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P R E FA C E

The thesis consists of three author’s papers.

• Reflexivity and sets of Fréchet subdifferentiability, Proc. Am.
Math. Soc. 136, No. 12 (2008), 4467–4473.

• Structure of the set of norm-attaining functionals on strictly
convex spaces, accepted in Can. Math. Bull.

• On binormality in non-separable Banach spaces, J. Math. Anal.
Appl. 371, No. 2 (2010), 425–435.

The first two papers deal with descriptive set theory and its
application in Banach space theory, while the third one deals
with a relation of topologies on a Banach space.

We are interested in the descriptive complexity of sets. In the
first paper, we study complexity of sets of (Fréchet) subdifferen-
tiability. L. Zajı́ček [19] proved that the set S( f ) of subdifferentia-
bility of a continuous function f on a Banach space X is a Suslin
set. He posed the question if S( f ) is necessarily a Borel set.
P. Holický and M. Laczkovich answered the question positively
for X reflexive (p. 3, Theorem 1.1.2). Nevertheless, the answer
in the general case is negative. In our paper, we construct a Lips-
chitz function with non-Borel set of subdifferentiability on every
non-reflexive Banach space (p. 3, Theorem 1.1.3). Let us note
that, in this moment, the question of possible complexity of sets
of subdifferentiability of continuous functions is solved for every
Banach space except the spaces of dimension 2.

Non-reflexivity plays a key role also in the second paper. Let
X be a separable non-reflexive Banach space. It is not difficult
to show that, if its norm ‖ · ‖ is strictly convex, then the set
of norm-attaining functionals NA(‖ · ‖) is Borel [12]. G. Debs,
G. Godefroy and J. Saint Raymond proved that some better con-
vexity assumptions provide sharper conclusions [1]. For example,
if the dual norm ‖ · ‖∗ is Gâteaux differentiable, then NA(‖ · ‖) is
Fσδ. They asked whether only the assumption that ‖ · ‖ is strictly
convex is sufficient for NA(‖ · ‖) to belong to a fixed Borel class.
We answer this question negatively (p. 11, Theorem 2.1.1).

Another object of our interest is binormality in Banach spaces.
Let σ and τ be two topologies on a set X. We say that X is
binormal with respect to σ and τ if, for every disjoint σ-closed
A and τ-closed B, there are disjoint σ-open D and τ-open C
with A ⊂ C and B ⊂ D. We say that a Banach space X is binormal
if X is binormal with respect to its norm and weak topologies.
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It was shown by P. Holický [8] that every separable Banach
space is binormal and that the space `∞ is not binormal. It was
an open problem if there are some non-separable binormal spaces.
In the third paper, we actually prove that there are many of them
(p. 21, Theorem 3.1.1). Our method of proving that a Banach
space is binormal is to decompose it into “smaller” ones through
so-called projectional resolution of identity (defined on p. 29).
The notion of a projectional resolution of identity is an important
tool in the theory of non-separable Banach spaces, and our paper
is an evidence for it. We are able to show that every Banach
space which belongs to a P-class is binormal (a P-class is de-
fined on p. 31). This provides numerous examples of binormal
spaces (weakly compactly generated spaces, Plichko spaces, duals
to Asplund spaces, C([0, µ]) for an ordinal µ).

It is possible to study also the binormality of the norm and
weak star topologies (which we call w∗-binormality). It was ob-
served by O. Kalenda that it can be proved by an analogical
decomposition method that the dual space of a weakly countably
determined Asplund space is w∗-binormal (p. 36, Remark 3.6.5).
We prove that a Banach space is necessarily Asplund if its dual is
w∗-binormal but the converse does not hold. In fact, asplundness
of a space is equivalent to a weaker form of w∗-binormality of its
dual space (this weaker form is like w∗-binormality with the only
difference that the norm-closed set A is assumed to be norm-
separable, p. 22, Theorem 3.1.2).

We conclude with a characterization of scattered compact
spaces (p. 37, Theorem 3.6.8). We do not know whether this
characterization can be proved directly without using the meth-
ods presented in this work (namely, p. 35, Lemma 3.6.2 and
Theorem 3.6.3).

I would like here to express my thanks to all the people who
accompanied me throughout my mathematical education and
researches. I am grateful to my supervisor Professor Petr Holický
for numerous discussions on the problems, helpful suggestions,
useful remarks on preliminary versions of my papers and also
for abiding interest in my work.
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1
R E F L E X I V I T Y A N D S E T S O F FRÉCHET
SUBDIFFERENTIABILITY

1.1 introduction and main result

Let X be a real normed linear space and f be a real function on
X. Let x ∈ X. We say that u ∈ X∗ is a Fréchet subgradient of f at x
if

lim inf
y→x

f (y)− f (x)− u(y− x)
‖y− x‖ ≥ 0.

The set of all Fréchet subgradients of f at x is called the Fréchet
subdifferential of f at x and denoted by ∂ f (x). The set of all points
x ∈ X at which ∂ f (x) 6= ∅ is called the set of Fréchet subdifferentia-
bility and denoted by S( f ).

Further on, we omit “Fréchet” in the above notions and we
suppose that all normed linear spaces are real.

At first, we recall some known results about the sets of subdif-
ferentiability.

Theorem 1.1.1. ([19, Section 4]) Let f be a lower semicontinuous
function on a normed linear space X. Then S( f ) is a Suslin set.

We recall the definition of a Suslin set in Section 2.
L. Zajı́ček posed in [19, Section 4] the question whether S( f )

must be Borel for every lower semicontinuous function. We show
in Theorem 1.1.3 below that the answer to Zajı́ček’s question is
negative in non-reflexive spaces. The situation in the reflexive
case was clarified by an unpublished remark of P. Holický and
M. Laczkovich. A proof of their result will be given at the end of
this section.

Theorem 1.1.2. (Holický, Laczkovich) Let f be a lower semicontinu-
ous function on a normed linear space X with a reflexive completion.
Then S( f ) is an Fσδσ set.

We note that there is a continuous function f on R3 such that
S( f ) is not Gδσδ (see [15]). We formulate the main result now. Its
proof will be given in Section 1.2.

Theorem 1.1.3. Let X be a normed linear space with a non-reflexive
completion. Then there is a Lipschitz function f on X such that S( f ) is
not Borel.

Remark 1.1.4. Theorem 1.1.1 can be generalized. M. Šmı́dek has
proved that Theorem 1.1.1 holds for Borel functions (see [18]). It

3



4 reflexivity and sets of fréchet subdifferentiability

follows from his method and Theorem 1.1.2 that S( f ) is Borel if
f is a Borel function on a space with a reflexive completion.

Proof of Theorem 1.1.2. By [19, Lemma 4], the set

AK
n1,...,nk

=
⋃
‖u‖≤K

k⋂
i=1

{
x ∈ X :

‖y− x‖ <
1
ni
⇒ (y)− f (x) ≥ u(y− x)− 1

i
‖y− x‖

}
is closed for K, k, n1, . . . , nk ∈N. It is enough to verify that

S( f ) =
∞⋃

K=1

∞⋂
k=1

⋃
(n1,...,nk)∈Nk

AK
n1,...,nk

.

Let x ∈ S( f ). There exists u ∈ ∂ f (x). For some K ∈N, K ≥ ‖u‖.
By the definition of the subgradient, for every i ∈ N, there
exists ni ∈ N such that ‖y − x‖ < 1

ni
⇒ f (y) − f (x) ≥ u(y −

x)− 1
i ‖y− x‖. Now, x ∈ AK

n1,...,nk
for every k ∈ N, which gives

the inclusion “⊂”. To prove the other inclusion, suppose that
K ∈ N and x ∈ ⋂∞

k=1
⋃

(n1,...,nk)∈Nk AK
n1,...,nk

. For every k ∈ N,
there exist nk ∈ N and u ∈ X∗, ‖u‖ ≤ K, such that ‖y− x‖ <
1
nk
⇒ f (y)− f (x) ≥ u(y− x)− 1

k‖y− x‖. Consequently, for every
k ∈N, the set

Ck =
{

u ∈ X∗ : ‖u‖ ≤ K, lim inf
y→x

f (y)− f (x)− u(y− x)
‖y− x‖ ≥ −1

k

}
is non-empty. One can easily check that these sets are closed and
convex. So they are w-closed, too. They are bounded at the same
time. Since X∗ is reflexive, {Ck}k∈N is a decreasing system of
non-empty w∗-compact sets. So its intersection is non-empty. The
easy observation that

⋂∞
k=1 Ck ⊂ ∂ f (x) completes the proof.

1.2 functions with non-borel sets of fréchet subd-
ifferentiability

Let us recall some definitions and notation. By N<ω we will
denote the set of all finite sequences of natural numbers, i.e.,
N<ω = {∅} ∪ ⋃∞

l=1 Nl . The closed unit ball of a Banach space
X will be denoted by BX. We use “co” for the convex hull, “co”
for its closure and “sp” for the closed linear span. Given normed
linear spaces X, Y, we define X⊕∞ Y as the sum of X and Y with
the norm ‖(x, y)‖ = max{‖x‖, ‖y‖}, x ∈ X, y ∈ Y. By c-Lipschitz
we mean Lipschitz with constant c.

Let X be a metric space. We say that M ⊂ X is Suslin if

M =
⋃

(n1,n2,... )∈NN

∞⋂
k=1

An1,...,nk , (1.1)
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where An1,...,nk , (n1, . . . , nk) ∈N<ω, are closed in X. Equivalently,
we may consider An1,...,nk , (n1, . . . , nk) ∈ N<ω, to be open (we
have

⋂∞
k=1 An1,...,nk =

⋂∞
k=1{x ∈ X : dist(x,

⋂k
i=1 An1,...,ni) < 1/k}).

Let P be a countably infinite set. We note that {0, 1}P can be
identified with the set of subsets of P by ν ∈ {0, 1}P 7→ {p ∈
P : ν(p) = 1}. We consider the subspace Tr of {0, 1}N<ω

con-
sisting of the trees, i.e., such subsets of N<ω, which contain
∅, (n1), (n1, n2), . . . , (n1, . . . , nk) with every element (n1, . . . , nk).
We say that T ∈ Tr is ill-founded (T ∈ IF), if there exists an infinite
sequence of natural numbers n1, n2, . . . such that (n1, . . . , nk) ∈ T
for every k ∈N. In the opposite case, we say that T is well-founded
(T ∈WF).

The following lemma is an easy consequence of [9, Theorem
1].

Lemma 1.2.1. If a Banach space X is not reflexive, then there exist
x1, x2, . . . in BX and a bounded sequence u1, u2, . . . in X∗ such that,
for every k, j ∈N,

uk(xj) ≥ 1 if k ≤ j, uk(xj) = 0 if k > j.

Proposition 1.2.2. Let X be a non-reflexive Banach space. Then there
is a mapping θ : N<ω → BX such that

(i) if T ∈ IF, then there are distinct η1, η2, · · · ∈ T such that the
sequence θ(η1), θ(η2), . . . is convergent, and so

⋂
U⊂T,|U|<∞ co(θ(T \

U)) 6= ∅,
(ii) if T ∈WF, then

⋂
U⊂T,|U|<∞ co(θ(T \U)) = ∅.

Proof. Let x1, x2, . . . , u1, u2, . . . be as in Lemma 1.2.1. We define

θ(n1, . . . , nk) =
k

∑
i=1

2−ixni

for (n1, . . . , nk) ∈ N<ω. To prove (i), it is sufficient to realize
that, for n1, n2, · · · ∈ N, the sequence θ(∅), θ(n1), θ(n1, n2), . . .
converges to ∑∞

i=1 2−ixni .
Assume that (ii) does not hold. Let T ∈ WF and let a be

an element of
⋂

U⊂T,|U|<∞ co(θ(T \U)). The sequence u1, u2, . . .
is bounded, so it is easy to check that {x ∈ X : limk→∞ uk(x) = 0}
is closed. We have

a ∈ co
(

θ
(
N<ω

))
⊂ sp

{
x1, x2, . . .

