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Abstrakt

Název práce: Odhad parametru při dvoufázovém stratifikovaném a skupinovém výběru
Autor: Mgr. Michaela Šedová
Katedra: Katedra pravděpodobnosti a matematické statistiky
Vedoućı dizertačńı práce: Doc. Mgr. Michal Kulich, Ph.D.
Abstrakt: V této práci se věnujeme metodám odhadu parametru při dvoufázovém strati-
fikovaném a skupinovém výběru. Narozd́ıl od klasické teorie výběrových šetřeńı se nezabý-
váme parametry charakterizuj́ıćımi konečnou populaci, ale soustřed́ıme se na situaci, kdy
jsou pozorováńı považována za realizace náhodné veličiny. Nás pak zaj́ımaj́ı parametry
modelu, který tuto náhodnou veličinu popisuje. Přesto však teorie výběrových šetřeńı
využ́ıváme, neboť muśıme zohlednit dané výběrové schéma. Uvedené metody můžeme
tedy chápat jako kombinaci obou př́ıstup̊u. Pro obě výběrová schémata pracujeme s kon-
ceptem, kdy je populace považována za výběr źıskaný v prvńı fázi, z něhož v druhé fázi
obdrž́ıme podvýběr. Sledovaná veličina je pozorovaná pouze pro jedince z podvýběru.
Věnujeme se odhadu středńı hodnoty, včetně jeho statistických vlastnost́ı, a popisujeme,
jak je možné naj́ıt přesněǰśı odhad v př́ıpadě, že je k dispozici pomocná veličina známá
pro celou populaci a korelovaná se sledovanou veličinou. Tuto metodu rozšǐrujeme také na
obecný problém odhadu regresńıho parametru.
Kĺıčová slova: dvoufázový výběr, Horvitz-Thompson̊uv odhad, odhad parametr̊u modelu,
skupinový výběr, stratifikovaný výběr

Abstract

Title: Parameter Estimation under Two-phase Stratified and Cluster Sampling
Author: Mgr. Michaela Šedová
Department: Department of Probability and Mathematical Statistics
Supervisor: Doc. Mgr. Michal Kulich, Ph.D.
Abstract: In this thesis we present methods of parameter estimation under two-phase
stratified and cluster sampling. In contrast to classical sampling theory, we do not deal
with finite population parameters, but focus on model parameter inference, where the ob-
servations in a population are considered to be realisations of a random variable. However,
we consider the sampling schemes used, and thus we incorporate much of survey sampling
theory. Therefore, the presented methods of the parameter estimation can be understood
as a combination of the two approaches. For both sampling schemes, we deal with the
concept where the population is considered to be the first-phase sample, from which a sub-
sample is drawn in the second phase. The target variable is then observed only for the
subsampled subjects. We present the mean value estimation, including the statistical prop-
erties of the estimator, and show how this estimation can be improved if some auxiliary
information, correlated with the target variable, is observed for the whole population. We
extend the method to the regression problem.
Keywords: cluster sampling, Horvitz-Thompson estimation, model-based inference, two-
phase sampling, stratified sampling
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Chapter 1

Introduction

1.1 Motivation

Motivation to investigate the topic of this thesis originally arose from Project ACCEPT [1],
a phase III randomized controlled trial of HIV prevention in Africa and Thailand. The
complexity and uniqueness of the study lead to many challenging statistical questions, one
of which we chose to study in more detail here. While the main objectives and design of
Project ACCEPT will be described below and will serve as an example, the results of the
thesis are far more general and can be applied in other areas and in different contexts.

In countries hit by HIV epidemic, a lot of different strategies to reduce the incidence
of HIV have been and also will be applied. However, it is very hard to quantify and
assess their effectiveness. Project ACCEPT is the first randomized controlled phase III
trial to determine the efficacy of a behavioral and social science intervention with an
HIV incidence endpoint in the developing world. In this trial, 34 communities in Africa
and 14 communities in Thailand were randomized to either intervention arm, consisting
of community based HIV voluntary counseling and testing (CBVCT) plus standard clinic-
based VCT (SVCT), or to a control arm, consisting of SVCT alone. The primary objective
of this study is to test the hypothesis that communities receiving 3 years of CBVCT, relative
to communities receiving 3 years of SVCT, will have significantly lower prevalence of recent
HIV infection.

The CBVCT involves strategies which are designed to change community norms and
reduce risk for HIV infection among all community members, irrespective of whether they
participated directly in the intervention. Thus, the assessment of efficacy is based on
changes in the communities’ risk behaviors, using repeat cross sectional data collected us-
ing household probability samples, as well as community-level prevalence of recent HIV
infection determined approximately 3 years after services are introduced in each commu-
nity. This is different from traditional study designs, namely that the individuals receiving
the two different kinds of VCT are studied. Rather, the interest is in the impact of
community-based VCT on the entire community, relative to standard VCT.

Baseline and post-intervention assessments are being conducted using the same house-
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hold probability sampling technique. Households are selected at random, and then an
eligible member of the household is selected at random and offered participation in the
assessment. Such sampling procedure implies that the selected households are represented
by one member, irrespective of their size. Thus, a simple random sample is not available.
Rather, the probability of a community member being included in the sample depends
on the size of the household to which he/she belongs. Consequently, people from ”small”
households contribute to the obtained sample more and people from ”big” households con-
tribute less compared to reality. If the measured endpoint is associated with the size of
the household, it might bring along a challenge for a statistician.

For example, in Project ACCEPT we could be interested in alcohol consumption as
a potential risk behavior. More precisely, we might want to estimate a mean monthly
amount of consumed alcohol per person in a given community. It might occur that members
of bigger households come from a different social background and have different habits in
drinking of alcohol. If we estimated the mean of alcohol consumed per person as an average
of the values observed for the selected individuals, we would get biased result, since we
would ignore the fact that people from bigger households are underrepresented in the
sample.

In summary, we face the problem of making inference based on a sample which was
not produced by simple random sampling. Instead, some more complex sampling scheme
was involved resulting in unequal probabilities of inclusion for different subjects. While
this situation is usually not considered in classical statistics, it is very common in survey
sampling theory. For this reason, in the next section we describe basic concepts of the two
statistical areas, differences between them and our position in between the two.

As we have already mentioned, baseline as well as post-intervention assessments are
being conducted using household probability sampling. Only one member from each house-
hold will be asked to participate in the assessment. However, during the visit of the project
staff in the household, basic data about the rest of members as well as about the household
as a whole will also be collected. This information might be valuable and associated with
the outcome which would be obtained were all the household members assessed. Therefore,
the main focus of this thesis will be on making use of such auxiliary information.

1.2 Classical versus Sample Survey Inference

In classical sampling theory, a finite population is a basic object of interest. It is often
a group of people living in the same geographical area (e.g. country), sometimes specified by
other characteristics (e.g. age). The target of inference is the finite population parameter,
e.g. the total or the mean of N fixed values. For example, we could be interested in the
mean income of an adult person in the Czech republic. Since the whole population cannot
be observed, a sample is drawn (involving predefined sampling scheme) and based on this
sample the inference about the target parameter is made. As we deal with fixed values,
the only source of randomness lies in the sampling process.

In classical statistics, however, understanding of reality is different. Observations in
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a population are considered to be realisations of a random variable. The target of inference
is then a parameter which characterizes its distribution (e.g. expectation). The source of
randomness consists in the stochastic model generating the observations.

A graphical representation of the two concepts can be found in Figure 1.1. The sample
survey approach is more sensible e.g. in administrative applications. For addressing scien-
tific questions, however, the latter understanding of the data is typically more appropriate.
For example, in Project ACCEPT, we would like to generalize results for other similar
populations or for the same population, but in different time. Another example would be
comparing two group means. While it is of interest to ask if the expectations in the two
groups are equal, there is no point to ask whether finite population means are equal. [7]
On the other hand, the classical statistical methods usually assume that a simple random
sample is available. As we have already mentioned, it is not always possible especially in
the case of extensive epidemiologic studies. In some situations, well designed more complex
sampling can be actually also more efficient.

The above suggests an idea to combine the two approaches. It means to draw inference
about parameters associated with the stochastic model generating the data, while taking
into account the sampling scheme. In sample survey literature, this concept is not entirely
new. Some authors describe it with the help of ”superpopulation”, a hypothetical infinite
population from which a finite population is sampled. It is also referred to as a ”model-
based” approach as opposed to a classical ”design-based” approach. Graubard and Korn
devoted two papers to this topic ([7],[8]), where they focus on comparison of variance
estimation under the two approaches. A recently published book from Fuller [6] puts
much more emphasis on links between standard survey techniques and classical statistical
methods than the ”traditional” literature such as [16]. The last chapter called ”Analytic
studies” deals with the use of survey data for the estimation of a model parameter. In
epidemiologic applications, this concept was used in situations when subsampling from
a large cohort is required to obtain additional more detailed information ([3], [4]).

1.3 Two Phase Sampling

The concept of superpopulation is useful in the unification of the classical and survey
statistics. We can see the final sample as a result of two-phase sampling (see Figure 1.1).
In the first phase, a simple random sample is drawn from a hypothetical superpopulation
and a large finite population is obtained. This phase can also be understood as generation
of observations by a model. In phase two, a possibly more complex sampling scheme
is employed to draw a random subsample for a measurement of the target variable [3].
Thus, when considering properties of estimators, we must incorporate the two sources of
variability. The first one (denoted by subscript I) results from the generation of the finite
population by a model, the second one (denoted by subscript II) stems from subsampling.
It implies that for the estimator θ̂ of the parameter θ, we can write

E θ̂ = E I(E II(θ̂))
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and
var θ̂ = varI(E II(θ̂)) + EI(varII(θ̂)). (1.1)

In other words, the first component of the estimator represents the model-based variance
of the usual estimates which would be obtained if the full data were available for the entire
finite population. The second component then results from observing only a subsample.

We can illustrate this with a simple example (see e.g. [6], pg. 344). Let us assume that
the finite population is a realization of N iid (independent identically distributed) random
variables with expectation µ and variance σ2. From the finite population, a simple random
sample of size n is drawn. The usual estimator from survey literature, ȳn, estimates the
finite population average, ȳN . The finite population average estimates expectation (i.e.
model parameter). Thus we have

varI(E II(ȳn)) = varI(ȳN) =
σ2

N
.

The design-based variance of ȳn presented in classical survey literature is

varII(ȳn) =
1− f

n
S2

N , where f =
n

N
and S2

N =
1

N − 1

N∑
i=1

(yi − ȳN)2.

We get

EI(varII(θ̂)) =
1− f

n
σ2

and therefore

varI(E II(ȳn)) + EI(varII(ȳn)) =
1

N
σ2 +

( 1

n
− 1

N

)
σ2 =

σ2

n
,

which is the model-based variance of estimator ȳn.

1.4 Auxiliary Information

In certain situations, we have access to some auxiliary information. It means that one or
more variables, closely correlated with the variable of interest, are observed for the entire
population. Use of such information is a very common topic in survey literature. The
auxiliary variables can be employed at design or estimation stage. A typical example of
the first case is so called probability proportional-to-size sampling [16], where the elements
are selected with probability proportional to the auxiliary variable. This approach is often
used in the context of Bernoulli sampling.

One well known technique which involves the vector of auxiliary variables x in the
estimation stage is the regression estimator. In brief, it replaces the unobserved values
of the target variable y by values predicted by the regression model with x serving as
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explanatory variables (see [6]). It is a member of more general class of estimators linear in
y, i.e. the estimators of the form ∑

i∈s

wiyi,

where s denotes the subsample from the finite population. There are a lot of different
options how the weights wi can be defined. An important example is the requirement to
satisfy the calibration property

∑
i∈s

wixi =
1

N

N∑
i=1

xi. (1.2)

One way to construct weights with calibration property is to minimize a function of the
weights subject to the restriction (1.2).

In this thesis, we will focus on the adjustment of the weights which is more common
in biostatistics and epidemiology (see e.g. [15]). More specifically, we will use weights
estimated from a parametric model

πi = P (ξi|xi),

where ξi is a sampling indicator. This approach is closely related to a general missing data
problem, where inverse probability estimators are often considered as one of the possible
solutions. While in our case data are missing by design (as a result of a prespecified
sampling scheme), in other applications we encounter data missing by chance.

The purpose of the techniques employing auxiliary information is to reduce the variance
of the resulting estimator. As we have already mentioned, in the context of superpopulation
inference the variance has two components, see expression (1.1). Apparently, only the
second one is amenable to improvement by the auxiliary information available for the
finite population. Thus the ideal case occurs when the auxiliary variable is identical to
the target variable and the variance reaches its lower limit, that is the value of the first
”model-based” component.

The main focus of this thesis is on estimating a model parameter under the two most
common sampling schemes: stratified and cluster sampling. We summarize and where
needed clarify published results related to model-based inference and relate them to finite-
population inference. Our interest is mainly in the use of auxiliary variables to improve
the properties of the estimators. In the case of stratified sampling the idea has been
extensively studied, considering also semiparametric models. Especially Breslow et al.
made a lot of effort to present this approach to the broad community of biostatisticians
and epidemiologists ([3], [4]) and encourage its use. They also provided links to the survey
package in freely available statistical software R [14], where the methods are implemented
([11], [12]).

The use of auxiliary variables in stratified sampling led us to question whether a similar
method could be applied in case of cluster sampling. To our knowledge, this idea was never
studied in published literature. The original results of this thesis therefore relate to the
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use of auxiliary information in cluster or combined stratified cluster sampling. While
the presented method of employing the auxiliary information under the cluster sampling
is similar to the one used under the stratified sampling, it differs in important aspects;
especially in the derivation of the asymptotic properties. Some of the results described in
chapters 2 and 3 have been published in [17, 18, 19].

All statistical analyses and simulations presented in this thesis were carried out in the
statistical package R, version 2.9.1 [14].

1.5 Estimation of Expectation under a Sampling

Scheme

Let us describe a basic idea which is used in different modifications throughout this thesis.
Although it will seem to be a little bit overcomplicated for the following simple example,
it illustrates the reasoning behind its applications in a more complex setting.

Let Y be a random variable with mean EY = θ, where θ < ∞. From a population of
size N , a sample is drawn. Let ξi be a dichotomous random variable indicating whether an
individual i was sampled or not and let πi be his or her sampling probability. We assume
that variables ξi are independent. Consequently, the sample size is random. Such design
is called Bernoulli or Poisson Sampling [16].

The Horvitz-Thompson estimator of parameter θ is defined as

θ̃ =
1

N

N∑
i=1

ξi
πi

Yi. (1.3)

Let us assume that all the sampling probabilities are equal, π = π1 = π2 = · · · = πN .
The estimator of θ using (1.3) is

θ̃ =
1

Nπ

N∑
i=1

ξiYi.

It follows that

√
N(θ̃ − θ) =

1√
N

N∑
i=1

(ξi
π
Yi − θ

)
=

1√
N

N∑
i=1

Qi, where Qi =
ξi
π
Yi − θ.

The sampling probabilities are independent of Y and thus we can write

EQi = E
ξi
π

EYi − θ = 0

Σθ̃ = varQi = EQ2
i =

1

π
varYi +

1− π

π
θ2.
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Since Qi are independent identically distributed (iid) variables, according to the Central
limit theorem √

N(θ̃ − θ)
d→ N(0,Σθ̃).

The disadvantage of this estimator is that its asymptotic variance depends on θ2, meaning
that it is not invariant to location.

One could also use another estimator with estimated sampling probabilities, defined as

θ̂ =
1

Nπ̂

N∑
i=1

ξiYi, where π̂ =
1

N

N∑
i=1

ξi.

We have

√
N(θ̂ − θ) =

1√
N

N∑
i=1

ξi
π
Yi +

1√
N

N∑
i=1

( 1

π̂
− 1

π

)
ξiYi −

√
Nθ.

By the Taylor expansion of 1
π̂

around 1
π
, we get

1

π̂
− 1

π
= − 1

π2
(π̂ − π) + op

( 1√
N

)
= − 1

π2

1

N

N∑
i=1

(ξi − π) + op

( 1√
N

)
.

Thus (see the proof of the Theorem 1)

√
N(θ̂ − θ) =

1√
N

N∑
i=1

ξi
π
Yi −

1√
N

N∑
i=1

1

Nπ2

N∑
j=1

(ξj − π)ξiYi −
√
Nθ + op(1)

=
1√
N

N∑
i=1

Qi + op(1),

where

Qi =
ξi
π
Yi −

ξi − π

π
θ − θ

are iid, EQi = 0 and

Σθ̂ = varQi =
1

π
varY.

According to the Central limit theorem,

√
N(θ̂ − θ)

d→ N(0,Σθ̂).

We can see that replacing the known sampling probability π by its estimate π̂ results
in an estimator θ̂ with better properties. Its asymptotic variance is invariant to location
and moreover always smaller than or equal to the variance of estimator θ̃, i.e. Σθ̂ ≤ Σθ̃.
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Chapter 2

Two-phase Stratified Sampling

2.1 Introduction

Stratified Sampling

In stratified sampling, the population of N elements is divided in K subpopulations of
N1, N2, . . . , NK elements, respectively. These subpopulations are called strata and they
comprise the whole of the population, N1 + N2 + · · · + NK = N . A sample is drawn
independently from each stratum.

Stratification is a common technique in survey sampling. On top of administrative
and logistical advantages it can also produce a gain in precision in the estimates of the
population parameters. It may be possible to divide a heterogenous population into sub-
populations, each of which is internally homogenous. Then each stratum mean is estimated
with high precision and these estimates can be combined into a precise estimate for the
whole population. [5]

If no information about the strata is available at the outset, two-phase sampling is
used. A large first-phase sample is selected and stratified with the aid of the auxiliary
characteristics observed, at low cost, for the elements in the first-phase sample. The
second phase is then carried out as stratified sampling, with a considerably smaller sample
size and the variable of interest observed for this small sample.[16] This sampling design
was proposed by Neyman [13].

Two-phase designs have also been suggested in epidemiology. They are particularly
valuable when a large cohort (i.e. first-phase sample) is under surveillance for a disease
event of interest and sampling from the cohort is required to obtain information on addi-
tional covariates. Standard case-control designs stratify second phase sampling on disease
status, while it was also proposed [20] to stratify on both disease status and exposure with
the aim to gain efficiency. [3]

In these epidemilogic applications, the target of inference are not a finite population
parameters, but superpopulation parameters which should help to answer some scientific
question. Thus, the cohort is understood as a first-phase sample from the infinite super-
population. Then information about the strata is identified, and based on it, the second
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phase sample is drawn. The analysis is performed on the subsample.
As we have already mentioned, this chapter mainly summarizes results contained in

biostatistical and epidemiological literature, see e.g. [3], [4]. However, since we felt that
sometimes they do not provide enough details and insight, we chose to present our own
form of statements and their proofs. It will also help to build a link to the results of the
next chapters.

Statistical Formulation

A statistical formulation of this problem is as follows. Let Y be a random variable of
interest and W a discrete random variable taking on values from {1, 2, . . . , K}. In our
case, W corresponds to the stratum in a population. We write

Iik =

{
1 if Wi = k
0 otherwise.

Let Nk denotes the number of individuals in stratum k,
∑K

k=1Nk = N . Let ξi be the sam-
pling indicator and πk is a sampling probability of an individual who belongs to stratum k.
We assume that variables ξi are independent, which means that within each stratum we
perform Bernoulli sampling with constant probabilities

E (ξi|Wi = k) = P(ξi = 1|Wi = k) = πk, for i = 1, 2, . . . , N.

