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Chapter 1

Introduction

Many time series arising in practice are intrinsically non-negative, in the sense that the
nature of observed phenomena does not allow negative values. Non-negative time series
occur in many different domains of applications involving many seemingly distant dis-
ciplines. Increasing demand for statistical methodologies which can model adequately
such observations has been observed in hydrological applications. Many aspects of hy-
drological cycle, e.g. rainfall runoff, precipitation or streamflow, have been subjected to
non-negative time series models, see e.g. Hutton (1990). Another area of applications
with cumulative occurence of non-negative time series is financial data, see Tsay (2005).

In the context of autoregressive moving average models, the established methodology
based on the assumptions of normality (in the innovation sequence) is no longer appli-
cable to adequately represent the non-negative time series. Instead, more suitable inno-
vation distributions have been sucessively accommodated in the autoregressive/moving
average schemes. The associated estimation theory have been developed by several au-
thors: Anděl and Garrido (1991), Anděl (1988a), Anděl (1988b), Anděl (1990), Datta
and McCormick (1995), Bell and Smith (1986).

Parameter estimation in non-negative autoregressive moving average models raises
some additional challenges. Even under the assumption of positive innovations, the
model parameters need to satisfy certain conditions so that the fitted model indeed de-
fines a valid non-negative random process. Such non-negativity conditions can be then
directly incorporated in the estimation scheme, in that the solution can be obtained by
solving a constrained optimization problem. If not included in estimation, the conditions
for non-negativity can be used for a post-hoc verification that our fitted model indeed
corresponds to a non-negative time series. Our interest here will be centered almost ex-
clusively on the non-negativity conditions. For an overview of the estimation techniques
in non-negative time series we refer to the last chapter in this thesis and to the cited
literature.

The practical utility of conditions for non-negativity is recognized mainly in anal-
ysis of financial time series. One important application is modeling volatility of as-
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set return. A popular econometric model for volatility modeling is the Generalized
Autoregressive Conditional Heteroscedastic (GARCH) model (Engle (1982), Bollerslev
(1986)). Recently, considerable effort has been made to identify conditions under which
the process of conditional variances in the GARCH model is non-negative almost surely.
Nelson and Cao (1992) present a set of necessary and sufficient conditions for the non-
negativity of a lower orderGARCH(p, q) process and a sufficient condition for the general
GARCH(p, q) model. Tsai and Chan (2008) showed that this conditions was also neces-
sary. Recently, non-negativity conditions for hyperbolic GARCH model were provided
by Conrad (2010).

Despite the majority of the up-to-date literature devoted to the conditions for non-
negativity in time series deals with the GARCH model or some modification thereof, we
believe that the conditions for Autoregressive Moving Average (ARMA) processes are
equally important. However, the literature on the non-negativity conditions for ARMA
models is far more sparse.

In this thesis we give an overview of the state-of-the-art results on this topic. These
involve mainly results for lower order univariate autoregressive and autoregressive moving
average models based on the connection between the non-negativity of a kernel sequence
and absolute monotonicity of its generating function. We aspired to extend the set of
existing results by deriving conditions for higher order univariate ARMA models. Our
methodological strategy consists of two inferential approaches. The first one produces
conditions expressed in terms of roots of autoregressive lag polynomial. This approach
has been utilized to derive non-negativity conditions for lower order AR models, Tsai
and Chan (2007). We demonstrate that this strategy enables derivation of tractable non-
negativity conditions also for ARMA models, namely ARMA(3, 1) and ARMA(3, 2).
These two models are not the single ones for which the explicit result was missing. To
the best of our knowledge, the conditions for ARMA(2, 1) models have also not been
derived yet. We present an explicit result for this model, which appears as a special case
of the conditions we deduce for ARMA(2, q) and finally also for ARMA(p, q) models.
The latter results were derived using the second approach, which rests purely on the
similarity between ARMA and GARCH models. We exploited the existing results for
GARCH models to derive analogous conditions for the general ARMA model.

Finally, we benefit from our experience acquaired in the univariate setting to elaborate
on conditions in multivariate time series. These are based on the observation that the
absolute monotonicity argument applies also for multivariate time series, just with the
coefficients replaced by matrices. We present a set of necessary and sufficient conditions
for two-variate AR(1), ARMA(1, 1) and ARMA(q, 1) models. Whereas the result for
AR(1) model has been derived previously by Anděl (1992), just by different argument,
the two later results are rather new.

We start our discussion with the theoretical introduction into time series methodol-
ogy, Chapter 2. The univariate conditions for the non-negativity are dealt in Chapter
3. The treatment of multivariate conditions is postponed until Chapter 4. In Chapter 5
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we briefly discuss estimation techniques in non-negative time series. We wrap up with a
discussion on further research topics in Chapter 6.
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Chapter 2

Theoretical Set up

In this section we introduce the basic theoretical background for (vector-valued) autore-
gressive moving average time series, following the line of the book of Brockwell and Davis
(1986).

2.1 Univariate Stationary ARMA Processes

Let (Ω,A, P ) be a probability space and let T ≡ Z be an index set. Denote X(t, ω) a real
valued function defined on T ×Ω such that for each given t ∈ T , X(t, ω) is a real random
variable on (Ω,A, P ). Let Xt denote the random variable X(t, ω). Then a real valued
time series is defined as a collection of random variables {Xt : t = 0,±1,±2, . . . }. For
a fixed ω ∈ Ω, X(t, ω) is a real valued function in t known as the realization function.
Given ω ∈ Ω, the sequence {X(t, ω) : t ∈ T} is called a realization of a time series
{Xt : t ∈ T}. In the following text we will use the term time series to characterize both
the sequence of random variables and a sequence of realizations. We believe that the
proper meaning will be clear from the context.

Two important probabilistic concepts are often distinguished in the time series lite-
rature: the strict stationarity and the weak stationarity.

Definition 2.1.1. For a given n ∈ N and a set of indices i1, . . . , in denote Fi1,...,in(·) the
joint distribution function of a random vector (Xi1 , . . . , Xin)′. The time series {Xt : t =
0,±1,±2, . . . } is said to be strictly stationary if

Fi1,...,in(x1, . . . , xn) = Fi1+h,...,in+h(x1, . . . , xn),

for all n ∈ N, any set of integer indices i1, . . . , in and any real numbers x1, . . . , xn.

The weak stationarity relaxes the distributional assumptions as it operates only with
first and second order moments.
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2.1 Univariate Stationary ARMA Processes

Definition 2.1.2. The time series {Xt : t = 0,±1,±2, . . . } is said to be weakly sta-
tionary if

(1) EX2
t <∞ (t = 0,±1,±2, . . . ),

(2) EXt ≡ c (t = 0,±1,±2, . . . ),

(3) E(Xt+h − EXt+h)(Xt − EXt) is independent of t for any choice of h ∈ Z.

Remark 2.1.1. In what will follow, by a stationary random process we always refer to a
weakly stationary random process.

One important class of time series appears as a stationary solution to a certain set
of linear difference equations involving white noise.

Definition 2.1.3. A sequence of random variables {Zt : t = 0,±1,±2, . . . } is said to be
white noise with mean µ and variance σ2, written as {Zt} ∼WN(µ, σ2), if and only if
the variables Zt, t ∈ Z, are uncorrelated and have mean µ and variance σ2.

Remark 2.1.2. The white noise sequence {Zt : t = 0,±1,±2, . . . } is sometimes called a
sequence of inovations. We do use these two terms interchangeably.

Definition 2.1.4. The time series {Xt : t = 0,±1,±2, . . . } is said to be an autore-
gressive moving average process of orders p and q (abbreviated as ARMA(p, q)) if
it is stationary and if for every t ∈ Z

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q, (2.1.1)

where {Zt : t = 0,±1,±2, . . . } is the white noise with mean µ and variance σ2 and
φ1, . . . , φp, θ1, . . . , θq are real coefficients.

Remark 2.1.3. It is customary to assume that the mean µ of the white noise sequence is
equal to zero. Nevertheless, later in the text we will work with ARMA processes with
non-negative innovations. That is why we introduced a more general definition.

Remark 2.1.4. The autoregressive process of order p (abbreviated as AR(p)) refers
to a special case of ARMA(p, q) when q = 0. The moving average process of order q
(abbreviated as MA(q)) refers to a special case of ARMA(p, q) when p = 0.

The equation in (2.1.1) is usually written compactly using the back-shift operator B
given by BjXt = Xt−j and the lag polynomials

φ(z) = 1− φ1z − · · · − φpzp

and
θ(z) = 1 + θ1z + · · ·+ θpz

q

Non-negative Time Series 11



2.2 Multivariate Stationary ARMA Processes

as follows:
φ(B)Xt = θ(B)Zt, t = 0,±1,±2, . . . .

The polynomials φ(·) and θ(·) are called autoregressive and moving average lag poly-
nomials respectively. In practice it is often possible to describe the behavior of the
observed time series using elementary time series like white noise. These are known as
linear time series, as they represent the series as an (infinite) linear combination of the
white noise sequence. This property relates to the concept of causality of a stationary
random process.

Definition 2.1.5. The ARMA(p, q) process {Xt : t = 0,±1,±2, . . . } defined by (2.1.1)
is said to be causal if there exists a sequence of constants {ψj}∞j=0 such that

∑∞
j=0 |ψj| <

∞ and

Xt =
∞∑
j=0

ψjZt−j, t = 0,±1,±2, . . . . (2.1.2)

The following theorem (Theorem 3.1.1 in Brockwell and Davis (1986), p. 85) gives a
set of necessary and sufficient conditions for an ARMA process to be causal.

Theorem 2.1.1. Let {Xt : t = 0,±1,±2, . . . } be an ARMA(p, q) process for which the
polynomials φ(·) and θ(·) have no common zeroes. Then {Xt : t = 0,±1,±2, . . . } is
causal if and only if φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1. The coefficients ψj in
(2.1.2) are determined from the equation

ψ(z) =
∞∑
j=0

ψjz
j =

θ(z)

φ(z)
, |z| ≤ 1. (2.1.3)

Proof. We refer to Brockwell and Davis (1986), p. 85.

2.2 Multivariate Stationary ARMA Processes

In many practical situations the variable measured over time, a subject to a time series
model, may be a part of a more complex system. Its behavior may be partially attributed
to some other interacting variables. Modelling co-movements and interactions between
these variables is then necessary to acquire understanding of the underlying mechanisms
in such a system. Multivariate time series are uniquely suited to capture these complex
relationships.

By m-variate time series {X t = (Xt1, . . . , Xtm)′ : t = 0,±1,±2, . . . } we under-
stand a collection of m scalar time series {Xti : t = 0,±1,±2, . . . }, i = 1, . . . ,m, which
are observed in parallel and encapsulated for each t ∈ Z in a vector the possibly related
random variables {Xt1, . . . , Xtm}.

The theory on univariate time series can be extended in a natural way for the mul-
tivariate setting. The concepts of stationarity and causality are analogous.

Non-negative Time Series 12



2.2 Multivariate Stationary ARMA Processes

Definition 2.2.1. The m-variate series {X t = (Xt1, . . . , Xtm)′ : t = 0,±1,±2, . . . } is
said to be weakly stationary if

(1) EX2
ti <∞ (i = 1, . . . ,m; t = 0,±1,±2, . . . ),

(2) EX t ≡ (EXt1, . . . ,EXtm)′ = µ (t = 0,±1,±2, . . . ),

(3) E[(X t+h − EX t+h)(X t − EX t)
′] is independent of t for any choice of h ∈ Z.

Definition 2.2.2. A sequence of random vectors {Zt = (Zt1, . . . , Ztm)′ : t = 0,±1,±2, . . . }
is said to be m-variate white noise with mean µ and covariance matrix Σ, abbreviated
as as {Zt} ∼ MWN(µ,Σ), if and only if the random vectors Zt, t ∈ Z, have mean µ
and for h ∈ N it holds that

E[(Zt+h − µ)(Zt − µ)′] =

{
Σ if h = 0,

0, otherwise,

where 0 denotes a m ×m matrix with zero entries and where the matrix Σ is positive
definite.

Definition 2.2.3. The series {X t = (Xt1, . . . , Xtm)′, t = 0,±1,±2, . . . } is said to be a
vector-valued autoregressive moving average process of orders p and q (abbrevi-
ated as V ARMA(p, q)) if it is weakly stationary and if for every t ∈ Z

X t − Φ1X t−1 − · · · − ΦpX t−p = Zt + Θ1Zt−1 + · · ·+ ΘqZt−q, (2.2.4)

where {Zt = (Zt1, . . . , Ztm)′ : t = 0,±1,±2, . . . } is a m-variate white noise sequence
with mean vector µ and covariance matrix Σ and where Φ1,Φ2, . . . ,Φp,Θ1,Θ2, . . . ,Θq

are real m×m matrices.

Again, the equations in (2.2.4) can be rewritten using the back-shift operator B(·)
and matrix-valued autoregressive polynomial

Φ(z) = Im − Φ1z − · · · − Φpz
p

and moving average polynomial

Θ(z) = Im + Θ1z + Θ2z
2 + · · ·+ Θqz

q

as follows:
Φ(B)X t = Θ(B)Zt.

The definition of a causal multivariate process is practically the same as the Definition
2.1.5. The only difference is that the coefficients {ψj}∞j=0 in the univariate setting are
now replaced by matrices {Ψj}∞j=0.

Non-negative Time Series 13



2.2 Multivariate Stationary ARMA Processes

Definition 2.2.4. The vector-valued autoregressive moving average process {X t =
(Xt1, . . . , Xtm)′ : t = 0,±1,±2, . . . } defined by (2.2.4) is said to be causal if there

exists a sequence of matrices
{

Ψk =
(
ψkij

)m
i,j=1

}∞
k=0

, which is absolutely summable, i.e.∑∞
k=0 |ψkij | <∞ (i, j = 1, . . . ,m), and such that

Xt =
∞∑
k=0

ΨkZt−k, t = 0,±1,±2, . . . .

The necessary and sufficient condition for the V ARMA process to be causal is sum-
marized in the following theorem.

Theorem 2.2.1. Let {X t = (Xt1, . . . , Xtm)′ : t = 0,±1,±2, . . . } be a V ARMA(p, q)
process. Then {X t : t = 0,±1,±2, . . . } is causal if

det[Φ(z)] 6= 0 for all z ∈ C such that |z| ≤ 1.

The matrices Ψj are then determined uniquely from

Ψ(z) =
∞∑
j=0

Ψjz
j = Φ(z)−1Θ(z), |z| ≤ 1.

Proof. The proof can be found in Brockwell and Davis (1986), p. 408.
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Chapter 3

Non-negativity Conditions for
Univariate ARMA Processes

The amount of literature on non-negativity conditions for ARMA models is relatively
modest. Relevant work on this topic has been done by Anděl (1991), who derived
necessary and sufficient conditions for the non-negativity of AR(2) and AR(1) models.
His work falls within the framework of conditions which are formulated naturally as a
set of constraints on the autoregressive model parameters. In some situations, however,
it may be more convenient to express the non-negativity conditions in terms of roots
of autoregressive (and/or moving average) polynomials. This methodological framework
builds on the theory of absolutely monotone functions and has been introduced by Tsai
and Chan (2007). The ease of verifiability of the two types of conditions is model
dependent.

This section provides a compact review of the two approaches and discloses some
interesting connections between them. Some of the presented results are rather new, as
we have not found any equivalent in the literature published to date. Our contributions
can be summarized in the following points:

• Tsai and Chan (2007) derived sufficient and necessary conditions for AR(1), AR(2),
AR(3), AR(4) models. We provide a set of sufficient and necessary conditions for
an autoregressive model of a general order.

• Tsai and Chan (2007) derived sufficient and necessary conditions for ARMA(1, q)
models. We provide recipes for explicit results for ARMA(2, 1), ARMA(3, 1) and
ARMA(3, 2).

• Tsai and Chan (2007) provided only necessary conditions for ARMA(p, q) pro-
cesses. We argue that the conditions of Tsai and Chan (2008) for GARCH(p, q)
processes can be applied with only slight modifications also for ARMA(p, q) mod-
els. We take advantage of this similarity and formulate an analogous set of sufficient
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3.1 Non-negativity Conditions for Linear Processes

and necessary conditions for ARMA models of general orders. We will see that
these conditions are relatively easy to verify for ARMA(2, q) models.

Our discussion will start with the conditions for non-negativity of a general linear
process.

3.1 Non-negativity Conditions for Linear Processes

We have seen in Theorem 2.1.1 that under mild assumptions on the zeroes of the lag
polynomials, the ARMA process can be expressed as an infinite sum of weighted lagged
inovations, i.e.

Xt =
∞∑
j=0

ψjZt−j (t = 0,±1,±2, . . . ). (3.1.1)

A similar property holds also for the conditional variances in GARCH models, where
squared inovations are used instead. Clearly, if the sequence of weights in the infinite
linear combination is non-negative, the process of conditional variances must be also
non-negative. The same would apply for the ARMA process if we assumed that the
inovation sequence {Zt : t = 0,±1,±2, . . . } in (3.1.1) consists of non-negative random
variables.

Definition 3.1.1. A sequence of random variables {Z∗t : t = 0,±1,±2, . . . } is said to
be a non-negative inovation sequence if the random variables Z∗t are uncorrelated,
P(Z∗t ≥ 0) = 1 and 0 < varZ∗t <∞, ∀t ∈ Z.

The following result of Anděl (1991) shows that when the distribution of the non-
negative innovation sequence satisfies certain conditions, the non-negativity of {ψj}∞j=0

is also a necessary condition for the non-negativity of the resulting linear process.

Theorem 3.1.1. Let {Z∗t : t = 0,±1,±2, . . . } be a non-negative inovation sequence.
Assume that the inovations are iid random variables with a distribution function F (·).
Assume that F (d)−F (c) < 1 for all 0 < c < d <∞. If there exists an index k ∈ Z such
that ψk < 0, then with probability one Xt < 0 for infinitely many indices t ∈ Z.

Proof. A proof can be found in Anděl (1991).
From Theorem 3.1.1 and the preceding discussion it follows that it makes enough

sense to investigate conditions under which the non-negativity of the sequence {ψj}∞j=0

holds. As will be seen in a while, the non-negativity of the “kernel” sequence {ψj}∞j=0

can be related to the absolute monotonicity property of its generating function. Let us
first recall definitions of a generating function and an absolutely monotone function.

Definition 3.1.2. Let {ψj}∞j=0 denote a sequence of real numbers ψ0, ψ1, ψ2 . . . . If

ψ(z) = ψ0 + ψ1z + ψ2z
2 + . . . (3.1.2)
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3.1 Non-negativity Conditions for Linear Processes

converges in an interval −z0 < z < z0, where z0 ∈ R+, then ψ(·) is called the generating
function of the sequence {ψj}∞j=0.

Definition 3.1.3. A continuous function f(·) is said to be absolutely monotone in the
interval 0 ≤ z < 1 if all the derivatives f (n)(z) (n ∈ N) are non-negative for 0 < z < 1.

The following theorem links the non-negativity property of the sequence of real num-
bers with the absolute monotonicity property of its generating function.

Theorem 3.1.2. The sequence of real numbers {ψj}∞j=0 is non-negative if and only if
its generating function ψ(z) is absolutely monotone in 0 ≤ z < 1.

Proof. The proof can be found in Feller (1971), p. 232.

Remark 3.1.1. Feller (1979), p. 232, proves even stronger statement about absolutely
monotone functions, namely the equivalence of the following conditions:

(1) a continuous function f(z) defined on 0 ≤ z < 1 is absolutely monotone,

(2) a continuous function f(z) defined on 0 ≤ z < 1 admits a power series representa-
tion (3.1.2) with non-negative coefficients.

The linkage between the non-negativity of the weights {ψ}∞j=0 in the infinite moving
average representation and the absolute monotonicity of its generating function allows
derivation of several easily verifiable non-negativity conditions. The sustainability of
absolute monotonicity with respect to multiplication is especially helpful, as will be seen
later in this section.

Theorem 3.1.3. A product of two absolutely monotone functions is absolutely mono-
tone.

Proof. A proof can be found in Widder (1946), p. 145.

3.1.1 The Implications for ARMA Processes

From the discussion above, we can already draw some important implications for the non-
negativity of ARMA models. These will be utilized throughout next sections. Therefore
we find it convenient to introduce them already at this point.

From this point onwards, whenever we mention autoregressive moving average mod-
els, we implicitly assume that the polynomials θ(z) and φ(z) have no common roots.

Theorem 3.1.4. The kernel sequence {ψj}∞j=0 in the moving average representation of
the general ARMA(p, q) process is non-negative if and only if its generating function

ψ(z) =
θ(z)

φ(z)
(|z| < 1)

is absolutely monotone in 0 ≤ z < 1.
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3.1 Non-negativity Conditions for Linear Processes

Proof. A proof follows directly from Theorem 3.1.2.
The following necessary condition for the non-negativity of the kernel sequence will

be repeatedly utilized in next sections.

Theorem 3.1.5. Let λ1, . . . , λp denote the roots of the autoregressive lag polynomial
φ(z) = 1 − φ1z − . . . φpzp, such that 1 < |λ1| ≤ |λ2| ≤ · · · ≤ |λp|. Assume that these
roots are distinct. If the kernel sequence {ψ}∞j=0 of the ARMA(p, q) process is non-
negative, then λ1 is real and λ1 > 1.

Proof. The indication of the proof was given in Tsai and Chan (2007). We will discuss
it in more detail.

By the equation (4.8) in Feller (1968), p. 276, we have

ψn =

p∑
i=1

ri

λn+1
1

, n ≥ max(q − p, 0) + 1, (3.1.3)

where ri = − θ(λi)

φ(1)(λi)
. First assume that λ1 ∈ R. We can write

ψnλ
n+1
1 = r1 +

p∑
i=2

(
λ1

λi

)n+1

ri.

Assume that a root λi, i ∈ {2, . . . , p}, is real. From the assumption |λ1| < |λi| it holds
that

lim
n→∞

ri

(
λ1

λi

)n+1

= 0.

