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Some basic notation

We will use linear operator A defined on the dense subset D(A) of the Hilbert space
H with inner product (., .),

A : D(A) → H.

If not said otherwise we will use Hilbert spaces over C, i.e.

(., .) : H ×H → C.

The adjoint A∗ of the operator A is defined in the following way: y ∈ D(A∗) if and
only if we can find a z ∈ H so that

(z, x) = (y, Ax), ∀x ∈ D(A).

Then we can set A∗y = z. In other words A∗ is an adjoint of the operator A if and
only if

(A∗y, x) = (y, Ax), y ∈ D(A∗), x ∈ D(A).

The linear operator A is called bounded if and only if a positive numberM exists such
that

∥Ax∥ ≤M∥x∥, ∀x ∈ D(A).

Graph G(A) ⊂ H ×H of the operator A is given by

G(A) = {[x,Ax]|x ∈ D(A)}.

Given operators A, S, we write A ⊂ S and say S is an extension of A if and only if
G(A) ⊂ G(S).

An operator is called closed if and only if G(A) is a close subset of H×H and it is
called closable if and only if G(A) is the graph of an operator, in which case we define
Ā the closure of A by G(Ā) = G(A). So, D(Ā) = {z ∈ H|∃xn ∈ D(A), xn → x,Axn is
Cauchy } and Ax = limn→∞Axn can be set.

An operator A is called symmetric if A ⊂ A∗, self-adjoint if A = A∗ and essentially
self-adjoint if Ā is self-adjoint.
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The important case is, when H is of the finite dimension N . The linear operators
on these finite dimensional spaces can be then represented by matrices A ∈ CN×N .
Matrix A is Hermitian if and only if A = A∗. Matrix A is positive definite if and only
if x∗Ax > 0, ∀x ∈ H, x ̸= 0. We call matrix A HPD (Hermitian positive definite) if
and only if A is Hermitian and positive definite.
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Chapter 1

Introduction

This work is about the moment problem. During the last 150 years many books
and papers have been published about this problem. It was P. Chebyshev who first
started to study the moment problem. His motivations are described bellow this
Chapter. Many mathematicians studied it from many different points of view. It is
very interesting how many connections between the different parts of mathematics has
been found in these works. As the time went on, the moment problem was used in
order to solve various questions in mathematical statistics, theory of probability and
mathematical analysis.

More about the history can be found in the Chapter 2 of this thesis. The purpose
of the Chapter 2 is to briefly summarize the history and show how many different
mathematicians touched the problem of moments in their works.

As the name of this work reminds, we will focus on the connection of the moment
problem with the numerical linear algebra. The modern iterative methods can be seen
as some kind of the model reduction using the moment problem.

In the Chapter 3 we will focus on one of the formulations of the moment problem,
the simplified Stieltjes moment problem. The connection between this formulation of
the moment problem, Gauss-Christoffel quadrature, orthogonal polynomials, contin-
ued fractions and the iterative methods like the Lanczos method [23], [24] and CG
[19] will be described.

In the Chapter 4 we will review some results of Y. V. Vorobyev which he pub-
lished in his book Methods of Moments in Applied Mathematics [41]. We will show
his motivations and applications of his results. His ideas are now applied by many
mathematicians in many different areas of mathematics, though the original book [41]
remained almost unknown. This is why this Chapter is fairly extensive. Our intention
is not only to show the connection of his work with the modern iterative methods but

7



also give a short review of his contribution to other areas.
Both Chapters 3 and 4 have the similar aim, to show the connection between the

different formulations of the moment problem with the modern iterative methods.
Though the motivations of Stieltjes and Vorobyev were different, in the view of the
modern iterative methods both formulations leads to the same result. And this result
is, that the modern iterative methods based on the projections onto Krylov subspaces
can be viewed as the model reduction which matches first nmoments, where n depends
on the iterative method.

In the Chapter 5 we will focus on the connection between the moment problem and
the Sturm-Liouville problem. Although the connection is known, only a few works
have been published about this topic. Our intention is to give a brief summary what
is known about it and to contribute to this field by this little summarize review with
the intention to underline the connection with the moment problem.

In the Chapter 6 we will look on the connection between the model reduction in
linear dynamical systems and the moment problem. Some methods used in this area
rediscovered within the last decades can be identified with the results published by
Chebyshev and Stieltjes. Our intention is to summarize what is known about this
topic.

Chapter 7 will be devoted to the numerical illustrations revealing the sensitivity
of Gauss-Christoffel quadrature. In the Chapter 8 a brief conclusion of this work will
be given.
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Chapter 2

Problem of moments - historical
background

Acording to J. A. Shoat and J. D. Tamarkin [33, p. 9] P. Chebyshev was the first who
systematically discussed moment problem in his work [7]. For a detailed survey of
Chebyshev life and work see e.g., [6]. In a series of papers started in 1855 he proposed
the formulation of the following problem. Find a function f(λ) such that∫ b

a

f(λ)λkdλ = ξk, k = 0, 1, 2, ..., (2.1)

where {ξk} is a given sequence of numbers. Chebyshev was interested in the following
two questions.

1) How far does a given sequence of moments determine the function f(λ)? More
particularly, given∫ b

a

f(λ)λkdλ =

∫ b

a

e−λ2

λkdλ, k = 0, 1, 2, ...,

can we conclude that f(λ) = e−λ2
? It would mean, that the distribution char-

acterized by the function
∫ λ

a
f(t)dt is a normal one.

2) What are the properties of the polynomials ωn(z), denominators of successive
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approximants to the continued fraction

a20

z − b0 −
a21

z − b1 −
a22

z − b2 −
a23

z − b3 −
a24
. . . .

(2.2)

The continued fractions (2.2) are nowadays known as J-fractions. This opened a vast
new field, the general theory of orthogonal polynomials, of which only the classical
polynomials of Legendre, Jacobi, Abel-Laguerre and Laplace-Hermite were known be-
fore Chebyshev. In his work we find numerous applications of orthogonal polynomials
to interpolation, approximate quadratures and expansion of functions in series. Later
they have been applied to the general theory of polynomials, theory of best linear ap-
proximation, theory of probability and mathematical statistics. For a more detailed
view on the history of orthogonal polynomials with the intention to the connection
with continued fractions see e.g., [5, pp. 213-224]. For a more recent overview of
theory of orthogonal polynomials one can look at [40].

One of the Chebyshev’s students A. Markov continued the work of his teacher. He
was mainly interested in the theory of probability and he applied method of moments
to the proof of the fundamental limit theorem. In 1884 in his thesis [27, pp. 172-180]
Markov supplied a proof of the following so-called Chebyshev inequalities

φ(zl+1)

ψ′(zl+1)
+ ...+

φ(zn−1)

ψ′(zn−1)
≤
∫ zn

zl

f(λ)dλ ≤ φ(zl)

ψ′(zl)
+ ...+

φ(zn)

ψ′(zn)
,

where φ(z)/ψ(z) is one of the convergents of the continued fraction (2.2), and

z1 < z2 < ... < zl < zl−1 < ... < zn−1 < zn < ... < zm

are the roots of the equation ψ(z) = 0. These inequalities were first given without
proof by Chebyshev in 1874 in his work [8, pp. 157-160].

In 1896 Markov in his work [28, pp. 81-88] further generalized the moment problem
by requiring the solution f(λ) to be bounded∫ ∞

−∞
f(λ)λkdλ = ξk, k = 0, 1, 2, ..., 0 ≤ f(λ) ≤ L. (2.3)
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Another research about moments was introduced by H. E. Heine in 1861 [18]. His
work was motivated by the connection with continued fraction associated with∫ b

a

f(y)dy

x− y
, (2.4)

where the given function f(y) is non-negative in (a, b) and also by an application of
the orthogonal polynomials to approximate quadratures.

In the Chapter 3 of this thesis the Stieltjes’s formulation of the problem of moments
will be used. In 1894 T. J. Stieltjes published a classical paper Recherches sur les
fractions continues [35]. He proposed and solved completely the following problem
which he called the problem of moments. Find a bounded non-decreasing function
ω(λ) in the interval [0,∞) such that its ”moments”∫ ∞

0

λkdω(λ), k = 0, 1, 2, ...,

have a prescribed set of values∫ ∞

0

λkdω(λ) = ξk, k = 0, 1, 2, .... (2.5)

In this formulation of the moment problem Stieltjes used his own concept of integral
- ”Riemann-Stieltjes integral”. The terminology was taken from mechanics. Consider
the distribution function ω(λ) so that

∫ x

0
dω(λ) represents the mass distributed over

the segment [0,x], then the integrals∫ ∞

0

λdω(λ),

∫ ∞

0

λ2dω(λ)

represent the first (statical) moment and the second moment (moment of inertia) with
respect to 0 of the total mass

∫∞
0
dω(λ) distributed over the real semi-axis [0,∞).

Stieltjes showed the necessary and sufficient condition for the existence of a solution
of the problem of moments. Consider the Hankel matrices ∆k and ∆

(1)
k of moments

(2.5)

∆k =


ξ0 ξ1 . . . ξk
ξ1 ξ2 . . . ξk+1

. . . . . . . . . . . .
ξk ξk+1 . . . ξ2k

 , k = 0, 1, 2..., (2.6)
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∆
(1)
k =


ξ1 ξ2 . . . ξk ξk+1

ξ2 ξ3 . . . ξk+1 ξk+2

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
ξk+1 ξk+2 . . . ξ2k ξ2k+1

 , k = 0, 1, 2..., (2.7)

then the solution of the Stieltjes moment problem exists if and only if the determinants
|∆k| and |∆(1)

k | are positive. These determinants are known as Hankel determinants.
In the more recent literature the proof can be found e.g. in [33, pp. 13-15]). The
solution may be unique, in which case we speak of a determinate moment problem,
or there may be more than one solution, in which case we speak of a indeterminate
moment problem. Stieltjes made the solution of the moment problem (2.5) dependent
upon the nature of the continued fraction corresponding to the integral

I(z, ω) =

∫ ∞

0

dω(y)

z − y
, (2.8)

which corresponds to the following continued fraction

1

c1z +
1

c2 +
1

c3z +
1

c4 +
1

. . . .

(2.9)

Stieltjes showed that the moment problem (2.5) is determinate or indeterminate ac-
cording as this continued fraction is convergent or divergent, that is, according as
the series

∑∞
i=1 ci diverges or converges. The continued fraction (2.9) is nowadays

known as a Stieltjes fraction or S-fraction. It can be shown that this S-fraction
can be transformed by contraction to a J-fraction (2.2) (see e.g., [3, pp. 2-3]) with
a20 = 1/c1, b0 = −1/(c1c2) and

a2k =
1

c2k−1c22kc2k+1

, bk = − 1

c2kc2k+1

− 1

c2k+1c2k+2

, k = 1, 2, ...

It took more than 20 years than another work about moment problem was introduced.
It revived again in the work of H. Hamburger, R. Nevalina, M. Riesz, T. Carleman,
F. Hausdorff and others, see e.g., [33] or the classical reference [1] for more detailed
view on the history of the moment problem.
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In the Chapter 5 of our thesis we will use the following extension of the work of
Stieltjes to the whole real axis (−∞,∞) which was introduced by H. Hamburger in
1920, see e.g., [16]. The problem is to determine a measure µ(x) such that∫ ∞

−∞
xkdµ(x) = ξk, k = 0, 1, 2.... (2.10)

Again, if such a measure exists and is unique, the moment problem is determinate.
If a measure µ exists but is not unique, the moment problem is called indeterminate.
Hamburger showed that a necessary and sufficient condition for the existence of a
solution of the Hamburger moment problem is the positivity of the determinants of
the matrices (2.6), i.e., the positivity of the Hankel determinants. Proof can be found
for example in [33, pp. 13-15].