}
⊂
{

x ∈ X : lim
k→∞

uk(x) = 0
}

,

and so limk→∞ uk(a) = 0. We choose natural numbers N1, N2, . . .
such that

l

∑
i=1

2iuNi(a) < 1 for l ∈N
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(for example choose Ni such that uNi(a) ≤ 2−2i). The set

R =
{
(n1, . . . , nk) ∈ T : 1 ≤ i ≤ k⇒ ni ≤ Ni

}
(where k denotes the length of (n1, . . . , nk)) is finite by König’s
lemma (cf., [14, Exercise 4.12]). Thus there exists l ∈N such that
l is greater than the length of any element of R. We are going to
prove the following implication:

(n1, . . . , nk) ∈ T \ R ⇒
l

∑
i=1

2iuNi

(
θ(n1, . . . , nk)

)
≥ 1.

Let (n1, . . . , nk) ∈ T \ R. Let us realize that nj > Nj for some
j ≤ min{k, l}. It is clear in the case that k ≤ l. If k > l and
nj ≤ Nj for every j ≤ l, then the sequence (n1, . . . , nl) of the first
l members of (n1, . . . , nk) would be an element of R, but its length
would be l at the same time, which is impossible. We have:

l

∑
i=1

2iuNi

(
θ(n1, ..., nk)

)
≥ 2juNj

(
θ(n1, ..., nk)

)
=

k

∑
i=1

2j−iuNj(xni) ≥ uNj(xnj) ≥ 1,

and the implication holds. Now, as R is finite,

a ∈
⋂

U⊂T,|U|<∞

co
(

θ
(
T \U

))
⊂ co

(
θ
(
T \ R

))

⊂
{

x ∈ X :
l

∑
i=1

2iuNi(x) ≥ 1
}

,

which is a contradiction with the choice of N1, N2, . . . .

Lemma 1.2.3. Let Y be an infinite-dimensional normed linear space
and (uγ)γ∈Γ be a system of elements of Y∗. Let (δγ)γ∈Γ be a system of
elements of (0, ∞] such that {γ ∈ Γ : δγ > δ} is finite for every δ > 0
and (εγ)γ∈Γ be a system of positive numbers. If

g(y) = max
{

uγ(y)− εγ‖y‖ : γ ∈ Γ, ‖y‖ < δγ

}
for y ∈ Y, ‖y‖ < max

γ∈Γ
δγ,

then
∂g(0) ⊂

⋂
U⊂Γ,|U|<∞

co
{

uγ : γ ∈ Γ \U
}

.

In fact, if {γ ∈ Γ : εγ > ε}, ε > 0, are also finite, then the
equality holds. We do not use the inclusion “⊃”, but we prove
an analogy of it elsewhere.
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Proof. Suppose that u ∈ Y∗ \⋂U⊂Γ,|U|<∞ co{uγ : γ ∈ Γ \U}. We
have to prove that u /∈ ∂g(0). For some finite U ⊂ Γ, u is not
in co{uγ : γ ∈ Γ \U}. By the Hahn-Banach theorem, there exist
F0 ∈ Y∗∗ and α > 0 such that F0(uγ − u) ≥ α for every γ ∈ Γ \U.
We can choose β ∈ (0, 1/‖F0‖] such that −βF0(uγ − u) < 1

2 εγ for
every γ ∈ U. We define F = −βF0, ε = min{αβ} ∪ { 1

2 εγ : γ ∈ U}.
We have ‖F‖ ≤ 1 because ‖F‖ = β‖F0‖ ≤ (1/‖F0‖)‖F0‖ = 1. Let
us verify that

F(uγ − u) < εγ − ε, γ ∈ Γ.

If γ ∈ U, then F(uγ − u) = −βF0(uγ − u) < 1
2 εγ = εγ − 1

2 εγ ≤
εγ − ε. If γ ∈ Γ \U, then F(uγ − u) = −βF0(uγ − u) ≤ −βα ≤
−ε < εγ − ε.

Now, let δ > 0 be given. Since {G ∈ Y∗∗ : δ < δγ ⇒ G(uγ −
u) < εγ − ε} is a neighbourhood of F in the w∗-topology on Y∗∗,
by Goldstine’s lemma, there exists y0 ∈ Y, ‖y0‖ ≤ 1, such that
δ < δγ implies that (uγ − u)(y0) < εγ − ε. Since Y is infinite-
dimensional, there exists z ∈ Y, z 6= 0, such that δ < δγ implies
that (uγ − u)(z) = 0. For an appropriate λ ∈ R, we have ‖y‖ =
δ, where y = δy0 + λz. Let γ ∈ Γ be such that ‖y‖ < δγ. It
means that δ < δγ. We have (uγ − u)(y) = (uγ − u)(δy0 + λz) <

δ(εγ − ε) = ‖y‖(εγ − ε). Thus, ‖y‖ < δγ implies that 1
‖y‖ (uγ(y)−

εγ‖y‖ − u(y)) < −ε. In other words, 1
‖y‖ (g(y)− u(y)) < −ε.

For arbitrary δ > 0, we have found y ∈ Y, ‖y‖ ≤ δ, such that
1
‖y‖ (g(y)− u(y)) < −ε. So u is not a subgradient of g at 0, and
the proof is finished.

Theorem 1.2.4. Let X, Y be normed linear spaces such that the com-
pletion of Y is not reflexive. If M ⊂ X is a Suslin set, then there
exists a Lipschitz function f on X ⊕∞ Y such that, for every a ∈ X,
(a, 0) ∈ S( f ) if and only if a ∈ M.

Proof. Let An1,...,nk , (n1, . . . , nk) ∈ N<ω, be a system of open sub-
sets of X satisfying (1.1). We may suppose that, for (n1, . . . , nk) ∈
N<ω and nk+1 ∈N, An1,...,nk ,nk+1 ⊂ An1,...,nk , i.e., that

Ta =
{

η ∈N<ω : a ∈ Aη

}
is a tree for every a ∈ X (we can take

⋂k
i=1 An1,...,ni instead of

An1,...,nk ). We observe that Ta ∈ IF if and only if a ∈ M.
Now, we are going to use the non-reflexivity of Y∗. Let θ :

N<ω → BY∗ be as in Proposition 1.2.2. It follows from (i), (ii) and
from the observation that

a ∈ M ⇔
⋂

U⊂Ta,|U|<∞

co
(
θ(Ta \U)

)
6= ∅
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for every a ∈ X. We choose two systems (δη)η∈N<ω and (εη)η∈N<ω

of elements of (0, 1) such that {η ∈ N<ω : δη > c}, {η ∈ N<ω :
εη > c} are finite for every c > 0. For every η ∈N<ω, we define

Dη =
{
(x, y) ∈ X×Y : x ∈ Aη ,

‖y‖ < dist(x, X \ Aη) and ‖y‖ < δη/2
}

,

Eη =
{
(x, y) ∈ X×Y : x /∈ Aη or ‖y‖ ≥ δη

}
,

fη(x, y) =
{

θ(η)(y)− εη‖y‖ (x, y) ∈ Dη

−2‖y‖ (x, y) ∈ Eη .

We are going to prove that fη is 6-Lipschitz on Dη ∪ Eη . Obvi-
ously, fη is 6-Lipschitz (in fact, 2-Lipschitz) on Dη and on Eη . Let
(x1, y1) ∈ Dη and (x2, y2) ∈ Eη . Since | fη(x1, y1)− fη(x2, y2)| =
|θ(η)(y1)− εη‖y1‖+ 2‖y2‖| ≤ 2‖y1‖+ 2‖y2‖, it remains to ver-
ify that 2‖y1‖+ 2‖y2‖ ≤ 6‖(x1, y1)− (x2, y2)‖. If x2 ∈ Aη , then
‖y2‖ ≥ δη , and thus 2‖y1‖ + 2‖y2‖ ≤ −6‖y1‖ + 4δη + 6‖y2‖ −
4δη ≤ 6‖(x1, y1)− (x2, y2)‖. If x2 /∈ Aη , then ‖y1‖ < dist(x1, X \
Aη) ≤ ‖x1− x2‖, and thus 2‖y1‖+ 2‖y2‖ ≤ 4‖x1− x2‖+ 2‖y2‖−
2‖y1‖ ≤ 6‖(x1, y1)− (x2, y2)‖.

We recall that the supremum of a non-empty system of c-
Lipschitz functions is a c-Lipschitz function unless it is identically
equal to +∞.

Now, fη can be extended from Dη ∪ Eη to X × Y to be 6-
Lipschitz and to satisfy

fη(x, y) ≤ θ(η)(y)− εη‖y‖, (x, y) ∈ X×Y

(a 6-Lipschitz extension of fη exists by the McShane-Whitney
extension theorem ([17]), then we can take the minimum of this
extension and the function (x, y) 7→ θ(η)(y)− εη‖y‖). We put

f = sup
{

fη : η ∈N<ω
}

.

Obviously, f is 6-Lipschitz. It remains to prove that, for every
a ∈ X, ⋂

U⊂Ta,|U|<∞

co
(
θ(Ta \U)

)
6= ∅ ⇔ (a, 0) ∈ S( f ).

Let us prove the implication “⇐”. Assume that a ∈ X and that⋂
U⊂Ta,|U|<∞ co(θ(Ta \U)) = ∅. We consider the function g on Y

defined by

g(y) = max
{

θ(η)(y)− εη‖y‖ : η ∈ Ta, ‖y‖ < δη

}
∪
{
− 2‖y‖

}
.

By Lemma 1.2.3 (applied on Γ = Ta ∪ {1}, δ1 = ∞, ε1 = 2, u1 =
0, uη = θ(η) for η ∈ Ta), ∂g(0) ⊂ ⋂

U⊂Ta,|U|<∞ co(θ(Ta \U)). So
∂g(0) = ∅. Let us verify that fη(a, ·) ≤ g for every η ∈ N<ω,



1.3 a by-product 9

and thus f (a, ·) ≤ g. If η /∈ Ta, i.e. a /∈ Aη , then fη(a, ·) =
−2‖ · ‖ ≤ g. If η ∈ Ta and ‖y‖ ≥ δη , then (a, y) ∈ Eη , and thus
fη(a, y) = −2‖y‖ ≤ g(y) again. If η ∈ Ta and ‖y‖ < δη , then
fη(a, y) ≤ θ(η)(y)− εη‖y‖ ≤ g(y). Now, the inequality f (a, ·) ≤
g is verified. Since f (a, 0) = g(0) = 0, we get ∂( f (a, ·))(0) ⊂
∂g(0) = ∅. Hence, ∂ f (a, 0) = ∅, which proves the implication.

Let us prove the other implication. Assume that a ∈ X and that
u ∈ ⋂U⊂Ta,|U|<∞ co(θ(Ta \U)). Let ε > 0. Since u ∈ co{θ(η) : η ∈
Ta, εη ≤ ε/2}, there is a finite subset V of Ta such that εη ≤ ε/2
for η ∈ V and ‖u− v‖ ≤ ε/2 for some v ∈ co(θ(V)). We have
f (x, y) ≥ fη(x, y) = θ(η)(y) − εη‖y‖ ≥ θ(η)(y) − (ε/2)‖y‖ for
η ∈ V and (x, y) ∈ Dη . So f (x, y) ≥ v(y)− (ε/2)‖y‖ for (x, y) ∈⋂

η∈V Dη . As V ⊂ Ta, we have (a, 0) ∈ ⋂η∈V Dη . Consequently,
f (x, y) ≥ u(y)− ε‖y‖ on some neighbourhood of (a, 0) (Dη are
open because Aη are open). Since ε > 0 was arbitrary, (x, y) 7→
u(y) is a subgradient of f at (a, 0), and the implication “⇒” is
proved.

Proof of Theorem 1.1.3. Let the completion of a normed linear
space X is not reflexive. Then X is isomorphic to R⊕∞ Y, where
Y is a subspace of X of codimension 1. The completion of Y is not
reflexive, too. A well-known fact says that there is M ⊂ R, which
is Suslin, but not Borel. By Theorem 1.2.4, there is a Lipschitz
function f on R⊕∞ Y such that, for every a ∈ R, (a, 0) ∈ S( f ) if
and only if a ∈ M. Since M is not Borel, S( f ) is not Borel, too.

1.3 a by-product

As a consequence of Proposition 1.2.2, the non-Borelness of some
natural sets of sequences in a non-reflexive space can be shown.

Lemma 1.3.1. Let X be a non-reflexive Banach space. Then there is a
continuous mapping Θ : Tr→ (BX)N such that

(i*) if T ∈ IF, then Θ(T) has a convergent subsequence,
(ii*) if T ∈WF, then

⋂∞
n=1 co{xk : k ≥ n} = ∅.