If a root λi, i ∈ {2, . . . , p− 1}, is complex and λi+1 = λ̄i, then we have

λn+1
1 ri

λn+1
i

+
λn+1

1 ri+1

λn+1
i+1

= 2Re(riλ̄
n+1
i )

(
λ1

|λi|2

)n+1

.

Since,

∣∣∣∣2Re(riλ̄
n+1
i )

(
λ1

|λi|2

)n+1
∣∣∣∣ ≤ 2|ri|

(
|λ1|
|λi|

)n+1

and limn→∞ 2|ri|
(
|λ1|
|λi|

)n+1

is zero, we

have

lim
n→∞

ri

(
λ1

λi

)n+1

+ ri+1

(
λ1

λi+1

)n+1

= 0.

This altogether gives

lim
n→∞

p∑
i=2

(
λ1

λi

)n+1

ri = 0,
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3.1 Non-negativity Conditions for Linear Processes

which implies that

lim
n→∞

ψnλ
n+1
1

r1

= 1. (3.1.4)

Now assume that λ1 < −1. The sequence
{
ψnλ

n+1
1

r1

}∞
i=1

is of oscilating sign, meaning that

ψnλ
n+1
1

r1
is negative for infinitely many n ∈ N. Therefore, it is not possible that the limit

of this sequence equals one. This implies that if λ1 ∈ R and |λ1| > 1, it must be greater
than one.

Now assume that λ1 ∈ C and λ2 = λ̄1. We can write

ψn|λn+1
1 | = 2Re(r1λ̄

n+1
1 )

|λn+1
1 |

+

p∑
i=3

(
|λ1|
λi

)n+1

ri.

Similarly as in the previous case, the assumption |λ1| < |λi| implies

lim
n→∞

p∑
i=3

(
|λ1|
λi

)n+1

ri = 0

and therefore

lim
n→∞

ψn|λn+1
1 |2

2Re(r1λ̄
n+1
1 )

= 1. (3.1.5)

We claim that there exists an infinite number of indices n ∈ N such that 2Re(r1λ̄
n+1
1 )

is negative. We prove this claim by contradiction. Assume that 2Re(r1λ̄
n+1
1 ) is non-

negative ∀n ∈ N. This assumption is without loss of generality, since we could (without
much change in the proof) assume that 2Re(r1λ̄

n+1
1 ) ≥ 0 for all n ∈ N, which are greater

than or equal to some n0 ∈ N.
Denote r1 = Aeiα and λ1 = Beiβ. Then we have 2Re(r1λ̄

n+1
1 ) = 2 cos[α + (n + 1)β].

Note that it is not possible that 2 cos[α + (n + 1)β] = 0 for all n ∈ N. Even if we could
find n ∈ N such that 2 cos[α + (n + 1)β] = 0, then 2 cos[α + (n + 2)β] would not be
zero. This follows from the fact that β 6= kπ, k ∈ N (because we assumed λ1 ∈ C). That
means there exist infinitely many indices n ∈ N such that 2Re(r1λ̄

n+1
1 ) > 0. For those

n ∈ N, two situations can occur

(i) 0 < [α + (n+ 1)β]mod 2π < π/2, or

(ii) 3π/2 < [α + (n+ 1)β]mod 2π < 2π.

Because β 6= kπ, k ∈ N, there must exist integer K such that π/2 ≤ (K1β)mod 2π ≤ π.
Assume n ∈ N satisfies the condition in (i). Then it holds that π/2 < [α+ (n+K +

1)β]mod 2π < 3π/2, which implies that 2Re(r1λ̄
n+K+1
1 ) is negative for such n ∈ N. For

those n ∈ N, which satisfy (ii), we have π/2 < [α + (n−K + 1)β]mod 2π < 3π/2. This
implies that 2Re(r1λ̄

n−K+1
1 ) is negative. One way or another, there exists an infinite

number of indices n ∈ N, such that 2Re(r1λ̄
n+1
1 ) is negative. This, however, contradicts

the fact that the limit in (3.1.5) is one. Therefore λ1 cannot be a complex number.
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3.2 Autoregressive processes

Remark 3.1.2. The assumption that all the roots are distinct can be relaxed. The The-
orem 3.1.5 still holds, provided that the root λ1 is of the multiplicity one. If, say, root
λi, i ∈ {2, . . . , p}, is of the multiplicity 2, the expansion in (3.1.3) will contain an addi-
tional term of the form a(n+1)

λn+2
i

. This term has no impact of the limit behavior in (3.1.4)

and (3.1.5). A similar property holds for multiplicities higher than 2.

From now onwards, we will assume that the noise sequence in the infinite moving
average representation of a causal ARMA process is the non-negative inovation sequence.
The non-negativity of the series {Xt : t = 0,±1,±2, . . . } with such a representation then
boils down to the non-negativity of the sequence {ψj}∞j=0. In the following sections we
discuss separately some interesting cases of lower order ARMA models as well as general
conditions for ARMA(p, q) models. We start with the discussion of AR models.

3.2 Autoregressive processes

Investigating the non-negativity of the kernel sequence {ψj}∞j=0 via the absolute mono-
tonicity property of its generating function ψ(z) in (2.1.3) has appeared to be a fruitfull
idea. Tsai and Chan (2007) derived a variety of sufficient, necessary, and sufficient and
necessary conditions for ARMA processes. In this section we review the existing results
for lower-order autoregressive processes and we suggest necessary and sufficient condi-
tions for a general AR(p) process. We start with the simplest possible model, the AR(1)
model.

3.2.1 AR(1)

The AR(1) process {Xt : t = 0,±1,±2, . . . } with non-negative innovations is defined as
a stationary solution of the following stochastic difference equations

Xt = φ1Xt−1 + Z∗t (t = 0,±1,±2, . . . ),

where {Z∗t : t = 0,±1,±2, . . . } is the non-negative inovation sequence from Definition
3.1.1. From the Theorem 2.1.1 we know that in order the process {Xt : t = 0,±1,±2, . . . }
to be causal it must hold that |φ1| < 1. The fulfillment of the causality condition allows
the following linear representation

Xt =
∞∑
j=0

ψjZ
∗
t−j (t = 0,±1,±2, ),

where ψj = φj1. Clearly, the kernel sequence {ψj}∞j=0 is non-negative if and only if φ1 ≥ 0.
The following theorem summarizes the non-negativity of the AR(1) process formally.
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3.2 Autoregressive processes

Theorem 3.2.1. Let {Xt : t = 0,±1,±2, . . . } be AR(1) process. Denote λ1 the root of
the autoregressive lag polynomial φ(z) = 1− φ1z. The sequence {ψj}∞j=0 is non-negative
if and only if λ1 is real and λ1 > 1.

Proof. In order λ1 to be well-defined, assume that φ1 6= 0. The root λ1 of the autore-
gressive polynomial 1−φ1z = 0 is always real and equals λ1 = 1

φ1
. In order to assure the

non-negativity of {ψj}∞j=0, it is necessary and sufficient that 0 < φ1 < 1. This condition
is equivalent to λ1 > 1.

Remark 3.2.1. Another way to prove the sufficy in Theorem 3.2.1 is by exploiting the
properties of absolutely monotone functions. For the AR(1) proces, the generating func-
tion is the following

ψ(z) =
1

1− z
λ1

.

For 0 < z < 1 and λ1 > 0 the n−th derivative

ψ(n)(z) =
n!

λn1

(
1− z

λ1

)−(n+1)

is non-negative for every n ≥ 0. In other words, for λ1 > 1 the function ψ(z) is absolutely
monotone in 0 ≤ z < 1. By Theorem 3.1.2, this is equivalent to the non-negativity of
{ψj}∞j=0.

Remark 3.2.2. The necessity of the condition λ1 > 1 in Theorem 3.2.1 follows also from
the Theorem 3.1.5.

The non-negativity conditions for AR(1) process were rather trivial. The situations
gets more complicated for AR(2).

3.2.2 AR(2)

The AR(2) process {Xt : t = 0,±1,±2, . . . } with non-negative innovations is defined as
a stationary solution of the following autoregressive equations

Xt − φ1Xt−1 − φ2Xt−2 = Z∗t (t = 0,±1,±2, . . . ).

The causality condition from Theorem 2.1.1 demands that the roots of the autoregressive
lag polynomial λ1 and λ2 are outside the unit circle. Said in terms of autoregressive
parameters φ1 and φ2, this translates as follows:

φ1 + φ2 < 1, φ2 − φ1 < 1, φ2 > −1.

Anděl (1991) has shown that the non-negative parametric region for AR(2) process is

φ1 + φ2 < 1, φ2
1 + 4φ2 ≥ 0, φ1 ≥ 0. (3.2.6)

The same conclusion supported by a different argument was given also by Tsai and Chan
(2007). They formulated the following non-negativity conditions.
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Theorem 3.2.2. Let {Xt : t = 0,±1,±2, . . . } be an AR(2) process. Denote λ1, λ2 the
roots of the autoregressive lag polynomial φ(z) = 1−φ1z−φ2z

2, such that 1 < |λ1| ≤ |λ2|.
Then the sequence {ψj}∞j=0 is non-negative if and only if λ1 and λ2 are real, λ1 > 1 and
λ−1

1 + λ−1
2 ≥ 0.

Proof. We reproduce the proof as it was given by Tsai and Chan (2007). The necessity of
the condition λ1 > 1 follows from the Theorem 3.1.5. Note that roots of a real polynomial
are either all real or come in conjugate imaginary pairs. The necessity of λ2 ∈ R hence
comes along with the necessary condition λ1 ∈ R. The necessity of λ−1

1 +λ−1
2 ≥ 0 follows

from two facts: (1) the coefficient φ1 of the autoregressive lag polynomial 1−φ1z−φ2z
2

equals λ−1
1 + λ−1

2 , (2) from the equation (3.3.5) of Brockwell and Davis (1986) p. 91 we
get ψ1 = φ1.

To prove the sufficiency of given conditions, we first assume λ2 > 1. The generating
function of the sequence {ψj}∞j=0 is

ψ(z) =
1

(1− z
λ1

)(1− z
λ2

)
. (3.2.7)

From Remark 3.2.1 we know that for 0 < z < 1, λ1 > 1 and λ2 > 1, each of the two
factors in (3.2.7) is an absolutely monotone function. According to Theorem 3.1.3, the
function ψ(z) is also absolutely monotone. The non-negativity of the sequence {ψj}∞j=0

then follows from Theorem 3.1.2.
Now we prove the sufficiency of λ1 > 0 and 1/λ1 − 1/λ2 > 0 for λ2 < −1. According

to equation (4.8) in Feller (1968) p. 276 it holds that

ψn =
1

φ2(λ1 − λ2)

(
1

λn+1
1

− 1

λn+1
2

)
. (3.2.8)

The coefficient φ2 equals − 1
λ1λ2

. Provided that λ1 > 1 and λ2 < −1, we have φ2 > 0 and
also λ1−λ2 > 0. The non-negativity of (3.2.8) is then assured whenever 1

λn+1
1

− 1
λn+1
2

≥ 0.

This expression is always non-negative for n = 2k. For n = 2k + 1 we can rewrite it as
1

λn+1
1

− 1
(−λ2)n+1 , which is non-negative because we assumed λ−1

1 + λ−1
2 ≥ 0.

Remark 3.2.3. The assumption λ−1
1 +λ−1

2 ≥ 0 in Theorem 3.2.2 is somewhat redundant.
For λ1 > 1 and λ2 > 1 it holds trivially and for λ1 > 1 and λ2 < −1 it translates as
λ1 ≤ |λ2|, which we assumed anyway.

Remark 3.2.4. There is indeed a mutual correspondence between the Theorem 3.2.2
and the non-negativity parameter constraints in (3.2.6). Since φ1 = λ−1

1 + λ−1
2 , the

condition λ−1
1 +λ−1

2 ≥ 0 coincides with φ1 ≥ 0. The condition λ1 > 1 is contained within
λ−1

1 + λ−1
2 > 0. If λ1 < −1, we would have 0 ≤ λ2 < −λ1. This would contradict our

nontation 1 < |λ1| ≤ |λ2|. Next, the two roots λ1, λ2 are real if and only if φ2
1 + 4φ2 ≥ 0.

The non-negative causal parametric region for AR(2) process is depicted on Figure 3.1.
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3.2 Autoregressive processes

Figure 3.1: The AR(2) non-negativity parametric region for φ1 and φ2

3.2.3 AR(3)

Now, we consider a causal AR(3) process {Xt : t = 0,±1,±2, . . . } with non-negative
innovations, determined from the following stochastic difference equations

Xt − φ1Xt−1 − φ2Xt−2 − φ3Xt−3 = Z∗t (t = 0,±1,±2, . . . ),

where the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − φ2z
2 − φ3z

3 lie
outside the unit circle. We distinguish the following two situations: (1) all the roots
of the autoregressive polynomial are real, (2) one root is real and the other two form
a complex conjugate pair. In the first scenario, the conditions for the non-negativity
are analogous to those for AR(2) in Theorem 3.2.2. The proof rests purely on algebraic
operations with inequalities and is rather lengthy. We do not reproduce it here and refer
a reader to Tsai and Chan (2007).

Theorem 3.2.3. Let {Xt : t = 0,±1,±2, . . . } be an AR(3) process. Denote λ1, λ2, λ3

the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − φ2z
2 − φ3z

3, such that
1 < |λ1| ≤ |λ2| ≤ |λ3|. Assume λj ∈ R, j = 1, . . . , 3. Then {ψj}∞j=0 is non-negative if
and only if λ−1

1 + λ−1
2 + λ−1

3 ≥ 0 and λ1 > 1.

Proof. A proof is given in Tsai and Chan (2007).
Now, consider the second situation. Denote again λ1, λ2 and λ3 the the three roots

of the autoregressive lag polynomial so that 1 < |λ1| ≤ |λ2| ≤ |λ3|. From Theorem 3.1.5
the conditions λ1 ∈ R and λ1 > 1 are necessary for the non-negativity of {ψ}∞j=0. In the
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following, we assume they are satisfied. Denote further λ2 = λ̄3 = a+ bi, where a, b ∈ R
and b > 0. From the equation (4.8) in Feller (1968) p. 276 it holds that

ψn =
r1

λn+1
1

+
r2

λn+1
2

+
r3

λn+1
3

,

where ri = − 1
φ(1)(λi)

, i = 1, 2, 3. More specifically,

r1 =
1

φ3(λ1 − λ2)(λ1 − λ3)
, r2 =

1
φ3(λ2 − λ1)(λ2 − λ3)

and r3 =
1

φ3(λ3 − λ1)(λ3 − λ2)
.

Now denote ψ∗n = ψn|λ1 − λ2|2λn+1
1 |λ2|2n+2. Then we have

ψ∗n =|λ2|2n+2 +
λn+2

1 (λn+1
3 − λn+1

2 )

λ3 − λ2

− λn+1
1 (λn+2

3 − λn+2
2 )

λ3 − λ2

(3.2.9)

=|λ2|2n+2 +
λn+2

1 |λ2|n+1 sin[(n+ 1)θ]

|λ2| sin θ
− λn+1

1 |λ2|n+2 sin[(n+ 2)θ]

|λ2| sin θ
(3.2.10)

=λn+2
1 |λ2|n

[∣∣∣∣λ2

λ1

∣∣∣∣n+2

−
∣∣∣∣λ2

λ1

∣∣∣∣ sin[(n+ 2)θ]

sin θ
+

sin[(n+ 1)θ]

sin θ

]
. (3.2.11)

Denote

fn,θ(x) = xn+2 − xsin[(n+ 2)θ]

sin θ
+

sin[(n+ 1)θ]

sin θ
. (3.2.12)

It is not difficult to see that the following three conditions are equivalent:

(a) the single coefficient ψn is non-negative,

(b) the single coefficient ψ∗n is non-negative,

(c) fn,θ

(∣∣∣λ2

λ1

∣∣∣) is non-negative.

The function fn,θ(·) is increasing on [1,∞) for any n ∈ N and θ ∈ (0, π). This stems
from the following fact: for x ≥ 1 and θ ∈ (0, π) it holds

f ′n,θ(x) =(n+ 2)xn+1 − sin[(n+ 2)θ]

sin θ

≥ (n+ 2) sin θ − sin[(n+ 2)θ]

sin θ
> 0.

We have utilized the following inequality sin[(n+ 2)θ] < (n+ 2) sin θ, for θ ∈ (0, π) and
any n ∈ N. A proof of this inequality can be found in Tsai and Chan (2007) Now, there
are two possibilities:
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(i) fn,θ(1) ≥ 0, implying that the function fn,θ(x) is non-negative on [1,∞),

(ii) fn,θ(1) < 0, implying that there must exist one point xn,θ such that fn,θ(x) > 0 on
the interval (xn,θ,∞).

For some choices of θ ∈ (0, π), namely θ = 2π/k (k = 3, 4, . . . ), it is automatically
assured that fn,θ(1) ≥ 0 for all n ∈ N. The condition for the non-negativity of the
sequence {ψj}∞j=0 then boils down to |λ2|/λ1 ≥ 1.

For more “general” θ’s the condition |λ2|/λ1 ≥ 1 is not sufficient to assure the non-
negativity of the whole sequence. Let us take one such θ∗ 6= 2π/k (k = 3, 4, . . . ). Then
there exists a non-empty set of indices Iθ∗ such that ∀n ∈ Iθ∗ , fn,θ∗(1) < 0. We know
that for any n ∈ Iθ∗ , there exists a real number xn,θ∗ > 1, such that fn,θ∗(x) ≥ 0 for
x ≥ xn,θ∗ . The non-negativity of the single coefficient ψn, n ∈ Iθ∗ , is then equivalent to
the condition |λ2|/λ1 ≥ xn,θ∗ . In order the whole sequence {ψn}∞n=0 to be non-negative,
|λ2|/λ1 has to be at least as large as the maximum of the roots x∗θ∗ = maxn∈Iθ∗ xn,θ∗ .

In summary, if the complex root λ2 has the argument θ∗ and an absolute value greater
than or equal to x∗θ∗ × λ1, then the sequence {ψj}∞j=0 is non-negative. Tsai and Chan
(2007) showed that x∗θ∗ = xn0,θ∗ , where n0 = minn∈Iθ∗ n. They also showed that n ∈ Iθ∗
if and only if sin[(n+ 1)θ∗] < 0 and sin[(n+ 2)θ∗] > 0. Their result for AR(3) process is
summarized formally in the following theorem.

Theorem 3.2.4. Let {Xt : t = 0,±1,±2, . . . } be an AR(3) process. Denote λ1, λ2, λ3

the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − φ2z
2 − φ3z

3, such that
1 < |λ1| ≤ |λ2| ≤ |λ3|. Assume λ2 = λ̄3 = |λ|eiθ = 1 + bi, where a, b ∈ R, b > 0 and
0 < θ < π.

(i) If θ = 2π/k for some integer k ≥ 3, then {ψj}∞j=0 is non-negative if and only if
|λ2| ≥ λ1 > 1.

(ii) If θ /∈ {2π/k|k = 3, 4, . . . }, then {ψj}∞j=0 is non-negative if and only if |λ2|/λ1 ≥
x0,θ > 1, where x0,θ is the root of fn0,θ(x) = 0, where

fn0,θ(x) = xn0+2 − xsin[(n0 + 2)θ]

sin θ
+

sin[(n0 + 1)θ]

sin θ
,

and n0 is the smallest positive integer n such that sin[(n + 1)θ] < 0 and sin[(n +
2)θ] > 0.

(iii) If a ≥ λ1 > 1, then {ψj}∞j=0 is non-negative.

Proof. A proof is given in Tsai and Chan (2007).

Remark 3.2.5. The conditions in Theorem 3.2.4 are slightly more difficult to verify, since
they do not involve model parameters but roots of the autoregressive lag polynomial. A
graphical representation of the conditions might help to clarify them. Let us suppose
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Figure 3.2: Regions of negativity and non-negativity of the sequence {ψj}∞j=0 for AR(3) and λ1 = 3

that the real root λ1 of the polynomial 1− φ1z− φ2z
2− φ3z

3 is equal to 3 and the other
two roots are complex. The complex roots λ2 = λ̄3 have to satisfy at least one of the
conditions in the Theorem 3.2.4 to assure the non-negativity of the sequence {ψj}∞j=0.

The plot in Figure 3.2 shows two regions in complex plane, divided by a closed curve
(coloured with dark blue). The “blue” area represents those complex roots λ2 and λ3 for
which at least one coefficient in {ψj}∞j=0 is negative. Note that the roots λ2 are depicted
in the “positive hemisphere” (i.e. positive imaginary part), whereas the conjugates λ3 lie
in the negative hemisphere. The area complementary to the blue domain, is the region
of the non-negativity described analytically in Theorem 3.2.4.

According to the part (i) in Theorem 3.2.4, the complex roots λ2 = λ̄3 with argument
θ = 2π/k, k = 3, 4, . . . , need to have absolute value greater than 3 in order to assure
the non-negativity. The black dashed lines in Figure 3.2 correspond to roots λ2 with
respective arguments 2π/3, 2π/4, 2π/5, 2π/6. The red points then correspond to those
roots which have the absolute value equal to λ1 = 3. These points indeed lie on the
border of the negativity region.

According to the part (ii) in Theorem 3.2.4, if θ /∈ {2π/k : k = 3, 4, . . . }, in order the
root λ2 to fall into the non-negativity region, its absolute value must be greater than 3
times the “maximal root” x0,θ > 1. This explains the cloud-like shape of the negativity
region.

According to the part (iii) in Theorem 3.2.4, if the real part a of the complex roots

Non-negative Time Series 26
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Figure 3.3: Regions of negativity (in blue) of the single coefficients ψ1, . . . , ψ6 for AR(3) and λ1 = 3, the blue curve
corresponds to the boundary of the AR(3) negativity region

λ2 and λ3 is greater than 3, the sequence {ψj}∞j=0 is non-negative. We notice from the
picture that the cloud is located to the left from all complex values with a real part
greater than 3.

In fact, the blue region in Figure 3.2 is an union of infinitely many smaller regions,
each representing the negativity of each of the coefficients ψj, see Figure 3.3. The area
of negativity of ψ1 is a circle centered at [−λ1, 0] with a diameter λ1. A negativity region
for ψ2 consists of two “drops” connected at origin and so on.