We also assume that Wi is observed for all N members of the population, while Yi is
observed only for the selected individuals, i.e. when ξi = 1.

2.2 Estimation of the Mean

We denote

θ = EY =
K∑

k=1

pkθ[k], (2.1)

where
θ[k] = E kY = E (Y |W = k) and pk = P(W = k).

We define the estimator of the parameter θ as

θ̂ =
1

N

N∑
i=1

K∑
k=1

( 1

π̂k

ξiYi

)
Iik, where π̂k =

1

Nk

N∑
i=1

ξiIik, (2.2)

and Nk is the number of individuals belonging to stratum k. The estimator θ̂ has a form
of weighted average of the observations, where the weights are the reciprocal values of
the empirical sampling probabilities. For a given stratum k, the sampling probability
is estimated as the number of the sampled individuals divided by the total number of
individuals in stratum k.
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Theorem 1. Assume that vectors (Yi,Wi, ξi) are iid and ξi is independent of Yi given Wi,
for i = 1, 2, . . . , N . Assume that varYi <∞. Then the following holds:

√
N(θ̂ − θ)

d→ N(0,Σ), (2.3)

where

Σ = varYi +
K∑

k=1

pk
1− πk

πk

varkYi (2.4)

and
vark(Yi) = var (Yi|Wi = k).

Proof Since for given k

E
(ξiYi

πk

Iik

)
= pkE k

ξiYi

πk

= pkθ[k],

according to the weak law of large numbers we have

1

Nk

N∑
i=1

ξiYi

πk

Iik =
1

N

N∑
i=1

N

Nk

ξiYi

πk

Iik
P→ θ[k]. (2.5)

We can write

√
N(θ̂ − θ) =

1√
N

N∑
i=1

K∑
k=1

(ξiYi

πk

+
( 1

π̂k

− 1

πk

)
ξiYi − θ

)
Iik.

By the Taylor expansion of 1
π̂k

around 1
πk

, we get

1

π̂k

− 1

πk

= − 1

π2
k

(π̂k − πk) +
1

2

1

π∗3k

(π̂k − πk)
2

= − 1

π2
k

1

Nk

N∑
i=1

(ξi − πk)Iik +
1

2

1

π∗3k

( 1

Nk

N∑
i=1

(ξi − πk)Iik

)2

,

where π∗k is between π̂k and πk. Thus

√
N(θ̂ − θ) =

1√
N

N∑
i=1

K∑
k=1

(ξiYi

πk

+
[
− 1

π2
k

1

Nk

N∑
j=1

(ξj − πk)Ijk

+
1

2

1

π∗3k

( 1

Nk

N∑
j=1

(ξj − πk)Ijk

)2]
ξiYi − θ

)
Iik.
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For the third expression in the above sum we have

1

2π∗3k

1√
N

N∑
i=1

K∑
k=1

( 1

Nk

N∑
j=1

(ξj − πk)Ijk

)2

ξiYiIik

=
1

2π∗3k

K∑
k=1

( 1√
N

N∑
j=1

√
N

Nk

(ξj − πk)Ijk

)2 1√
N

1

Nk

N∑
i=1

ξiYiIik =
K∑

k=1

Op(1)op(1) = op(1),

since 1√
N

1
Nk

∑N
i=1 ξiYiIik

P→ 0 and 1√
N

∑N
j=1

√
N
Nk

(ξj − πk)Ijk converges in distribution to

a normal random variable. Then we get

√
N(θ̂ − θ) =

1√
N

N∑
i=1

K∑
k=1

(ξiYi

πk

−
( 1

π2
k

1

Nk

N∑
j=1

(ξj − πk)Ijk

)
ξiYi − θ

)
Iik + op(1)

=
1√
N

[ N∑
i=1

K∑
k=1

(ξiYi

πk

− θ
)
Iik −

K∑
k=1

1

πk

1

Nk

( N∑
i=1

ξiYi

πk

Iik

)( N∑
j=1

(ξj − πk)Ijk

)]
+ op(1)

(2.5)
=

1√
N

[ N∑
i=1

K∑
k=1

(ξiYi

πk

− θ
)
Iik −

K∑
k=1

1

πk

θ[k]

N∑
j=1

(ξj − πk)Ijk

]
+ op(1)

=
1√
N

N∑
i=1

K∑
k=1

(
ξiYi

πk

− ξi − πk

πk

θ[k] − θ

)
Iik + op(1). (2.6)

We can write
√
N(θ̂ − θ) =

1√
N

N∑
i=1

Qi + op(1),

where

Qi =
K∑

k=1

(ξiYi

πk

− ξi − πk

πk

θ[k] − θ
)
Iik

are iid variables and

EQi = E (E [Qi|Wi]) = E
( 1

πk

E kξiE kYi

)
− θ = 0

Σ = varQi = E (E [Q2
i |Wi]) = E

(
E

[(
Yi − θ +

ξi − πk

πk

(Yi − θ[k])
)2|Wi

])
= E (E [(Yi − θ)2|Wi]) + E

(
E

[(ξi − πk

πk

)2
(Yi − θ[k])

2|Wi

])
= varYi +

N∑
k=1

pk
1− πk

πk

varkYi.

According to the Central limit theorem for iid random variables
√
N(θ̂ − θ)

d→ N(0,Σ).

2
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Remark In the proofs of the theorems which follow later in this text, some steps will
be very similar to the ones shown in proof of Theorem 1 and thus will not be repeated in
detail.

Variance Σ (2.4) can be estimated as

Σ̂ =
1

N

N∑
i=1

K∑
k=1

ξi
π̂k

(Yi − θ̂)2Iik +
K∑

k=1

Nk

N

1− π̂k

π̂k

( 1

Nk

N∑
i=1

ξi(Yi − θ̂[k])
2Iik

)
. (2.7)

The variance of θ̂ has an interesting interpretation. As we have already mentioned,
the first term corresponds to the variance of ȲN which would be used to estimate θ if the
entire population could be observed. The second term can be understood as a penalty
for observing only a sample. If there is only one stratum in the population (i.e. W is
a constant) and the sampling probability is π, we get

Σ = varYi +
1− π

π
varYi =

1

π
varYi.

If there are K strata in the population and the sampling probabilities π1 = · · · = πK = π
are equal, we get

Σ = varYi +
1− π

π

∑
k

pkvarkYi.

Here the sampling penalty takes the form of 1−π
π

times the weighted average of the within-
strata variances weighted by the stratum probability. If the variable of interest has a con-
stant value within each stratum, the within-stratum variance is always zero and the sam-
pling penalty vanishes. Obviously, if we knew that all the individuals in the stratum have
the same value, we would not lose any information by observing just one individual from
each stratum. In this case, the stratum variable Wi contains all the information on the
value of Yi. If the information on Yi is only partial, i.e. we can a priori split the population
into strata with similar values within each of them, it decreases each stratum variance,
compared to the situation when Wi contains no information on the value of Yi. The overall
variance (2.4) of the estimator θ̂ then decreases as well. If Wi contains no information
on the value of Yi, splitting population into strata is random, which results in the same
variance within each stratum as it is in the whole population. In other words, the stratifi-
cation of population cannot increase the asymptotic variance of the estimator θ̂ over that
of the unstratified estimator (with K = 1). This result applies when Nk is large for all
k = 1, 2, . . . K.

Remark One might argue that in case of awareness that the population is heterogenous,
it might be more appropriate to perform conditional estimation, i.e. to estimate the ex-
pectation given stratum. It might certainly be true in some situations, but in other cases
the marginal inference is more appropriate. It always depends on the scientific question to
be addressed. Marginal inference is for example very common in clinical trials. Although
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the population of patients is known to be heterogenous and it is expected that some pa-
tients will benefit from a drug under investigation more than others, depending on other
(e.g. health, region, genetic, etc.) conditions, still the goal is to evaluate whether the drug
works overall. Another example is a situation when the stratification is performed based
on the outcome or on an intermediate variable on the causal pathway leading to outcome.
We can have two strata of patients suffering from a disease which is accompanied by high
fever: patients whose body temperature returned back to normal after certain intervention
and patients who did not respond. To conclude whether a patient was finally cured from
the disease, depending to which stratum he/she belongs (i.e. whether his temperature
decreased back to normal or not), would probably be very straightforward, but would not
tell us much about what role the studied intervention played in curing the disease.

2.3 Note on Estimators Presented in Survey Litera-

ture

The connection between results presented in Theorem 1 and those which can be found in
the survey literature can be seen through the two phases of sampling, as was explained in
section 1.3.

Under stratified sampling, the ”survey estimator” of the population mean is identical
to our estimator θ̂. It estimates the population average, which in turn estimates the
expectation θ. The variance of the population average is obviously

varI(E II(θ̂)) = varI(ȳN) =
1

N
varYi.

The estimator of the design-based variance of θ̂ (see e.g. [16], pg. 103) is

v̂arII(θ̂) =
1

N2

K∑
k=1

N2
k

1− fk

nk

s2
k, where fk =

nk

Nk

,

nk denotes number of individuals sampled from stratum k and

s2
k =

1

nk − 1

N∑
i=1

ξi(yi − θ̂[k])Iik.

The expression v̂arII(θ̂) estimates

EI(varII(θ̂)) =
1

N

K∑
k=1

pk
1− πk

πk

varkYi.

We get

varI(E II(θ̂)) + EI(varII(θ̂)) =
1

N
Σ,

which is the asymptotic model-based variance of θ̂.
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2.4 Use of Auxiliary Variables

When some auxiliary variables, correlated with the target variable, are observed for the
whole population, the previously described estimator can be improved. Let us assume an
s-dimensional vector of auxiliary variables X i and denote

ZT
i = (Ii1, . . . , IiK ,X

T
i ).

We adjust the sampling weights in the Horvitz-Thompson estimator by fitting the logistic
regression model for the sampling probabilities, where stratum indicator as well as the
vector of auxiliary variables are included as explanatory variables

log
( πi

1− πi

)
= γT zi. (2.8)

Since the sampling probabilities depend only on the stratum and not on the auxiliary
variables, the only nonzero components of vector γ will be the components reflecting the
stratum. The part of the vector of parameters pertaining to the auxiliary variables γx = 0.
However, its estimate will never be exactly equal to 0 and we obtain the vector of the
estimated sampling probabilities

π̃i = πi(γ̃
T zi) =

exp (γ̃T zi)

1 + exp (γ̃T zi)
, (2.9)

where γ̃ is the estimate of parameter γ.
The estimator of θ has the following form

θ̃ =
1

N

N∑
i=1

1

π̃i

ξiYi.

Theorem 2. Assume that vectors (Yi,Wi,Xi, ξi) are iid and ξi is independent of Yi and
Xi given Wi, for i = 1, 2, . . . , N . Assume that varYi < ∞ and varXij < ∞ for each
component j = 1, 2, . . . , s. Then the following holds:

√
N(θ̃ − θ)

d→ N(0,Σz), (2.10)

where

Σz = varYi +
∑

k

pk
1− πk

πk

varkYi − cTV −1c, (2.11)

and

c =
K∑

k=1

pk(1− πk)covk(X i, Yi), V =
K∑

k=1

pkπk(1− πk)varkX i.
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Proof We can write

√
N(θ̃ − θ) =

1√
N

N∑
i=1

(ξiYi

πi

+
( 1

π̃i

− 1

πi

)
ξiYi

)
−
√
Nθ.

For each j = 1, 2, . . . , K + s it holds

∂

∂γj

( 1

πi(γT Zi)

)
=

∂

∂γj

(1 + exp(γT Zi)

exp (γT Zi)

)
= − Zij

exp(γT Zi)
(2.12)

and we have

γ̃ − γ =
1

N
J−1

γ

N∑
i=1

U i(γ) + op

( 1√
N

)
=

1

N
J−1

γ

N∑
i=1

(ξi − πi(γ
T Zi))Zi + op

( 1√
N

)
, (2.13)

where U i is the score and Jγ is the Fisher information matrix pertaining to the model (2.8)

Jγ = E πi(1− πi)ZiZ
T
i .

By the Taylor expansion of 1
π̃i

around 1
πi

, using (2.12) and (2.13) we get

1

πi(γ̃
T Zi)

− 1

πi(γT Zi)
= −(γ̃ − γ)T Zi

exp(γT Zi)
+ op

( 1√
N

)
= − 1

N

1

exp(γT Zi)

[ N∑
j=1

(ξj − πj)Z
T
j J

−1
γ

]
Zi + op

( 1√
N

)
.

Then

√
N(θ̃ − θ) =

=
1√
N

N∑
i=1

(
− 1

N

1

exp(γT Zi)

[ N∑
j=1

(ξj − πj)Z
T
j J

−1
γ

]
ZiξiYi +

ξiYi

πi

)
−
√
Nθ + op(1)

=
1√
N

N∑
j=1

(ξj − πj)Z
T
j J

−1
γ

(
− 1

N

N∑
i=1

ξiZiYi

exp(γT Zi)

)
+

1√
N

N∑
i=1

ξiYi

πi

−
√
Nθ + op(1).

Since

− 1

N

N∑
i=1

ξiZiYi

exp(γT Zi)
= − 1

N

N∑
i=1

ξi
1− πi

πi

ZiYi
P→ q = E (1− πi)ZiYi,

we have
√
N(θ̃ − θ) =

1√
N

N∑
i=1

Qi + op(1),
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where Qi are iid random variables

Qi =
ξiYi

πi

+ (ξi − πi)Z
T
i J

−1
γ q − θ.

It holds

Σz = varQi = EQ2
i = E

(
(Yi − θ) +

ξi − πi

πi

(Yi − πiZiJ
−1
γ q)

)2

= varYi + E
1− πi

πi

Y 2
i − qTJ−1

γ q.

Again, according to the Central limit theorem for iid random variables

√
N(θ̃ − θ)

d→ N(0,Σz).

The last step is to show (2.11). We have

Jγ =
K∑

k=1

pkπk(1− πk)E kZiZ
T
i =

(
A B
BT D

)
,

where

Ak×k = Diag{pkπk(1− πk)}K
k=1

Bk×s = [pkπk(1− πk)E kX
T
i ]Kk=1

Ds×s =
K∑

k=1

pkπk(1− πk)E kX iX
T
i .

Then

J−1
γ =

(
A−1 + A−1BP−1BTA−1 −A−1BP−1

−P−1BTA−1 P−1

)
, where P = D −BTA−1B,

and

A−1B = [E kX
T
i ]Kk=1

BTA−1B =
K∑

k=1

pkπk(1− πk)E kX iE kX
T
i

P =
K∑

k=1

pkπk(1− πk)varkX i.
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We denote qT = (qT
1 , q

T
2 ) for

q1 = [pk(1− πk)E kYi]
K
k=1, q2 =

K∑
k=1

pk(1− πk)E k(YiX i),

and

aT = qT
1A

−1B =
K∑

k=1

pk(1− πk)E kYiE kX
T
i .

Then we get

qTJ−1
γ qT = qT

1A
−1q1 + aTP−1a− qT

2 P
−1a− aTP−1q2 + qT

2 P
−1q2

= qT
1A

−1q1 + (q2 − a)TP−1(q2 − a).

Since

qT
1A

−1q1 =
K∑

k=1

pk
1− πk

πk

(E kYi)
2, q2 − a =

K∑
k=1

pk(1− πk)covk(X i, Yi),

we obtain (2.11).

2

The variance Σz (2.11) can be estimated similarly to Σ (2.7), with the usual estimators of
covariance and variance matrices ĉovk(X, Y ) and v̂arkX for k = 1, . . . , K.

Since V is a linear combination of variance matrices, V −1 is a positive semidefinite
matrix and cTV −1c ≥ 0. This important observation shows that Σ ≥ Σz, which means
that use of auxiliary variables to adjust weights in the Horvitz-Thompson estimator can
never increase the asymptotic variance of the estimator. In the worst case, when auxiliary
variables and the target variable are independent, the asymptotic variances of the original
estimator θ̂ taking into account only the stratum variable and the estimator θ̃ with weights
adjusted for auxiliary variables are equal. When auxiliary variables are correlated with the
variable of interest, the variance of the estimator θ̃ is lower.

We also do not have to use the auxiliary variable in its original form, but rather seek
a transformation which would be most correlated with the target variable Y . If we choose
to use as an auxiliary variable X i/πk for the observation from stratum k (Wi = k), we
obtain

Σz = varYi +
∑

k

pk
1− πk

πk

varkYi − cTV −1c,

where

c =
K∑

k=1

pk
1− πk

πk

covk(X i, Yi), V =
K∑

k=1

pk
1− πk

πk

varkX i.

If we have a variable X for which cork(X, Y ) = 1, then cTV −1c =
∑

k pk
1−πk

πk
varkYi and

the variance of the estimator θ̃ reaches its lower limit, Σz = varYi. In this sense, the
transformation of the auxiliary variable defined as X i/πk, where Wi = k, is optimal.
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2.5 Example

The above presented results are illustrated by the following hypothetical example. We are
interested in the mean serum uric acid concentration (UC). By ”mean” we mean expecta-
tion of the stochastic distribution of the uric acid concentrations in a general population.

Let us assume a representative population of Nm = 500 men and Nw = 500 women.
From this population, a stratified sample (based on gender) was drawn, where men were
sampled with probability πm = 0.6 and women with probability πw = 0.4. For nm selected
men and nw selected women, blood samples were taken and the serum uric acid concentra-
tion measured. The triacylglycerols levels (Tgl) were available for all the population and
thus can be considered as the auxiliary variable.

The sampling probabilities are estimated as π̂m = nm/Nm and π̂w = nw/Nw. The
standard estimator of expectation, which reflects only the stratum, has the following form

θ̂ =
1

1000

( ∑
i∈sw

1

π̂w

Yi +
∑
i∈sm

1

π̂m

Yi

)
, (2.14)

where sm and sw denote the set of sampled men and women, resp.
The improved estimator takes into account Tgl of the ith patient

θ̃ =
1

N

N∑
i=1

1

π̃i

ξiYi, (2.15)

where π̃i denotes the weights adjusted for triacylglycerols levels divided by the sampling
probabilities, see (2.9).

Simulation To demonstrate how these two estimators differ with respect to precision,
we carried out a small simulation. It was conducted as follows. We generated a population
of 1000 individuals, assigning gender with equal probabilities for men and women. We
assumed that the mean value of uric acid concentration in men is θm = 320 µmol/L and
the mean value in women is θw = 240 µmol/L. It implies that in the general population,
the mean is

θ = 0.5 ∗ 320 + 0.5 ∗ 240 = 280.