In 1965 another approach was introduced by Russian mathematician Y. V. Vorobyev.
In his book Method of Moments in Applied mathematics [41] he presented general
problem of moments in Hilbert space. He applied his work about moments on solving
differential, integral and finite difference equations and also on resolving spectrum of
bounded operators in Hilbert space. As pointed out in Vorobyev [41, p. 113], his
moment problem is very closely related with the method of determining the spectrum
of A.N. Krylov, see e.g., [21] and [22]. In the Chapter 4 of this thesis it will be shown,
that the only distinction between both methods is their computational scheme.
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Chapter 3

Simplified Stieltjes moment
problem

In this Chapter the formulation of a simplified Stieltjes moment problem will be given.
This formulation will be used to show the connection between the moment problem,
Gauss-Christoffel quadrature [9], Lanczos method [23], [24] and CG method [19]. Some
results of theory of orthogonal polynomials and continued fractions which have very
close connection to the moments will be shown. The connection between the above
mathematical methods and the moment problem is known for a long time. The mo-
ments can be seen as the theoretical background for these methods. It is always useful
to see things from many points of view and the moments can offer new insight. The
elegant description of the connection which we will present in this thesis was given in
the paper [38] by Z. Strakoš in 2009 and in the upcoming book [26] by J. Liesen and
Z. Strakoš. We will start with brief introduction of some mathematical methods.

Gauss-Christoffel quadrature is one of the methods used for numerical integration
of functions. Let ω(λ) be a non-decreasing distribution function on a finite interval
[a, b] on the real line. By the n-point Gauss-Christoffel quadrature we mean the
approximation of the given Riemann-Stieltjes integral

Iω(f) =

∫ b

a

f(λ)dω(λ),

by the quadrature formula

Inω(f) =
n∑

l=1

ω
(n)
l f(λ

(n)
l ), (3.1)
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determined by the nodes a ≤ λ
(n)
1 < λ

(n)
2 , ..., < λ

(n)
n ≤ b and positive weights

ω
(n)
1 , ω

(n)
2 , ..., ω(n)

n ,

such that Inω(f) = Iω(f) whenever f is polynomial of a degree at most 2n− 1. In the
following we will show, that it is the maximal number that can be reached.

Let the polynomial ϕ(λ) =
∏n

l=1(λ − λ
(n)
l )2. This polynomial ϕ is of a degree 2n

and non-negative on the [a, b]. Obviously∫ b

a

ϕ(λ)dω(λ) > 0,

but quadrature formula (3.1) gives

n∑
l=1

ω
(n)
l ϕ(λ

(n)
l ) = 0.

For the polynomial ϕ the quadrature formula (3.1) is not exact and so it could be
exact for a polynomial of a degree at max 2n− 1.

The Lanczos method was introduced in 1950 by C. Lanczos, see [23] and [24].
Its symmetric variant is one of the most frequently used tools for computing a few
dominant eigenvalues of a large sparse symmetric matrix A. It constructs a basis of
Krylov subspaces which are defined for a square matrix A and a vector v by

Kn(v, A) = span(v, Av, ..., An−1v), n = 1, 2... (3.2)

Starting from v1 = v, ||v|| = 1, v0 = 0, δ1 = 0
for n = 1, 2, ...

un = Avn − δnvn−1,

γn = (un, vn),

v̂n+1 = un − γnvn,

δn+1 = ||v̂n+1||, if δn+1 = 0 then stop,

vn+1 =
v̂n+1

δn+1

.

Since the natural basis v, Av, ..., An−1v is ill-conditioned, the algorithm constructs
an orthonormal basis of Kn(v, A). In matrix notation the Lanczos algorithm can be
expressed as follows

AVn = VnTn + δn+1vn+1(e
n)T , (3.3)
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where

Tn =


γ1 δ2

δ2 γ2
. . .

. . . . . . δn
δn γn

 , δl > 0, l = 2, ...n. (3.4)

In 1952 a method of Conjugate gradients for solving linear systems was introduced
by M. R. Hestenes and E. Stiefel in their joint paper [19]. Their intention was to
provide an iterative algorithm for solving a system Ax = b. Generally the solution
is given in N steps, but for matrices with some favorable properties it can give a
good approximation to the solution in a few iterations. In the original paper Hestenes
and Stiefel showed [19, pp. 21-25] the connection between the CG algorithm, Gauss
quadrature, orthogonal polynomials and continued fractions.

Consider a HPD matrix A, given x0, r0 = b−Ax0, p0 = r0, the subsequent approx-
imate solutions xn and the corresponding residual vectors rn = b−Axn are computed
by

for n = 1, 2, ...

γn−1 =
||rn−1|||2

(pn−1, Apn−1)
,

xn = xn−1 + γn−1pn−1,

rn = rn−1 − γn−1Apn−1,

βn =
||rn||2

||rn−1||2
,

pn = rn + βnpn−1.

Using the orthonormal basis Vn of the Krylov subspace Kn(A, v1) determined by the
Lanczos algorithm, one can write the approximation generated by the CG method in
the following form

xn = x0 + Vnyn.

We choose the next approximation xn in order to rn be orthogonal to Vn, i.e.,

0 = V ∗
n rn = V ∗

n (b− Axn) = V ∗
n (b− Ax0 − AVnyn),

which gives, using V ∗
nAVn = Tn,

Tnyn = ||r0||e1
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So, with the background of the Lanczos algorithm, the whole method can be formu-
lated as

Tnyn = ||r0||e1, xn = x0 + Vnyn. (3.5)

For a more detailed view on connections of Lanczos and CG and a description about
the behavior of these algorithms in finite precision arithmetics see e.g., [29].

Now lets describe the simplified Stieltjes moment problem which will be used to
show the connections between the methods presented above. Let ω(λ) be a non-
decreasing distribution function defined on the interval [a, b], ω(a) = 0, ω(b) = 1.
Given its moments

ξk =

∫ b

a

λkdω(λ), k = 0, 1, ..., (3.6)

we consider a problem to find a non-decreasing distribution function ω(n)(λ) with n
points of increase

λ
(n)
1 < λ

(n)
2 < ... < λ(n)n ,

and the associated positive weights ω
(n)
1 , ω

(n)
2 , ..., ω

(n)
n , where

∑n
l=1 ω

(n)
l ≡ 1, i.e.,

ω(n)(ω) =


0, if λ < λ

(n)
1 ,∑i

l=1 ω
(n)
l , if λ

(n)
i ≤ λ < λ

(n)
i+1,∑n

l=1 ω
(n)
l ≡ 1, if λ

(n)
n ≤ λ,

such that its first 2n moments match the first 2n moments (3.6) given by the distri-
bution function ω(λ), i.e.,

ξk =

∫ b

a

λkdω(λ) =
n∑

l=1

ω
(n)
l {λ(n)l }k, k = 0, 1, ..., 2n− 1. (3.7)

Any polynomial is the linear combination of monomials λk. Therefore (3.7) means that
the Riemann-Stieltjes integral with the distribution function ω(λ) of any polynomial
up to degree 2n − 1 is given by the weighted sum of the polynomial values at the
n points λ

(n)
l with the corresponding weights ω

(n)
l . This is nothing but the n-point

Gauss-Christoffel quadrature.
In [26, pp. 47-56] one can find an elegant description of some well known facts

about orthogonal polynomials and continued fractions. Let

ψ0(λ) = 1, ψ1(λ), ..., ψn(λ)

be the first n+ 1 orthogonal polynomials corresponding to the inner product

(φ, ψ) ≡
∫ b

a

φ(λ)ψ(λ)dω(λ) (3.8)
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determined by the non-decreasing distribution function ω(λ), ω(a) = 0, ω(b) = 1,
with the associated norm

∥ψ∥2 ≡ (ψ, ψ) =

∫ b

a

ψ2(λ)dω(λ).

And let
φ0(λ) ≡ 1, φ1(λ), ..., φn(λ)

be the first n+1 normalized orthonormal polynomials corresponding to the same inner
product. These orthonormal polynomials satisfy the three-term Stieltjes recurrence

δn+1φn(λ) = (λ− γn)φn−1(λ)− δnφn−2(λ), n = 1, 2, ..., (3.9)

where δ1 ≡ 0, φ−1 ≡ 0, φ0(λ) ≡ 1,

γn =

∫ b

a

(λφn−1(λ)− δnφn−2(λ))φn−1(λ)dω(λ)

and
δn+1 = ∥(λφn−1(λ)− δnφn−2(λ))− γnφn−1(λ)∥.

The above equations are given by the Gram-Schmidt orthogonalization process to the
recursively generated sequence of polynomials λφ0(λ) = λ, λφ1(λ), λφ2(λ) with the
inner product (3.8). The details can be found in [26, p. 48]. Denoting by Φn(λ) a
column vector with the orthonormal polynomials φ0(λ) ≡ 1, φ1(λ), ..., φn−1(λ) as its
entries

Φn(λ) = [φ0(λ) ≡ 1, φ1(λ), ..., φn−1(λ)]
T ,

the Stieltjes recurrence has the following matrix form

λΦn(λ) = TnΦn(λ) + δn+1φnen.

The recurrence coefficients form a real symmetric tridiagonal matrix with positive
subdiagonal, see (3.4). Now consider the continued fraction with the nth convergent
given by

Fn(λ) ≡
1

λ− γ1 −
δ22

λ− γ2 −
δ23

λ− γn−2 −
. . .

λ− γn−1 −
δ2n

λ− γn

≡ Rn(λ)

Pn(λ)
.
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If ω(λ) has a finite number of points of increase N , then the convergents form the finite
sequence F1(λ),F2(λ), ...,FN(λ), otherwise the sequence of convergents is infinite. The
numerator and denominator of Fn(λ) are polynomials of degree n− 1 and n.

The three-term recurrence (3.9) was originally published by Chebyshev in 1855,
see [7]. His proof that the denominators of the convergents Fn(λ) of a continued
fraction form a sequence of monic orthogonal polynomials associated with the distri-
bution function ω(λ) may be regarded as the origin of a general theory of orthogonal
polynomials, see Chapter 2 for more details of Chebyshev’s work. In [26, pp. 52-53]
the proofs of the following theorems about properties of the polynomials Fn(λ) are
given.

Theorem 3.0.1 Using the previous notation, for n = 1, 2, ...

Pn(λ) = ψn(λ),

Rn(λ) =

∫ b

a

ψn(λ)− ψn(z)

λ− z
dω(z) =

∫ b

a

n∑
l=1

ψ
(l)
n (z)

l!
(λ− z)l−1dω(z).

Moreover, the numerators satisfy the three-term recurrence

Rn(λ) = (λ− γn)Rn−1(λ)− δ2nRn−2(λ), n = 2, 3, ...

starting with R0(λ) ≡ 0,R1(λ) ≡ 1.

The following theorem describes the relationship between convergents of continued
fractions, partial fractions and the Gauss-Christoffel quadrature.