3.2.4 AR(p)

In this section we discuss non-negativity conditions for higher order autoregressive pro-
cesses. Recall that the AR(p) process {Xt : t = 0,±1,±2, . . . } is defined as a stationary
solution of the following stochastic difference equations:

Xt − φ1Xt−1 − φ2Xt−2 − . . . φpXt−p = Z∗t (t = 0,±1,±2, . . . ).

Again we assume the process is causal and that the innovations are non-negative. One
particular result for AR(4) models has been derived by Tsai and Chan (2007). The proof
is again a rather technical application of algebric operations and we omit it here.
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Theorem 3.2.5. Let {Xt : t = 0,±1,±2, . . . } be an AR(4) process. Denote λ1, λ2, λ3, λ4

the roots of the autoregressive lag polynomial φ(z) = 1− φ1z − φ2z
2− φ3z

3− φ4z
4, such

that 1 < λ1 ≤ |λ2| ≤ |λ3| ≤ |λ4|. Assume λi ∈ R, i = 1, . . . , 4. Then the sequence
{ψj}∞j=0 is non-negative if and only if λ1 > 1 and λ−1

1 + λ−1
2 + λ−1

3 + λ−1
4 ≥ 0.

Proof. A proof is given in Tsai and Chan (2007).

Remark 3.2.6. Given the Theorem 3.2.3 and Theorem 3.2.5, one would expect that
conditions λ1 > 1 and

∑p
i=1 λ

−1
i ≥ 0 are sufficient and necessary for a general AR(p)

process to be non-negative, as long as the roots λi are all real. A proof of the necessity
is not difficult.

Theorem 3.2.6. Let {Xt : t = 0,±1,±2, . . . } be an AR(p) process. Denote λ1, λ2, . . . , λp
the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − · · · − φpz

p, such that
λ1 ≤ |λ2| ≤ · · · ≤ |λp|. If the sequence {ψj}∞j=0 is non-negative, then

∑p
i=1 λ

−1
j ≥ 0, λ1

is real and greater than one.

Proof. We reproduce the proof from Tsai and Chan (2007). The autoregressive lag
polynomial can be expressed as follows:

φ(z) = 1−
p∑
i=1

φiz
i =

p∏
i=1

(
1− z

λi

)
.

Comparing the coefficients on both the sides, we get φ1 =
∑p

i=1 λ
−1
i From equations

(3.3.5) in Brockwell and Davis (1986) p. 91 we know that ψ1 = φ1. Therefore
∑p

i=1 λ
−1
i ≥

0 whenever {ψj}∞j=0 is non-negative. The necessity of the condition λ1 ∈ R and λ1 > 1
follows from Theorem 3.1.5.

Remark 3.2.7. The sufficiency of the conditions in Theorem 3.2.6 is more difficult to
show. It has not been yet proven analytically in the literature.

In Section 3.3.7 we will derive a set of sufficient and necessary conditions for the
non-negativity of ARMA(p, q) processes. These conditions can be easily accommodated
for AR(p) processes. In contrast to what we had so far, these conditions utilize model
parameters rather than the zeros of autoregressive lag polynomial. We formulate the
result for AR(p) now, but wait with the proof until the Section 3.3.7.

Theorem 3.2.7. Let {Xt : t = 0,±1,±2, . . . } be an AR(p) process. Denote λ1, λ2, . . . , λp
the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − · · · − φpz

p, such that
|λ1| ≤ |λ2| ≤ · · · ≤ |λp|. Assuming that these roots are distinct, the conditions (1)-(2)
are necessary and sufficient for {ψj}∞j=0 to be non-negative:

(1) λ1 is real and λ1 > 1,

(2) ψk ≥ 0 for k = 1, . . . , k∗,
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where k∗ is the smallest integer greater than on equal to max{0, γ}, where

γ =
log r1 − log[(p− 1)r∗]

log |λ1| − log |λ2|
− 1

with r∗ = max2≤j≤p |rj| and rj = − 1

φ(1)(λj)
, 1 ≤ j ≤ p.

Proof. A proof follows from Theorem 3.3.18.

Remark 3.2.8. Assuming that the roots λi are distinct and real, the sufficiency of the
conditions in Theorem 3.2.6 could be proven by showing that the γ in Theorem 3.2.7
equals 1.

Some other sufficient conditions for the non-negativity of AR(p) processes can be
readily obtained, again using the properties of absolutely monotone functions.

Theorem 3.2.8. Let {Xt : t = 0,±1,±2, . . . } be an AR(p) process. Denote λ1, λ2, . . . , λp
the roots of the autoregressive lag polynomial φ(z) = 1 − φ1z − · · · − φpz

p, such that
λ1 ≤ |λ2| ≤ · · · ≤ |λp|. If all the λ1, . . . , λp are real and greater than one, then the
sequence {ψj}∞j=0 is non-negative.

Proof. The generating function is now a product of p factors:

ψ(z) =

p∏
i=1

1

1− z
λ1

. (3.2.13)

If all the roots λi are real and greater than one, each of the factors in (3.2.13) is absolutely
monotone in 0 ≤ z < 1, see Remark 3.2.1. Their product is absolutely monotone as well,
implying that the sequence {ψj}∞j=0 is non-negative.

Remark 3.2.9. Another set of sufficient conditions can be obtained when the roots are
not necessarily all real. Recall that roots of the real autoregressive lag polynomial φ(z)
are either all real or occur in conjugate imaginary pairs. If for each complex pair we can
find a real root for which one of the conditions in Theorem 3.2.4 is satisfied, then the
generating function ψ(z) = 1/φ(z) is absolutely monotone.

3.3 Autoregressive Moving Average Processes

In this section we concentrate on the conditions for the non-negativity in ARMA time
series models. Similarly as in the previous section, we will investigate situations, when
the sequence of weights {ψj}∞j=0 in the infinite moving average representation is non-
negative. Some conditions for ARMA models emerge as a natural extension of those we
have seen for AR models. Let us start with some instructive examples of lower order
models.
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3.3.1 ARMA(1,1)

Assume a stationary ARMA(1, 1) process {Xt : t = 0,±1,±2, . . . }, which is determined
from the following stochastic difference equations

Xt − φ1Xt−1 = Z∗t + θ1Z
∗
t−1 (t = 0,±1,±2, . . . ), (3.3.14)

where |φ1| < 1 and the sequence {Z∗t : t = 0,±1,±2, . . . } is the non-negative innovation
sequence. Such a process has a infinite moving average representation

Xt =
∞∑
j=0

ψjZ
∗
t−j,

where the weights ψj, j ∈ N, are determined from

ψ(z) =
∞∑
j=0

ψjz
j =

1 + θ1z

1− φ1z
(0 ≤ z < 1). (3.3.15)

One sufficient condition for the non-negativity of {ψj}∞j=0 readily follows from the fac-
torization of (3.3.15) into two absolutely monotone functions. If θ1 ≥ 0 the numerator
is an absolutely monotone function. Moreover, we have shown in Remark 3.2.1 that
if the coefficient φ1 is non-negative, then the function 1

1−φ1z
is absolutely monotone in

0 ≤ z < 1. The property that a product of absolutely monotone functions is again
absolutely monotone gives immediately the sufficiency of the conditions φ1 ≥ 0 and
θ1 ≥ 0. However, these conditions are unnecessarily strict. The following theorem gives
less stringent non-negativity restrictions on the two model parameters.

Theorem 3.3.1. Let {Xt : t = 0,±1,±2, . . . } be an ARMA(1, 1) process given in
(3.3.14). The sequence {ψj}∞j=0 is non-negative if and only if φ1 ≥ 0 and φ1 + θ1 ≥ 0.

Proof. From the equations (3.3.3) and (3.3.4) in Brockwell and Davis (1986) p. 91 it
follows that

ψ0 = 1,

ψ1 = θ1 + φ1,

ψk = φ1ψk−1 (k ≥ 2).

If ψ1 ≥ 0 and φ1 ≥ 0, then the whole sequence {ψj}∞j=0 is non-negative. The necessity
follows also trivially.
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3.3.2 ARMA(1,2)

Consider now the causal ARMA(1, 2) process {Xt : t = 0,±1,±2, . . . } with non-negative
innovations {Z∗t : t = 0,±1,±2, . . . }, which is given by the set of equations

Xt − φ1Xt−1 = Z∗t + θ1Z
∗
t−1 + θ2Z

∗
t−2 (t = 0,±1,±2, . . . ), (3.3.16)

where |φ1| < 1. The generating function for the sequence {ψj}∞j=0 is now the following

ψ(z) =
1 + θ1z + θ2z

2

1− φ1z
(0 ≤ z < 1).

Similarly as for the ARMA(1, 1), if all the coefficients θ1, θ2 and φ1 are non-negative,
the generating function is a product of absolutely monotone functions. The following
theorem shows that we can suffice with milder restrictions.

Theorem 3.3.2. Let {Xt : t = 0,±1,±2, . . . } be an ARMA(1, 2) process given in
(3.3.16). The sequence {ψj}∞j=0 is non-negative if and only if φ1 ≥ 0, φ1 + θ1 ≥ 0 and
θ2 ≥ −φ1(θ1 + φ1).

Proof. The equations (3.3.3) and (3.3.4) in Brockwell and Davis (1979) for ARMA(1, 2)
model are the following

ψ0 = 1,

ψ1 = θ1 + φ1,

ψ2 = θ2 + φ1(θ1 + φ1),

ψk = φ1ψk−1 (k ≥ 3).

The sufficiency and necessity then follows immediately.
The trivial results for ARMA(1, 1) and ARMA(1, 2) suggest the following simple

result for models ARMA(1, q).

3.3.3 ARMA(1,q)

Consider the stationary ARMA(1, q) process {Xt : t = 0,±1,±2, . . . } defined from the
autoregressive moving average equations

Xt − φ1Xt−1 = Z∗t + θ1Z
∗
t−1 + θ2Z

∗
t−2 + · · ·+ θqZ

∗
t−q (t = 0,±1,±2, . . . ), (3.3.17)

where |φ1| < 1 and the sequence of innovations {Z∗t : t = 0,±1,±2, . . . } is non-negative.
The generating function of the ARMA(1, q) model is

ψ(z) =
1 + θ1z + θ2z

2 + · · ·+ θqz
q

1− φ1z
(0 ≤ z < 1).

The non-negativity of the ARMA(1, q) kernel sequence {ψj}∞j=0 is summarized in the
following theorem of Tsai and Chan (2007).
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Theorem 3.3.3. Let {Xt : t = 0,±1,±2, . . . } be an ARMA(1, q) process given in
(3.3.17). The sequence {ψj}∞j=0 is non-negative if and only if φ1 ≥ 0 and ψj = φ1ψj−1 +
θj ≥ 0, 1 ≤ j ≤ q.

Proof. Again, the necessity and sufficiency follows trivially from the equations (3.3) and
(3.4) of Brockwell and Davis (1986) p. 91:

ψ0 = 1

ψ1 = θ1 + φ1,

ψ2 = θ2 + φ1ψ1,

...

ψq = θq + φ1ψq−1,

ψk = φ1ψk−1 (k ≥ q + 1).

The Theorem 3.3.3 shows that the infinite number of inequalities ψj ≥ 0 (j ≥ 0) can
be effectively reduced to a finite set of inequalities, which are expressed directly in terms
of model parameters. Later we show a similar set of conditions for ARMA(2, q) models.
First, we investigate ARMA(·, 1) processes.

3.3.4 ARMA(2,1)

We consider the ARMA(2, 1) process {Xt : t = 0,±1,±2, . . . } determined by the
stochastic difference equations

Xt − φ1Xt−1 − φ2Xt−2 = Z∗t + θ1Z
∗
t−1 (t = 0,±1,±2, . . . ), (3.3.18)

where the roots |λ1| ≤ |λ2| of the polynomial 1−φ1z−φ2z
2 are outside the unit circle and

again the innovations are non-negative. The generating function for the ARMA(2, 1)
kernel sequence {ψj}∞j=0 is

ψ(z) =
1 + θ1z

1− φ1z − φ2z2
(0 ≤ z < 1). (3.3.19)

We can again readily derive sufficient conditions for the non-negativity by using the fac-
torization of the function (3.3.19) into absolutely monotone components. From Theorem
3.1.5 we know that the smallest root in absolute value, i.e. λ1, has to be real and greater
than one. We have also seen in Theorem 3.2.7 that if λ2 > 1, the function 1

1−φ1z−φ2z2
is

absolutely monotone. Together with the assumption θ1 > 0, we obtain immediately a set
of sufficient conditions. However, it is possible to derive without substantial difficulties
also a set of sufficient and necessary conditions. We have derived the following result.
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Theorem 3.3.4. Let {Xt : t = 0,±1,±2, . . . } be ARMA(2, 1) process given by (3.3.18).
Let λ1, λ2 be the two distinct roots of the autoregressive lag polynomial φ(z) = 1−φ1z−
φ2z

2, such that 1 < |λ1| ≤ |λ2|. The sequence {ψj}∞j=0 is non-negative if and only if

(1) λ1, λ2 ∈ R, λ1 > 1,

(2) θ(λ1) > 0,

(3) ψj ≥ 0, j = 1, 2.

Proof. Let us start with the necessity. The necessity of the conditions λ1 ∈ R and λ1 > 1
follows from Theorem 3.1.5. We know that whenever λ1 ∈ R, the second root λ2 has to
be real as well. The necessity of (3) is trivial. The necessity of the condition (2) follows
from Theorem 3.3.18 which we prove later in this section.

Now we prove the sufficiency. According to Feller (1968) the coefficients ψn are given
by

ψn =
1

φ2(λ1 − λ2)

(
1 + θ1λ1

λn+1
1

− 1 + θ1λ2

λn+1
2

)
, n ≥ 1.

We are assuming that 1 < λ1 < |λ2|, which implies that φ2(λ1 − λ2) is always non-
negative. This follows from the following facts: (a) if λ2 < −λ1 < −1, the coefficient
φ2 = − 1

λ1λ2
is positive and λ1 − λ2 > 0, (b) when λ2 > λ1 > 1 we have φ2 < 0 and

λ1 − λ2 < 0. Next, we can write

ψnφ2(λ1 − λ2)λn+1
1 = 1 + θ1λ1 −

(
λ1

λ2

)n+1

(1 + θ1λ2) . (3.3.20)

The non-negativity of a single coefficient ψn is then equivalent to the non-negativity of
the expression in (3.3.20). From the assumption (2), the term 1+θ1λ1 is positive. Denote

An =
(
λ1

λ2

)n+1

(1 + θ1λ2). This term is declining in magnitude as n approaches infinity

and it has eventually oscilating sign. We now show that the non-negativity of the first
two coefficients ψ1 and ψ2 will assure the non-negativity of the whole sequence {ψj}∞j=0.

Let us first consider the case λ2 > λ1 > 1 and 1 + θ1λ2 > 0. Then the term An is
always positive with the largest value for n = 1. This implies that if the expression in
(3.3.20) is non-negative for n = 1, then it is non-negative for any n > 1. Consider further
the following case: λ2 > λ1 > 1 and 1 + θ1λ2 < 0. The term An is now always negative
and adds positively to 1 + θ1λ1 giving a non-negative value of the whole expression in
(3.3.20) for any n ∈ N. Assuming that λ2 < −λ1 < −1 and 1 + θ1λ1 > 0, the term An is
negative for n = 2k and positive for n = 2k + 1. For n = 2k it adds positively, whereas
for n = 2k + 1 it contributes negatively in (3.3.20). Nevertheless, because the term An
diminishes in absolute value as n → ∞, it holds that if the expression (3.3.20) is non-
negative for n = 1, then it is non-negative for any n = 2k+1. Finally, let λ2 < −λ1 < −1
and 1 + θ1λ2 < 0. Now the expression (3.3.20) is always non-negative for n = 2k + 1
and always positive for n = 2k. By the similar argument, if (3.3.20) is non-negative for
n = 2 then it is non-negative for any n = 2k.
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(a) θ1 = −0.7 (b) θ1 = 0.7

Figure 3.4: The non-negativity parametric region for φ1 and φ2 for ARMA(2, 1) model for given parameter θ1

Remark 3.3.1. The conditions in Theorem 3.3.4 can be expressed in terms of model
parameters. We then obtain a similar non-negativity causality region as in (3.2.6) for
the AR(2) process.

(1) The assumption 1 < λ1 < |λ2| implies φ1 = λ−1
1 + λ−1

2 > 0.

(2) The roots λ1, λ2 are real whenever φ2
1 + 4φ2 ≥ 0.

(3) The condition θ(λ1) > 0 translates into 1 + θ1λ1 > 0. Assuming that λ1 > 1,
1 + θ1λ1 holds trivially for θ1 > 0.

(4) The conditions ψ1 ≥ 0 and ψ2 ≥ 0 correspond to θ1+φ1 ≥ 0 and φ2+φ1(φ1+θ1) ≥ 0,
respectively.

Two examples of non-negative parametric regions for ARMA(2, 1) are given in Figure
3.4(a) and Figure 3.4(b). Both plots depict the parametric region for φ1 and φ2, keeping
the third parameter θ1 fixed. The vertical dashed line corresponds to the restriction
φ1 + θ1 ≥ 0. The dashed parabola corresponds to φ2 + φ1(φ1 + θ1) = 0. The parabola
always passes through origin. For θ1 > 0, the vertex of the parabole is always located to
the left from the origin. In Figure 3.4(b), we have θ1 = 0.7. This non-negative parametric
region coincides with the one for AR(2) in Figure 3.1.

3.3.5 ARMA(3,1)

The sufficient and necessary non-negativity conditions for ARMA(2, 1) were derived
without the notion of absolute monotonicity. By essentially the same approach we
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will later in this chapter derive the necessary and sufficient conditions for a general
ARMA(p, q) model. One might wonder, whether it is really necessary to continue scru-
tinizing separately some other lower order ARMA models. Our reason for doing so is
that we are curious to see whether a different approach would lead to conditions that
are more easily verifiable. That is why we try to generalize the result of Tsai and Chan
(2007) derived for AR(3) models also for ARMA(3, 1) models. Such conditions would be
expressed in terms of moving average coefficients and roots of the autoregressive poly-
nomial. We discuss what the additional complications are and provide some explicit
results.

We consider the ARMA(3, 1) process {Xt : t = 0,±1,±2, . . . }, which is determined
from the following autoregressive moving average equations

Xt − φ1Xt−1 − φ2Xt−2 − φ3Xt−3 = Z∗t + θ1Z
∗
t−1 (t = 0,±1,±2, . . . ),

where {Z∗t : t = 0,±1,±2, . . . } is the non-negative innovation sequence. We assume that
the process is causal and therefore admits the infinite moving average representation.

The generating function for ARMA(3, 1) process takes the following form

ψ(z) =
1 + θ1z

1− φ1z − φ2z2 − φ3z3
, 0 ≤ z < 1. (3.3.21)

Noting that (3.3.21) is a product of a generating function for the AR(3) process and the
moving average lag polynomial, one sufficient condition for the non-negativity immedi-
ately follows.

Theorem 3.3.5. Let λ1, λ2 and λ3 be the roots of the autoregressive lag polynomial
φ(z) = 1 − φ1z − φ2z

2 − φ3z
3, such that 1 < |λ1| ≤ |λ2| ≤ |λ3|. Suppose that θ1 ≥ 0.

Assume further that either the conditions in Theorem 3.2.3 hold, or at least one of the
conditions (i), (ii), (iii) in Theorem 3.2.4 is satisfied. Then the sequence {ψj}∞j=0 is
non-negative.

Proof. A proof follows directly from Theorem 3.1.3.
Using the fact that the absolute monotonicity property retains with multiplication,

the non-negativity of any higher order autoregressive moving average model could be
split into two or more lower order problems. In Theorem 3.3.5, the non-negativity of
ARMA(3, 1) has been factorized into two separate tasks: the non-negativity of a cor-
responding AR(3) process and the absolute monotonicity of the moving average lag
polynomial. However, this sort of factorization will provide only a set of sufficient con-
ditions for the non-negativity. In order to obtain necessary, or sufficient and necessary
conditions, we need to adopt a different approach. We will investigate the case when
λ2, λ3 ∈ C.
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According to the equation (4.8) in Feller (1968) p. 276 the coefficients ψj are given
by

ψn =
r1

λn+1
1

+
r2

λn+1
2

+
r3

λn+1
3

,

where ri = −θ(λi)/φ(1)(λi), i = 1, 2, 3. More specifically,

r1 =
1 + θ1λ1

φ3(λ1 − λ2)(λ1 − λ3)
, r2 =

1 + θ1λ2

φ3(λ2 − λ1)(λ2 − λ3)
and r3 =

1 + θ1λ3

φ3(λ3 − λ1)(λ3 − λ2)
.

Now, denote ψ∗∗n = φ3|λ1 − λ2|2λn+1
1 |λ2|2n+2ψn. Then we have

ψ∗∗n =(1 + θ1λ1)|λ2|2n+2 +
λn+1

1 λn+1
3 (λ3 − λ1)(1 + θ1λ2)

(λ2 − λ3)
+
λn+1

1 λn+1
2 (λ2 − λ1)(1 + θ1λ3)

λ3 − λ2

=|λ2|2n+2 +
λn+2

1 (λn+1
3 − λn+1

2 )

λ3 − λ2

− λn+1
1 (λn+1

3 − λn+1
2 )

λ3 − λ2

+ θ1λ1|λ2|2n+2 + θ1
λn+2

1 |λ2|2(λn3 − λn2 )

λ3 − λ2

− θ1
λn+1

1 |λ2|2(λn+1
3 − λn+1

2 )

λ2 − λ3

.

