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Evgeny Kalenkovich
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tor̊u pravděpodobnost́ı, což je odlǐsné od obvyklého (viz [9]) aritmetického
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Introduction

Have you heard of a psychological term ‘groupthink’? Probably not. Ac-
cording to [4] it was described by Irving Janis after studying several major
US foreign policy failures. A very reasonable question that drove his re-
search was, how could a group of well-informed, well-educated people with
well-beyond-average intellectual capacities (namely J.F. Kennedy and his
advisers) allow for ‘The Bay of Pigs’ to happen. They may not have been
able to anticipate that defeat would bring the whole world to the brink of
nuclear war, it would have sounded as a stretch. But sending a little over
1000 briefly trained Cuban exiles to overpower Fidel Castro, even with all
the preceding military actions must have sounded as a sheer idiocy to any-
one with at least common sense. So how could all those people who disposed
of much more that common sense and had virtually unlimited information
sources come to a decision that was so obviously wrong?

Janis defined groupthink as ’a mode of thinking that people engage in
when they are deeply involved in a cohesive in-group, when the members’
strivings for unanimity override their motivation to realistically appraise al-
ternative courses of action.’ In plain English: if a group of people caring
about each other is discussing an arbitrary matter and attempting to find a
consensus, each member will usually subconsciously suppress their creativ-
ity, critical thinking, sometimes even common sense, because each member
strives for conformity and is averted to antagonizing the group. Everyone
assesses disagreement as too risky to act upon (a member is afraid that
disagreement as any deviation from the popular opinion may bring embar-
rassment, that may be seen as ‘stupid’ and suffer consequences) and keeps
silent trying to guess what the consensus. It is important that everyone in
the group acts in this way, which will most likely lead to a decision that no
one likes, no one finds reasonable, but is not so far off as to make someone
speak their mind. That is exactly how you end up in a movie theater with a
bunch of friends watching the movie not one of you actually wanted to see.
This is how groupthink leads to a false consensus that is agreed upon by
everybody, but is consciously bad for everyone.

This vicious circle is easily broken when there is at least one member
of the group who is brave or careless enough to speak their mind. If one
does, then usually everybody or at least many follow and this ignites an
actual discussion. We sigh with relief as we just avoided groupthink, but then
watch another problem rise. With a variety of opinions that differ marginally
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substantially it is almost impossible to reach a consensus. Then we have to
either set a strict set of rules that define consensus (e.g. voting system),
or pick a leader who will not participate actively in the discussion and will
declare a consensus afterwards.

The solution we push forward in this thesis is for Kennedy to assign a
distance from each one’s opinion to the consensus before the session based on
his experience. Then he can either exclude himself from the discussion and
then find the best consensus from those meeting the distance assignments,
or alternatively he can join the discussion (and be the one to break the
groupthink), but in this case he has to assign distance from his opinion to the
future consensus beforehand as well. Our analogue of breaking groupthink
is assuming (demanding) that everyone shares their opinion.

The idea behind the text above is to give our reader an idea of how
complicated and how important is it to study group decision-making. Briefly
presented above are some of very well-researched and thus ‘easy’ problems
that we have to face every day and that can have enormous consequences.
And nobody actually knows how to solve them. And there are many, many
more.

Complexity of the group behavior is vast and limitless. Fortunately as
mathematicians we don’t have to deal with real people with all their com-
plexity and sophistication. And when we do deal with them we reduce them
to a set of number and symbols, which is much easier to analyze and work
with. We will assume that opinions we have to analyze are already in that
form.

The whole part of decision-making theory (see [7] for more on the topic)
is dedicated to so-called multi-agent systems, which represent an interacting
group. We assume that there is a finite number of so-called agents that
express their ‘opinions.’ which is any information about the problem, or
rather the variables we are interested in, in a numerical form. ‘The variables
we are interested in’ can be weather forecast, stock market models or control
systems among others. Our goal is to find the best opinion on the basis of
opinions we have.