Normally, the correlation between Tgl and UA is around 0.3, but for illustration we assumed
also correlations equal to 0.6 and 0.9 (within the stratum). The values of UA and Tgl were
generated from multivariate normal distribution. In the next step, a subset of individuals
was sampled using the stratified sampling described above. The standard estimate (2.14)
as well as the estimate taking into account Tgl (2.15) were calculated. This procedure
was repeated 1000 times. The results are displayed in Table 2.1. We can see that for
each type of estimator, the estimate of the expectation was very close to its real value
280. The estimate of variance was very close to the calculated asymptotic variance of the
estimator. The empirical variance of the estimator was in all cases a little bit higher than
the calculated and the estimated asymptotic variance, but the difference was acceptable.
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Table 2.1: Example of stratified sampling; Results of simulation

Average Variance of estimator
Estimator cor(UC, Tgl) estimate of θ asympt. empirical estimate*

θ̂ 279.868 11.808 12.265 11.830
0.3 279.898 11.331 11.669 11.340

θ̃ 0.6 279.954 9.897 10.070 9.900
0.9 280.026 7.509 7.586 7.501

Full population 280.013 6.500 6.725 6.495

*Average of estimates
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Chapter 3

Cluster Sampling

3.1 Introduction

In single stage cluster sampling, the finite population is partitioned into n subpopulations,
called clusters. From this population of clusters, a sample is selected and all elements
in the selected clusters are surveyed. Due to the tendency for elements in the cluster
to resemble each other and to control the costs, researches often perform a subsample
within the selected clusters. In classical survey terminology, this is called two-stage element
sampling. Two conditions are usually required. Invariance means that the subsampling
must be independent of the sample of clusters, i.e. every time the ith cluster is included in
a first-stage sample, the same subsampling scheme must be used. Independence means that
the subsampling within each selected cluster is carried out independently of subsampling
in any other cluster. An important aspect of cluster sampling is that the variability of
estimators consists of two components; variability between and within the clusters. In
order to estimate the latter one, at least two members from each cluster must be selected.

The household probability sampling technique used in Project ACCEPT is an example
of such two-stage element sampling with households having the role of clusters. However,
as it was already explained, we are interested in the model parameters. Therefore, the first-
stage sample of households is not considered to be a subsample from a finite population
of households, but rather to be generated by a model. We assume that a simple random
sample of predetermined size is drawn within each household. This covers the specific
case when only one member from each household is selected (like in Project ACCEPT).
A graphical representation of such a sampling scheme can be found in Figure 3.1. As it
was mentioned above, in the context of survey sampling, at least two members from each
household would be required. We will see that the model-based inference does not have
this limitation. Results presented in this chapter are consistent with similar results found
in [8].
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N

n
Figure 3.1: Household sampling

3.2 Estimation of the Mean

Let us assume a population of households. The total size of the population is n. It can be
considered as a simple random sample from an infinite population of households. Let the
random variable Mi represent the number of members in the ith household. Its density
is denoted as f(m) and the expectation as µ. The total number of individuals in the
population is N =

∑n
i=1Mi. Further, let Yir be the target variable for the rth member of

the ith household, ξir be a random variable for which

ξir =

{
1 if the rth member of the ith household is included in the sample
0 otherwise,

mi be the prespecified number of members selected from the ith household and πir =
E (ξir|Mi) = mi

Mi
be the probability that the rth member of the ith household is included

in the sample, given Mi. The variable Yir is observed only for the sampled individuals, i.e.
for ξir = 1.

In the ith household, Yir, r = 1, . . . ,Mi, are iid random variables and their distribution
depends on the size of the household Mi and a random parameter bi. The density of the
random variable Yir is

f(y|m, b).

The expectation of Yir in the ith household is denoted by

θi =

∫
yf(y|m, b) dy.

The density of the variable Yir in any household of size m is

f(y|m) =

∫
f(y|m, b)f(b|m)db,
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where f(b|m) is the density of the parameter bi, given Mi. The population density of Yir

is then

f(y) =

∫
mf(y|m)f(m)dµ(m)∫

mf(m) dµ(m)
=

1

µ

∫
m

[ ∫
f(y|m, b)f(b|m) db

]
f(m) dµ(m)

=
1

µ

∫ ∫
mf(y|m, b)f(m, b) dbdµ(m), (3.1)

where f(m, b) is the joint density of Mi and bi. We can write for the expectation of the
variable Yir

θ = EYir =
1

µ

∫ ∫
m

[ ∫
yf(y|m, b)dy

]
f(m, b) dbdµ(m) =

1

µ
EMiθi. (3.2)

Similarly, the variance of the variable Yir is

varYir =
1

µ

∫ ∫
m

[ ∫
(y − θ)2f(y|m, b)dy

]
f(m, b) dbdµ(m)

=
1

µ
EMiE i(Yir − θ)2 =

1

µ

[
EMivariYir + EMi(θi − θ)2

]
. (3.3)

This setup, including the form of the marginal density (3.1) of the random variable Yir,
will be assumed in the rest of this thesis unless specified otherwise.

The estimator of the parameter θ is defined as

θ̂ =

∑n
i=1

∑Mi

r=1
ξir

πir
Yir∑n

i=1Mi

=

∑n
i=1MiȲi∑n
i=1Mi

, where Ȳi =
1

mi

Mi∑
r=1

ξirYir.

Theorem 3. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with marginal distribution given by (3.1) and
varYir <∞. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. We assume
∑Mi

r=1 ξir = mi and ξir is independent from Yir, given Mi.
Then √

n(θ̂ − θ)
d→ N(0,Σθ̂),

where

Σθ̂ =
1

µ2
EM2

i (Ȳi − θ)2. (3.4)

Proof For µ̂ = 1
n

∑n
i=1Mi, by the Taylor expansion 1

µ̂
around 1

µ
, we get(

1

µ̂
− 1

µ

)
= − 1

nµ

n∑
i=1

(
Mi

µ
− 1

)
+ op

( 1√
n

)
.
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Then

√
n(θ̂ − θ) =

1√
nµ̂

n∑
i=1

MiȲi −
√
nθ

=
1√
nµ

n∑
i=1

MiȲi −
1√
n

n∑
j=1

[ 1

nµ

n∑
i=1

MiȲi

](Mj

µ
− 1

)
−
√
nθ + op(1).

Since
1

µn

n∑
i=1

MiȲi
P→ 1

µ
EMiθi = θ,

we have

√
n(θ̂ − θ) =

1√
nµ

n∑
i=1

MiȲi −
1√
n
θ

n∑
i=1

(
Mi

µ
− 1

)
−
√
nθ + op(1) =

1√
n

n∑
i=1

Qi + op(1),

where Qi = 1
µ
Mi(Ȳi − θ) are iid random variables. According to the Central limit theorem

√
n(θ̂ − θ)

d→ N(0,Σθ̂), because

EQi = E (E (Qi|i)) =
1

µ
EMiθi − θ = 0

and

Σθ̂ = varQi =
1

µ2
EM2

i (Ȳi − θ)2.

2

From a sample of n households, variance Σθ̂ can be estimated as

Σ̂θ̂ =
1

µ̂2

1

n

n∑
i=1

M2
i (Ȳi − θ̂)2, where µ̂ =

1

n

n∑
i=1

Mi. (3.5)

When only one member from each household is sampled (i.e. mi = 1 for i = 1, 2, . . . , n),
the asymptotic variance of the normalized estimator θ̂ is Σθ̂ = 1

µ2 EM
2
i (Yi − θ)2, where Yi

is the value for the sampled individual in the ith household. Based on (3.2), we can also
write

Σθ̂ =
1

µ
EMi(Yir − θ)2. (3.6)

In some situations, there is a direct relationship between the variance of a random vari-
able and the variance of the estimator of its expectation. For example, for simple random
sample of n iid random variables Xi, i = 1, . . . , n, we have var(ÊXi) = var( 1

n

∑n
i=1Xi) =

1
n
varXi. However, in this case

Σθ̂ =
1

µ2
EM2

i (Ȳi − θ)2 =
1

µ2

[
E
M2

i

mi

variYir + EM2
i (θi − θ)2

]
, (3.7)
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from which we can see that the variance of the estimator θ̂ cannot be directly linked to the
variance of Yir (3.3).

The knowledge of the variance of the estimator θ̂ allows us to address the following
question: which design leads to the smaller variance of the estimator?

a) One member from each of n households is sampled.

b) All members from n
µ

households are sampled.

The number of households selected in b) is determined so that the mean total number of
selected individuals

∑
i∈sMi would be equal to the total number of selected individuals in

situation a).
The variance of the estimator θ̂ is

a) vara(θ̂) = 1
n

1
µ2

[
EM2

i variYir + EM2
i (θi − θ)2

]
b) varb(θ̂) = 1

n
1
µ

[
EMi variYir + EM2

i (θi − θ)2
]
.

When the number of members in all households is the same, then

vara(θ̂) ≤ varb(θ̂).

In other situations, the answer is not clear. Let us assume that the variance within the
households is equal, i.e. variYir = σ2 for all i. Then in case there is no variability between
the households, i.e. EM2

i (θi − θ)2 = 0, we have σ2 1
µ
EM2

i ≥ σ2EMi and thus

vara(θ̂) ≥ varb(θ̂).

Otherwise, if there is big variability between the households and small variability within
households, vara(θ̂) ≤ varb(θ̂) and vice versa.

In conclusion, design a) is more appropriate (in terms of precision given by the variance
of the estimator) in situations where we expect high correlation within households and big
differences between households. When households are similar and the correlation between
observations within households is low, design b) leads to more efficient estimation.

3.3 Comparison with Bernoulli Sampling

If we sample only one member from each household, we avoid having correlated data in
the resulting sample, in other words we obtain a sample which consists of independent
values. In this situation a natural question arises - whether the variance of the estimator
of the parameter θ obtained from cluster sampling is comparable with the variance of the
estimator coming from a Bernoulli sample. The difference between household and Bernoulli
sampling is displayed in Figure 3.2. While the idea to treat data from cluster sampling as
if it came from Bernoulli sampling is often applied in practical situations, it has not been
shown to be a correct approach. In this section we will address this question.
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Figure 3.2: Household versus Bernoulli sampling

Let us assume that each of N individuals is sampled independently of the others with
probability 1/size of household. Consequently, the size of the sample is random with
mean value n. The notation used in the previous chapters is more appropriate in this
case. Let Yj be the random variable of interest for the jth individual, ξj be its sampling
indicator and πj = E (ξj|Mj) = 1

Mj
be the sampling probability, where Mj is the size of the

household, to which the jth individual belongs. Note that πj is a random variable. The
variable Yj is observed only for sampled individuals, i.e. for ξj = 1.

The estimator of parameter θ is defined as

θ̃ =

∑N
j=1

ξj

πj
Yj∑N

j=1
ξj

πj

.

Theorem 4. Let (Yj, ξj,Mj), j = 1 . . . N, be iid random variables and ξj is independent of
Yj, given Mj. Assume that varYj <∞. Then

√
N(θ̃ − θ)

d→ N(0,Σθ̃),

where
Σθ̃ = EMi(Yi − θ)2.
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Proof For N̂ =
∑N

i=1
ξi

πi
, by the Taylor expansion 1

N̂
around 1

N
we get

√
N

(
1

N̂
− 1

N

)
= −N− 3

2

(
N̂ −N

)
+ op(1) = −N− 3

2

N∑
i=1

(
ξi
πi

− 1

)
+ op(1).

Then

√
N(θ̃ − θ) =

√
N

( 1

N

N∑
i=1

ξi
πi

Yi +
( 1

N̂
− 1

N

) N∑
i=1

ξi
πi

Yi − θ
)

=
1√
N

N∑
i=1

ξi
πi

Yi − θ
1√
N

N∑
i=1

( ξi
πi

− 1
)
−
√
Nθ + op(1)

=
1√
N

N∑
i=1

Qi + op(1),

where Qi = ξi

πi
(Yi − θ) are iid random variables. We have EQi = 0 and

varQi = EQ2
i = E

1

πi

(Yi − θ)2.

According to the Central limit theorem
√
n(θ̃ − θ)

d→ N(0,Σθ̃).

2

While in the case of sampling from households the asymptotics is based on the increas-
ing number of households, i.e. n → ∞, for Bernoulli sampling an increasing number of
individuals is needed, i.e. N →∞. For a comparable sample size the two estimators have
the same asymptotic variance

var θ̃ =
1

N
EMi(Yi − θ)2 =

1

n 1
n

∑n
j=1Mj

EMi(Yi − θ)2

P→ 1

nµ
EMi(Yi − θ)2 = var θ̂ (refer to 3.6).

Remark In the case of Bernoulli sampling (and thus in Theorem 4) we assume that the
total number of individuals N , from which we sample, is fixed. By contrast, in the case
of household sampling (and thus in Theorem 3) we assume that the fixed quantity is the
number of households n and the total number of individuals

∑n
i=1Mi is a random variable.

If we looked for a more precise analogy to the household sampling, we would have to
consider the number of individuals N to be also random in the case of Bernoulli sampling.
That would indeed lead to a higher variance of the estimator. Another imprecision is that
Bernoulli sampling assumes independence of the sampled variables, which again in a strict
analogy to the household sampling does not hold.

Nevertheless the result presented above has an important practical consequence. It
implies that the statistical methods developed for Bernoulli sampling are also valid for
data analysis based on cluster sampling with only one element drawn from each cluster.
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3.4 Note on Estimators Presented in Survey Litera-

ture

Here again a connection between the survey literature and the results presented in Theo-
rem 3 will be shown, referring to section 1.3.

Under cluster sampling, the ”survey estimator” of the population mean is identical to
our estimator θ̂. It estimates the population average, which can be written as∑N

i=1MiȲi∑N
i=1Mi

, where Ȳi =
1

Mi

Mi∑
r=1

Yir.

This population average estimates the expectation θ. We can calculate its asymptotic
variance based on Theorem 3 applied to the case when all members from N households
are observed. We get

varI(E II(θ̂)) = varI

(∑N
i=1MiȲi∑N
i=1Mi

)
∼=

1

N

1

µ2
EM2

i (Ȳi − θ)2 =
1

N

1

µ2
EM2

i (Ȳi − θi + θi − θ)2

=
1

N

1

µ2

[
EM2

i (Ȳi − θi)
2 + EM2

i (θi − θ)2
]

=
1

N

1

µ2

[
EMiσ

2
i + EM2

i (θi − θ)2
]
,

where σ2
i is the variance of the variable Yir in the ith household.

The estimator of the design-based variance of θ̂ (see e.g. [16], pg. 315) is

v̂arII(θ̂) =
(1− f)s2 + 1

N

∑n
i=1(1− fi)M

2
i

s2
i

mi

n
(

1
n

∑n
i=1Mi

)2 ,

where f = n
N
, fi = mi

Mi
,

s2 =
1

n− 1

n∑
i=1

M2
i (ȳi − θ̂)2 and s2

i =
1

mi − 1

Mi∑
r=1

ξir(yir − ȳi)
2.

Expression v̂arII(θ̂) estimates

EI(varII(θ̂)) =
1

µ2

(1− n
N

)

n

[
E
M2

i

mi

σ2
i + EM2

i (θi − θ)2
]
+

1

N

1

µ2
E

(
1− mi

Mi

)M2
i

mi

σ2
i .

We get

varI(E II(θ̂)) + EI(varII(θ̂)) =
1

µ2

[ 1

N
EMiσ

2
i +

1

N
EM2

i (θi − θ)2

+
1

n
E
M2

i

mi

σ2
i −

1

N
EMiσ

2
i +

( 1

n
− 1

N

)
EM2

i (θi − θ)2
]

=
1

n

1

µ2

(
E
M2

i

mi

σ2
i + EM2

i (θi − θ)2
)
,

which is the asymptotic model-based variance of θ̂.
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Chapter 4

Stratified Cluster Sampling

4.1 Introduction

In stratified cluster sampling, a population of households is divided in K strata which
comprise the whole of the population. A sample of households is drawn independently
from each stratum and then one or more members are sampled independently from each
selected household. In this section, we will describe the estimation of a parameter in the
case of stratified cluster sampling, and examine whether and how the idea of improving the
estimation by auxiliary information can be extended to this situation. As in the previous
chapter, we will assume that the size of the household is correlated with the variable of
interest and therefore it must be taken into account.

The notation will stay similar. Let Yir be the random variable of interest for the rth
member from the ith household of size Mi. Let Wi be a discrete random variable taking
on values from {1, 2, . . . , K}, corresponding to a stratum. We denote

Iik =
{ 1 if Wi = k

0 otherwise.

Let ξi and ζir be the sampling indicators, i.e.

ξi =
{ 1 if the ith household is included in the sample

0 otherwise,

ζir =
{ 1 if the rth member of the ith household is included in the sample

0 otherwise.

Let πk = E (ξi|Wi = k) be the sampling probability of each household from stratum k, mi is
the prespecified number of members to be selected from the ith household and πir = mi

Mi

is the probability that the rth member of the ith selected household is included in the
sample, given Mi.

As in (3.2), the expectation of the variable Yir is

θ = EYir =
1

µ
EMiθi,
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where θi is the expectation of Yir in the ith household. We denote a stratum-specific mean
value by

θ[k] = E (Yir|Wi = k) =
1

µk

E (Miθi|Wi = k), where µk = E (Mi|Wi = k).

However, it should be mentioned that the relationship (2.1) does not hold in this case.
Each stratum can have a different distribution of household size, which determines the
contribution of stratum-specific mean values to the marginal mean value. The following
holds

θ = EYir =
1

µ
EMiθi =

1

µ

K∑
k=1

E (Miθi|Wi = k)P(Wi = k)

=
K∑

k=1

µk

µ

E (Miθi|Wi = k)

µk

P(Wi = k) =
K∑

k=1

µk

µ
θ[k]P(Wi = k).

The estimator of the parameter θ is defined as

θ̂ =

∑n
i=1

∑K
k=1

(
1
π̂k
ξi

∑Mi

r=1
ζir

πir
Yir

)
Iik∑n

i=1

∑K
k=1

(
1
π̂k
ξiMi

)
Iik

=
1

µ̂

1

n

n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik,

where

Ȳi =
1

mi

Mi∑
r=1

ζirYir, µ̂ =
1

n

n∑
i=1

K∑
k=1

( 1

π̂k

ξiMi

)
Iik, π̂k =

1

nk

n∑
i=1

Iik

and nk is the number of households belonging to stratum k.

Theorem 5. Let (Mi,Wi, ξi), i = 1, 2, . . . , n, be iid random vectors. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with marginal distribution given by density (3.1),
with varYir < ∞, and form independent random vectors (Yi1, Yi2 . . . YiMi

). Assume ξi is
independent of Mi and Yir, r = 1, 2, . . . ,Mi, given Wi. Assume also that (ζi1, ζi2 . . . ζiMi

)
are independent random vectors,

∑Mi

r=1 ζir = mi, and ζir is independent from Yir, given Mi.
Then √

n(θ̂ − θ)
d→ N(0,Σθ̂),

where

Σθ̂ =
1

µ2

(
EM2

i (Ȳi − θ)2 +
K∑

k=1

P(Wi = k)
1− πk

πk

vark[Mi(Ȳi − θ)]
)

(4.1)

and
vark[Mi(Ȳi − θ)] = var[Mi(Ȳi − θ)|Wi = k].
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Proof It holds

√
n(θ̂ − θ) =

1√
n

[ 1

µ

n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik +

( 1

µ̂
− 1

µ

) n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik − θ

]
. (4.2)

Similarly as in (2.6), we can write for the first expression in (4.2)

1√
nµ

n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik =

1√
nµ

n∑
i=1

K∑
k=1

(ξiMiȲi

πk

− ξi − πk

πk

E k(MiȲi)
)
Iik +op(1). (4.3)

By the Taylor expansion of 1
µ̂

around 1
µ
, we get

1√
n

( 1

µ̂
− 1

µ

)
= − 1√

nµ2

( n∑
i=1

K∑
k=1

( 1

π̂k

ξiMi

)
Iik − µ

)
+ op(1)

(2.6)
= − 1√

nµ2

n∑
i=1

K∑
k=1

(ξiMi

πk

− ξi − πk

πk

µk − µ
)
Iik + op(1).

Also,

1

nµ

n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik

P→ θ.