Theorem 3.0.2 Using the previous notation, the nth convergent Fn(λ) of the con-
tinued fraction corresponding to the non-decreasing distribution function ω(λ) can be
decomposed into the partial fraction

Fn(λ) =
Rn(λ)

ψn(λ)
=

n∑
j=1

ω
(n)
j

λ− λ
(n)
j

where λ
(n)
j and ω

(n)
j are the nodes and weights of the n-node Gauss-Christoffel quadra-

ture associated with ω(λ), j = 1, 2, ..., n.

Consider the following decomposition for a sufficiently large λ

ω
(n)
j

λ− λ
(n)
j

=
ω
(n)
j

λ

(
1−

λ
(n)
j

λ

)−1

=
2n∑
l=1

ω
(n)
j {λ(n)j }l−1 1

λl
+O

(
1

λ2n+1

)
,
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and therefore

Fn(λ) =
n∑

j=1

ω
(n)
k

λ− λ
(n)
j

=
2n∑
l=1

1

λl

(
n∑

j=1

ω
(n)
j {λ(n)j }l−1

)
+O

(
1

λ2n+1

)
.

Since ω
(n)
j and λ

(n)
j represents the weights and nodes of the n-node Gauss-Christoffel

quadrature associated with the distribution function ω(λ), the first 2n coefficients
of the expansion of Fn(λ) into the power series around ∞ are equal to the first 2n
moments,

Fn(λ) =
2n∑
l=1

ξl−1

λl
+O

(
1

λ2n+1

)
,

ξl−1 =

∫ b

a

λl−1dω(λ) =
n∑

j=1

ω
(n)
j {λ(n)j }l−1, l = 1, 2, ...2n.

Chebyshev, Stieltjes and Heine considered expansion of the following integral (see the
integrals (2.4) and (2.8) in the Chapter 2)∫ b

a

dω(u)

λ− u

into continued fractions. Using the similar expansions as above one can get

1

λ− u
=

2n∑
l=1

ul−1

λl
+O

(
1

λ2n+1

)
,

for sufficiently large λ the following formulas can be obtained∫ b

a

dω(u)

λ− u
=

2n∑
l=1

(∫ b

a

ul−1dω(u)

)
1

λl
+O

(
1

λ2n+1

)
=

2n∑
l=1

ξl−1

λl
+O

(
1

λ2n+1

)
i.e.,

FN(λ) =

∫ b

a

dω(u)

λ− u
= Fn(λ) +O

(
1

λ2n+1

)
,

where Fn(λ) is the nth convergent of the continued fraction determined by the distri-
bution function ω(λ)

Now the formulation of the matching moment reduction in the matrix language
will be given. Let’s consider a linear algebraic system Ax = b with a HPD matrix A
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and an initial vector x0, giving the initial residual r0 = b−Ax0 and the Lanczos initial
vector v ≡ v1 = r0/∥r0∥. Consider the non-decreasing distribution function ω(λ) with
the points of increase equal to the eigenvalues of A and the weights equal to sizes of
the squared components of v1 in the corresponding invariant subspaces. For simplicity
we assume that the eigenvalues of A are distinct and all weights are non-zero. With
this setting, the moments (3.6) of the distribution function ω(λ) can be expressed in
the matrix language as

ξk =

∫ b

a

λkdω(λ) =
N∑
l=1

ωl{λl}k = v∗1A
kv1. (3.10)

Let
φ0(λ) ≡ 1, φ1(λ), ..., φn(λ)

be the first n+ 1 orthonormal polynomials corresponding to the inner product

(ϕ, ψ) =

∫ b

a

ϕ(λ)ψ(λ)dω(λ)

determined by the distribution function ω(λ). Then again in a similar way as above
by denoting

Φn(λ) = [φ0(λ), φ1(λ), ..., φn(λ)]
T ,

we get
λΦn(λ) = TnΦn(λ) + δn+1φn(λ)en,

which represents the matrix formulation of the Stieltjes recurrence for the orthogonal
polynomials. The recurrence coefficients form the Jacobi matrix Tn. Now consider the
Gauss-Christoffel quadrature of ∫ b

a

λkdω(λ).

The basic result about the Gauss-Christoffel quadrature (see e.g., [26, p. 61]) states
that the nodes of the n-point quadrature are equal to the roots of φn(λ), i.e., the
eigenvalues of Tn. Using the spectral decomposition of the Jacobi matrix Tn and the
well-known fact that all its eigenvectors have non-zero first components, we can see
that the corresponding weights are given by the sizes of the squared first entries of the
corresponding normalized eigenvectors of Tn.∫ b

a

λkdω(n)(λ) =
n∑

l=1

ω
(n)
l {λ(n)l }k = eT1 T

k
ne1. (3.11)
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Lanczos algorithm applied to matrix A with v1 (see (3.3)) gives in the nth step the
same Jacobi matrix Tn which stores the coefficients of the Stieltjes reccurence (3.9),
i.e.,

AVn = VnTn + δn+1vn+1e
T
n

where Vn represents the matrix with orthonormal columns v1, v2, .., vn,

Vn = [v1, v2, ..., vn], V ∗
n Vn = I.

In [29, pp. 10-11] it is shown that the matrix Tn from the Lanczos process for A
is the same as the matrix Tn in the Stieltjes reccurence for orthogonal polynomials
corresponding to the inner product with the distribution function associated with A.

If we take a look at a matching moment model reduction at (3.7) which is equivalent
to the Gauss-Christoffel quadrature and compare it with results in (3.10) and (3.11)
we will arrive to the following summary. Let the original model is represented by the
matrix A and the initial vector v1. Then the Lanczos algorithm computes in steps
1 to n the model reduction of A with v1 to Tn with e1 such that the reduced model
matches the first 2n moments of the original model, i.e.,

v∗1A
kv1 = e∗1T

k
ne1, k = 0, 1, ..., 2n− 1. (3.12)

With A HPD, the considerations presented above can be extended to the CG
method, see (3.5). The nth CG approximation xn can be considered as a result of the
model reduction from Ax = b to Tnyn = ∥r0∥e1 such that the first 2n moments (3.12)
are matched.

The similar results can be obtained also for methods for non-Hermitian matrices
like non-Hermitian Lanczos method or Arnoldi method. In [38] and in the upcoming
book [26] the Vorobyev moment problem is used to obtain these results. The Vorobyev
moment problem and some of its applications will be the content of the following
Chapter.
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Chapter 4

Vorobyev moment problem

In this Chapter we will present the way how the moment problem was introduced
and used in some applications by the Russian mathematician Y. V. Vorobyev in his
book The method of moments in applied mathematics [41]. As stated on the webpage
MathSciNet by American Mathematical Society, one can find only 7 mathematical
works which has a citation of this book. This means, that the work of Vorobyev has
been almost forgotten till today. The aim of this Chapter is to remind some of his
ideas and present them in the way which reveal the connection with modern iterative
methods.

4.1 Formulation of the moment problem and basic

properties

Let z0, z1, ..., zn be n+1 prescribed linearly independent elements of Hilbert space H.
Consider n-dimensional subspace Hn

Hn = span{z0, z1, ..., zn−1}.

We wish to construct a linear operator An defined on the subspace Hn such that

Anz0 = z1,

A2
nz0 = z2,

...

An−1
n z0 = zn−1,

An
nz0 = Enzn,

(4.1)
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where Enzn is the projection of zn on Hn. This problem is called the problem of
moments in Hilbert space.
Let x ∈ Hn. By definition of Hn, it can be expressed as

x = c0z0 + c1z1 + ...+ cn−1zn−1,

where c0, c1, ..., cn−1 are coefficients of linear combination. So

Anx = c0Anz0 + c1Anz1 + ...+ cn−1Anzn−1 =

= c0z1 + c1z2 + ...+ cn−1Enzn ∈ Hn.

It means that An is completely defined by the system of equations (4.1). We will show
that the eigenvalues of An are roots of polynomial Pn,

Pn(λ) = λn + αn−1λ
n−1 + ...+ α0, (4.2)

where α0, α1, ..., αn−1 are such numbers that

Enzn = −α0z0 − α1z1 − ...− αn−1zn−1. (4.3)

Since Enzn is an element of the subspace Hn, we can find such numbers α0, α1, ..., αn−1

that satisfy (4.3). This the use of (4.1) leads to

Pn(An)z0 = (An
n + αn−1A

n−1
n + ...+ α0I)z0,

with I the identity operator. Taking the scalar product of (4.3) successively with
z0, z1, ..., zn−1, we obtain a system of linear algebraic equations for the coefficients of
the polynomial Pn(λ).

(z0, z0)α0 + (z0, z1)α1 + ...+ (z0, zn−1)αn−1 + (z0, zn) = 0

(z1, z0)α0 + (z1, z1)α1 + ...+ (z1, zn−1)αn−1 + (z1, zn) = 0 (4.4)

...

(zn−1, z0)α0 + (zn−1, z1)α1 + ...+ (zn−1, zn−1)αn−1 + (zn−1, zn) = 0.

In this we have made use of the fact that zn − Enzn must be orthogonal to every
element of Hn, because Enzn is the projection of zn on Hn, i.e.,

(zn − Enzn, zk) = 0, k = 0, 1, ..., n− 1,

so
(Enzn, zk) = (zn, zk), k = 0, 1, ..., n− 1.
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The determinant of the system (4.4) is the Gramian of z0, z1, ..., zn−1. It means that
this system has a unique solution since their linear independence. Suppose now that
λ is an eigenvalue and u an eigenelement of the operator An, that is

Anu = λu. (4.5)

Since u belongs to the subspace Hn, it is expressible as

u = ξ0z0 + ξ1z1 + ...+ ξn−1zn−1,

where ξ0, ξ1, ..., ξn−1 are scalars. Substituting this into equation (4.5) and making use
of (4.1) and (4.3), we obtain

−α0ξn−1z0 + (ξ0 − α1ξn−1)z1 + ...+ (ξn−2 − αn−1ξn−1)zn−1 =

= λ(ξ0z0 + ξ1z1 + ...+ ξn−1zn−1).

Since z0, z1, ..., zn−1 are linearly independent, we can equate coefficients of like ele-
ments. This leads to the following system of equations

−α0ξn−1 = λξ0,

ξ0 − α1ξn−1 = λξ1,

ξ1 − α2ξn−1 = λξ2,

...

ξn−1 − αn−1ξn−1 = λξn−1,

which can be written in the following form
−λ −α0

1 −λ −α1

1 −λ ...
. . . . . .

1 −αn−1 − λ




ξ0
ξ1
...

ξn−1

 = 0.

In order for this system to have a non-trivial solution, its determinant must be equal
to zero. Determinant of the above system can be written as det(−λI + C), where C
is a companion matrix for Pn(λ). So, it follows that eigenvalues of An are roots of
Pn(λ), i.e.,

Pn(λ) = λn + αn−1λ
n−1 + ...+ α0 = 0.
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In [41, pp. 16-19] the way how to explicitly construct the inverse A−1
n of the operator

An is shown. It enables us to solve the following types of the equations

Anx = f, f ∈ Hn,

which is called the equation of the first kind, and

x = µAnx+ f, f ∈ Hn,

where µ is the parameter and µ−1 is not an eigenvalue of the operator An. This
equation is called the equation of the second kind.