Easy as it may sound (probably not) it is not an easy problem to solve.
There has been a lot of methods tried to solve it and a lot of effort put into
it. Most of those works concluded that in case opinions are expressed in a
form of probability distributions then under some controversial conditions
an arithmetic pooling of those distributions is the way to go. A thorough
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overview of what had been done was written by Genest and Zidek [9]. Com-
peting with them would be pointless so we will mention only a few articles
that are in our opinion have some relevance to the present work.

One of the thread in the research is called knowledge elicitation (see for
example [19]), which is well-elaborated, but heavily depends on the skills of
‘elicitation expert.’ Another important thread would be Bayesian decision
networks presented for example in [12] and [6]. Though deeply developed
Bayesian network provide very ad hoc solution and not provide a system-
atic approach. Genest and Zidek in [9] describe what they call the supra
Bayesian approach which introduces a so-called supra Bayesian, who is a
virtual supra agent that has a model of agents opinions and therefore can
apply the Bayesian paradigm to finding a pool of opinions. As this is a vir-
tual agent her model should be constructed by somehow relating agents’
opinions and this unknown model.

In more recent works [15],[14] the supra Bayesian approach was pushed
forward and fairly self-contained and systematic approach was introduced.
Unfortunately both of the mentioned articles suffered from a faulty assump-
tion it the core of the approach. This thesis was at first supposed to be based
on those two articles and has therefore deviated from the initial guidelines.
Co-author of both of the mentioned articles (and the advisor of this thesis)
and his colleagues then suggested a different approach that was elaborated
for the discrete case in [20]. This work consists mainly of some deeper elab-
oration, clearing some shortcomings and extension to the continuous case of
the thesis [20].

Below we give the layout of the present thesis.
In the section 1 the basics of the method of opinion pooling are intro-

duced. The method is shown for the case where all agents consider the same
variables with the same joint support and describe them providing their joint
probability mass functions (hereafter pmfs for short).

In the section 2 some of the assumption of the previous section are re-
laxed. Namely we allow supports to be different,then opinions to be ex-
pressed in a form of generalized moments of the considered variables and
finally we allow agents to provide only conditional pmfs on only part of the
variables.

In the section 3 we treat the case where all agents consider the same
variables with the same bounded joint support and describe them providing
their joint pdfs.
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In the section 4 as its name suggests we give a conclusion, an overview
of what has been done, what has not been done and what is yet to be done.

In the appendix A we provide some necessary notions and theorems from
the information theory and the calculus of variations that are not covered
by the standard course at the faculty of mathematics and physics.
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1 Basics of method

In this section we describe the basics of our method for pooling probabilis-
tic models. For future reference we will call this method supra Bayesian
merging. The method is shown for the simplest case, in which we assume
that all agents

(a) share one domain, that is they consider the same set of variables,

(b) consider the same set as the support of their common domain,

(c) consider their common domain to be a finite discrete random vector.

(d) describe behavior of their common domain by means of a joint proba-
bility mass function (pmf).

Above and hereafter we use pmf as an abbreviation for probability mass
function,

The following is a step-by-step derivation of the method and is therefore
somewhat verbose, more so than was initially planned. While wordiness of
this section is perfectly justified as a price paid for a detailed explanation,
it does hurt transparency of the text. In order to remove this problem there
is a subsection 1.6 containing recapitulation of the section. Feel free to leap
right to it and turn a few pages back for details whenever needed. Mentioned
subsection has for convenience reasons the same structure as the part of this
section preceding it.

1.1 Cooperation structure

We begin by defining a ‘Bayesian agent’ for it is the cornerstone of the whole
cooperation structure.

Definition A Bayesian agent is an entity characterized by its proba-
bilistic information, which is a pmf

q(x), x∈supp⊂RK ,
12

1As there is no unified definition of the support of a measure we emphasize that we
use the definition that yiels a unique set as the support. For a measure µ we define its
support as supp(µ) = {ζ : ∃ an open neigborhood U of ζ such that µ(U) > 0}. Overline
denotes closure of a set.

2Symbol RK denotes the K-dimensional real space.
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of a finite discrete real random vector

X = (X1, X2, . . . , XK)

with the length K ∈ N 3 and the support supp of a finite cardinality. Random
vector X is called agent’s domain.