We can write

ψ∗∗n = ψ∗n + θ1λ1|λ2|2ψ∗n−1, (3.3.22)

where

ψ∗n = |λ2|2n+2 +
λn+2

1 (λn+1
3 − λn+1

2 )

λ3 − λ2

− λn+1
1 (λn+2

3 − λn+2
2 )

λ3 − λ2

,

which we already defined in (3.2.9). In Section 3.2.3 we have shown that the non-
negativity of ψ∗n relates to the absolute monotonicity of a function 1

1−ψ1z−ψ2z2−ψ3z3
. As

we know, this is a generating function corresponds of the AR(3) kernel sequence. We
have also derived that

ψ∗n = |λ2|2n+2 +
λn+2

1 |λ2|n+1 sin[(n+ 1)θ]

|λ2| sin θ
− λn+1

1 |λ2|n+2 sin[(n+ 2)θ]

|λ2| sin θ

= λn+2
1 |λ2|n

{∣∣∣∣λ2

λ1

∣∣∣∣n+2

−
∣∣∣∣λ2

λ1

∣∣∣∣ sin[(n+ 2)θ]

sin θ
+

sin[(n+ 1)θ]

sin θ

}
.

Plugging the expression for ψ∗n into (3.3.22) yields

ψ∗∗n
λn+2

1 |λ2|n
=
∣∣∣∣λ2

λ1

∣∣∣∣n+2

(1 + θ1λ1)−
∣∣∣∣λ2

λ1

∣∣∣∣2 θ1λ1
sin[(n+ 1)θ]

sin θ
−
∣∣∣∣λ2

λ1

∣∣∣∣ {sin[(n+ 2)θ]
sin θ

− θ1λ1
sinnθ
sin θ

}
+

sin[(n+ 1)θ]
sin θ

.
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For 0 < θ < π and n ∈ N, denote

gn,θ(x) = xn+2 (1 + θ1λ1)−x2θ1λ1
sin[(n+ 1)θ]

sin θ
−x
{

sin[(n+ 2)θ]
sin θ

− θ1λ1
sinnθ
sin θ

}
+

sin[(n+ 1)θ]
sin θ

.

Then we can write

ψ∗∗n = λn+2
1 |λ2|ngn,θ

(∣∣∣∣λ2

λ1

∣∣∣∣) . (3.3.23)

Note the similarity between the expression in (3.3.23) and ψ∗n = λn+2
1 |λ2|nfn,θ

(∣∣∣λ2

λ1

∣∣∣),

where the function fn,θ(·) was defined in (3.2.12). Similarly as in Section 3.2.3, assuming
that λ1 ∈ R and λ1 > 1, we have the equivalence between the following conditions

(a) a single coefficient ψn is non-negative,

(b) a single coefficient ψ∗∗n is non-negative,

(c) gn,θ

(∣∣∣λ2

λ1

∣∣∣) is non-negative.

Similarly as in Section 3.2.3 we need to show that for each n ∈ N and θ ∈ (0, π) such that
gn,θ(1) < 0 there exists one and only one root xn,θ > 1 of the equation gn,θ(x) = 0. The
convenient monotonicity property on the interval [1,∞) of the functions fn,θ(·) made the
situation for the AR(3) process much easier. Unfortunatelly, such property is no longer
valid for the functions gn,θ(·) (at least not in general), see Figure 3.5. We circumvent this
difficulty by showing that each function gn,θ(·) such that gn,θ(1) < 0 is increasing on some
interval (x∗n,θ,∞), x∗n,θ > 1, and negative on interval (1, x∗n,θ). In order to demonstrate
such property, we need to prove several auxiliary lemmas. We split our considerations
into two cases: θ1 ≥ 0 and θ1 < 0.

(1) θ1 ≥ 0

The assumption θ1 ≥ 0 simplifies matters a great deal. We first show some auxiliary
statements about the functions gn,θ(·). Without noting explicitly, throughout this section
we assume that 1 < λ1 ≤ |λ2| ≤ |λ3|.

Lemma 3.3.6. For a given θ ∈ (0, π) and n ∈ N, let gn(·) denote gn,θ(·). Suppose that
θ1 ≥ 0. Then ∀n ∈ N and ∀x ≥ 1, the following statement holds:

if gn(x) ≥ 0 then g′n(x) ≥ 0.

Proof. We prove this claim by contradiction, that is we assume that for any x ≥ 1 the
statement gn(x) ≥0 and g′n(x) < 0 leads to a contradictory conclusion. Denote

A = xn+1(1 + θ1λ1)− x θ1λ1
sin[(n+ 1)θ]

sin θ
− sin[(n+ 2)θ]

sin(θ)
+ θ1λ1

sin(nθ)

sin θ
.
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Figure 3.5: Plot of gn,θ(x) (black line), g′n,θ(x) (red line) and g′′n,θ(x) (blue line) for: θ = 2, θ1 = −0.3, λ1 = 3 and
n = 2

Then, the inequality gn(x) ≥ 0 is equivalent to

Ax ≥ −sin[(n+ 1)θ]

sin θ
. (3.3.24)

The first derivative g′n(·) is given by a formula

g′n(x) = xn+1(1 + θ1λ1)(n+ 2)− 2xθ1λ1
sin[(n+ 1)θ]

sin θ
− sin[(n+ 2)θ]

sin θ
+ θ1λ1

sin(nθ)

sin θ
.

The statement g′n(x) < 0 is then equivalent to an inequality

A < −(n+ 1)xn+1(1 + θ1λ1) + xθ1λ1
sin[(n+ 1)θ]

sin θ
,

in particular (for x ≥ 1)

Ax < −(n+ 1)xn+2(1 + θ1λ1) + x2θ1λ1
sin[(n+ 1)θ]

sin θ
. (3.3.25)

From (3.3.24) and (3.3.25), we obtain

(n+ 1)xn+2(1 + θ1λ1) <
sin[(n+ 1)θ]

sin θ
(x2θ1λ1 + 1). (3.3.26)

Because we assumed θ1 ≥ 0, it holds that 0 < 1 + x2θ1λ1 ≤ x2(1 + θ1λ1) for x ≥ 1.
According to the inequality sin[(n+ 1)θ] < (n+ 1) sin θ, θ ∈ (0, π), we have:

(n+ 1)xn+2(1 + θ1λ1) < (n+ 1)(x2θ1λ1 + 1) ≤ (n+ 1)x2(θ1λ1 + 1).
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Because 1 + θ1λ1 > 0, we have

(n+ 1)xn < n+ 1,

which is contradictory, as we assumed x ≥ 1.

Lemma 3.3.7. For a given θ ∈ (0, π) and n ∈ N, let gn(·) denote gn,θ(·). Assume that
θ1 ≥ 0. Then g′′n(x) > 0, ∀n ∈ N and ∀x ≥ 1.

Proof. The second derivative equals

g′′n(x) = (n+ 2)(n+ 1)(1 + θ1λ1)xn − 2θ1λ1
sin[(n+ 1)θ]

sin θ
.

We can see that the second derivative is a monotone function, increasing whenever
1 + λ1θ1 > 0. For θ1 ≥ 0, we can write

g′′n(x) ≥ g′′n(1) ≥ (n+ 2)(n+ 1)(1 + θ1λ1)− 2θ1λ1(n+ 1).

The expression on the right hand side can be rewritten as

2(n+ 1) + (n+ 1)n(1 + θ1λ1) > 0.

Lemma 3.3.8. For a given θ ∈ (0, π) and n ∈ N, let gn(·) denote gn,θ(·). Suppose
θ1 ≥ 0. If gn,θ(1) < 0, then there exists one and only one xn > 1 such that gn(xn) = 0
and gn(x) ≥ 0, ∀x ≥ xn.

Proof. First assume that g′n(1) > 0. From Lemma 3.3.7 we know that g′′n(x) > 0,∀n ∈ N
and x ≥ 1, which implies that g′n(x) is increasing for x ≥ 1 and therefore positive
on (1,∞). From the positivity of the derivative g′n(·) on (1,∞), it follows that the
function gn(·) is increasing for x > 1. Therefore, there must exist some xn > 1 such that
gn(xn) = 0 and gn(x) > 0, ∀x > xn.

Now, assume that g′n(1) ≤ 0. From the fact that the second derivative g′′n(1) is
positive, the derivative g′n(·) is increasing on (1,∞), which implies that there must be
one point x′n > 1 such that the function gn(·) is decreasing in 1 ≤ x < x′n and increasing
for x ≥ x′n. Conclusively, there must be some point xn > x′n such that gn(xn) = 0 and
gn(x) > 0, ∀x > xn.

Assume that θ ∈ (0, π) is given. For those n ∈ N, for which gn,θ(1) ≥ 0, we have
ψn ≥ 0. This follows from the same chain of arguments as for the AR(3) model. The
function gn,θ(·) is non-negative on (1,∞), Lemma 3.3.6 and Lemma 3.3.7, and therefore

gn,θ

(
|λ2|
λ1

)
≥ 0. For n ∈ N, such that gn,θ(1) < 0, it follows from Lemma 3.3.8 that there

exists one and only one root xn,θ > 1 of the equation gn,θ(x) = 0 and that the function
gn,θ(·) is non-negative on (xn,θ,∞). It then follows that if |λ2|/λ1 ≥ xn,θ > 1, then a
single coefficient ψn is non-negative.
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Similarly as in Section 3.2.3, we can show that for certain θ′s in (0, π) it holds that
gn,θ(1) ≥ 0,∀n ∈ N. The non-negativity of the sequence {ψ∗∗j }∞j=0 is then equivalent to
the statement |λ2|/λ1 ≥ 1. This situation is summarized in the following theorem.

Theorem 3.3.9. Suppose that λ1 ∈ R and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a, b ∈ R
and 0 < θ < π. If θ1 ≥ 0 and θ = 2π/k for some integer k ≥ 3, then the sequence
{ψj}∞j=0 is nonnegative if and only if |λ2| ≥ λ1 > 1.

Proof. It suffices to show that gn,θ(1) ≥ 0, ∀n ≥ 0, whenever θ = 2π/k for some integer
k ≥ 3. We know from Theorem 3.2.4 that this condition is sufficient for the functions

fn,θ(x) = xn+2 − xsin[(n+ 2)θ]

sin θ
+

sin[(n+ 1)θ]

sin θ
(n ≥ 0)

to be non-negative on [1,∞). It can be easily verified that the function gn,θ(·) is a linear
combination of the functions fn,θ(·) and fn−1,θ(·), namely

gn,θ(x) = fn,θ(x) + x θ1λ1fn−1,θ(x) (n ≥ 0),

where f−1,θ(·) is defined as a zero constant function. Then for λ1 > 1 and θ1 ≥ 0
we obtain gn,θ(1) ≥ 0, ∀n ∈ N. Therefore the condition |λ2|/λ1 ≥ 1 is sufficient and
necessary for the non-negativity of the sequence {ψ∗∗j }∞j=0, which is equivalent to the
non-negativity of {ψj}∞j=0.

Remark 3.3.2. In Theorem 3.3.5 we already stated that when θ1 ≥ 0 and θ = 2π/k, k =
3, 4, . . . , the condition |λ2|/λ1 ≥ 1 was sufficient for the non-negativity of {ψ∗∗j }∞j=0. In
Theorem 3.3.9, we proved that this condition was also necessary.

Similarly as in Theorem 3.2.4, we would assume that if θ /∈ {2π/k : k = 3, 4, . . . },
the condition |λ2|/λ1 ≥ 1 is not sufficient to assure that the whole sequence {ψj}∞j=0 is
non-negative. As we will see in the following theorem, this condition is still sufficient
when θ1λ1 = 1.

Theorem 3.3.10. Suppose that λ1 ∈ R, θ1 ≥ 0 and λ2 = λ̄3 = |λ2|eiθ = a + bi,
where a, b ∈ R and 0 < θ < π. If λ1 > 1 and θ1λ1 = 1, then the sequence {ψj}∞j=0 is
non-negative.

Proof. It suffices to show that under the given assumptions, gn,θ(1) ≥ 0 for all n ∈ N and
for every θ ∈ (0, π). Note that when θ1λ1 = 1 we have gn,θ(1) = 2 − sin[(n+2)θ]

sin θ
+ sin(nθ)

sin θ
.

Then we have

sin(nθ)− sin[(n+ 2)θ] = −2 sin θ cos [(n+ 1)θ] ≥ −2 sin θ.

Since sin θ > 0, this is equivalent to

sin(nθ)− sin[(n+ 2)θ]

sin θ
≥ −2.
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Then we have
gn,θ(1) ≥ 0, ∀n ∈ N and θ ∈ (0, π).

Now assume that θ /∈ {2π/k : k = 3, 4, . . . } and θ1λ1 6= 1. Similarly as in Section
3.2.3 we denote Iθ a set of indices n ∈ N, such that gn,θ(1) < 0. We hypothesize that this
set is non-empty under the given assumptions. According to Theorem 3.3.8 we can find
for each n ∈ Iθ a single root xn,θ > 1 of the equation gn,θ(x) = 0. Again, if we denote
x∗θ = maxn∈Iθ xn,θ, then gn,θ(x) ≥ 0 for x ≥ x∗θ and ∀n ∈ N. For the AR(3) process,
the situation was much easier, because the maximal root x∗θ was actually the “first” root
xn0,θ, where n0 = minn∈Iθ n. This is no longer true for ARMA(3, 1), see Figure 3.6(b).

The blue dots in Figure 3.6(a) and Figure 3.6(b) represent the roots (that are greater
than one) of the equations gn,θ(x) = 0 for n ∈ Iθ, n ≤ 50, where the argument θ was
chosen equal to 2. The parameter θ1 is also kept fixed. On the left we have θ1 = 0 and
on the right θ1 = 2. The dashed line represents a function of a continuous variable n
defined as a constant 1 if gn,θ(1) ≥ 0 and xn,θ if gn,θ(1) < 0. The Figure 3.6(a) actually
corresponds to the roots of a function fn,θ(·). We can see that the first root is indeed the
largest one. According to the Theorem 3.2.4 we know that this holds in general. On the
other hand, the first root of the function gn,θ(·) is not the maximal one, Figure 3.6(b).
However, we observe, that the maximal root is contained within first, say k, roots with
the smallest indices n1 < n2 < · · · < nk, ni ∈ Iθ, i = 1, . . . , k. The question is how to
find the appropriate k in practice. The guideline is given in the following theorem.

Theorem 3.3.11. Suppose that λ1 ∈ R and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a, b ∈ R
and 0 < θ < π. Assume θ1 ≥ 0, θ1λ1 6= 1 and θ /∈ {2π/k : k = 3, 4, . . . }. For the given
θ ∈ (0, π) and an integer number a∗, denote Iθ,a∗ a set of indices n ≤ a∗, n ∈ N, so that
gn,θ(1) < 0 for n ∈ Iθ,a∗. Let a′ be defined as the smallest positive integer number a∗

such that

a∗ ≥ log 2

log x̃θ,a∗
and min

[(
θa∗

2

)
mod π, π −

(
θa∗

2

)
mod π

]
≤ sin θ

4
,

where x̃θ,a∗ = maxn∈Iθ,a∗ xn,θ and xn,θ is a root of the equation gn,θ(x) = 0. Then the
sequence {ψj}∞j=0 is non-negative if and only if |λ2|/λ1 ≥ x̃θ,a′ > 1.

Proof. Assume that for some θ ∈ (0, π) and n ∈ N it holds that gn,θ(1) < 0. Lemma
3.3.8 gives the existence of one particular root xn,θ > 1 of the equation gn,θ(x) = 0.
Furthermore, the function gn,θ(x) is increasing and therefore non-negative on (xn,∞).
The condition |λ2|/λ1 ≥ xn,θ is then equivalent to the non-negativity of a single coefficient
ψ∗∗n , resp. coefficient ψn. To prove the theorem, we need to show that for a given θ ∈ (0, π)
it holds that gn,θ(x) ≥ 0, n ∈ N, whenever x ≥ x̃θ,a′ . Denote

mθ,x(n) = −x2θ1λ1
sin[(n+ 1)θ]

sin θ
− x

{
sin[(n+ 2)θ]

sin θ
− θ1λ1

sinnθ

sin θ

}
+

sin[(n+ 1)θ]

sin θ
.
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(a) Roots of the function fn,θ(·), θ = 2
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(b) Roots of the function gn,θ(·), θ1 = 2, θ = 2

Figure 3.6: The dashed line is the function h(n) =

{
1 if gn,θ(1) ≥ 0

xn,2 if gn,θ(1) < 0
, the blue dots are the roots xi,θ, i ∈

Iθ, i ≤ 50, θ = 2

Then we can write
gn,θ(x) = xn+2(1 + θ1λ1) +mθ,x(n).

The function mθ,x(n) as a continuous function in n is periodic. Its period 2π/θ is
not an integer number for θ /∈ {2π/k : k = 3, 4, . . . }. However, we might find some
“approximate period”, say a∗, such that |mθ,x(n+ a∗)−mθ,x(n)| is sufficiently small for
any n. For a∗ large enough, the difference between the leading terms xn+a∗(1+θ1λ1) and
xn(1 + θ1λ1) will be sufficiently big to assure that gn+a∗,θ(x)− ga∗,θ(x) ≥ 0, ∀n ∈ N and
for all x greater than some x∗. We will now show that the integer a∗ = a′ and x∗ = x̃θ,a′
from our theorem satisfy these requirements.

Note that ∀n ∈ N and ∀a ∈ N it holds that

|sin[(n+ a)θ − sin(nθ)]| =
∣∣∣∣2 cos

(
2n+ a

2
θ

)
sin
(a

2
θ
)∣∣∣∣

≤ 2 min

[(
θa

2

)
mod π, π −

(
θa

2

)
mod π

]
.

Denote ∆ = 2 min
[(

θa′

2

)
mod π, π −

(
θa′

2

)
mod π

]
. From our assumptions it holds
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that 2∆ ≤ sin θ. Then for x ≥ 1 and θ1 ≥ 0, we have

|mθ,x(n+ a′)−mθ,x(n)| sin θ ≤ x2θ1λ1∆ + x∆ + xθ1λ1∆ + ∆

= ∆(1 + x)(1 + xθ1λ1) ≤ 2∆x2(1 + θ1λ1)

≤ x2(1 + θ1λ1) sin θ.

Because sin θ > 0, we have |mθ,x(n+ a′)−mθ,x(n)| ≤ x2(1 + θ1λ1).
Conclusively, we obtain

gn+a′,θ(x)− gn,θ(x) ≥ xn+a′+2(1 + θ1λ1)− xn+2(1 + θ1λ1)− x2(1 + θ1λ1)

= x2(1 + θ1λ1)(xn+a′ − xn − 1).

From the assumption a′ ≥ log 2
log x̃θ,a′

it holds that x̃n+a′

θ,a′ − x̃nθ,a′ − 1 ≥ 0. Therefore

gn+a′,θ(x̃θ,a′)−gn,θ(x̃θ,a′) ≥ 0,∀n ∈ N. From the definition of x̃θ,a′ it holds that gn,θ(x̃θ,a′) ≥
0 for all n ≤ a′. We have shown above that gn+a′,θ(x̃θ,a′) ≥ gn,θ(x̃θ,a′) ≥ 0,∀n ∈ N. This
means that gn+a′,θ(x̃θ,a′) ≥ 0, ∀n ∈ N. From Lemma 3.3.6 and Lemma 3.3.7, we obtain
that gn,θ(·) is increasing on [x̃θ,a′ ,∞) and therefore gn,θ(x) ≥ 0,∀x ≥ x̃θ,a′ .

Example 3.3.1. We illustrate the application of Theorem 3.3.11 on an example. Assume
that λ1 = 3, θ1 = 2 and θ = 2. We need to find the maximal root maxn∈I2 xn,2. If we can
find an integer number a′ which satisfies the two requirements in the Theorem 3.3.11, we
know that the maximal root will be contained within first k ≤ a′ roots. To find a′ which
fulfills the first requirement, let us take the smallest integer a such that min[amod π, π−
amod π] < sin 2

4
= 0.227. This integer equals 3. The set of indices Iθ=2,a=3 is an empty

set, since the smallest integer n such that gn,2(1) < 1 is 6. The second smallest integer
a which satisfies the condition min[amod π, π − amod π] < 0.227 is 19. Then we have
I2,19 = {6, 9, 12, 15, 18}. The corresponding roots are 1.036, 1.039, 1.033, 1.024 and 1.013.
The maximum of these roots x̃2,19 equals 1.039. The second requirement a′ ≥ log 2

log x̃2,a′
is

satisfied for a′ = 19, indeed 19 ≥ log 2
log 1.039

= 18.25. According to the Theorem 3.3.11, the
sequence {ψj}∞j=0 is non-negative if and only if |λ2|/3 ≥ 1.039. This condition is depicted
graphically in Figure 3.7(a). The light-blue region again represents those complex roots
λ2 and λ3 for which at least one coefficient ψj, j ∈ N, is negative. The dark blue
envelope is the boundary of the negativity region of AR(3) process. The dashed line
connects all the complex roots with the argument equal to 2. We have just derived
that the complex number with argument 2 has to be at least at a distance of 3× 1.039
from the origin to assure the non-negativity of {ψj}∞j=0. A complex root with such a
distance is marked by the red point. The Figure 3.7(b) depicts the roots of the equations
gn,2(x) = 0, n ≤ 50, n ∈ I2. The dashed vertical line corresponds to the approximate
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(a) The negativity region for ARMA(3, 1) (b) The roots of the function gn,2(·)

Figure 3.7: On the left, the light blue area is the region of negativity for ARMA(3, 1) with λ1 = 3 and θ1 = 2, the
dark blue closed curve corresponds to the boundary of the negativity region for AR(3); on the right, the roots of the
function gn,2(·) with θ1 = 2 and λ1 = 3, the dashed vertical line corresponds to n = 19

period a′ = 19. We observe that indeed the largest root, being the second one in a row,
is contained within the first cardI2,19 = 5 roots.

Similarly as for the AR(3) process, we can prove that when the real part of the
conjugate complex roots λ2, λ3 is greater than λ1, then the non-negativity of the sequence
{ψj}∞j=1 is always assured.

Theorem 3.3.12. Suppose that λ1 ∈ R, θ1 ≥ 0 and λ2 = λ̄3 = |λ2|eiθ = a + bi, where
a, b ∈ R and 0 < θ < π. If a ≥ λ1 > 1, then {ψj}∞j=0 is non-negative.

Proof. Note that a ≥ λ1 > 1 implies |λ2| cos θ ≥ λ1 > 1, or equivalently∣∣∣∣λ2

λ1

∣∣∣∣ ≥ 1

cos θ
> 1.