Sequence of operators An may be constructed iteratively so as to converge to a
preassigned bounded operator. Suppose that A is a bounded linear operator on the
Hilbert space H, D(A) = H (if not said otherwise we will consider D(A) = H until
the end of this Chapter). Choosing an element z0, we form a sequence of the powers
using the operator as follows

z0, z1 = Az0, z2 = Az1 = A2z0, ..., zn = Azn−1 = Anz0.

By solving the moment problem(4.1) we determine a sequence of the operators An each
defined on its own subspace Hn generated by all linear combinations of z0, z1, ..., zn−1.
The spaces expand with increasing n, and Hn ⊂ Hn+1. For each n the problem could
be written in the following form

zk = Akz0 = Ak
nz0, k = 0, 1, ..., n− 1, (4.6)

Enzn = EnA
nz0 = An

nz0,

where EnA
nz0 is the projection of Anz0 on the subspace Hn. We will show that

An = EnAEn, (4.7)

where En is the projection onto Hn. Any x ∈ Hn can be written in the form

x = c0z0 + c1z1 + ...+ cn−1zn−1,

By definition, Enx = x and therefore

AEnx =
n−1∑
k=0

ckAzk.
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Applying (4.6) we obtain

AEnx =
n−1∑
k=0

ckA
k+1z0 =

n−2∑
k=0

ckA
k+1
n z0 + cn−1A

nz0.

After applying En, we finally get

EnAEnx =
n−2∑
k=0

ckA
k+1
n z0 + cn−1EnA

nz0 =
n−1∑
k=0

ckA
k+1
n z0 =

=
n−1∑
k=0

ckAnzk = Anx.

With this formula we can extend the domain of the operator An to the whole space
H. We can also show that the sequence of the operators An is uniformly bounded

∥An∥ = ∥EnAEn∥ ≤ ∥A∥ ≤ C.

In the following we will need the space Hz which we define as a closure of a linear
manifold Lz consisting of elements of the form

x = Q(A)z0,

where Q(λ) is an arbitrary polynomial.

Theorem 4.1.1 If A is a bounded linear operator and An a sequence of solutions
of the moment problem (4.6), then the sequence An converges strongly to A in the
subspace Hz.

The proof can be found in [41, p. 21]. The fact that is possible to approximate
bounded linear operators by operators like An means that they can be used to obtain
solutions to various linear problems.

4.2 Application to the equations with completely

continuous operators

An operator A is said to be degenerate if it can be represented in the form

Ax =
n∑

k=1

(x, αk)βk,
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with n finite and αk, βk given elements of the considered Hilbert space. A is then
called completely continuous if for any positive number ϵ, it can be represented as

Ax = A
′

ϵ + A
′′

ϵx,

where A
′
ϵ is a degenerate operator and ∥A′′

ϵ ∥ < ϵ. In the following we will show that
a completely continuous operator is bounded. Let

A
′

ϵx =
n∑

k=1

(x, αk)βk,

then

∥Ax∥ ≤
n∑

k=1

|(x, αk)|∥βk∥+ ϵ∥x∥ ≤

≤ (
n∑

k=1

∥αk∥∥βk∥+ ϵ)∥x∥,

so

∥A∥ ≤
n∑

k=1

∥αk∥∥βk∥+ ϵ.

Now we will show some examples of the completely continuous operators in Hilbert
space. Because of the basic properties of the Hilbert spaces, in finite dimensional
space Hn every linear operator is degenerate and therefore completely continuous. In
infinite dimensional space l2 any infinite matrix whose entries are such that

∞∑
i,k=1

|ai,k| <∞,

defines a completely continuous operator. In L2 space, the integral operator

Ax =

∫ b

a

K(s, t)x(t)dt

is completely continuous if its kernel is square integrable, that is∫ b

a

∫ b

a

|K(s, t)|2dsdt <∞.

The next theorem is about the characterization of the completely continuous operators
in the Hilbert space.
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Theorem 4.2.1 An operator A is completely continuous if and only if every infinite
sequence of elements whose norms are uniformly bounded contains a subsequence {xn}
for which the sequence {Axn} is convergent.

The theorem (4.1.1) can be strengthened for the completely continuous operators in
the following way.

Theorem 4.2.2 If A is a completely continuous operator, then the sequence of oper-
ators {An} solving the moment problem (4.6) converges in norm to A in the subspace
Hz.

lim
n→∞

∥A− An∥ = 0.

The proof can be found in [41, pp. 26-27]. Now consider the equation

x = µAx+ f, (4.8)

where A is a completely continuous operator on H, f ∈ H and µ is a parameter.

Theorem 4.2.3 If |µ| ≤ ∥A∥−1, then the equation(4.8) has a solution for each given
f . Such µ are then called the regular values.

The proof can be found in [41, pp. 27-28]. In [41, pp. 27-37] theory of the moment
problem is used to solve the equations of this type. We can set z0 = f and form the
sequence of the powers

z0 = f, z1 = Af, ..., zn = Anf,

then we replace (4.8) by the approximate equation

xn = µAnxn + f, (4.9)

with An the solution of the problem of moments(4.6). The solution has the form

xn = a0f + a1Af + ...+ an−1A
n−1f,

where coefficients ak are determined recursively

a0 = 1− α0

Pn(
1
µ
)

(4.10)

ak = µak−1 −
αk

Pn(
1
µ
)
, k = 1, 2, ..., n− 1.

The quantities αk are the coefficients of the polynomial Pn(λ) (4.2) and satisfy the
system (4.4). The following theorem is proved in [41, pp. 36-37]. It gives us an
information how well can be solution x∗ of (4.8) approximated by the solution xn of
(4.9).
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Theorem 4.2.4 If µ is a regular value for the equation

x = µAx+ f (4.11)

in which A is a completely continuous operator, then the sequence xn of solutions of

xn = µAnxn + f

converges to the solution x∗ of equation (4.11) faster that a geometric progression with
any arbitrarily small ration q > 0.

Now consider the equation
u− µAu = 0,

In [41, pp. 37-41] the formulation and proof of the following theorem in which the
moment theory is used to determine its solution is given.

Theorem 4.2.5 If A is a completely continuous operator and µ one of its reciprocal
eigenvalues, that is, the equation

u− µAu = 0

has a non-trivial solution in Hz, then each such solution is unique to within a factor,
or in other words, to each eigenvalue there corresponds but one eigenelement in Hz.
As n increases, one of the solutions of

un − µnAnun = 0

tends to the solution of u − µAu = 0 faster than a geometric progression with any
arbitrary small ratio q > 0.

In [41, p. 44] it is shown that the eigenvalues of the operator An can be found as roots
of polynomial Pn(

1
µ
)

This theory could be used on the following example as shown in [41, pp. 44-47].
A problem arising in heat conduction requires the solution of the equation

−y′′(x) = µy(x)

under the boundary conditions

y(0) = 0, y(1) + y′(1) = 0.
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By means of Green’s function, this problem is easily converted into an integral equation

y = µ

∫ 1

0

K(x, ξ)y(ξ)dξ,

where

K(x, ξ) =

{
1
2
(2− ξ)x, x ≤ ξ,

1
2
(2− x)ξ, x ≥ ξ.

The operator

Ay =

∫ 1

0

K(x, ξ)y(ξ)dξ

is completely continuous in L2([0, 1]) space. For the function z0 we choose

z0 = sinπx.

The sequence zk is then constructed by successive integration

zk+1(x) =

∫ 1

0

K(x, ξ)zk(ξ)dξ.

We compute z1, z2, z3 and also scalar products (zl, zk) needed in the system (4.4).
Then the α0, α1, α2 are computed and used for the equations P1(

1
µ
) = 0, P2(

1
µ
) =

0, P3(
1
µ
) = 0. Three different eigenvalues are computed and compared with the values

from another numerical method and with the exact values. Details can be found in
[41, p. 47].

4.3 Application to the equations with self-adjoint

operators

Now let A be the bounded self-adjoint operator with D(A) = H. The bounds of a
self-adjoint operator are the smallest number m and largest number M for which

m(x, x) ≤ (Ax, x) ≤M(x, x)

for every x ∈ H. If m(x, x) > 0 then we call the operator A positive definite. We first
consider a self-adjoint operator An in some n-dimensional space Hn. An operator An

is self-adjoint, so we can do its spectral decomposition

AnU = ΛU,
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where

Λ =


λ1

λ2
. . .

λn

 , U = [u1, u2, ..., un].

The eigenvectors [u1, u2, ..., un] may be taken as orthonormal basis of Hn. So each
element x ∈ Hn can be represented as

x = (x, u1)u1 + (x, u2)u2 + ...+ (x, un)un.

We now introduce the notion of spectral function of an operator used in Vorobyev’s
book (it is nothing else than different name for distribution function associated with
operator An used in previous Chapters). Let us arrange the eigenvalues of An in
increasing order of magnitude, i.e.,

λ1 < λ2 < ... < λn

The spectral function of An, denoted by δλ, is defined to be the family of projections
determined by the set of relations

δλx = 0 λ < λ1,
δλx = (x, u1)u1 λ1 ≤ λ < λ2,
δλx = (x, u1)u1 + (x, u2)u2 λ2 ≤ λ < λ3,
. . . . . .
δλx = (x, u1)u1 + ...+ (x, un−1)un−1 λn−1 ≤ λ < λn,
δλx = (x, u1)u1 + ...+ (x, un)un = x λ ≥ λn,

for any element x ∈ Hn. The real function (δλx, x) has the form

(δλx, x) = 0 λ < λ1,
(δλx, x) = |(x, u1)|2 λ1 ≤ λ < λ2,
. . . . . .

(δλx, x) =
∑n−1

k=1 |(x, uk)|2 λn−1 ≤ λ < λn,
(δλx, x) = ∥x∥2 λ ≥ λn.

So, (δλx, x) is constant on those ranges of λ where An has no eigenvalues and increases
by jumps at each eigenvalue λk equal to the amount |(x, uk)|2. If we let △kδλ denote
the value of the jump in the projection,

△kδλx = (x, uk)uk,
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then the expression

Anx = λ1(x, u1)u1 + λ2(x, u2)u2 + ...+ λn(x, un)un

can be written in the form

Anx =
n∑

k=1

λk△kδλx.

A similar formula holds for any arbitrary bounded self-adjoint operator A, i.e.,

Ax =

∫ M

m

λdδλx,

in which the spectral function δλ of the operator A is understood to be a family of
projections depending on the real parameter λ such that

1) δλ is non-decreasing with increasing λ, that is, if µ > λ, then the subspace into
which δµ projects contains the subspace into which δλ projects,

2) δm = 0, δM = I,

3) δλ is continuous from right, i.e.,

lim
λ→λ

′
+
δλ = δλ′ .

The self-adjointness of a given operator A greatly simplifies the solution of the
problem of moments and makes possible the development of useful algorithms for
solving corresponding linear problems. As pointed out in [41, pp. 53-54] in the case of
a self-adjoint operator, our problem of moments for operators is completely equivalent
to the classical Chebyshev, Markov and Stieltjes scalar problem of moments (see the
Chapter 2, especially (2.1), (2.3) and (2.5)) for the quadratic functional (Ax, x) since
we can connect operator A to its corresponding quadratic functional (Ax, x)

(Ax, x) =

∫ M

m

λd(δλx, x).