Proof. Firstly, let T′ be a fixed infinite well-founded tree. The
mapping T 7→ T ∪ T′ is continuous and the image of each
ill-founded (well-founded) tree is an infinite ill-founded (well-
founded) tree. Secondly, let N<ω be ordered to a sequence. The
mapping f : {T ∈ Tr : |T| = ∞} → (N<ω)N induced by the
restriction of this ordering to each infinite tree is continuous and
the image of an infinite tree is a sequence of its elements. Let θ

be as in Proposition 1.2.2. We define

Θ(T) =
(

θ
(

f (T ∪ T′)(n)
))

n∈N
, T ∈ Tr.

Now, Θ is continuous and the conditions (i*), (ii*) follow from (i),
(ii).
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Proposition 1.3.2. Let X be a non-reflexive Banach space. Then the
following sets are not Borel in (BX)N:

A = {(x1, x2, . . . ) : x1, x2, . . . has a convergent subsequence},
B = {(x1, x2, . . . ) : x1, x2, . . . has a w-convergent subsequence},
C = {(x1, x2, . . . ) : x1, x2, . . . has a w-cluster point},
D = {(x1, x2, . . . ) :

⋂∞
n=1 co{xk : k ≥ n} 6= ∅}.

Proof. Taking Θ as in Lemma 1.3.1, we have Θ(IF) ⊂ A ⊂ B ⊂
C ⊂ D ⊂ (BX)N \ Θ(WF). Thus, IF = Θ−1(A) = Θ−1(B) =
Θ−1(C) = Θ−1(D), and the well-known fact that IF is not Borel
in Tr (see, e.g., [14]) completes the proof.



2
S T R U C T U R E O F THE SET OF NORM-ATTAINING
FUNCTIONALS ON STRICTLY CONVEX SPACES

2.1 introduction and main result

R. Kaufman proved in [12] that every non-reflexive Banach space
admits an equivalent norm such that the set of norm-attaining
functionals is not Borel. He also observed that the set of norm-
attaining functionals is Borel in the case that the space is separable
and strictly convex. G. Debs, G. Godefroy and J. Saint Raymond
asked in [1] whether there exist strictly convex norms with the set
of norm-attaining functionals of arbitrarily high Borel class. We
answer this question affirmatively in Theorem 2.1.1.

Let (X, ‖ · ‖) be a real normed linear space. We denote by BX

and by SX the closed unit ball and the unit sphere of X and
we recall that the set of norm-attaining functionals with respect
to the norm ‖ · ‖ is

NA(‖ · ‖) = { f ∈ X∗ : ∃x ∈ BX ( f (x) = ‖ f ‖)}.

The main result follows. Its proof is given at the end of the chap-
ter.

Theorem 2.1.1. Let X be a separable non-reflexive Banach space and
α < ω1. Then there exists an equivalent strictly convex norm ||| · |||
on X such that NA(||| · |||) is not of the additive Borel class α.

Of course, it is not essential whether we consider additive or
multiplicative class.

2.2 kaufman’s method

One of the ingredients of our construction of the new unit ball
is the following result of R. Kaufman. By the Baire space we
mean the countable topological product NN of natural numbers
endowed with the discrete topology.

Proposition 2.2.1 ([12, 13]). Let Y be a closed linear subspace of a Ba-
nach space X. If Y is not reflexive, then there exists a continuous
mapping ψ : NN → BY such that

(i) if (λm)m∈N is a sequence of probability measures on NN such
that the integrals

∫
NN ψdλm, m ∈N, belong to a compact subset of Y,

then the sequence (λm)m∈N is uniformly tight, i.e., for every ε > 0,
there is a compact set K ⊂NN such that λm(K) > 1− ε for all m,

11
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(ii) if F ⊂ NN is closed, $ : F → X is a continuous mapping
with $(F) relatively compact and θ denotes ψ|F + $, then, for every
x ∈ co θ(F), there is a probability measure λx on F such that

x =
∫

F
θdλx.

In fact, (ii) is a consequence of (i). Since the mappings are con-
tinuous and NN is separable, it is not essential whether the inte-
grals are understood in the Pettis or in the Bochner sense. We do
not distinguish the Baire space and the Polish space of all infinite
sets of natural numbers (denoted by J in [12] and by Σ in [13])
because they are homeomorphic (the topology on the space of all
infinite sets of natural numbers is induced by the topology on 2N).

The proof of the following proposition is given in the form
of a series of claims. There are some connections between it
and the main result from [13] (more details are discussed in Re-
mark 2.2.7).

By an analytic set we mean a continuous image of a Polish
space F (i.e., separable completely metrizable topological space).
By [14, Theorem 7.9], we can consider F to be a closed subset
of NN.

Proposition 2.2.2. Let X be a non-reflexive Banach space and ϕ, φ ∈
X∗ be linearly independent. Let M ⊂ [0, π/2] be analytic and dense
in [0, π/2]. Then there is an absolutely convex closed bounded set
R ⊂ X such that, for every t ∈ [0, π/2], (cos t)ϕ + (sin t)φ has
the supremum 1 on R, and it is attained if and only if t ∈ M.

Since M is analytic, there are a closed subset F of NN and
a continuous mapping p : F → [0, π/2] such that p(F) = M.

Notation 2.2.3. We denote

Y = Ker ϕ ∩Ker φ.

The space X can be viewed as

X = Y⊕R2,

where
ϕ(0; 1, 0) = 1, ϕ(0; 0, 1) = 0,

φ(0; 1, 0) = 0, φ(0; 0, 1) = 1

(for y ∈ Y, r, s ∈ R, we use (y; r, s) instead of (y, (r, s))). We put

ut = (cos t)ϕ + (sin t)φ for t ∈ [0, 2π).

Since X is not reflexive, Y is not reflexive, too. Let ψ : NN → BY
be as in Proposition 2.2.1. We define

θ(η) =
(
ψ(η); cos p(η), sin p(η)

)
for η ∈ F,



2.2 kaufman’s method 13

P = θ(F), R = co
(

P ∪ (−P)
)
.

Further on, we consider the Euclidean norm on Rn(n = 2, 3) and
we denote it by | · |.

Claim 2.2.4. Let R′ be such that P ⊂ R′ ⊂ Y× BR2 . If t ∈ [0, π/2],
then ut has the supremum 1 on R′, and it is attained if t ∈ M.

Proof. For x = (y; r cos α, r sin α) ∈ Y × BR2 , we have ut(x) =
r(cos α cos t + sin α sin t) = r cos(α− t) ≤ 1. Since R′ ⊂ Y × BR2 ,
the inequality sup ut(R′) ≤ 1 holds. On the other hand, for η ∈ F,
θ(η) ∈ P ⊂ R′ and ut(θ(η)) = ut(ψ(η); cos p(η), sin p(η)) =
cos p(η) cos t + sin p(η) sin t = cos(p(η) − t). The opposite in-
equality sup ut(R′) ≥ 1 follows from the fact that M = p(F) is
dense in [0, π/2].

Now, let t ∈ M = p(F). For η ∈ p−1(t), we have θ(η) ∈ P ⊂ R′

and ut(θ(η)) = ut(ψ(η); cos p(η), sin p(η)) = cos2 t + sin2 t =
1 = sup ut(R′).

Claim 2.2.5. Let t ∈ [0, 2π).
(a) If x ∈ co P satisfies ut(x) ≥ 1, then x ∈ co θ(p−1(t)).
(b) If t /∈ M, then ut(x) < 1 for every x ∈ co P.

Proof. (a) Clearly, the image of the mapping $ : η ∈ F 7→
(0; cos p(η), sin p(η)) is relatively compact. By the choice of ψ and
P, there is a probability measure λx on F such that x =

∫
F θdλx.

We obtain 1 ≤ ut(x) =
∫

F ut(θ(η))dλx =
∫

F(cos p(η) cos t +
sin p(η) sin t)dλx =

∫
F cos(p(η) − t)dλx, and thus λx({η ∈ F :

cos(p(η)− t) = 1}) = 1. Since p(η)− t ∈ (−2π, π/2] for η ∈ F,
cos(p(η)− t) = 1 is the same as p(η) = t, i.e., η ∈ p−1(t). We get
x =

∫
F θdλx =

∫
p−1(t) θdλx ∈ co θ(p−1(t)).

(b) If t /∈ M = p(F), then co θ(p−1(t)) is empty. Considering
(a), we see that ut(x) < 1 for every x ∈ co P.

Claim 2.2.6. (a) R ∩ (Y× SR2) = (co P ∪ (−co P)) ∩ (Y× SR2).
(b) If t ∈ [0, π/2] \M, then ut(x) < 1 for every x ∈ R.

Proof. For t ∈ [0, π), we prove the implication

x ∈ R & ut(x) ≥ 1 ⇒ x ∈ co P. (2.1)

Let t ∈ [0, π), x ∈ R and ut(x) ≥ 1. We set m = min{0, cos t} >

−1 and M = supz∈co P ‖z‖ < ∞. Let ε > 0 be arbitrary. There are
a, b ∈ co P and λ ∈ [0, 1] such that ‖x− (1− λ)a− λ(−b)‖ < ε.
For η ∈ F, we have ut(θ(η)) = ut(ψ(η); cos p(η), sin p(η)) =
cos p(η) cos t + sin p(η) sin t = cos(p(η)− t), and therefore m ≤
ut(θ(η)) ≤ 1 because p(η)− t ∈ [−t, π/2]. It follows that m ≤
ut(a) ≤ 1 and m ≤ ut(b) ≤ 1. We compute 1 ≤ ut(x) < ut((1−
λ)a + λ(−b))+ ‖ut‖ε ≤ (1−λ)−λm + ‖ut‖ε. So λ < ‖ut‖ε/(1 +
m) and dist(x, co P) ≤ ‖x− a‖ < ε + ‖a− (1− λ)a− λ(−b)‖ <
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(1 + 2‖ut‖M/(1 + m))ε. Since ε > 0 was arbitrary, we obtain
x ∈ co P, and (2.1) is proved.

(a) It is enough to prove the inclusion R ∩ (Y× SR2) ⊂ co P ∪
(−co P). Let x ∈ R ∩ (Y × SR2). For some y ∈ Y and t ∈ [0, 2π),
we have x = (y; cos t, sin t). We have ut(x) = cos2 t + sin2 t = 1.
If t ∈ [0, π), then (2.1) says that x ∈ co P. If t ∈ [π, 2π), then (2.1)
says that x ∈ −co P because ut−π(−x) = −ut(−x) = ut(x) = 1.

(b) Let t ∈ [0, π/2] \M and x ∈ R be such that ut(x) ≥ 1. Then
(2.1) says that x ∈ co P, which is impossible due to Claim 2.2.5(b).

Now, Proposition 2.2.2 follows from Claims 2.2.4 and 2.2.6(b).

Remark 2.2.7. (a) If ε > 0 is small enough, then co (R ∪ εBX) has
the same property as R. Taking ||| · ||| as the norm which has
co (R ∪ εBX) for its unit ball, we get a norm such that, for every
t ∈ [0, π/2], (cos t)ϕ + (sin t)φ ∈ NA(||| · |||) if and only if t ∈ M.
Considering M ⊂ [0, π/2] to be dense, analytic and non-Borel,
we obtain the result from [12].

(b) Proposition 2.2.2 (and also Proposition 2.3.1 below) can be
generalized as follows. It holds: Let (X, ‖ · ‖) be a non-reflexive
Banach space and ϕ1, ϕ2, . . . , ϕn ∈ X∗ be linearly independent. Let
M ⊂ co{ϕ1, . . . , ϕn} be analytic. Then there is an equivalent norm ||| ·
||| on X such that, for every f ∈ co{ϕ1, . . . , ϕn}, f ∈ NA(||| · |||) if
and only if f ∈ M. Assuming that M is dense in co{ϕ1, . . . , ϕn}, we
can prove this in a similar way as Proposition 2.2.2. In the general
case, we realize that M ∪ (co{ϕ1, . . . , ϕn, ϕn+1} \ co{ϕ1, . . . , ϕn})
is dense in co{ϕ1, . . . , ϕn, ϕn+1}, where ϕn+1 ∈ X∗ is chosen so
that ϕ1, . . . , ϕn, ϕn+1 are linearly independent.