We need to prove that

gn(x) ≥ 0, for x ≥ 1

cos θ
> 1.

Note that it suffices to show that gn
(

1
cos θ

)
≥ 0. From Lemma 3.3.6 we then readily

obtain that g′n
(

1
cos θ

)
≥ 0. From Lemma 3.3.7 we know that the second derivative is

positive on [1,∞). It then follows that g′(x) ≥ 0 for x ≥ 1
cos θ

> 1 and therefore g(x) ≥ 0
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Figure 3.8: Negativity regions for ARMA(3, 1) models with λ1 = 3 and θ1 = 0 (dark blue), θ1 = 2 (violet), θ1 = 1
(pink), θ1 = 1/3 (red)

for x ≥ 1
cos θ

> 1. Now we show that that gn
(

1
cos θ

)
> 0. We have

gn,θ

(
1

cos θ

)
=

1− cosn+1 θ cos[(n+ 1)θ] + θ1λ1 − θ1λ1 cosn θ cos(nθ)

cosn+2 θ

=
1 + θ1λ1 − cosn θ[θ1λ1 cos(nθ) + cos θ cos[(n+ 1)θ]]

cosn+2 θ

≥1 + θ1λ1 − cosn θ(1 + θ1λ1)

cosn+2 θ

=
(1 + θ1λ1)(1− cosn θ)

cosn+2 θ
≥ 0.

Remark 3.3.3. The Figure 3.7(a) pictures the negativity/non-negativity region for one
special ARMA(3, 1) model. In order to get an idea about the influence of the coefficient
θ1 on the size of the region, we depicted several regions for several choices of θ1, see
Figure 3.8. The dark blue region corresponds to the choice θ1 = 0, which is the AR(3)
negativity region we already saw in Figure 3.2. We observe that the other three regions,
for θ1 = 2 (violet), θ1 = 1 (pink) and θ1 = 1/3 (red), are nested within each other. The
smallest one is a circle centered at zero with a diameter 1/λ1 = 1/3. This corresponds to
the Theorem 3.3.10. The principal observation is that with increasing θ1 which is greater
than 1/λ1, the negativity region stretches, but according to Theorem 3.3.5 never exceeds
the AR(3) region. A similar stretching tendency can be observed also for θ1 < 1/λ1

which are approaching zero. The second observation is that the negativity region never
includes roots with a real part greater than λ1 = 3. This is in accordance with Theorem
3.3.12.
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(b) θ1 < 0

A similar result as in Theorem 3.3.11 can be obtained also when θ1 < 0. Again we will
need to prove some auxiliary statements about the functions gn,θ(·).

Lemma 3.3.13. For a given θ ∈ (0, π) and n ∈ N, let gn(·) denote gn,θ(·). Suppose that
θ1 < 0 and 1 + θ1λ1 ≥ 0. Then ∀n ∈ N and ∀x ≥ 1, the following statement holds:

if gn(1) ≥ 0 then g′n(1) ≥ 0.

Proof. We have

g′n,θ(1)− gn,θ(1) = (n+ 1)(1 + θ1λ1)− sin[(n+ 1)θ]

sin θ
(1 + θ1λ1).

Since 1 + θ1λ1 ≥ 0 and sin[(n+1)θ]
sin θ

< n+ 1 it holds that g′n,θ(1)− gn,θ(1) ≥ 0, ∀n ∈ N and
∀θ ∈ (0, π).

Lemma 3.3.14. For a given θ ∈ (0, π) and n ∈ N, let gn(·) denote gn,θ(·). Suppose
θ1 < 0 and 1 + 2 θ1λ1 ≥ 0. If gn,θ(1) < 0, then there exists one and only one xn > 1 such
that gn(xn) = 0 and gn(x) ≥ 0, ∀x ≥ xn.

Proof. First we show that the assumption 1 + 2 θ1λ1 > 0 implies that ∀n ∈ N and any
θ ∈ (0, π) it holds g′′n,θ(x) ≥ 0, x ≥ 1. For θ1 < 0 and x ≥ 1 we have

g′′n(x) ≥ g′′n(1) ≥ (n+ 2)(n+ 1)(1 + θ1λ1) + 2θ1λ1(n+ 1).

The expression on the right hand side can be rewritten as

n(n+ 1)(1 + θ1λ1) + 2(n+ 1)(1 + 2θ1λ1),

which is non-negative for any n ∈ N, assuming 1+2 θ1λ1 ≥ 0. Now assume that for a given
θ ∈ (0, π) and n ∈ N, gn,θ(1) < 0 and g′n(1) ≥ 0. We know that under the assumption
1 + 2 θ1λ1 ≥ 0, the second derivative is positive on [0,∞) whenever 1 + θ1λ1 > 0, which
is satisfied because we assume 1 + 2 θ1λ1 ≥ 0. This implies that g′n(x) is increasing for
x ≥ 1 and therefore positive on (1,∞). From the positivity of the derivative g′n(·) on
(1,∞), it follows that the function gn(·) is increasing for x > 1. Therefore, there must
exist some xn > 1 such that gn(xn) = 0 and gn(x) > 0, ∀x > xn.

Now, assume that gn,θ(1) < 0 and g′n(1) < 0. We know that the second derivative
g′′n(1) is positive on [1,∞) and therefore the derivative g′n(·) is increasing on [1,∞), which
implies that there must be one point x′n > 1 such that the function gn(·) is decreasing in
1 ≤ x < x′n and increasing for x ≥ x′n. Conclusively, there must be some point xn > x′n
such that gn(xn) = 0 and gn(x) > 0, ∀x > xn.
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Remark 3.3.4. The assumption 1 + 2 θ1λ1 ≥ 0 in Lemma 3.3.14 might be replaced by
1 + θ1λ1 > 0. This observation has been supported by empirical evidence, but appeared
slightly difficult to prove analytically. The key would be to show that if 1 + θ1λ1 > 0,
then the non-negativity of the first derivative implies the non-negativity of the second
derivative on the interval [1,∞).

In the previous section we distinguished between two situations, where the argument
θ could or could not be expressed as 2π/k for some 3 ≤ k ∈ N. For θ1 < 0 we will do
practically the same thing. Previously, if θ ∈ {2π/k : k = 3, 4, . . . } the sequence was
automatically non-negative as long as 1 < λ1 ≤ |λ2| was satisfied. For those θ’s which
could not be expressed this way, the ratio |λ2|/λ1 had to be greater than or equal to
the maximal root, which is contained within several first roots with the lowest indices.
When θ1 < 0 the results change slightly. Even if θ ∈ {2π/k : k = 3, 4, . . . }, the condition
|λ2|/λ1 ≥ 1 is not enough to assure the non-negativity. Again this ratio needs to be
greater than or equal to the largest root. Similarly, we show that the largest root is
contained within first, say j, roots. The advantage now is that it is straightforward to
determine the upper bound for j. We show that the maximal root lies within first j ≤ k
roots, where k is determined from the relation θ = 2π/k.

Theorem 3.3.15. Suppose that λ1 ∈ R and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a, b ∈ R
and 0 < θ < π. Assume θ1 < 0, 1 + 2 θ1λ1 ≥ 0 and θ ∈ {2π/k : k = 3, 4, . . . }.
For the given θ and an integer number a∗, denote Iθ,a∗ a set of indices n ≤ a∗, n ∈ N,
so that gn,θ(1) < 0 for n ∈ Iθ,a∗ and denote x̃θ,a∗ = maxn∈Iθ,a∗ xn,θ, where xn,θ is a
root of equation gn,θ(x) = 0. Then the sequence {ψj}∞j=0 is non-negative if and only if
|λ2|/λ1 ≥ x̃θ,k > 1.

Proof. We know that for those indices n ∈ N for which gn,θ(1) ≥ 0, it is always assured
that gn,θ(x) ≥ 0, x ≥ 1. This follows from Lemma 3.3.13 and the fact that the second
derivative is non-negative on [1,∞). Now, assume that gn,θ(1) < 0. Lemma 3.3.14 gives
the existence of one particular root xn of an equation gn,θ(x) = 0 on an interval (1,∞),
such that gn,θ(x) is increasing and therefore non-negative on (xn,∞). The condition
|λ2|/λ1 ≥ xn,θ is then equivalent to the non-negativity of a single coefficient ψn.

To complete the proof of the theorem we need to show that if x ≥ x̃θ,k, then gn(x) ≥
0, ∀n ≥ 0. Recall the definition of the function mθ,x(·):

mθ,x(n) = −x2θ1λ1
sin[(n+ 1)θ]

sin θ
− x

{
sin[(n+ 2)θ]

sin θ
− θ1λ1

sinnθ

sin θ

}
+

sin[(n+ 1)θ]

sin θ
.

The function mθ,x(n) is periodic with a period 2π/θ, i.e. mθ,x(n) = mθ,x(n+ 2π/θ),∀n ∈
N. The period equals k if θ = 2π/k. From the definition of x̃θ,k it follows that gn,θ(x) ≥ 0
for all x ≥ x̃θ,k and n = 0, . . . , k. Because gn,θ(x) = xn+2(1 + θ1λ1) + mθ,x(n) and
mθ,x(n) = mθ,x(n + k), n ∈ N, it holds that gn+k,θ(x) > gn,θ(x) for any n ∈ N and
x ≥ x̃θ,k, as long as 1 + θ1λ1 > 0. The condition 1 + θ1λ1 > 0 follows from the
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(a) The negativity region for ARMA(3, 1) (b) The roots gn,2π/3(·)

Figure 3.9: On the left, the light blue area is the region of negativity for ARMA(3, 1) with λ1 = 3 and θ1 = −0.1, the
dark blue closed curve corresponds to the boundary of the negativity region for AR(3), dashed black line connects complex
roots with an argument 2π/3, the red cross corresponds to the root with argument 2π/3 and absolute value 4.287; on the
right, the roots of the function gn,2π/3(·) with θ1 = −0.1 and λ1 = 3, the dashed vertical line corresponds to n = 3

assumptions 1 + 2 θ1λ1 ≥ 0, θ1 < 0. From all the considerations, it easily follows that
gn,θ(x) ≥ 0,∀n ∈ N and x ≥ x̃θ,k.

Example 3.3.2. We again illustrate the use of the Theorem 3.3.15 on the example.
Suppose that θ1 = −0.1, λ1 = 3 and θ = 2π/3, i.e. k = 3. We know that the non-
negativity of {ψj}∞j=0 is equivalent to the condition |λ2| ≥ 3 × x̃2π/3, where x̃2π/3 is
the maximum of the roots xn,2π/3 of the equations gn,2π/3(x) = 0, n ∈ I2π/3. From the
Theorem 3.3.15 we know that this maximal root is contained within first card I2π/3,3 ≤ 3
roots. The roots xn,2π/3 for n ∈ I2π/3, n ≤ 50, are depicted on Figure 3.9(b). There
are only two indices n ≤ 3 so that gn,2π/3(1) < 1, i.e. card I2π/3,3 = 2. The two roots
corresponding to these indices are 1.429 and 1.18. According to the Theorem 3.3.15. The
sequence {ψj}∞j=0 is non-negative if and only if |λ2| ≥ 1.429× 3 = 4.287. A complex root
with an argument 2π/3 and absolute value 4.287 is marked with a red cross on Figure
3.9(a). The light blue region is the negativity region for complex roots λ2 and λ3 for
the given θ1 = −0.1, λ1 = 3. This region contains the AR(3) region (bounded with dark
blue).

Now we focus on the case when θ /∈ {2π/k : k = 3, 4, . . . }.

Theorem 3.3.16. Suppose that λ1 ∈ R and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a, b ∈ R
and 0 < θ < π. Assume θ1 < 0, 1 + 2 θ1λ1 > 0 and θ /∈ {2π/k : k = 3, 4, . . . }. For the
given θ and an integer number a∗, denote Iθ,a∗ a set of indices n ≤ a∗, n ∈ N, so that
gn,θ(1) < 0 for n ∈ Iθ,a∗. Let a′ be defined as the smallest positive integer number a∗
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(a) The negativity region for ARMA(3, 1) (b) The roots of the function gn,2.5(·)

Figure 3.10: On the left, the light blue area is the region of negativity for ARMA(3, 1) with λ1 = 3 and θ1 = −0.1,
the dark blue closed curve corresponds to the boundary of the negativity region for AR(3), dashed black line connects
complex roots with an argument 2.5, the red cross corresponds to the root with argument 2.5 and absolute value 6.87. On
the right, the roots of the function gn,2.5(·) with θ1 = −0.1 and λ1 = 3, the dashed vertical line corresponds to n = 3

such that

a∗ ≥ log 2

log x̃θ,a∗
and min

[(
θa∗

2

)
mod π, π −

(
θa∗

2

)
mod π

]
≤ (1 + θ1λ1) sin θ

4(1− θ1λ1)
,

where x̃θ,a∗ = maxn∈Iθ,a∗ xn,θ and xn,θ is a root of equation gn,θ(x) = 0. Then the sequence
{ψj}∞j=0 is non-negative if and only if |λ2|/λ1 ≥ x̃θ,a′ > 1.

Proof. The construction of the proof is analogous to the one in Theorem 3.3.11. Denote
now ∆ = 2 min

[(
θa∗

2

)
mod π, π −

(
θa∗

2

)
mod π

]
. For x ≥ 1, θ1 < 0 and 1 + 2θ1λ1 ≥ 0, we

now have

|mθ,x(n+ a′)−mθ,x(n)| sin θ ≤− x2θ1λ1∆ + x∆− xθ1λ1∆ + ∆

=∆(1 + x)(1− xθ1λ1) ≤ ∆2x2(1− θ1λ1).

From the assumptions it follows that 2∆(1−θ1λ1) ≤ (1+θ1λ1) sin θ. Therefore, |mθ,x(n+
a′) − mθ,x(n)| sin θ ≤ x2(1 + θ1λ1) sin θ. Because sin θ > 0, we have |mθ,x(n + a′) −
mθ,x(n)| ≤ x2(1 + θ1λ1). The rest of the proof is again the same as in Theorem 3.3.11.

Example 3.3.3. Let us suppose that θ1 = −0.1, λ1 = 3 and θ = 2.5. The minimal
integer number a for which min

[(
2.5 a

2

)
mod π, π −

(
2.5 a

2

)
mod π

]
≤ (1+θ1λ1) sin θ

4(1−θ1λ1)
= 0.08 is

5. The set I2.5,5 contains three indices 1, 3, 4. The corresponding roots are 2.29, 1.19 and
1.06. Because it holds that 5 > log 2

log 2.29
= 0.8370, according to Theorem 3.3.16, 2.29 is the
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Figure 3.11: Negativity regions for ARMA(3, 1) models with λ1 = 3 and θ1 = −0.3 (green), θ1 = −0.2 (light-blue),
θ1 = −0.2 (marine blue), θ1 = 0 (dark blue)

overally maximal root. From the plot of roots on Figure 3.10(b) we see that it is indeed
the case. Also note the irregular behavior of the roots when compared to Figure 3.9(b).
This artefact is caused by the non-integer period of the function m2.5,x(n). To conclude,
the sequence {ψj}∞j=0 is then non-negative if and only if |λ2| ≥ 2.29 × 3 = 6.87. Again,
the complex root with an argument 2.5 and an absolute value 6.87 is marked by a red
cross on Figure 3.10(a).

Remark 3.3.5. In order to see the effect of θ1, the negativity regions were plotted in
one figure for various choices of θ1 ≤ 0, Figure 3.11. The value λ1 was chosen equal
to 3. Again, the regions are nested within each other. This time the AR(3) region
corresponding to θ1 = 0 is the smallest one. With a decreasing θ1, the region stretches.
Note that the results for θ1 < 0 were derived under assumption 1 + 2 θ1λ1 > 0. This
condition is not satisfied for θ1 = −0.2 and θ2 = −0.3. However, as noted in Remark
3.3.4 we believe the given results would hold also if we assumed only 1 + θ1λ1 > 0. It
would suffice to show that the functions gn,θ(·), for which gn,θ(1) < 0, have also one
unique root xn,θ. Inspecting the plots functions gn,θ(·) and their derivatives for different
choices of parameters, we believe that this is true. We are convinced that the negativity
regions for θ1 = −0.2 and θ1 = −0.3 can be parametrized similarly as those under the
assumption 1 + 2 θ1λ1 > 0. This conjecture was supported empirically by simulating the
conjugate roots λ2, λ3 and plotting those, for which at least one of the first, say 1 000,
coefficients in the sequence {ψj}∞j=0 was negative. These simulated values clustered in
the regions whose borders correspond to λ1 ×maxn∈Iθ xn,θ.

Remark 3.3.6. Looking at the negativity regions in Figure 3.11, we see that regardless
the θ1, the complex roots with a real part greater than λ1 = 3 lie always outside the
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negativity region. This property was also observed for θ1 ≥ 0. In order to prove this
for θ1 < 0 we might suffice to show e.g. that gn,θ(x) ≥ 0 implies g′n,θ(x) ≥ 0 for any
n ∈ N, θ ∈ (0, π) and x ≥ 1, which was not that straightforward task.

3.3.6 ARMA(3,2)

Consider the causal ARMA(3, 2) process {Xt : t = 0,±1,±2, . . . } with non-negative
innovations, determined from the following stochastic difference equations:

Xt − φ1Xt−1 − φ2Xt−2 − φ3Xt−3 = Z∗t + θ1Z
∗
t−1 + θ2Z

∗
t−2 (t = 0,±1,±2, . . . ),

where the roots of the autoregressive polynomial 1 − φ1z − φ2z
2 − φ3z

3 lie outside the
unit circle. The generating function for the ARMA(3, 2) kernel sequence {ψj}∞j=0 is

ψ(z) =
1 + θ1z + θ2z

2

1− φ1z − φ2z2 − φ3z3
(0 ≤ z < 1). (3.3.27)

A similar chain of reasoning to the one we used in previous section could be entertained
to derive a set of necessary and sufficient conditions for ARMA(3, 2) models. Note that
this time the coefficients ψn are obtained from the following relations:

ψn =
r1

λn+1
1

+
r2

λn+1
2

+
r3

λn+1
3

(n ≥ 1),

where ri = −θ(λi)/ψ(1)(λi), i = 1, 2, 3. More specifically,

r1 =
1 + θ1λ1 + θ2λ1

φ3(λ1 − λ2)(λ1 − λ3)
, r2 =

1 + θ1λ2 + θ2λ2

φ3(λ2 − λ1)(λ2 − λ3)
and r3 =

1 + θ1λ3 + θ2λ3

φ3(λ3 − λ1)(λ3 − λ2)
.

Now, denote ψ∗∗∗n = φ3|λ1 − λ2|2λn+1
1 |λ2|2n+2ψn. Then we have

ψ∗∗∗n =(1 + θ1λ1 + θ2λ1)|λ2|2n+2 +
λn+1

1 λn+1
3 (λ3 − λ1)(1 + θ1λ2 + θ2λ2)

(λ2 − λ3)

+
λn+1

1 λn+1
2 (λ2 − λ1)(1 + θ1λ3 + θ2λ3)

λ3 − λ2

=|λ2|2n+2 +
λn+2

1 (λn+1
3 − λn+1

2 )

λ3 − λ2

− λn+1
1 (λn+1

3 − λn+1
2 )

λ3 − λ2

+ θ1λ1|λ2|2
[
|λ2|2n +

λn+1
1 (λn3 − λn2 )

λ3 − λ2

− λn1 (λn3 − λn2 )

λ2 − λ3

]
+ θ2λ

2
1|λ2|4

[
|λ2|2n−2 +

λn1 (λn−1
3 − λn−1

2 )

λ3 − λ2

− λn−1
1 (λn−1

3 − λn−1
2 )

λ2 − λ3

]
.
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Note that we can write

ψ∗∗∗n = ψ∗n + θ1λ1|λ2|2ψ∗n−1 + θ2λ1|λ2|4ψ∗n−2,

where ψ∗n were defined in (3.2.9). For 0 < θ < π and n ∈ N, denote

hn,θ(x) =xn+2(1 + θ1λ1 + θ2λ1)− x3θ2λ1
sin(nθ)

sin θ
− x2

[
θ1λ1

sin[(n+ 2)θ]
sin θ

+ θ2λ1
sin[(n− 1)θ]

sin θ

]
− x

[
sin[(n+ 2)θ]

sin θ
− θ1λ1

sin(nθ)
sin θ

]
+

sin[(n+ 1)θ]
sin θ

.

It can be easily verified that

ψ∗∗∗n = λn+2
1 |λ2|nhn,θ

(∣∣∣∣λ2

λ1

∣∣∣∣) . (3.3.28)

The expression in (3.3.28) is more than familiar. We have already seen similar ones be-

fore: ψ∗n = λn+2
1 |λ2|nfn,θ

(∣∣∣λ2

λ1

∣∣∣), AR(3) models, ψ∗∗n = λn+2
1 |λ2|ngn,θ

(∣∣∣λ2

λ1

∣∣∣), ARMA(3, 1)

models. This immediately suggests that the same strategy used previously for AR(3)
and ARMA(3, 1) can be applied. Again, the following statements are equivalent

(a) a single coefficient ψn is non-negative,

(b) a single coefficient ψ∗∗∗n is non-negative,

(c) hn,θ

(∣∣∣λ2

λ1

∣∣∣) is non-negative.

Also note the following relationship between functions hn,θ(·), gn,θ(·) and fn,θ(·):

hn,θ(x) = fn,θ(x) + xθ1λ1fn−1,θ(x) + x2θ2λ1fn−2,θ(x) = gn,θ(x) + x2θ2λ1fn−2,θ(x),

where f−1(·) and f−2(·) are again defined as constant functions equal to zero. An analogy
of the Theorem 3.3.9 can be obtained readily also for ARMA(3, 2) processes.

Theorem 3.3.17. Suppose that λ1 ∈ R and λ2 = λ̄3 = |λ2|eiθ = a + bi, where a, b ∈ R
and 0 < θ < π. If θ1 ≥ 0, θ2 ≥ 0 and θ = 2π/k for some integer k ≥ 3, then the sequence
{ψj}∞j=0 is nonnegative if and only if |λ2| ≥ λ1 > 1.