We will use notations q(xn) and qn = q(xn) as interchangeable for all
pmfs throughout the work.

This definition of a Bayesian agent satisfies assumptions (c) and (d).
Let’s now say we have S ∈ N Bayesian agents indexed by numbers from 1
to S with a shared domain

X = (X1, . . . , XK),

which has a pmf q(s) according to the sth agent and the support

supp = {x1,x2, . . . ,xN}

according to any agent.
We will use notations q(xn) and qn = q(xn) as interchangeable for all

pmfs throughout the work.
We assume that both S and N are greater or equal to 2. Now we have

the remaining assumptions (a) and (b) satisfied. Denote p the true pmf (see
A.2 for details on what ‘true’ means in this context) of X. Our goal is to
find an estimate p̂ of p incorporating all the probabilistic information on our
hands.

1.2 Supra Bayesian approach

Bayesian inference is an approach to parameter estimation based mainly on
treating parameters as random. Assume we know that a vector parameter
θ from a parametric space Θ ∈ BN 4 is a random vector with the so-called
prior distribution, which has a density function π(θ). We then observe a
random vector X which has a pdf (or pmf) f(x|θ) under the condition that
value of the parameter is θ. Applying Bayes’ theorem (formal statement

3Symbol N denotes the set of all positive integers.
4Symbol BN denotes the set of Borel-measurable subsets of RN
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and proof can be found for example in [1] or any other basic textbook on
statistics) we get a posterior pdf after the observation X = x is made:

π(θ|x) =
f(x|θ)π(θ)∫

Θ
f(x|θ)π(θ) dθ

.

Calculated in this way posterior distribution can then be used as an updated
prior distribution.

Remark One might have noticed that we allow X to be a discrete ran-
dom vector, but insist on θ being continuous. It is uncustomary to presume
otherwise unless nature of the parameter in question dictates so. It would
be strange to assume that variance of a normally distributed random value
may take only discrete values. At the same time parameter of a Binomial
distribution (the number of Bernoulli trials) is obviously discrete. Usually if
the parameter can be continuous (i.e. at least theoretically can take values
in a non-null Borel set) then we assume it is. Something similar is used in
the described supra Bayesian approach.

With Bayesian approach we allowed certain values (parameters of a dis-
tribution) to be random and thus have their own probability distribution.
By taking supra Bayesian approach we make one step further and allow
distributions to be random. We treat sth agent’s probabilistic information
q(s) as a realization of a random vector q(s) and the true distribution p as a
realization of a random vector p.

Remark As with the Bayesian approach there is a question whether allow-
ing randomness is justified ‘philosophically.’ A recent critique can be found
for example in [23]. The decision-making justification of the Bayesian infer-
ence was given by Wald (see [3] for details).

The mathematics might work, but is there any relation to reality? Usual
way to answer this in case of Bayesian approach is to use subjective proba-
bility: if we don’t know something then it’s as good as random to us. This
plea might be used in the case of supra Bayesian approach, especially since
two approaches are essentially the same. Each agent’s subjective distribution
is indeed subjective and can therefore be treated as random.

Or we could realize that any model, probabilistic included, is derived
from certain observations in a broader sense, which include all our obtained
knowledge, and thus mentioned model is a random statistic, and thus is a
random variable.
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Or we can see a subjective distribution as a noisy version of the true
distribution, random deviation from which is brought about by both the
fact that agent’s judgment is imperfect and that she cannot possibly include
all the relevant variables while constructing her model.

The true distribution is of course random since we do not know it. One
could picture God not only throwing a dice for each and every single atomic
event, but also picking a dice from a giant bag full of different dice first. This
way, not only the event is random, but its distribution is random as well.

These ‘philosophical’ kinds of interpretations or justifications of any as-
sumption might be interesting to discuss and helpful in understanding, but
they are essentially irrelevant. From the theoretical point of view the math
works and it is the only thing that matters. From the practical point of view
these interpretations are pretty much bogus: the method either works or
not. In either case we cannot know whether some particular assumption was
wrong or it was something else and we do not care. We do not know whether
gravity exists, we cannot know that, but it makes sense mathematically and
seems to work in real-life calculations and that is pretty much all that is
important. Obviously there are different opinions on the matter.

