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Abstract

This thesis explores some properties of elementary intuitionistic theories. We focus on

the following theories: the theory of equality, linear order, dense linear order, the theory

of a successor function, Robinson arithmetic and the theory of rational numbers with

addition; moreover, we usually deal with two different formulations of the theories. As for

the properties, our main interest is in the following four: coincidence with the classical

version of a theory, saturation, De Jongh’s theorem and decidability. The thesis draws

especially from the results of C. Smorynski and D. de Jongh and tries to develop them.

Some results known for Heyting arithmetic are proved for other theories. We also try to

answer the question of what is the effect of replacing an axiom by a different (classically

equivalent) axiom, or which properties a “good” intuitionistic theory should have.

Keywords: intuitionistic logic, elementary theories, saturation, decidability, De Jongh’s

theorem

Abstrakt

Práce zkoumá vlastnosti některých elementárńıch intuicionistických teoríı. Vybrány jsou

následuj́ıćı teorie: teorie rovnosti, lineárńıho uspořádáńı, hustého lineárńıho uspořádáńı,

teorie následńıka, Robinsonova aritmetika a teorie sč́ıtáńı racionálńıch č́ısel; nav́ıc téměř

každou z těchto teoríı formulujeme dvěma r̊uznými zp̊usoby. Z vlastnost́ı teoríı nás

zaj́ımaj́ı předevš́ım následuj́ıćı čtyři: splýváńı s klasickou verźı teorie, saturovanost, plat-

nost De Jonghovy věty a rozhodnutelnost. Diplomová práce vycháźı zejména z výsledk̊u

C. Smorynského a D. de Jongha a snaž́ı se je rozvinout. Některé výsledky známé pro

Heytingovu aritmetiku dokazuje i pro jiné teorie. Dále se pokouš́ı odpovědět např́ıklad

na to, jaký vliv má záměna axiomu teorie za jiný (klasicky ekvivalentńı) axiom nebo jaké

vlastnosti by měla mı́t dobrá intuicionistická teorie.

Kĺıčová slova: intuicionistická logika, elementárńı teorie, saturovanost, rozhodnutel-

nost, De Jonghova věta
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1

Introduction

As the title suggests, this thesis is concerned with intuitionistic theories. It may seem that

we are going to embrace a very broad topic, but in fact, we are not so ambitious. The main

aim of this work is exploring some properties of elementary theories over intuitionistic

predicate logic.

One of the most important properties of classical theories is their completeness, but

asking whether an intuitionistic theory is complete does not make much sense. Intuitionis-

tic theories are usually incomplete, since the law of excluded middle is not an intuitionistic

tautology and therefore, the existence of a sentence ϕ such that ϕ is not provable and ¬ϕ
is not provable is quite natural. Hence, we have to deal with more sensible properties of

intuitionistic theories than the completeness.

The property that does not lose its relevance in intuitionistic logic and that should be

focused on is decidability. The other properties under consideration are purely intuition-

istic. We are going to investigate whether theories are saturated, whether they coincide

with their classical extensions and whether De Jongh’s theorem holds.

For our purposes, we chose some theories that we think are worthy of being inspected.

The choice was made so that the theories have the following characteristics. First, they

are simple—they have only a few symbols in their languages and few axioms or schemas.

Second, their classical versions have well-known properties, and third, they are “reason-

able” in the sense that they express some mathematical concepts. Moreover, our choice

was also motivated by the fact that two classically equivalent sentences may be intu-

itionistically non-equivalent. Therefore, we are going to explore more versions of theories

differing only by the formulation of an axiom. This should help us answer the question

of what is the best formulation of a theory.

We emphasize that we not only focus on the concrete results (i.e. information that

a theory is saturated, undecidable etc.), but we are also interested in methods that lead

to the results. In fact, the methods often are the crucial part.

The main sources that we use are [Smo73a], [Smo73b] and [BJ05]. Sometimes, we

are strongly inspired by the results obtained for Heyting arithmetic and we try to modify

the methods used for Heyting arithmetic in order for them to be applicable to the theories

in our scope.
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The thesis is divided into seven chapters. After the introduction, we present some

basic information on intuitionistic logic and the theories that we investigate. Chapter 3

looks into coincidence between the theories and their classical extensions. Chapter 4

investigates whether the theories are saturated or not. Chapter 5 is concerned with

De Jongh’s theorem, thereby contributing to the considerations about trivialization of

intuitionistic logic that were initiated in Chapter 3. Chapter 6 explores decidability of

the theories and we finish with the conclusion.
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2

Preliminaries

2.1 Intuitionistic logic

In this section, we try to briefly describe some basic facts concerning intuitionistic logic.

We do not provide any complete introduction to intuitionistic logic, instead, we focus on

introducing the notation that we use in this thesis and on listing the definitions and theo-

rems that we make use of later. If the reader wants to have a more extensive background,

we recommend her the relevant chapters of [Dal01], [Dal08], [Mos10] or [Šve02].

Even though we inspect theories formulated in intuitionistic predicate logic, in this

chapter, we mention even some basic facts about intuitionistic propositional logic, since

especially in chapter 5, we deal with propositional models and formulas.

2.1.1 Propositional logic

The propositional language contains symbols ¬, & , ∨ , → and ≡ , where ≡ is defined as

the conjunction of two implications. The atoms are denoted by p with indices and formulas

are denoted by A,B,C, . . .. To begin with, we define Kripke semantics for intuitionistic

propositional logic.

Definition 2.1. Let K be a non-empty set. The elements of K are denoted by α, β, γ,. . .

and called nodes. Let ≤ be a reflexive, transitive and antisymmetric relation on K and

let ‖− be a relation between nodes and formulas. Then K = 〈K,≤, ‖−〉 is called Kripke

model for propositional intuitionistic logic iff for any α, β ∈ K, any formulas A,B and

any atom p:

(i) if α ≤ β and α ‖− p, then β ‖− p,

(ii) α ‖− ¬A iff for all β ≥ α, β ‖−/ A,

(iii) α ‖− A&B iff α ‖− A and α ‖− B,

(iv) α ‖− A ∨B iff α ‖− A or α ‖− B,

(v) α ‖− A→B iff for all β ≥ α, if β ‖− A, then β ‖− B.
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The first condition is called persistence.

Definition 2.2. Let K = 〈K,≤, ‖−〉 be a Kripke model and Γ a set of formulas. We say

that K is a model of Γ and write K ‖− Γ iff for any α ∈ K and any A ∈ Γ, α ‖− A. If

Γ = {A}, we write K ‖− A instead of K ‖− {A}.

Now, we present a calculus for intuitionistic propositional logic and the deduction

theorem, which can be proved in exactly the same way as in classical logic.

Definition 2.3. A Hilbert type calculus for intuitionistic propositional logic (IPC) can

be formulated by the following axioms:

A1: A→ (B→ A)

A2: (A→ (B→ C))→ ((A→B)→ (A→ C))

A3: (A→B)→ ((A→¬B)→¬A)

A4: A&B→ A

A5: A&B→B

A6: A→ (B→ C)→ (A&B→ C)

A7: A→ A ∨B

A8: B→ A ∨B

A9: (A→ C)→ ((B→ C)→ (A ∨B→ C))

A10: A→ (¬A→B)

and one rule:

MP: A, A→B / B.

Let `IPC be defined in the obvious manner.

Definition 2.4. Let Γ be a set of formulas. Kripke model K is a counterexample or

a countermodel to Γ `IPC A iff K is a model of Γ, but K ‖−/ A.

Theorem 2.5 (Deduction theorem). Let Γ be a set of formulas. If Γ, A `IPC B, then

Γ `IPC A→B.

The completeness theorem not only connects Kripke semantics with IPC, but it also

asserts that we can restrict our semantical considerations to finite tree models. The proof

for sequent calculus can be found in [Šve02, pp. 377–378] and sequent calculus is equivalent

to Hilbert type calculus (see [TS00]), thus we can formulate the completeness theorem as

Theorem 2.6 (Completeness theorem). IPC is complete for the class of finite tree models,

i.e., Γ 0IPC A iff there exists a countermodel to Γ `IPC A in a finite tree.

In chapter 5, it does not suffice to have finite models, we need to deal with special

subset of finite models called the modified Jaskowski trees. Here is the definition and

an important theorem taken from [Smo73a, pp. 349–352].
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Definition 2.7. The modified Jaskowski trees are finite trees J1, J2, . . . inductively defined

as follows:

(i) J1 is the tree with one node,

(ii) Jn+1 is defined such that the origin of Jn+1 has n+1 successors and at each of them,

there is Jn.

Theorem 2.8. Let {〈Kn,≤n〉}n be a sequence of finite trees with the property that every

finite tree 〈K,≤〉 can be embedded as a subtree to some 〈Kn,≤n〉. Then, IPC is com-

plete for the sequence {〈Kn,≤n〉}n. Particularly, IPC is complete for the sequence of

the modified Jaskowski trees.

2.1.2 Predicate logic

The predicate language contains symbols ¬, & , ∨ , → , ≡ ,∀,∃. Formulas are denoted by

ϕ, ψ, χ . . . and the subscript at suggests that a formula is atomic (ϕat). Let Var denote a set

of all variables x, y, z, . . .. The definition of Kripke semantics for intuitionistic predicate

logic follows.

Definition 2.9. Let L be a language, K a non-empty set of nodes, ≤ a reflexive, transitive

and antisymmetric relation on K and let l be a function from nodes to classical structures

for L such that

(i) if X and Y are domains of l(α) and l(β) respectively and α ≤ β, then X ⊆ Y ,

(ii) if sl(α) and sl(β) are realizations of a function or predicate symbol s in structures

l(α) and l(β) respectively and α ≤ β, then sl(α) ⊆ sl(β).

Then, 〈K,≤, l〉 is called Kripke structure for language L.

Remark 2.10. For convenience, we write a ∈ l(α) instead of “a is an element of the do-

main of l(α)”.

Definition 2.11. Let 〈K,≤, l〉 be a Kripke structure for language L, e : Var → l(α)

an evaluation of variables and ‖− a relation between nodes, formulas and evaluations

such that

(i) α ‖− ϕat[e] iff l(α) |= ϕat[e] (in the sense of classical logic),

(ii) α ‖− ¬ϕ[e] iff for all β ≥ α, β ‖−/ ϕ[e],

(iii) α ‖− (ϕ& ψ)[e] iff α ‖− ϕ[e] and α ‖− ψ[e],

(iv) α ‖− (ϕ ∨ ψ)[e] iff α ‖− ϕ[e] or α ‖− ψ[e],

(v) α ‖− (ϕ→ ψ)[e] iff for all β ≥ α, if β ‖− ϕ[e], then β ‖− ψ[e],

(vi) α ‖− ∃xϕ[e] iff there exists an element a ∈ l(α) such that α ‖− ϕ[e(x/a)],
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(vii) α ‖− ∀xϕ[e] iff for all β ≥ α and all b ∈ l(β), β ‖− ϕ[e(x/b)].

Then, K = 〈K,≤, l, ‖−〉 is called Kripke model for predicate intuitionistic logic.

Definition 2.12. Let K = 〈K,≤, l, ‖−〉 be a Kripke model. We say that ϕ is valid in K
and write K ‖− ϕ iff for any α ∈ K and any e : Var → l(α), α ‖− ϕ[e].

Definition 2.13. Let K be a Kripke model and Γ a set of formulas. We say that K is

a model of Γ and write K ‖− Γ iff for any ϕ ∈ Γ, K ‖− ϕ.

Now, we define a calculus for predicate logic and state the deduction and completeness

theorem. Note that in contrast to propositional logic, we cannot restrict models to finite

trees. The proof of the completeness theorem can be found, e.g., in [Smo73a, pp. 329–332].

A direct consequence of the proof is Löwenheim-Skolem theorem.

Definition 2.14. A Hilbert type calculus for intuitionistic predicate logic (IQC) has

the propositional axioms A1–A10, the rule MP and the following axioms and rules:

B1: ∀xϕ → ϕx(t)

B2: ϕx(t) → ∃xϕ

Gen-A: ψ → ϕ / ψ → ∀xϕ

Gen-E: ϕ → ψ / ∃xϕ → ψ,

where t is a term substitutable for x in ϕ and x is not a free variable in ψ.

Let `IQC be defined in the obvious manner and let Thm(Γ) denote the set

{ ϕ ; Γ `IQC ϕ }. (We usually use ` instead of `IQC. When we need to distinguish

propositional and predicate logic, we use `IPC and `IQC respectively. When we need to

distinguish classical and intuitionistic logic, we use `c and `i respectively.)

Definition 2.15. Let Γ be a set of sentences. Kripke model K is a counterexample or

a countermodel to Γ `IQC ϕ iff K is a model of Γ, but K ‖−/ ϕ.

Theorem 2.16 (Deduction theorem). Let ψ be a sentence. If Γ, ψ `IQC ϕ, then Γ `IQC

ψ→ ϕ.

Theorem 2.17 (Completeness theorem). Let Γ be a set of sentences. Then, IQC is com-

plete for the class of predicate Kripke models, i.e., Γ 0IQC ϕ iff there exists a countermodel

to Γ `IQC ϕ.

Theorem 2.18 (Löwenheim-Skolem theorem). Let T be a consistent theory in lan-

guage L. Then, there exists a Kripke model K of T such that for every α ∈ K,

|l(α)| ≤ ℵ0 + |L|.

There are some notions that are commonly used, but might be a bit confusing. We

explain them in the following definition.

Definition 2.19. We say that theory T is decidable iff Thm(T ) is a recursive set.

In contrast, we say that formula ϕ is decidable in a theory T iff T ` ϕ∨¬ϕ. Formula ϕ

is stable in a theory T iff T ` ¬¬ϕ→ ϕ.
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As it is shown in [Dal08, pp. 160–162], classical logic can be embedded into intuition-

istic logic, when we interpret the classical disjunction and existence quantifier in a weak

sense.

Definition 2.20. Gödel translation (ϕ 7→ ϕg) is a mapping of formulas to formulas such

that

(i) ϕg
at = ¬¬ϕat,

(ii) (¬ϕ)g = ¬ϕg,

(iii) (ϕ& ψ)g = ϕg & ψg,

(iv) (ϕ ∨ ψ)g = ¬(¬ϕg & ¬ψg),

(v) (ϕ→ ψ)g = ϕg→ ψg,

(vi) (∀xϕ)g = ∀xϕg,

(vii) (∃xϕ)g = ¬∀x¬ϕg.

We define Γg = { ϕg ; ϕ ∈ Γ }.

Theorem 2.21. Γ `c ϕ iff Γg `i ϕ
g.

2.2 Elementary theories

The aim of this section is to list the elementary theories which we study in this thesis.

We introduce the notation of axioms which is consistently used in the following chapters.

Although this work deals with elementary intuitionistic theories, we find it useful to men-

tion some significant characteristics of the theories when the underlying logic is classical.

This is because we are also interested in comparing classical and intuitionistic theories.

We take the familiar characteristics of classical theories mainly from [Šve02]. A common

property of all the theories below is their consistency. In the following list of theories, we

suppose that equality is a non-logical symbol (i.e., the underlying logic is either classical

or intuitionistic first order logic without equality).

The theory of equality (E) E has the language {=} and the following axioms:

E1: ∀x(x = x)

E2: ∀x∀y(x = y → y = x)

E3: ∀x∀y∀z(x = y & y = z → x = z)

Classical version of E is incomplete (an independent sentence is, for example, ∀x∀y(x = y))

and decidable [Mon76, p. 234].
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The theories with function or predicate symbols will possess two more schemas of

equality1:

E4: ∀x∀y(x1 = y1 & . . . & xn = yn → F (x) = F (y)), for any function symbol F

E5: ∀x∀y(x1 = y1 & . . . & xn = yn → P (x) ≡ P (y)), for any predicate symbol P

The theory of linear order (LO) LO has the language {=, <} and the following

axioms:

E1–E3, E5

LO1: ∀x∀y∀z(x < y & y < z → x < z)

LO2: ∀x¬(x < x)

LO3: ∀x∀y(x < y ∨ x = y ∨ y < x)

The classical version of LO is incomplete, ∀x∃y(x < y) is an independent sentence.

The weaker theory of linear order (wLO) Theory wLO is intuitionistically weaker

version of LO where LO3 is replaced by the following two axioms:

wLO3: ∀x∀y∀z(x < y → x < z ∨ z < y)

AP: ∀x∀y(¬(x < y ∨ y < x) → x = y)

An intuitionistically equivalent theory to wLO can be obtained by dropping LO2 and

formulating AP as equivalence instead of implication. The classical version of wLO is

incomplete, since LO and wLO are classicaly equivalent.