Proof. The proof follows directly from the facts that: (a) hn,θ(1) is a non-negative linear
combination of fn(1), fn−1(1) and fn−2(1), i.e.

hn,θ(1) = fn,θ(1) + θ1λ1fn−1,θ(1) + θ2λ1fn−2,θ(1),

where θ1λ1 ≥ 0 and θ2λ1 ≥ 0, (b) the values fn(1) are under the assumption θ = 2π/k
always non-negative, Theorem 3.2.4.
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Figure 3.12: Negativity regions for ARMA(3, 2) models for various choices of θ2 and fixed θ1 = 1

Figure 3.13: Negativity regions for ARMA(3, 2) models for various choices of θ1 and fixed θ2 = 1

We anticipate that analogous conditions which we derived for ARMA(3, 1) pro-
cesses in Theorem 3.3.11, Theorem 3.3.15 and Theorem 3.3.16 could be obtained also
for ARMA(3, 2). However, the labor in studying monotonicity properties of the func-
tions hn,θ(·) and their derivatives would be more involved. That is why we provide only
some empirical evidence. Roots λ2, λ3 of the autoregressive polynomial were randomly
generated and those roots for which at least one of the first 1 000 coefficients in the
sequence {ψj}∞j=0 was negative were plotted in the complex plane. These values tend
to cluster within regions similar to those we saw previously for AR(3) or ARMA(3, 1)
processes. We wondered whether the borders of these regions can be parametrized as
λ1×x∗θ, where x∗θ = maxn∈Iθxn,θ, Iθ again denotes the set of indices for which hn,θ(1) < 0
and xn,θ, n ∈ Iθ, denotes a root of the equation hn,θ(x) = 0. Indeed, after plotting the
complex roots with absolute value equal to λ1 × x∗θ and with argument θ for a fine grid
of values θ ∈ (0, π), the curve that resulted by joining these points nicely circumscribed
the simulated values.

These regions are depicted for varying positive coefficients θ2 and fixed positive θ1

on Figure 3.12, varying positive coefficients θ1 and fixed positive θ2 on Figure 3.13. The
blue closed curve again frames the negativity region for AR(3). The borders of AR(3)
region and ARMA(3, 2) regions touch each other for θ = 2π/k, k = 3, 4, . . . . Again, this
corresponds to the Theorem 3.3.17.
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3.3.7 ARMA(p,q)

Consider the causal ARMA(p, q) process {Xt : t = 0,±1,±2, . . . } with non-negative
innovations {Z∗t : t = 0,±1,±2, . . . }, which is determined from the following stochastic
difference equations

X1−φ1Xt−1−φ2Xt−2−· · ·−φpXt−p = Z∗t +θ1Z
∗
t−1+θ2Z

∗
t−2+· · ·+θqZ∗t−q (t = 0,±1,±2, . . . ).

The generating function of the kernel sequence {ψj}∞j=0 is given by

ψ(z) =
1 + θ1z + θ2z

2 + θqz
q

1− φ1z − φ2z2 − · · · − φpzp
(0 ≤ z < 1).

Some necessary conditions for the non-negativity of the sequence {ψj}∞j=0 were already
given in Theorem 3.1.5. A set of necessary and sufficient conditions has not been
presented yet in the literature. However, Tsai and Chan (2008) investigated condi-
tions for the non-negativity of GARCH(p, q) time series. The generating function of
the sequence {ψj}∞j=0 for an ARMA(p, q) process shares a lot of similarities with the
one of GARCH(p, q) process. Therefore, their result can be applied directly also for
ARMA(p, q) models. We now reformulate and prove the result for the ARMA(p, q)
process with only minor modifications.

Theorem 3.3.18. Let {Xt : t = 0,±1,±2, . . . } be an ARMA(p, q) process. Denote
λ1, λ2, . . . , λp the roots of the autoregressive lag polynomial φ(z) = 1− φ1z − · · · − φpzp,
such that |λ1| ≤ |λ2| ≤ · · · ≤ |λp|. Assuming that these roots are distinct, the conditions
(1)-(3) are necessary and sufficient for {ψj}∞j=0 to be non-negative:

(1) λ1 is real and λ1 > 1,

(2) θ(λ1) > 0,

(3) ψk ≥ 0, for k = 1, . . . , k∗,

where k∗ is the smallest integer greater than or equal to max[max(0, q− p) + 1, γ], where

γ =
log r1 − log[(p− 1)r∗]

log |λ1| − log |λ2|
− 1

with r∗ = max2≤j≤p |rj| and rj = − θ(λj)

φ(1)(λj)
, 1 ≤ j ≤ p.

Proof. Let us start with the necessity. The necessity of the condition (3) is obvious. The
necessity of the condition (1) has been shown in Theorem 3.1.5. The necessity of (2)
proceeds as follows: by equations (4.8) and (4.9) in Feller (1968) p. 276 it holds that

ψn =

p∑
i=1

riλ
−(n+1)
i , n ≥ max(q − p, 0) + 1.
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This can be rewritten as

ψnλ
n+1
1 = r1 +

p∑
i=2

ri

(
λ1

λi

)n+1

. (3.3.29)

In the proof of Theorem 3.1.5, we have already shown that under the assumption 1 <
λ1 < |λi|, i = 2, . . . , p,

lim
n→∞

ri

(
λ1

λi

)n+1

= 0.

This means, as n tends to infinity, the first element r1 prevails the expansion in (3.3.29).
The coefficients ψn can be for large n approximated by r1λ

−(n+1)
1 . In other words

lim
n→∞

ψnλ
n+1
1

r1

= 1. (3.3.30)

Assuming that the sequence {ψj}∞j=0 is non-negative, we have shown that λ1 ∈ R and
λ1 > 1, Theorem 3.1.5. In order the limit in (3.3.30) to be one, it is not possible that r1

is negative. Let us now look more closely at the term r1 = − θ(λ1)

φ(1)(λ1)
. It holds that

φ(z) = 1−
p∑
i=1

φiz
i =

p∏
i=1

(
1− z

λi

)
.

The derivative evaluated at λ1 > 1 equals

φ(1)(λ1) = − 1

λ1

p∏
i=2

(
1− λ1

λi

)
.

Assume that a root λi, i ∈ {2, . . . , p} is real. If λi < −λ1 < −1, the element 1 − λ1

λi
is

always positive. If λi is positive, the property 1 − λ1

λi
> 0 follows from the assumption

that λi > λ1 > 1. Now assume that a root λi is complex and that λi+1 = λ̄i. Then we
have (

1− λ1

λi

)(
1− λ1

λi+1

)
=
|λi − λ1|2

|λi|2
> 0.

This altogether gives that
∏p

i=2

(
1− λ1

λi

)
is always positive and therefore − 1

φ(1)(λ1)
is

positive. Since we assume that θ(z) and φ(z) have no common roots, r1 cannot be equal
to zero. Moreover, the positivity of r1 is equivalent to the positivity of θ(λ1). This
proves the necessity of the condition (2).

Now, we prove the sufficiency. First suppose that γ is negative, i.e.

log r1 − log[(p− 1)r∗]

log |λ1| − log |λ2|
< 1.
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This is equivalent to

log r1 − log[(p− 1)r∗] > log |λ1| − log |λ2|. (3.3.31)

We have

ψn =

p∑
i=1

ri

λn+1
i

≥ r1

λn+1
1

−

∣∣∣∣∣
p∑
i=2

ri

λn+1
i

∣∣∣∣∣ ≥ r1

λn+1
1

−
p∑
i=1

∣∣∣∣ ri

λn+1
i

∣∣∣∣ ≥ r1

λn+1
1

−
p∑
i=1

r∗

|λn+1
i |

≥ r1

λn+1
1

− (p− 1)r∗

|λ2|n+1
.

The inequality (3.3.31) is equivalent to r1 > (p− 1)r∗ |λ1|
|λ2| and therefore , we obtain

λn+1
1 ψn ≥ r1 − (p− 1)r∗

λn+1
1

|λ2|n+1
> (p− 1)r∗

|λ1|
|λ2|

(
1− |λ1|n

|λ2|n

)
≥ 0.

This implies that ψn ≥ 0, n ≥ max(q − p, 0) + 1, whenever γ < 0. Now, suppose γ ≥ 0.
It still holds that

λn+1
1 ψn ≥ r1 − (p− 1)r∗

|λ1|n+1

|λ2|n+1
. (3.3.32)

The first term r1 is positive from the assumption (2). The second term monotonously
decreases in magnitude as n tends to infinity. This means that if there exists n∗ such
that the term on the right hand side of (3.3.32) is non-negative, then the term remains
non-negative for all n > n∗. The right hand side in (3.3.32) is non-negative whenever

n+ 1 ≥ log r1 − log[(p− 1)r∗]

log |λ1| − log |λ2|

or equivalently when n ≥ γ. This completes the proof.
In the following, we show that the conditions in Theorem 3.3.18 are relatively easy

to verify for ARMA(2, q) models.

Theorem 3.3.19. Let {Xt : t = 0,±1,±2, . . . } be ARMA(2, q) process. Denote λ1, λ2

the roots of the autoregressive lag polynomial φ(z) = 1−φ1z−φ2z
2, such that |λ1| ≤ |λ2|.

Assuming that these roots are distinct, the conditions (1)-(3) are necessary and sufficient
for {ψj}∞j=0 to be non-negative:

(1) λ1 is real and λ1 > 1,

(2) θ(λ1) > 0,

(3) ψk ≥ 0, for k = 1, . . . , q,
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Proof. We prove only the sufficiency, since the necessity follows from Theorem 3.3.18.
The equations (4.3) and (4.4) in Feller (1968) p. 276 for ARMA(2, q) process take the
following form:

ψn =
1

φ2(λ1 − λ2)

(
θ(λ1)

λn+1
1

− θ(λ2)

λn+1
2

)
, n ≥ q − 1.

We can write

ψn
λn+1

1

φ2(λ1 − λ2)
= θ(λ1)−

(
λ1

λ2

)n+1

θ(λ2), n ≥ q − 1. (3.3.33)

Similarly as in the Theorem 3.3.4 we consider the following 4 cases: (i) 1 < λ1 < λ2 and
θ(λ2) ≥ 0, (ii) 1 < λ1 < λ2 and θ(λ2) < 0, (iii) −1 > −λ1 > λ2 and θ(λ2) > 0, (iv)
−1 > −λ1 > λ2 and θ(λ2) < 0.

In the first case the second summand
(
λ1

λ2

)n+1

θ(λ2) is positive and contributes a

negative value to (3.3.33). It is monotonously decreasing in magnitude. If (3.3.33) is
non-negative for n = q − 1, then it is non-negative for all n ≥ q. In the second case, the
summand is always negative and therefore contributes positively in (3.3.33). In that case
ψn ≥ 0, n ≥ q− 1. In the third case, the summand has oscilating sign and monotonously
decreases in absolute value. For n = 2k − 1 the summand is positive. In case q is
an even number, it suffices that (3.3.33) is non-negative for n = q − 1. For odd q, it
suffices to assume the non-negativity of (3.3.33) for n = q. If n = 2k, the summand is
always negative and therefore (3.3.33) always non-negative for n ≥ q − 1. The case (iv)
follows analogously as (iii). Still it is sufficient to assume that (3.3.33) is non-negative
for n = q − 1 or n = q, depending whether or not q is odd.

Remark 3.3.7. The Theorem 3.3.4 is in fact as a special case of Theorem 3.3.19, where
the expansion (3.3.29) is valid already for n ≥ 1. We then needed to assume the non-
negativity of just the first two coefficients. The same holds for ARMA(2, 2). However,
for ARMA(2, q), where q > 2, the expansion can be applied only for n ≥ q−1. Therefore
we need to assume the non-negativity of the first q coefficients.

Remark 3.3.8. Note the similarity between Theorem 3.3.19 and Theorem 3.3.3. The
Theorem 3.3.19 contains the additional assumption θ(z) ≥ 0.
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Chapter 4

Conditions for Non-negativity in
Multivariate Time Series

Many phenomena observed in practice arise as a result of many underlying processes that
interact with each other. Simultaneous measurements on more than one such process
are then demanded to aid understanding of such phenomenon. For example, in water
resource streamflow modeling, in order to understand the dynamics of the streamflow
within a water basin, it is usual to measure streamflow intensities at different sites of
the basin. Joint modeling of these measurements requires taking into account possible
spatial correlations between neighboring sites as well as correlations induced by time.
Multivariate time series models are capable of modeling data with these characteristics.

Many observed multivariate time series are allowed to take only non-negative val-
ues. Examples can be found not only in hydrology but also other fields like medicine
or finance. Describing the non-negative multivariate time series by a statistical model
then again requires special modeling or parameter estimation techniques and, implicitly,
a specification of the non-negativity conditions. Conditions for the non-negativity for
multivariate processes have not been investigated as thoroughly as the univariate condi-
tions. To our knowledge, the only note on this problematics was given by Anděl (1992),
who derived a necessary and sufficient condition for a p-dimensional AR(1) process. In
this section we review this existing result and we discuss a different approach based on
the absolute monotonicity argument, generalized to the multivariate case. We focus on
the V AR(1), V ARMA(1, 1) and V ARMA(1, q) models.

4.1 Conditions for Non-negativity

In Section 2.2 we established that if a multivariate (p-variate) ARMA series {X t =
(Xt1, . . . , Xtp)

′ : t = 0,±1,±2, . . . } satisfies the causality criterion det[Φ(z)] 6= 0, |z| ≤ 1,
it can be represented as a infinite matrix-valued linear combination of the vector white
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noise sequence {Zt = (Zt1, . . . , Ztp)
′ : t = 0,±1,±2, . . . }, i.e.

X t =
∞∑
j=1

ΨjZt−j, t = 0,±1,±2, . . . . (4.1.1)

Assuming that the multivariate white noise comprises of non-negative random variables
and that all the elements of the matrices {Ψj}∞j=0 are non-negative, it trivially follows
that the vector process {X t : t = 0,±1,±2, . . . } is also non-negative. It follows from
Theorem 3.1 and Corollary 3.2 in Anděl (1992) that if the elements of the multivariate
white noise are independent, the non-negativity of all the matrix components in the
sequence {Ψj}∞j=0 is also a necessary condition for the non-negativity of the process
{X t : t = 0,±1,±2, . . . }.

Theorem 4.1.1. Let Zt = (Zt1, . . . , Ztp)
′, t ∈ Z, be iid random vectors. Assume that

Zt1, . . . , Ztp, t ∈ N, are independent non-negative random variables. Assume P(Zti =
0) < 1 and P(Zti < ε) > 0 for all i = 1, . . . p, t ∈ Z and every ε > 0. Let {X t : t =
0,±1,±2, . . . } be a p-dimensional ARMA process given by (4.1.1) and denote Ψn =(
ψnij
)p
i,j=1

. Assume that there exist n ∈ N and i, j ∈ {1, . . . , p} such that ψnij < 0. Then
there are infinitely many indices t ∈ Z such that Xti < 0.

Proof. From our assumptions it holds that P (
∑p

m=1 cmZtm < ε) > 0, ∀ε > 0, for any
(c1, . . . , cp)

′ ∈ Rp and t ∈ Z. Furthermore, from the assumptions P(Zti = 0) < 1 and
P(Zti ≥ 0) = 1, there must exist c > 0 such that

P(ψnijZtj < −2c) > 0, t ∈ Z.

Then we have

P

(
p∑

m=1

ψnimZtm < −c

)
≥ P

(
ψnijZtj < −2c

)
P

(∑
m6=j

ψnimZtm < c

)
> 0. (4.1.2)

The fulfillment of the condition in (4.1.2) together with Theorem 3.1 in Anděl (1992) gives
that with probability 1 there exist infinitely many subscripts t such that Xti < 0.

From now on we assume that the components of the vector valued strict white noise
sequence are independent and non-negative random variables. We will investigate situ-
ations, when the elements of the matrix sequence {Ψj}∞j=0 are non-negative. First, we
establish concepts of matrix-valued generating and absolutely monotone functions.

Definition 4.1.1. Let {Ψn}∞n=0 denote a sequence of real p × p matrices Ψ0,Ψ1, . . . .
Denote

Ψ(z) = [ψij(z)]pi,j=1 = Ψ0 + Ψ1z + Ψ2z
2 + . . .

a matrix valued power series function. If each function ψij(z), i, j = 1, . . . p, converges
in some interval −z0 < z < z0, then Ψ(z) is said to be a generating function of the
sequence {Ψn}∞n=0.
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4.2 Vector-valued AR(1)

Definition 4.1.2. A matrix-valued generating function Ψ(z) = Ψ0 + Ψ1z + Ψ2z
2 + . . . ,

where Ψi are p× p real matrices, is said to be absolutely monotone, if all its elements
ψij(z) = ψ0

ij + ψ1
ijz + ψ2

ijz
2 + . . . , i, j = 1, . . . , p, are absolutely monotone functions.

Definition 4.1.3. A real valued p × p matrix A is said to be non-negative if all its
entries aij, i, j = 1, . . . , p, are non-negative.

The following theorem is a matrix-valued version of the Theorem 3.1.2.

Theorem 4.1.2. The sequence of matrices {Ψj}∞j=0 is non-negative if and only if its
generating function Ψ(z) = Ψ0 + Ψ1z+ Ψ2z

2 + . . . is absolutely monotone on 0 ≤ z < 1.

Proof. The theorem is an immediate consequence of Theorem 3.1.2.
Note that each of the functions ψij(·) is a generating function of the sequence {ψnij :

n ∈ N}. This suggests that the non-negativity of the sequence of matrices {Ψj}∞j=0 can
be explored component-wise. For each sequence {ψnij : n ∈ N}, we can utilize the duality
between the non-negativity of a sequence of real numbers and the absolute monotonicity
of its generating function.

From now on, we adopt the following assumptions:

(1) let Zt = (Zt1, . . . , Ztp)
′, t ∈ Z, be iid random vectors,

(2) the random variables Zt1, . . . , Ztp, t ∈ N, are independent and non-negative,

(3) P(Zti = 0) < 1 and P(Zti < ε) > 0 for all i = 1, . . . p, t ∈ Z and every ε > 0.

A series of vector valued innovations {Zt = (Zt1, . . . , Ztp)
′ : t = 0,±1,±2, . . . } with

properties (1), (2) and (3) will be further referred to as a p-dimensional non-negative
innovation sequence and denoted {Z∗t = (Z∗t1, . . . , Z

∗
tp)
′ : t = 0,±1,±2, . . . }.

4.2 Vector-valued AR(1)

A stationary p-dimensional AR(1) process {X t = (Xt1, . . . , Xtp)
′ : t = 0,±1,±2, . . . }

with non-negative innovation vectors is determined from the following system of differ-
ence equations:

X t − Φ1X t−1 = Z∗t , t = 0,±1,±2, . . . , (4.2.3)

where the eigenvalues of the matrix Φ1 are assumed to lie inside the unit circle. The ful-
fillment of the causality condition enables to represent the series {X t : t = 0,±1,±2, . . . }
as an infinite matrix-valued moving average combination of the multivariate innovations,
i.e.

X t =
∞∑
j=0

ΨjZ
∗
t−j, (4.2.4)
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where the coefficient matrices are determined from the entity Ψ(z) =
∑∞

j=0 Ψjz
j =

(Ip − Φ1z)−1. According to the equations 11.3.12 in Brockwell and Davis (1986), the
matrices Ψj can be obtained from the following recursive equations

Ψ0 = Ip

Ψ1 = Φ1

Ψk = Φ1Ψk−1, k ≥ 2.

Under the assumptions of Theorem 4.1.1 it holds that the non-negativity of all the
matrices Ψj is a necessary and sufficient condition for the non-negativity of the series
{X t : t = 0,±1,±2, . . . }. For the p-variate AR(1) process it holds that Ψj = Φj

1. It then
easily follows, that the condition Φ1 ≥ 0 is a sufficient and necessary condition for the
non-negativity of the sequence {Ψj}∞j=0. The non-negativity of the process V ARMA(1)
is summarized in the following theorem.

Theorem 4.2.1. Let {X t : t = 0,±1,±2, . . . } be a p-dimensional AR(1) process given
by (4.2.3). Then the non-negativity of the matrix Φ1 is a sufficient and necessary con-
dition for the non-negativity of the components in the process {X t : t = 0,±1,±2, . . . }.

Proof. A proof follows from the Theorem 4.1.1, or from Corollary 3.2. in Anděl (1992).

Remark 4.2.1. To derive Theorem 4.2.1, we did not need to investigate the absolute
monotonicity of the function Ψ(z). However, it might be interesting to see whether the
absolute monotonicity argument would lead to the same conclusion. We confine ourselves
only to 2-dimensional AR(1) process.

4.2.1 Two-dimensional AR(1)

Let us rewrite the system of stochastic difference equations as follows:Xt,1

Xt,2

−
φ11 φ12

φ21 φ22

Xt−1,1

Xt−1,2

 =

Z∗t,1
Z∗t,2

 , t = 0,±1,±2, . . . .

Denote µ1 and µ2 the two eigenvalues of the matrix Φ1 = (φij)
2
i,j=1. The fulfillment of

the causality criterion |µ1| < 1 and |µ2| < 1 allows for the vector-valued infinite moving
average representation with matrix coefficients, which are determined from the following
representation

Ψ(z) =
∞∑
j=0

Ψjz
j = (I2 − Φ1z)−1 =

1− φ11z −φ12z

−φ21z 1− φ22z

−1

.
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ψ22(z) ψ11(z)

(1) λ1, λ2 ∈ R, λ1 > 1, (1)∗ λ1, λ2 ∈ R, λ1 > 1,

(2) 1− φ11λ1 > 0, (2)∗ 1− φ22λ1 > 0,

(3) φ22 ≥ 0, (3)∗ φ11 ≥ 0

(4) φ2
22 + φ12φ21 ≥ 0 (4)∗ φ2

11 + φ12φ21 ≥ 0.