The idea is to treat all the probabilistic information we obtained from
our agents as an input data. Let’s denote it as a data matrix

Q =

 q(1)(x1) . . . q(1)(xN)
...

. . .
...

q(S)(x1) . . . q(S)(xN)

 .

Its nth column contains different probabilities that X = xn as viewed by all
S agents. And its sth row containg sth agent’s pmf. Denote Q the random
counterpart of Q. An estimate p̂ is a statistic based on the data matrix Q,
i.e. a measurable mapping from the set of all possible inputs

L(S) =
{
Q : Q ∈ RS×N ,

5

∧ qs,n ≥ 0 s = 1, . . . , S, n = 1, . . . , N,

∧
N∑
n=1

qs,n = 1 s = 1, . . . , S
}

to the set of all possible ‘outputs’ (pmfs of X)

L(1) =
{
p : p ∈ RN ∧ pn ≥ 0 n = 1, . . . , N ∧

N∑
n=1

pn = 1
}
.
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Denote this statistic as h. We must find h such that p̂ = h(Q) is as close to
the true distribution p as we can make it. To do so we have to decide on
what ‘close’ means and then find an optimal h.

1.3 Optimal estimator of the true distribution in case
its posterior distribution is known

It was shown in [17] by using intuitive arguments that the Kullback-Leibler
divergence is a right way to measure difference between probability distribu-
tions. Later, in [22], the principle of minimum Kullback-Leibler divergence
was derived axiomatically for certain cases. In this work we will rather use
the Kerridge inaccuracy (see A.6 for the definition and basic properties),
which leads to the same results, but has a simpler explicit formula. It is
defined as the sum of the Kullback-Leibler divergence from some distribu-
tion to the true one and the entropy of the latter. In our case the Kerridge
inaccuracy K (p ‖ p̂) from p̂ to p is

K (p ‖ p̂) = D (p‖p̂) + H(p) =
N∑
n=1

p(xn) log
p(xn)

p̂(xn)
−

N∑
n=1

p(xn) log p(xn)

= −
N∑
n=1

p(xn) log p̂(xn),

where D (p‖p̂) and H(p) stand for the Kullback-Leibler divergence from p̂
to p and the entropy of p respectively. Obviously when the first argument
in the Kerridge inaccuracy (or, which is the same, in the Kullback-Leibler
divergence) is interpreted as the true distribution it is fixed and so it is
absolutely the same whether to choose one or the other when looking for an
optimal estimate. The Kerridge inaccuracy has, however, a formula that is
somewhat more pleasant to work with and so we will stick with this measure.

We cannot observe the true distribution p and we cannot therefore min-
imize K (p ‖ p̂) directly. Instead, we will put a weaker optimality condition
on the function h and call it optimal if for any given realization Q of the
input data matrix Q it minimizes the expected Kerridge inaccuracy from
p̂ = h(Q) to p, in other word we have to find h such that

E[K (p ‖ h(Q)) |Q = Q] = min
p̃∈L(1)

E[K (p ‖ p̃) |Q = Q].6

6Symbol E stands for expected value.
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We assume that p can possess any value from L(1), which has infinite
cardinality and the Borel measure of zero hence we have to conclude that p
is neither discrete nor continuous. Consider a random vector

ṗ = (p(x1), . . . ,p(xN−1)),

which is simply the vector p without the last element. Hereafter any variable
with a dot above it denotes its ‘undotted’ counterpart cut at the last element.

