked set. First the
background of recently developed theory of random marked sets [3] is presented.

Denote by R̄ = R ∪ {−∞,∞} the extended real line. Let

φusc =
{
(X, f) : X ⊂ R

d is closed, f : X → R̄ is upper semi-continuous
}
.

φusc is isomorphic to the system Ucl of all closed sets A ⊆ R
d × R̄ which satisfy

∀x ∈ R
d∀t ∈ R̄ : (x, t) ∈ A⇒ {x} × [−∞, t] ⊆ A
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Figure 4.3: Using data from Fig. 3.6 divided in two subsequent intervals of equal length
18.5 sec, conditional intensity function in space was computed from average of Zernicke
coefficients.

by the bijection τ : φusc → Ucl

(X, f) 7→
{
(x, t) ∈ X × R̄ : t ≤ f(x)

}
, (X, f) ∈ φusc.

Definition 4.1: Let (Ω,F ,P) be a probability space and let (Θ, Z) : Ω → φusc be a mapping
with

{ω ∈ Ω : τ (Θ, Z) ∩B 6= ∅} ∈ F

for every compact set B in R
d × R̄. Then (Θ, Z) is called a random marked closed set

(RMCS).

Random marked closed set is a generalization of the marked point process. In this case
the dimension of Θ is zero. Another example of RMCS (Θ, Z) is the model where Z is a
Gaussian random field in R

d, t ∈ R and

Θt =
{
x ∈ R

d : Z(x) ≥ t
}
. (4.5)

Here the dimension of Θt is d. We are interested in RMCSs with integer Hausdorff
dimension k, 0 < k < d.

Let X ⊂ R
d be Hk−rectifiable (Definition 1.29). The relation between RMCS and

weighted random measure (Definition 1.26) can be demonstrated by the following diagram,
where Ξ is the system of weighted measures in R

d with weight space R.

Φusc = {(X, f)}
↑ ց

(Ω,F) → Ξ = {(ψ,w)}
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The diagram comumtes for ψ(.) = Hk(X ∩ .) and w(x, ψ) = f(x) on X. Specially in the
case k = 1 (k = d − 1) RMCS given by a random fibre (surface) system (see Section 1.4)
and a random field Z on R

d ca be described by a weighted random length (surface area)
measure, respectively, with weight given by Z restricted to Θ.

4.2.1 Random-field model

Definition 4.2: Let Z̃ be an upper semicontinous random field on R
d. (Θ, Z) a RMCS

such that ∀x ∈ Θ Z(x) = Z̃(x). If Z̃ and Θ are stochastically independent, that (Θ, Z) is
called a random-field model (with dash).

In the random-field case from statistical point of view we can study Θ and Z independently.
Obviously in the example when Θt is a level set (4.5) of a Gaussian random field Z̃ we
have that (Θt, Z) is not a random-field model.

In Chapter 2 the Cox process on a curve was investigated as a spatio-temporal process.
In the case of a random curve, (Y ,Λ) is a random marked closed set, where Y is a special
case of a random fibre process (see Section 1.4) in space and time and Λ is a spatio-
temporal random field. It is not clear wheather this is a random-field model for given
neurophysiological experiment.

We will therefore concentrate on the problem of testing the null-hypothesis H0 of a
random-field model. This was investigated first by Schlather et al. [43] for marked point
processes. Later in the book by Illian et al. [31], for stationary marked point processes in
R

2, the test is based on a mark-weighted L−function

Lm =

√
Km(r)

r

where Km is the mark-weighted K−function.
The testing procedure will be generalized in two ways: firstly to avoid stationarity

assumption we will use the Definition 1.25 of second-order intensity reweighted stationary
(SOIRS) random measure. Secondly, a general class of RMCSs with Hk−sets Θ in Definition
4.2 can be tested.

Specially we will formulate the test for SOIRS fibre process Y in the plane considering
the random length measure, cf. Section 1.4, Λ is a planar random field. The fibre process
here is specially a random curve, therefore we use the temporal parametrization and have
thus an unbiased estimator of K-function according to (1.26):

K̂(r) =
△x△y

|A|

∑

x∈V xY

∑

y∈V
y
Y

y 6=x

1(||x−y||<r)

LA(x)LA(y)
, r > 0. (4.6)

Here the curve is approximated by a piecewise linear curve (union of segments) with set of
vertices V y

Y and equal segment length △y. For test points x ∈ V x
Y larger intervals (of length

△x) can be chosen. LA(x) is the intensity function of the inhomogeneous length intensity
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Figure 4.4: The random field model test: data and results. Left a)- The track with spikes
(red dots), Middle b) - The test points xi ∈ V x

Y (yellow dots) together with the track, Right
c) - The envelopes (4.8) do not hit horizontal axis, we cannot reject the hypotheses of a
random-field model.

measure of Y in A. For data in a bounded set A standard edge-effect corrections [31] of
(4.6) can be used.

Our test is analogous to the case of marked point processes (cf. [31]) and it can be
suggested in the following algorithm:

a) evaluate a kernel estimator of LA(x) from the observed curve,

b) divide the curve in time onto m pieces of equal length △x, V
x
Y is the set of midpoints

xi ∈ Y of each piece,

c) evaluate the Λ-weighted K-function estimator (△y very small)

K̂Λ(r) =
△x△y

|A|

∑

x∈V xY

△Λ(x)
∑

y∈V
y
Y

y 6=x

1(||x− y|| < r)

LA(x)LA(y)
, (4.7)

where △Λ(x) = Λ(x)
EΛ(x)

.

d) Random reallocation: put subsequently n permutations of △Λ(x) values in (4.7) and
evaluate the estimator for each,

e) draw envelopes

L̂max(r) − L̂Λ(r), L̂min(r) − L̂Λ(r); L̂Λ(r) =

√
K̂Λ(r)/π. (4.8)

If any of the envelopes hits the horizontal axis at a point, the null hypothesis of a
random-field model is rejected.

We do not consider the temporal evolution, simply a planar random-field model (Y ,Λ)
is tested using data from Fig. 4.4a, where Y is the track (a random curve) and Λ is a
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planar random field which induces the driving intensity function of a Cox process of spikes
along the track.

The above algorithm was used to evaluate the data from Section 3.2. The problem of
estimating the weights △Λ(xi) = Λ(xi)

EΛ(xi)
from a single realization was solved in the following

way. Both the numerator and denominator is estimated as a ratio of number of events to
length of track within a small neighborhood of xi (or generalized to kernel estimator).
While for the denominator the whole track Y is considered, for the numerator we consider
to each xi only the corresponding piece of track as defined in b).

The results of real data evaluation are in Fig. 4.4b, the null hypothesis of the random-
field model is not rejected.
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[42] Sato KI (1999), Lévy processes and Infinitely Divisible Distributions, Cambridge
University Press, Cambridge

[43] Schlather M, Ribeiro PJ, Diggle PJ (2004), Detecting dependence between marks and
locations of marked point processes, J. R. Statist. Soc. B 66, 79—93.

[44] Schoenberg FP, Brillinger DR, Guttorp PM (2002). Point processes, spatial-temporal.
In: El-Shaarawi A, Piegorsch W, eds., Encyclopedia of Environmetrics, Vol. 3, Wiley,
New York, 1573–1577.

[45] Stoyan D, Kendall WS, Mecke J (1995), Stochastic Geometry and Its Applications,
2nd Ed., Wiley, Chichester.
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