Table 4.1: Conditions for the absolute monotonicity of the functions ψ11(·) and ψ22(·)

ψ12(z) ψ21(z)

(1) λ1, λ2 ∈ R, λ1 > 1, (1)∗ λ1, λ2 ∈ R, λ1 > 1,

(2) φ12λ1 > 0, (2)∗ φ21λ1 > 0,

(3) φ12 ≥ 0, (3)∗ φ21 ≥ 0

(4) φ12tr(Φ1) ≥ 0 (4)∗ φ21tr(Φ1) ≥ 0

Table 4.2: Conditions for the absolute monotonicity of the functions ψ12(·) and ψ21(·)

We can write

Ψ(z) =

ψ11(z) ψ12(z)

ψ21(z) ψ22(z)

 =
1

(1− φ11z)(1− φ22z)− φ12φ21z2

1− φ22z φ12z

φ21z 1− φ11z

 .

We know from Theorem 4.1.2 that the non-negativity of the sequence {Ψj}∞j=0 is
equivalent to the absolute monotonicity of Ψ(z), which is from our definition equivalent
to the absolute monotonicity of each of the functions ψij(z). Note that each component
ψij(z), i, j = 1, 2, is a ratio of two polynomials and is similar in resemblance to the
generating functions of the kernel sequences for univariate time series. We can therefore
apply the results we already obtained in previous chapter.

Denote λ1 and λ2 roots of the polynomial det(I2 − Φ1z). Without loss of generality
assume that |λ1| ≤ |λ2|. Note that λ−1

1 and λ−1
2 are eigenvalues of the matrix Φ1 and

from the causality it must hold that 1 < |λ1| ≤ |λ2|. Assume that the numerators
and denominators of the functions in Ψ(z) have distinct roots. The functions ψij(z)
are ratios of two polynomials, where the numerator polynomial is of degree one and
the denominator polynomial degree two. This suggests that we can apply results for
univariate ARMA(2, 1) models. The numerator of the diagonal functions is of the form
1 + az, which can be regarded as a moving-average polynomial of a degree one. Take for
example the function ψ11(z). The denominator function is 1− b1z− b2z

2 with b1 = tr Φ1

and b2 = −det Φ1 and in the numerator we have is 1 + az with a = −φ22. According to
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the Theorem 3.3.4, the absolute monotonicity of the function ψ11(z) is equivalent to

λ1, λ2 ∈ R and λ1 > 1,

1− φ22λ1 > 0,

ψ1
11 ≥ 0,

ψ2
11 ≥ 0.

According to the equations (3.3.5) in Brockwell and Davis (1986), p. 91, we have ψ1
11 =

a + b1 = −φ22 + trΦ1 = φ11 and ψ2
11 = b2 + b1a + b2

1 = −det Φ1 − φ22tr Φ1 + (tr Φ1)2 =
φ2

11 + φ12φ21. The conditions for the absolute monotonicity of the functions ψ11(z) and
ψ22(z) are summarized in Table 4.1.

The numerator of the off-diagonal functions ψij(·), i 6= j, does not take the form of
a moving-average polynomial. Nevertheless, we can still apply the Theorem 3.3.4 or
3.3.19. The only difference is that the coefficients ψ1

ij and ψ2
ij,i 6= j, follow from recursive

formulas different from the ones in Brockwell and Davis (1986), p. 91. Let

ψ(z) =
∞∑
j=0

ψjz
j =

α(z)

β(z)
, 0 < z < 1, (4.2.5)

where α(z) = α1z+α2z
2+· · ·+αq∗zq

∗
, β(z) = 1−β1z−β2z

2−· · ·−βp∗zp
∗

and α(z),β(z)
have no common zeroes. Denote r = max{q∗, p∗} and define αj = 0 for j > q∗, βj = 0
for j > p∗. Now we have

ψ0 = 0, (4.2.6)

ψ1 = α1, (4.2.7)

ψ2 = β1ψ1 + α2, (4.2.8)

ψ3 = β1ψ2 + β2ψ1 + α3, (4.2.9)
... (4.2.10)

ψr = β1ψr−1 + β2ψr−2 + · · ·+ βr−1ψ0 + αr, (4.2.11)

ψn = β1ψn−1 + β2ψn−2 + · · ·+ βrψn−r, (n ≥ r + 1). (4.2.12)

The functions ψ12(z) (resp. ψ21(z)) are of the form (4.2.5) with q∗ = 1 and p∗ = 2. We
apply the Theorem 3.3.18 with θ(z) = φ12 z (resp. θ(z) = φ21 z) and the conditions
ψ1
ij ≥ 0, ψ2

ij ≥ 0, i 6= j, relating to the equations (4.2.7) and (4.2.8). The conditions for
the absolute monotonicity of the functions ψ12(z) and ψ21(z) are summarized in Table
4.2.

Inverse spectrum problem

In Theorem 4.2.1 we derived the non-negativity conditions which utilize only model
parameters gathered in the matrix Φ1. We have seen in the preceding paragraph that the
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absolute monotonicity approach leads to conditions that operate rather with eigenvalues
of the matrix Φ1. There is a connection between the two approaches. In fact, the
conditions in Table 4.1 and Table 4.2 should together be equivalent to the non-negativity
of the matrix Φ1. In this sense, these conditions relate to the inverse eigenvalue problem
for non-negative matrices, that is a problem of determination sufficient and necessary
conditions for a p-tuple of complex numbers to be a spectrum of a real valued p× p non-
negative matrix. One immediate necessary condition is that the sum of the eigenvalues,
being the trace of the matrix, needs to be non-negative. Another necessary condition is
given in the following theorem.

Theorem 4.2.2. If A is a non-negative p× p matrix, then it has a non-negative eigen-
value µ ∈ R that is at least as large as the absolute value of any eigenvalue of A.

Proof. A proof is given in Minc (1988) p. 14.
The necessary condition in Theorem 4.2.2 implies that the smallest root (in absolute

value) of the autoregressive polynomial, here λ1, has to be real and non-negative. To-
gether with the causality condition, this means that λ1 needs to be greater than one.
The necessity of conditions (4) and (4)∗ for the non-negativity of Φ1 is trivial. In fact,
the conditions (3) and (3)∗ together translate as Ψ1 = Φ1 ≥ 0 and Ψ2 = Φ2

1 ≥ 0. The
conditions (2) and (2)∗ can be for λ1 > 0 together restated as

adj(I2 − Φ1λ1) > 0 or adj

(
1

λ1

I2 − Φ1

)
> 0. (4.2.13)

Assumming that the matrix Φ1 is irreducible, the condition (4.2.13) holds (Corollary 4.1
in Minc (1988), p. 16).

4.3 Vector-valued ARMA(1,1)

We consider a causal p-dimensional ARMA(1, 1) process {X t : t = 0,±1,±2, . . . } with
non-negative innovation sequence, which is determined from the following system of
difference equations:

X t − Φ1X t−1 = Z∗t + Θ1Z
∗
t−1, t = 0,±1,±2, . . . . (4.3.14)

The matrix-valued generating function Ψ(z) takes the following form

Ψ(z) = (Ip − Φ1z)−1(Ip + Θ1z), 0 ≤ z < 1.

A set of sufficient conditions for the non-negativity of the matrix series {Ψj}∞j=0 for the
p-variate ARMA(1, 1) can be readily obtained from the equations (11.3.12) in Brockwell
and Davis (1986).
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Theorem 4.3.1. Let {X t : t = 0,±1,±2, . . . } be a p-dimensional ARMA(1, 1) process
in (4.3.14). If Φ1 ≥ 0 and Φ1 + Θ1 ≥ 0 then the sequence of matrices {Ψj}∞j=0 is
non-negative.

Proof. The equations 11.3.12 in Brockwell and Davis (1986) give the following represen-
tation of the matrices Ψj:

Ψ0 = Ip

Ψ1 = Φ1 + Θ1

Ψk = Φ1Ψk−1, k ≥ 2.

The sufficiency follows immediately.
In order to derive a set of sufficient and necessary conditions, we employ the absolute

monotonicity approach. We confine ourselves to only a two-dimensional time series.

4.3.1 Two-dimensional ARMA(1,1)

Recall that the two dimensional AR(1) time series appears as a stationary solution to
the following set of equations:Xt,1

Xt,2

−
φ11 φ12

φ21 φ22

Xt−1,1

Xt−1,2

 =

Z∗t,1
Z∗t,2

+

θ11 θ12

θ21 θ22

Z∗t−1,1

Z∗t−1,2

 , t = 0,±1,±2, . . . .

Assume that the eigenvalues µ1 = 1/λ1 and µ2 = 1/λ2 of the matrix Φ1 are distinct and
smaller than one in absolute value. The fulfillment of the causality criterion allows the
matrix-valued infinite moving average representation, where the matrix coefficients are
determined from the matrix-valued power series expansion of the generating function
Ψ(z), i.e.

Ψ(z) =
∞∑
j=0

Ψjz
j = (I − Φ1z)−1(I + Θ1z).

Denote

Ψ(z) =

ψ11(z) ψ12(z)

ψ21(z) ψ22(z)

 .

Then we have

Non-negative Time Series 65
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ψ11(z) =
z2(φ12θ21 − φ22θ11) + z(θ11 − φ22) + 1

(1− φ11z)(1− φ22z)− φ12φ21z2
,

ψ12(z) =
z2(φ12θ22 − φ22θ12) + z(φ12 + θ12)

(1− φ11z)(1− φ22z)− φ12φ21z2
,

ψ21(z) =
z2(θ11φ21 − θ21φ11) + z(φ21 + θ21)

(1− φ11z)(1− φ22z)− φ12φ21z2
,

ψ22(z) =
z2(φ21θ12 − φ11θ22) + z(θ22 − φ11) + 1

(1− φ11z)(1− φ22z)− φ12φ21z2
.

For a two-dimensional ARMA(1, 1) process, the functions ψij(·) are ratios of two
polynomials, both of a degree two. This naturally suggests that a result for univariate
ARMA(2, 2) processes could be applied for each of the functions ψij(·). For the two
diagonal functions ψii(·)(i = 1, 2), the denominator again takes directly the form of
a moving average lag polynomial. The absolute monotonicity conditions then directly
follow from Theorem 3.3.19. For the ease of notation, we can rewrite the functions ψ11(·)
and ψ22(·) as follows:

ψ11(z) =
1 + tr(A)z + det(A)z2

1− tr(Φ1)z + det(Φ1)z2
, ψ22(z) =

1 + tr(B)z + det(B)z2

1− tr(Φ1)z + det(Φ1)z2
,

where

A=

θ11 −φ12

θ21 −φ22

 , B=

θ22 −φ21

θ12 −φ11

 .

Take for instance the function ψ11(·). According to Theorem 3.3.19 and Remark 3.3.7
we know that the absolute monotonicity of ψ11(·) on [0, 1) is equivalent to

λ1, λ2 ∈ R and λ1 > 1,

1 + tr(A)λ1 + det(A)λ2
1 > 0,

ψ1
11 = tr(A) + tr(Φ1) ≥ 0,

ψ2
11 = −det(Φ1) + tr(A)tr(Φ1) + tr(Φ1)2 ≥ 0.

Conditions for the absolute monotonicity of functions ψ11(·) and ψ22(·) are summarized
in Table 4.3. The off-diagonal functions ψ12(·) and ψ21(·) admit the slightly different
expansion in (4.2.5) with p∗ = 2 and q∗ = 2. The Theorem 3.3.19 can be again applied,
just with the minor modification that the coefficients ψ1

ij(i 6= j; i, j = 1, 2) and ψ2
ij(i 6=

j; i, j = 1, 2) are now determined from (4.2.7) and (4.2.8), respectively. The conditions
are summarized in Table 4.4
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4.4 Vector-valued ARMA(1,q)

ψ11(z) ψ22(z)

(1) λ1, λ2 ∈ R, λ1 > 1, (1)∗ λ1, λ2 ∈ R, λ1 > 1,

(2) λ2
1 det(A) + λ1 tr(A) + 1 > 0, (2)∗ λ2

1 det(B) + λ1 tr(B) + 1 > 0,

(3) θ11 + φ11 ≥ 0, (3)∗ θ22 + φ22 ≥ 0

(4) φ11(φ11 + θ11) + φ12(φ21 + θ21) ≥ 0, (4)∗ φ22(φ22 + θ22) + φ21(φ12 + θ12) ≥ 0.

Table 4.3: Conditions for absolute monotonicity of functions ψ11(·) and ψ22(·)

ψ12(z) ψ21(z)

(1) λ1, λ2 ∈ R, λ1 > 1, (1)∗ λ1, λ2 ∈ R, λ1 > 1,

(2) λ2
1(φ12θ22 − φ22θ12) + λ1(φ12 + θ12) > 0, (2)∗ λ2

1(φ12θ22 − φ22θ12) + λ1(φ21 + θ21) > 0,

(3) φ12 + θ12 ≥ 0, (3)∗ φ21 + θ21 ≥ 0

(4) (φ12 + θ12)tr(Φ1) + θ11φ12 − θ21φ11 ≥ 0, (4)∗ (φ21 + θ21)tr(Φ1) + φ12θ22 − φ22θ12 ≥ 0,

Table 4.4: Conditions for absolute monotonicity of functions ψ12(·) and ψ21(·)

The conditions in Table 4.3 and Table 4.4 form together a set of sufficient and neces-
sary conditions for the non-negativity of the kernel sequence {Ψj}∞j=0. Note that the con-
ditions (3), (3)∗, (4), (4)∗ are equivalent to Ψ1 = Θ1 + Φ1 ≥ 0 and Ψ2 = Φ1(Θ1 + Φ1) ≥ 0.
The conditions (2) and (2∗) translate as [adj(I2 − Φ1λ1)](I2 + Θ1λ1) > 0. This leads to
the following theorem

Theorem 4.3.2. Let {X t : t = 0,±1,±2, . . . } be a bivariate ARMA(1, 1) process given
in (4.3.14). Let µ1, µ2 denote eigenvalues of the matrix Φ1, such that |µ2| ≤ |µ1| < 1.
Assume that the two eigenvalues are distinct. Then the sequence of matrices {Ψj}∞j=0 is
non-negative, if and only if the following conditions hold

(1) µ1, µ2 ∈ R, and 0 < µ1 < 1,

(2) Φ1 + Θ1 ≥ 0,

(3) Φ1(Φ1 + Θ1) ≥ 0,

(4) [adj(µ1I2 − Φ1)](µ1I2 + Θ1) > 0

Proof. A proof follows from the discussion above.

4.4 Vector-valued ARMA(1,q)

Finally, we consider a p-dimensional ARMA(1, q) process {X t : t = 0,±1,±2, . . . }
with non-negative innovation vectors, which determined from the following system of
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4.4 Vector-valued ARMA(1,q)

difference equations:

X t − Φ1X t−1 = Z∗t + Θ1Z
∗
t−1 + · · ·+ ΘpZ

∗
t−1, t = 0,±1,±2, . . . . (4.4.15)

The matrix-valued generating function Ψ(z) now takes the following form

Ψ(z) = (Ip − Φ1z)−1(Ip + Θ1z + · · ·+ Θpz
q), 0 ≤ z < 1.

Assuming that all the matrices Θi, i = 1, . . . , q and Φ1 are non-negative, the non-
negativity of the series {X t : t = 0,±1,±2, . . . } follows directly from the equations
(11.3.12) of Brockwell and Davis (1986), p. 409:

Ψ0 = Ip,

Ψ1 = Φ1 + Θ1,

Ψ2 = Φ1(Φ1 + Θ1) + Θ2,

...

Ψq = Φ1Ψp−1 + Θq,

Ψk = Φ1Ψk−1, k ≥ q + 1.

Similarly as in the previous section we derive a set of sufficient and necessary conditions
using the absolute monotonicity approach. Again, we confine ourselves only to two
dimensional time series.

4.4.1 Two-dimensional ARMA(1,q)

The components of a matrix-valued generating function of the sequence {Ψj}∞j=0 are ra-
tios of two polynomials. The denumerator is of a degree two whereas in the numerator
we have polynomials of a degree q + 1. For all the functions we can directly apply The-
orem 3.3.19. Again the off-diagonal functions admit the expansion (4.2.5) with slightly
different coefficients.

According to Theorem 3.3.19 applied to all the functions ψij(z), i, j = 1, . . . , 2, the
conditions for the series of matrices {Ψj}∞j=0 to be non-negative are the following:

(a) the roots µ1, µ2 of the matrix Φ1 have to be real and the maximal root in absolute
value, say µ1, is positive (smaller than one from the causality),

(b) the numerators of the functions ψij(z) evaluated at 1/µ1 are non-negative,

(c) first q + 1 coefficient matrices Ψ1, . . . ,Ψq+1 in the sequence {Ψj}∞j=0 are non-
negative.

These conditions are summarized in the following theorem.
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Theorem 4.4.1. Let {X t : t = 0,±1,±2, . . . } be the bivariate ARMA(1, q) process
given in (4.4.15). Let µ1, µ2 denote eigenvalues of the matrix Φ1, such that |µ2| ≤ |µ1| <
1. Assume that the two eigenvalues are distinct. The sequence of matrices {Ψj}∞j=0 is
non-negative, if and only if the following conditions hold

(1) µ1, µ2 ∈ R, and 0 < µ1 < 1,

(2) [adj(µ1I2 − Φ1)] (µ1I2 + Θ1) > 0,

(3) Ψj ≥ 0, j = 1, . . . , q + 1.

Proof. A proof follows from the discussion above.
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Chapter 5

Parameter Estimation in
Non-negative Time Series

Finding parsimonious, yet well-fitting, representation of the observed data by a statis-
tical model usually requires several interconnected modeling steps. In the context of
autoregressive (moving average) models, these are basically twofold: (1) determination
of a dimensionality of the model (orders p and q of the autoregressive and moving average
polynomials), (2) estimation of the corresponding coefficients φ1, . . . , φp, θ1, . . . , θq and
eventually mean and/or variance parameters of the innovation sequence. The estimation
of the orders of autoregressive moving average models constitutes a challenge on its own.
We will confine ourselves only to the discussion on the estimation of model parameters
of a given dimension.

The customized approaches for parameter estimation involve methods based on Yule-
Walker equations, (conditional) Gaussian maximum likelihood or least squares, Brock-
well and Davis (1986) Chapter 8. However, the rate of convergence of such estimators,
when utilized for non-negative time series models, is not the best we could accomplish.
Improvements with respect to the convergence speed might be achieved by exploiting the
non-negative nature of the observations. This was one of the motivations for developing
special estimation techniques for non-negative time series models. The second reason
is that the classical estimation methods might lead to a model that does not define a
non-negative time series. That is why a special care needs to be exercised to make sure
that the estimates satisfy the non-negativity conditions.

The methodology considered for discussion here builds on the following frameworks:
(conditional) maximum likelihood estimation, eventually leading to the linear program-
ming problem, and the Bayesian approach. We concentrate on lower order autoregressive
and moving average models (eventually nonlinear and/or multi-dimensional).
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5.1 AR(1)

5.1 AR(1)

Consider the causal AR(1) process {Xt : t = 0,±1,±2, . . . } which satisfies the difference
equation

Xt = φ1Xt−1 + Z∗t , t = 0,±1,±2, . . . , (5.1.1)

where the sequence {Z∗t : t = 0,±1,±2, . . . } consists of iid non-negative random vari-
ables distributed according to a distribution function F (·). Assuming that the variance
of Z∗t is finite, it can be shown that the first order sample autocorrelation estimate

φ̂1 =

∑n−1
t=1 (Xt − X̄)(Xt+1 − X̄)∑n

t=1(Xt − X̄)2
, where X̄ =

∑n
t=1 Xt

n
,

is asymptotically normally distributed with mean φ1 and variance n−1(1− φ2
1). In other

words √
n(φ̂1 − φ)

d→ N(0, 1− φ2).

The rate of the convergence n1/2 is the same as for the Yule-Walker estimators, Brockwell
and Davis (1986) p. 233. The asymptotic properties can be improved, if the estimator
takes into account the non-negativity of the observations.

An alternative estimator emerges naturally from the observation that in the model
(5.1.1) it holds that

φ1 ≤
Xt

Xt−1

, t ∈ Z.

Suppose that a segment of realizations X1, . . . , Xn has been observed. The so called
extreme value estimator of the “correlation parameter” φ1 is given by

Wn = min
2≤t≤n

Xt

Xt−1

.

The statistical relevance of this intuitive estimator can be justified by several argu-
ments. First, Bell and Smith (1986) who were the first to consider this estimator proved
its strong consistency under general assumptions.

Theorem 5.1.1. Let X1 ≥ 0, Z∗t ≥ 0 (t ≥ 2) and φ1 ≥ 0. If F (d) − F (c) < 1 for all
0 < c < d <∞, then Wn → φ1 almost surely.

Proof. Bell and Smith (1986)
Second, the extreme value estimator is the conditional maximum likelihood estima-

tor, assuming that X1 is known and that the innovation sequence Z∗t is distributed
according to exponential distribution with the expectation λ (we utilize the following
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5.1 AR(1)

parametrization of the exponential density f(z) = 1
λ

exp(− z
λ
)). More precisely, provided

that X1 = x1 the likelihood of X2, . . . , Xn is given by

1

λn−1
exp

(
−

n∑
t=2

xt − φ1xt−1

λ

)
, provided that xt − φ1xt−1 ≥ 0 (t = 2, . . . , n),

and zero otherwise. The expression inside the exponential function is increasing in φ1,
which implies that the conditional maximum likelihood estimate is the maximal value
φ1 that satisfies the given constraints. This is exactly the value wn = min2≤t≤n

xt
xt−1

.
Third, the extreme value estimators appears to be equivalent in large samples to the

Bayesian “posterior mean estimator” resulting from a certain uninformative prior coupled
with an approximate likelihood function. More specifically, it is known that under the
exponentially distributed innovations (with a mean λ), the expectation of the stationary
distribution of the process in (5.1.1) equals λ

1−φ1
, Anděl (1988b). Since the stationary

distribution is mathematically intractable, Anděl (1988b) suggests to utilize a crude
approximation of the distribution of X1. This approximation is obtained by matching
the stationary distribution with an exponential distribution of the same expectation.
The “approximate” likelihood function of X1, . . . , Xn then equals

L(φ1, λ;X1 = x1, . . . , Xn = xn) =
(1− φ1)
λn

exp

{
− 1
λ

[
(1− φ1)x1 +

n∑
t=2

(xt − φ1xt−1)

]}
IA(x)

=
(1− φ1)
λn

exp
{
− 1
λ

[nx̄− φ1S]
}

IA(x),

where

x = (x1, . . . , xn)′,

A = {x ∈ Rn : x1 > 0, xt ≥ φ1xt−1, t = 2, . . . , n},

x̄ =
1

n

n∑
i=1

xn,

S = 2x1 +
n−1∑
i=2

xi.