(c) In [1], the authors also ask whether every separable non-
reflexive Banach space with separable dual admits a Fréchet
smooth norm such that the set of norm-attaining functionals
is not Borel. This question is answered affirmatively in [13].
There is a simple way how to give the positive answer with use
of Proposition 2.2.2. We can proceed as follows. Let X be a sepa-
rable non-reflexive Banach space with separable dual. We choose
M ⊂ [0, π/2] to be analytic, non-Borel and dense in [0, π/2] and
ϕ, φ ∈ X∗ to be linearly independent. As M is not Borel, it is
enough to find an equivalent Fréchet smooth norm ||| · ||| on X
such that, for every t ∈ [0, π/2], (cos t)ϕ + (sin t)φ ∈ NA(||| · |||)
if and only if t ∈ M.

By [2, Theorem II.2.6], there is an equivalent norm ‖ · ‖ on X
such that the dual norm ‖ · ‖ is l.u.r. on X∗. Also, there is an equiv-
alent norm ‖ · ‖′ on X such that the dual norm ‖ · ‖′ is l.u.r.
on X∗, too, and, for every t ∈ [0, π/2], (xn)n∈N is convergent in X
whenever ‖xn‖′ ≤ 1 for n ∈ N and ((cos t)ϕ + (sin t)φ)(xn) →
‖(cos t)ϕ + (sin t)φ‖′. Indeed, this can be shown for the norm
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‖(y; r, s)‖′ = |(‖y‖, r, s)|, (y; r, s) ∈ Y×R2, where Y is as in Nota-
tion 2.2.3.

Let R be as in Proposition 2.2.2. We define ||| · ||| to satisfy

B(X,|||·|||) = B(X,‖·‖′) + R.

For u ∈ X∗, we have |||u||| = ‖u‖′ + supx∈R u(x). From here, it
can be shown that ||| · ||| is l.u.r. on X∗. Consequently, ||| · ||| is
Fréchet smooth ([2, Proposition II.1.5]). It is straightforward to
check that, for every t ∈ [0, π/2], (cos t)ϕ +(sin t)φ ∈ NA(||| · |||)
if and only if t ∈ M. So the norm ||| · ||| works.

(d) In fact, this method is a simple analogy of the method
from [13]. Our method allows us to choose which analytic sub-
set of an arc will be the intersection of this arc with the set
of norm-attaining functionals. In [13], these functionals are cho-
sen from a considerably greater set. It is proved: If X is a separable
non-reflexive Banach space with separable dual, then there is a set
H ⊂ X∗, homeomorphic to the Hilbert cube [−1, 1]N, such that, for
every analytic subset M of H, there is an equivalent Fréchet smooth
norm ||| · ||| on X such that H ∩NA(||| · |||) = M. In this case, to
find the norm corresponding to our norm ‖ · ‖′ (mentioned in (c))
is much more complicated. One of the reasons is that the analogy
of our space Y above has infinite codimension, and thus it does
not have to be complemented.

2.3 the rotunding technique

Proposition 2.3.1. Let (X, ‖ · ‖) be a strictly convex non-reflexive
Banach space and ϕ, φ ∈ X∗ be linearly independent. Let M ⊂ [0, π/2]
be Borel and dense in [0, π/2]. Then there is an equivalent strictly
convex norm ||| · ||| on X such that, for every t ∈ [0, π/2], (cos t)ϕ +
(sin t)φ ∈ NA(||| · |||) if and only if t ∈ M.

The proof of the proposition is also given in the form of a series
of claims.

Since M is Borel, there are a closed subset F of NN and a one-
to-one continuous mapping p : F → [0, π/2] such that p(F) = M
([14, Theorem 13.7]). We define Y, ut, ψ, θ, P, R as in Notation 2.2.3.
Clearly, Claims 2.2.4 – 2.2.6 hold. The condition that p is a one-to-
one mapping makes the situation more concrete and allows us to
improve some of them.

Claim 2.3.2. (co P) ∩ (Y× SR2) = P.

Proof. It is enough to prove (co P) ∩ (Y × SR2) ⊂ P because
the other inclusion is obvious. Let x ∈ (co P) ∩ (Y× SR2). There
are y ∈ Y and t ∈ [0, 2π) such that x = (y; cos t, sin t). We have
ut(x) = cos2 t + sin2 t = 1. By Claim 2.2.5(a), x ∈ co θ(p−1(t)).
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Let η be the only element of p−1(t). We obtain x ∈ co θ(p−1(t)) =
co {θ(η)} = {θ(η)} ⊂ P.

Claim 2.3.3. R ∩ (Y× SR2) = P ∪ (−P).

Proof. It follows immediately from Claims 2.3.2 and 2.2.6(a).

In the proof of the following claim, we need a continuous
function f : [0, 2]× [0, 1]→ [0, 1] with properties

(a) f (x, y) ≤ 1− y for (x, y) ∈ [0, 2]× [0, 1],
(b) f (λa + (1− λ)b) > λ f (a) + (1− λ) f (b) for a, b ∈ [0, 2]×

[0, 1), a 6= b, λ ∈ (0, 1),
(c) f (x1, y) > f (x2, y) when x1 < x2 and y < 1, f (x, y1) >

f (x, y2) when y1 < y2.
An explicit example of such a function is

f (x, y) = 1− y− (1− y)2
[

1
6

+
1

6− x

]
.

It is easy to check that the partial derivatives of f are negative
on [0, 2]× [0, 1) and that

∂2 f
∂(r, s)2 (x, y) = − 2

6− x

[
s− 1− y

6− x
r
]2

− 1
3

s2,

which is negative on [0, 2]× [0, 1) (by ∂2 f
∂(r,s)2 (x, y) we mean the sec-

ond derivative of f at (x, y) in the direction (r, s)).

Claim 2.3.4. There is a continuous function ρ : 2BY × BR2 → [0, 1]
with properties

(a) ρ(y; r, s) ≤ 1− |(r, s)| for (y; r, s) ∈ 2BY × BR2 ,
(b) ρ(λa + (1− λ)b) > λρ(a) + (1− λ)ρ(b) for a, b ∈ 2BY ×

(BR2 \ SR2), a 6= b, λ ∈ (0, 1),
(c) ρ(x) = ρ(−x) for x ∈ 2BY × BR2 .

Proof. We put

ρ(y; r, s) = f
(
‖y‖, |(r, s)|

)
, (y; r, s) ∈ 2BY × BR2 .

Properties (a), (c) are obvious, let us check (b). Assume that
(y1, z1), (y2, z2) ∈ 2BY × BR2 , (y1, z1) 6= (y2, z2), |z1| < 1, |z2| <

1, λ ∈ (0, 1). We need to check the inequality

f
(
‖λy1 + (1− λ)y2‖, |λz1 + (1− λ)z2|

)
> λ f

(
‖y1‖, |z1|

)
+ (1− λ) f

(
‖y2‖, |z2|

)
.

If ‖y1‖ 6= ‖y2‖ or |z1| 6= |z2|, then we have f (‖λy1 + (1 −
λ)y2‖, |λz1 + (1− λ)z2|) ≥ f (λ‖y1‖+ (1− λ)‖y2‖, λ|z1|+ (1−
λ)|z2|) > λ f (‖y1‖, |z1|) + (1− λ) f (‖y2‖, |z2|) by the properties
of the function f . If ‖y1‖ = ‖y2‖ and |z1| = |z2|, then, by the strict
convexity of ‖ · ‖, | · | and by (y1, z1) 6= (y2, z2), we have ‖λy1 +
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(1− λ)y2‖ < λ‖y1‖+ (1− λ)‖y2‖ or |λz1 + (1− λ)z2| < λ|z1|+
(1− λ)|z2|, and thus f (‖λy1 + (1− λ)y2‖, |λz1 + (1− λ)z2|) >

f (λ‖y1‖ + (1 − λ)‖y2‖, λ|z1| + (1 − λ)|z2|) = λ f (‖y1‖, |z1|) +
(1− λ) f (‖y2‖, |z2|).

Let us take the function ρ from Claim 2.3.4. We denote

‖(y, z)‖∞ = max{‖y‖, |z|} for (y, z) ∈ Y⊕R2,

B(x, r) =
{
(y, z) ∈ Y⊕R2 : ‖x− (y, z)‖∞ ≤ r

}
for x ∈ Y⊕R2, r ≥ 0.

We choose a sequence of positive numbers (ε i)i∈N such that
∞

∑
i=1

ε i ≤ 1,
∞

∏
i=1

(1− ε i) > 0, lim
n→∞

1
εn

∞

∑
i=n

ε i = 1,

and define
R0 = R,

Rn =
⋃

x∈Rn−1

B(x, εnρ(x)), n ∈N,

R∞ =
∞⋃

n=0

Rn.

It is easy to verify by the induction that Rn ⊂ (1 + ∑n
i=1 ε i)BY ×

BR2 , and thus Rn, n ∈N, are well-defined. Besides this, the sets
Rn, n ∈N, are absolutely convex.

Further on, by dist we mean the distance with respect to ‖ · ‖∞.

Claim 2.3.5. R∞ ∩ (Y× SR2) = P ∪ (−P).

Proof. Using Claim 2.3.3, we have P ∪ (−P) = R ∩ (Y × SR2) ⊂
R∞ ∩ (Y× SR2). It is enough to show that if (y, z) ∈ Y× SR2 and
(y, z) /∈ R, then (y, z) /∈ R∞.

Let (y, z) ∈ (Y× SR2) \ R. We denote

d = dist((y, z), R) > 0.

Let n ∈N. Given x = (y′, z′) ∈ Rn−1 and (y′′, z′′) ∈ B(x, εnρ(x)),
we have ‖(y′′, z′′)− (y, z)‖∞ ≥ ‖x− (y, z)‖∞−‖x− (y′′, z′′)‖∞ ≥
‖x − (y, z)‖∞ − εnρ(x) ≥ ‖x − (y, z)‖∞ − εn(1 − |z′|) = ‖x −
(y, z)‖∞ − εn(|z| − |z′|) ≥ ‖x − (y, z)‖∞(1 − εn). It means that
dist((y, z), B(x, εnρ(x))) ≥ (1 − εn)‖x − (y, z)‖∞ for every x ∈
Rn−1. Consequently, dist((y, z), Rn) ≥ (1− εn)dist((y, z), Rn−1)
from the definition of Rn. By an easy induction argument,

dist((y, z), Rn) ≥ d
n

∏
i=1

(1− ε i), n = 0, 1, . . . ,

dist((y, z), R∞) ≥ d
∞

∏
i=1

(1− ε i).

So (y, z) /∈ R∞ by the choice of the sequence (ε i)i∈N.
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Claim 2.3.6. If a, b are two distinct points of R∞, then λa + (1− λ)b
is an element of the interior of R∞ for every λ ∈ (0, 1).

Proof. Given such a, b, λ, we denote x = λa + (1−λ)b. Let us real-
ize that x /∈ Y× SR2 . Assume that x ∈ Y× SR2 . Since a, b ∈ R∞ ⊂
Y× BR2 , there is z ∈ SR2 such that a, b ∈ Y× {z}. By Claim 2.3.5,
we have a, b ∈ P ∪ (−P). By the definition of P and by the fact
that p is a one-to-one mapping, the set (P ∪ (−P)) ∩ (Y × {z})
has at most one element. Thus a = b, which is a contradiction.

So x ∈ Y× (BR2 \ SR2). We may suppose that a, b ∈ Y× (BR2 \
SR2), too (we may take (1/2)(a + x), (1/2)(b + x) instead of a, b).
We have

ρ(x) = ρ(λa + (1− λ)b) > λρ(a) + (1− λ)ρ(b).

We choose r′ > r > ρ(a) and s′ > s > ρ(b) such that

ρ(x) > λr′ + (1− λ)s′.

Since ρ is continuous, we can choose u > 0 and v > 0 such
that ρ ≤ r on B(a, u) and ρ ≤ s on B(b, v). Let us prove that, for
n ∈N,

dist(a, Rn) ≥ min
{

u− εn, dist(a, Rn−1)− rεn
}

.

If y ∈ Rn−1 \ B(a, u) and z ∈ B(y, εnρ(y)), then ‖a − z‖∞ ≥
‖a− y‖∞−‖y− z‖∞ ≥ u− εnρ(y) ≥ u− εn. If y ∈ Rn−1 ∩ B(a, u)
and z ∈ B(y, εnρ(y)), then ‖a− z‖∞ ≥ ‖a− y‖∞ − ‖y− z‖∞ ≥
dist(a, Rn−1)− εnρ(y) ≥ dist(a, Rn−1)− rεn.