Function d(δλx, x) here is nothing else than a continuous version of dω(λ) used in
(3.10) in the Chapter 3. As pointed out in [26] the above integral representation of
self-adjoint operators has been used in mathematical foundation of quantummechanics
which has roots in works of J. Neumann, D. Hilbert and A. Wintner, see [26, pp. 79-80]
for details and references of the original articles.

33



Let A be a prescribed self-adjoint bounded linear operator in Hilbert space H.
Starting with an arbitrarily chosen element z0, we form the sequence of iterations

z0, z1 = Az0, ..., zn = Azn−1 = Anz0, ....

The solution of the problem of moments (4.6) gives a sequence of operators An,
each defined on its own subspace Hn generated by all possible linear combinations
of z0, z1, ..., zn−1. Since An = EnAEn, An is also self-adjoint. To determine its spec-
trum Lanczos method of successive orthogonalization is used

p0 = z0

pk+1 = (A− akI)pk − bk−1pk−1,

where

ak =
(Apk, pk)

(pk, pk)
, bk−1 =

(pk, Apk−1)

(pk−1, pk−1)
=

(pk, pk)

(pk−1, pk−1)
.

The elements pk are mutually orthogonal, i.e., (pk, pl) = 0 for k ̸= l.

pk = Pk(A)z0,

with Pk(A) a kth degree polynomial in A. The polynomials Pk(λ) have leading coef-
ficients of one and satisfy the following recursion relations

Pk+1(λ) = (λ− ak)Pk(λ)− bk−1Pk−1(λ),

b−1 = 0, P0 = 1.

This is nothing else than Stieltjes recurrence for orthogonal polynomials (3.9) men-
tioned in Chapter 3. We have already shown that roots of

Pn(λ) = 0

are the eigenvalues of the operator An. For the case of self-adjoint operators we have
the following theorem to determine its eigenvalues

Theorem 4.3.1 If A is a bounded self-adjoint operator and An a sequence of solu-
tions of the moment problem (4.6), then the sequence of spectral functions δ

(n)
λ of the

operators An converges strongly to the spectral function of A

δ
(n)
λ → δλ, n→ ∞,

in the subspace Hz for all λ not belonging to the discrete spectrum of A.
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The proof can be found in [41, p.61]. For the case of the non-homogeneous equations
with self-adjoint operator A Vorobyev proved the following theorem

Theorem 4.3.2 Let A be a bounded self-adjoint positive definite operator defined on
the Hilbert space H and let z0 be any element of H. Then we can create a sequence
xn

xn+1 = xn + hnFn(0)gn,

gn = rn + ln−1gn−1, hn−1 =
∥rn−1∥2

(Agn−1, gn−1)
,

rn = rn−1 − hn−1Agn−1, ln−1 =
∥rn∥2

∥rn−1∥2
,

Fn(0) = Fn−1(0) +
(f, rn)

∥rn∥2
,

r0 = g0 = z0, F0(0) =
(f, z0)

∥z0∥2
,

which converges strongly to the solution x of equation

Ax = f,

where f is in the subspace Hz.

The algorithm in the above theorem is nothing else than the conjugate-gradients
algorithm (see (3.5)) which was first published by M. Hestenes and E. Stiefel in their
joint paper [19]. The proof of the theorem can be found in [41, 65-70].

4.4 Solution of time-dependent problems

Vorobyev applied his method on various problems. In this section we will briefly show,
how it can be applied in solving various time-dependent problems. We begin with the
solution of the Cauchy problem for a partial differential equation of first order

∂x

∂t
= −Ax, (4.12)

with x ∈ H and A a positive definite symmetric linear operator defined on a dense
subset D(A) of H. In general, A is an unbounded operator. The initial data for (4.12)
is

x(0) = x0 ∈ H.
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Since A is positive definite, it possesses a bounded inverse, which we shall assume to
be defined over all of H. We can then write (4.12) in the form

A−1∂x

∂t
+ x = 0. (4.13)

Setting z0 = x0, z1 = A−1z0, ..., zn = A−1zn−1, ..., we construct the sequence An of
solutions of the problems of moments (4.6), and we replace the equation (4.13) by the
equation

An
∂xn
∂t

+ xn = 0 (4.14)

with the initial condition xn(0) = x0. If we introduce the spectral function δλ of the
inverse operator A−1, the required solution can be expressed as

x =

∫ M

0

e−t/λdδλx0,

with M the least upper bound of the spectrum of A−1 and so equal to ∥A−1∥.
Since e−t/λ is continuous for λ ≥ 0 for all t ≥ 0 and since the strong convergence

of a sequence of operators implies the strong convergence of a continuous function of
them, it follows that the sequence xn of solutions of (4.14) converges strongly to x,
i.e.,

lim
n→∞

∥xn − x∥ = 0.

Let us next show how the approximate solution xn may be computed. Set

xn = η0(t)z0 + η1(t)z1 + ...+ ηn−1zn−1,

and substitute this into equation (4.14). Using the formulas (4.1) we obtain

η0(t)z0 + (η1 +
dη0
dt

)z1 + ...+ (ηn−1 +
dηn−2

dt
) +

dηn−1

dt
Enzn = 0.

The application of the expression

Enzn = −α0z0 − α1z1 − ...− αn−1zn−1

gives

(η0−α0
dηn−1

dt
)z0+(η1+

dη0
dt

−α1
dηn−1

dt
)z1+ ...+(ηn−1+

dηn−2

dt
−αn−1

dηn−1

dt
)zn−1 = 0.
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Since z0, z1, ..., zn−1 are by assumption linearly independent, by equating their coeffi-
cients to zero, we arrive at a system of these scalar equations equivalent to (4.14)

η0 − α0
dηn−1

dt
= 0,

dη0
dt

+ η1 − α1
dηn−1

dt
= 0,

...

dηn−2

dt
+ ηn−1 − αn−1

dηn−1

dt
= 0,

(4.15)

with corresponding initial conditions

η0(0) = 1, η1(0) = η2(0) = ... = ηn−1(0) = 0.

Vorobyev showed in [41, pp. 98-99] that equations (4.15) may be solved by means of
Laplace transforms. Let

ξk =

∫ ∞

0

ηke
−λtdt.

Then

ξ0 − α0λξn−1 = 0,

λξ0 + ξ1 − α1λξn−1 = 1,

...

λξn−2 + ξn−1 − αn−1λξn−1 = 0,

so

ξj =
Pn−j−1(− 1

λ
)

λ2Pn(− 1
λ
)
, j ≥ 1,

ξ0 =
α0

λPn(− 1
λ
)
.

Here Pn(v),
Pn(v) = vn + αn−1v

n−1 + ...+ α0

is the nth orthogonal polynomial, the roots of which are all real and lie in the interval
[0,M ]. The solution of (4.15) is then given by the contour integrals

ηj(t) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

Pn−j−1(− 1
λ
)

λ2Pn(− 1
λ
)
eλtdλ, j ≥ 1,

η0(t) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

α0

λPn(− 1
λ
)
eλtdλ.
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The above integrals may be evaluated by means of the residues.
The non-homogeneous problem

∂x

∂t
= −Ax+ gf(t), (4.16)

x(0) = 0, with g ∈ H and f(t) a scalar function, may be solved in a similar way. The
desired solution is

x =

∫ M

0

[

∫ t

0

f(ξ)e−(t−ξ)/λdξ]dδλg

and it is a continuous function of the inverse operator. Therefore, the sequence xn of
solutions of

An
∂xn
∂t

+ xn = A−1gf(t), (4.17)

with An the operators solving the problems of moments (4.6) defined by z0 = g, z1 =
A−1g, ..., zn = A−1zn−1, ..., converges strongly to x when n approaches infinity. Again
let us have a look for an approximate solution xn of the form

xn = η0(t)z0 + η1(t)z1 + ...+ ηn−1zn−1.

The substitution of this in equation (4.17) leads to a system of scalar equations

η0 − α0
dηn−1

dt
= 0,

dη0
dt

+ η1 − α1
dηn−1

dt
= 0,

...

dηn−2

dt
+ ηn−1 − αn−1

dηn−1

dt
= 0,

which can be solved by Laplace transform to obtain

ηj(t) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

F (λ)Pn−j−1(− 1
λ
)

λ2Pn(− 1
λ
)

eλtdλ, j ≥ 1,

η0(t) =
1

2πi
lim
T→∞

∫ σ+iT

σ−iT

α0F (λ)

λPn(− 1
λ
)
eλtdλ,

where

F (λ) =

∫ ∞

0

f(t)e−λtdλ.
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By a very similar method we can find a numerical solution for oscillation problem
characterized by a partial differential equation of second order with respect to time

∂2x

∂t2
= −Ax, (4.18)

with A a positive symmetric operator as before and with initial data prescribed at
t = 0

x(0) = x0,
∂x(0)

∂t
= x

′

0.

And also we can find a numerical solution for the non-homogeneous equation with
homogeneous initial conditions.

∂2x

∂t2
= −Ax+ gf(t),

with g ∈ H and f(t) a scalar function. Detailed description of solutions of the problems
above can be found in [41, pp. 100-105].

This method can be also applied if the equation describing the small oscillations
has the form

M
∂2x

∂t2
+ Ax = 0, (4.19)

where M is positive definite. The equation (4.19) can be reduced to the equation
(4.18). It can be written in the following form

∂2x

∂t2
+M−1Ax = 0.

However, the operatorM−1 is non-symmetric. By a change in the definition of a scalar
product, A

′
= M−1A can be turned into a symmetric operator. The new space H

′

can be introduced. It consists of the same elements as H but the scalar product in it
is defined as follows

[x, y] = (x,My).

The parentheses denote the scalar product in the original space H, while the brackets
denote it in the new space H

′
. The symmetry of A

′
is then implied by the equalities

[A
′
x, y] = (A

′
x,My) = (Ax, y) = (x,Ay) = [x,M−1Ay] = [x,A

′
y].

Now it will be shown, how Vorobyev used the moment problem in order to reduce the
order of the system of linear differential equations. Our intention is to replace the
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given system by an approximate one close to it but of lower order. Vorobyev in his
book [41, p. 106] said that

”this problem at first appears to be meaningless. An N th order system has N
eigenoscillations each of which may be excited by the application of a suitable choice of
external forces to the physical system. In the reduction of the order of the system, not
only would the eigenoscillations be distorted but they would also be reduced in number,
so some of them would disappear. However for real system, the external forces are far
from being arbitrary. Usually one or several members of a physical system are subjected
to perturbations, the other being unaffected and displaced only as a result of their
relationship to the other members. Under these conditions, certain eigenoscillations
may eighter not be excited or be excited so little as to have no appreciable effect on
the overall oscillations. Under these circumstances, the problem of reducing the order
of a system of differential equations is now a meaningful and a very urgent one since
the order of a system is often determined not by the physical essence of the problem
but by the degree of idealization that we have adopted.”

This is an essential idea in all methods based on the reduction of the system. When
we solve the linear system

Ax = b

by some modern iterative method like CG or GMRES we take into consideration that
the matrix A and the vector b are not arbitrary, but they all come from a real world
problem and have strong relationship to each other.

But lets go back to the system of linear differential equations. Let x be a vector
in N -dimensional space HN . We shall suppose that the system of equations has this
normal form

dx

dt
= Ax+ gf(t). (4.20)

The initial conditions are assumed to be zero. To solve (4.20), the method of moments
can be applied. Set z0 = g and form the iterations

z0 = g, z1 = Az0, ..., zn = Anz0 = Azn−1, ....