The vector ṗ takes values in the set

L̇(1) = {ẋ : ẋ ∈ RN−1 ∧ x ∈ L(1)},
which is a non-null Borel set. Therefore we can assume that ṗ is a continuous
variable with conditional pdf π̇ṗ|Q(ṗ) givenQ = Q. Let’s additionally assume
that π̇2

ṗ|Q is integrable as well. This is merely a technical assumption, which

will later allow us to differentiate the entropy H(π̇ṗ|Q) with respect to π̇ṗ|Q.
Because working with N − 1-dimensional vectors is counterintuitive and

writing dots everywhere all the time is both handful and distracting we will
avoid this unnecessary unrest by accepting the following convention: for each
ġ : RN−1 → R ∫

L(1)

g(p)πp|Q(p) dp =

∫
L̇(1)

ġ(ṗ)π̇ṗ|Q(ṗ),

where g(x) = ġ(ẋ) for each x ∈ L(1). Then we can write

E[K (p ‖ p̃) |Q = Q]

=

∫
L(1)

K (p ‖ p̃) πp|Q(p) dp

=

∫
L(1)

(
−

N∑
n=1

pn log p̃n

)
πp|Q(p) dp

= −
N∑
n=1

log p̃n

∫
L(1)

pn πp|Q(p) dp


= −

N∑
n=1

log p̃n Eπp|Q(pn|Q = Q)

= K
(

Eπp|Q(p|Q = Q) ‖ p̃
)
.
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Gibbs’ inequality (see A.3 for details) states that for any two probability
distribution the Kullback-Leibler divergence from one to the other is alway
greater or equal to zero with equality if and only if the distributions are
equal to each other. As a corollary of this inequality the Kerridge inaccuracy

K
(

Eπp|Q(p|Q = Q) ‖ p̃
)

is minimized for p̃ ∈ L(1) at p̃ = Eπp|Q(p|Q = Q).

Thus, for an optimal estimator function h we can write

h(Q) = p̂ = Eπp|Q(p|Q = Q).

Note that the result is the same as the least mean square error estimator.
Also note that the result is absolutely useless to us unless we construct the
pdf πp|Q.

1.4 Construction of posterior pdf of the true distribu-
tion

To construct the pdf πp|Q we will apply the principle of maximum entropy,
which says that under given constraints we are to choose the distribution
with the highest entropy. Recall that for a continuous distribution with the
pdf f(x) its entropy is defined as

H(f) = −Ef log f = −
∫
f(x) log f(x) dx. (1)

As yet we don’t actually have any information that we can use as con-
straints to put on πp|Q. One possible solution would be to find the most
entropic πp|Q without any constraints. It can be shown that the principle
of maximum entropy would yield a uniform distribution in this case (to be
more precise ṗ would be uniform, but let’s call p uniform as well). Expected
value of a uniform distribution on L(1) is a uniform distribution on supp,
which means that we might have as well applied the principle of indiffer-
ence (see subsection A.2 for details on this principle) right away. And that
kind of beats the whole point of using and incorporating all the information
available to us.

The solution that we’ve chosen adds some ad hocery to the otherwise self-
contained method. We assume that we are able to evaluate agents’ reality-
simulating skills in the terms of the expected Kerridge inaccuracy from the
true distribution p to their subjective distribution q(s) with respect to the
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posterior pdf πp|Q. That means we assume we know for each 1 ≤ s ≤ S a
positive constant γ(s) such that

Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] = γ(s). (2)

As a corollary of the Gibbs’ inequality (see A.3) the Kerridge inaccuracy
is uniquely minimized for the subjective (second) argument when both ar-
guments are equal. Therefore for the last assumption to be achievable the
following inequality should hold for each s = 1, . . . , S :

γ(s) = Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] ≥ Eπp|Q [K

(
q(s) ‖ q(s)

)
|Q = Q]

= K
(
q(s) ‖ q(s)

)
= H(q(s)).

Also, equality in the last inequality would mean demanding that p = q(s),
which would make the whole merging pointless. Therefore we assume that
for each s = 1, . . . , S :

γ(s) > H
(
q(s)
)
. (3)

Let’s denote L2(L(1)) the set of all real-valued functions f on the set
L(1), for which ḟ 2 is a Lebesgue-integrable function on L̇(1) (for obvious
reasons we will not differentiate between functions that are equal almost
everywhere on this set.) Also, denote for f ∈ L2(L(1))

h0(f) =

∫
L(1)

f(p) dp− 1

hs(f) =

∫
L(1)

f(p)K
(
q(s) ‖ p

)
dp− γs, s = 1, . . . , S.