Thus the second term in (4.2) is

1√
n

( 1

µ̂
− 1

µ

) n∑
i=1

K∑
k=1

( 1

π̂k

ξiMiȲi

)
Iik = −θ 1√

nµ

n∑
i=1

K∑
k=1

(ξiMi

πk

− ξi − πk

πk

µk − µ
)
Iik + op(1).

(4.4)
By (4.3) and (4.4), we get

√
n(θ̂ − θ) =

1√
n

n∑
i=1

Qi + op(1),

where

Qi =
1

µ

K∑
k=1

(ξiMiȲi

πk

− ξi − πk

πk

E k(MiȲi)−
ξiMi

πk

θ +
ξi − πk

πk

µkθ
)
Iik

=
1

µ

K∑
k=1

( ξi
πk

Mi(Ȳi − θ)− ξi − πk

πk

E kMi(Ȳi − θ)
)
Iik

are iid variables and

E(E[Qi|Wi]) =
1

µ
E (E kMiθi − µkθ) = 0
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varQi = E (E [Q2
i |Wi]) =

1

µ2
E

( 1

πk

E kM
2
i (Ȳi − θ)2 +

1− πk

πk

(E kMi(Ȳi − θ))2

− 2
1− πk

πk

(E kMi(Ȳi − θ))2
)

=
1

µ2
E

(
E kM

2
i (Ȳi − θ)2 +

1− πk

πk

M2
i (Ȳi − θ)2 − 1− πk

πk

(E kMi(Ȳi − θ))2
)

= Σθ̂.

According to the Central limit theorem for iid random variables,

√
n(θ̂ − θ)

d→ N(0,Σθ̂).

2

Variance Σθ̂ can be estimated as

Σ̂θ̂ =
1

µ̂2

( 1

n

n∑
i=1

K∑
k=1

ξi
π̂k

M2
i (Ȳi − θ̂)2Iik +

K∑
k=1

nk

n

1− π̂k

π̂k

v̂ark

[
Mi(Ȳi − θ̂)

])
, (4.5)

where µ̂ = 1
n

∑n
i=1

∑K
k=1

ξi

π̂k
MiIik and v̂ark

[
Mi(Ȳi − θ̂)

]
is the usual estimate of variance of

the random variable Mi(Ȳi − θ̂) within stratum k.

4.2 Auxiliary Variables in Stratified Cluster Sampling

Suppose there is auxiliary information available for all the households in the population.
For example, it could be some basic characteristics of the household available in the reg-
istry, such as size or location. Can we use this information to improve the precision of
an estimator? Is an analogy of the procedure described in the previous chapter for the
stratified sampling applicable in the case of stratified cluster sampling?

The notation will stay the same as in section 2.4. Let us assume an s-dimensional
vector of auxiliary variables X i related to the household i and denote

ZT
i = (Ii1, . . . , IiK ,X

T
i ).

We adjust the sampling weights in the Horvitz-Thompson estimator by fitting the logistic
regression model for the sampling probabilities as defined by (2.8). The estimated sampling
probabilities are denoted π̃i, see (2.9).

The estimator of θ has the following form:

θ̃ =
1

µ̃

1

n

n∑
i=1

1

π̃i

ξiMiȲi, where µ̃ =
1

n

n∑
i=1

1

π̃i

ξiMi.
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Theorem 6. Let (Mi,Wi,Xi, ξi), i = 1, 2, . . . , n, be iid random vectors, varXij < ∞ for
each component j = 1, 2, . . . , s. Let Yir, i = 1, 2, . . . , n and r = 1, 2, . . . ,Mi, be random
variables with marginal distribution given by density (3.1), with varYir < ∞, and form
independent random vectors (Yi1, Yi2 . . . YiMi

). Assume ξi is independent of Mi and Yir, r =
1, 2, . . . ,Mi, given Wi. Assume also that (ζi1, ζi2 . . . ζiMi

) are independent random vectors,∑Mi

r=1 ζir = mi and ζir is independent from Yir, given Mi. Then
√
n(θ̃ − θ)

d→ N(0,Σz),

where
Σz = Σθ̂ − cTV −1c (4.6)

and

c =
K∑

k=1

pk(1− πk)covk(X i,Mi(Ȳi − θ)), V =
K∑

k=1

pkπk(1− πk)varkX i.

Proof We have

√
n(θ̃ − θ) =

1√
n

( 1

µ

n∑
i=1

1

π̃k

ξiMiȲi +
( 1

µ̃
− 1

µ

) n∑
i=1

1

π̃k

ξiMiȲi − θ
)
. (4.7)

By the same argument as in the proof of Theorem 2, we can write for the first expression
in (4.7)

1√
nµ

n∑
i=1

1

π̃k

ξiMiȲi =
1√
nµ

n∑
i=1

(ξiMiȲi

πi

+ (ξi−πi)Z
T
i J

−1
γ E (1−πi)ZiMiȲi

)
+ op(1) (4.8)

By the Taylor expansion of 1
µ̂

around 1
µ

and by the same argument as in the proof of
Theorem 2, we get( 1

µ̃
− 1

µ

)
= − 1

µ2

( 1

n

n∑
i=1

1

π̃i

ξiMi − µ
)

+ op

( 1√
n

)
= − 1

µ2

( 1

n

n∑
i=1

(ξiMi

πi

+ (ξi − πi)Z
T
i J

−1
γ E (1− πi)ZiMi

)
− µ

)
+ op

( 1√
n

)
(4.9)

By analogy to Theorem 5, from (4.8) and (4.9) we get

√
n(θ̃ − θ) =

1√
n

n∑
i=1

Qi + op(1),

where

Qi =
1

µ

(ξiMiȲi

πi

− (ξi − πi)Z
T
i J

−1
γ E (1− πi)ZiMiȲi

− θ
ξiMi

πi

+ θ(ξi − πi)Z
T
i J

−1
γ E (1− πi)ZiMi

)
=

1

µ

( ξi
πi

Mi(Ȳi − θ)− (ξi − πi)Z
T
i J

−1
γ E (1− πi)ZiMi(Ȳi − θ)

)
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are iid variables and
EQi = 0 and varQi = Σz.

According to the Central limit theorem for iid random variables,
√
n(θ̂ − θ)

d→ N(0,Σz).

2

The variance Σz (4.6) can be estimated analogously to (4.5) with the usual estimates of
variance and covariance within the strata.

This theorem says that, as in the case of stratified sampling (Theorem 2), the use of aux-
iliary variables to adjust the weights in the Horvitz-Thompson estimator can never increase
the asymptotic variance of the estimator. We can also see that the optimal trasformation
of the auxiliary variable is X i/πk, see section 2.4. However, in the situation of stratified
sampling, the extent to which the precision of the estimator could have been improved de-
pended on the correlation between the auxiliary vector X i and the target variable Yi. Here,
the improvement of the estimator depends on the correlation between X i and Mi(Ȳi − θ).
Apparently, it makes the application in a real situation more complex: there are several
questions to consider.

One of the obvious candidates for an auxiliary variable is the size of the households.
In some situations, this would improve the variance. Nevertheless, under certain circum-
stances the correlation between Mi and Mi(Ȳi− θ) might not be very strong. For example,
let us assume that the size of the household has a uniform distribution, i.e. small and big
households are represented equally in the population. Consequently, the proportion of big
household members in the population is greater and they contribute more to the population
expectation θ. Thus the expression (Ȳi − θ) is in general smaller for big households than
for small households. This implies that the expression Mi(Ȳi − θ) could be similar for big
and small households and therefore not strongly correlated with the size of the household.

Suppose (rather unlikely situation) that there is another auxiliary variable Dir available
for all the members in all households. What transformation of these auxiliary variables
would be most correlated with Mi(Ȳi− θ)? Would it be the sum of the values observed for
all members of the household, i.e.

∑Mi

r=1Dir, or only for the sampled ones, i.e.
∑Mi

r=1 ζirDir?
There is no clear answer to this question. Depending on the nature of the auxiliary infor-
mation, one or the other should be preferred.

However, the scenario described in the previous paragraph is not very likely to occur.
More typically, the auxiliary information would be available only for members of the sam-
pled households. In such case we recommend a different approach described in the next
chapter.

4.3 Example

Let us assume that there are two strata in a population of households, A and B. 60 % of
households belong to stratum A. Households in stratum A have either 2 members (60 %)
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or 3 members (40 %). In stratum B, there are households of size 7 (60 %) or 8 (40 %).
The mean value of the variable of interest Y is denoted as θm for a household of size m:

θ2 = 100 θ3 = 200 θ7 = 300 θ8 = 400.

The mean value of Y is then

θ =
2 ∗ 100 ∗ 0.6 ∗ 0.6 + 3 ∗ 200 ∗ 0.4 ∗ 0.6 + 7 ∗ 300 ∗ 0.6 ∗ 0.4 + 8 ∗ 400 ∗ 0.4 ∗ 0.4

2 ∗ 0.6 ∗ 0.6 + 3 ∗ 0.4 ∗ 0.6 + 7 ∗ 0.6 ∗ 0.4 + 8 ∗ 0.4 ∗ 0.4
= 280.

A value of the target variable for the rth member in the ith household of size m is

Yir = θm + δi + εir, (4.10)

where δi ∼ N(0, 1600) and εir ∼ N(0, 1600) are iid random variables, mutually independent
of each other. The random variable δi represents a household specific component (and
thus reflects the fact that observations within one household are not independent) and
εir is a subject specific component. A household is included in a sample with probability
πA = 0.8 (for stratum A) or πB = 0.6 (for stratum B). From each selected household, one
member is included in a sample.

Simulation To illustrate the results from previous sections, we performed a small simu-
lation. We considered the following situations:

• No further auxiliary information is available, parameter θ is estimated by the esti-
mator θ̂.

• The size of each household in a population is known and thus it can be used as
auxiliary information to improve the estimation, estimator θ̃ is used.

• Another auxiliary variable is available for each household in a population, it is used
to improve the estimation, estimator θ̃ is used.

The simulation procedure was conducted as follows. First, we generated a population
of 1000 households. The size and the stratum was assigned to each household with the
above defined frequency. The values of Yir were generated for each member according
to (4.10). In the second step, a sample of households was drawn and then one member
from each household was sampled at random. Based on this sample, the parameter θ was
estimated by the estimator θ̂, not taking into account any auxiliary variable, as well as by
the estimator θ̃, using the size of the households as an auxiliary variable. The size of the
households was used in two different ways; either as a continuous variable, i.e. using its
actual value, or as a categorical variable.

In section 4.2 we showed that the improvement of the estimator depends on the cor-
relation between the auxiliary variable and Mi(Ȳi − θ). In order to demonstrate this
observation, the second auxiliary variable was defined as

Xi = Mi(Ȳi − θ) + ηi,
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Table 4.1: Example of stratified cluster sampling; Results of simulation

Average Variance of estimator Coverage
Estimator Auxiliary variable estimate of θ empirical estimate* of CI (%)

θ̂ No 280.02 20.687 20.050 94.5

θ̃ Size of household 280.04 18.693 18.366 94.7

θ̃ Size of household 280.01 17.735 17.775 94.9
(as categorical variable)

θ̃ Xir 280.02 17.473 18.173 95.4

All households included in a sample 279.94 15.729

*Average of estimates

where ηi ∼ N(0, 13000) for households from stratum A and ηi ∼ N(0, 190000) for house-
holds from stratum B. Let us remark that Ȳi is the average of the values for the selected
individuals from the ith household. When only one member is sampled, Ȳi corresponds to
the value of the selected member. In the definition of Xi for the households not included
in the sample, one member was chosen randomly and used for the derivation of Xi. The
variance of the random variable ηi was chosen so that the correlation between Xi and
Mi(Ȳi − θ) within each stratum would be approximately 0.8.

This procedure was repeated 1000 times. The average estimate of the parameter was
calculated, as well as the average of the estimate of the asymptotic variance. This latter
quantity was compared to the empirical variance of the 1000 obtained estimates. Using
the estimated variance, the 95% confidence intervals were derived. The percentage of
confidence intervals which covered the true value θ was obtained in order to assess whether
their coverage was close to the desired 95 %. The results are displayed in Table 4.1.

We can see that all the estimators provided unbiased estimates of the parameter θ. The
average estimates of the asymptotic variance were very close to the empirical variance of
the estimators and the coverage of the confidence intervals was aproximately 95 % in all
cases. The empirical variance of the estimator which did not take into account any auxiliary
variable was equal to 20.687. When all the households were included in the sample and one
member was selected from each, the empirical variance of the estimator of θ was 15.729.
This is in fact a limit to which the variance of the estimator could be possibly decreased by
taking into account auxiliary information, when not all the households are observed. The
size of the household (as a categorical variable) as well as the variable Xir considered as
the auxiliary variable helped to decrease the empirical variance of the estimator to 17.735
and 17.473, respectively, which is approximately 60 % of the possible gain.
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Chapter 5

Use of Auxiliary Variables in Cluster
Sampling

5.1 Use of Auxiliary Variables

Chapter 3 was devoted to two-stage element sampling. In this sampling scheme, first a
sample of clusters is obtained and then one or more elements from each cluster are selected.
The analysis is performed based on the subsample of elements. However, in some situations,
auxiliary information may be available for all the elements in the selected clusters. This is
also the case in Project ACCEPT. Detailed assessments are performed only on the selected
members of households, but basic information (such as age and gender) is collected for each
member of a household. In this chapter we will explore whether additional data about non-
selected members of the households can improve the precision of the estimation as was the
case with stratified sampling. For simplicity we will assume that only one member is
selected from each household and that auxiliary information is available for all the other
members of the household. Some households in the sample may have only one member.
Obviously, such households do not contribute to the improvement of variance and thus we
assume that the number of households of size bigger than one is non negligible.

We keep the same notation as in the previous chapters. Furthermore, E iXir and variXir

denotes expectation and variance, respectively, of variable Xir in the ith household and
covi(Xir, Xis) denotes covariance of variables Xir and Xis in the ith household.

Now, let us denote X ir the vector of auxiliary variables for the rth member of the ith
household. We will assume that (X i1,X i2...X iMi

) are independent random matrices for
i = 1, 2, . . . , n, where each component has a finite variance. We set

ZT
ir = (IT

ir,X
T
ir),

where Iir is a vector of dummy variables for the size of household represented in the model
as a factor variable (and thus the same for all individuals within one household). Following
a similar approach as described previously for stratified sampling, the logistic regression
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for the sampling probabilities has the form

log
( πir

1− πir

)
= γT zir. (5.1)

The sampling probabilities depend only on the size of the given household and not on
the auxiliary variables, and that is why the components reflecting the size will be the
only nonzero components of γ. The part γd of the vector of parameters pertaining to the
auxiliary variables is 0.

The sampling probabilities within one household are correlated, because when one
member of the household is included in the sample, the others are certainly not. However,
as we are not interested in the variance of the estimator of the parameter γ, we can still
fit the model with estimating equations

n∑
i=1

Mi∑
r=1

(ξir − πir)zir = 0.

The estimator of the parameter θ has the form

θ̃ =

∑n
i=1

∑Mi

r=1
ξir

π̃ir
Yir∑n

i=1Mi

,

where π̃ir are the sampling probabilities predicted by the model (5.1).

Theorem 7. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with marginal distribution given by (3.1) and
varYir <∞. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. Let
∑Mi

r=1 ξir = 1 and ξir is independent from Yir, given Mi. Then

√
n(θ̃ − θ)

d→ N(0,Σθ̃),

where
Σθ̃ = Σθ̂ + qTJ−1

γ (Jγ − Lγ)J
−1
γ q − 2(qT − tT )J−1

γ q, (5.2)

Σθ̂ is the variance obtained without taking into account the auxiliary variables (see 3.4)

Σθ̂ =
1

µ2
EM2

i

( Mi∑
r=1

ξirYir − θ
)2

,

and

q =
1

µ
E [(Mi − 1)E i(YirZir)] t =

1

µ
E [(Mi − 1)E i(YirZis)]

Jγ = E
[(

1− 1

Mi

)
E i(ZirZ

T
ir)

]
Lγ = E

[(
1− 1

Mi

)
E i(ZirZ

T
is)

]
.
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Proof If we denote Ri =
∑Mi

r=1(ξir − πir)Zir, we can write

γ̃ − γ = J−1
γ

1

n

n∑
i=1

Ri + op

( 1√
n

)
,

where γ̃ is the estimate of the true l-dimensional parameter γ and

Jγ = −E
∂

∂γ
Ri = E

[(
1− 1

Mi

)
E i(ZirZ

T
ir)

]
.

Symbol ∂
∂γ

Ri denotes the value of matrix ( ∂
∂γ1

Ri(γ), ∂
∂γ2

Ri(γ), . . . , ∂
∂γl

Ri(γ))T for the true
parameter γ. It holds that

1

π̃ir

− 1

πir

= −1− πir

πir

(γ̃ − γ)T Zir + op

( 1√
n

)
.

We can write

√
n(θ̃ − θ) =

1√
n

n∑
i=1

[ 1

µ
+

( 1

µ̂
− 1

µ

)] Mi∑
r=1

[ 1

πir

+
( 1

π̃ir

− 1

πir

)]
ξirYir −

√
nθ

=
1√
nµ

n∑
i=1

Mi∑
r=1

ξir
πir

Yir +
1√
n

n∑
i=1

( 1

µ̂
− 1

µ

) Mi∑
r=1

ξir
πir

Yir

+
1√
nµ

n∑
i=1

Mi∑
r=1

( 1

π̃ir

− 1

πir

)
ξirYir +

1√
n

n∑
i=1

( 1

µ̂
− 1

µ

) Mi∑
r=1

( 1

π̃ir

− 1

πir

)
ξirYir −

√
nθ

and since

1√
nµ

n∑
i=1

Mi∑
r=1

( 1

π̃ir

− 1

πir

)
ξirYir =

=
1√
nµ

n∑
i=1

Mi∑
r=1

(
− 1− πir

πir

( 1

n

n∑
j=1

RT
j J

−1
γ

)
Zir

)
ξirYir + op(1)

= − 1√
n

n∑
j=1

RT
j J

−1
γ

1

nµ

n∑
i=1

Mi∑
r=1

( ξir
πir

(1− πir)ZirYir

)
+ op(1)

= − 1√
n

n∑
i=1

RT
i J

−1
γ q + op(1),

we get

√
n(θ̃ − θ) =

1√
nµ

n∑
i=1

Mi

Mi∑
r=1

ξirYir −
1√
n
θ

n∑
i=1

(Mi

µ
− 1

)
− 1√

n

n∑
i=1

RT
i J

−1
γ q −

√
nθ + op(1)

=
1√
n

n∑
i=1

Qi + op(1),
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where Qi = 1
µ
Mi

∑Mi

r=1 ξirYir − θMi

µ
+ RT

i J
−1
γ q.