The theory of dense linear order (DNO) DNO is LO enriched with the axioms of

density:

DN1: ∀x∀y(x < y → ∃z(x < z & z < y))

DN2: ∀x∃y(x < y)

DN3: ∀x∃y(y < x)

Classical DNO is complete and thus decidable.

The weaker theory of dense linear order (wDNO) Theory wDNO is given by the

axioms of wLO plus DN1, DN2 and DN3. Obviously, the classical versions of wDNO and

DNO coincide. Therefore, the classical wDNO is complete and decidable.

The theory of a successor function (SUCC∨ ) SUCC∨ has a language with one

constant (0), one unary function (S) and one binary relation (=) symbol. The axioms of

1x is a shorthand for x1, x2, . . . xn.
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SUCC∨ are the following:

E1–E4

Q1: ∀x∀y(S(x) = S(y) → x = y)

Q2: ∀x¬(S(x) = 0)

Q3∨ : ∀x(x = 0 ∨ ∃y(x = S(y))

Ln: ∀x¬(Sn(x) = x), for all n ≥ 1

The weaker theory of a successor function (SUCC→ ) SUCC→ is a slightly mo-

dified version of SUCC∨ . Here, Q3∨ is replaced by intuitionistically weaker axiom

Q3→ : ∀x(¬(x = 0) → ∃y(x = S(y))

In classical logic, SUCC∨ and SUCC→ coincide and both are complete and decidable.

Robinson arithmetic (Q∨ ) Q∨ has the language {0, S, +, ·, =, ≤, <} and the

following axioms:

E1–E5

Q1, Q2, Q3∨

Q4: ∀x(x+ 0 = x)

Q5: ∀x∀y(x+ S(y) = S(x+ y))

Q6: ∀x(x · 0 = 0)

Q7: ∀x∀y(x · S(y) = x · y + x)

Q8: ∀x∀y(x ≤ y ≡ ∃v(v + x = y))

Q9: ∀x∀y(x < y ≡ ∃v(S(v) + x = y))

The classical version of Q∨ is incomplete and undecidable as a result of Gödel’s first

incompleteness theorem.

The weaker version of Robinson arithmetic (Q→ ) Q→ is a classically equivalent

theory to Q∨ . The only difference resides in formulating axiom Q3. Here, Q3∨ is replaced

by Q3→ .

In the following chapters, Q (without superscript) refers to the cases where it does not

make any difference whether we formulate Q3 as a disjunction or an implication (we also

use Q3 without superscript). The meaning of SUCC is analogous.

The theory of rational numbers with addition (RNA) RNA has a language with

two constants (0, 1), one binary function symbol (+) and two binary relation symbols

14



(=, <). The axioms of RNA are:

E1–E5

LO1–LO3

DN1–DN3

RN1: ∀x∀y(x+ y = y + x)

RN2: ∀x∀y∀z(x+ (y + z) = (x+ y) + z)

RN3: ∀x(x+ 0 = x)

RN4: ∀x∃y(x+ y = 0)

RN5: ∀x∀y∀z(x < y → x+ z < y + z)

RN6: 0 < 1

RN7: ∀x∃y(ny = x), for n ≥ 2, where ny means y + y + . . .+ y (n times)

The classical version of RNA is complete and decidable. The sense of RNA is that it

embraces the concept of the addition of rational numbers and at the same time it has

a name for every natural number.

The weaker theory of rational numbers with addition (wRNA) The only differ-

ence between RNA and wRNA is that the latter contains axioms wLO3 and AP instead

of LO3. If brief, RNA is based on LO while wRNA is based on wLO. It follows from

the previous paragraphs that wRNA is classically equivalent to RNA.
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3

Coincidence with classical theories

3.1 A coincidence criterion

In the introduction, we mentioned that we are concerned with properties of intuitionistic

theories. The first question that naturally arises is “Does certain intuitionistic theory dif-

fer from its classical version at all?” Without thinking twice, we would answer: “Of course,

there must be a difference, since the underlying logic is different.” Nevertheless, we show

in this section that some of the theories listed above are the same regardless of the under-

lying logic. If such a phenomenon occurs, we say that the intuitionistic theory coincides

with its classical version or that the theory trivializes intuitionistic logic. It happens if

the axioms of certain intuitionistic theory are so strong that all the classically logically

valid formulas can be proved.

If we are able to prove ϕ ∨ ¬ϕ for all ϕ in some theory, then it is the same as if

we added schema A ∨¬A to the logic, thereby changing intuitionistic logic into classical.

However, in some theories, ϕ∨¬ϕ can be proved merely for formulas ϕ without quantifiers

or for formulas whose atomic subformulas are of a specific form; see the next section.

In this section, we present a useful coincidence criterion which was suggested in

[Smo73b, pp. 110–111]. The method is model-theoretic, but it uses some significant

results of classical versions of the theories in scope. We suppose that the reader is famil-

iar with basic properties of embeddings and elementary embeddings. Before presenting

a theorem of Smorynski, we mention a proposition and a lemma that are used in the proof

of the theorem and its corollaries.

Definition 3.1. Classical theory T is model complete if every embedding between models

of T is elementary embedding.

Proposition 3.2. Every (classical) theory T which admits quantifier elimination is model

complete.

Proof. Let A and B be two models of T and let f : A → B be an embedding between

them. We want to show that f is an elementary embedding. Suppose ϕ(x) is a for-

mula in the language of T and a1, . . . , an are elements of the domain of A. There exists

a quantifier-free formula ψ(x) such that A |= ∀x(ϕ(x) ≡ ψ(x)), for T admits quantifier
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elimination. Satisfiability of quantifier-free formulas is preserved by embeddings, thus

A |= ψ(a) iff B |= ψ(f(a)). Hence, we have A |= ϕ(a) iff A |= ψ(a) iff B |= ψ(f(a)) iff

B |= ϕ(f(a)). Consequently, f is an elementary embedding.

Lemma 3.3. If for all atomic formulas ϕat, T ` ϕat ∨ ¬ϕat, then for all quantifier-free

formulas ϕ, T ` ϕ ∨ ¬ϕ.

Proof. By induction on ϕ.

(i) ϕ is ¬ψ. By induction hypothesis, we have T ` ψ ∨ ¬ψ. Since ψ→ ¬¬ψ is intu-

itionistically logically valid, we have T ` ¬¬ψ ∨ ¬ψ. Thus, T ` ¬ϕ ∨ ϕ.

(ii) ϕ is ψ & χ. By induction hypothesis, we have T ` ψ ∨ ¬ψ and T ` χ ∨ ¬χ which

entails

T ` ((ψ ∨ ¬ψ) & χ) ∨ ((ψ ∨ ¬ψ) & ¬χ)

T ` (ψ & χ) ∨ (¬ψ & χ) ∨ (ψ & ¬χ) ∨ (¬ψ & ¬χ)

It suffices to check that for each disjunct D of the previous disjunction

T ` D→ (ψ & χ) ∨ ¬ψ ∨ ¬χ

holds. Due to the fact that

` ¬ψ ∨ ¬χ→¬(ψ & χ),

we finally obtain

T ` (ψ & χ) ∨ ¬(ψ & χ).

(iii) ϕ is ψ ∨ χ. The proof is analogous to the previous case. Similarly, we use the fact

that

` ¬ψ & ¬χ→¬(ψ ∨ χ).

(iv) ϕ is ψ→ χ. Again, similar to the previous case. We use the fact that

` ¬ψ ∨ χ ∨ (ψ & ¬χ)→ (ψ→ χ) ∨ ¬(ψ→ χ).

Now, let us show Smorynski’s result.

Lemma 3.4 ([Smo73b, p. 110]). Suppose that M is a set of classical models such that

every embedding between the elements of M is elementary embedding. Suppose further

that K is a Kripke model obtained by associating with every α ∈ K some model Dα ∈M

and forcing at α

α ‖− ϕat[e] iff Dα |= ϕat[e], (3.1)

for every atomic formula ϕat and every e : Var → Dα. Then, (3.1) holds for any

formula ϕ.
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Proof. By induction on ϕ.

(i) ϕ is ¬ψ. The following lines are equivalent:

α ‖− ¬ψ[e]

for all β ≥ α, β ‖−/ ψ[e] (3.2)

for all β ≥ α, Dβ /|= ψ[e] (3.3)

for all β ≥ α, Dβ |= ¬ψ[e] (3.4)

Dα |= ¬ψ[e] (3.5)

(3.2)⇔ (3.3) holds due to induction hypothesis. A remarkable case is (3.5)⇒ (3.4).

It is true, since Dβ is an elementary extension of Dα.

(ii) ϕ is ψ→ χ. Similarly, the following lines are equivalent:

α ‖− (ψ→ χ)[e]

for all β ≥ α, if β ‖− ψ[e], then β ‖− χ[e]

for all β ≥ α, if Dβ |= ψ[e], then Dβ |= χ[e]

for all β ≥ α, Dβ |= (ψ→ χ)[e]

Dα |= (ψ→ χ)[e]

(iii) ϕ is ∃xψ.1

α ‖− ∃xψ[e]

there exists a ∈ l(α) such that α ‖− ψ[e(x/a)]

there exists a ∈ Dα such that Dα |= ψ[e(x/a)]

Dα |= ∃xψ[e]

(iv) ϕ is ∀xψ.

α ‖− ∀xψ[e]

for all β ≥ α and for all a ∈ l(β), β ‖− ψ[e(x/a)]

for all β ≥ α and for all a ∈ Dβ, Dβ |= ψ[e(x/a)]

for all β ≥ α, Dβ |= ∀xψ[e]

Dα |= ∀xψ[e]

The other cases are left to the reader.

Theorem 3.5 ([Smo73b, p. 111]). Let T be an intuitionistic theory and T c its classical

extension, let Γ be a set of prenex axioms for T c and suppose the following are satisfied:

(i) T c is model complete

1Dα denotes the domain of Dα.
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(ii) T ` ϕat ∨ ¬ϕat, for all atomic ϕat

(iii) T ` ϕ, for all ϕ ∈ Γ.

Then T and T c coincide.

Proof. LetK be an arbitrary Kripke model of T and ψ an arbitrary formula in the language

of T . We want to prove that for every α ∈ K and every e : Var → Dα, α ‖− (ψ ∨¬ψ)[e].

We define a classical model Dα for α ∈ K by putting the domain of Dα to be the

domain of l(α) and letting Dα |= ϕat[e] iff α ‖− ϕat[e], for atomic ϕat. In order to verify

that every Dα is a classical model of T c, we need to show that α ‖− χ[e] implies Dα |= χ[e],

for any χ ∈ Γ. We give an example: Assume that χ is ∃x∀y∀z∃wϕ(x, y, z, w) where ϕ is

a quantifier-free formula. Then2,

α ‖− ∃x∀y∀z∃wϕ(x, y, z, w)

⇔ ∃a ∈ l(α)∀β ≥ α∀b ∈ l(β)∀γ ≥ β∀c ∈ l(γ)∃d ∈ l(γ) γ ‖− ϕ(a, b, c, d)

⇒ ∃a ∈ l(α)∀b ∈ l(α)∀c ∈ l(α)∃d ∈ l(α) α ‖− ϕ(a, b, c, d) (3.6)

⇒ ∃a ∈ Dα∀b ∈ Dα∀c ∈ Dα∃d ∈ Dα Dα |= ϕ(a, b, c, d) (3.7)

⇒ Dα |= ∃x∀y∀z∃wϕ(x, y, z, w)

Note that (3.6) ⇒ (3.7) is only possible due to assumption (ii) and Lemma 3.3. If it

were not for them, e.g., α ‖− ¬¬R(a, b, c, d), but Dα /|= ¬¬R(a, b, c, d) could happen.

Furthermore, dropping off assumption (iii) could also lead to undesirable results, e.g.,

α ‖− ¬¬(∀x∃yR(x, y)), but Dα /|= ¬¬(∀x∃yR(x, y)).

So far, we have shown that every Dα is a classical model of T c and Dα |= ϕat[e] iff

α ‖− ϕat[e]. Moreover, T c is model complete. Thus, all the assumptions of Lemma 3.4

are satisfied and we obtain (3.1) for any ϕ. Particularly, α ‖− (ψ ∨ ¬ψ)[e] for any α, ψ

and e.

Now, we can apply the theorem to some of the theories in our scope. The following

corollaries demonstrate that DNO and RNA coincide with their classical extensions.

Corollary 3.6. DNO trivializes intuitionistic logic.

Proof. We verify the assumptions of the theorem.

(i) Classical DNO does not admit elimination of quantifiers, but if we add two proposi-

tional constants, > and ⊥, to the language of DNO, it does (see [KK67, pp. 51–53]).

Let us look at the proof of Proposition 3.2 and modify it in order to be applicable to

DNO. Suppose that T is DNO. The modified proof is almost the same as the origi-

nal one; the only difference is that formula ψ is not formulated in the language {<},
but in {<,>,⊥}. Immediately, classical DNO is model complete.

(ii) The decidability of atomic formulas is shown in the next section by Proposition 3.10.

2We use ∀ and ∃ also as metamathematical symbols and write α ‖− ϕ(a, b) instead of α ‖−
ϕ(x, y)[(x/a)(y/b)].
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(iii) The only task is to demonstrate that DNO ` ∀x∀y∃z(x < y → x < z & z < y).

We use DN1 and the fact that DNO ` x < y ∨ ¬x < y. The following formulas are

provable in DNO:

∃z(x < z & z < y) → ∃z(x < y → x < z & z < y)

x < y → ∃z(x < y → x < z & z < y)

¬(x < y) → ∃z(x < y → x < z & z < y)

Thus, DNO ` ∀x∀y∃z(x < y → x < z & z < y).

Corollary 3.7. RNA trivializes intuitionistic logic.

Proof. We verify the assumptions of the theorem.

(i) Classical RNA admits elimination of quantifiers (it follows from the slightly modified

proof of quantifier elimination for theory DOS [Šve02, p. 234]). By Proposition 3.2,

classical RNA is model complete.

(ii) The decidability of atomic formulas is shown in the next section by Proposition 3.10.

(iii) All the axioms of RNA, except for DN1, are in prenex form. Prenex form of DN1 is

proved by the same means as in the proof of the previous corollary.

3.2 Incoincidence

In the shadow of theorems and proofs, we would like to consider rather more general

question. What are the characteristics of a “good” intuitionistic theory? So far, we

have shown that some theories coincide with their classical extensions. This property

must be totally positive for someone who finds similarities between intuitionistic and

classical versions of theories. By the way, we also make use of this fact by asserting that

DNO is complete and decidable. On the other hand, if we are more enthusiastic about

the distinctions between theories, we would privilege the theories which do not trivialize

intuitionistic logic. The theories that coincide with their classical versions fail to be the

“genuine” intuitionistic theories.

In the following paragraphs, we show that all the theories introduced in section 2.2

except for DNO and RNA do not trivialize intuitionistic logic. We start with E.

Proposition 3.8. Atomic formula x = y is not decidable in E.

Proof. Figure 3.1 shows a model of E where α ‖−/ a = b ∨ ¬(a = b). Equality relation

is represented by the dashed rectangle (obvious equality axiom E1 is assumed but not

drawn in the picture).
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Figure 3.1: A model of E where α ‖−/ a = b ∨ ¬(a = b).
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Proposition 3.8 immediately leads to the following

Corollary 3.9. E does not trivialize intuitionistic logic.

We move on to theory LO which will be shown to partly trivialize intuitionistic logic,

but not to coincide with its classical version. The partial trivialization is demonstrated

in the following two propositions.

Proposition 3.10. LO ` ϕ ∨ ¬ϕ, for all ϕ in which no quantifier occurs.

Proof. It suffice to prove that atomic formulas are decidable in LO. The rest is a conse-

quence of Lemma 3.3.

(i) Let ϕ be x < y. There is a proof of LO ` x < y ∨ ¬(x < y):

LO ` x = y → ¬(x < y) ; from E5 and LO2

LO ` y < x → ¬(x < y) ; from LO1 and LO2

LO ` x = y ∨ x < y ∨ y < x → x < y ∨ ¬(x < y)

LO ` x < y ∨ ¬(x < y) ; from LO3

(ii) Let ϕ be x = y. The proof of LO ` x = y ∨ ¬(x = y) is similar to the previous

one:

LO ` x < y → ¬(x = y) ; from E5 and LO2

LO ` y < x → ¬(x = y) ; from E5 and LO2

LO ` x = y ∨ x < y ∨ y < x → x = y ∨ ¬(x = y)

LO ` x = y ∨ ¬(x = y) ; from LO3
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Proposition 3.11. LO does not trivialize intuitionistic logic. In particular,

LO 0 ∀x(∃y(x < y) ∨ ¬∃y(x < y)).