We suppose that z0, z1, ..., zn are linearly independent. We can again denote An the
solutions of the moment problem (4.6) each defined on Hn. The eigenvalues of An are
roots of Pn(λ) (4.2). As shown earlier, limn→∞An = A, so an approximate solution
to (4.20) can be found by solving

dxn
dt

= Anxn + gf(t). (4.21)
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Now xn belongs to Hn and can be represented as

xn = η0z0 + η1z1 + ...+ ηn−1zn−1, (4.22)

with η0(t), η1(t), ..., ηn−1(t) scalar functions. The substitution of (4.22) into (4.21) and
the application of formula (4.3) then leads to

(
dη0
dt

+α0ηn−1)z0+(
dη1
dt

−η0+α1ηn−1)z1+ ...+(
dηn−1

dt
−ηn−2+αn−1ηn−1)zn−1 = z0f(t).

If we equate the coefficients of like elements, we arrive at the following system of scalar
equations

dη0
dt

+ α0ηn−1 = f(t),

dη1
dt

− η0 + α0ηn−1 = 0,

...

dηn−1

dt
− ηn−2 + αn−1ηn−1 = 0,

with initial conditions η0(0) = η1(0) = ... = ηn−1(0) = 0. This system is equivalent to
the equation

η
(n)
n−1 + αn−1η

(n−1)
n−1 + ...+ α0ηn−1 = f(t)

with the initial conditions ηn−1(0) = η
(1)
n−1(0) = ... = η

(n−1)
n−1 (0) = 0. The differen-

tial equation above may be solved by any method for solving a ordinary differential
equations.

Now let’s look at the error of this approximation xn, let yn denote the error in the
approximate solution, that is

x = xn + yn.

Substitution of this in (4.20) gives

dη0
dt
z0 +

dη0
dt
z1 + ...+

dηn−1

dt
zn−1 +

dyn
dt

=

= η0z1 + η1z2 + ...+ ηn−1Enzn + ηn−1(zn − Enzn) + Ayn + gf(t),

which implies the following equation for the error

dyn
dt

= Ayn + ηn−1(t)(zn − Enzn),
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with initial conditions

yn(0) =
dyn(0)

dt
= ... =

dnyn(0)

dtn
= 0.

The error is proportional to ∥zn − Enzn∥. If ∥zn − Enzn∥ is small the error will be
also small. Two of the important cases in which the quantity ∥zn − Enzn∥ is small
for n < N and the system of differential equations (4.20) can be approximated by the
lower order system (4.21) will be indicated. For simplicity, suppose that the operator
A has a simple structure. Then the vector g, which represent the amplitude of the
external force, can be expanded in terms of its eigenvectors

g =
N∑
k=1

akuk.

If the external force is such that some of the eigenoscillations are excited very little,
in other words some of the ak are small or vanish, i.e.,

N∑
k=n+1

|ak| < δ,

then it is easy to show that ∥zn − Enzn∥ is small. For

z0 = g =
N∑
k=1

akuk, z1 =
N∑
k=1

akλkuk, ..., zn =
N∑
k=1

akλ
n
kuk,

consider the difference
zn − zn = Qn(A)z0,

where
Qn(λ) = (λ− λ1)...(λ− λn).

The fact that En is a projection implies that

∥zn − Enzn∥ ≤ ∥znzn∥ = ∥
N∑

k=n+1

Qn(λk)akuk∥.

LetM denote maxk |Qn(λk)| and suppose that the eigenelements are normalized. Then
∥zn − Enzn∥ satisfies the following inequality

∥zn − Enzn∥ ≤ δM.

42



Now the second case will be discussed. Assuming that some of the eigenvalues are
small in modulus, i.e.,

|λk| < δ, k = m+ 1, ..., N,

the difference can be formed

zn − z̄n = Gn(A)z0,

in which
Gn(λ) = (λ− λ1)...(λ− λn)λ

n−m.

By the property of the projection

∥zn − Enzn∥ ≤ ∥zn − z̄n∥ = ∥
N∑

k=m+1

λn−m
k (λk − λ1)...(λk − λm)akuk∥,

so

∥zn − Enzn∥ ≤ δn−m(|λ1|+ δ)...(|λm|+ δ)
N∑

k=m+1

|ak|.

So, ∥zn −Enzn∥ will be small when n > m provided the external perturbation is such
that the sum

N∑
k=m+1

|ak|

is not too big.
For many systems the opposite picture holds. With increasing number, the eigen-

values grow rapidly in modulus and the norm of the operator is large although
bounded. The approximations converge considerably faster for such systems if in-
stead of forming iterations with the operator A appearing in the equation (4.20) its
inversion is used. The equation (4.20) can be rewritten in the following way

A−1dx

dt
= x+ A−1gf(t). (4.23)

Then a sequence of iterations can be constructed by setting

z0 = A−1g, z1 = A−1z0, ..., zn = A−1zn−1.

Denote the operator An the solution of the moment problem (4.6), then the solution
of the following equation is sought

An
dxn
dt

= xn + A−1gf(t). (4.24)
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Its solution is of the form

zn = η0(t)z0 + ...+ ηn−1(t)zn−1.

Substituting in the equation (4.24) and application of the formula (4.3) gives

−(η0 + α0
dηn−1

dt
)z0 + (

dη0
dt

− η1 − α1
dηn−1

dt
)z1 + ...

...+ (
dηn−2

dt
− ηn−1 − αn−1

dηn−1

dt
)zn−1 = z0f(t).

This equation is equivalent to the following system of scalar equations for the ηk(t)

−η0 − α0
dηn−1

dt
= f(t),

dη0
dt

− η1 − α1
dηn−1

dt
= 0,

...

dηn−2

dt
− ηn−1 − αn−1

dηn−1

dt
= 0,

with the initial conditions η0(0) = η1(0) = ... = ηn−1(0) = 0. It can be shown (see
e.g., [41, p. 112]) that the error in the approximate solution for this case is also
proportional to ∥zn − Enzn∥ which is now small for fairly small values of n since the
eigenvalues of A−1 decreases rapidly.

Vorobyev explained a close relationship between the method of moments and the
method of determining the spectrum of a matrix due to A.N.Krylov (see e.g. [21] and
[22]) in his book. Krylov’s starting point was also a system of differential equations
with constant coefficients. The idea of the method is in the following. An arbitrary
vector x is chosen in N -dimensional space and a sequence of iterations of it with the
matrix A is then constructed

x,Ax, ..., Akx.

Because of the finite dimensionality of the space, there exists n such that Anx is a
linear combination of the vectors Akx, k < n. That is

Anx = αn−1A
n−1 + ...+ α0x = 0, (4.25)

or
ϕ(A)x = 0.
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This implies an equation for the eigenvalues

λn + αn−1λ
n−1 + ...+ α0 = 0.

The subspace Hn generated by the vectors x,Ax, ..., An−1x reduces A, and the only
nth degree polynomial with leading coefficient of unity vanishing in Hn is the Pn(λ)
(4.2). The operators A and An coincide in Hn, and ϕn(λ) = Pn(λ). It follows that the
only distinction between the method of moments and Krylov’s method for the case of
a finite symmetric matrix is their computational scheme.

4.5 Model reduction using the Vorobyev moment

problem

In this section we will present the way how to obtain the same matching moment
property as in previous Chapter (3.12) for the matrix A with the use of the Vorobyev
moment problem, the presented results can be found in [38] or in the upcoming book
[26].

Similarly as in previous Chapter consider a linear algebraic system Ax = b with a
HPD matrix A and the same initial vector x0, giving the initial residual r0 = b−Ax0
and the Lanczos initial vector v ≡ v1 = r0/∥r0∥.

Using the orthogonal projector En = VnV
∗
n onto Kn(A, v1) (see (3.3)), the opera-

tor A can be orthogonally restricted to the subspace Kn(A, v1). Then the resulting
orthogonally projected restriction An is given by

An = VnV
∗
nAVnV

∗
n = VnTnV

∗
n (4.26)

with its matrix in the orthonormal basis of Kk(A, v1) represented by Vn

V ∗
nAnVn = Tn.

The restricted operator An is determined by its action on the vectors generating
Kk(A, v1)

Anv1 = Av1,

An(Av1) = A2v1,

...

An(A
n−2v1) = An−1v1,

An(A
n−1v1) = En(A

nv1) = VnV
∗
nA

nv1.
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Equivalently,

Anv1 = Av1,

A2
nv1 = A2v1,

...

An−1
n v1 = An−1v1,

An
nv1 = VnV

∗
nA

nv1.

In [38, p. 6] an elegant way how to get the same matching moment property as (3.12)
is shown. By construction

v∗1A
kv1 = v∗1A

k
nv1, k = 1, 2, ..., n. (4.27)

Since Kn(A, v1) = span{v1, Av1, ..., An−1v1} and (An)
nv1 ∈ Kk(A, v1), the orthogonal

projection
0 = En(A

nv1)− (An)v1 = En(A
nv1 − (An)

nv1)

implies that the difference Anv1 − (An)
nv1 must be orthogonal to all basis vectors

v1, Av1 = Anv1, ..., A
n−1v1 = An−1

n v1, which gives, using the properties A∗ = A, A∗
n =

An,

0 = (Ajv1) ∗ (Anv1 − (An)
nv1) = v∗1A

n+jv1 − v∗1(An)
n+jv1, j = 0, 1, ..., n− 1.

Combining with (4.27) and (4.26) this gives

v∗1A
kv1 = v∗1A

k
nv1 = eT1 T

k
ne1, k = 0, 1, ..., 2n− 1,

which is the same matching moment property as (3.12).
In [38, pp. 7-11] the proofs of the similar identities for A non-Hermitian are

given. Let’s start with the algorithm of non-Hermitian Lanczos process. Given a
non-singular matrix A ∈ CN×N and two starting vectors v ≡ v1, w ≡ w1 of length N ,
∥v1∥ = 1, w∗

1v1 = 1, the non-Hermitian Lanczos algorithm can be written in the form

AVn = VnTn + δn+1vn+1e
T
n ,

A∗Wn =WnT
∗
n + β∗

n+1wn+1e
T
n ,

where W ∗
nVn = I, Tn =W ∗

nAVn, ∥vn+1∥ = 1, w∗
n+1vn+1 = 1,

Tn =


γ1 β2

δ2 γ2
. . .

. . . . . . βn
δn γn

 , δl > 0, βl ̸= 0, l = 2, ...n. (4.28)

46



Here it is assumed that the algorithm does not break down in any step. The columns
of Vn form a basis of Kn(A, v1), the columns ofWn form a basis of Kn(A

∗, w1). Because
of the biorthogonality W ∗

nVn = I, the oblique projector onto Kn(A, v1) orthogonal to
Kn(A

∗, w1) can be written as
Qn = VnW

∗
n .

In [38, pp. 7-9], a proof, that the non-Hermitian Lanczos algorithm represents the
model reduction which matches the first 2n moments is given

w∗
1A

kv1 = eT1 T
k
n , e1, k = 0, 1, ..., 2n− 1.

The proof is based on the relationship with the corresponding Vorobyev moment
problem. It is similar to the proof of the matching moment property for the Lanczos
but it is technically a little bit more difficult.