Since

E RiR
T
i = E

[ Mi∑
r=1

(ξir − πir)Zir

Mi∑
s=1

(ξis − πis)Z
T
is

]
= E

[ Mi∑
r=1

(ξir − πir)
2ZirZ

T
ir +

∑
r

∑
s 6=r

(ξir − πir)(ξis − πis)ZirZ
T
is

]
= E

[(
1− 1

Mi

)
E i(ZirZ

T
ir −ZirZ

T
is)

]
= Jγ − Lγ

and similarly

1

µ
E

[(
Mi

Mi∑
r=1

ξirYir

)
RT

i

]
=

1

µ
E

[(
Mi

Mi∑
r=1

ξirYir

) Mi∑
s=1

(ξis − πis)Z
T
is

]
=

1

µ
E

[(
Mi

Mi∑
r=1

ξir(ξir − πir)YirZ
T
ir

)
+

∑
r

∑
s 6=r

Miξir(ξis − πis)YirZ
T
is

]
=

1

µ
E [(Mi − 1)E i(YirZ

T
ir − YirZ

T
is)] = qT − tT ,

we have
Σθ̃ = varQi = Σθ̂ + qTJ−1

γ (Jγ − Lγ)J
−1
γ q − 2(qT − tT )J−1

γ q.

According to the Central limit theorem for iid random variables,
√
n(θ̃ − θ)

d→ N(0,Σθ̃).

2

In a general situation, it does not necessarily hold that Σθ̃ ≤ Σθ̂, or in other words, the
use of the auxiliary variable could increase the variance of the estimator. However, we will
show that under certain conditions the variance of the estimator will be improved. The
conditions are:

• E iX ir = 0 (5.3)

• vectors (Yir,X ir) and (Yis,X is) for r 6= s are independent, given household. (5.4)

If the first condition is fulfilled, the variance Σθ̃ (5.2) simplifies to

Σθ̃ = Σθ̂ + qT
δ J

−1
δ (Jδ − Lδ)J

−1
δ qδ − 2(qT

δ − tT
δ )J−1

δ qδ, (5.5)

where

qδ =
1

µ
E [(Mi − 1)E i(YirX ir)] tδ =

1

µ
E [(Mi − 1)E i(YirX is)]

Jδ = E
[(

1− 1

Mi

)
E i(X irX

T
ir)

]
Lδ = E

[(
1− 1

Mi

)
E i(X irX

T
is)

]
.
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If both conditions are fulfilled, the variance Σθ̃ (5.2) is

Σθ̃ = Σθ̂ − qT
δ J

−1
δ qδ.

Because J−1
δ is a positive semidefinite matrix, qT

δ J
−1
δ qδ ≥ 0. This implies that Σθ̂ ≥ Σθ̃,

which means that the use of auxiliary variables to adjust the weights in the estimator of
the parameter θ can never increase the asymptotic variance of the estimator. In the worst
case, when the auxiliary variables and the target variable are independent, the asymptotic
variances of the original estimator θ̂ and the estimator θ̃ are equal. When the auxiliary
variables are correlated with the variable of interest, the variance of the estimator θ̃ is
lower.

We saw in chapter 3 (expression 3.7) that

Σθ̂ =
1

µ2

[
E
M2

i

mi

variYir + EM2
i (θi − θ)2

]
.

If one member from each family is sampled (mi = 1), we obtain

Σθ̂ =
1

µ2

[
EM2

i variYir + EM2
i (θi − θ)2

]
,

where only the first part of the expression, i.e. EM2
i variYir, is amenable to improvement by

the use of an auxiliary variable. The lower limit for the variance of an improved estimator
is the variance which would be obtained if all the individuals were used for the estimation,
i.e.

Σθ̂ =
1

µ2

[
EMivariYir + EM2

i (θi − θ)2
]
. (5.6)

Transformation of Auxiliary Variable

While in many practical situations the second of the two conditions will be fulfilled, the
first one will rarely be true. We can define a transformation of the auxiliary variable Xir

as
Dir = Xir − E i(Xir), (5.7)

the discrepancy of Xir from its expectation in the ith household. Then E iDir = 0. The
sampling probabilities are estimated as described above, denoted π̃e

ir. The estimator of the
parameter θ has the form

θ̃e =

∑n
i=1

∑Mi

r=1
ξir

π̃e
ir
Yir∑n

i=1Mi

.

As the household expectation is rarely known, we could not apply this transforma-
tion in practice. Nevertheless, we still use it to formulate important theoretical results
and to get a better insight into the problem. The implementation in practical situations
and its consequences will be presented later. The idea described above is summarized in
Theorem 8.

46



Theorem 8. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with marginal distribution given by (3.1) and
varYir <∞. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. Let
∑Mi

r=1 ξir = 1 and ξir is independent from Yir, given Mi. Then

√
n(θ̃e − θ)

d→ N(0,Σe),

where
Σe = Σθ̂ − qT

δ J
−1
δ qδ (5.8)

for

qδ =
1

µ
E [(Mi − 1)covi(Dir, Yir)] and Jδ = E

[(
1− 1

Mi

)
variDir

]
.

From a sample of n households, the variance Σe can be estimated as

Σ̂e = Σ̂θ̂ − q̂T
δ Ĵ

−1
δ q̂δ, (5.9)

where

q̂δ =
1

µ̂

1

n

n∑
i=1

(Mi − 1)

Mi∑
r=1

ξirYirDir and Ĵδ =
1

n

n∑
i=1

(
1− 1

Mi

) 1

Mi

Mi∑
r=1

DirD
T
ir, (5.10)

Σ̂θ̂ and µ̂ are given in (3.5).
It is useful to see how the situation simplifies when all households have equal size,

Mi = M . Then we can write for the variance (5.8)

Σe = Σθ̂ −
(
1− 1

M

)
E covi(Yir,Dir)(E variDir)

−1E covi(Dir, Yir)

= Σθ̂ −
(
1− 1

M

)
E covi(Yir,X ir)(E variX ir)

−1E covi(X ir, Yir).
(5.11)

Similarly as in the case of stratified sampling, we can use as an auxiliary variable
Dir/πir = MiDir. Then we get

Σe = Σθ̂ − qT
δ J

−1
δ qδ,

where

qδ =
1

µ
E [Mi(Mi − 1)covi(Dir, Yir)] and Jδ = E [Mi(Mi − 1)variDir].

If it holds for i = 1, 2, . . . , n that

covi(X ir, Yir) = c, variX ir = V, variYir = σ2, (5.12)

we get

Σe =
1

µ2

[
EM2

i σ
2 + EM2

i (θi − θ)2 − cTV −1c EMi(Mi − 1)
]
. (5.13)
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If we have a variable Xir for which cori(Yir, Xir) = 1, we obtain

Σe =
1

µ2
[σ2(EM2

i − EM2
i + EMi) + EM2

i (θi − θ)2] =
1

µ2
[EMivariYir + EM2

i (θi − θ)2],

and the variance of the estimator θ̃e reaches its lower limit, see (5.6). In this sense, the
optimal transformation of the auxiliary variable X ir is defined as Mi[Xir − E i(Xir)].

Since we can hardly assume that the household expectation would be known in practice,
the transformation (5.7) of the auxiliary variable cannot usually be obtained, and thus
Theorem 8 has purely theoretical relevance. A logical step is to replace the expectation in
(5.7) by its estimate, i.e. the average of the observations in the household. However, since
the number of members in one household is small, we cannot rely on asymptotics and must
investigate the consequences of such replacement in more detail.

Let us denote X̄i = 1
Mi

∑Mi

r=1Xir and define a transformation of the auxiliary variable
Xir as

Hir = Xir − X̄i.

All the other steps and notation will stay the same as in the previous subsection. Condi-
tion (5.3) is still fulfilled, since E iHir = E iXir − E iX̄i = 0. The main change lies in the
fact that we lose the independence of Hir and His, for r 6= s, within a household.

We will denote the estimated sampling probabilities by π̃a
ir and the estimator of the

parameter θ by

θ̃a =

∑n
i=1

∑Mi

r=1
ξir

π̃a
ir
Yir∑n

i=1Mi

.

Theorem 9. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with marginal distribution given by (3.1) and
varYir <∞. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. Let
∑Mi

r=1 ξir = 1 and ξir is independent from Yir, given Mi. Then

√
n(θ̃a − θ)

d→ N(0,Σa),

where

Σa = Σθ̂ + qT
δ J

−1
δ E [variH ir]J

−1
δ qδ − 2

1

µ
E [Micovi(Yir,H ir)]J

−1
δ qδ, (5.14)

for

qδ =
1

µ
E [(Mi − 1)covi(H ir, Yir)] and Jδ = E

[(
1− 1

Mi

)
variH ir

]
.

Here, the variance Σa differs from the variance Σe in Theorem 8 in the fact that the
matrix E [variH ir] does not cancel with Jδ and 1

µ
E [Micovi(H ir, Yir)] is not equal to qδ.
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Proof We refer to the proof of Theorem 7 and highlight only the specific steps. Note
that

variHir = E i(Xir − X̄i)(Xir − X̄i)
T =

(
1− 1

Mi

)
variXir, (5.15)

covi(Yir, Hir) = covi(Yir, Xir − X̄i) =
(
1− 1

Mi

)
covi(Yir, Xir). (5.16)

Since
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ir −H irH

T
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]
= E
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)
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T − (X ir − X̄ i)(X is − X̄ i)
T ]

]
= E
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)
[Ei(X irX

T
ir)− EiX irEiX is]

]
= E

[
E i[(X ir − X̄ i)(X ir − X̄ i)

T ]
]

= E
[
E i(H irH

T
ir)

]
= E

[
variH ir

]
,

we get

E RiR
T
i = E
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1− 1

Mi

)
E i[ZirZ

T
ir −ZirZ

T
is]

]
=

(
0 0
0 E [variHir]

)
.

Similarly,

1

µ
E

[
(Mi − 1)Ei[Yir(H ir −H is)]

]
=

1

µ
E

[
(Mi − 1)Ei(Yir[(X ir − X̄ i)− (X is − X̄ i)])

]
=

1

µ
E [Micovi(Yir,H ir)]

and thus

1

µ
E

[(
Mi

Mi∑
r=1

ξirYir

)
Ri

]
=

1

µ
E

[
(Mi − 1)Ei[Yir(Zir −Zis)]

]
=

(
0,

1

µ
E [Micovi(Yir,H ir)]

)
2

From a sample of n households, the variance Σa can be estimated as

Σ̂a = Σ̂θ̂ + q̂T
δ Ĵ

−1
δ

( 1

n

n∑
i=1

1

Mi

Mi∑
r=1

H irH
T
ir

)
Ĵ−1

δ q̂δ − 2
1

µ̂

( 1

n

n∑
i=1

Mi

Mi∑
r=1

ξirYirH
T
ir

)
Ĵ−1

δ q̂δ,

(5.17)
where q̂δ and Ĵδ are estimated analogously to (5.10), Σ̂θ̂ and µ̂ are given in (3.5).

If all the households have the same number of members Mi = M , the variance (5.14)
can be rewritten as

Σa = Σθ̂ − E covi(Yir,H ir)(E variH ir)
−1E covi(H ir, Yir)

= Σθ̂ −
(
1− 1

M

)
E covi(Yir,X ir)(E variX ir)

−1E covi(X ir, Yir).
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The second equality follows from (5.15) and (5.16). The expression for the variance Σa is
equal to (5.11), from which we can conclude that in case households have the same size, the
replacement of the household expectation by its estimate does not affect the asymptotic
variance of the estimator.

Similarly as before, we use the transformation MiHir of the auxiliary variable. Then
we have

Σa = Σθ̂ + qT
δ J

−1
δ E [M2

i variH ir]J
−1
δ qδ − 2

1

µ
E [M2

i covi(Yir,H ir)]J
−1
δ qδ,

where

qδ =
1

µ
E [Mi(Mi − 1)covi(H ir, Yir)] and Jδ = E [Mi(Mi − 1)variH ir].

If we assume equal covariance and variance matrices in all households as specified in (5.12)
and consider (5.15) and (5.16), we get

Σa = Σθ̂ +
1

µ2

[
EM2

i

(
1− 1

Mi

)
cTV −1c− 2EM2

i

(
1− 1

Mi

)
cTV −1c

]
= Σθ̂ −

1

µ2
EMi(Mi − 1)cTV −1c, (5.18)

which is in this specific case equal to Σe (see 5.13), and thus the replacement of house-
hold expectation by its estimate does not affect the asymptotic variance of the estimator.
Moreover, if cori(Yir, Xir) = 1, the variance of estimator θ̃a reaches its lower limit.

5.2 Example

This example illustrates the statements of theorems 8 and 9. Let us assume two kinds
of households; small (of size M = 2) and large (of size M = 6), equally represented in
a population, p2 = P(M = 2) = p6 = P(M = 6) = 0.5. The mean value of the variable of
interest Y in small households θ(2) = 100, in large households θ(6) = 150. Let us assume
that the value of the target variable for the rth member in the ith household is

Yir = θ(m) + δi + εir, (5.19)

and the auxiliary variable for this individual is

Xir = θ(m) + δi + εir + ηir, (5.20)

where m is the size of the ith household and δi ∼ (0, σ2
δ ), εir ∼ (0, σ2

ε ) and ηir ∼ (0, σ2
η)

are iid random variables, mutually independent of each other. The random variable δi
represents a household-specific component (and thus reflects the fact that observations
within one household are not independent), εir is subject-specific component and ηir stands
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for the difference between the variable of interest and the auxiliary variable. Let σ2
δ = 1200,

σ2
ε = 900 and σ2

η = 400.
The mean household size is

µ = p2θ(2) + p6θ(6) = 4.

The mean value of the target variable Y is

θ = EYir =
EMiθi

µ
= (p2M2θ(2) + p6M6θ(6))/µ = 137.50

When we observe only one member from each household, the asymptotic variance of
the normalized estimator θ̂ (i.e. the asymptotic variance of

√
n(θ̂ − θ)) is

Σθ̂ =
1

µ2
EM2

i (Ȳi − θ)2 =
1

µ2
E E

(
M2

i [(Yi − θ(m))
2 + (θ(m) − θ)2]|Mi

)
=

1

µ2

(
p2M

2
2 [(σ2

δ + σ2
ε ) + (θ(2) − θ)2] + p6M

2
6 [(σ2

δ + σ2
ε ) + (θ(6) − θ)2]

)
= 2976.

Now, we would like to see how this estimator can be improved with the help of the
auxiliary variable X. If we observed all the members in each household, the asymptotic
variance of the normalized estimator θ̂ would be

Σθ̂ =
1

µ2
EM2

i (Ȳi − θ)2 =
1

µ2
E E

(
M2

i [(Yi − θ(m))
2 + (θ(m) − θ)2]|Mi

)
=

1

µ2

(
p2M

2
2 [(σ2

δ +
1

2
σ2

ε ) + (θ(2) − θ)2] + p6M
2
6 [(σ2

δ +
1

6
σ2

ε ) + (θ(6) − θ)2]
)

= 2076.

(5.21)

This is the lowest variance of the estimator that could be obtained with this data. However,
we can observe only one member from each household.

Let us now apply the estimator θ̃e. We use the transformation

MiDir = Mi(Xir − EiXir) = Mi(εir + ηir).

We have

covi(Yir, Dir) = E i(θ(m) + δi + εir)(εir + ηir) = σ2
ε

variDir = E iD
2
ir = σ2

ε + σ2
η

and thus

qδ =
1

µ
σ2

ε EMi(Mi − 1)

Jδ = (σ2
ε + σ2

η)EMi(Mi − 1).

This implies that the asymptotic variance of the normalized estimator θ̃e is

Σe = Σθ̂ − q2
δ/Jδ = Σθ̂ −

1

µ2
EMi(Mi − 1)

σ4
ε

(σ2
ε + σ2

η)
= 2353. (5.22)
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Table 5.1: Example of cluster sampling; Results of simulation

Estimator Use of Average Variance of estimator
auxiliary variable estimate of θ asympt. empirical estimate*

θ̂ No 137.56 2.976 3.003 2.968

θ̃e Xir − E iXir 137.56 2.353 2.407 2.305

θ̃a Xir − X̄i 137.57 2.353 2.409 2.296

*Average of estimates

If the auxiliary variable is identical to the target variable, i.e. σ2
η = 0, the variance of the

estimator θ̃e reaches its lower limit (5.21)

Σe = Σθ̂ −
1

µ2
EMi(Mi − 1)σ2

ε = 2076. (5.23)

As previously mentioned, the estimator θ̃e is not applicable in reality. Instead, we must
use the estimator θ̃a, which replaces the household mean value in the transformation of the
auxiliary variable by its estimate. The transformed auxiliary variable is now

MiHir = Mi(Xir − X̄ir) = Mi(εir + ηir − ε̄i − η̄i).

From (5.18) we know that in this example

Σa = Σe = 2353.

Simulation The results can also be illustrated by a simulation. The procedure was
conducted as follows. First, we generated a population of 1000 households, with size
assigned randomly to each household, being 2 or 6 with probability 0.5. Then values of the
target and the auxiliary variable were generated for each member according to (5.19) and
(5.20). We assumed a normal distribution of the variables δ,ε and η. In the second step,
one member from each household was sampled at random and based on this sample, the
parameter θ was estimated by the three suggested estimators; i.e. either not taking into
account the auxiliary variable X (θ̂) or using the information contained in X as described
above (θ̃e and θ̃a). The variance of the estimator was estimated as suggested in (3.5), (5.9)
and (5.17).

This procedure was repeated 1000 times. The results are displayed in Table 5.1. The
average estimate of parameter θ was in all three cases very close to the real value 137.5. We
can see a common pattern in the variance of the estimators. While the empirical variance
was on average slightly higher than the calculated asymptotic variance, the estimate of the
asymptotic variance was on average slightly lower. However, the difference between the
empirical variance and the estimated variance of the estimator was acceptable in all three
cases.
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5.3 Simulation Study

All the results presented in this chapter were related to the asymptotic variance of the
estimates, with the hope that an estimate of the asymptotic variance could be used for
inference about the parameter of interest. To show that this approach is appropriate in
different situations, a simulation study was conducted. The aim was to simulate different
scenarios and to compare the empirical and the estimated asymptotic variances of the
estimator.

We investigated the effect of 3 possible factors which could influence the variance of
the estimator and its estimate. First, we focused on the size of households. Second, we
inspected the correlation of the target and the auxiliary variable and the variability of
observations within households with respect to the variability between households. Third,
we considered different distributions generating the observations to make sure that the
results were not specific for normally distributed random variables.

The construction of simulations investigating the first two factors was very similar to
the previous example. We assumed that the value of the target variable for the rth member
in the ith household is

Yir = θ(m) + δi + εir, (5.24)

and the auxiliary variable for this individual is

Xir = θ(m) + δi + εir + ηir, (5.25)

where m is the size of the ith household and δi ∼ (0, σ2
δ ), εir ∼ (0, σ2

ε ) and ηir ∼ (0, σ2
η) are

iid random variables, mutually independent of each other.
The simulation procedure comprised of the following steps. First, we generated a

population of 1000 households, with size assigned randomly to each household. Based on
the size of the household, the household-specific mean value was generated. Around this
mean value, observations for the target variable (as specified by (5.24)) were simulated.
Then values for the auxiliary variable were generated, as defined by (5.25). Again, we
assumed a normal distribution of variables δ, ε and η. In the second step, one member
of each household was sampled at random. Based on this sample, the parameter θ was
estimated by the three suggested estimators. The variance of the estimate was estimated
according to (3.5), (5.9) and (5.17). Using the estimated variance, the 95% confidence
interval (CI) was also derived. This procedure was repeated 3000 times. The average
estimate of the parameter was calculated, as well as the average estimate of the asymptotic
variance. This latter quantity was compared to the empirical variance of 3000 simulated
estimates. The percentage of confidence intervals which covered the true value θ was
obtained in order to assess whether their coverage was close to the desired 95 %. The
estimate of the parameter θ based on the full population and its empirical variance was also
calculated; it represents the lower limit of the variance which could be possibly obtained.
If not specified otherwise, the default options were:
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• households of size from 2 to 6 members, each size equally represented in the popula-
tion

• for household of size m
θ(m) = 50 + 25m

• σ2
δ = 1200, σ2

ε = 900 and σ2
η = 400

Size of Households

First, we addressed the situation where all the households have the same size. To inspect
the performance of the estimators in case the households are very small, we assumed that
all the households have only 2 members, where for one of them the target variable Y is
observed, while for the other one only the value of the auxiliary variable is known and
used to improve the estimate of the mean value of Y . We also considered a scenario of all
households having an intermediate size, i.e. 6, and a large size, i.e. 12. In all three cases,
the mean value θ was 150. The results are displayed in Table 5.2.