Proof. Figure 3.2 shows a model of LO and a node α in the model such that

α ‖−/ ∀x(∃y(x < y) ∨ ¬∃y(x < y)).

Figure 3.2: A model of LO where α ‖−/ ∀x(∃y(x < y) ∨ ¬∃y(x < y)). (Relation < is

depicted by arrows between elements of domain.)
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Decidability of atomic formulas brings us a bit closer to classical logic. Among other

things, it has an effect on Gödel translation which may be simplified by putting ϕg
at = ϕat

instead of ϕg
at = ¬¬ϕat.

Now we move on to the theory wLO. Proposition 3.12 shows one of the differences

between LO and wLO.

Proposition 3.12. Atomic formulas x = y and x < y are not decidable in wLO.

Proof. (i) Let ϕat be x = y. Figure 3.3 shows a model of wLO which consists of three

nodes with constant domains {a, b}. As in Figure 3.2, relation < is depicted by

arrows between elements of domain and the dashed rectangle represents equality

relation. Then, α ‖−/ a = b ∨ ¬(a = b).

(ii) Let ϕat be x < y. We take a model of wLO from Figure 3.4. Then, α ‖−/ a < b ∨
¬(a < b).

An immediate consequence of Proposition 3.12 is
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Figure 3.3: A model of wLO where α ‖−/ a = b ∨ ¬(a = b).
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Figure 3.4: A model of wLO where α ‖−/ a < b ∨ ¬(a < b).
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Corollary 3.13. wLO does not trivialize intuitionistic logic.

Corollaries 3.6 and 3.7 showed the coincidence of DNO and RNA with their classical

versions. It is a legitimate question to ask whether we could weaken these theories so

that they would not trivialize intuitionistic logic, but at the same time would provide

some sensible concept of dense linear order and rational numbers with addition. wDNO

and wRNA may be appropriate candidates for such weaker theories. Despite they differ

from DNO and RNA only slightly, the following paragraphs demonstrate that they do not

coincide with their classical versions. Moreover, atomic formulas are not decidable either

in wDNO or in wRNA.

Proposition 3.14. Atomic formulas x < y and x = y are not decidable in wDNO.

Proof. (i) We proof that wDNO 0 x < y ∨ ¬(x < y) by constructing an appropriate

model K1. Let K1 have two nodes—bottom node α and its successor β. As for

the domains3, Dα = Dβ = { aq ; q ∈ Q \ {0} } ∪ { bq ; q ∈ Q }. Now define 4

α ‖− aq < ar iff q < r

α ‖− aq < br iff q < 0

α ‖− bq < ar iff r > 0

β ‖− bq < br iff q < r.

Elements bq are incomparable in α, but not in β. Equality is defined in the obvious

manner (i.e., every element is equal to itself and to nothing else). We easily check

that K1 is a model of wDNO (e.g., α ‖− AP because β ‖− (x < y ∨ y < x)).

Atomic formulas are not decidable, for α ‖−/ bq < br ∨ ¬(bq < br), where q < r.

(ii) The proof of wDNO 0 x = y ∨ ¬(x = y) necessitates constructing a slightly more

complicated model than K1. Let K2 be a model of wDNO which contains three

nodes—bottom node α and its two successors β and γ. As in the previous case, let

Dα = Dβ = Dγ = { aq ; q ∈ Q \ {0} } ∪ { bq ; q ∈ Q }. Now extend the definition of

‖− from the previous case by putting

γ ‖− bq = br for all q, r ∈ Q.

The essential point of the construction is dealing with elements bq. They are in-

comparable in α, ordered in β, whereas merged in γ. Node β is needed in order to

obtain α ‖−/ bq = br for all q 6= r, since it follows from axiom AP that incomparables

which are not ordered in any successor node must be equal. Node γ is necessary for

proving α ‖−/ ¬(bq = br). Hence, we have α ‖−/ bq = br ∨ ¬(bq = br), for all q 6= r.

Corollary 3.15. wDNO does not trivialize intuitionistic logic.

3Q is the set of rationals.
4We write, as in the previous section, α ‖− a < b instead of α ‖− x < y [(x/a)(y/b)] and we use < and

other symbols ambiguously both in object and metalanguage.
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Proposition 3.16. (i) Formulas x < y, 0 < x, x < 0, 1 < x, x < 1 are not decidable

in wRNA. (ii) Formulas x = y, x = 0, x = 1 are not decidable in wRNA.

Proof. (i) We constuct a model of wRNA, K1, with two nodes α and β (α is a bottom

node and β its successor). We define Dα = Dβ = { aq1,q2 ; q1, q2 ∈ Q } and

α ‖− 0 = a0,0

α ‖− 1 = a1,0

α ‖− aq1,q2 + ar1,r2 = aq1+r1,q2+r2

α ‖− aq1,q2 < ar1,r2 iff q1 < r1.

Equality is defined in the obvious manner. In β, ‖− is extended by putting

β ‖− aq1,q2 < ar1,r2 iff q1 < r1 or (q1 = r1 and q2 < r2).

It is not difficult to verify that we obtained a model of wRNA; we leave it to the

reader. The construction of the model proves the undecidability of atomic formula

x < y because for all q, q1, q2 ∈ Q such that q1 < q2,

α ‖−/ aq,q1 < aq,q2 ∨ ¬(aq,q1 < aq,q2).

Particularly, for all r, s ∈ Q such that r > 0 and s < 0,

α ‖−/ 0 < a0,r ∨ ¬(0 < a0,r)

α ‖−/ a0,s < 0 ∨ ¬(a0,s < 0)

α ‖−/ 1 < a1,r ∨ ¬(a1,r < 1)

α ‖−/ a1,s < 1 ∨ ¬(1 < a1,s)

(ii) We use the same idea as in the proof of Proposition 3.14. We obtain the coun-

terexample to the decidability of formula x = y by adding one node into model K1.

We construct model K2 with a bottom node α and its two successors β and γ. Let

Dα = Dβ = Dγ = { aq1,q2 ; q1, q2 ∈ Q }. The definition of ‖− in nodes α and β is

the same as it was described in (i). In node γ, however, all the elements that do not

differ in the first index, merge:

γ ‖− aq,q1 = aq,q2 , for all q, q1, q2 ∈ Q.

Now, for all q, q1, q2 ∈ Q such that q1 6= q2,

α ‖−/ aq,q1 = aq,q2 ∨ ¬(aq,q1 = aq,q2).

Particularly, for all r ∈ Q such that r 6= 0,

α ‖−/ a0,r = 0 ∨ ¬(a0,r = 0)

α ‖−/ a1,r = 1 ∨ ¬(a1,r = 1).
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The other theories in our scope are two versions of the theory of a successor function.

Either SUCC∨ or SUCC→ does not coincide with its classical extension and furthermore,

x = y is not a decidable formula. Still, there is a difference in the decidability of x = 0.

The following propositions clarify our considerations.

Proposition 3.17. SUCC→ 0 x = Sn(0) ∨ ¬(x = Sn(0)), where n ∈ N.5 Particularly,

SUCC→ 0 x = 0 ∨ ¬(x = 0).

Proof. The model of SUCC→ which demonstrates the result is comprised of two nodes

α < β with the same domains Dα = Dβ = { an ; n ∈ N } ∪ { bn ; n ∈ N }. The successor

function and 0 are defined as follows:

α ‖− an+1 = S(an), for all n ∈ N

α ‖− bn+1 = S(bn), for all n ∈ N

α ‖− a0 = 0.

Every element of Dα is defined to be equal to itself. However, ‖− in β is extended by

putting

β ‖− an = bn, for all n ∈ N.

Thus, we obtained the model of SUCC→ such that for every n ∈ N,

α ‖−/ bn = Sn(0) ∨ ¬(bn = Sn(0)).

Proposition 3.18. SUCC∨ ` x = Sn(0) ∨ ¬(x = Sn(0)), where n ∈ N. Particularly,

SUCC∨ ` x = 0 ∨ ¬(x = 0).

Proof. By induction on n.

(i) n = 0. We use axiom Q3∨ . If x = 0, then x = 0 ∨ ¬(x = 0) holds. If ∃y(x = S(y)),

then we will prove that ¬(x = 0) as follows: Let x = 0. Then, ∃y(0 = S(y)),

but from Q2 we may conclude ¬∃y(0 = S(y)), hence ∃y(x = S(y)) → ¬(x = 0).

Consequently, ∃y(x = S(y)) → x = 0 ∨ ¬(x = 0) and finally x = 0 ∨ ¬(x = 0).

(ii) Let SUCC∨ ` x = Sn(0) ∨ ¬(x = Sn(0)). By equality axioms and Q1, we obtain

SUCC∨ ` S(x) = Sn+1(0) ∨ ¬(S(x) = Sn+1(0)).

From this, it can be easily proved

SUCC∨ ` y = S(x) → (y = Sn+1(0) ∨ ¬(y = Sn+1(0))

and subsequently,

SUCC∨ ` ∃x(y = S(x)) → (y = Sn+1(0) ∨ ¬(y = Sn+1(0)).

5N is the set of natural numbers.
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Axiom Q2 proves ¬(0 = Sn+1(0)). Thus,

SUCC∨ ` y = 0 → y = Sn+1(0) ∨ ¬(y = Sn+1(0)).

Now, due to Q3,

SUCC∨ ` y = Sn+1(0) ∨ ¬(y = Sn+1(0)).

Proposition 3.19. Formula x = y is not decidable either in SUCC∨ or in SUCC→ .

Furthermore, x = y is not stable either in SUCC∨ or in SUCC→ .

Proof. We suggest constructing the model of SUCC∨ (and SUCC→ ) with two nodes

α < β such that α ‖−/ x = y ∨ ¬(x = y). The nodes have constant domains Dα = Dβ =

{ an ; n ∈ N } ∪ { bz ; z ∈ Z } ∪ { cz ; z ∈ Z }.6 The successor function and 0 are defined

as follows:

α ‖− a0 = 0

α ‖− an+1 = S(an), for all n ∈ N

α ‖− bz+1 = S(bz), for all z ∈ Z

α ‖− cz+1 = S(cz), for all z ∈ Z

Every element of Dα is defined to be equal to itself. However, in β, ‖− is extended by

putting

β ‖− bz = cz, for all z ∈ Z.

Now, α ‖−/ bz = cz ∨ ¬(bz = cz) and α ‖−/ ¬¬(bz = cz) → bz = cz, for all z ∈ Z.

Corollary 3.20. Neither SUCC→ nor SUCC∨ trivializes intuitionistic logic.

Let’s try to sum up the results of the last three propositions. We saw that SUCC

theories do not coincide with their classical extensions. To a certain extent, they even deal

with atomic formulas quite similarly. The difference was found in proving the decidability

of atomic formulas of the form x = Sn(0). In SUCC∨ , each standard element s (i.e., 0 or

Sn(0)) possesses the classical property that every element is either equal to s, or is not

equal to s. In contrast, in models of SUCC→ , there can be elements which are neither

equal to s nor unequal to s.

The last two theories we are going to investigate are two versions of Q. The following

paragraphs show that the relation between these two versions is similar to the relation

between SUCCs.

Proposition 3.21. Q→ 0 x = Sn(0) ∨ ¬(x = Sn(0)), where n ∈ N.

6Z is the set of integers.
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Proof. The idea is completely due to V. Švejdar. We use the model introduced in Propo-

sition 3.17 and show that if we enrich it with the definition of · and +, we obtain a model

of Q→ . The operations · and + are defined by putting

α ‖− an + am = an+m

α ‖− bn + am = bn+m

α ‖− an + bm = an+m

α ‖− bn + bm = an+m

α ‖− cn · dm = an·m, where c, d ∈ {a, b},

for all n,m ∈ N.7 Now, we should verify that axioms Q4–Q7 are valid in the model. We

demonstrate only Q7 and leave Q4–Q6 to the reader.

(i) an · S(am) = an · am+1 = an·(m+1) = an·m+n = an·m + an = an · am + an

(ii) an · S(bm) = an · bm+1 = an·(m+1) = an·m+n = an·m + an = an · bm + an

(iii) bn · S(am) = bn · am+1 = an·(m+1) = an·m+n = an·m + bn = bn · am + bn

(iv) bn · S(bm) = bn · bm+1 = an·(m+1) = an·m+n = an·m + bn = bn · bm + bn

Proposition 3.22. Q∨ ` x = Sn(0) ∨ ¬(x = Sn(0)), where n ∈ N.

Proof. The proof is obtained by a mere copying of the proof of Proposition 3.18 and

ensuring that axiom Ln was not used.

Proposition 3.23. Formula x = y is not decidable either in Q∨ or in Q→ . Furthermore,

x = y is not stable either in Q∨ or in Q→ .

Proof. We construct a model of Q∨ (and Q→ ) that is a counterexample to Q ` x = y ∨
¬(x = y). There are two nodes α, β in the model such that α < β. We define Dα = Dβ =

{ an ; n ∈ N } ∪ { bn ; n ∈ N } and for all n,m ∈ N,

α ‖− a0 = 0

α ‖− an+1 = S(an)

α ‖− bn = S(bn)

α ‖− an + am = an+m

α ‖− an + bm = bm+1

α ‖− bn + am = bn

α ‖− bn + bm = bm+1

α ‖− an · am = an·m

7To avoid confusion, we point out that + and · used in the indices of elements of the domain are
metamathematical symbols with their natural meanings. They are not elements of the language.
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α ‖− an · bm = b0

α ‖− bn · 0 = 0

α ‖− bn · am = bn+1, where m > 0

α ‖− bn · bm = bn+1.

In addition, every element of the domain is equal to itself. If we think of α as it was

a classical structure, it is the model of classical Q taken from [Šve02, p. 284]. In β, ‖− is

extended by

β ‖− bn = bm, for all n,m ∈ N.

The construction can be easily verified to be a model of Q∨ . (Merging of elements bn in

β does not affect the validity of Q4–Q7 and all the other axioms also remain valid in β.)

Furthermore,

α ‖−/ bn = bm ∨ ¬(bn = bm), for any n,m ∈ N.

Corollary 3.24. Neither Q→ nor Q∨ trivializes intuitionistic logic.

At the end of this chapter, let us try to look on the results from a rather different point

of view. So far, we declared that we merely inspected properties of some intuitionistic

theories, but at the same time, we could say that we searched for the “genuine” formulation

of the theories. From the intuitionistic perspective, DNO and RNA were badly formulated

because they enable non-constructive sentences to be proved. However, we have found

“better” formulations of dense linear order and addition of rational numbers. Even LO,

which does not coincide with its classical extension, can be formulated more constructively.

We may assert that wDNO, wRNA and wLO are the “genuine” theories, but the qual-

ification of different versions of SUCC and Q is much more doubtable. It depends on

whether we prefer the recognition of non-zero elements (i.e., x = 0 ∨ ¬(x = 0)) or

keeping far from non-constructive sentences.

29



4

Saturated theories

Saturated sets have shown their importance in the proof of the completeness theorem

(see [Smo73a, pp. 329–332]) and we believe that saturation is one of good candidates for

metamathematical property which might substitute for completeness. In this chapter, we

try to find some criterion that would help us in deciding whether certain intuitionistic

theory is saturated or not. Subsequently, we apply the criterion to the theories in scope

and in the last section, we compare saturated theories with theories of Harrop formulas

and present another criterion of saturation.

Now, it is high time that we introduced the definition of saturated theories.

Definition 4.1. Let Γ be a set of sentences in language L. Γ is L-saturated iff the fol-

lowing conditions are satisfied:

1. Γ is consistent,

2. if Γ ` ϕ ∨ ψ, then ϕ ∈ Γ or ψ ∈ Γ, for any sentences ϕ and ψ

(Γ is d-complete),

3. if Γ ` ∃xχ, then there exists a closed term t such that χx(t) ∈ Γ, for any formula

χ with one free variable x

(Γ is e-complete).

Lemma 4.2. Let Γ be L-saturated. Then, for all ϕ, if Γ ` ϕ, then ϕ ∈ Γ (Γ is deductively

closed).

Proof. If Γ ` ϕ, then Γ ` ϕ ∨ ϕ and by the d-completeness, ϕ ∈ Γ.

Definition 4.3. Let T be a theory with language L and a set Γ of axioms. Then, T is

saturated iff Thm(Γ) is L-saturated.