Now, since dist(a, Rn) → 0 and u− εn → u > 0, there is n0

such that dist(a, Rn) ≥ dist(a, Rn−1)− rεn for every n ≥ n0. For
n ≥ n0, we have

dist(a, Rn) ≤ dist(a, Rn+1) + rεn+1

≤ dist(a, Rn+2) + rεn+1 + rεn+2

≤ · · · ≤ r
∞

∑
i=n+1

ε i.

By the same way, we find m0 such that dist(b, Rn) ≤ s ∑∞
i=n+1 ε i

for n ≥ m0. We put N = max{n0, m0} and, for every n ≥ N,
we choose an, bn ∈ Rn such that ‖a − an‖∞ ≤ r′ ∑∞

i=n+1 ε i and
‖b− bn‖∞ ≤ s′ ∑∞

i=n+1 ε i. For n ≥ N, we put xn = λan +(1−λ)bn.
Since ρ is continuous, we have ρ(xn)→ ρ(x). Since

λr′ + (1− λ)s′

ρ(xn)
1

εn+1

∞

∑
i=n+1

ε i →
λr′ + (1− λ)s′

ρ(x)
< 1,
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we can choose n ≥ N such that (λr′ + (1 − λ)s′) ∑∞
i=n+1 ε i <

ρ(xn)εn+1. We have

‖x− xn‖∞ ≤ λ‖a− an‖∞ + (1− λ)‖b− bn‖∞

≤ (λr′ + (1− λ)s′)
∞

∑
i=n+1

ε i

< ρ(xn)εn+1.

So x is an element of the interior of B(xn, εn+1ρ(xn)), which is
a subset of Rn+1.

Claim 2.3.7. If t ∈ [0, π/2], then ut attains its supremum on R∞ if
and only if t ∈ M.

Proof. Considering Claim 2.2.4, it remains to prove that ut(x) < 1
for every x ∈ R∞ in the case that t /∈ M. Suppose that t /∈ M, x =
(y; r cos α, r sin α) ∈ R∞ and ut(x) = 1. We have 1 = ut(x) =
r(cos α cos t + sin α sin t) = r cos(α − t), which is possible only
if r = 1 and α = t, i.e. x ∈ Y × {(cos t, sin t)}. By Claim 2.3.5,
x ∈ P ∪ (−P) ⊂ R. By Claim 2.2.6(b), ut(x) < 1, which is a con-
tradiction.

Now, we define ||| · ||| as the norm with the unit ball R∞.
Proposition 2.3.1 follows from Claims 2.3.6 and 2.3.7.

Proof of Theorem 2.1.1. Choose ϕ, φ ∈ X∗ to be linearly indepen-
dent. We take M ⊂ [0, π/2], dense in [0, π/2], which is Borel,
but not of the additive Borel class α ([14, Theorem 22.4]). It is
known that there is an equivalent strictly convex norm ‖ · ‖
on X ([2, Theorem II.2.6]). By Proposition 2.3.1, there is a strictly
convex norm ||| · ||| on X such that, for every t ∈ [0, π/2],
(cos t)ϕ + (sin t)φ ∈ NA(||| · |||) if and only if t ∈ M. Since
M is not of the additive Borel class α, NA(||| · |||) is not of the ad-
ditive Borel class α, too (t ∈ [0, π/2] 7→ (cos t)ϕ + (sin t)φ is
a continuous mapping).





3
O N BINORMALITY IN NON-SEPARABLE BANACH
SPACES

3.1 introduction and main results

Let σ and τ be two topologies on a set X. We say that (X, σ, τ) is
binormal if, for every disjoint σ-closed A ⊂ X and τ-closed B ⊂ X,
there are disjoint σ-open D ⊂ X and τ-open C ⊂ X with A ⊂ C
and B ⊂ D. We say that a Banach space X is binormal if X is
binormal with respect to its norm and weak topologies.

It is possible to meet the notion of binormality of (X, σ, τ)
in the real analysis where it is more likely called Lusin-Menchoff
property of τ in the case that the “second topology” τ is finer than
σ. For example, it is known that both the density topology and
the fine topology have the Lusin-Menchoff property with respect
to the Euclidean topology (see, e.g., [16]). The situation in Banach
spaces is somewhat opposite to that of real analysis because
the finer topology is the metrizable one.

The question whether the weak topology has the correspond-
ing “Lusin-Menchoff property” with respect to the norm topol-
ogy was posed by L. Zajı́ček. This question was studied later
by P. Holický who proved in [8] that every separable Banach
space is binormal and that the space `∞ is not binormal. But
it was not possible to decide what was the answer for many
other non-separable Banach spaces, e.g. for non-separable Hilbert
spaces.

In this work, we show that many non-separable Banach spaces
are binormal. We prove the following result (see Theorem 3.5.2
and Theorem 3.4.2).

Theorem 3.1.1. Every Plichko space is binormal. Every dual to an As-
plund space is binormal. Generally, any Banach space which belongs
to a P-class is binormal.

We give the necessary definitions below. Note that the class
of Plichko spaces is quite wide and it contains all reflexive
spaces or, more generally, all weakly compactly generated spaces.
On the other hand, we show that there is a Banach space which
admits a LUR norm but it is not binormal (Example 3.5.3).

Some results in this work are formulated for a general locally
convex topology instead of the weak topology. If X is a Banach
space and τ is a locally convex topology which is weaker than

This research was partially supported by the grant GAČR 201/09/0067.

21



22 on binormality in non-separable banach spaces

the norm topology, we say that X is τ-binormal if X is binormal
with respect to its norm topology and τ. We prove character-
izations of τ-binormality by another separation property and
by an in-between condition (Proposition 3.2.6).

We are interested in the case of the w∗-topology. We prove
the following theorem (which is covered by Theorem 3.6.3). Note
that the separability of the set A cannot be dropped (Exam-
ple 3.6.6).

Theorem 3.1.2. A Banach space E is Asplund if and only if, for every
disjoint separable and closed A ⊂ E∗ and w∗-closed B ⊂ E∗, there are
disjoint open D ⊂ E∗ and w∗-open C ⊂ E∗ with A ⊂ C and B ⊂ D.

Furthermore, our methods lead to the characterization of scat-
tered compact spaces by a separation property (Theorem 3.6.8).

3.2 a characterization of binormality

We start with a well-known variant of the Urysohn lemma.
The lemma follows from [16, Theorem 3.11] in the case that
the topologies are comparable (which will be our case) but it
holds in the general situation as well (see [16, exercise 3.B.5(e)]).

Lemma 3.2.1. Let (X, σ, τ) be binormal. If σ-closed A ⊂ X and τ-
closed B ⊂ X are disjoint, then there is a lower σ-semicontinuous and
upper τ-semicontinuous function h on X such that

0 ≤ h ≤ 1, h = 0 on A, h = 1 on B.

We now prove an abstract version of our characterization.

Lemma 3.2.2. Let Y be a set with two topologies σY and τY with τY
weaker than σY. Let

X = Y×R

and let the products of σY and τY with the standard topology on R be
denoted by σ and τ.

If the condition

(∗) ∀U ∈ τ ∃{Un}n∈N, Un ∈ τ : U =
∞⋃

n=1

Un =
∞⋃

n=1

Un
σ

is satisfied, then the following assertions are equivalent:
(i) (X, σ, τ) is binormal.
(iia) If F1 ⊃ F2 ⊃ . . . are σY-closed subsets of Y with

⋂∞
n=1 Fn = ∅,

then there are G1 ⊃ G2 ⊃ . . . , τY-open subsets of Y, such that Fn ⊂
Gn, n ∈N, and

⋂∞
n=1 Gn

σY = ∅.
(iib) If F1 ⊃ F2 ⊃ . . . are σ-closed subsets of X with

⋂∞
n=1 Fn = ∅,

then there are G1 ⊃ G2 ⊃ . . . , τ-open subsets of X, such that Fn ⊂
Gn, n ∈N, and

⋂∞
n=1 Gn

σ = ∅.
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(iii) If f : X → (0, ∞) is lower σ-semicontinuous, then there exists
g : X → (0, ∞), lower σ-semicontinuous and upper τ-semicontinuous,
such that g < f .

Remark 3.2.3. Binormality of (Y, σY, τY) is not sufficient for binor-
mality of (X, σ, τ). If we take Y = [0, 1], σY the discrete topology
on Y and τY the standard topology, then (Y, σY, τY) is clearly
binormal. Let us show that it does not satisfy (iia). Take pairwise
distinct numbers a1, a2, · · · ∈ [0, 1] which form a countable dense
subset of [0, 1] and put

Fn = {an, an+1, . . . }, n ∈N.

Note that Fn is dense in [0, 1] for every n ∈N. We have
⋂∞

n=1 Fn =
∅ but the Baire theorem guarantees that

⋂∞
n=1 Gn 6= ∅ whenever

G1, G2, · · · ⊂ [0, 1] are open sets with Fn ⊂ Gn, n ∈N.
We will use this simple idea in a general situation later (proof

of Lemma 3.6.2).

Before proving the lemma, we prove

Claim 3.2.4 (cf. proof of [8, Theorem 1]). Let σ and τ be two
topologies on a set X and let the condition (∗) from Lemma 3.2.2 be
satisfied. Let A ⊂ X be σ-closed and B ⊂ X be τ-closed. If there are
σ-open Dn ⊂ X, n ∈ N, such that B ⊂ ⋃∞

n=1 Dn and Dn
τ ∩ A = ∅

for all n ∈N, then there are disjoint σ-open D ⊂ X and τ-open C ⊂ X
with A ⊂ C and B ⊂ D.

Proof. By (∗), there are τ-open sets Cm ⊂ X, m ∈ N, such that
X \ B =

⋃∞
m=1 Cm and Cm

σ ∩ B = ∅ for all m ∈ N. In particular,
A ⊂ ⋃∞

m=1 Cm. Define

D =
∞⋃

n=1

(
Dn \

n⋃
m=1

Cm
σ
)

,

C =
∞⋃

m=1

(
Cm \

m⋃
n=1

Dn
τ
)

.

It can be easily checked that C is τ-open, D is σ-open, A ⊂ C, B ⊂
D and C ∩ D = ∅.

Proof of Lemma 3.2.2. (i)⇒ (iia) Put

A =
∞⋃

n=1

Fn × [1/n, ∞), B = Y× {0}. (3.1)

Clearly, A is σ-closed, B is τ-closed and A ∩ B = ∅. By the as-
sumption, there are disjoint σ-open D ⊂ X and τ-open C ⊂ X
with A ⊂ C and B ⊂ D. We have A ∩ Dτ ⊂ A \ C = ∅. We
define Hn as the set of points y ∈ Y such that there is a σY-
open neighbourhood U 3 y with U × [0, 1/n] ⊂ D. Let Gn be
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defined as Y \ Hn
τY . We have

⋃∞
n=1 Hn = Y, and so

⋂∞
n=1 Gn

σY ⊂⋂∞
n=1 Y \ Hn

σY =
⋂∞

n=1(Y \ Hn) = ∅. Clearly, G1 ⊃ G2 ⊃ . . . .
For n ∈ N, we have Hn

τY × [0, 1/n] ⊂ Dτ ⊂ X \ A, and so Fn ×
{1/n} = A ∩ (Y × {1/n}) ⊂ (Y × {1/n}) \ (Hn

τY × [0, 1/n]) =
Gn × {1/n}.

(iia)⇒ (iib) For n ∈N and i ∈ Z, we define

Fi
n =

{
y ∈ Y : (y, r) ∈ Fn for some r ∈ [i− 1/2, i + 1/2]

}
. (3.2)

Due to the compactness of [i− 1/2, i + 1/2], the sets Fi
n are σY-

closed and
⋂∞

n=1 Fi
n = ∅ for all i ∈ Z. By the assumption, there

are, for all i ∈ Z, τY-open Gi
1 ⊃ Gi

2 ⊃ . . . such that Fi
n ⊂ Gi

n and⋂∞
n=1 Gi

n
σY = ∅. Then the choice

Gn =
⋃
i∈Z

(
Gi

n × (i− 1, i + 1)
)

, n ∈N,

works. (We have Fn ⊂
⋃

i∈Z Fi
n× [i− 1/2, i + 1/2] ⊂ Gn for n ∈N.