Then applying the principle of maximum entropy we solve for f the
following optimization problem

maximize H(f)

subject to f ∈ L2(L(1)),

∧ f(p) ≥ 0, p ∈ L(1), (*)

∧ hs(f) = 0, s = 0, . . . , S..

Denote M the admissible set of the optimization problem above.
We will apply the method of Lagrange multipliers to the optimization

problem (*). To do so we will
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1. establish that M is a convex set,

2. establish that entropy is a concave function on M,

3. find Frechet derivatives of the entropy H(f) and of the functions hs(f)
with respect to f for each s = 0, . . . , S.

First two facts guarantee that any local extremum of H(f) on M is a
global extremum, the derivatives in the third item will allow us to search for
stationary points of the Lagrangian functional

L(f,λ) = L(f, λ0, λ1, . . . , λS) = H(f)−
S∑
s=0

λshs(f). (4)

That M is convex is obvious since L2(RN−1) is a linear vector space, a
convex linear combination of nonnegative real numbers is a nonnegative real
number, hs(f) are linear in f .

Proposition 1.1 Entropy is a concave functional on the set of all pdfs sup-
ported on L(1).

Proof To prove that entropy is concave we have to show for any two pdfs
f, g on L(1) and for any α in (0, 1), β = 1− α that

H(αf + βg) ≥ αH(f) + βHg. (5)

Let X,Y be two continuous random vectors with pdfs f, g respectively.
Let U be uniformly distributed on an open interval (0, 1) and let

Z = X I(0;α)(U) + Y I(α;1)(U).

7

Then vectors (Z, U), (Z) have pdfs

hZ,U(p, u) =
[
f(p) I(0;α)(u) + g(p) I(α;1)(u)

]
IL(1)(p),

hZ(p) = [αf(p) + βg(p)] IL(1)(p)

respectively.

7Symbol IA denotes an indicator function of the set A.
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There exists a vector (Z ′, U ′) such that Z ′ and Z and U ′ and U have
the same distributions respectively, but Z ′ and U ′ are independent and thus
have pdf

hZ′,U ′(p, u) = [αf(p) + βg(p)] IL(1)(p) I(0,1)(u).

Starting with the fact that Kullback-Leibler divergence is nonnegative
we acquire the desired inequality (5):

0 ≤D
(
hZ,U‖hZ′,U ′

)
=

∫
L(1)×(0;1)

hZ,U(p, u) log
hZ,U(p, u)

hZ′,U ′(p, u)
dp du

=

∫
L(1)×(0;1)

hZ,U(p, u) log hZ,U(p, u) dp du

−
∫

L(1)×(0;1)

hZ,U(p, u) log hZ′,U ′(p, u) dp du

=

∫
L(1)×(0;1)

(f(p) I(0;α)(u) + g(p) I(α;1)(u))×

× log(f(p) I(0;α)(u) + g(p) I(α;1)(u)) dp du (6)

−
∫

L(1)×(0;1)

(f(p) I(0;α)(u) + g(p) I(α;1)(u)) log(αf(p) + βg(p)) dp du (7)

Integral (6) can be rewritten as∫
L(1)×(0;α)

f(p) log f(p) dp du+

∫
L(1)×(α,1)

g(p) log g(p) dp du

=α

∫
L(1)

f(p) log f(p) dp+ β

∫
L(1)

g(p) log g(p) dp

=− (αH(f) + βH(g)).
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Integral (7) can be rewritten as∫
L(1)×(0;α)

f(p) log(αf(p) + βg(p)) dp du

+

∫
L(1)×(α,1)

g(p) log(αf(p) + βg(p)) dp du

=α

∫
L(1)

f(p) log(αf(p) + βg(p)) dp+ β

∫
L(1)

g(p) log(αf(p) + βg(p)) dp

=

∫
L(1)

(αf(p) + βg(p)) log(αf(p) + βg(p)) dp

=− H(αf + βg).