We can see that in all three cases, the average estimate of the parameter is very close
to the true value θ = 150. The estimate of the asymptotic variance is slightly lower than
the empirical variance of the estimator. However, the difference is acceptable. This is
also confirmed by the coverage of the confidence intervals which is very close to 95 %.
The results illustrate the fact that the more members the households have, the lower is
the variance of the estimator that takes the auxiliary information into account. In all
three cases, the variances of θ̃e and θ̃a are essentially equal. This confirms the theoretical
results from the end of section 5.1, where we saw that for households of an equal size, the
replacement of the household expectation by its estimate does not affect the asymptotic
variance of the estimator.

Let us now consider households of variable size. We focus on the following scenarios:

• Small households (from 2 to 6 members), each size is equally represented in the
population. For a household of the size m,

θ(m) = 50 + 25m.

• Large households (from 8 to 12 members), each size is equally represented in the
population. For a household of the size m,

θ(m) = 50 + 25(m− 6).

• The household size has a shifted Poisson distribution

size of household ∼ Poiss(4) + 2,

so that the minimal household size is 2 and the mean household size is 6. For
a household of the size m,

θ(m) = 80 + 10 min(m, 12).
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Table 5.2: Simulation results: households of equal size

Estimator Use of Average Variance of estimator* Coverage
auxiliary variable estimate of θ empirical estimate** of CI (%)

Household size 2

θ̂ No 150.00 2161 2098 94.83

θ̃e Xir − E iXir 150.00 1832 1772 94.83

θ̃a Xir − X̄i 150.00 1836 1761 94.37

Full pop. – 150.01 1683

Household size 6

θ̂ No 150.01 2138 2096 94.73

θ̃e Xir − E iXir 150.01 1578 1554 94.80

θ̃a Xir − X̄i 150.01 1581 1551 94.33

Full pop. – 150.02 1370

Household size 12

θ̂ No 150.02 2109 2099 94.90

θ̃e Xir − E iXir 150.02 1538 1501 94.57

θ̃a Xir − X̄i 150.02 1538 1501 94.60

Full pop. – 150.03 1278

*Estimate of the asymptotic variance of
√
n(θ̌−θ), where θ̌ is the corresponding estimator.

**Average of estimates

• The household size has a shifted Poisson distribution

size of household ∼ Poiss(8) + 2,

so that the minimal household size is 2 and the mean household size is 10. For
a household of the size m,

θ(m) = 80 + 10 min(m, 18).

The theoretical value of the parameter θ is different for each of these options and thus it
is presented in Table 5.3 on page 59 together with the results of the simulation.

As in the previous table, we observe that the average estimate of the parameter θ
is very close to its true value. In most cases, the average estimate of the asymptotic
variance is slightly lower than the empirical variance of the estimator. Still, the difference
is acceptable. The coverage of the confidence intervals is also very good.
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Variability and Correlation

Next, we simulated data for different values of σ2
δ , σ

2
ε and σ2

η. The values of σ2
ε and σ2

δ

control the variability of the target variable within households and between households.
The values of σ2

η determine the correlation between the target variable and the auxiliary
variable. The true expectation of the target variable was θ = 162.50. The results are
displayed in Table 5.4 on page 60.

The table shows that the average estimate of the asymptotic variance tends to be
lower than the empirical variance of the estimator, but the difference is acceptable and
the coverage of the confidence intervals is again very close to 95 %. The results also
demonstrate that the weaker the correlation between the target and the auxiliary variable,
the smaller the gain in the efficiency of the estimators θ̃e and θ̃a. In the last case (σ2

δ = 900,
σ2

ε = 400, σ2
η = 1200), where the correlation between Y and X within households and the

variability of Y within households are both small, the variance of the estimator using the
auxiliary variable was improved only by a very small amount. It is also noteworthy that the
variance of the estimators θ̃e or θ̃a was never bigger than the variance of the estimator θ̂.

Different distribution

To demonstrate that the results can be generalized beyond normally distributed random
variables, the following data were simulated. We assumed a linear predictor for the ith
household

νi = θ(m) + δi,

where m is the size of the ith household and δi are iid random variables. We assumed that
the mean value for the ith household is

E iYir = exp(νi)

and generated the observations Yir from

• the Poisson distribution

• the gamma distribution with the shape parameter k and the scale parameter
ψi = E iYir

k
.

The auxiliary variable was defined as

Xir = Yir + ηir, where ηir ∼ N(0, σ2
η).

We considered two different distributions of the household-specific component δi

• the normal distribution N(0, σ2
δ )

• the skew-normal distribution with location µ, scale σ and shape α.
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Figure 5.1: The density of the skew-normal distribution SN(−0.41,0.52,7)

Remark The skew-normal distribution [2] with the parameters (µ, σ, α) is defined by
the density function

f(x) =
1

σπ
exp

(
− (x− µ)2

2σ2

) ∫ α(x−µ
σ

)

−∞
exp

(
− t2

2

)
dt, x ∈ (−∞,∞).

The parameter α determines the skewness of the distribution, for α = 0 we obtain the
normal distribution N(µ, σ2). It holds

EX = µ+ σδ

√
2

π
, where δ =

α√
1 + α2

varX = σ2
(
1− 2δ2

π

)
.

Figure 5.1 displays the density of the skew-normal distribution with parameters µ =
−0.41, σ = 0.52, α = 7.

The simulation procedure was carried out analogously to the previously described sce-
narios. Households had size from 2 to 6 members, each size equally represented in the
population. The parameters were:
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• for the Poisson distribution

θ(m) = 2 + 0.2(m− 2) and σ2
η = 16

• for the gamma distribution

θ(m) = 4.5 + 0.2(m− 2)

and one of the following

k = 2 and σ2
η = 1600

k = 9 and σ2
η = 800

• in both cases for the distribution of δi

N(0, 0.1) or SN(−0.41, 0.52, 7).

The parameters for the skew-normal distribution were chosen so that EX = 0 and
varX = 0.1.

The results are presented in Table 5.5 on page 61. In the case of the Gamma distribution
with shape k = 2, we obtained a negative estimate of the variance of θ̃e or θ̃a in 27
(normal distribution of δ) and 42 (skew-normal distribution of δ) out of 3000 repetitions.
These cases were excluded from the presentation of the results in Table 5.5. In practice,
the estimator θ̂ would be used when θ̃ cannot be calculated or has a negative variance
estimate. However, the frequency of such cases was very small and the estimator worked
well overall. The parameter estimates were close to the true values, the estimates of the
asymptotic variance were very close to the empirical variance and the coverage of the
confidence intervals was never less than 93 %.

Summary

In this simulation study, we inspected three factors which could influence the variance of
the estimator and its estimate. In all three cases, the estimate of the symptotic variance
performed relatively well. In most cases, it was slightly lower then the empirical variance of
the estimate, however the difference between the two was acceptable. The coverage of the
95% confidence intervals was always close to the desired level of 95 %. In all situations, the
loss of precision caused by the replacement of the household expectation by its estimate
was negligible.
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Table 5.3: Simulation results: normal distribution, varying distributions of household sizes

Estimator Use of Average Variance of estimator* Coverage
auxiliary variable estimate of θ empirical estimate** of CI (%)

Small households (size 2-6), uniform distribution, θ = 162.5

θ̂ No 162.50 3453 3428 94.87

θ̃e Xir − E iXir 162.51 2985 2836 93.73

θ̃a Xir − X̄i 162.51 2989 2826 93.70

Full pop. – 162.50 2725

Large households (size 8-12), uniform distribution, θ = 155

θ̂ No 155.06 3406 3354 94.57

θ̃e Xir − E iXir 155.04 2792 2741 94.13

θ̃a Xir − X̄i 155.04 2793 2739 94.17

Full pop. – 155.02 2547

Size of household ∼ Poiss(4)+2, θ = 146.53

θ̂ No 146.63 2840 2835 95.17

θ̃e Xir − E iXir 146.60 2323 2194 93.63

θ̃a Xir − X̄i 146.61 2326 2188 93.73

Full pop. – 146.61 2039

Size of household ∼ Poiss(8)+2, θ = 187.82

θ̂ No 187.91 3267 3183 94.60

θ̃e Xir − E iXir 187.90 2637 2507 93.53

θ̃a Xir − X̄i 187.91 2640 2505 93.47

Full pop. – 187.90 2357

*Estimate of the asymptotic variance of
√
n(θ̌−θ), where θ̌ is the corresponding estimator.

**Average of estimates
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Table 5.4: Simulation results: normal distribution, varying variability and correlation

Estimator Use of Average Variance of estimator* Coverage
auxiliary variable estimate of θ empirical estimate** of CI (%)

σ2
δ = 1200, σ2

ε = 900, σ2
η = 400

θ̂ No 162.50 3453 3428 94.87

θ̃e Xir − E iXir 162.51 2985 2836 93.73

θ̃a Xir − X̄i 162.51 2989 2826 93.70

Full pop. – 162.50 2725

σ2
δ = 1200, σ2

ε = 900, σ2
η = 900

θ̂ No 162.50 3453 3428 94.87

θ̃e Xir − E iXir 162.51 3128 2988 94.03

θ̃a Xir − X̄i 162.51 3132 2978 93.87

Full pop. – 162.50 2725

σ2
δ = 400, σ2

ε = 900, σ2
η = 1200

θ̂ No 162.50 2515 2529 95.13

θ̃e Xir − E iXir 162.50 2225 2146 94.53

θ̃a Xir − X̄i 162.51 2230 2136 94.10

Full pop. – 162.50 1783

σ2
δ = 900, σ2

ε = 400, σ2
η = 1200

θ̂ No 162.50 2590 2529 94.53

θ̃e Xir − E iXir 162.50 2534 2395 94.13

θ̃a Xir − X̄i 162.51 2537 2385 94.03

Full pop. – 162.50 2270

*Estimate of the asymptotic variance of
√
n(θ̌−θ), where θ̌ is the corresponding estimator.

**Average of estimates
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Table 5.5: Simulation results: non-normal distributions

Estimator Use of Average Variance of estimator* Coverage
auxiliary variable estimate of θ empirical estimate** of CI (%)

Poisson distribution, Normal distribution of δ, θ = 13.242

θ̂ No 13.244 52.435 52.189 94.80

θ̃e Xir − E iXir 13.245 46.124 45.696 94.80

θ̃a Xir − X̄i 13.246 46.204 45.603 94.73

Full pop. – 13.243 38.996

Poisson distribution, Skew-normal distribution of δ, θ = 13.312

θ̂ No 13.311 60.599 61.541 95.00

θ̃e Xir − E iXir 13.308 54.929 54.829 95.03

θ̃a Xir − X̄i 13.309 55.053 54.678 95.10

Full pop. – 13.309 48.310

Gamma distribution with k = 2, Normal distribution of δ, θ = 161.33

θ̂ No 161.23 23654 24704 95.19

θ̃e Xir − E iXir 161.25 10808 10082 93.31

θ̃a Xir − X̄i 161.24 10837 10037 93.17

Full pop. – 161.28 9219

Gamma distribution with k = 2, Skew-normal distribution of δ, θ = 162.15

θ̂ No 162.00 25076 26992 95.47

θ̃e Xir − E iXir 162.18 11937 11567 93.75

θ̃a Xir − X̄i 162.17 11921 11538 93.54

Full pop. – 162.18 10558

Gamma distribution with k = 9, Normal distribution of δ, θ = 161.33

θ̂ No 161.33 9257 9667 95.60

θ̃e Xir − E iXir 161.34 6655 6673 94.00

θ̃a Xir − X̄i 161.34 6673 6639 93.80

Full pop. – 161.34 6018

Gamma distribution with k = 9, Skew-normal distribution of δ, θ = 162.16

θ̂ No 162.16 10844 11243 95.13

θ̃e Xir − E iXir 162.14 7987 8027 95.03

θ̃a Xir − X̄i 162.14 8001 7995 94.73

Full pop. – 162.14 7359

*Estimate of the asymptotic variance of
√
n(θ̌−θ), where θ̌ is the corresponding estimator.

**Average of estimates
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5.4 Application to Project ACCEPT Data

In this chapter, we will show an application of some of our results to a subset of Project
ACCEPT data collected during the baseline behavioral assessment [10]. The baseline
survey consisted of administering demographic and behavioral questionnaires to a two-
stage probability sample of eligible community residents. At the first stage, households
were selected with equal probability from a listing of all households in a community. At
the second stage, one eligible household member was sampled from each household that was
selected at the first stage, and included at least one eligible individual. The demographic
and behavioral questionnaires were administered to each selected individual; household-
level data were collected on a separate form. Members of the households were eligible
to participate in the baseline survey if they are were aged 18-32 years, had lived in the
community at least 4 months in the past year, and slept regularly in their household at
least 2 nights per week. In this analysis, we will consider data collected in Vulindlela,
South Africa.

The behavioral questionnaires included questions related to HIV risk behaviors (sexual
life, alcohol and drug use), HIV testing, HIV-related stigma, social norms and similar
aspects. Here, we will focus on the following items.

• Drug use – answer to the question: ”Have you ever used any drugs in your lifetime?”
(yes/no)

• Number of sexual partners – answer to the question: ”In your lifetime, with how
many different people have you had sex?”(numeric)

• HIV testing history – answer to the question: ”Have you ever been voluntarily
tested for HIV?” (Dichotomized yes = voluntary or non-voluntary test/ no = never)

• Social norms score derived from responses to 6 questions regarding community
norms concerning HIV testing. Each response was evaluated on the scale 0 – 3 (3 =
strongly agree; 2 = agree; 1 = disagree; 0 = strongly disagree, reversed in negatively
phrased questions) and the scores were summed. Thus, the range of the Social norms
score is between 0 and 18, with a high score interpreted as a positive outcome.

The household-level data included information about age and gender of each eligible
member of each selected household. Therefore, age and gender can serve as auxiliary
information in the analysis of behavioral assessments.

Population

A total of 2596 households with at least one eligible member were selected. There were
4969 eligible individuals living in these households. Table 5.6 displays basic characteristics
of the first stage population, i.e. all individuals living in the selected households, and the
second stage population, i.e. individuals selected for the assessments.

62



Table 5.6: Basic characteristics of the study populations

First stage population Second stage population
Households 2596 2596
Individuals 4969 2596

Males 2214 (44.56 %) 1075 (41.41 %)
Females 2755 (55.44 %) 1521 (58.59 %)

Age
Mean 23.95 23.79
Median 23 23

Table 5.7: Distribution of household size

Size 1 2 3 4 5 6 7 8
Number of households 1246 728 363 167 53 30 7 2
Percent of households 48.00 28.04 13.98 6.43 2.04 1.16 0.27 0.08

There were slightly fewer males in the second stage population than in the first stage
population (41.41 % versus 44.56 %). The mean age was comparable in the two populations
(23.95 and 23.79 years). Table 5.7 summarizes the distribution of household size. There
were 1246 (48 %) households with only one eligible member, the rest of the households had
from 2 to 8 eligible members.

Results

Table 5.8 presents for each variable of interest (Drug use, Number of sexual partners, HIV
testing history, Social norms score) either average or proportion of positive answers, as
appropriate, calculated by gender. For simplicity, we always used a subset of data with
non-missing values for a given variable.

Our goal was to estimate the expectation (having the meaning of the probability of
the answer ”yes”, where appropriate). For each variable, we calculated the average, the
estimate of the expectation taking into account household size and estimates of the ex-
pectation taking into account both household size and the auxiliary information. We also
calculated the estimates of the asymptotic variance of the three estimators. The results are
presented in Table 5.9 on page 66. It displayes the variances of the normalized estimators,
i.e. variances of

√
n(θ̂ − θ) for the estimator θ̂. Also in the following description of the

results we always refer to the asymptotic variance of the normalized estimator.
Note that 48 % of households had only one eligible member. Indeed, only the remaining

52 % of households play a role in increasing the precision of the estimates.
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Table 5.8: Summary of the selected responses

Male Female
Drug use (yes) 295 (27.52 %) 30 (1.97 %)
Number of sexual partners 7.58 2.47
HIV testing history (yes) 178 (16.62 %) 651 (42.91 %)
Social norms score 6.82 6.40

Drug use The probability of having used a drug was estimated to be 0.1218, taking
into account household size. From Table 5.8 we can see that drug use strongly depends
on gender, with males more likely to have had an experience with drugs. It suggests that
using the information about gender, known for the first stage population, could improve
the precision of the estimation.

The estimate taking into account gender was 0.1280, slightly higher than the estimate
that ignores the auxiliary information. This is due to the fact that there were lower
percentage of males in the second stage population than in the first stage population. In
the estimating procedure, higher weights were assigned to males compared to females and
thus the estimate was shifted more towards the values in males, which are in average higher
than the values in females.

By taking into account the information about gender, the estimated asymptotic variance
of the estimate decreased from 0.1436 to 0.1349 (by 6 %). At first glance we might expect
more gain in precision. However, we should keep in mind that the extent to which the
precision can be improved depends on the correlation of the target and auxiliary variables
within households. We can imagine this as the ability of the auxiliary variable to distinguish
members of the given household in terms of the variable of interest. For a dichotomous
auxiliary variable this ability is limited.

Accounting for age had a negligible influence on the precision of the estimate.

Number of sexual partners The estimated mean number of sexual partners was
4.6092, taking into account the size of the household. The estimate of the mean num-
ber of sexual partners also taking into account gender was 4.7782, again slightly higher
than the estimate not considering any auxiliary information. The estimated asymptotic
variance of the estimate decreased from 163.15 to 160.04 by adjusting for gender. The
estimate adjusted for gender and age was 4.7782, its variance was 159.85.

HIV testing history The estimated probability of having been tested for HIV (tak-
ing into account household size) was 0.3052. The estimate of this probability taking into
account gender was 0.2996, reflecting that females, who undergo HIV testing more com-
monly, were represented slightly more in the second stage population than in the first stage
population. The estimated asymptotic variance of the estimate decreased from 0.2796 to
0.2603. Accounting for age had a negligible influence on the precision of the estimate.
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Figure 5.2: Social norms score against age

Social norms score The estimated mean social norms score, taking into account size
of household, was 6.6186. Figure 5.2 displays average social norms score by age groups.
We can observe a slight tendency of the score to decrease with age. The same figure also
displays the original scores plotted against the ”normalized” age, i.e. the age from which
the mean household value was subtracted. There is a tendency - although almost negligible
- that older members of households report lower social norms score than the younger ones.

The estimate of the mean social norms score taking into account age was 6.6237. The
variance decreased from 6.2425 to 4.9803. That is, knowledge of age for the full population
helped to improve the precision of the estimate by 20 %. The estimate taking into account
age and gender was 6.6461, with the estimated variance 4.7804. Thus, employing the
available auxiliary information decreased the variance of the estimator by 23 %.