Suppose that (y, r) ∈ ⋂∞
n=1 Gn

σ
. Put U = Y × (r − 1, r + 1). We

have U ∩ (Gi
n × (i− 1, i + 1)) = ∅ whenever |i− r| ≥ 2. There is

n ∈N such that y /∈ Gi
n

σY for all i with |i− r| < 2. If we take V =
(Y \ ⋃|i−r|<2 Gi

n
σY)×R, then U ∩ V is a σ-open neighbourhood

of (y, r) which does not intersect Gn. This contradicts (y, r) ∈
Gn

σ
.)

(iib) ⇒ (i) Let σ-closed A ⊂ X and τ-closed B ⊂ X satisfy
A ∩ B = ∅. We need to find disjoint σ-open D ⊂ X and τ-open
C ⊂ X with A ⊂ C and B ⊂ D. By (∗), there are τ-open sets
Hn ⊂ X, n ∈ N, such that X \ B =

⋃∞
n=1 Hn and Hn

σ ∩ B = ∅
for all n ∈N. We may assume that H1 ⊂ H2 ⊂ . . . . The sets Hn

are σ-open in particular. We put

Fn = A \ Hn (3.3)

for n ∈ N. The sets Fn, n ∈ N, are σ-closed, F1 ⊃ F2 ⊃ . . . and⋂∞
n=1 Fn = A \ ⋃∞

n=1 Hn = A \ (X \ B) = ∅. By the assumption,
there are τ-open G1 ⊃ G2 ⊃ . . . such that Fn ⊂ Gn, n ∈ N, and⋂∞

n=1 Gn
σ = ∅. For n ∈N, we put

Cn = Gn ∪ Hn, Dn = X \ Cn
σ
.

We obtain A = Fn ∪ (A ∩ Hn) ⊂ Gn ∪ (A ∩ Hn) ⊂ Cn, and
so Dn

τ ∩ A ⊂ (X \ Cn) ∩ Cn = ∅, for n ∈ N. Considering
Claim 3.2.4, it remains to prove that B ⊂ ⋃∞

n=1 Dn. For n ∈N, we
have

B \ Dn = B ∩ Cn
σ = (B ∩ Gn

σ) ∪ (B ∩ Hn
σ) = B ∩ Gn

σ
,

and so B \⋃∞
n=1 Dn =

⋂∞
n=1(B \ Dn) =

⋂∞
n=1(B ∩ Gn

σ) = ∅.
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(iib) ⇒ (iii) We have already proved (iib) ⇒ (i). Therefore,
assuming (iib), we can assume (i) as well.

We put Fn = {x ∈ X : f (x) ≤ 1/n}. By (iib), we take τ-open
G1 ⊃ G2 ⊃ . . . such that Fn ⊂ Gn and

⋂∞
n=1 Gn

σ = ∅. By (i) and
Lemma 3.2.1, there is, for every n ∈N, lower σ-semicontinuous
and upper τ-semicontinuous function gn : X → [0, 1] such that
gn = 0 on Fn and gn = 1 on X \ Gn. We have gn/n < f on X.
Putting

g =
∞

∑
n=1

gn

2nn
,

we have 0 < g < f on X.
(iii) ⇒ (iib) We may assume F1 = X. We define f (x) = 1/n

for every x ∈ Fn \ Fn+1 (this defines a lower σ-semicontinuous
function on whole space X). By (iii), there exists g : X → (0, ∞),
lower σ-semicontinuous and upper τ-semicontinuous, such that
g < f . For n ∈ N, we take τ-open Gn = {x ∈ X : g(x) < 1/n}.
We have Fn = {x ∈ X : f (x) ≤ 1/n} ⊂ {x ∈ X : g(x) < 1/n} =
Gn. At the same time,

⋂∞
n=1 Gn

σ ⊂ ⋂∞
n=1{x ∈ X : g(x) ≤ 1/n} =

{x ∈ X : g(x) ≤ 0} = ∅.

By an inspection of the proof of Lemma 3.2.2, we get the fol-
lowing modification.

Lemma 3.2.5. Let Y, σY, τY, X, σ, τ be as in Lemma 3.2.2 and let (∗)
be satisfied. Moreover, let σ be metrizable. Then the following assertions
are equivalent:

(i) For every disjoint σ-separable and σ-closed A ⊂ X and τ-closed
B ⊂ X, there are disjoint σ-open D ⊂ X and τ-open C ⊂ X with A ⊂
C and B ⊂ D.

(iia) If F1 ⊃ F2 ⊃ . . . are σY-separable and σY-closed subsets of Y
with

⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ . . . , τY-open subsets

of Y, such that Fn ⊂ Gn, n ∈N, and
⋂∞

n=1 Gn
σY = ∅.

(iib) If F1 ⊃ F2 ⊃ . . . are σ-separable and σ-closed subsets of X
with

⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ . . . , τ-open subsets of X,

such that Fn ⊂ Gn, n ∈N, and
⋂∞

n=1 Gn
σ = ∅.

Proof. The lemma can be proved in the same way as Lemma 3.2.2.
The following should be mentioned.

• In the proof of (i) ⇒ (iia), we realize that the set A de-
fined by (3.1) is σ-separable because F1, F2, . . . are assumed
to be σY-separable.

• In the proof of (iia) ⇒ (iib), we realize that the sets Fi
n

defined by (3.2) are σY-separable because F1, F2, . . . are as-
sumed to be σ-separable (we use the metrizability of σ).
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• In the proof of (iib)⇒ (i), we realize that the sets Fn defined
by (3.3) are σ-separable because A is assumed to be σ-
separable (we use the metrizability of σ again).

The desired characterization and its variant follow.

Proposition 3.2.6. Let X be a Banach space and τ be a Hausdorff
locally convex topology on X, weaker than the norm topology. Then
the following assertions are equivalent:

(i) X is τ-binormal.
(ii) If F1 ⊃ F2 ⊃ . . . are closed subsets of X with

⋂∞
n=1 Fn = ∅, then

there are G1 ⊃ G2 ⊃ . . . , τ-open subsets of X, such that Fn ⊂ Gn, n ∈
N, and

⋂∞
n=1 Gn = ∅.

(iii) If f : X → (0, ∞) is lower semicontinuous, then there exists
g : X → (0, ∞), continuous and upper τ-semicontinuous, such that
g < f .

Proof. We may suppose that X 6= {0}. Then, by the Hahn-Banach
theorem, there is a τ-continuous linear functional f 6= 0 on X.
We define Y as the kernel of f , σ as the norm topology of X, σY
as the norm topology of Y and τY as the restriction of τ on Y.
We want to show that we are in the situation of Lemma 3.2.2.
Fix an x0 ∈ X with f (x0) = 1. We will identify a couple (y, r) ∈
Y × R with the point y + rx0 ∈ X (so x ∈ X will be identi-
fied with (x − f (x)x0, f (x)) ∈ Y ×R). It is easy to check that
the mapping (y, r) ∈ Y×R 7→ y + rx0 is (τY × | · |)-τ-continuous
and (σY × | · |)-σ-continuous and that the mapping x ∈ X 7→
(x − f (x)x0, f (x)) is τ-(τY × | · |)-continuous and σ-(σY × | · |)-
continuous. So the products of σY and τY with the standard
topology on R are σ and τ indeed.

It remains to show that (∗) is satisfied. Let U ⊂ X be τ-open.
We prove first that every x ∈ U has a τ-open neighbourhood V
such that dist(V, X \U) > 0. There are τ-continuous seminorms
p1, p2, . . . , pn and ε > 0 such that y ∈ U whenever pi(y− x) < ε

for all i ∈ {1, 2, . . . , n}. The seminorms are continuous in partic-
ular, so we can take C > 0 such that pi(z) ≤ C‖z‖ for all z ∈ X
and i ∈ {1, 2, . . . , n}. We define τ-open

V =
{

y ∈ X : pi(y− x) < ε/2 for i = 1, 2, . . . , n
}

.

We are going to show that dist(V, X \U) ≥ ε/(2C). Let a ∈ V
and b ∈ X \ U. By the choice of p1, p2, . . . , pn and ε, there is
i ∈ {1, 2, . . . , n} such that pi(b − x) ≥ ε. We are computing
‖b − a‖ ≥ (1/C)pi(b − a) ≥ (1/C)(pi(b − x) − pi(a − x)) >

(1/C)(ε− ε/2) = ε/(2C). So dist(V, X \U) ≥ ε/(2C).
Now, we define Un as the set of all x ∈ U for which there is

a τ-open neighbourhood V 3 x such that dist(V, X \U) ≥ 1/n.
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This is clearly a τ-open set. We know that every x ∈ U belongs
to Un for a sufficiently large n. At the same time, Un ⊂ U since
dist(Un, X \U) ≥ 1/n. This completes the verification of (∗).

Proposition 3.2.7. Let X be a Banach space and τ be a Hausdorff
locally convex topology on X, weaker than the norm topology. Then
the following assertions are equivalent:

(i) For every disjoint separable and closed A ⊂ X and τ-closed
B ⊂ X, there are disjoint open D ⊂ X and τ-open C ⊂ X with A ⊂ C
and B ⊂ D.

(ii) If F1 ⊃ F2 ⊃ . . . are separable and closed subsets of X with⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ . . . , τ-open subsets of X,

such that Fn ⊂ Gn, n ∈N, and
⋂∞

n=1 Gn = ∅.

Proof. This has the same proof as Proposition 3.2.6 with the only
difference that we use Lemma 3.2.5 instead of Lemma 3.2.2.

3.3 a stronger property

We are going to introduce a property which is stronger than
binormality. The notion of strong binormality plays a key role
for us because our only method how to prove that a space is
binormal is to prove that it is strongly binormal. Although we
proved a characterization of binormality in the previous section,
we still do not know too much about binormality itself. For ex-
ample, we do not know whether X×Y is necessarily binormal
when X and Y are binormal. However, there is no such a problem
with strong binormality (Proposition 3.4.1).

Let X be a Banach space and τ be a locally convex topology
on X, weaker than the norm topology. We say that X is strongly
τ-binormal if there exists a system of τ-open neighbourhoods
Un

x 3 x, x ∈ X, n ∈N, such that

∞⋂
n=1

(
Un

xn
+ εnBX

)
6= ∅ =⇒ {xn : n ∈N} is rel. compact

whenever εn ↘ 0. We say that a Banach space X is strongly
binormal if it is strongly w-binormal (where w denotes the weak
topology of X).

We prove three easy lemmata about strong binormality.

Lemma 3.3.1. If X is strongly τ-binormal, then it is τ-binormal.

We do not know anything about the converse implication.
The problem of the existence of a binormal space which is not
strongly binormal does not seem to be easy.

Proof. We will use Proposition 3.2.6. Let F1 ⊃ F2 ⊃ . . . be closed
in X with

⋂∞
n=1 Fn = ∅. We need to find τ-open Gn ⊃ Fn
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with
⋂∞

n=1 Gn = ∅ (the inclusions G1 ⊃ G2 ⊃ . . . can be arranged
by taking

⋂
m≤n Gm instead of Gn). Let Un

x 3 x, x ∈ X, n ∈ N, be
a system witnessing the strong τ-binormality of X. Put

Gn =
⋃

x∈Fn

Un
x , n ∈N.

If now a ∈ ⋂∞
n=1 Gn, then we find an ∈ Gn with ‖a − an‖ ≤

1/n for every n ∈ N. For some xn ∈ Fn, we have an ∈ Un
xn

.
By the triangle inequality,

a ∈
∞⋂

n=1

(
Un

xn
+ (1/n)BX

)
.

It follows that {xn : n ∈ N} is relatively compact. So we have
a convergent subsequence xn(k). Its limit is an element of

⋂∞
n=1 Fn,

which is a contradiction.

Lemma 3.3.2. Assume that there exist a dense subset Z of X and
a system of τ-open neighbourhoods Un

z 3 z, z ∈ Z, n ∈ N, such that,
for any sequence zn, n ∈N, in Z,

∞⋂
n=1

(
Un

zn
+ εnBX

)
6= ∅ =⇒ {zn : n ∈N} is rel. compact

whenever εn ↘ 0. Then X is strongly τ-binormal.