Consequently

0 ≤ D
(
hZ,U‖hZ′,U ′

)
= H(αf + βg)− αH(f) + βH(g),

thus inequality (5) holds and entropy is indeed concave.

For each s = 0, 1, . . . , S the function hs is linear in f and thus is Frechet
differentiable with

∂h0(f)

∂f
= 1,

∂hs(f)

∂f
= K

(
q(s) ‖ p

)
.

To even consider finding the Frechet derivative of entropy we need en-
tropy to be defined on some open neighborhood of each pdf, which is not
true for entropy defined as it is. First, any open neighborhood of any pdf
obviously contains functions integral of which doesn’t equal to 1. Second,
any open neighborhood of any pdf contains functions that are not nonnega-
tive, i.e. that are negative on a set of positive measure. These inconveniences
are easily removed by defining entropy using the usual formula (1) for any
integrable function on L(1) with the convention that x log x = 0 for any
x < 0. Let’s call this new functional generalized entropy.

If Frechet differential of a functional exists it equals to the Gateaux differ-
ential of this functional. So let’s first find Gateaux differential of generalized
entropy. Let f, h be elements L2(L(1)), f ≥ 0 and let α be a real number
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then

∂H(f, h) = lim
α→0

1

α
(H(f + αh)− H(f))

=
∂

∂α
H(f + αh)

∣∣∣∣
α=0

=
∂

∂α

[
−
∫
L(1)

(f + αh)(p) log(f + αh)(p) dp

]∣∣∣∣
α=0

Assuming that we can change order of integration and differentiation and
using the fact that (x log x)′ = log x+ 1 we get

∂H(f, h) = −
∫
L(1)

(log f(p) + 1)h(p) dp.

Thus if Frechet derivative of entropy ∂
∂f

H(f) exists it equals − log f − 1. In-

stead of proving that it does exist we will take the usual (see for example [5])
approach of assuming it does and then showing that the result obtained with
the use of the method of Lagrange multipliers is indeed a global extremum.

Let’s assume that there are such f and λ that the Lagrangian functional
(4) has a stationary point at (f,λ). Then differentiating L(f,λ) with respect
to f and setting the obtained result equal to zero for f = πp|Q we get

− log πp|Q(p)− 1 + λ0 +
S∑
s=1

λsK
(
q(s) ‖ p

)
= 0

⇓

πp|Q(p) = exp
[
λ0−1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
. (8)

Proposition 1.2 Let there exist real numbers λ0, λ1, . . . , λS such that

πp|Q(p) = exp
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
is an element of the admissible set M of the problem (∗). Then for any
admissible function f from this set

H(πp|Q) ≥ H(f)

with equality if and only if πp|Q = f.
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Proof Let f a function from the set M, then

H(f) = K
(
f ‖ πp|Q

)
−D

(
f‖πp|Q

)
≤ K

(
f ‖ πp|Q

)
= −

∫
L(1)

f(p) log πp|Q(p) dp

= −
∫
L(1)

f(p)
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
dp

= λ0 − 1 +
S∑
s=0

λsγs

= −
∫
L(1)

πp|Q(p)
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
dp

= −
∫
L(1)

πp|Q(p) log πp|Q(p) dp

= H(πp|Q).

Therefore H(πp|Q) ≥ H(f). Equality D
(
f‖πp|Q

)
= 0 in Gibbs’ inequality

holds if and only if πp|Q = f. Therefore the same is true about equality
H(πp|Q) = H(f) and consequently H(πp|Q) uniquely maximizes entropy on
the set M.

Optimization problem (*) has thereby transformed into the following set
of simultaneous equations:

solve for λ0, λ1, . . . , λS

hs(πp|Q) = 0 ∀s = 0, 1, . . . , S, (9)

where πp|Q(p) = exp
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
.