4.1 The Aczel slash

The aim of this section is to introduce a metamathematical relation called the Aczel slash

and to demonstrate its usefulness in deciding whether a theory is saturated or not. Our
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definition of the Aczel slash extends the one presented for propositional logic in [BJ05,

p. 21] and slightly differs from the syntactical characterization mentioned in [Smo73a,

p. 333].

Definition 4.4. Let Γ be a set of sentences. The Aczel slash, |, is inductively defined as

follows:

1. If ϕ is a closed formula, then

(i) if ϕ is atomic, then Γ | ϕ iff Γ ` ϕ,

(ii) Γ | ¬ϕ iff Γ ` ¬ϕ and Γ - ϕ,

(iii) Γ | ϕ& ψ iff Γ | ϕ and Γ | ψ,

(iv) Γ | ϕ ∨ ψ iff Γ | ϕ or Γ | ψ,

(v) Γ | ϕ→ ψ iff Γ ` ϕ→ ψ and (Γ - ϕ or Γ | ψ),

(vi) Γ | ∃xϕ iff Γ | ϕx(t) for some closed term t,

(vii) Γ | ∀xϕ iff Γ ` ∀xϕ and Γ | ϕx(t) for all closed terms t.

2. If ϕ is not closed and ∀ϕ is the universal closure of ϕ, then Γ | ϕ iff Γ | ∀ϕ.

If T is a theory with language L and a set Γ of axioms, we write T | ϕ instead of Γ | ϕ.

The importance of defining the Aczel slash for all formulas, not just for sentences, will

turn out in the following proofs of lemmas and theorems.

In the rest of this section, we suppose that a language with at least one constant is

at our disposal. It means that it will not be possible to apply the following results to the

theory of equality or to the theories of order. However, it is nothing to worry about. It

does not make much sense to speak about saturated theories when they do not possess

any constant in their language. According to Definition 4.1, no such theory in which,

for example, ∃x(x = x) is provable, is saturated.

The following two lemmas show some basic characteristics of the Aczel slash.

Lemma 4.5. If Γ | ϕ, then Γ ` ϕ.

Proof. By induction on ϕ.

Lemma 4.6. If Γ is inconsistent, then Γ | ϕ for all ϕ.

Proof. 1. Let ϕ be a sentence. We proceed by induction on ϕ.

(i) Let Γ - ϕat. Then by Definition 4.4, Γ 0 ϕat and thus, Γ is consistent.

(ii) Let Γ - ∃xϕ. Then by Definition 4.4, for all closed terms t, Γ - ϕx(t). By in-

duction hypothesis, Γ is consistent.

(iii) Let Γ - ∀xϕ. Then by Definition 4.4, there are two cases:

i. There exists a closed term t such that Γ - ϕx(t). By induction hypothesis,

Γ is consistent.
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ii. Γ 0 ∀xϕ. Then immediately, Γ is consistent.

The other cases are left to the reader

2. Let Γ - ϕ for a formula ϕ with one free variable x. By Definition 4.4, Γ - ϕ
iff Γ - ∀xϕ which passes to 1.(iii). The case that ϕ is a formula with more free

variables is similar.

In the following paragraphs, a key role is played by the set Acz(Γ) = {ϕ ; Γ | ϕ}. Our

considerations lead to the investigation of the relation between Acz(Γ) and Thm(Γ).

Lemma 4.7. Acz(Γ) is closed under deduction. That is, if Acz(Γ) ` ϕ, then Γ | ϕ.

Proof. We verify all the logical axioms and rules. At each step, we deal with sentences first

and then with non-sentences. The proof is easy but rather tedious. We use Definition 4.4.

1. Suppose that instances of the axioms and rules have no free variables except for the

instances of Gen-A and Gen-E which contain formula ϕ with one free variable.

(i) Axiom A10. Γ | A→ (¬A→ B) iff Γ ` A→ (¬A→ B) and [if Γ | A, then

Γ | (¬A→B)]. Γ ` A→(¬A→B) is valid and the latter conjunct is equivalent

to [if Γ | A, then Γ ` (¬A→ B) and (if Γ | ¬A, then Γ | B)]. Suppose Γ | A.

By Lemma 4.5, Γ ` A which implies Γ ` (¬A→B). The last step is to reason

(if Γ | ¬A, then Γ | B). Γ | ¬A iff Γ - A and Γ ` ¬A. Thus, we obtained Γ | A
and Γ - A which implies Γ | B.

(ii) Rule MP. Let Γ | A and Γ | A→B. If Γ | A→B, then Γ - A or Γ | B. Hence,

Γ | B.

(iii) Axiom B1. As it was assumed, no free variables occur in the formula ∀xϕ →
ϕx(t), especially, t is a closed term. Γ | ∀xϕ → ϕx(t) iff Γ ` ∀xϕ → ϕx(t)

and (Γ - ∀xϕ or Γ | ϕx(t)). Γ ` ∀xϕ → ϕx(t) holds. Suppose that Γ | ∀xϕ.

Then by the definition, for all closed terms t, Γ | ϕx(t).

(iv) Axiom B2. Γ | ϕx(t) → ∃xϕ iff Γ ` ϕx(t) → ∃xϕ and (Γ - ϕx(t) or Γ | ∃xϕ).

Γ ` ϕx(t) → ∃xϕ holds. Let us assume that Γ | ϕx(t). Then directly by the

definition, Γ | ∃xϕ.

(v) Rule Gen-A. Assume that Γ | ψ → ϕ, x is free in ϕ but not in ψ. By the

definition, Γ | ψ → ϕ iff Γ | ∀x(ψ → ϕ). It means that for every closed

term t,

Γ | ψ → ϕx(t). (4.1)

We want to prove that Γ | ψ → ∀xϕ. It happens if and only if Γ ` ψ → ∀xϕ
and (Γ - ψ or Γ | ∀xϕ). The proof of Γ ` ψ → ∀xϕ is immediate due to

Lemma 4.5 and rule Gen-A. Let Γ | ψ. Then, Γ ` ψ and by modus ponens,

Γ ` ∀xϕ. To prove Γ | ∀xϕ, we have to show that for each closed term t,

Γ | ϕx(t). It is obtained due to (ii) and (4.1).
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(vi) Rule Gen-E. Assume that Γ | ϕ → ψ, x is free in ϕ but not in ψ. By the def-

inition, Γ | ∀x(ϕ → ψ). It means that for every closed term t,

Γ | ϕx(t) → ψ. (4.2)

We want to prove that Γ | ∃xϕ → ψ. Due to Lemma 4.5, we have Γ ` ϕ → ψ

and therefore, Γ ` ∃xϕ → ψ. Suppose Γ | ∃xϕ. It means that there exists

a closed term t such that Γ | ϕx(t). Now we use (ii), (4.2) and conclude

with Γ | ψ.

All the other axioms are left to the reader.

2. Suppose that the instances of the axioms and rules have some free variables.

(i) Axiom B1. Suppose that term t contains one free variable y. Then, Γ | ∀xϕ →
ϕx(t(y)) iff Γ | ∀y(∀xϕ → ϕx(t(y))). This is if and only if Γ ` ∀y(∀xϕ →
ϕx(t(y))) and for all closed terms s, Γ | ∀xϕ → (ϕx(t(y)))y(s). The former is

logically valid and the latter was proved in 1.(iii).

(ii) The general proof for instances with free variables can be outlined in this way:

We want to prove Γ | ϕ(x). This is if and only if Γ | ∀xϕ(x). To prove it, we

show that Γ ` ∀xϕ(x) (it is trivial) and that for all closed terms t, Γ | ϕx(t)
which passes to point 1.

The following theorem was proved by C. Smorynski in [Smo73a, p. 332]. Smorynski’s

proof and also his definition of the Aczel slash are semantical. In contrast, our considera-

tions are syntactical and we draw from the propositional version of the theorem mentioned

in [BJ05, p. 21].

Theorem 4.8. Acz(Γ) is maximal d-complete, e-complete and deductively closed subset

of Thm(Γ).

Proof. (i) Acz(Γ) is closed under deduction. From Lemma 4.7.

(ii) Acz(Γ) is d-complete. Suppose Acz(Γ) ` ϕ∨ ψ. From Lemma 4.7, Γ | ϕ∨ ψ and by

Definition 4.4, ϕ ∈ Acz(Γ) or ψ ∈ Acz(Γ).

(iii) Acz(Γ) is e-complete. Suppose Acz(Γ) ` ∃xϕ. From Lemma 4.7, we have Γ | ∃xϕ
and by Definition 4.4, there exists a closed term t such that ϕx(t) ∈ Acz(Γ).

(iv) Maximality. Suppose that ∆ is a d-complete and e-complete set of formulas which

is closed under deduction and

Acz(Γ) ⊆ ∆ ⊆ Thm(Γ). (4.3)

Let us take a formula ψ ∈ ∆. By induction on ψ, we show that ψ ∈ Acz(Γ).

(a) If ψat ∈ ∆, then from (4.3), Γ ` ψat and by Definition 4.4, Γ | ψat.
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(b) ψ is χ & η. ∆ is deductively closed, hence χ ∈ ∆ and η ∈ ∆. By induction

hypothesis, Γ | χ and Γ | η, thus Γ | χ& η.

(c) ψ is ∃xχ. ∆ is e-complete, thus there exists a closed term t such that χx(t) ∈ ∆.

Now we use induction hypothesis and get Γ | χx(t). By Definition 4.4, Γ | ∃xχ.

(d) ψ is ∀xχ. Γ ` ∀xχ is immediate due to (4.3). Let t be a closed term. ∆

is closed under deduction so χx(t) ∈ ∆ and by induction hypothesis, we have

Γ | χx(t). Hence, Γ | ∀xχ.

The other cases are left to the reader.

Corollary 4.9. If Γ | χ for all χ ∈ Γ, then Acz(Γ) = Thm(Γ).

Proof. Suppose Acz(Γ) ⊂ Thm(Γ) and ϕ ∈ Thm(Γ)\Acz(Γ). Γ ` ϕ, thus Acz(Γ) ` ϕ and

by Theorem 4.8, ϕ ∈ Acz(Γ). A contradiction.

Corollary 4.10. Let T be a consistent theory. T | ϕ for all ϕ ∈ T iff T is saturated.

Proof. ⇒ The previous corollary proves that Acz(T ) = Thm(T ) and by Theorem 4.8,

Thm(T ) is d-complete and e-complete.

⇐ Suppose that Thm(T ) is a saturated set. According to Theorem 4.8, Acz(T ) is

maximal d,e-complete and deductively closed subset of Thm(T ), hence Acz(T ) =

Thm(T ). Consequently, T | ϕ for all ϕ ∈ T .

4.2 Applications of the Aczel slash results

In the following paragraphs, we apply the theoretical results from the previous section

to the theories in our scope. As it was already mentioned, the results cannot be used

for inspecting theories without any constant in their language. Nevertheless, to have

a complete list of properties for each theory, we state the following

Proposition 4.11. E, LO, wLO, DNO, wDNO are not saturated.

Proof. All these theories prove ∃x(x = x), but do not have any closed term. Thus,

e-completeness does not hold.

All the propositions that follow are nothing more than a direct application of Corol-

lary 4.10. It confirms that the previous section gave us a strong instrument for deciding

whether a theory is saturated.

The simplest case is taking an empty set of axioms which result in Proposition 4.12.

Proposition 4.12. The predicate calculus is saturated, assuming the language has at least

one constant.

Proof. A direct use of Corollary 4.10.
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We move on to theories SUCC and Q. The only task is to verify that T | ϕ for all

axioms ϕ of theory T .

Proposition 4.13. Both versions of SUCC are saturated.

Proof. We verify only few axioms and leave the rest to the reader. We use the definition

of the Aczel slash and Corollary 4.10.

(i) Axiom E2.

SUCC | ∀x∀y(x = y → y = x) iff

{for all closed terms t, SUCC | ∀y(t = y → y = t) and (4.4)

SUCC ` ∀x∀y(x = y → y = x)}. (4.5)

(4.5) holds. (4.4) iff

for all closed terms t, u, SUCC | t = u → u = t and (4.6)

SUCC ` ∀y(t = y → y = t). (4.7)

(4.7) holds. (4.6) iff

for all closed terms t, u, SUCC ` t = u → u = t and (4.8)

if SUCC | t = u, then SUCC | u = t (4.9)

(4.8) holds. (4.9) iff

for all closed terms t, u, if SUCC ` t = u, then SUCC ` u = t (4.10)

(4.10) holds. We shall not be so accurate in the proof of the other cases, instead,

we focus on the important steps.

(ii) Axiom Q2. The essential part is to prove that for all closed terms t, SUCC - S(t) = 0,

that is, SUCC 0 S(t) = 0. It is true because SUCC is consistent and from axiom

Q2, we know that SUCC ` ¬(S(t) = 0). More worthwhile is checking axioms Q3.

(iii) Axiom Q3∨ . Analogous steps that were made in (i) lead to the following result:

SUCC∨ | ∀x(x = 0 ∨ ∃y(x = S(y))) iff for all closed terms t, (SUCC∨ ` t = 0 or

there exists a closed term u such that SUCC∨ ` t = S(u)). All the closed terms in

the language of SUCC are 0, S(0), S(S(0)), . . . . If t is 0, then SUCC∨ ` t = 0. If t

has a form Sn+1(0), then there exists a term u = Sn(0) such that SUCC∨ ` t = S(u).

(iv) Axiom Q3→ . SUCC→ | ∀x(¬(x = 0) → ∃y(x = S(y))) iff for all closed terms t, if

SUCC→ 0 t = 0, then there exists a closed term u such that SUCC→ ` t = S(u).

Again, if t is 0, then SUCC→ ` t = 0. If t has a form Sn+1(0), then there exists

a term u = Sn(0) such that SUCC→ ` t = S(u).
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The proof that Q is saturated is not a mere extension of the previous one. Although

some of the axioms are the same as in SUCC, there is a difference in the set of closed terms.

Much more manifold closed terms can be created in Q, e.g., 0·(0+0·0), S(S(0·(0+0))·0). . . .

The following lemma will be helpful.

Lemma 4.14. If t is a closed term in the language of Q, then Q ` t = 0 or Q ` t = Sn(0),

for some n ∈ N \ {0}.

Proof. By induction on t.

(i) t is 0. Then, Q ` t = 0.

(ii) t is S(u). If Q ` u = 0, then Q ` t = S(0). If Q ` u = Sn(0), then Q ` t = Sn+1(0).

(iii) t is u1 + u2. If Q ` u2 = 0, then, by Q4, Q ` u1 + u2 = u1 and by induction

hypothesis, Q ` u1 + u2 = 0 or Q ` u1 + u2 = Sn(0). If Q ` u2 = Sn(0), then,

by Q5, Q ` u1 + u2 = S(u1 + Sn−1(0)). By induction hypothesis applied on u1

and by axiom Q5, the right side of the equation can be easily modified so that

Q ` u1 + u2 = Sm(0), for some m ∈ N.

(iv) t is u1 · u2. If Q ` u2 = 0, then, by Q6, Q ` u1 · u2 = 0. If Q ` u2 = Sn(0), then,

by Q7, Q ` u1 · u2 = u1 · Sn−1(0) + u1. By axiom Q7, the right side of the equation

can be modified so that Q ` u1 · u2 = 0 + u1 + . . . + u1. By induction hypothesis

applied on u1 and by (iii), Q ` u1 · u2 = 0 or Q ` u1 · u2 = Sm(0), for some m ∈ N.

Proposition 4.15. Both versions of Q are saturated.

Proof. The only non-trivial cases are axioms Q3, Q8 and Q9.

(i) Axiom Q3. Similarly to the proof of Proposition 4.13, we need to verify that for all

closed terms t, Q ` t = 0 or there exists a closed term u such that Q ` t = S(u).

The previous lemma showed that Q ` t = 0 or Q ` t = Sn(0), for some n ∈ N \ {0}.
The latter implies that there exists a closed term u = Sn−1(0) such that Q ` t = S(u).

Verification of axioms Q1, Q2, Q4–Q7 is left to the reader.

(ii) Axioms Q8 and Q9. We have to show that for all closed terms t1, t2, if Q ` t1 ≤ t2,

then there exists a closed term u such that Q ` u + t1 = t2. From Lemma 4.14, we

know that t1 and t2 are equal to one of the values 0 or Sn(0). Q ` t1 ≤ t2 implies

that the value of t1 is not greater than the value of t2. If both t1 and t2 are equal to

the same value, say Sk(0), then there exists term u = 0 such that Q ` u + t1 = t2.

If t1 has a value Sl(0) and t2 has a value Sm(0), where l < m, then there exists term

u = Sm−l(0) such that Q ` u+ t1 = t2. Axiom Q9 is dealt similarly.
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So far, we have demonstrated the use of Corollary 4.10 in a positive sense. Anyway,

the following paragraph points out that there are some theories which are, by the corollary,

shown not to be saturated.