In other words, in the definition of strong τ-binormality, it
is possible to require the neighbourhoods Un

x for the elements
of a dense set only.

Proof. Let x ∈ X and n ∈N. There is some z(x, n) ∈ Z for which
‖x− z(x, n)‖ ≤ 1/n. Put

Vn
x = Un

z(x,n) + (1/n)BX.

This is a τ-open neighbourhood of x. Now, suppose that εn ↘ 0
and that a ∈ X and a sequence xn ∈ X, n ∈N, satisfy

a ∈
∞⋂

n=1

(
Vn

xn
+ εnBX

)
.

We obtain

a ∈
∞⋂

n=1

(
Un

z(xn,n) + (εn + 1/n)BX

)
.

By the property of the system Un
z , z ∈ Z, n ∈N, the set {z(xn, n) :

n ∈N} is relatively compact. Since ‖xn− z(xn, n)‖ ≤ 1/n, the set
{xn : n ∈N} is relatively compact, too.

Lemma 3.3.3. If X is separable and BX is τ-closed, then X is strongly
τ-binormal.
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Proof. Let B1, B2, . . . be closed balls such that their interiors form
a basis of the norm topology. Put

Un
x = X \

⋃
m≤n, x/∈Bm

Bm, x ∈ X, n ∈N.

These sets are τ-open, as B1, B2, . . . are τ-closed. Assume

a ∈
∞⋂

n=1

(
Un

xn
+ εnBX

)
.

We have to show that {xn : n ∈N} is relatively compact. We show
that even xn → a. Let m ∈ N be such that a lies in the interior
of Bm. Then there is n0 such that xn ∈ Bm for n ≥ n0. Indeed,
take n0 with n0 ≥ m and εn0 < dist(a, X \ Bm). Let n ≥ n0. There
is b ∈ Un

xn
such that ‖b− a‖ ≤ εn. Since ‖b− a‖ ≤ εn ≤ εn0 <

dist(a, X \ Bm), we have b ∈ Bm. Also, xn ∈ Bm (in the other case,
b ∈ Un

xn
⊂ X \ Bm because n ≥ n0 ≥ m). So the choice of Un

x
works.

3.4 binormality via decomposition

Let X be a non-separable Banach space, and let µ be the first
ordinal with cardinality dens(X). We call a transfinite collection
{Pα}ω≤α≤µ of projections in X a projectional resolution of identity
(PRI) if

• ‖Pα‖ ≤ 1 for α ∈ [ω, µ],

• dens(PαX) ≤ card(α) for α ∈ [ω, µ],

• PαPβ = PβPα = Pmin{α,β} for α, β ∈ [ω, µ],

• Pω = 0 and Pµ is the identity on X,

• α 7→ Pαx is continuous on [ω, µ] for every x ∈ X.

If the first condition is weakened to sup{‖Pα‖ : ω ≤ α ≤ µ} < ∞,
we obtain the notion of a bounded projectional resolution of identity.

Our main tool for proving that a non-separable Banach space
is binormal follows.

Proposition 3.4.1. Let X be a Banach space and let {Pα}ω≤α≤µ be
a bounded PRI in X. If (Pα+1 − Pα)X is strongly binormal for every
α ∈ [ω, µ), then X is strongly binormal.

Proof. We will denote

Xα = (Pα+1 − Pα)X, α ∈ [ω, µ),

Z =
⊕

ω≤α<µ

Xα,
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x(α) = (Pα+1 − Pα)x, x ∈ X, α ∈ [ω, µ),

where the direct sum ⊕ is meant in the algebraic sense (so Z
is the linear span of

⋃
ω≤α<µ Xα). We take some M > 0 such

that ‖Pα‖ ≤ M for any α ∈ [ω, µ]. By the assumption, there is,
for every α ∈ [ω, µ), a system of weak neighbourhoods Un

x,α 3
x, x ∈ Xα, n ∈N, in Xα, such that

∞⋂
n=1

(
Un

xn,α + εnBXα

)
6= ∅ =⇒ {xn : n ∈N} is rel. compact

whenever εn ↘ 0.
Since Z is dense in X, considering Lemma 3.3.2, it is enough

to find appropriate neighbourhoods on Z. Put

Un
x =

⋂
α∈S(x)

(Pα+1 − Pα)−1(Un
x(α),α)

∩
⋂

γ≤β; β,γ∈S(x)

(Pβ+1 − Pγ)−1(X \ (‖(Pβ+1 − Pγ)x‖/2)BX)

for x = ∑
α∈S(x)

x(α) ∈ Z, n ∈N,

where S(x) = {α : x(α) 6= 0} is finite.
Let us prove that the choice works. Let εn ↘ 0, let xn, n ∈ N,

be a sequence in Z and let a ∈ X satisfy

a ∈
∞⋂

n=1

(
Un

xn
+ εnBX

)
.

To show that {xn : n ∈ N} is relatively compact, we prove
by induction on λ ∈ [ω, µ] that {Pλxn : n ∈ N} is relatively
compact. This is clear for λ = ω because then Pλxn = 0 for n ∈N.

Let λ = α + 1 for some α ∈ [ω, µ) and let {Pαxn : n ∈ N}
be relatively compact. We have to show that {Pλxn : n ∈ N} is
relatively compact. It is sufficient to show that {xn(α) : n ∈N} is
relatively compact because Pλxn = Pαxn + xn(α) for n ∈ N. Let
us verify that, for every n ∈N,

xn(α) 6= 0 ⇒ a(α) ∈
(

Un
xn(α),α + (2Mεn)BXα

)
.

Assume xn(α) 6= 0, i.e., α ∈ S(xn). Choose b ∈ Un
xn

satisfy-
ing ‖b − a‖ ≤ εn. We have b ∈ (Pα+1 − Pα)−1(Un

xn(α),α), and so
b(α) ∈ Un

xn(α),α. Since ‖b(α) − a(α)‖ = ‖(Pα+1 − Pα)(b − a)‖ ≤
2M‖b − a‖ ≤ 2Mεn, we get a(α) ∈ Un

xn(α),α + (2Mεn)BXα , and
the verification is completed. Now, for n ∈N, we put

yn =
{

xn(α), xn(α) 6= 0,
a(α), xn(α) = 0.
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We obtain

a(α) ∈
∞⋂

n=1

(
Un

yn,α + (2Mεn)BXα

)
.

Therefore, {yn : n ∈ N} is relatively compact. As {xn(α) : n ∈
N} ⊂ {0} ∪ {yn : n ∈ N}, the set {xn(α) : n ∈ N} is relatively
compact, too. The inductive step α→ α + 1 is finished.

Let λ ∈ (ω, µ] be a limit ordinal number and let {Pαxn : n ∈N}
be relatively compact for every α ∈ [ω, λ). We have to show that
{Pλxn : n ∈ N} is relatively compact. It is sufficient, given
an ε > 0, to find n0 and a sequence x′n such that ‖Pλxn − x′n‖ < ε

for n ≥ n0 and {x′n : n ∈N} is relatively compact. We show that
the choice x′n = Pαxn, n ∈N, for an α < λ so that

‖Pλa− Pβa‖ < ε/8, α ≤ β ≤ λ,

works. Fix such an α. We know that {Pαxn : n ∈N} is relatively
compact. It remains to find n0 such that ‖Pλxn − Pαxn‖ < ε

for n ≥ n0. We choose n0 so that εn0 ≤ ε/(8M). Let n ≥ n0

be given. If S(xn) ⊂ [ω, α) ∪ [λ, µ], then Pαxn = Pλxn, and so
‖Pλxn − Pαxn‖ = 0 < ε. Assume that S(xn) ∩ [α, λ) 6= ∅ and
denote by β and by γ the greatest and the least element of S(xn)∩
[α, λ). We have

Pλxn − Pαxn = ∑
ν∈S(xn), α≤ν<λ

xn(ν)

= ∑
ν∈S(xn), γ≤ν<β+1

xn(ν) = Pβ+1xn − Pγxn.

Since a ∈ Un
xn

+ εnBX, we can choose b ∈ Un
xn

satisfying ‖b− a‖ ≤
εn. We have b ∈ (Pβ+1 − Pγ)−1(X \ (‖(Pβ+1 − Pγ)xn‖/2)BX), i.e.,
‖(Pβ+1 − Pγ)b‖ > ‖(Pβ+1 − Pγ)xn‖/2. We obtain

‖Pλxn − Pαxn‖ = ‖(Pβ+1 − Pγ)xn‖
< 2‖(Pβ+1 − Pγ)b‖
≤ 2‖(Pβ+1 − Pγ)a‖+ 4Mεn

≤ 2‖Pλa− Pβ+1a‖+ 2‖Pλa− Pγa‖+ 4Mεn

< 4(ε/8) + 4Mεn0

≤ ε.

The inductive step for a limit ordinal λ is finished.

We say that a class C of Banach spaces is a P-class if, for every
non-separable X ∈ C, there exists a PRI {Pα}ω≤α≤µ such that
(Pα+1 − Pα)X ∈ C for every α < µ, where µ is the first ordinal
with cardinality dens(X).

There are several classes which are known to be P-classes (see,
e.g., [7]).
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Theorem 3.4.2. Let C be a P-class. Then every space in C is strongly
binormal. In particular, every space in C is binormal.

Proof. We prove by induction on the density of X that every
X ∈ C is strongly binormal. If dens(X) ≤ ℵ0, then X is separable,
and thus strongly binormal by Lemma 3.3.3. Let X ∈ C satisfy
dens(X) > ℵ0 and let every Y ∈ C with dens(Y) < dens(X) be
strongly binormal. Let µ be the first ordinal with cardinality
dens(X). There is a PRI {Pα}ω≤α≤µ such that (Pα+1 − Pα)X ∈ C
for every α < µ. The block (Pα+1 − Pα)X is strongly binormal
for every α ∈ [ω, µ) because dens((Pα+1 − Pα)X) ≤ card(α) <

dens(X). Now, X is strongly binormal by Proposition 3.4.1.
The second part of the statement follows from Lemma 3.3.1.

3.5 examples

Example 3.5.1. The space C([0, µ]) is binormal for every ordinal µ.

This can be proved directly from Proposition 3.4.1. We may as-
sume that µ is an initial ordinal and that µ ≥ ω1 (recall that every
separable Banach space is strongly binormal by Lemma 3.3.3).
To define a suitable PRI, we take Pω = 0 and, for α ∈ (ω, µ],
the projection

Pα f (ν) =
{

f (ν), 0 ≤ ν < α,
f (α), α ≤ ν ≤ µ

(then every block (Pα+1 − Pα)C([0, µ]) is strongly binormal —
for α > ω, it is one-dimensional, for α = ω, it is isometric
to C([0, ω + 1])).

Theorem 3.5.2. Every Plichko space is binormal. Every dual to an As-
plund space is binormal.

For the definition of a Plichko space, see, e.g., [11]. For the defi-
nition of an Asplund space, see below.

Proof. We use Theorem 3.4.2. The class of 1-Plichko spaces is
a P-class by [11, Theorem 4.14]. Note that every Plichko space
can be renormed to be 1-Plichko ([11, Theorem 4.16]). The class
of duals to Asplund spaces is a P-class by [3].

We say that a norm ‖ · ‖ is locally uniformly rotund (LUR) if
xn → x whenever ‖xn‖ → ‖x‖ and ‖x + xn‖ → 2‖x‖. One may
expect that every Banach space with a LUR norm is binormal
because the norm and weak topologies coincide on the unit
sphere. We are going to disprove this conjecture.

Example 3.5.3. There is a locally compact space T such that the func-
tion space C0(T) is Asplund and admits a LUR norm but it is not
binormal.
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The presented example is the set

T =
( ∞⋃

n=1

Nn
)
∪NN

endowed with the coarsest topology in which {s ∈ T : s ⊂ t} is
clopen for every t ∈ T (we write s ⊂ t if s is an initial segment
of t).

In fact, our space T is a tree. Function spaces on trees were
widely studied in the article [6]. The fact that T is a tree is
sufficient for C0(T) to be Asplund. By [6, Theorem 4.1], C0(T)
has a LUR norm.

We denote by χ(0,t] the characteristic function of the set {s ∈
T : s ⊂ t}. To show that C0(T) is not binormal, we put

Fn = {χ(0,t] : n ≤ length(t) < ∞}, n ∈N.