Now let’s show a matching moment property for the Arnoldi method. Given a
non-singular matrix A ∈ CN×N and an initial vector v ≡ v1 of length N , ∥v1∥ = 1,
the Arnoldi algorithm can be seen as

AVn = VnHn + hn+1,nvn+1e
T
n ,

where
V ∗
n Vn = In, Hn = V ∗

nAVn,

where Hn is upper Hessenberg matrix with positive entries on the first subdiagonal.
In [38, pp. 10-11] a proof of the following matching moment property for the Arnoldi
method is given

v∗1A
kv1 = eT1H

k
ne1, k = 0, 1, ..., n.

So this model reduction matches n+ 1 moments. In the proof the Vorobyev moment
problem is again used in order to show the matching moment property.
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Chapter 5

Relationship to the Sturm-Liouville
problem

Sturm-Liouville problems are the problems which involves solving the second order
ordinary differential equations. Solution of equations of these types has played a
fundamental role in the evolution of mathematics and physics, starting with the
eigenoscillations of a string and culminating in the atomic vibrations of Shrödinger’s
wave equation. In [25, pp. 348-432] one can see a brief introduction of the history of
Sturm-Liouville problems and solutions of many special types of second order ordinary
differential equations. The aim of this Chapter is to show the connection between the
moment problem and one type of the Sturm-Liouville equations. Consider the Sturm-
liouville problem in the following form

−y′′
+ q(x)y = λy, x ∈ [a, b], (5.1)

where a, b may be finite or infinite and appropriate boundary conditions for y are
given. The Sturm-Liouville problem is called regular if a and b are finite, p(x) is
continuous except for finitely many jumps and regular boundary conditions are set,
i.e.,

y(a) = c1y
′
(a), y(b) = c2y

′
(b), c1, c2 ∈ R.

The equation (5.1) can be written in the following form

Ly = λy,

where L is a linear differential operator defined as follows

L ≡ − d2

dx2
+ q(x).
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In the case of the regular Sturm-Liouville problem the solutions of (5.1) form a com-
plete orthogonal set in L2(a, b). For a proof and for many more interesting properties
of the solutions of Sturm-Liouville problems see e.g., [39].

Many books and articles have been written about Sturm-Liouville problems. More
information about the classification and solving the Sturm-Liouville problems can be
found e.g. in [32], [11] or [25].

In [12] the connections between the singular Sturm-Liouville problem, Jacobi ma-
trices and Hamburger moment problem are described in an elegant way. In this
Chapter we will present some of the results. Consider the singular Sturm-Liouville
boundary value problem

−y′′
+ q(x)y = λy, x ∈ [0,∞), (5.2)

with boundary condition

y(0) cosα+ y
′
(0) sinα = 0,

where q(x) is a continuous function on [0,∞). Now let ϕ(x, λ), θ(x, λ) be the solutions
of the differential equation of the boundary value problem (5.2) such that

ϕ(0, λ) = sinα, ϕ
′
(0, λ) = − cosα,

θ(0, λ) = cosα, θ(0, λ) = sinα.

In [39] it is shown, that there exists a complex valued function m∞(λ), the so-called
Weyl-Titchmarsh function, such that for every λ ∈ C\R the differential equation (5.2)
has a solution

χ∞(x, λ) = θ(x, λ) +m∞(λ)ϕ(x, λ),

belonging to L2(0,∞). In the so-called limit-point case m∞(λ) is unique, while in
the limit-circle case uncountably many such functions exists. For each λ ∈ C\R, the
values of these functions belong to a geometrical circle C∞(λ), in the limit-point case,
this circle collapses into a point. Here the index ∞ in m∞ is connected with the
properties of the function q(x) in (5.2) which is supposed only to be continuous on
[0,∞) and so it could not be integrable through the whole [0,∞).

In the same way the Sturm-Liouville difference equation can be considered

∇(δn+1∆zn−1) + (γn+1 + δn+1 + δn)zn−1 = λzn−1, n = 1, 2, ...

where ∇ and ∆ denotes backward and forward differences. This difference equation
can be written in the following form

δn+1zn + γnzn−1 + δnzn−2 = λzn−1, n = 1, 2, ..., (5.3)
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where δ1 = 0, δn > 0 and γn ∈ R for each n ∈ N along with the initial data z−1 =
0, z0 = 1 and z−1 = −1, z0 = 0. This is again the three-term Stieltjes recurrence for
orthogonal polynomials, see (3.9).

In an analogic way as in the continuous case, consider the following solutions of
the difference equation (5.3) for both initial data.

Φ(λ) = (φ0(λ), φ1(λ), φ2(λ), ...), Ψ(λ) = (ψ0(λ), ψ1(λ), ψ2(λ), ...),

and the Weyl-Titchmarsh function is searched in such a way that

χ∞(λ, n) = Φ(λ) +m∞(λ)Ψ(λ) ∈ l2(N0)

is the solution of the difference equation (5.3). If there exists an unique function
m∞(λ), we are in the limit-point case, while in the limit-circle case uncountably many
such functions exist.

Now consider the following semi-infinite jacobi matrix T which defines an operator
on l2(N0) associated with the difference equation (5.3)

T =


γ1 δ2 0 0 . . .
δ2 γ2 δ3 0 . . .

0 δ3 γ3 δ4
. . .

0 0 δ4 γ4
. . .

...
...

. . . . . . . . .

 . (5.4)

It is known, that there is a close relationship between problem (5.3) being in the limit-
point or in the limit-circle case and the existence of self-adjoint extensions of T (5.4).
Both problems are equivalent to deciding the determinacy of the Hamburger moment
problem associated with T (5.4).

Given the real numbers ξk = (δ0, T
kδ0)l2 , k ≥ 0, where δ0 stands for the sequence

(1, 0, 0, ...), we are interested in the search of positive measures µ such that∫ ∞

−∞
xkdµ(x) = ξk, k = 0, 1, .... (5.5)

The above problem is called the Hamburger moment problem associated with T (5.4).
Denote S a self-adjoint extension of T (see basic notation in the beginning of this
thesis), i.e.,

T ⊂ S ⊂ T ∗

In [34, p. 5, pp. 21-22] a proof of the following theorem which characterizes connection
between the existence of self-adjoint extensions of T (5.4) and the determinacy of the
associated Hamburger moment problem (5.5) is given.
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Theorem 5.0.1 A necessary and sufficient condition that the measure dµ in (5.5)
be unique is that the operator T of (5.4) is essentially self-adjoint, i.e., has a unique
self-adjoint extension.

It means, that T is not an essentially self-adjoint operator if and only if the asso-
ciated moment problem is indeterminate. Then its self-adjoint extensions St can be
parametrized by t ∈ R = R ∪ {∞} and as shown in [34, p. 19] or [12, p. 4] their
domains are

D(St) =

{
D(T ) + span{tΦ(0) + Ψ(0)} if t ∈ R,
D(T ) + span{Φ(0)} if t = ∞.

In [34, pp. 38-39] it is shown that each self-adjoint extension of T has a pure point
spectrum {λi = λi(St)}∞i=0. The corresponding eigenfunctions {Φi = Φ(λi)}∞i=0. are
given by

Φi = (φ0(λi), φ1(λi), φ2(λi), ...) i ∈ N0,

and they form an orthogonal basis in l2(N0).
Now let {ξk}∞k=0 be an indeterminate Hamburger moment sequence associated with

T (5.4). Let’s denote by V the set of positive measures satisfying it, i.e.,

V =

{
µ ≥ 0 : ξk =

∫ ∞

−∞
xkdµ(x), k ≥ 0

}
.

The moment problem is related with the self adjoint extensions of the semi-infinite
Jacobi matrix T . Let {λti = λi(St)}∞i=0 be the eigenvalues associated with the self-
adjoint extensions St of T . The set V can be parametrized (see e.g., [34, p. 12]) in
order to obtain the set of Neumann measures {µt} which satisfy

(δ0, (λI − St)
−1, δ0) =

∫ ∞

−∞

dµt(x)

λ− x
=
ANev(λ) + tCNev(λ)

BNev(λ) + tDNev(λ)
, λ ∈ C\R,

where ANev, BNev, CNev, DNev are the functions of the so-called Nevanlinna matrix
associated with the moment problem. In [34, p. 36] the explicit formulas of the
Nevanlinna matrix are given. It is known (see e.g., [12, p. 8]), that for each t ∈ R, µt

is the discrete measure µt =
∑

λ∈Zt
aλδλ, where

Zt =

{
{λ ∈ C|BNev(λ) + tDNev(λ) = 0} if t ∈ R,
{λ ∈ C|DNev(λ) = 0} if t = ∞,

and

aλ =
ANev(λ) + tCNev(λ)

B
′
Nev(λ) + tD

′
Nev(λ)

, λ ∈ Zt.
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The measure µt is then the spectral measure of St. In [34, pp. 38-39] it is shown, that
the zeros of the function BNev(λ) + tDNev(λ) (or of the DNev(λ)) which are real and
simple, are precisely the sequence {λti}∞i=0 and moreover

µt({λti}) = 1/∥Πi∥2.

It is worth to say that Akhiezer [1] calls these Neumann measures N-extremal and in
Shoat-Tamarkin’s book [33] they are called extremal.

In [34, p. 41] and [12, p. 8] there can be found the following characterization for
m∞(λ). If C∞(λ) is the limit circle associated to λ ∈ C\R, then m∞(λ) ∈ C∞(λ) if
and only if it admits the following parametrization

mt
∞(λ) = (δ0, (λI − St)

−1, δ0) =

∫ ∞

−∞

dµt(x)

λ− x
=
ANev(λ) + tCNev(λ)

BNev(λ) + tDNev(λ)
, t ∈ R,

where ANev, BNev, CNev, DNev are the components of the Nevalinna matrix and µt is
the Neumann spectral measure associated with St. .

So, the Hamburger moment problem (5.5) associated with T (5.4) is indeterminate
if and only if the difference equation (5.3) belongs to the limit-circle case. This provides
a criteria to decide when a difference Sturm-Liouville problem (5.3) belongs to the
limit-circle case.
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Chapter 6

Model reduction of large-scale
dynamical systems

In this Chapter we will show the connections of the model reduction of the linear
dynamical systems, modern iterative methods and the moment problem. Linear dy-
namical system can be represented in the following form.

z
′
(t) = Az(t) + bu(t),

y(t) = b∗z(t),
(6.1)

where A ∈ CN×N , b ∈ CN , are given, z(t) ∈ CN represents the state of the system
at time t and u(t) and y(t) represents scalar input and output of the system (6.1).
Close relation between the theory of linear dynamical systems and modern iterative
methods is known. We will define the controllability for the dynamical system (6.1).
The dynamical system (6.1) is said to be controllable if for every initial condition z(0)
and every vector z1 ∈ CN , there exists a finite time t1 and control u(t) ∈ C, t ∈ [0, t1],
such that z(t1, z(0), u) = z1.
For simplicity, consider a linear steady discrete system with the state equation

zk+1 = Azk + buk (6.2)

The solution of this equation is

zk = Akz0 +
k−1∑
i=0

Ak−i−1bui,

with
z0 = 0, z1 = bu0.

In [17, p.143] the proof the following theorem is given
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Theorem 6.0.2 Linear steady discrete system (6.2) is controllable if and only if,
when the matrix R

R = [b, Ab, ..., AN−1b]

has the rank N.