Discussion

We have seen that in all four cases, the estimate taking into account gender as auxiliary
information reflected a slight underrepresentation of males in the second stage population
compared to the first stage population. The observation that the estimates were shifted
towards values in males refers to the particular realisation of the estimating procedure and
does not contradict the statement that both estimates (whether taking into account auxil-
iary information or not) are asymptotically unbiased. The shift of the estimate towards the
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Table 5.9: Project ACCEPT data; Estimation of expectation of the selected variables

Average Taking into account household size and
Drug use – gender age gender & age

θ̂ 0.1254 0.1218 0.1280 0.1214 0.1284

n ∗ v̂ar θ̂1 0.1436 0.1349 0.1427 0.1341

Nbr of sexual partners

θ̂ 4.5598 4.6092 4.7655 4.6189 4.7782

n ∗ v̂ar θ̂1 163.15 160.04 162.99 159.85

HIV testing

θ̂ 0.3203 0.3052 0.2996 0.3102 0.3050

n ∗ v̂ar θ̂1 0.2796 0.2603 0.2795 0.2603

Social norms score

θ̂ 6.5721 6.6186 6.6434 6.6237 6.6461

n ∗ v̂ar θ̂1 6.2425 6.0575 4.9803 4.7804

1 n ∗ v̂ar θ̂ refers to the estimate of the asymptotic variance of
√
n(θ̂ − θ).
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values in males could go in the wrong direction, i.e. farther from the expectation. However,
we have shown that the variance of the estimator adjusting for the auxiliary variable is
smaller, which implies that the shift goes ”more often” in the correct direction, i.e. closer
to the expectation. While the first three variables seemed to be strongly dependent on gen-
der, the use of gender as the auxiliary information resulted in a relatively small decrease
in the variance of the estimator. We ascribe this to the fact that gender is a dichotomous
variable and thus its ability to distinguish members of a given household in terms of the
variable of interest is limited. On the other hand, considering age as the auxiliary variable
lead to a 20% (and together with gender to a 23%) decrease in the variance of the estimate
of the mean Social norms score. For this effect, an overall association of Social norms
score with age would not be enough. The gain in precision depends on the role which age
plays within households. To depict this within households correlation, a graph of the so-
cial norms score against the normalized age was plotted (see Figure 5.2). Surprisingly, the
correlation seems to be very weak, we can observe only a very slight tendency that within
one household, older members express slightly lower social norms than younger members.
However, in this case even weak correlation seems to have an impact on the precision of
the estimate.
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Chapter 6

Extension to the Regression Problem

6.1 Introduction

In this chapter we will study extensions of the methods investigated in the previous chapters
to the regression problem. We will assume a response variable Y and a vector of explanatory
variables X = (X1, . . . , Xp). The aim will be to estimate the regression parameter θ =
(θ1, . . . , θp) which links the explanatory variables to the expectation of Y . More specifically,
we will suppose that there exists a strictly monotone and twice differentiable link function
g for which

EY = g−1(xT θ). (6.1)

A typical situation, which has been studied for example by Breslow et. al [3] and on which
we will focus as well, happens when the response is known for the whole population but
some explanatory variables are observed only for a subsample. Normally, the estimation
procedure would be based only on the subsample where the full information is available.
However, we will show that if there are auxiliary variables correlated with the regressors,
they can be used to improve the efficiency of the estimators.

In order to present the estimation methods in a broader context, we will first provide
a brief overview of the most often used concepts. In the framework of the Generalized
Linear Models (GLM) it is required that the conditional density of Y , given X = x, is
from the exponential family, i.e.

f(y|x) = exp
(yt− b(t)

φ
a+ c(y, φ)

)
, (6.2)

where t ∈ (−∞,∞), φ > 0, a > 0 and b(t) is twice continuously differentiable function.
The parameter t depends on x through the linear predictor η = xT θ. We assume that
η = g(EY ) and thus we have (6.1). The target is to draw inference about the parameter θ.
Let

U i(θ) =
(∂fi(θ|yi)

∂θj

)p

j=1
=

(yi − EYi

φv(EYi)

∂g−1(ηi)

∂ηi

xij

)p

j=1
, (6.3)
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where φv(EYi) = varYi, denotes the usual parametric likelihood score for an individual i.
The parameter is estimated by solving the estimating equations

N∑
i=1

U i(θ) = 0. (6.4)

The likelihood equations depend on the assumed distribution for Yi only through EYi and
var(Yi). Based on this observation, the quasi-likelihood estimation was proposed. It only
specifies the mean-variance relationship rather than the whole density of Yi. The mean has
the form (6.1) and the variance is

var(Yi) = φv(EYi)

for some chosen variance function v. The equations that determine the quasi-likelihood
estimates are the same as the likelihood equations (6.4) for GLMs. They are not likelihood
equations, however, without the additional assumption that Yi has density (6.2). For
example, the purpose of the quasi-likelihood method might be to encompass a greater
variety of cases than it corresponds to some distribution from the exponential family.
The quasi-likelihood estimator has the same asymptotic variance as the ordinary GLM
estimator.

When EYi satisfies (6.1) but the variance is misspecified, the quasi-likelihood estimat-
ing equations still provide a consistent estimator of the regression parameters, but their
asymptotic variance is different. This property is utilized in the pseudo-likelihood method.
The equations that determine the parameter estimates are still the same as the likelihood
equations (6.4), but it is no longer assumed that v(EYi) is the correct variance function
of Yi. The asymptotic variance is estimated by the so-called sandwich estimator, see (6.10)
and (6.11) below. For simplicity, the expression U i will be called score in all situations.

In the rest of this chapter we modify the quasi-likelihood estimating equations to strat-
ified sampling and cluster sampling and show how to use auxiliary information to improve
the asymptotic variance of the regression parameter estimator. We will address each sam-
pling design separately. For stratified sampling, we derive the results previously published
in [3], but we present them in a slightly different form and provide more detailed proofs.
The analogous problem for cluster sampling has not been previously studied.

6.2 Stratified Sampling

Let us assume the stratified sampling design defined in chapter 2. If the model with mean
value given by (6.1) was valid for Y in each stratum, i.e. independently of W , then the
sampling stratum would not have to be taken into account, and the estimation methods
described above would also be valid for data collected under the stratified sampling scheme.

We will deal with a more general situation where conditional distribution of Y given
X varies between strata in a certain way. However, we are interested in modeling the
conditional mean of Y given X in the sense of (6.1), where stratum is not included between
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the explanatory variables. Such models are sometimes called population-averaged. They
are very common in certain situations, for example when analyzing repeated measurements
data. In that case, the population-averaged model is used when the research question
pertains to the marginal distribution, but the correlation between the observations from
one subject must be taken into account.

The marginal density of Y given X is a mixture of the stratum-specific densities
f(y|x,W = k), i.e.

f(y|x) =
K∑

k=1

pkf(y|x,W = k).

We assume that (6.1) holds. We consider the score equations (6.4) as an estimating equa-
tions derived from the pseudo-likehood principle and take it as a basis for the estimation
of θ with completely observed data. When the complete data are only available for a
subsample obtained by stratified random sampling, we modify the estimating equations in
the same way as in Section 2.2

V (θ) =
N∑

i=1

K∑
k=1

ξi
π̂k

U i(θ)Iik = 0, where π̂k =
1

Nk

N∑
i=1

ξiIik. (6.5)

The estimate of the parameter θ, denoted as θ̂, is obtained by solving (6.5).

Theorem 10. Assume that (Yi,Xi,Wi, ξi) are iid random vectors, EYi = g−1(xT
i θ) for

some known link function g and varYi <∞. Let ξi be independent of Yi and Xi given Wi,
for i = 1, 2, . . . , N . Then the following holds:

√
N(θ̂ − θ)

d→ N(0, D(θ)−1ΣD(θ)−1), (6.6)

where

Σ = J(θ) +
K∑

k=1

pk
1− πk

πk

Jk(θ), (6.7)

D(θ) = (−E ∂
∂θj

UT
i )p

j=1, J(θ) = var U i(θ) (not conditioning on k) and Jk(θ) = varkU i(θ).

Proof First we will show that

1√
N

V (θ)
d→ N(0,Σ). (6.8)

By the Taylor expansion of 1
π̂k

around 1
πk

, we get

1

π̂k

− 1

πk

= − 1

π2
k

1

Nk

N∑
i=1

(ξi − πk)Iik + op

( 1√
Nk

)
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and we can write

1√
N

V (θ) =
1√
N

[ N∑
i=1

K∑
k=1

ξiU i(θ)

πk

Iik −

−
K∑

k=1

1

πkNk

( N∑
i=1

ξiU i(θ)

πk

Iik

)( N∑
j=1

(ξj − πk)Ijk

)]
+ op(1).

If we denote Sk = E kU i(θ), we obtain

1√
N

V (θ) =
1√
N

[ N∑
i=1

K∑
k=1

ξiU i(θ)

πk

Iik −
N∑

i=1

K∑
k=1

(ξi − πk)

πk

SkIik

]
+ op(1).

Thus
1√
N

V (θ) =
1√
N

N∑
i=1

Qi(θ) + op(1),

where

Qi(θ) =
K∑

k=1

[
ξiU i(θ)

πk

− (ξi − πk)

πk

Sk

]
Iik

are iid random variables and E Qi = E U i(θ) = 0. After a short calculation we get

var Qi = E QiQ
T
i = J(θ) +

∑
k

pk
1− πk

πk

Jk(θ).

According to the Central limit theorem for iid random variables

1√
N

V (θ)
d→ N(0, var Qi).

By the Taylor expansion of V (θ̂) around V (θ)

V (θ̂)− V (θ) =
( ∂

∂θj

V (θ)T
)p

j=1
(θ̂ − θ) + op

( 1√
N

)
,

and therefore

√
N(θ̂ − θ) = −

[ 1

N

( ∂

∂θj

V (θ)T
)p

j=1

]−1 1√
N

V (θ) + op(1).

We have

− 1

N

( ∂

∂θj

V (θ)T
)p

j=1
= − 1

N

N∑
i=1

K∑
k=1

ξi
π̂k

( ∂

∂θj

U i(θ)T
)p

j=1
Iik

P→ D(θ). (6.9)
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From (6.9) and (6.8) we get

√
N(θ̂ − θ)

d→ N(0, D(θ)−1ΣD(θ)−1).

2

From a sample of n households, the asymptotic variance of θ̂ is estimated by the so-called
sandwich estimator. The estimation of D(θ) is motivated by (6.9), i.e.

D̂(θ) = − 1

N

N∑
i=1

K∑
k=1

ξi
π̂k

( ∂

∂θj

U i(θ̂)T
)p

j=1
Iik = − 1

N

N∑
i=1

K∑
k=1

ξi
π̂k

( ∂2

∂θj∂θl

f(yi, θ̂)
)p

j,l=1
Iik,

(6.10)
while the estimator of Σ is based on the empirical variance of the scores

Σ̂ =
1

N

N∑
i=1

K∑
k=1

ξi
π̂i

Û iÛ
T

i Iik +
K∑

k=1

p̂k
1− πk

πk

∑N
i=1 ξi(Û i − Ŝk)(Û i − Ŝk)

T Iik∑N
i=1 ξiIik

, (6.11)

where Ŝk is the average of Û i in the stratum k.

Auxiliary Variables

As in the estimation of the expectation, auxiliary variables observed for the whole popu-
lation can improve the estimator. Let us assume a vector of auxiliary variables Zi, which
represents the components of X i, that are observed for the whole population, and also
includes other variables correlated with those components of X i, that are observed only
for the sampled individuals. We denote the sampling weights adjusted for the auxiliary
variables and stratum as π̃i (see 2.9). The estimate θ̃ is obtained by solving the estimating
equations

V (θ) =
N∑

i=1

ξi
π̃i

U i(θ) = 0. (6.12)

Theorem 11. Assume that vectors (Yi,Wi,Xi,Zi, ξi) are iid and that EYi = g−1(xT
i θ) for

some known link function g. Assume that varYi <∞ and varZij <∞ for each component
j = 1, 2, . . . , s. Let ξi be independent of Yi, Zi and Xi given Wi, for i = 1, 2, . . . , N . Then
the following holds: √

N(θ̃ − θ)
d→ N(0, D(θ)−1ΣzD(θ)−1), (6.13)

where

Σz = J(θ) +
K∑

k=1

pk
1− πk

πk

Jk(θ)− CTV −1C, (6.14)

and

C =
K∑

k=1

pk(1− πk)covk(Zi,U i), V =
K∑

k=1

pkπk(1− πk)varkZi.
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Proof Follows exactly the same steps as theorems 10 and 2.

2

The variance Σz (6.14) can be estimated similarly to Σ (6.10, 6.11), with the usual esti-
mators of covariance and variance matrices ĉovk(Z,U ) and v̂arkZ for k = 1, . . . , K.

As before, we have Σ ≥ Σz, which means that the use of the auxiliary variables cannot
increase the asymptotic variance of the estimator. From the form of Σz we can see that
the amount by which the asymptotic variance decreases depends on the correlation of Zi

with the scores U i within the strata. The transformation of the auxiliary variable Zi that
maximizes the correlation with the scores is the conditional mean value of scores, given Zi.
Together with the reasoning explained in section 2.4, it implies that the optimal transfor-
mation of the auxiliary variables is zopt

i = 1
πk

E (U i|Zi = zi), for an observation from the

stratum k (Wi = k). While the sampling probabilities πk are known, the conditional mean
value of scores is obviously generally unknown. Breslow et al. [3] recommend to use the
”plug-in” method to estimate the scores, suggested by Kulich and Lin [9]. The steps are
as follows:

• Develop regression models using inverse probability weighted estimation (6.5) to pre-
dict each variable observed only for the sampled individuals given the variables zi

observed for the whole population.

• Use these models to predict x̂i = E (X i|Zi = zi) for all individuals from the popu-
lation. The fully observed variables will be used in their original form.

• Fit the model of interest to the whole population using the values x̂i.

• Based on this model, estimate the scores U i and divide them by the corresponding
sampling probabilities πk. These are the estimates of the optimal transformation of
the auxiliary variables, denoted as ẑopt

i .

• Estimate θ using weights adjusted for the auxiliary variables ẑopt
i .

Breslow et al. [3] note that this method is likely to be most useful when only one or
two regressors are not observed for the whole population.

6.3 Cluster Sampling

Now we assume the cluster sampling as defined in chapter 3. The marginal density f(y|x)
resembles (3.1)

f(y|x) =
1

E [M |x]

∫ ∫
mf(y|x,m, b)f(m, b|x) dbdµ(m). (6.15)
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The aim is to estimate the parameter θ in the marginal model for the mean value (6.1).
We adopt the pseudo-likelihood approach and, analogously to the estimation of the expec-
tation, we modify the estimating equations (6.4) as follows

n∑
i=1

Mi∑
r=1

ξir
πir

U ir(θ) = 0. (6.16)

The estimate of the parameter θ, denoted as θ̂, is obtained by solving (6.16).

Theorem 12. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with EYi = g−1(xT

i θ) for some known link
function g. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. We assume
∑Mi

r=1 ξir = mi and ξir is independent from Yir and X ir,
given Mi. Then √

n(θ̂ − θ)
d→ N(0, D(θ)−1Σθ̂D(θ)−1),

where

Σθ̂ =
1

µ2
EM2

i Ū iŪ
T
i , Ū i =

1

mi

Mi∑
r=1

ξirU ir (6.17)

and D(θ) = (−E ∂
∂θj

UT
ir)

p
j=1.

Proof Follows the same steps as the proofs of Theorems 3 and 10.

2

From a sample of n households, Σθ̂ can be estimated as

Σ̂θ̂ =
1

µ̂2

1

n

n∑
i=1

M2
i Ū i(θ̂)Ū i(θ̂)T , where µ̂ =

1

n

n∑
i=1

Mi. (6.18)

The estimation of D(θ) follows the logic of the inverse probability weighting

D̂(θ) = −
∑n

i=1

∑Mi

r=1
ξir

πir

(
∂

∂θj
U ir(θ̂)T

)p

j=1∑n
i=1Mi

. (6.19)

Examples for linear and logistic regression models will be shown below.

Auxiliary Variables

Auxiliary variables can be used to improve the efficiency of the estimator. Let us assume
a vector of auxiliary variables Zir for the rth member of the ith household. It represents
the components of X ir that are observed for all members of the households, and it also
includes other variables correlated with those components of X ir that are observed only for
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the sampled individuals. We assume that each component of Zir has a finite variance and
that (Yir,Zir) are independent within households. To ensure that the use of the auxiliary
variables will not lead to a loss of efficiency, we utilize centered auxiliary variables

H ir = Zir − Z̄i, where Z̄i =
1

Mi

Mi∑
r=1

Zir.

The estimated sampling probabilities are denoted as π̃a
ir and the parameter θ is estimated

by solving the estimating equations

n∑
i=1

Mi∑
r=1

ξir
π̃a

ir

U ir = 0. (6.20)

An analogy of theorem 9 holds.

Theorem 13. Let Mi, i = 1, 2, . . . , n, be iid random variables. Let Yir, i = 1, 2, . . . , n
and r = 1, 2, . . . ,Mi, be random variables with EYi = g−1(xT

i θ) for some known link
function g. Let (Yi1, Yi2 . . . YiMi

) and also (ξi1, ξi2 . . . ξiMi
) be independent random vectors

for i = 1, 2, . . . n. We assume
∑Mi

r=1 ξir = mi and ξir is independent from Yir and X ir,
given Mi. Then √

n(θ̃a − θ)
d→ N(0, D(θ)−1ΣaD(θ)−1),

where

Σa = Σθ̂ + qT
δ J

−1
δ E [variH ir]J

−1
δ qδ − 2

1

µ
E [Micovi(U ir,H ir)]J

−1
δ qδ, (6.21)

for

qδ =
1

µ
E [(Mi − 1)covi(H ir,U ir)], Jδ = E

[(
1− 1

Mi

)
variH ir

]
and D(θ) = (−E ∂

∂θj
UT

ir)
p
j=1.

Proof Follows the same steps as the proofs of Theorems 9 and 10.

2

The estimator of the asymptotic variance Σa is constructed analogously to (6.18) and
(5.17).

As with stratified sampling, from the form of Σa we can see that the amount by which
the variance of the estimator decreases depends on the correlation of H ir with the scores
U ir within the household. The transformation of the auxiliary variable H ir that maximizes
the correlation with the scores is the conditional mean value of scores, given H ir. Based
on the same reasoning as in section 5.1 we conclude that the optimal transformation of
the original auxiliary variable Zir is hopt

ir = MiE (U ir|Hir = hir), where H ir = Zir −
Z̄i. Therefore, the ”plug-in” method to find the estimates of the scores and use them
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as auxiliary variables can also be applied here. We will illustrate the whole estimation
procedure by a few examples in the next section.

So far we have focused on the situation when the response variable was known for all
individuals, and some of the explanatory variables were missing for a part of the population.
However, we could also face the opposite situation; the explanatory variables are known,
but the response is observed only for the subsample. In that case, if the available auxiliary
information is correlated with the response, the analogous estimation procedure can be
applied. The only difference is that this time the expectation of the response, given the
auxiliary variables, must be estimated, while the explanatory variables are used in their
original form. The predicted response is then employed in the ”plug-in” method to find
the estimate of the optimal auxiliary variable hopt

ir .