Proposition 4.16. Neither RNA nor wRNA is saturated.

Proof. The proof is the same for both theories. Due to axioms RN1 and RN3, all the closed

terms are equal to 0, 1 or (1+1+ . . .+1). Let us check whether RNA slashes axiom DN1.

According to Definition 4.4, we have to verify that for all closed terms t1, t2, if Γ ` t1 < t2,

then there exists a closed term u such that RNA ` t1 < u and RNA ` u < t2. But if we

put t1 = 0 and t2 = 1, there does not exist any appropriate term u.

The question whether the theories in our scope are saturated was successfully an-

swered. There are some more notes concerning the results. We could see that the different

formulation of axioms Q3 and LO3 does not have any influence on saturation of the theo-

ries. The form and richness of closed terms seem to be much more relevant. Nevertheless,

we do not claim that substituting axioms by their classically equivalent versions never

affect the saturation.

It seems that in the case of saturation, RNA and wRNA behave alike. Neither of them

is saturated, but the reason lies in axiom DN1 and the set of closed terms. If we added

for each “standard” element one constant (i.e. constants for all rationals), both RNA and

wRNA would be saturated, since DN1 would satisfy the criterion and there is no problem

with the remaining axioms.

4.3 Other criteria of saturation

4.3.1 Harrop formulas

In this short subsection, we proceed with considerations that concern deciding whether

a theory is saturated or not. The previous sections of this chapter showed a useful

criterion—it suffices to look at the set Γ of axioms and check whether Γ | γ for all

γ ∈ Γ. However, it is not the only criterion. As it is demonstrated in [TS00, pp. 106–107],

if theory T contains merely Harrop formulas in its set of axioms, then T is saturated. Our

interest, now, is in comparing these two criteria.

Initially, we put the following definition:

Definition 4.17. Harrop formula is inductively defined as follows:

(i) Every atomic formula is Harrop.

(ii) ϕ1 & ϕ2 is Harrop provided that both ϕ1 and ϕ2 are Harrop.

(iii) Every formula of the form ¬ψ is Harrop.

(iv) ψ→ ϕ is Harrop provided that ϕ is Harrop.

(v) ∀xϕ is Harrop provided that ϕ is Harrop.
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(vi) No other formula is Harrop.

In brief, a formula is called Harrop iff all the occurrences of ∨ and ∃ lie in the antecedent

of an implication or are in a scope of ¬.

The following proposition describes the relation between a set of Harrop axioms and

a set of slashed formulas.

Proposition 4.18. Let T be a consistent theory with a language containing at least one

constant. Suppose that all the axioms of T are Harrop formulas. Then, T | ϕ, for all

ϕ ∈ T .

Proof. Thm(T ) is saturated; see [TS00, pp. 106–107]. By Corollary 4.10, T | ϕ, for all

ϕ ∈ T .

A natural question arises whether the proposition holds vice versa. That is, provided

that we have a set of slashed formulas, does it necessarily mean that all such formulas are

equivalent to Harrop formulas? The previous section has demonstrated that the answer

is no. SUCC and Q are theories with slashed, but not Harrop axioms, e.g., Q3 is not

Harrop.

4.3.2 Semantical criteria of saturation

Employing Theorem 4.8 and its corollaries and checking whether axioms are Harrop for-

mulas are not the only ways how to prove that a theory is saturated. In this section, we

want to introduce a semantical criterion that was presented in [Smo73a, pp. 334–335] and

investigate whether it is applicable to the theories in our scope.

We start with the definitions of operations
∑

and ′.

Definition 4.19. Let F = {Kn ; n ∈ N } be a family of Kripke models. The disjoint sum

of models in F,
∑

F, is a Kripke model K defined by:

(i) K =
⋃
n∈N

Kn × {n}

(ii) 〈α, n〉 ≤ 〈β,m〉 iff n = m and α ≤n β

(iii) l(〈α, n〉) = ln(α)

(iv) 〈α, n〉 ‖− ϕat iff α ‖−n ϕat, for atomic formula ϕat.

Roughly speaking,
∑

F just puts together the models from F. The relation (iv) in the def-

inition holds for any formula ϕ. It can be easily verified by induction on ϕ.

Definition 4.20. Let K be a Kripke model and let a language L with at least one constant

be given. Then, K′ = 〈K ′,≤′, l′, ‖−′〉 denotes any model obtained by adding a new node

α0 to K such that

(i) α0 ≤′ α, for all α ∈ K,
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(ii) l′(α0) contains the realizations of all closed terms in L and nothing else,

(iii) if α0 ‖−′ ϕat, then α ‖− ϕat, for all α ∈ K.

It will be useful to apply operations
∑

and ′ successively. First, we put models from

F together, and second, we connect them by adding the origin. The following theorem

presents a semantical criterion of saturation.

Theorem 4.21 ([Smo73a, p. 335]). Let T be a theory. If (
∑

F)′ exists for any class F

of models of T , and (
∑

F)′ is a model of T , then T is saturated.

Proof. (i) Let ϕ and ψ be sentences and let T 0 ϕ and T 0 ψ. Then, there exist

Kripke models Kϕ and Kψ with origins αϕ and αψ respectively such that αϕ ‖−/ ϕ
and αψ ‖−/ ψ. Let F = {Kϕ,Kψ} and let α0 be the origin of (

∑
F)′. If α0 ‖− ϕ ∨ ψ,

then α0 ‖− ϕ or α0 ‖− ψ. But α0 ‖− ϕ is a contradiction to αϕ ‖−/ ϕ and α0 ‖− ψ is

a contradiction to αψ ‖−/ ψ. Hence, T is d-complete.

(ii) Let χ be a formula with one free variable x and let for each closed term t, T 0 χx(t).
Then, for each closed term t, we can find a Kripke model Kt with origin αt such that

αt ‖−/ χx(t). Let F = { Kt ; t is a closed term }, and let α0 be the origin of (
∑

F)′.

If α0 ‖− ∃xχ, then for some a ∈ l′(α0), α0 ‖− χ[(x/a)]. But from the definition of ′,

a is the realization of a closed term s, thus α0 ‖− χx(s). But it is a contradiction to

αs ‖−/ χx(s). Hence, T is e-complete.

Note that Theorem 4.21 cannot be formulated as equivalence. The following example

shows that there exists a saturated theory such that some of its models cannot be joined

by operation
∑′.

Example 4.22. Let L = {c1, c2} be a language with two constants and let T be

a theory in L with no axiom, i.e. merely predicate logic. We define Kripke model

K1 = 〈K1,≤1, l1, ‖−1〉 as follows: K1 = {α}, l1(α) = {a}, cl1(α)
1 = a, c

l1(α)
2 = a, and

Kripke model K2 = 〈K2,≤2, l2, ‖−2〉 as follows: K2 = {α}, l2(α) = {a, b}, cl2(α)
1 = a,

c
l2(α)
2 = b. Both K1 and K2 are models of predicate logic, but they cannot be joined by∑′ because of condition (ii) of Definition 2.9.

Let us briefly check whether the semantical criterion corresponds with the results

obtained by means of the Aczel slash. SUCCs and Qs were proved to be saturated and also

the semantical criterion is applicable to them, since every model of SUCC or Q contains

the block of (standard) elements which are the realizations of closed terms. Theories RNA

and wRNA were proved not to be saturated. If we try to apply the semantical criterion,

we find out that no model created from a class of models of (w)RNA by
∑′ is a model

of (w)RNA. The reason is that all the elements of the origin of the joined model are the

realizations of terms 0, 1, (1 + 1), . . . , (1 + . . . + 1), since the language of (w)RNA does

not allow to create closed terms of other values than 0, 1, (1 + 1), . . . , (1 + . . . + 1). But

the axioms of (w)RNA imply, e.g, that there is no minimal element. Hence, the origin

does not force all the axioms of (w)RNA.
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Our considerations of finding other semantical criteria were inspired by the following

criterion which holds for propositional logic.

Lemma 4.23 ([BJ05, p. 21]). Let T be an intuitionistic propositional theory. Then, T is

saturated1 iff for all rooted models of T , K1 and K2, there exists a model K of T such

that K1 and K2 are generated subframes of K.

Proof. ⇒ Suppose that Thm(T ) is a saturated set and K1 and K2 are models of T

with origins α1 and α2 respectively. We use the canonical model, K, constructed

in the completeness proof of intuitionistic propositional logic. The nodes of K are

all saturated supersets of Thm(T ) and A ∈ Γ iff Γ ‖−IPC A. But α1 ‖−IPC Thm(T )

and α2 ‖−IPC Thm(T ), thus α1 ∈ K and α2 ∈ K. Hence, K1 and K2 are generated

subframes of K.

⇐ Suppose that every two models of T can be extended into one model of T . Suppose

next that T ` A ∨ B, T 0 A and T 0 B. Then, there exist models of T , K1 and

K2, with origins α1 and α2 respectively such that α1 ‖−/ A and α2 ‖−/ B. We extend

the models into a model K of T . K ‖− A ∨ B, thus K ‖− A or K ‖− B, which is

a contradiction to α1 ‖−/ A or α2 ‖−/ B respectively.

An interesting remark inspired by the previous lemma is that there are saturated propo-

sitional theories that have models which cannot be joined by adding only one node. An

example is the theory with one axiom ¬r→ p ∨ q.
We tried to restate the criterion presented in Lemma 4.23 for predicate logic, but

surprisingly, it does not hold, as it was shown in Example 4.22. The reason is that

the canonical model created in the proof of the completeness theorem for intuitionistic

predicate logic has nodes with domains in which different constants are realized as different

elements (for the details, see [Smo73a, p. 330]). Thus, if we take a model that does not

satisfy this condition, e.g. model K1 from Example 4.22, it cannot be a submodel of

the canonical model.

The last remark concerns the following question: Why do not we employ the criterion

that arose from the proof of the completeness theorem, i.e. why do not we say that theory

T is saturated iff there exists a model K with node α such that Thm(T ) = {ϕ ; α ‖− ϕ }?
Let L be a language of T . By the completeness theorem, if Thm(T ) is L-saturated set,

then there really exists a model K with node α such that Thm(T ) = { ϕ ; α ‖− ϕ }. But

conversely, the existence of the canonical model K, where Thm(T ) = { ϕ ; α ‖− ϕ } only

implies that Thm(T ) is L∗-saturated, where L∗ is L extended by constants to include

names for all elements of l(α). There is no guarantee that Thm(T ) is L-saturated.

Let us sum up the whole chapter. We showed that the considerations concerning

the Aczel slash lead to a very useful criterion that decides whether a theory is saturated or

not. The strength of the criterion resides in the fact that it is formulated as equivalence.

1A propositional theory T is saturated iff it is consistent and Thm(T ) is d-complete.
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We demonstrated that there are some theories with some non-Harrop axioms that are

saturated. In the last subsection, we presented a semantical criterion (that is not so

strong) and verified that we obtain the same results as we did by the Aczel slash criterion.

There is a summary of practical results: Theories without any constant in their lan-

guage are not saturated. Theories SUCCs and Qs were demonstrated to be saturated, but

neither RNA nor wRNA is saturated. It is obvious that saturation of a theory depends

on the number and type of closed terms that can be created in the language of the theory.

For example, if we added infinitely many constants to the language of (w)RNA so that

every rational number had its name, (w)RNA would be saturated.
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5

De Jongh’s theorem

In chapter 3, we discussed coincidences between intuitionistic theories and their classical

extensions. We concluded that some theories of our scope coincide with their classical

versions, some of them do not coincide and that there are theories which trivialize intu-

itionistic logic only partly. This chapter presents a finer criterion of “constructiveness” of

theories than the coincidence; the criterion is called De Jongh’s theorem. If De Jongh’s

theorem does not hold for some theory, it means, roughly, that the theory is so strong

that it contains a propositional axiom which is not an intuitionistic tautology. We shall

especially focus on theories that do not coincide with their classical extensions, but,

at the same time, fail to satisfy De Jongh’s theorem. Such theories might be seen as not

constructive enough, despite they are not classical.

De Jongh’s theorem was originally stated for Heyting arithmetic, but we formulate it

more generally.

Definition 5.1. Let A(p1, . . . , pn) be a propositional formula with variables p1, . . . , pn.

Intuitionistic theory T satisfies De Jongh’s theorem iff the following statement holds.

If 0IPC A(p1, . . . , pn), then T 0IQC A(ϕ1, . . . , ϕn), for some sentences ϕ1, . . . , ϕn in

the language of T . (A(η1, . . . , ηn) is a propositional combination of formulas η1, . . . , ηn.)

The proof that Heyting arithmetic satisfies De Jongh’s theorem can be found

in [Smo73a, p. 354]. We changed the proof so that it yields the result that theories

E, LO and wLO satisfy De Jongh’s theorem.

Lemma 5.2 ([Smo73a, p. 352]). Let α1, . . . , αk be the terminal nodes of a modified

Jaskowski tree1 K such that K = 〈K,≤, ‖−〉 is a propositional Kripke model. Suppose

that for each i ∈ {1, . . . , k}, there is a sentence ψi such that αj ‖− ψi iff i = j. Then,

if X is a set of nodes of K such that α ∈ X and α ≤ β imply β ∈ X, there exists

a sentence ϕ constructed from sentences ψi for which X = { α ; α ‖− ϕ }. In particular,

for any α ∈ K there is a sentence ϕα such that { β ; β ≥ α } = { β ; β ‖− ϕα }.
1Modified Jaskowski tree is, besides other things, a finite tree which has a property that each node,

except for terminal nodes, has at least two successors. For more information on modified Jaskowski trees
see section 2.1.

42



Proof. Let ϕα
def
=

∧
αi�α

¬ψi for every α 6= α0 and let ϕα0

def
= ψ1→ ψ1. We must show that

β ‖− ϕα iff β ≥ α.

For α0, it is immediate. Let α 6= α0.

(i) Suppose that β ‖− ϕα. If β � α, then there is a terminal node αi such that αi ≥ β

and αi � α, since K is a modified Jaskowski tree. Thus, ¬ψi is one of the conjuncts

in ϕα. But β ‖−/ ¬ψi, which is a contradiction to β ‖− ϕα.

(ii) Suppose that β ≥ α. If β ‖−/ ϕα, then for some i such that αi � α, β ‖−/ ¬ψi,
thus for some αj ≥ β, αj ‖− ψi. αi � α implies αi � β, whence i 6= j. This is

a contradiction to the assumption of the lemma that αj ‖− ψi iff i = j.

Finally, let ϕ
def
=

∨
α∈X

ϕα.

Proposition 5.3. E satisfies De Jongh’s theorem.

Proof. Let 0IPC A(p1, . . . , pn). There exists a modified Jaskowski tree2 K with an origin

α0 such that K∗ = 〈K,≤, ‖−∗〉 is a propositional Kripke model and α0 ‖−/ ∗ A(p1, . . . , pn).

Suppose the terminal nodes of K are α1, . . . , αk. First, we define formulas χ2, χ3, . . . , χk+1

as follows:

χ2
def
= ∀x∃y¬(x = y)

χ3
def
= ∀x1∀x2∃y(¬(x1 = y) & ¬(x2 = y))

χ4
def
= ∀x1∀x2∀x3∃y(¬(x1 = y) & ¬(x2 = y) & ¬(x3 = y))
...

χk+1
def
= ∀x1 . . . ∀xk∃y(¬(x1 = y) & . . . & ¬(xk = y)).

Note that each χi expresses the existence of at least i elements. Second, we define formulas

ψ1, . . . , ψk as follows:

ψ1
def
= χ2 & ¬χ3

...

ψk−1
def
= χk & ¬χk+1

ψk
def
= χk+1.

Third, we extend K∗ into a predicate Kripke model K = 〈K,≤, l, ‖−〉 as follows:

For every non-terminal node α, let l(α) contain one element. For each terminal node αi,

let l(αi) contain i+ 1 elements (i ∈ {1, . . . , k}). ‖− is defined so that in every node of K,

every element is equal to itself and to nothing else.

K is a model of E and for each terminal node αj, αj ‖− ψi iff i = j. For each

i ∈ {1, . . . , n}, we define Xi to be {β ; β ‖−∗ pi }. Now, all the assumptions of Lemma 5.2

2Since propositional intuitionistic logic is complete for modified Jaskowski trees (see section 2.1).