This is equivalent with the case, when the Krylov space KN(A, b) (see (3.2)) has full
rank N . Which is according to [2] equivalent to the fact that the GMRES method for
system

Ax = b,

with the initial vector b doesn’t stop until the last step N . So, this is example of the
link between the controllability of the simple dynamical system with the properties of
the method for solving systems of linear algebraic equations.

Now let’s go back to the system (6.1). In [26, pp. 101-108] an elegant description of
the connection between the model reduction of this system and the moment problem
is given. Applying the Laplace transform,

f̂(λ) :=

∫ ∞

0

f(t)e−λtdt

the system (6.1) can be represented by the transfer function description

T (λ) = b∗(λI − A)−1b, λ ∈ C, (6.3)

where

T (λ) =
ŷ(λ)

û(λ)
.

The model reduction problem is to find the reduced order An, bn such that

Tn(λ) = b∗n(λI − An)
−1bn, λ ∈ C,

approximates in some sense well T (λ) within a given frequency of range λ ∈ CA ∈ C.
The double (An, bn) is called a realization of T . In [31, p. 9] it is shown, that in
certain cases it is possible to have a double (An, bn) with An ∈ Cn×n and n < N which
correspond to the same transfer function T as does (A, b). Such a realization with
additional condition that An has minimal dimension is called a minimal realization.

The problem of finding efficient numerical approximation to (6.3) arises in many
applications unrelated to linear dynamical systems (6.1). A more general case can be
written as

c∗F (A)b,
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where F (A) is a given function of the matrix A. The particular case c = b and
F (A) = (λI − A)−1, i.e., F (A) is equal to the matrix resolvent, where λ is outside of
the spectrum A, is of great importance. Model reduction in linear dynamical systems
based on projections onto Krylov subspaces is linked with local approximation of the
transfer function T (λ). First consider the expansion about infinity

−T (λ) = λ−1b∗(I − λ−1A)−1b =

= λ−1(b∗b) + λ−2(b∗Ab) + ...+ λ−2n(b∗A2n−1b) + ....

A reduced model of order n which matches the first 2n terms in the above expansion
is known as the minimal partial realization.

In order to see the link, consider the distribution function ω(λ) with N points of
increase associated with the HPD matrix A and the initial vector b. Then

b∗(λI − A)−1b =
N∑
j=1

ωj

λ− λj
= FN(λ),

where the continued fraction FN(λ) can be for any n < N expanded to

FN(λ) =
2n∑
l=1

ξl−1

λl
+O

(
1

λ2n+1

)
= Fn(λ) +O

(
1

λ2n+1

)
,

ξl−1 =

∫ b

a

λl−1dω(λ) =
n∑

j=1

ω
(n)
j {λ(n)j }l−1, l = 1, 2, ..., 2n,

or in the matrix form
ξl−1 = b∗Al−1b = eT1 T

l−1
n e1.

Fn(λ) approximates FN(λ) with the error proportional to 1/λ2n+1. The minimal
partial realization in model reduction of linear dynamical systems matches the first
2n moments

µ−l = b∗Al−1b, l = 1, ..., 2n,

called in the dynamical systems literature Markov parameters.
Sometimes it is more convenient to do the model reduction with the expansion of

the T (λ) in the neighborhood of some λ0 ∈ C, see e.g., [10]. Here, the case where
λ0 = 0 is used. The model reduction is achieved by matching the moments

µl = b∗(A−1)lb, l = 1, 2, ...
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of the expansion

−T (λ) = b∗A−1(I − λA−1)−1b =

= b∗A−1b+ λ(b∗A−2b) + ...+ λ2n−1(b∗A−2nb) + ....

It should be noted that minimal partial realization in the theory of large scale dynam-
ical systems was introduced by Kalman [20] in 1979. But it can be seen above that
the ideas of this methods are much older and originates in the works of Chebyshev [7]
and Stieltjes [35], see Chapter 3.

An interesting case is when we take λ = 0 and the new vector c ∈ CN in (6.3). We
get the following quantity

c∗A−1b.

The approximation of this quantity, called in signal processing the scattering am-
plitude, is very important in many applications, see e.g., [14] and [15]. However as
pointed out in [36] problem of numerical approximation of the single scalar value
c∗A−1b is different from the numerical approximation of the whole transfer function
T (λ) and therefore a different approach must be taken. The approach to approxi-
mate this quadratic form c∗A−1b was taken in the paper [37] and a Vorobyev moment
problem is used in order to get good approximation.
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Chapter 7

Numerical illustrations

The problem of moments can be seen as the theoretical background for many nu-
merical methods and therefore an insight through the moments can help to bring
some new knowledge about these methods. In the Chapter 3 we have shown, how
the Gauss-Christoffel quadrature can be seen as a matching moment model reduction.
In [30] the results about sensitivity of Gauss-Christoffel quadrature with respect to
small perturbations of the distribution function are given. Obtaining of these results
would not be possible without the deep knowledge of the connection with the moment
problem.

Consider a sufficiently smooth function f(λ) uncorrelated with the perturbation of
the distribution function. It seems natural that the difference between the quadrature
approximates is of the same order as the difference between the original and perturbed
integral. As pointed out in [30, p. 1] this is one of the reasons why nobody formulated
this question in literature before 2007 when the article [30] came out.

The nodes of the n-point Gauss-Christoffel quadrature are the roots nth orthogonal
polynomial associated with the distribution function. The perturbed distribution
function generates different sequence of orthogonal polynomials and this fact may
cause that the difference between the quadratures could be of the higher order than
the difference between the integrals.

In [30] a characterization of the case, when the quadrature is insensitive to the
small perturbation of the distribution function is given. It is when the size of the
support of the perturbed distribution function remains the same. In other way, when
the perturbation changes the size of the support of the distribution function, the
quadrature may be very sensitive.

The question whether the condition numbers of the matrices of modified and mixed
moments (these matrices will be precisely defined in the following text), which are
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nothing else than matrices of moments ∆k from the Chapter 2 (see (2.6) and (2.7)),
could help us to decide when the perturbation causes the big difference in quadrature
estimates and when these estimates remains insensitive is also posed in [30]. The
questions about the conditioning of these matrices were studied by Gautschi [13] and
by Beckermann and Bourreau in [4]. They showed that condition numbers of matrices
of modified and mixed moments grow exponentially if the support of the original and
perturbed distribution function changes, see e.g. [30, p. 23] and [4, p. 93]. So, though
it would be natural that in the case of sensitivity, the matrices of the moments would
be ill-conditioned and in the other case well-conditioned, [30, p. 23]. Due to the
nature of matrices of moments, which are called Hankel matrices, this presumption
doesn’t hold. These matrices seems to be ill-conditioned in both cases.

The aim of this Chapter is to show several numerical illustrations with slightly
different parameters than in [30] in order to show ill-conditioning of the Hankel ma-
trices. The same software package in MATLAB for computing the Gauss-Christoffel
quadrature, which was used in [30] is used here.

Let IΩ(f) be the Riemann-Stieltjes integral of the function f with the non-decreasing
distribution function Ω(λ)

IΩ(f) =

∫ b

a

f(λ)dΩ(λ)

we wish to approximate it by the n-point Gauss-Christoffel quadrature

InΩ(f) =
n∑

l=1

Ω
(n)
l f(λ

(n)
l ).

Let f = x−1 and consider the points of increase 0 < a < λ1 < λ2 < ... < λn < b,

λl = λ1 +
l − 1

n− 1
(λn − λ1)γ

n−l, γ ∈ (0, 1), l = 2, 3, ..., n− 1,

and randomly generated jumps Ω1,Ω2, ...,Ωn which are normalized such that

n∑
l=1

Ωl = 1,

Consider the distribution function Φ(λ, σ) =
∑n

l=1 Ωlφ(λ;σ, λl), where φ(λ;σ, t) is
continuous piecewise linear function on [t− σ, t + σ], which is linear on [t − σ, t] and
on [t, t+ σ], and is constant on (−∞, t− σ] and on [t+ σ,∞).
In our examples we will use the distribution function

Ω(λ, σ) = cΦ(λ, σ),

∫ b

a

dΩ(λ, σ) = 1,

58



where c is the normalization constant. We will use σ = 10−8 for the original distribu-
tion function Ω0 ≡ Ω(λ, 10−8) and σ = 10−6 for the perturbed distribution function
Ω1 ≡ Ω(λ, 10−6). We set n = 30, a = λ1 − 105 = 10−1 − 10−5, b = λn + 10−5 =
500 + 10−5.

As the example of the case where the size of the support of the distribution function
remains the same we use the distribution function Ω2 ≡ Ω(λ, 10−8) where the intervals
of increase [λl −σ, λl +σ] are shifted randomly to the left or right while the difference
between Ω2 and Ω0 remains of the same order as the difference between Ω0 and Ω1.
The components of the matrices of modified and mixed moments GMn and MMn are
determined by the inner product of the orthogonal polynomials with respect to the
corresponding distribution functions

GMn(i, j) = (ψi, ψj),

MMn(i, j) = (φi, ψj),

where the inner product is determined by the original distribution function Ω0, φk are
the orthogonal polynomials with respect to the original distribution function Ω0 and
ψk are the orthogonal polynomials with respect to the perturbed distribution functions
Ω1 or Ω2.
We will present numerical illustrations for γ = 0.2, 0.4, 0.6, 0.8.

59



γ = 0.2
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Figure 7.1: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω1
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Figure 7.2: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω1
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γ = 0.2
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Figure 7.3: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω2
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Figure 7.4: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω2
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γ = 0.4
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Figure 7.5: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω1
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Figure 7.6: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω1
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γ = 0.4
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Figure 7.7: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω2
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Figure 7.8: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω2
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γ = 0.6
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Figure 7.9: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω1

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

GM
n

MM
n

Figure 7.10: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω1
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γ = 0.6
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Figure 7.11: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω2
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Figure 7.12: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω2
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γ = 0.8
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Figure 7.13: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω1
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Figure 7.14: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω1
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γ = 0.8
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Figure 7.15: Absolute value of the difference for the quadratures and integrals corre-
sponding to Ω0 and Ω2
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Figure 7.16: Condition numbers of GMn and MMn corresponding to the distribution
functions Ω0 and Ω2
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As we can see in the above figures, the Hankel matrices GMn and MMn are
ill-conditioned in both discussed cases of perturbation of distribution function. So,
their condition numbers doesn’t give us any information whether the Gauss-Christoffel
quadrature will be sensitive to the perturbation.
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Chapter 8

Conclusion

In this work we have shown some connections between different mathematical ap-
proaches through the problem of moments. In the Chapter 2 a brief historical review
of the study of the moment problem was given. In the Chapters 3 and 4 two different
approaches to the moment problem were studied in order to show the connection with
the modern iterative methods. In the Chapters 5 and 6 it was shown how the mo-
ment problem is connected with the solving of equations of Sturm-Liouville type and
with the solution of large scale dynamical systems. It was shown, that the moment
problem can be seen as the theoretical background in many mathematical methods,
especially in the Gauss-Christoffel quadrature, Lanczos method and CG method. The
deep knowledge of the mechanisms behind the numerical methods could lead to the
new results as shown in the Chapter 7 devoted to the numerical illustrations. So, the
study of the connections through the moment problem could be very useful and could
reveal new ways in the research. The contribution of this work is the summarizing of
these connections in an understandable way.
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