6.4 Cluster Sampling - Examples

Linear Model

We are interested in the relationship between the variable Y and two explanatory variables
x and w. We assume that

EY = β0 + β1x+ β2w, (6.22)

and the objective is to estimate the parameter β = (β0, β1, β2).
There are two kinds of households; small (of size M = 3) and large (of size M = 6),

equally represented in the population, p3 = P(M = 3) = p6 = P(M = 6) = 0.5. The value
of the target variable Y for the rth member in the ith household is given by the following
relationship

Yir = 3xir + 3I[Mi = 6]xir + 1.5wir + 1.5I[Mi = 6]wir + δi + εir. (6.23)

This implies that the relationship between the response and the explanatory variables
depends on the size of household. The parameter δi represents the correlation within the
households and the parameter εir is a random error. The variables Yir and wir are known
for all the members of the households, while the variable xir is known only for one randomly
selected member of the household. However, there is an auxiliary variable

Zir = xir + ηir,

which is known for all individuals.
Even though the relationship between Y and x depends on the household size, we are

interested in the marginal model (6.22), i.e. without conditioning on the household size.
From (6.23) we can see that β0 = 0. Weighting by the household size we obtain

β1 =
3 ∗ 3 + 6 ∗ 6

9
= 5 (6.24)

β2 =
1.5 ∗ 3 + 3 ∗ 6

9
= 2.5. (6.25)
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The estimating equations (6.16) can be directly used to estimate the parameter β
without taking into account the auxiliary variable. Let us denote this estimate as β̂. The
asymptotic variance matrix of the estimator β̂ was presented in Theorem 12. It can be
estimated by replacing the unknown quantities by their estimates. Specifically, the scores
U is = (Uis1, Uis2, Uis3) are estimated as

Ûis1 = Yis − β̂0 − β̂1xis − β̂2wis

Ûis2 = (Yis − β̂0 − β̂1xis − β̂2wis)xis (6.26)

Ûis3 = (Yis − β̂0 − β̂1xis − β̂2wis)wis,

where s denotes the selected member from the household i, i.e. the member for whom xis

is known. From a sample of n households,

Σ̂β̂ =
1

µ̂2

1

n

n∑
i=1

M2
i Û isÛ

T

is, where µ̂ =
1

n

n∑
i=1

Mi (6.27)

D̂(β) =
1

nµ̂
XT Diag

{ 1

πi1

}n

i=1
X, where X = (1,x,w). (6.28)

Then the asymptotic variance of β̂ is estimated as 1
n
D̂(β)−1Σ̂β̂D̂(β)−1.

To incorporate the auxiliary information, we need to find an appropriate transformation
of the auxiliary variable Z. We use the ”plug-in” method described in the previous section.
First, the expectation of the variable Xir, given zir and wir, is estimated from the linear
model

EXir = α0 + α1zir + α2wir

and using the weights unadjusted for the auxiliary variables. Based on the estimate of the
parameter α = (α0, α1, α2), the values xir for all i = 1, . . . , n, r = 1, . . . ,Mi are predicted
and denoted x̃ir. The scores are estimated as follows

Ũir1 = Yir − β̂0 − β̂1x̃ir − β̂2wir

Ũir2 = (Yir − β̂0 − β̂1x̃ir − β̂2wir)x̃ir

Ũir3 = (Yir − β̂0 − β̂1x̃ir − β̂2wir)wir.

To satisfy condition (5.3), the estimated scores should be centered, i.e. for j = (1, 2, 3)

Hirj = Ũirj − Ūij, where Ūij =
1

Mi

Mi∑
r=1

Ũirj.

We write H ir = (Hir1, Hir2, Hir3).
The sampling probabilities are estimated from the logistic regression model

log
( πir

1− πir

)
= γ0 + γ1I[Mi = 6] + γT

2MiH ir.

77



Table 6.1: Example of linear model; Results of simulation

Estimator Parameter Average Variance of estimator* Coverage
estimate empirical estimate** of CI (%)

β0 0.010 2267 2337 95.6

β̂ β1 4.993 9.685 9.395 94.2
(no aux. info) β2 2.498 6.831 6.748 94.5

β0 0.008 1818 1868 95.1

β̃ β1 4.997 6.478 5.938 93.4
(x part. missing) β2 2.500 4.238 3.917 93.5

β0 -0.002 1529 1636 95.4

β̌ β1 4.997 4.635 4.471 93.6
(Y part. missing) β2 2.500 2.940 2.770 94.6

β0 0.007 1146
Full population β1 4.998 3.595

β2 2.500 1.995

*Estimate of the asymptotic variance of
√
n(β̂ − β) for β̂, for β̃ and β̌ analogously.

**average of estimates

The desired estimate of the parameter β is obtained by solving the estimating equations
(6.20), and denoted as β̃.

The variance matrix of the estimator β̃ was presented in Theorem 13. Again, it can be
estimated by replacing the unknown quantities by their estimates. The estimation of the
scores is similar to (6.26), with β̂ replaced by β̃. The rest of the procedure is analogous
to (6.27), (6.28) and (5.10).

Simulation To illustrate this method, we performed a simulation. It was conducted
as follows. We assumed that there are 1000 households, and assigned the size of 3 or 6
members to each of them randomly with equal probability. Then the data were generated
from the following distributions

x ∼ N(0, 400) w ∼ N(0, 400) δ ∼ N(0, 900) ε ∼ N(0, 400) η ∼ N(0, 100).

The variable Y was calculated according to (6.23). From each household, one member was
selected at random. The estimates of the parameter β were calculated as described above.
This procedure was repeated 1000 times. The results can be found in Table 6.1. We can
see that the average estimate of the parameter β is very close to its true value in all cases.
Also, the estimates of the asymptotic variance of the parameter estimators are very close
to the empirical variance. When the auxiliary information was employed, the asymptotic
variance of the normalized estimate β̂1 decreased from 9.685 to 6.478 (by 33 %) and the
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variance of the normalized estimate β̂2 decreased from 6.831 to 4.238 (by 38 %), which is
a noticeable improvement. Indeed, the amount by which the variance decreases depends
on the correlation between x and Z, i.e. the variance of the variable η in this specific case.

We also inspected the situation when the response is available only for the subsample.
If we considered the same example and assumed that the response variable was known
only for the sampled individuals, the variance of the estimator taking into account the
auxiliary information was not better than the variance of the estimator which does not
consider the auxiliary data (results not shown). This is not surprising since the variable
Z was correlated strongly with the variable x, but apart from that it did not contain any
additional information about the response.

Then we changed the setting of the simulation and assumed that the explanatory vari-
ables were available for the whole population, the response was known only for a subsample,
but the auxiliary variable was correlated with the response. More precisely, we considered
the auxiliary variable

Zir = Yir + ηir, where ηir ∼ N(0, 500).

The results are presented in Table 6.1 (β̌). The improvement in the asymptotic variances
was remarkable.

Logistic Regression

The following example is in principle very similar to the previous one. We consider an
analogy to a logistic regression model with one explanatory variable. More precisely, we
are interested in the relationship between a dichotomous variable Y and a continuous
explanatory variable x. We assume the following model

log
( p

1− p

)
= β0 + β1x

and the objective is to estimate the parameter β = (β0, β1).
For the rth member in the ith household, the variable Yir is equal to 1 with probability

pir, otherwise it is equal to 0. The probability pir is given by the following relationship

log
( pir

1− pir

)
= 3xir + 3I[Mi = 6]xir + δi. (6.29)

Similarly as in the previous example, this indicates that the relationship between the
response and the explanatory variable in fact depends on the size of household. The
variable Yir is known for all members of the households, while the variable xir is known
only for one randomly selected member of the household. The auxiliary variable

Zir = xir + ηir

is known for all individuals.
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We can see from (6.29) that β0 = 0. To calculate the true value of the parameter β1 in
the marginal model is not as straightforward as in the case of the linear model, that is why
it was obtained via simulations as β1 = 2.961. When the auxiliary variable is ignored the
parameter β is estimated based on estimating equations (6.16). To determine its variance
matrix, we estimate the scores U is = (Uis1, Uis2)

Ûis1 = Yis − p̂is

Ûis2 = (Yis − p̂is)xis,

where

p̂is =
exp(β̂0 + β̂1xis)

1 + exp(β̂0 + β̂1xis)

and s denotes the selected member from household i. We get

Σ̂β̂ =
1

µ̂2

1

n

n∑
i=1

M2
i Û isÛ

T

is, where µ̂ =
1

n

n∑
i=1

Mi, (6.30)

and

D̂(β) =
1

nµ̂
XT

p Diag
{ 1

πi1

}n

i=1
X, (6.31)

where Xp = (p̂is(1 − p̂is), p̂is(1 − p̂is)xis)
n
i=1 and X = (1,x). Then the estimate of the

asymptotic variance v̂arβ̂ is 1
n
D̂(β)−1Σ̂β̂D̂(β)−1.

The ”plug-in” method to find the appropriate transformation of the auxiliary variable
Z can be applied. The expectation of the variable Xir, given zir, is estimated from the
linear model

EXir = α0 + α1zir,

using the weights unadjusted for the auxiliary variable. Based on the estimate of the
parameter α = (α0, α1), the values xir for all i = 1, . . . , n, r = 1, . . . ,Mi are predicted and
denoted x̃ir. The scores are estimated as follows

Ũir1 = Yir − p̃ir

Ũir2 = (Yir − p̃ir)x̃ir,

where

p̃ir =
exp(β̂0 + β̂1x̃ir)

1 + exp(β̂0 + β̂1x̃ir)
.

As in the previous example, the centered scores are denoted H ir = (Hir1, Hir2). The
sampling probabilities are estimated from the logistic regression model

log
( πir

1− πir

)
= γ0 + γ1I[Mi = 6] + γT

2MiH ir.

and the estimate of the parameter β is obtained by solving the estimating equations (6.20).
The variance matrix estimation is analogous to the procedure described above.
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Table 6.2: Example of logistic regression model; Results of simulation

Estimator Parameter Average Variance of estimator* Coverage
estimate empirical estimate** of CI (%)

β̂ β0 −0.003 6.675 6.705 94.8
(no aux. info) β1 2.976 34.241 35.899 95.7

β̃ β0 −0.001 2.713 2.690 94.3
(x part. missing) β1 2.965 11.078 10.873 94.6

β̌ β0 < 0.001 5.254 5.127 94.5
(Y part. missing) β1 2.9625 30.872 29.799 94.4

Full population β0 −0.001 2.679
β1 2.963 9.991

*Estimate of the asymptotic variance of
√
n(β̂ − β) for β̂, for β̃ and β̌ analogously.

**average of estimates

Simulation The results are illustrated by a simulation. Again we had 1000 households
with randomly assigned size of 3 or 6 members. Then the variables were generated from
the following distributions

x ∼ N(0, 0.4) η ∼ N(0, 0.004) δ ∼ N(0, 4) ε ∼ N(0, 1).

The variable Y was calculated from (6.29). From each household, one member was selected
at random and the estimates of the parameter β and their variance were calculated as
described above. This procedure was repeated 1000 times. The results are summarized in
Table 6.2. The average estimate of the parameter β was very close to its true value in both
cases. The estimate of the asymptotic variance and the empirical variance of the estimator
were very similar. When the auxiliary information was considered, the estimated variance
of the normalized estimate β̂1 decreased from 34.241 to 11.078, which is very close to the
variance of the estimator based on the full population. As we mentioned in the previous
example, the improvement in the variance depends on the correlation between x and Z,
which was set up rather high.

The simulation of the scenario when the response is available only for the subsample
showed results similar to the linear model. If the setting was left unchanged but in addi-
tion we assumed that the response variable was available only for the sampled individuals,
the auxiliary information did not improve the estimation (results not shown). We also
considered the situation where the explanatory variables were available for the whole pop-
ulation and the response only for the subsample. The auxiliary variable Zir had a binary
distribution with probability of success

pir = 0.9 ∗ I[Yir = 1] + 0.1 ∗ I[Yir = 0].

The results are displayed in Table 6.2 (β̌).
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In summary, we can say that the estimating procedure performed very well in both
examples. The results supported the statement that both estimators are asymptotically
unbiased. We could also see that the asymptotic variance was very close to the empirical
variance, which shows that the estimator converges to its asymptotic distribution with an
acceptable speed. We also inspected examples where the correlation of the explanatory
(x) and the auxiliary (Z) variable was very weak. In no case was the asymptotic variance
increased when the estimation procedure taking into account the auxiliary information was
applied.

6.5 Application to Project ACCEPT data

Unfortunately, the data from Project ACCEPT are not very appropriate for a useful ap-
plication of the method, since only age and gender are known for the whole population.
We will only show a simple example for illustrative purposes.

The study design and the data were described in section 5.4. Now we would like to
know whether the HIV testing history depends on the social norms score and gender. We
assume the following model

log
( p

1− p

)
= β0 + β1I[g = ”Male”] + β2sns,

where p is the probability that an individual has been tested for HIV, sns is the social
norms score and g represents gender. To estimate the parameters, exactly the same steps
as shown in the previous examples were followed. The only difference was that in order to
create an appropriate transformation of the auxiliary variables, we had to predict not only
the social norms score, but also the variable representing HIV testing history. While for
social norms score the linear regression model was used, HIV testing history was predicted
based on the logistic regression model. Both prediction models included age and gender
as the explanatory variables. The results of both estimation procedures (taking and not
taking into account age as the auxiliary variable) are presented in Table 6.3.

We can see that in this case, the use of the auxiliary information improved the asymp-
totic variance of the parameter by a small, but not negligible amount. The asymptotic
variance of the normalized estimate of β1, representing gender, decreased from 46.148 to
39.867 (by 13.5 %). For the other two components of β, the gain was smaller. This result
was expected since not only the explanatory variable but also the response variable were
not available for the whole population.

Significance testing, i.e. testing of H0 : βj = 0, was performed using the Wald test.

It is based on the test statistic
β̂j√cvarβ̂j

, which has an asymptotically normal distribution.

Both estimating procedures lead to the same conclusion. While social norms score had no
statistically significant effect, the effect of gender was highly significant. In general, women
had exp(1.234) = 3.435 (or exp(1.328) = 3.773, based on β̂) times higher odds of being
tested for HIV than men.
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Table 6.3: Logistic regression model for HIV testing history

Estimator Parameter Param. estimate As. variance* p-value**
Intercept −0.191 701.771 0.715

β̂ Gender (Male) −1.328 46.148 < 0.001
Soc. norms −0.025 14.318 0.739
Intercept −0.187 663.391 0.712

β̃ Gender (Male) −1.234 39.867 < 0.001
Soc. norms −0.023 13.461 0.754

*Estimate of the asymptotic variance of
√
n(β̂−β) and

√
n(β̃−β), respectively, n = 2586.

**Based on the Wald test.

6.6 Discussion

The method of parameter estimation described in this chapter is likely to be most useful
when only one or two explanatory variables are missing and they are highly correlated
with the auxiliary variables. Such auxiliary information can be for example a less precise
measurement of the same parameter, screening results, etc. If the auxiliary variables do
not contain too much information about the explanatory variables, we cannot expect that
they would lead to increased precision in the estimation.

We mainly addressed the situation when the response variable was known for the whole
population and some of the explanatory variables were available only for the subsample. We
also touched upon the opposite scenario when the explanatory variables are observed, but
the response is known only for the sampled individuals. We mentioned that the analogous
estimation method can be applied. However, it is important to consider carefully the
nature of the auxiliary information. Indeed, it should not be the explanatory variables or
variables closely related to them, but rather variables bearing the information related to
the response. For example in the context of Project ACCEPT, when the response variable
known for the sampled individuals would be the result of HIV testing and the explanatory
variables would be region, gender, age and intervention, the auxiliary information could
be an extensive questionnaire including information about relatives’ HIV status, previous
and present sexual behaviour, drug and alcohol use and other risk factors providing a good
guess as to how likely the interviewee is to be HIV positive, even without the blood test.
In general, the auxiliary variables are likely to improve the estimation only if they are
highly correlated with the response. Again, it is often some less precise or preliminary
measurement of the response.

We could also consider the third scenario, when the response as well as some explanatory
variables are known only for the sampled individuals. The same approach to the estimation
of the parameters would be applicable here too. However, although it cannot be ruled out,
it is unlikely that it would lead to a substantial improvement of the estimator. It might work
in a situation where some auxiliary variables would be closely related to the explanatory
variables while others would be correlated with the response, but in that case we would
rather recommend to reconsider the design of the study.
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Chapter 7

Summary and Conclusion

In this thesis we presented methods of parameter estimation under two-phase stratified
sampling and cluster sampling. In contrast to classical sampling theory, we did not deal
much with finite population parameters, but rather focused on model parameters inference,
which is more appropriate in scientific applications. However, we had to consider the
sampling schemes employed and consequently incorporated much of the survey sampling
theory as well. Therefore, the methods used for parameter estimation could be considered
as a combination or unification of the two approaches.

In stratified sampling, we addressed the situation where the full population is divided
into strata and subsampled within each stratum, not necessarily with the same sampling
probabilities. The target variable is then observed only for the selected individuals. We
presented the mean value estimation, including the statistical properties of the estimator,
and showed how this estimation can be improved if some auxiliary information, correlated
with the target variable, is observed for the whole population.

This led us to an idea that the same approach might be adapted for the case of cluster
sampling, although the two situations are not completely analogous. While in the case of
stratified sampling the subsamples are drawn within a small number of strata, in the case of
cluster sampling the subsampling is performed within a ”large” number of clusters, where
”large” means that the number of clusters increases with increasing size of the population.
Nevertheless, the estimation procedure (also using auxiliary information) can be modified
for this sampling scheme and its detailed description together with simulations supporting
the theoretical results were presented. We considered two scenarios: when the auxiliary
variable is available for all households (including non-selected), and when the auxiliary
variable is known for all members (including non-selected) from the sampled households.

We addressed not only the estimation of the expectation, but also extended the method
in the context of the GLM. We described in detail the estimation procedure which makes use
of the auxiliary variables, including the derivation of the appropriate transformation of the
auxiliary variable, and illustrated the process with several examples. The methodology can
be easily extended to other types of regression models (censored data regression, quantile
regression, etc.).

We have shown that the use of auxiliary information can never increase the variance of
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the estimator. In the worst case, it will be equal to the variance of the estimator which does
not incorporate the auxiliary variables. The extent to which the precision can be improved
depends on the correlation between the auxiliary variable and the target variable (when
estimating the expectation) or the scores (in GLM). As we have seen in some examples,
this is not the same as an ”obvious association”, which might be observed in the data. In
the case of cluster sampling, the critical property is the correlation within the cluster, i.e.
the ability of the auxiliary variable to distinguish the observations within the cluster. This
ability might be limited, for example, for dichotomous variables.

The basic assumption was that the marginal inference was appropriate to answer the sci-
entific question. Indeed, if the inference conditional on stratum or household, respectively,
was more adequate, the researcher could in most situations apply the classical methods
which do not take into account the sampling scheme. For example, in the case of clus-
ter sampling, one might utilize the random effects model. Still, we believe that marginal
inference is suitable in a lot of situations, an example of which is in Project ACCEPT.

The studied subject is related to a general missing data problem. We assumed that the
data were missing by design, while they could be also missing by chance. Thus, as a further
step, it would be of interest to study whether an extension of the presented methods under
a more general missingness pattern would be possible. This would for example include the
situation where several auxiliary variables are available, but none of them is known for
the whole population. Instead, only a few of the auxiliary variables are observed for the
non-sampled individuals.
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