43



are satisfied and we obtain the result that for each i ∈ {1, . . . , n}, there exists a sentence ϕi
such that Xi = {β ; β ‖− ϕi }. It means that for every β ∈ K, β ‖−∗ pi iff β ‖− ϕi. Hence,

by induction on propositional formula B, β ‖−∗ B(p1, . . . , pn) iff β ‖− B(ϕ1, . . . , ϕn).

Finally, α0 ‖−/ A(ϕ1, . . . , ϕn).

Proposition 5.4. LO and wLO satisfy De Jongh’s theorem.

Proof. We use the same proof as in the previous proposition. The only difference is that

we extend ‖− to deal with formulas where < occur. Let αi be a terminal node with

elements a1, . . . , al. We define αi ‖− au < av iff u < v. Now, K is a model of both LO

and wLO.

The following lemma shows that De Jongh’s theorem is a finer criterion of construc-

tiveness than coincidence.

Lemma 5.5. If T coincide with its classical extension, then T does not satisfy De Jongh’s

theorem.

Proof. 0IPC p ∨ ¬p, but for any sentence ϕ, T ` ϕ ∨ ¬ϕ.

The following proposition is an immediate consequence of the lemma and section 3.1.

Proposition 5.6. Neither DNO nor RNA satisfies De Jongh’s theorem.

In the following paragraphs, we demonstrate that De Jongh’s theorem holds neither

for SUCCs nor for wDNO and wRNA. This result yields an example of theories that do

not coincide with their classical versions, but yet, they partly trivialize intuitionistic logic.

Proposition 5.7. Neither of SUCCs satisfy De Jongh’s theorem.

Proof. Assume that 0IPC A(p1, . . . , pn). There exists a modified Jaskowski model K with

an origin α0 such that α0 ‖−/ A(p1, . . . , pn). According to formula A, K contains terminal

nodes of unboundedly large finite number. It means that if we wanted to prove that

De Jongh’s theorem holds, we would need an infinite number of models of SUCC, K1, . . . ,

K∞, and an infinite number of sentences ψ1, . . . , ψ∞ such that

Kj ‖− ψi iff i = j. (5.1)

We want to show that SUCC can have only finite number of models such that every two

of them differ in forcing a sentence.

When we look at the axioms of SUCC∨ , we perceive that any model of SUCC∨ must

contain a block of “standard” elements, i.e. zero, the successor of zero, the successor

of the successor of zero, etc., in all universes. Besides, in some universes, there may be

blocks of “non-standard” elements, i.e. countably many elements with a successor function

realized as in integers. We do not have to take uncountable domains into account, since

Löwenheim-Skolem theorem guarantees that we do without them. Blocks of non-standard

elements can merge as it similarly happens in model of SUCC→ constructed in the proof

of Proposition 3.17 and new blocks of non-standard elements can be added. We restrict
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our considerations to tree models, since every Kripke model is equivalent to a tree Kripke

model, as it is proved in [Kri65, s. 1.2].

We deal with models of SUCC∨ that are lineary ordered and show that there are

at most four types of these models such that models of the same type cannot be distin-

guished by the use of sentences (i.e., none of the models of the same type is uniquely

characterized by a sentence ψ as in (5.1)). Non-linear tree models comprise of linear mod-

els and thus, if there are not infinitely many linear models that are uniquely characterized

by a sentence, then there are not such tree models either.

Here we put the four types of linear models mentioned.

(i) Models with added elements. For all nodes β ≥ α, |l(β)| ≥ |l(α)| and = is realized

so that no elements merge.

(ii) Models with merged elements. For all nodes β ≥ α, |l(β)| = |l(α)| and for some α,

in the successor of α some blocks of elements merge.

(iii) An infinite model in which for every α exists a β ≥ α such that in l(β), there are

blocks of elements that are not merged, but in some γ > β, these blocks merge.

(iv) Other models combining merging and adding new elements.

It is not important whether models of every two different types can be distinguished as

in (5.1)—however, at least the models of types (i) and (iii) can be uniquely characterized

by sentences ∀x∀y(x = y ∨ ¬(x = y)) and ¬∀x∀y(x = y ∨ ¬(x = y)) respectively—but

the essential thing is that models of the same type cannot be uniquely distinguished.

The reasons are that, first, we cannot express the number of blocks of non-standard

elements, and second, according to the Kripke semantics, the validity of a sentence is

expressed by metaquantifiers (e.g., ∀α∃β ≥ α . . .) and with this apparatus, we cannot

express that something holds in the successor of α.

SUCC→ is dealt analogously to SUCC∨ . The only difference is that in domains, there

may be blocks of non-standard elements that look like natural numbers, but these blocks

need to be merged with standard elements, since axiom Q3→ must hold.

Proposition 5.8. wRNA does not satisfy De Jongh’s theorem.

Proof. The proof is analogous to the previous one. The only difference is that standard

and non-standard elements in models of wRNA look different. The axioms of wRNA

imply that there is a block of rationals in every domain of a model of wRNA with =, <

and + realized as in the rational numbers (we call that block “standard elements” and

denote the elements as { aq ; q ∈ Q }). Besides, there may be block(s) of “non-standard”

elements {aq1q2 ; q1, q2 ∈ Q}, {aq1q2q3 ; q1, q2, q3 ∈ Q}, etc. such that aq is always identified

with aq0.
3 Note that domains of a model of wRNA are, in fact, the sets Q,Q2,Q3, . . . with

+ realized normally.

More variability is in defining = and <. Similarly to the models of SUCC, blocks of

non-standard elements can merge. The necessary condition for merging of elements is

3q is a sequence of rationals that has a certain length n.
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that they were not comparable with each other (in the sense of relation <), otherwise,

antireflexivity of < would be violated. Then, { aq1,q2 ; q1, q2 ∈ Q } can be merged with

{ aq1 ; q1 ∈ Q } in such a way that aq1,q2 = aq1 for every q1, q2 ∈ Q. To put one more

example, { aq1,q2,q3,q4 ; q1, q2, q3, q4 ∈ Q } can be merged with { aq1,q2 ; q1, q2 ∈ Q } in such

a way that aq1,q2,q3,q4 = aq1,q2 for every q1, q2, q3, q4 ∈ Q.

As for the realization of <, every two incomparable elements from l(α) must be ordered

or merged in some l(β), where β ≥ α in order to satisfy axiom AP. Furthermore, if aq1q1

and aq2q2 are comparable, then every aq3 and aq4 must be also comparable, since it is

demanded by axiom wLO3. By other words, any two elements can be ordered only if all

the elements with shorter sequence of indices are already ordered.

Two models of wRNA are constructed in the proof of Proposition 3.16. They are quite

simple, but they illustrate well how models of wRNA can look like. As in the previous

proof, linear models of wRNA can be sorted into several types:

(i) Models with added elements. For all nodes β ≥ α, |l(β)| ≥ |l(α)| and = is realized

so that no elements merge.

a. Models in which all elements in all nodes are comparable or equal.

b. Models with incomparables that are not equal.

(ii) Models with merged elements. For all nodes β ≥ α, |l(β)| = |l(α)| and for some α,

in the successor of α some blocks of elements merge.

(iii) Infinite models in which for every α exists a β ≥ α such that in l(β), there are blocks

of elements that are not comparable, but in some γ > β, these elements are ordered.

(iv) Infinite models in which for every α exists a β ≥ α such that in l(β), there are blocks

of elements that are not merged, but in some γ > β, these blocks merge.

(v) Other models combining merging, ordering and adding new elements.

We claim that models of one of the six listed types cannot be uniquely distinguished

by a sentence (i.e., they do not satisfy condition (5.1)). The reason is the same as

in the previous proof.

Corollary 5.9. wDNO does not satisfy De Jongh’s theorem.

Proof. Let 0IPC A(p1, . . . , pn). By the previous proposition, for all sentences ϕ1, . . . , ϕn
in the language of wRNA, wRNA `IQC A(ϕ1, . . . , ϕn). Particularly, for all sentences

ϕ1, . . . , ϕn in the language of wDNO, wRNA `IQC A(ϕ1, . . . , ϕn). But wRNA is a conser-

vative extension of wDNO4, thus wDNO `IQC A(ϕ1, . . . , ϕn).

The last remark is that De Jongh’s theorem holds for both versions of Robinson

arithmetic, because the proof for Heyting arithmetic ([Smo73a, pp. 352–354]) does not

use anything that could not be said for Robinson arithmetic (especially the Rosser’s

version of Gödel’s first incompleteness theorem).

4It will be shown in Proposition 6.16.
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To sum up, we could divide the theories into three groups according to the results

obtained in this chapter. In the first group, there are theories DNO and RNA which do

not satisfy De Jongh’s theorem trivially, since they coincide with their classical exten-

sions. In the second group, there are theories that satisfy De Jongh’s theorem, viz. E,

LO, wLO, Q∨ and Q→ . Note that theory LO satisfies De Jongh’s theorem, in spite of

the fact that atomic formulas are decidable in LO (it was demonstrated in chapter 3).

In the third group, there are theories that do not satisfy De Jongh’s theorem, but they

still do not coincide with their classical extensions, viz. SUCC∨ , SUCC→ , wDNO and

wRNA. One could interpret these results by asserting that wDNO and wRNA are not suf-

ficient weakenings of DNO and RNA and that we should also think of “more constructive”

axiomatization of SUCC.
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6

Decidability

The last chapter that looks into the properties of the theories in scope investigates their

decidability. The major results are taken from [Smo73b], but we want to supplement

them with more details and other results. Sections 6.1 and 6.2 prove the undecidability

of theories and are more significant. Section 6.3 shows some consequences of the previous

chapters and classical decidability results.

6.1 Undecidability of E and SUCC→

The reason why we put the undecidability proofs for E and SUCC→ in the same section

is that the method used in the proofs is very similar. Initially, we demonstrate that E

is undecidable, and subsequently, we show that an easy modification of the proof yields

the undecidability result for SUCC→ .

An essential assumption that is used in the undecidability proofs is the following

theorem.

Theorem 6.1 (Maslov, Mints, Orevkov). Let M1 be an intuitionistic theory with one

monadic predicate, P , and no non-logical axioms (i.e., M1 is the intuitionistic monadic

predicate calculus). Then, M1 is undecidable.

The proof of the theorem can be found in [Smo73b, pp. 116–117] and we take it for

granted. The core of the following proofs is to show that Thm(M1) is m-reducible to

Thm(E) and to Thm(SUCC→ ). Indeed, it suffices for claiming that E and SUCC→ are

undecidable.

First, we need to define a computable function f that will be proved to satisfy the fol-

lowing equivalences:

ϕ ∈ Thm(M1) ⇔ f(ϕ) ∈ Thm(E),

ϕ ∈ Thm(M1) ⇔ f(ϕ) ∈ Thm(SUCC→ ),

where ϕ is an arbitrary formula in the language of M1.

Definition 6.2. Let ϕ be a formula in the language of M1. Then, f(ϕ) is a formula in

the language {=} obtained by replacing every occurence of P (x) in ϕ by ∀y(x = y ∨
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¬(x = y)), for any variable x and certain y 6= x. We designate ∀y(x = y ∨ ¬(x = y))

by Q(x).

Now, we are prepared for proving the following theorem.

Theorem 6.3 ([Smo73b, pp. 118–120]). For every formula η in the language of M1,

M1 ` η iff E ` f(η). Hence, E is undecidable.

Proof. The implication from left to right is easy. If M1 ` η, then η is a logically valid

formula. Consequently, f(η) is also logically valid because it was obtained by a mere

replacement of P (x) with Q(x). Thus, E ` f(η).

The converse direction is not so immediate. Suppose that M1 0 η. Then, there exists

a tree Kripke model1 of M1, K = 〈K,≤, l, ‖−〉, with no terminal nodes (all the branches

are infinite)2 such that K ‖−/ η. We gradually define new models K1, K2 and K3. K1 =

〈K,≤, l1, ‖−1〉 is defined as follows:

l1(α) = l(α) ∪ { qβa ; β ≤ α and a ∈ l(β) and β ‖−/ P (a) },
α ‖−1 P (a) iff α ‖− P (a), for a ∈ l(α),

α ‖−1 P (qβa ) iff α ‖− P (a), for a ∈ l(α), β ≤ α, (6.1)

for every node α ∈ K.

The informal explanation of the construction of K1 is the following: The tree structure

of K1 is the same as in K, i.e., neither K nor ≤ has changed. Universes l(α) are enriched

with new elements qβa . We could say that in l1(α), there are original elements ai and for

every original element that do not satisfy formula P (x) in some β ≤ α, there is its copy3

qβai
. Let us say that some original element a does not satisfy formula P (x) in exactly

three nodes, β1, β2, β3 ≤ α. Then, l1(α) will contain three copies of a, namely qβ1
a , q

β2
a , q

β3
a .

The realization of predicate symbol P on the original elements is unchanged. Moreover,

a ∈ P l(α) iff for all the copies of a, if there are any, qβi
a ∈ P l1(α). It means that the copies

of a cannot be distinguished from a by the use of atomic formulas.

By induction on ϕ, we can easily prove that for any ϕ in the language of M1, α ∈ K
and e : Var → l(α),

α ‖− ϕ[e] iff α ‖−1 ϕ[e]. (6.2)

Now, we define a model K2 = 〈K,≤, l1, ‖−2〉 by adding the realization of equality to K1.

Forcing of formulas in the language of M1 is not changed at all. It means that for any

α ∈ K, e : Var → l1(α) and any ϕ in the language of M1,

α ‖−2 P (x)[e] iff α ‖−1 P (x)[e].

1The fact that every Kripke model is equivalent to a tree Kripke model is proved in [Kri65, s. 1.2].
2Every tree model with some finite branches can be extended to the model with no terminal nodes by

adding infinitely many copies of terminal nodes.
3We also call such elements non-original.
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At the origin, α0, let every element be equal to itself and to nothing else. If the realization

of = is already defined in some α, in any successor β of α, the equivalence relation is

extended by putting

β ‖−2 a = qαa

whenever qαa ∈ l1(β) and closing the relation under reflexivity, tranzitivity and symmetry.

Informally, K2 has the same tree structure and the same universes as K1. The real-

ization of predicate P is also unchanged, but additionally, = is realized in K2 so that all

the elements of the form qαa which already occured in the preceding node are equal to a

in the actual node.

It can be easily seen that, for any formula in the language of M1, any α ∈ K and

e : Var → l1(α),

α ‖−1 ϕ[e] iff α ‖−2 ϕ[e]. (6.3)

Now, the significant point is to demonstrate that, for any α ∈ K and e : Var → l1(α),

α ‖−2 P (x)[e] iff α ‖−2 Q(x)[e]. (6.4)

(i) Let e(x) = a, i.e., e(x) is an original element. Assume first that α ‖−2 P (a).

By (6.3) and (6.2), α ‖− P (a) which implies that there is no element of the form qαa
in l1(α). Consequently, all the non-original elements from l1(α) have the form either

qβa , where β < α, or qγb , where a 6= b and γ ≤ α. The former implies α ‖−2 a = qβa ,

the latter α ‖−2 ¬(a = qγb ). Also every original element equals to a or never equals

to a. Moreover, for all δ > α and d ∈ l1(δ) \ l1(α), d does not equal to a. Hence,

α ‖−2 ∀y(a = y ∨ ¬(a = y)), i.e., α ‖−2 Q(a).

Assume now that α ‖−/ 2 P (a). By (6.3) and (6.2), α ‖−/ P (a), whence qαa ∈ l1(α).

In α, qαa does not equal to a, but in the successor4 of α, qαa equals to a. Thus,

α ‖−/ 2 Q(a).

(ii) Let e(x) = qβa , i.e., e(x) is a non-original element. Assume that α ‖−2 P (qβa ) (it

means that β < α). By (6.3) and (6.1), α ‖−2 P (a) and by (i), α ‖−2 Q(a). We

know that α ‖−2 q
β
a = a (because β < α) and therefore, α ‖−2 Q(qβa ).

Conversely, if α ‖−/ 2 P (qβa ), then, by (6.3) and (6.1), α ‖−/ 2 P (a). Now by (i),

α ‖−/ 2 Q(a). If β < α, then α ‖−2 q
β
a = a and immediately, α ‖−/ 2 Q(qβa ). If β = α,

then α ‖−/ 2 qβa = a, but in the successor γ of α, γ ‖−2 qβa = a. It implies that

α ‖−/ 2 q
β
a = a ∨ ¬(qβa = a), whence α ‖−/ 2 Q(qβa ).