Anděl (1988b) then shows that the maximum likelihood estimators are

φ̂ML
1 = min

(
Wn,

S − 1

S

)
λ̂ML = x̄− φ̂ML

1

S

n
.
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Turkman (1990) uses the likelihood construction of Anděl (1988b) and matches it with
a non-informative improper prior. This prior is assumed to be proportional to the mean
value of the stationary distribution, i.e.

p(φ1, λ) ∝ λ

1− φ1

I[0,1)×(0,∞)(φ1, λ).

The advantage of this type of prior is ease of analytical tractability. More general prior
specification has been considered by Ibazizen and Fellag (2003), namely

p(φ1, λ) ∝ λ
φβ−1

1

1− φ1

I[0,1)×(0,∞)(φ1, λ) for β > 0.

The authors utilized this prior in order to assess the sensitivity on the choice of β and
thereby stability of the posterior inference under varying prior assumptions.

Under the prior of Turkman (1990), the joint posterior distribution of the parameters
φ1, λ following from the Bayes theorem is

p(φ1, λ|X1 = x1, . . . , Xn = xn) =
C

λn−1
exp

{
−1

λ
[nx̄− φ1S]

}
I[0,min(1,wn)](φ1)I(0,∞)(λ),

where C is the normalizing constant. The marginal posterior distribution of φ1 then
equals

p(φ1|X1 = x1, . . . , Xn = xn) =
CΓ(n− 2)

(nx̄− φ1S)n−2
I[0,min(1,wn)](φ1).

Turkman (1990) analytically derived the posterior mean estimator for φ1 under given
prior assumptions, which is

φB1 = E(φ1|X1 = x1, . . . , Xn = xn) =
n− 1

nx̄r

1− rn

1− rn−1
,

where r = 1−wn S
nx̄

. She further shows that this Bayesian estimator is strongly consistent
and that for large n it can be closely approximated by the extreme value estimator Wn.
The extreme value estimator is known to be biased upwards, Bell and Smith (1986).
It has been shown by means of simulations that the Bayesian estimator has little bias
compared to the extreme value estimator, Turkman (1990). However, how well would
the Bayesian estimator perform when compared to the bias corrected version of Wn

introduced by Anděl and Zvára (1988) was not investigated.
The distributional properties of the extreme value estimator Wn have been studied

by several authors. Anděl (1988b) derives exact distribution of Wn under the assumption

of exponential innovations and X1 ∼ Exp
(

λ
1−φ1

)
.
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Theorem 5.1.2. Let X1 ∼ Exp
(

λ
1−φ1

)
and Z∗t ∼ Exp(λ). Then the distribution of Wn

is given by P(Wn < w) = 1−G(w), where

G(w) =(1− φ1){[w + (1− φ1)]× [w2 + (1− φ1)(1 + w)]× . . .
[wn−2 + (1− φ1)(1 + w + · · ·+ wn−3)]×
[wn−1 + (1− φ1)(1 + w + · · ·+ wn−2)− φ1]}−1

for w ≥ φ1, and G(v) = 1 for w < φ1.

Proof. Anděl (1988b)
Furthermore, Anděl and Zvára (1988) derived EWn and (Var Wn)1/2 which enables to

quantify the bias. Davis and McCormick (1989) determined the limiting distribution un-
der the assumption of regular variation of the distribution F (·) and that the distribution
of innovations satisfies a suitable moment condition.

Theorem 5.1.3. Let Z∗t be distributed according to the distribution function F (·), which
satisfies F (0−) = 0 and

lim
t→0+

F (tx)

F (t)
= xα for all x > 0.

Assume further that ∫
xβdµF (x) <∞ for some β > α.

Then
P{cαa−1

n (Wn − φ1) ≤ x} → 1− exp(−xα) for x > 0,

where
an = inf{x : F (x) ≥ n−1} and cα = (EXα

1 )1/α.

Proof. Davis and McCormick (1989)
In order to apply this asymptotic result, the innovation distribution F (·) is needed

to be known in order to compute the index of regular variation α.
The extreme value estimator Wn offers improvements with respect to the rate of

convergence. As we have seen, this rate depends on the behavior of F (·) at zero, more
specifically, on the coefficient of regular variation α. For instance, if F (x) ∼ cxα as
x→ 0, then Wn converges to φ1 at rate n1/α. Assuming the exponential innovations, i.e.
F (x) = 1− e−x ∼ x as x→ 0, then the rate equals n.

It is possible to generalize the extreme value estimator also for non-linear AR(1)
models. Let X1 be a assumed known and g(·) be some measurable function. The
nonlinear AR(1) process {Xt : t = 0,±1,±2, . . . } is defined by the equations

Xt = φ1g(Xt−1) + Z∗t (t ≥ 2).
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Assuming that the innovation sequence is non-negative and X1 > 0, φ1 > 0 and g(x) > 0,
Anděl (1988a) considers the following estimator

W̃n = min
2≤t≤n

Xt

g(Xt−1)
.

He proves the following property:

Theorem 5.1.4.

(i) Let F (d)−F (c) < 1 for all 0 < c < d <∞. If g(·) is nondecreasing and g(x)→∞
as x→∞, then W̃n → φ1 almost surely.

(ii) Let F (c) > 0 and F (c) < 1 for all c > 0. If g(·) is nonincreasing, g(x) → 0 as
x→∞ and g(x)→∞ as x→ 0+, then W̃n → φ1 almost surely.

Proof. Anděl (1988a)

5.2 Vector-valued AR(1)

The extreme value estimator for univariate AR(1) model can be naturally extended to
the multivariate setting. Consider the stationary p−dimensional autoregressive process
of the first order {X t = (Xt1, . . . , Xtp)

′ : t = 0,±1,±2, . . . } given by the relation

X t = Φ1X t +Z∗t , t = 0,±1,±2, . . . , (5.2.2)

where the innovation vectors are independent and identically distributed according to a
distribution function F (·) and Φ1 =

(
φij1
)p
i,j=1

is a p × p matrix whose roots lie inside
the unit circle. Assume that a finite set of realizations X1, . . . ,Xn arising from a model
(5.2.2) in which all the elements of the matrix Φ1 are non-negative and the vectors Z∗t
have only non-negative components has been observed. Anděl (1992) proposed estimator
Φ̂1 of the matrix Φ1, whose elements φ̂ij1 take the form

φ̂ij1 = min
2≤t≤n

Xti

Xt−1,j

, i, j ∈ {1, . . . , p}.

Under mild assumptions on the distribution of the elements of the innovation vectors,
Anděl (1992) proves that each estimator φ̂ij1 is strongly consistent.

Theorem 5.2.1. Assume that P (Z∗t1 < z, . . . , Z∗tn < z) > 0 for all z > 0 and that for
every ν > 0 and for each i ∈ {1, . . . , p} there exists a number γ > 0, such that

P(Z∗t1 < ν, . . . , Z∗t,i−1 < ν,Z∗t,i > γ,Z∗t,i+1 < ν, . . . , Z∗t,p < ν) > 0.

Then φ̂ij1 → φij1 almost surely as n→∞ for each i, j ∈ {1, . . . , p}.
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Proof. Anděl (1992)
The convergence of this estimator is quite slow, as noted by Anděl (1992). He pro-

posed an alternative estimator based on the approximation of the solution to the con-
ditional maximum likelihood, assuming independent exponentially distributed elements
of the innovation random vectors. He exemplified the procedure on two-dimensional
AR(1) process. Let Zt1 ∼ Exp(λ1) and Zt2 ∼ Exp(λ2), the conditional likelihood of
X2, . . . ,Xn, given X1 equals

λ−n+1
1 exp

{
−

n∑
t=2

(Xt1 − φ11Xt−1,1 − φ12Xt−1,2)/λ1

}
×

λ−n+1
2 exp

{
−

n∑
t=2

(Xt2 − φ21Xt−1,1 − φ22Xt−1,2)/λ2

}
,

subject to

Xt1 − φ11Xt−1,1 − φ12Xt−1,2 ≥ 0,

Xt2 − φ21Xt−1,1 − φ22Xt−1,2 ≥ 0,

for t = 2, . . . , n. The maximization of the likelihood boils down to finding a maximum
of these two objective functions

φ11

n∑
t=2

Xt−1,1 + φ12

n∑
t=2

Xt−1,2 and φ21

n∑
t=2

Xt−1,1 + φ22

n∑
t=2

Xt−1,2.

Since for n large enough the difference between
∑n

t=2Xt−1,i and
∑n

t=1Xt,i will be small
(respectively for i = 1, 2), it is reasonable to assume that the solution to the original
constrained optimization problem will be close to the solution of a linear program

max

(
φi1

n∑
t=1

Xt,1 + φi2

n∑
t=1

Xt,2

)

under constraints

Xti − φi1Xt−1,1 − φi2Xt−1,2 ≥ 0 (t = 2, . . . , n), φi1 ≥ 0, φi2 ≥ 0,

for i = 1, 2. Anděl (1992) shows that the solution to this linear program gives strongly
consistent estimators of φij (i, j = 1, 2).
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5.3 AR(2)

Consider the causal autoregressive process {Xt : t = 0,±1,±2, . . . } of the second order,
which is given by the equations

Xt = φ1Xt−1 + φ2Xt−2 + Z∗t , t = 0,±1,±2, . . . , (5.3.3)

where {Z∗t : t = 0,±1,±2, . . . } is an iid sequence of non-negative random variables
with a common distribution function F (·). Anděl (1989) generalized the extreme value
estimator for second order autoregressive model. Denote

φ′1 = min
3≤t≤n

Xt

Xt−1

and φ′2 = min
3≤t≤n

Xt

Xt−2

.

Anděl (1989) showed the strong consistency of these estimators.

Theorem 5.3.1. Let F (d) − F (c) < 1 for all 0 < c < d < ∞. Then φ′1 → φ1 and
φ′2 → φ2 + φ2

1 almost surely.

Proof. The proof is given in Anděl (1989) The motivation for the estimators φ′1 and φ′2
follows from two principal observations. The first one is that

Xt

Xt−1

= φ1 +
φ2Xt−2 + Z∗t

Xt−1

, t = 2, 3, . . . .

Anděl (1989) shows that

min
3≤t≤n

(
φ2Xt−2 + Z∗t

Xt−1

)
→ 0 almost surely.

This implies that φ′1 is a strongly consistent estimator for φ1. The second observation is
that

Xt

Xt−2

=
φ1Xt−1 + Z∗t

Xt−2

+ φ2 = φ2 + φ2
1 +

φ1φ2Xt−3 + φ1Z
∗
t−1 + Z∗t

Xt−2

, t = 3, 4, . . . .

Similarly, Anděl (1989) shows that

min
3≤t≤n

(
φ1φ2Xt−3 + φ1Z

∗
t−1 + Z∗t

Xt−2

)
→ 0 almost surely,

which implies the strong consistency of φ′2 in the estimation of φ2 + φ2
1. This altogether

gives that φ′2 − φ′21 is a strongly consistent estimator for φ2.
Similarly as for the extreme value estimators in multivariate AR(1) process, the

convergence is quite slow. Anděl (1989) therefore proposed another estimators that
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might have superior asymptotic behavior. Such estimators follow from the maximum
likelihood principle, assuming that X2 and X1 are assumed known. The conditional
likelihood, assuming the exponential distribution Exp(λ) of the innovations, given X1

and X2 equals

λ−n+2 exp

{
−

n∑
t=3

xt − φ1xt−1 − φ2xt−2

λ

}
,

provided that
xt − φ1xt−1 − φ2xt−2 ≥ 0 (t = 3, . . . , n), (5.3.4)

and zero otherwise. The likelihood will attain its maximum for those values φ1 and
φ2 which maximize φ1

∑n
t=3Xt−1 + φ2

∑n
t=3Xt−2 under the restrictions in (5.3.4) and

assuming θ1 ≥ 0, θ2 ≥ 0, which complete the set of sufficient conditions that assure the
non-negativity of the series {Xt : t = 0,±1,±2, . . . }. For n large enough the quantities∑n

t=3Xt−1 and
∑n

t=3Xt−2 will be sufficiently close and therefore the objective function
can be approximated by (φ1 + φ2)

∑n
t=3Xt−1. The conditional maximum likelihood

estimates will be then approximately determined by solving the linear program with the
objective function φ1 + φ2. Anděl (1989) proves that such solution provides strongly
consistent estimators.

Theorem 5.3.2. Let F (d)− F (c) < 1 for all 0 < c < d <∞. Let φ∗1, φ
∗
2 be values that

maximize φ1 + φ2 under the conditions φ1 ≥ 0, φ2 ≥ 0, Xt − φ1Xt−1 − φ2Xt−2 ≥ 0 (t =
3, . . . , n). Then φ∗1 → φ1 and φ∗2 → φ2 almost surely.

Proof. Anděl (1989)
Anděl (1989) found by simulation that these estimators converge at a faster rate

then the Yule-Walker estimators. The probabilistic justification of this observation was
given by Feigin and Resnick (1992) who established the rate of the convergence of these
estimators.

Feigin and Resnick (1994) formalized the linear programming estimators for autore-
gressive models of a general order p. Based on the observed values on X1, . . . , Xn these
are defined as

φ̂LP = arg max
φ∈Dn

(φ1 + · · ·+ φn),

where the feasible region is defined as

Dn =

{
φ = (φ1, . . . , φp)

′ ∈ Rp : Xt −
p∑
i=1

φiXt−i ≥ 0, t = p+ 1, . . . , n

}
.

Whereas Anděl (1989) provided the motivation for the linear programming estimator as
an approximate maximum likelihood estimators for AR(2) models, Feigin and Resnick
(1994) pointed out the theoretical connection to the generalized martingale estimating
equations. Assuming regular variation of the innovation distribution function F (·), they
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show that there exist r(n) → ∞ such that r(n)[φ̂LP − φ] has a limiting distribution.
The linear programming estimators often provide superior convergence rate to the Yule-
Walker estimators, Feigin and Resnick (1994).

The extreme value, as well as linear programming, estimators were accommodated for
nonlinear AR(2) process by Anděl (1990). Assuming that φ1 ≥ 0, φ2 ≥ 0 and h1(·), h2(·)
are non-decreasing positive functions, the positive nonlinear AR(2) process is defined as

Xt = φ1h1(Xt−1) + φ2h2(Xt−2) + Z∗t , t = 3, 4, . . . ,

where X1, X2 are given random variables. Anděl (1990) considered following estimators
based on the finite realization X1, . . . , Xn

φ∗1 = min
3≤t≤n

Xt

h1(Xt−1)
and φ∗2 = min

3≤t≤n

Xt

h2(Xt−2)
.

He shows that under certain assumptions on the functions h1(·), h2(·) (concerning mono-
tonicity and limiting behavior) the two estimators are strongly consistent. Similarly, he
shows that the linear program estimators defined as

arg max
φ∈D

(φ1 + φ2),

where D = {(φ1, φ2)′ : φ1 ≥ 0, φ2 ≥ 0, φ1h1(Xt−1) + φ2h2(Xt−2) ≤ Xt, t = 3, . . . , n} are
strongly consistent.

The Bayesian approach to parameter estimation in AR(2) has been dealt by Anděl
and Garrido (1991). They considered an analogous prior specification as Turkman (1990)
did for AR(1). Again, the likelihood function is approximated, assuming that X1 and
X2 are independent, exponentially distributed with a mean equal to the mean of the
stationary distribution, which is λ

1−φ1−φ2
. The approximate likelihood function based on

the observed random variables X1, . . . , Xn is

L(φ1, φ2, λ;X1 = x1, . . . , Xn = xn) =(1− φ1 − φ2)2λ−nexp{−λ−1[(1− φ1 − φ2)(x1 + x2)]}×

exp

{
λ−1

[
n∑
t=3

(xt − φ1xt−1 − φ2xt−2)

]}
IB(x),

where

B = {x = (x1, . . . , xn)′ : x1 ≥ 0, x2 ≥ 0, xt − φ1xt−1 − φ2xt−2 ≥ 0, t = 3, . . . , n} .

Anděl and Garrido (1991) considered the following joint prior density for the parameters
φ1, φ2 and λ

p(λ, φ1, φ2) =
1

λ(1− φ1 − φ2)2
IC×(0,∞)(φ1, φ2, λ),

where
C = {(φ1, φ2)′ : φ1 ≥ 0, φ2 ≥ 0, z2 − φ1z − φ2 6= 0 for |z| ≥ 1}.
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This prior is again improper and simplifies analytical derivation of the posterior densities.
The joint posterior density from the Bayes theorem equals

p(φ1, φ2, λ|X1 = x1, . . . , Xn = xn) =C ′λ−n−1 exp
{
−S − S1φ1 − S2φ2

λ

}
I((0,∞))(λ)IM (φ1, φ2),

where

S =
n∑
t=1

xt, S1 = x2 +
n−1∑
t=1

xt, S2 = x1 + x2 +
n−2∑
t=1

xt,

C ′ is the normalizing constant and

M = C ∩ {(φ1, φ2)′ : φ1 ≥ 0, φ2 ≥ 0, Xt − φ1Xt−1 − φ2Xt−2 ≥ 0, t = 3, . . . , n} .

The calculation of posterior (marginal) moments is more involved. If we denote Iij =∫∫
M

φi1φ
j
2(1− s1φ1 − s2φ2)−ndφ1dφ2, then it can be derived that

E(φi1φ
j
2|x) = I00 Iij, i ≥ 0, j ≥ 0.

Anděl and Garrido (1991) show that the posterior expectation is strongly consistent
estimator for the parameter vector (φ1, φ2)′. However, the calculation of the integrals
involved in the posterior expectations is prohibitive for larger values of n. That is
why they suggested an analytical approximation of the integrals Iij, which involved
both approximation of the set M and approximation of the integrand. By a simulation
study they demonstrate that the bias reduction that applied nicely for the AR(1) Bayes
estimator, no longer characterizes the Bayesian AR(2) estimator.

5.4 MA(1)

Less statistical theory has been developed for estimating parameters in non-negative
moving average models. Anděl (1994) employed the extreme value idea to the MA(1)
and MA(2) models.

Let the process {Xt : t = 0,±1,±2, . . . } be an invertible non-negativeMA(1) process,
i.e. it satisfies the equations

Xt = Z∗t + Z∗t−1θ1, t = 0,±1,±2, . . . ,

where {Z∗t : t = 0,±1,±2, . . . } is a sequence of iid random variables with non-negative
support and a common distribution function F (·) and 0 < θ1 < 1. Anděl (1994) defines
the following estimator of the parameter θ1

θ′1 = min
2≤t≤n−1

Xt−1 +Xt+1

Xt

.

He also shows its strong consistency.
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Theorem 5.4.1. Assume that F (d) − F (c) < 1 for all 0 < c < d < ∞. Then θ′1 → θ
almost surely, as n→∞.

Anděl (1994) shows by simulation that this estimator suffers from severe positive
bias. In order to correct for the bias, it would be handy to know the distribution of this
estimator. However, the distributional properties are not easily obtainable. Anděl (1994)
derived approximation of the expectation E θ′1 under the assumption of exponentially
distributed innovations.

5.5 MA(2)

The second order invertible non-negative moving average sequence {Xt : t = 0,±1,±2, . . . }
is given by the set of equations

Xt = Z∗t + θ1Z
∗
t−1 + θ2Z

∗
t−2, t = 0,±1,±2, . . . ,

where, again, the innovations constitute a sequence of iid non-negative random variables
with a distribution function F (·) and the polynomial 1+θ1z+θ2z

2 has no complex roots
inside the unit circle |z| ≤ 1. Assume further that (θ1, θ2)′ fulfill the non-negativity
conditions θ1 ≥ 0, θ2 ≥ 0, that are sufficient to assure that {Xt : t = 0,±1,±2, . . . } is
non-negative. Anděl (1994) suggested the following estimators

θ′1 = min
2≤t≤n−1

Xt+1 + 3Xt−1

Xt

, θ′2 = min
3≤t≤n−2

Xt+2 + 2Xt−1 +Xt−2

Xt

and proved that they are strongly consistent.

Theorem 5.5.1. Assume that F (d) − F (c) < 1 for all 0 < c < d < ∞. Then θ′1 → θ1

and θ′2 → θ2 almost surely, as n→∞.

These estimators again suffer from substantial bias. The linear programming estima-
tors for moving average models were considered by Feigin et al. (1996).
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Chapter 6

Discussion

This thesis summarizes theoretical developments associated with non-negativity con-
ditions in (vector-valued) autoregressive and moving average models. These involve
conditions already established and but also newly formulated. The majority of the ex-
isting conditions build extensively on the theory of absolutely monotone functions, Tsai
and Chan (2007), but has the scope limited to only autoregressive (moving average)
models of lower orders. We have attempted to broaden this scope by deriving new con-
ditions for models for which an explicit result was missing. We provided conditions for
AR(p), ARMA(2, 1), ARMA(3, 1), ARMA(2, q) and ARMA(p, q) models. By empirical
demonstration, we also provided a direction for derivation of non-negativity conditions
for ARMA(3, 2). We also presented illuminative graphical representation of the results
for ARMA(3, 1), ARMA(3, 2) and AR(3).

The obtained conditions for ARMA(p, q) served as a basis for derivation sufficient and
necessary conditions for multivariate autoregressive moving average models. We confined
ourselves to only two dimensional AR(1), ARMA(1, 1) and ARMA(1, q). However, this
is surely not an exhaustive list of models, for which such conditions are feasible. The
non-negativity of practically any multivariate ARMA(p, q) model could be conveniently
described with the aid of the conditions for univariate ARMA(p, q).
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