The sets Fn are closed because the functions χ(0,t] form a discrete
set. It is clear that F1 ⊃ F2 ⊃ . . . and that

⋂∞
n=1 Fn = ∅. Con-

sidering Proposition 3.2.6, it is sufficient to prove the following
claim. Note that the weak and the pointwise topologies coin-
cide on the unit ball of C0(T) (this can be easily proved from [4,
Theorem 12.28] which implies that the linear span of the Dirac
measures is dense in the dual of C0(T)).

Claim 3.5.4. If Gn ⊂ C0(T), n ∈ N, are open sets in the pointwise
topology such that Fn ⊂ Gn, n ∈N, then BC0(T) ∩

⋂∞
n=1 Gn 6= ∅.

Proof. We construct a sequence s1, s2, . . . of natural numbers such
that

(s1, s2, . . . , sn+1) ⊂ t ⇒ χ(0,t] ∈ Gn

for n ∈ N. Choose s1 ∈ N arbitrarily. Assume that s1, s2, . . . , sn

are constructed. We have χ(0,(s1,s2,...,sn)] ∈ Fn ⊂ Gn. There are finite
R ⊂ T and ε > 0 such that

∀r ∈ R : | f (r)− χ(0,(s1,s2,...,sn)](r)| < ε ⇒ f ∈ Gn.

It is sufficient to choose sn+1 such that (s1, s2, . . . , sn+1) 6⊂ r
for any r ∈ R. Indeed, if (s1, s2, . . . , sn+1) ⊂ t, then χ(0,t](r) 6=
χ(0,(s1,s2,...,sn)](r) is possible only for r with (s1, s2, . . . , sn+1) ⊂ r,
and thus χ(0,t](r) = χ(0,(s1,s2,...,sn)](r) for every r ∈ R. Hence
χ(0,t] ∈ Gn.

So the construction is done. Now, the function χ(0,s], where
s = (s1, s2, . . . ), belongs to Gn for every n ∈ N. This proves
the claim.
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3.6 asplund spaces and w∗ -binormality

A Banach space E is said to be an Asplund space provided every
continuous convex function defined on a non-empty open convex
subset D of E is Fréchet differentiable at each point of some dense
Gδ subset of D.

A topological space (X, τ) is said to be fragmented by a metric $

if, for every ε > 0 and every non-empty Y ⊂ X, there is a non-
empty relatively τ-open subset of Y of $-diameter less than ε.

Further, a topological space (X, τ) is said to be scattered if ev-
ery non-empty subset Y ⊂ X has an isolated point in Y. In other
words, (X, τ) is scattered if and only if it is fragmented by the dis-
crete metric.

A metric $ on a topological space (X, τ) is said to be lower
τ-semicontinuous if the set {(x, y) ∈ X× X : $(x, y) ≤ r} is closed
in (X, τ)× (X, τ) for each r ≥ 0.

We start with a separable reduction for non-fragmentability.
The result may be known but we were not able to find a reference
for it.

Proposition 3.6.1. Let (X, τ) be a compact Hausdorff space and $

be a lower τ-semicontinuous metric on X. If (X, τ) is not fragmented
by $, then there are an ε > 0 and a countable set Y ⊂ X such that

(1) $(x1, x2) ≥ ε whenever x1, x2 ∈ Y and x1 6= x2,
(2) Y ∩ U is infinite whenever U ⊂ X is τ-open and Y ∩ U is

non-empty.

Proof. (cf. proof of [10, Lemma 4.4]) By the implication (d) ⇒
(c) of [10, Theorem 4.1], there are an ε > 0, a τ-compact set
H ⊂ X and a continuous surjective mapping p : (H, τ)→ {0, 1}N

with the inverse images of distinct points of {0, 1}N separated
by $-distance at least ε.

By the Zorn lemma, we can take some minimal (in the sense
of the inclusion) τ-compact set K ⊂ H with p(K) = {0, 1}N. Let
Σ be a countable dense subset of {0, 1}N. For every σ ∈ Σ, we
choose some x(σ) ∈ K ∩ p−1(σ). Let us verify that the choice

Y = {x(σ) : σ ∈ Σ}

works. The property (1) is an immediate consequence of the prop-
erties of p. Let us verify the property (2). Take a τ-open U ⊂ X
with Y ∩ U non-empty. From the minimality of K, we have
p(K \ U) $ {0, 1}N. There are infinitely many pairwise dis-
tinct points σ1, σ2, · · · ∈ Σ which are elements of the open set
{0, 1}N \ p(K \U). Now, the points x(σ1), x(σ2), . . . are pairwise
distinct and they are elements of U.
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Lemma 3.6.2. Let (X, τ) be a compact Hausdorff space and $ be
a lower τ-semicontinuous metric on X. If (X, τ) is not fragmented by $,
then there are F1 ⊃ F2 ⊃ . . . , $-separable and $-closed subsets of X
with

⋂∞
n=1 Fn = ∅, such that

⋂∞
n=1 Gn 6= ∅ whenever G1, G2, . . . are

τ-open subsets of X with Fn ⊂ Gn, n ∈N.

Proof. Let ε and Y be as in Proposition 3.6.1. Denote by y1, y2, . . .
the elements of Y (in such a way that every element of Y oc-
curs exactly one time in the sequence y1, y2, . . . ). We claim that
the choice

Fn = {yn, yn+1, . . . }, n ∈N,

works. The sets Fn are $-closed due to the property (1) and they
are $-separable because they are countable. Clearly,

⋂∞
n=1 Fn = ∅.

Moreover,
Y ⊂ Fn

τ, n ∈N.

Indeed, the set Y \ Fn
τ, being a subset of {y1, y2, . . . , yn−1}, is

finite, and so it is empty by the property (2).
Now, let G1, G2, . . . be τ-open subsets of X with Fn ⊂ Gn, n ∈

N. The sets Fn, n ∈ N, are dense in (Yτ
, τ), so the sets Gn ∩

Yτ
, n ∈N, are dense as well. Using the Baire theorem, we obtain⋂∞

n=1 Gn ∩Yτ 6= ∅. This proves the lemma.

There is a connection between asplundness and w∗-binormality.
We are ready to prove it now.

Theorem 3.6.3. For a Banach space E, the following assertions are
equivalent:

(i) For every disjoint separable and closed A ⊂ E∗ and w∗-closed B ⊂
E∗, there are disjoint open D ⊂ E∗ and w∗-open C ⊂ E∗ with A ⊂ C
and B ⊂ D.

(ii) If F1 ⊃ F2 ⊃ . . . are separable and closed subsets of E∗ with⋂∞
n=1 Fn = ∅, then there are G1 ⊃ G2 ⊃ . . . , w∗-open subsets of E∗,

such that Fn ⊂ Gn, n ∈N, and
⋂∞

n=1 Gn = ∅.
(iii) E is an Asplund space.

Proof. (i)⇔ (ii) This follows from Proposition 3.2.7.
(ii) ⇒ (iii) Assume that E is not Asplund. Hence (BE∗ , w∗) is

not fragmented by the norm ([2, Theorem I.5.2]). By Lemma 3.6.2,
there are F1 ⊃ F2 ⊃ . . . , separable and closed subsets of BE∗

with
⋂∞

n=1 Fn = ∅, such that
⋂∞

n=1 Gn 6= ∅ whenever G1, G2, . . .
are relatively w∗-open subsets of BE∗ with Fn ⊂ Gn, n ∈N. This
clearly disproves (ii).

(iii)⇒ (ii) There is a separable closed linear subspace M of E
such that

‖ f − g‖ = sup
{
|( f − g)(x)| : x ∈ M, ‖x‖ ≤ 1

}
, f , g ∈ F1.
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Indeed, we can take M = span{x( f , g, k) : f , g ∈ P, k ∈ N}
where P is a countable dense subset of F1 and x( f , g, k) ∈ BE is
chosen so that |( f − g)(x( f , g, k))| > ‖ f − g‖ − 1/k. Denote by r
the restriction map r : E∗ → M∗, r( f ) = f |M. By the choice of M,
we have

‖ f − g‖ = ‖r( f )− r(g)‖, f , g ∈ F1.

It follows that r(F1), r(F2), . . . are closed in M∗ and
⋂∞

n=1 r(Fn) =
∅. As E is Asplund, M∗ is separable by [2, Theorem I.5.7]. So M∗

is w∗-binormal (Lemma 3.3.3 and Lemma 3.3.1). There are G′1 ⊃
G′2 ⊃ . . . , w∗-open subsets of M∗, such that r(Fn) ⊂ G′n, n ∈ N,
and

⋂∞
n=1 G′n = ∅ (Proposition 3.2.6). Now, the choice

Gn = r−1(G′n), n ∈N,

works, as
⋂∞

n=1 r−1(G′n) ⊂
⋂∞

n=1 r−1(G′n) = r−1(
⋂∞

n=1 G′n) = ∅.

Corollary 3.6.4. If the dual E∗ of a Banach space E is w∗-binormal,
then E is Asplund.

Proof. The condition (i) in Theorem 3.6.3 is evidently weaker than
w∗-binormality of E∗.

One may ask whether the converse implication holds. Before
proving that the answer is negative, we mention a positive result
suggested by O. Kalenda.

Remark 3.6.5. It can be shown that E∗ is w∗-binormal when-
ever E is an Asplund and weakly countably determined Banach
space. To prove this, we can use the same method by which we
proved Theorem 3.4.2 with the difference that we use the fact that
the class of the duals to Asplund WCD spaces forms a P-class
with the special property that the projections are continuous
with respect to the w∗-topology ([2, Theorem VI.4.3]).

Example 3.6.6. The space C([0, ω1]) is an Asplund space but its dual
is not w∗-binormal.

The space C([0, ω1]) is Asplund because [0, ω1] is scattered
([4, Theorem 12.29]). To see that C([0, ω1])∗ is not w∗-binormal,
it is sufficient to prove the following lemma. Indeed, the sets
F1, F2, . . . from the lemma form a counterexample to (ii) in Propo-
sition 3.2.6 if we identify every point of [0, ω1] with the ap-
propriate Dirac measure (note that [0, ω1] embeds topologically
to (C([0, ω1])∗, w∗) by this identification).

Lemma 3.6.7. There are F1 ⊃ F2 ⊃ . . . , subsets of [0, ω1] satisfying⋂∞
n=1 Fn = ∅, such that

⋂∞
n=1 Gn 6= ∅ whenever G1, G2, . . . are open

subsets of [0, ω1] with Fn ⊂ Gn, n ∈N.
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Proof. Let us recall a definition first. We say that a set S ⊂ [0, ω1)
is stationary if S ∩ A 6= ∅ for any A ⊂ [0, ω1), unbounded and
closed in [0, ω1).

By the Fodor theorem [5], there are pairwise disjoint stationary
sets S1, S2, · · · ⊂ [0, ω1). We define

Fn =
∞⋃

i=n

Si, n ∈N.

Suppose that Gn, n ∈ N, are open sets in [0, ω1] for which Fn ⊂
Gn, n ∈N. We show that

⋂∞
n=1 Gn 6= ∅. Assume the opposite, i.e.

that
⋂∞

n=1 Gn = ∅. If we denote An = [0, ω1) \Gn, then we obtain⋃∞
n=1 An = [0, ω1). We have that An is closed and unbounded

for some n ∈ N. As Sn is stationary, we have ∅ 6= Sn ∩ An ⊂
Fn ∩ An ⊂ Gn ∩ An = ∅, which is a contradiction.

Theorem 3.6.8. For a compact Hausdorff space X, the following asser-
tions are equivalent:

(i) If F1 ⊃ F2 ⊃ . . . are countable subsets of X with
⋂∞

n=1 Fn = ∅,
then there are G1 ⊃ G2 ⊃ . . . , open subsets of X, such that Fn ⊂
Gn, n ∈N, and

⋂∞
n=1 Gn = ∅.

(ii) X is scattered.

Proof. (i) ⇒ (ii) Assume that X is not scattered. It means that
X is not fragmented by the discrete metric. Now, Lemma 3.6.2
disproves (i).

(ii) ⇒ (i) Assume that X is scattered. It means that C(X) is
an Asplund space ([4, Theorem 12.29]). If we identify every point
of X with the appropriate Dirac measure, (i) follows straightfor-
wardly from Theorem 3.6.3 (note that X embeds topologically
to (C(X)∗, w∗) by this identification).
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