By an easy induction, we obtain a stronger formulation of (6.4): For any α ∈ K,

e : Var → l1(α) and ϕ in the language of M1,

α ‖−2 ϕ[e] iff α ‖−2 f(ϕ)[e]. (6.5)

4We make use of the fact that there are no terminal nodes in K2.
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Finally, we define a model K3 = 〈K,≤, l1, ‖−3〉 where ‖−3 is a mere restriction of ‖−2

to formulas in the language of E. In other words, predicate P is not realized in K3 and

we have obtained a pure model of E. For any formula ψ in the language of E and any

e : Var → l1(α), the following equivalence holds:

α ‖−2 ψ[e] iff α ‖−3 ψ[e]. (6.6)

At the beginning of the proof, we assumed a model K such that K ‖−/ η. To be more

specific, there is a node α ∈ K and an evaluation e : Var → l(α) such that α ‖−/ η[e].

From K we have passed to K3, a model of E. Equivalences (6.2), (6.3), (6.5) and (6.6)

show that α ‖−/ 3 f(η)[e] which proves that E 0 f(η).

The next theorem shows that SUCC→ is undecidable. The method of the proof

is similar to the previous one—the essential part is the construction of models K1–K3

which do not differ much from the models used in the proof of Theorem 6.3. We shall

demonstrate that Thm(M1) is m-reducible to Thm(SUCC→ ) via the familiar fuction f .

Theorem 6.4 ([Smo73b, p. 125]). For every formula η in the language of M1, M1 ` η
iff SUCC→ ` f(η). Hence, SUCC→ is undecidable.

Proof. Suppose that M1 ` η. From Theorem 6.3, it follows that E ` f(η). Thm(E) ⊆
Thm(SUCC→ ), thus SUCC→ ` f(η).

Suppose conversely that M1 0 η. Then, there exists a tree Kripke model, K =

〈K,≤, l, ‖−〉, with no terminal nodes such that K ‖−/ η. Model K1 = 〈K,≤, l1, ‖−1〉 is

defined in exactly the same manner as in the previous proof. It means, besides other

things, that we have the original elements (a) and the copies of original elements (qαa )

in universes and that (6.2) holds. Let α0 be the origin of K. We arbitrarily choose one

original element o ∈ l1(α0) to be the realization of 0 (we write 0α0 = o).

Now, we define a model K1′ = 〈K,≤, l1′ , ‖−1′〉 as follows:

l1′(α) = { wn ; w ∈ l1(α), 0α = w or (0α = a and w = qβa ), n ∈ N }
∪ { wn ; w ∈ l1(α), 0α 6= w and if 0α = a, then w 6= qβa , n ∈ Z }

α ‖−1′ P (wn) iff α ‖−1 P (w), for any wn ∈ l1′(α), (6.7)

for every node α ∈ K. An idea of this construction is that every element w of a universe

l1(α) is replaced by denumerably many elements wn.5 If w is the realization of 0 or a copy

of an element which is the realization of 0, then w is replaced by { wn ; n ∈ N }. In all

other cases, w is replaced by {wn ; n ∈ Z}. Furthermore, forcing of P (wn) depends merely

on forcing of P (w) in K1. It means that all elements wn derived from the same element

w behave alike in respect of having property P . It is clear that the following equivalence

holds:

α ‖−1 ϕ[e] iff α ‖−1′ ϕ[e], (6.8)

for any α ∈ K, e : Var → l1(α) and ϕ in the language of M1.

5Note that wn has either the form an or the form (qβa )n.
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As in the proof of Theorem 6.3, we proceed with defining a model K2 = 〈K,≤, l1′ , ‖−2〉
which can be regarded as a bridge from a model of M1 to a model of SUCC→ . Forcing

of formulas in the language of M1 does not differ from ‖−1′ , i.e., for any node α ∈ K and

any element wn ∈ l1′(α),

α ‖−2 P (wn) iff α ‖−1′ P (wn).

Moreover, the forcing relation is extended to the language of SUCC→ by putting

α0 ‖−2 o0 = 0,

α ‖−2 wn+1 = S(wn), for all w ∈ l1(α) and all n,

β ‖−2 (qαa )n = an, for a ∈ l(α), β a successor of α, whenever qαa ∈ l1(β), (6.9)

for any α ∈ K and the origin α0. Indeed, in α0, every element is defined to be equal to

itself and to no other element.

K2 has the same tree structure, the same universes and the same realization of pred-

icate symbol P as K1′ . Moreover, 0, S and = are realized in K2. 0 is realized as o0,

where o is the arbitrarily chosen element from l1(α0). S is realized very intuitively so that

the universes look as if they were comprised of several copies of all natural numbers and

all integers. All the elements of the form (qαa )n which already occured in the preceding

node are equal to an in the actual node. It can be easily seen that for any formula ϕ

in the language of M1, any α ∈ K and e : Var → l1′(α),

α ‖−1′ ϕ[e] iff α ‖−2 ϕ[e]. (6.10)

Again, the important point is to demonstrate that for any α ∈ K and e : Var → l1′(α),

α ‖−2 P (x)[e] iff α ‖−2 Q(x)[e].

(i) Let e(x) = an. Assume first that α ‖−2 P (an). By (6.10), (6.7) and (6.2), α ‖− P (a)

which implies that there is no element of the form qαa in l1(α). Consequently, there

is no element of the form (qαa )n in l1′(α). For all the elements (qβa )n, where β < α,

α ‖−2 an = (qβa )n. For all the other elements u ∈ l1′(α), α ‖−2 ¬(an = u). Moreover,

for all δ > α and d ∈ l1′(δ) \ l1′(α), d never equals to an. Hence, α ‖−2 ∀y(an = y ∨
¬(an = y)), i.e., α ‖−2 Q(an).

Assume now that α ‖−/ 2 P (an). By (6.10), (6.7) and (6.2), α ‖−/ P (a), whence

qαa ∈ l1(α). Consequently, (qαa )n ∈ l1′(α). In α, (qαa )n does not equal to an, but

in the successor of α, (qαa )n equals to an. Thus, α ‖−/ 2 Q(an).

(ii) Let e(x) = (qβa )n. Assume that α ‖−2 P ((qβa )n). By (6.10), (6.7) and (6.1), we have

α ‖− P (a) and β < α. By (6.9), we obtain α ‖−2 (qβa )n = an. The fact that α ‖−
P (a) ensures us that there is not any element of the form (qγa)n, where γ ≥ α, in any

universe of model K2. If γ < α, then α ‖−2 (qγa)n = (qβa )n. For all the other elements

u ∈
⋃
γ≥α

l1′(γ), α ‖−2 ¬(u = (qβa )n). Hence, α ‖−2 ∀y((qβa )n = y ∨ ¬((qβa )n = y)), i.e.

α ‖−2 Q((qβa )n).
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Conversely, if α ‖−/ 2 P ((qβa )n), then, by (6.10), (6.7) and (6.1), we have α ‖−/ P (a).

It means that α ‖−/ 2 P (an) and by (i), α ‖−/ 2 Q(an). If β < α, then, by (6.9),

α ‖−2 (qβa )n = an and immediately, α ‖−/ 2 Q((qβa )n). If β = α, then α ‖−/ 2 (qβa )n = an,

but in the successor γ of α, γ ‖−2 (qβa )n = an. It implies that α ‖−/ 2 (qβa )n = an ∨
¬((qβa )n = an), whence α ‖−/ 2 Q((qβa )n).

By an easy induction, we obtain for any α ∈ K, e : V ar → l1′(α) and ϕ in the language

of M1,

α ‖−2 ϕ[e] iff α ‖−2 f(ϕ)[e]. (6.11)

Finally, we define a model K3 = 〈K,≤, l1′ , ‖−3〉 where ‖−3 is a mere restriction of ‖−2

to formulas in the language of SUCC→ . It means that for any formula ψ in the language

of SUCC→ and any e : Var → l1′(α), the following equivalence holds:

α ‖−2 ψ[e] iff α ‖−3 ψ[e]. (6.12)

We have to verify that K3 is a model of SUCC→ . It is easy to show that all the axioms

are forced in every node. We focus on the most interesting axiom which is Q3→ . The only

elements of l1′(α) without a predecessor are o0 and those of the form (qβo )0. But all of

them gradually merge with 0 in some node of every path in the tree. Thus, the antecedent

of the implication in Q3→ is not satisfied by them and axiom Q3→ holds.

Note that K3 need not be a model of SUCC∨ because there can be some element (qβo )0

in the universes which is not equal to 0 and at the same time has no predecessor. This

is why we cannot prove the undecidability of SUCC∨ by the same construction as in this

proof.

Suppose that there is a node α ∈ K and an evaluation e : Var → l(α) such that

α ‖−/ η[e]. Equivalences (6.2), (6.8), (6.10), (6.11) and (6.12) show that α ‖−/ 3 f(η)[e]

which proves that SUCC→ 0 f(η).

To sum up, we proved that E and SUCC→ are undecidable theories. Note that it

stands in contrast to the decidability of classical versions of E and SUCC→ . In the proofs,

we made use of the fact that the theory of one monadic predicate is undecidable and we

demonstrated that Thm(M1) is m-reducible to Thm(E) and to Thm(SUCC→ ). We used

the same computable function f for both reductions; f substitutes every occurence of

P (x) by ∀y(x = y ∨ ¬(x = y)). At the end, we found out that the construction cannot

be used for proving the undecidability of SUCC∨ . The decidability of SUCC∨ is an open

problem.

6.2 Undecidability of wDNO, wLO and LO

The aim of this section is to prove that wDNO, wLO and LO are undecidable theories.

Analogously to the previous section, we demonstrate that Thm(M1) is m-reducible to

Thm(wDNO), Thm(wLO) and Thm(LO), but the method is not so straight. The results

are proved with a help of new theories wDNO< and wLOd<.
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To begin with, we should perceive that wDNO ` ¬(x < y ∨ y < x) ≡ x = y; it

follows from axioms AP and LO2. This fact immediately leads to the idea that we may

interpret wDNO within its order fragment. Let wDNO< be the theory with language {<}
and axioms LO1, LO2, wLO3, DN1–DN3. We show that all the axioms of wDNO, where

= is interpreted as ¬(x < y ∨ y < x), are theorems of wDNO<.

(E1) wDNO< ` ¬(x < x), thus wDNO< ` ¬(x < x ∨ x < x).

(E2) wDNO< ` ¬(x < y ∨ y < x) → ¬(y < x ∨ x < y).

(E3) wDNO< ` ¬(x < y ∨ y < x) & ¬(y < z ∨ z < y) → ¬(x < z ∨ z < x), since if

x was comparable to z, then, by wLO3, y would be comparable to x or z.

(E5) Suppose that ¬(x1 < y1 ∨ y1 < x1) and ¬(x2 < y2 ∨ y2 < x2) and x1 < x2. We

want to prove that y1 < y2. Axiom wLO3 implies that y1 < x2 or x1 < y1, since

x1 < x2. We assumed that y1 is not comparable to x1, which means that y1 < x2.

By the similar argument, x1 < y2. Again, wLO3 entails that y1 < y2 or x1 < y1,

since x1 < y2. But x1 is incomparable to y1, thus y1 < y2.

If we supposed y1 < y2 instead of x1 < x2 at the beginning, we would obtain x1 < x2.

Hence, we proved wDNO< ` ¬(x1 < y1 ∨ y1 < x1) & ¬(x2 < y2 ∨ y2 < x2) →
(x1 < x2 ≡ y1 < y2).

(AP) wDNO< ` ¬(x < y ∨ y < x) → ¬(x < y ∨ y < x).

For convenience, let x# y denote x < y ∨ y < x. We read x# y as x is comparable to y

which indicates that x and y are comparable by means of <. However, such a reading

implies that x is not comparable to x.

In the following paragraphs, we formulate and prove a theorem that demonstrates

the undecidability of wDNO<. It is clear that the undecidability of wDNO< immedi-

ately implies the undecidability of wDNO, since Thm(wDNO<) can be m-reduced to

Thm(wDNO) via the identity function. (Particularly, the preceding paragraphs showed

that if any ϕ in the language {<} is a theorem of wDNO, then ϕ is also a theorem of

wDNO<.)

First, we define a computable function g that will be proved to satisfy

ϕ ∈ Thm(M1) iff g(ϕ) ∈ Thm(wDNO<),

for every formula ϕ in the language of M1.

Definition 6.5. Let ϕ be a formula in the language of M1. Then, g(ϕ) is a formula in

the language {<} obtained by replacing every occurence of P (x) in ϕ by ∀y(x # y ∨
¬(x# y)), for any variable x and certain y 6= x. We designate ∀y(x# y ∨ ¬(x# y)) by

R(x).

Theorem 6.6 ([Smo73b, pp. 126–128]). For every formula η in the language of M1,

M1 ` η iff wDNO< ` g(η). Hence, wDNO< is undecidable.
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Proof. The implication from left to right is easy and proved similarly as in Theorem 6.3.

Assume that M1 0 η. There exists a tree model K of M1 with origin α0 and infinite

domains6 and an evaluation e : Var → l(α0) such that α0 ‖−/ η[e].

Now, we formally define a model K1 = 〈K,≤, l1, ‖−1〉. The following lines may look

quite complicated, but we shall accompany them with a more intelligible explanation.

l1(α0) = { qα0
a,n ; (α0 ‖− P (a) and n = 0) or (α0 ‖−/ P (a) and n ∈ Q) }

l1(β) = { qβa,nn ; qαa,n ∈ l1(α) and β ‖−/ P (a) and n ∈ Q } (6.13)

∪ { qβa,n ; a ∈ l(β) and a /∈ l(α) and β ‖−/ P (a) and n ∈ Q } (6.14)

∪ { qβa,n0 ; qαa,n ∈ l1(α) and β ‖− P (a) } (6.15)

∪ { qβa,0 ; a ∈ l(β) and a /∈ l(α) and β ‖− P (a) }, (6.16)

where β is a successor of α and n denotes a sequence of rationals. Furthermore, for all

α ∈ K, we define

α ‖−1 P (qαa,n) iff α ‖− P (a).

Here is the explanation of the preceding lines. First, look at the universe l1(α0).

For every a ∈ l(α0) such that α0 ‖− P (a), there is one element qα0
a,0 in l1(α0). For every

a ∈ l(α0) such that α0 ‖−/ P (a), there are incomparables { qα0
a,n ; n ∈ Q } in l1(α0), where

a is identified with qα0
a,0.

Now, suppose that the universe l1(α) has been already defined and β is a successor

of α. The domain of l1(α) contains four types of elements:

(i) For every qαa,n ∈ l1(α) such that β ‖−/ P (a), there are elements { qβa,nn ; n ∈ Q },
where qαa,n is identified with qβa,n0. These elements are defined in (6.13).

(ii) If a is a new element of l(β), i.e. a /∈ l(α), and β ‖−/ P (a), then there are incompa-

rables { qβa,n ; n ∈ Q } in l1(β). These elements are defined in (6.14).

(iii) For every qαa,n ∈ l1(α) such that β ‖− P (a), there is one element qβa,n0 in l1(β), as it

is defined in (6.15).

(iv) If a is a new element of l(β), i.e. a /∈ l(α), and β ‖− P (a), then there is one element

qβa,0 in l1(β), as it is defined in (6.16).

Note that each l1(α) contains only the elements with superscripted α. Every element qαa,n
is forced in node α of K1 if and only if a is forced in α of K. n is a sequence of rationals

and the length of n is the same as the length of the path from α0 to α increased by 1.

For any formula ϕ in the language of M1, any α ∈ K and any e : Var → l(α),

α ‖−1 ϕ[e] iff α ‖− ϕ[e].

6If l(α0) was finite, then we would choose one element a ∈ l(α0) and add infinitely many copies,
{ qn ; n ∈ N }, of a into l(α0). We would define α ‖− P (qn) iff α ‖− P (a), for every α ∈ K and n ∈ N.
Elements qn could not be distinguished from a, thus we would get new K with infinite domains, but
satisfying the same formulas as the original K.
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The next point is the definition of model K2 = 〈K,≤, l1, ‖−2〉. First, we order every

l(α) in a dense linear order (<) such that the persistence is not violated. It is possible,

since the domains are infinite. Second, we define7

α0 ‖−2 q
α0
a,n1

< qα0
b,n2

iff a < b,

β ‖−2 q
β
a,n1n1

< qβb,n2n2
iff a < b or (a = b and n1 ≺ n2),

for origin α0 and a successor β of α. Again, there is a short explanation. Elements qα0
a,n1

and qα0
b,n2

are incomparable iff a = b. If qαa,nn1
and qαa,nn2

are incomparable, then qβa,nn1n3

and qβa,nn2n4
are ordered according to numbers n1 and n2. Further, if β ‖−/ P (a), then

{ qβa,nn1n
; n ∈ Q }, { qβa,nn2n

; n ∈ Q }, . . . are blocks of new incomparables.

Model K3 = 〈K,≤, l1, ‖−3〉 is, as usual, obtained by restricting ‖−2 to formulas

in the language {<}. The following two equivalences can be easily proved:

α ‖−1 ϕ[e] iff α ‖−2 ϕ[e],

α ‖−2 ψ[e] iff α ‖−3 ψ[e],

for any ϕ in the language of M1, ψ in the language of wDNO<, α ∈ K and e : Var → l1(α).

The essential point is the proof of

α ‖−2 ϕ[e] iff α ‖−2 g(ϕ)[e], (6.17)

for any ϕ in the language of M1, α ∈ K and e : Var → l1(α). It follows from the con-

struction that if a 6= b, then qαa,n1
and qαb,n2

are always comparable, i.e., α ‖−2 q
α
a,n1

# qαb,n2
.

In contrast, elements qαa,n1
and qαa,n2

need not be comparable, but if α ‖− P (a) and

n1 6= n2, they are. If α ‖−/ P (a) and n1 6= n2, then for any qαa,nn1
and qαa,nn2

, α ‖−/ 2

qαa,nn1
# qαa,nn2

, but in the successor β of α, β ‖−2 q
β
a,nn10 # qβa,nn20. The last case is that

for any qαa,n and α, α ‖−/ 2 q
α
a,n # qαa,n and thus α ‖−2 ¬(qαa,n # qαa,n). To sum up, for any

α ∈ K and e : Var → l1(α),

α ‖−2 P (x)[e] iff α ‖−2 R(x)[e],

and consequently, (6.17) holds.

The very last point of the proof is to verify that K3 is a model of wDNO<. Axioms

DN1–DN3 are satisfied, since the elements of l(α) are ordered in a dense linear order (i.e.,

for a, b ∈ l(α), there are c, d, e ∈ l(α) such that c < a, a < d and if a < b, then a < e < b)

and consequently, for every qαa,n1
, qαb,n2

∈ l1(α), there are qαc,n3
, qαd,n4

, qαe,n5
∈ l1(α) such

that α ‖−3 q
α
c,n3

< qαa,n1
, α ‖−3 q

α
a,n1

< qαd,n4
and if a 6= b and α ‖−3 q

α
a,n1

< qαb,n2
, then

α ‖−3 q
α
a,n1

< qαe,n5
< qαb,n2

. If α ‖−3 q
α
a,n1

< qαa,n2
, then there also exists qαa,n between

them: if p is the first place where n1 and n2 differ, then p(n1) < p(n2)8 and we put n to

be n1 with changed number at position p — p(n1) is replaced by p(n1)+p(n2)
2

.

The verification of the other axioms of wDNO< is left to the reader. We have shown

that K3 is a model of DNO< such that α0 ‖−/ 3 η. Hence, DNO< 0 η.

7n1 ≺ n2 means that n1 is less than n2 at the first place they differ.
8p(n) denotes the rational that is at position p in n.
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Corollary 6.7. wDNO is undecidable.

Corollary 6.8. wLO is undecidable.

Proof. If wLO was decidable, we could decide whether any formula of the form DN1 &

DN2 & DN3→ ϕ is a theorem of wLO. By the deduction theorem, wDNO would be

decidable.

We finish this section by proving the undecidability of LO. It will be done with a help of

a new theory wLOd< which is defined as follows. Theory wLOd< has the language {<} and

the axioms LO1, LO2, wLO3 and ∀x∀y(x < y ∨ ¬(x < y)). First, we demonstrate that

wLOd< is undecidable by showing, as usual, that Thm(M1) is m-reducible to Thm(wLOd<)

via h, where h is defined as follows:

Definition 6.9. Let ϕ be a formula in the language of M1. Then h(ϕ) is a formula in

the language {<} obtained by replacing every occurence of P (x) in ϕ by ∀y∃z(x < y →
x < z & z < y), for any variable x and certain y, z 6= x. We designate ∀y∃z(x < y →
x < z & z < y) by S(x).

Proposition 6.10 ([Smo73b, pp. 128–129]). For every formula η in the language of M1,

M1 ` η iff LOd< ` h(η). Hence, wLOd< is undecidable.

Proof. The implication from left to right has a similar expanation as in Theorem 6.3.

Conversely, assume that K = 〈K,≤, l, ‖−〉 is a tree model of M1 with origin α0 and

at most countable universes9 such that α0 ‖−/ η[e], for some e : Var → l(α0).

Model K1 = 〈K,≤, l1, ‖−1〉 is defined as follows:

l1(α0) = l(α0) ∪ { qα0
a,n ; α0 ‖− P (a), n ∈ Q }

l1(β) = l1(α) ∪ { qβa,n ; β ‖− P (a), α ‖−/ P (a), n ∈ Q }
α ‖−1 P (a) iff α ‖− P (a),

α ‖−1 P (qγa,n),

for any nodes α and a successor β of α, γ ≤ α and any original element a. Let the el-

ements of the domains of K be indexed by natural numbers (a0,a1. . .∈ l(α)). There is

the definition of K2 = 〈K,≤, l1, ‖−2〉:

α ‖−2 P (a) iff α ‖−1 P (a),

α ‖−2 P (qαa,n) iff α ‖−1 P (qαa,n),

α ‖−2 ai < aj iff i < j,

α ‖−2 q
γ
ai,n

< qδaj ,m
iff i < j or (i = j and n < m),

α ‖−2 ai < qγaj ,n
iff i ≤ j,

α ‖−2 q
γ
ai,n

< aj iff i < j,

9Löwenheim-Skolem theorem holds for intuitionistic logic, thus it is sure that such model exists.
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for any nodes α and γ,δ ≤ α, any original elements a, ai, aj, any non-original elements q

and any n,m ∈ Q, i, j ∈ N. K3 = 〈K,≤, l1, ‖−3〉 is obtained, again, by a mere restriction

of ‖−2 to the formulas in the language {<}.
Informally, we start with model K, order the elements of domains and if for some

ai ∈ l(α), α ‖− P (ai), then we add a block of ordered rationals between ai and ai+1.

As in the previous proofs, equations similar to (6.2), (6.3), (6.5) and (6.6) can be

proved. Particularly,

α ‖−2 P (x)[e] iff α ‖−2 S(x)[e],

since if α ‖−/ 2 P (ai), then there is not any block of rationals between ai and ai+1, thus

there is not any element between ai and ai+1 and α ‖−/ 2 S(ai). Finally, K3 ‖−/ h(η) and

LOd< 0 h(η).

Proposition 6.11. LO is undecidable.

Proof. We make use of the previous proposition. Note that LO ` ¬(x < y ∨ y < x) ≡
x = y, because LO3 is intuitionistically stronger than ¬(x < y ∨ y < x) ≡ x = y.

It enables us to interpret LO within LOd<. At the beginning of section 6.2, p. 54, we

demonstrated that DNO can be interpreted in wDNO<. We showed that wDNO< proves

axioms E1–E3, E5, AP, where x = y is ¬(x < y ∨ y < x), but in the proof, we used only

axioms LO1, LO2 and wLO3. Hence, wLOd< proves E1–E3, E5.

We need to demonstrate that even LO3 is a theorem of wLOd<.

wLOd< ` (y < x ∨ ¬(y < x)) & (x < y ∨ ¬(x < y))

and by distributivity,

wLOd< ` (y < x & x < y) ∨ (y < x & ¬(x < y)) ∨
(¬(y < x) & x < y)) ∨ (¬(y < x) & ¬(x < y)).

But each disjunct of the previous formula implies

x < y ∨ y < x ∨ (¬(x < y) & ¬(y < x)),

thus we have

wLOd< ` x < y ∨ y < x ∨ ¬(x < y ∨ y < x),

which is trichotomy translated to the language {<}.
The fact that LO can be interpreted in wLOd< implies that for any formula ϕ in the lan-

guage {<}, if LO ` ϕ, then wLOd< ` ϕ. It is clear that

LO3 ` wLO3 & ∀x∀y(x < y ∨ ¬(x < y)).

Hence, if wLOd< ` ϕ, then LO ` ϕ. We have that Thm(wLOd<) is m-reducible to

Thm(LO) and consequently, LO is undecidable.
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6.3 Minor (un)decidability results

In this short section, we mention the (un)decidability results of theories which have not

been dealt with in this chapter. The following propositions are easy consequences of

the previous parts and classical results.

To begin with, we look into theories DNO and RNA. Corollaries 3.6 and 3.7 showed

that both theories are, in fact, classical theories. The classical decidability results for

DNO and RNA are well known, thus we have the following proposition.

Proposition 6.12. DNO and RNA are decidable.

Other theories of our interest are two versions of Robinson arithmetic. Classical

Robinson arithmetic is undecidable, but neither Q∨ nor Q→ coincides with it. Any-

way, the Gödel translation will help us show that Qs are undecidable.

Proposition 6.13. Q∨ and Q→ are undecidable.

Proof. Suppose that Q `c ϕ. Then, by Theorem 2.21, Qg `i ϕ
g. But every formula that is

translated by the Gödel translation is intuitionistically weaker than the original formula,

whence Q `i γ, for every γ ∈ Qg. Consequently, Q `i ϕ
g. Conversely, if Q `i ϕ

g, then

Q `c ϕ
g and Q `c ϕ, since ϕg and ϕ are classically equivalent. To sum up, Thmc(Q) is

m-reducible to Thmi(Q). Hence, Q is undecidable.

An interesting fact is that we cannot prove Proposition 6.13 by mere mimicking

the classical proof presented in [Šve02, s. 4.4], since we cannot prove the Σ-completeness

of Q. Particularly,

Lemma 6.14. Q 0 ∀x(x ≤ n → x = 0 ∨ . . . ∨ x = n), for any numeral n.

Proof. Look at the model of Q that was constructed in the proof of Proposition 3.21. We

show that α ‖−/ (x ≤ n → x = 0 ∨ . . . ∨ x = n)[e]. Let n be S(S(0)), i.e. a2, and e(x) be

b1. It is clear that α ‖− b1 ≤ a2, since α ‖− b1 +b1 = a2. But α ‖−/ b1 = 0 ∨ . . . ∨ b1 = n,

because α ‖−/ b1 = a1.

The last theory that we inspect is wRNA. It is closely related to wDNO, so we

try to make use of the undecidability of wDNO for showing that wRNA is undecidable.

The following lemma is clear.

Lemma 6.15. If wRNA is a conservative extension of wDNO, then wRNA is undecid-

able.

Proof. Corollary 6.7 states that wDNO is undecidable. If wRNA was decidable, then for

any formula ϕ in the language of wDNO, we could decide whether wRNA proves ϕ or

not. But wRNA ` ϕ iff wDNO ` ϕ, thus wDNO would be decidable.

Proposition 6.16. wRNA is a conservative extension of wDNO. Thus, wRNA is un-

decidable.
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Proof. Suppose that wRNA is not a conservative extension of wDNO. Then, there exists

a formula ϕ in the language of wDNO such that wRNA ` ϕ, but wDNO 0 ϕ. It means

that ϕ is valid in every model of wRNA and there exists a model of wDNO in which ϕ

is not valid. Let K be a one-node model of wRNA where the elements of the universe

are all rationals and nothing else. 0, 1, + and < are realized as in the rational numbers.

Now, ϕ is valid in K, but should not be valid in some model of wDNO. Nevertheless,

every model of wDNO contains in all its universes a block of rationals with < realized

normally, whence ϕ must not claim anything about the rationals in the block, otherwise

ϕ would be valid in every model of wDNO. But in the language {=, <}, we are not able

to tell the block of rationals from other elements, thus ϕ always relates to the rationals

in the block. ϕ is valid in every model of wDNO.

To sum up this chapter, we obtained a few interesting decidability results. All of

the theories in our scope, except for DNO, RNA and SUCC∨ , were proved to be unde-

cidable. We presented a method useful for demonstrating that an intuitionistic theory is

undecidable—we reduced the monadic predicate calculus with one predicate symbol to

theories E, SUCC→ , wDNO< and LOd<. Theories DNO and RNA are decidable, since

they coincide with their classical extensions which are decidable. We did not manage to

show any decidability result for SUCC∨ .

When we look at the results from the perspective of searching for a “good” intuition-

istic theory, we must admit that they are not very positive. The only decidable theories

that we have are, in fact, classical theories. The slight weakening of axioms of DNO and

RNA swaps decidability into undecidability and in the case of SUCC→ , the underlying

logic changes the decidability result. Anyway, there is a chance that it is the unexplored

theory SUCC∨ that yields the example of decidable intuitionistic theory in demand.
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7

Conclusion

The main aim of this thesis was exploring four properties of the theories in our scope.

The following table presents the results. (For each theory T, there are the answers of

the questions “Does T coincide with its classical extension?”, “Is T saturated?”, “Does T

satisfy De Jongh’s theorem?” and “Is T decidable?”.)

Theory Coincides Saturated De Jongh’s Decidable

E no no yes no

LO no no yes no

wLO no no yes no

DNO yes no no yes

wDNO no no no no

SUCC∨ no yes no ?

SUCC→ no yes no no

Q∨ no yes yes no

Q→ no yes yes no

RNA yes no no yes

wRNA no no no no

Let us interpret the table and add some further information. Theories E, LO and wLO

have exactly the same properties, yet, there are differences in the details. Atomic formulas

are decidable in LO, whereas they are not decidable either in E or in wLO. Similarly, two

versions of SUCC and Q differ by the decidability of formulas x = Sn(0)—in the weaker

versions of the theories these formulas are not decidable; in the stronger versions they

are decidable. The other pairs of theories with the same properties are DNO – RNA and

wDNO – wRNA. Both DNO and RNA coincide with their classical extensions and this

fact affects the other properties. Theories wDNO and wRNA avoid the coincidence, but

at the same time lose their decidability.

Now, we try to arrive at rather more general conclusions. One of the questions was how

the different (but classically equivalent) formulations of an axiom influences the properties
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of the theories. The answer is not clear, since the effect can be quite dramatic, but also

very slight. Theories DNO and RNA are dramatically changed by weakening of axiom

LO3, because they stop trivializing intuitionistic logic, lose their classical properties and

by this become more constructive. In contrast, LO is affected by the same reformulation of

LO3 only slightly. It seems that also the formulation of axiom Q3 as implication instead of

disjunction does not have any enormous consequences. Although, we would immediately

change our opinion if SUCC∨ was decidable.

In our considerations, we not only investigated the properties, but we also expressed,

implicitly or explicitly, which properties we prefer. We hoped to find a “genuine” in-

tuitionistic theory, i.e., a theory that does not coincide with its classical extension, is

saturated, decidable and satisfies De Jongh’s theorem. Unfortunately, none of the theo-

ries in scope is “genuine”. Anyway, there are some remarks that could help in constructing

such a theory.

If we have a theory that trivializes intuitionistic logic, we may weaken its axioms so

that it proves less classical tautologies. This method was successfully used for theories

DNO and RNA, but there is always a danger that by the weakening of axioms, we lose

the concept that the theory should describe. If we have a theory that is not saturated

and we do not want to change its axioms, we may try adding some constants into the lan-

guage of the theory (as we suggested for theory RNA). However, such an extension of

the language may negatively affect the other properties. To satisfy De Jongh’s theorem,

a theory should have infinitely many models such that every two of them differ in forcing

a sentence and a basal structure that can be put into all the nodes below these models.

As for the decidability, we cannot imagine any criteria, since all the theories in scope that

do not coincide with their classical versions are undecidable.

In the introduction, we declared that we are not only interested in the properties

of the theories, but also in the methods that lead to the results. The main methods

presented in this thesis were invented (or at least strongly inspired) by C. Smorynski

and D. de Jongh. The methods are the following: To prove that a theory coincides

with its classical extension, we showed a criterion (see Theorem 3.5) that made use of

the fact that the classical extension is model complete. As for the saturation results,

we demonstrated a method based on the Aczel slash (see Corollary 4.10). De Jongh’s

theorem was investigated by modifying the original proof for Heyting arithmetic (see

Proposition 5.3) and by the considerations of the form of models (see Propositions 5.7

and 5.8). Finally, for showing the undecidability of the theories, we have a method based

on the reduction of the theory of one monadic predicate symbol (see Theorems 6.3, 6.4

and 6.6).

An unsolved problem is the decidability of SUCC∨ . It is not possible to use the same

method that proved the undecidability of SUCC→ , but at the same time, we did not

manage to eliminate the quantifiers and prove that it is decidable. Apart from solving

this problem, a future work could investigate some other theories or take a theory and

try to change the axioms and the language in order to obtain the theory with “positive”

intuitionistic properties.
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