1.5 Final estimator of the true distribution

Below is the definition of the Dirichlet distribution, which is known to
Bayesians as the conjugate prior of the parameters of the multinomial dis-
tribution.
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Definition Random vector Y = (Y1, Y2, . . . , YN), N ≥ 2, is said to have the
Dirichlet distribution with positive parameters α1, α2, . . . , αN (denoted
Y ∼ Dir(α)) if the vector Ẏ = (Y1, Y2, . . . , YN−1) has pdf

fY (y) = fẎ (ẏ) = C

N∏
n=1

yαn−1
n

for yn ≥ 0, n = 1, 2, . . . N,
∑N

n=1 yn = 1 and fẎ (ẏ) = 0 everywhere else. The
constant C is a normalizing multiplier.

Recall also that if Y ∼ Dir(α) then

EY =
1∑N

n=1 αn
(α1, α2, . . . , αN). (10)

Let’s show that if (9) has a solution then πp|Q is a pdf of a Dirichlet
distribution.

Proposition 1.3 Let λ0, λ1, . . . , λS be a solution of (9) then

πp|Q(p) = exp
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
= C

N∏
n=1

pαn−1
n ,

where C = eλ0−1 and

αn = 1 +
S∑
s=1

λsq
(s)
n > 0, n = 1, . . . , N. (11)

Proof Proof of this proposition is based on a straight-forward evaluation.

πp|Q(p) = exp
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
= exp

[
λ0 − 1−

S∑
s=1

N∑
n=1

λsq
(s)
n log pn

]
= eλ0−1

N∏
n=1

exp
[

log pn

S∑
s=1

λsq
(s)
n

]
= eλ0−1

N∏
n=1

p

[
1+

∑S
s=1 λsq

(s)
n

]
−1

n

= C

N∏
n=1

pαn−1
n .
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If there existed n such that αn ≤ 0 then
∫
L(1) πp|Q(p) would equal to

infinity (consequence of the fact that xα is integrable on (0; ε) for ε > 0
if and only if α > −1). Therefore αn is positive for each n = 1, 2, . . . , N.
Positiveness of C = eλ0−1 is obvious.

In the subsection 1.3 we established that Eπp|Q(p|Q = Q) is an opti-
mal estimator of the true distribution p. In the previous subsection we by
turn constructed πp|Q as the solution of (9). Later in the proposition 1.3 we
showed that optimal distribution of p given Q = Q is the Dirichlet distribu-
tion. Combining these facts and using (10) we obtain the estimator of the
true distribution as

p̂ = Eπp|Q(p|Q = Q) =
1∑N

n=1 αn
(α1, α2, . . . , αN),

where αs are defined as in the proposition 1.3.
Denote

q(0) = (
1

N
, . . . ,

1

N
),

ω0 =
N

N +
∑S

s=1

∑N
n=1 λsq

(s)
n

=
N

N +
∑S

s=1 λs
, (12)

ωs =
λs

N +
∑S

s=1

∑N
n=1 λsq

(s)
n

=
λs

N +
∑S

s=1 λs
, s = 1, . . . , S. (13)

Then
∑S

s=0 ωs = 1 and

p̂ =
S∑
s=0

ωsq
(s).

This way it is apparent that our method yields a weighted arithmetic
mean of input pmfs q(s) and a uniform pmf q(0) as the result of pooling.

Assume that we have been given values of ωs. Let’s show that there is a
one-to-one correspondence between the vectors ω and λ unless ω0 = 0 and
find conditions that ω has to meet for the corresponding λ to solve (9). We
omit ω0 from the consideration as ω0 = 1 −

∑S
s=1 ωs and do the same with

λ0 as it can be derived from other λs. We then define ω as (ω1, . . . , ωS) and
redefine λ as (λ1, . . . , λS).
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For each s = 1, . . . , S

ωs =
λs

N +
∑S

s=1 λs
⇔ Nωs + ωs

S∑
s=1

λs = λs

or, in the vector notation

Nω + ω1Tλ = λ⇔
(
Is − ω1T

)
λ = Nω.8

Determinant of the matrix Is−ω1T equals to the determinant of I1−1Tω
according to the Sylvester’s determinant theorem (see for example [2] for
reference), which equals to 1−

∑S
s=1 ωs = ω0. Therefore (13) defines a one-to-

one correspondence between {λ ∈ RS} and the set {ω ∈ RS :
∑S

s=1 ωs 6= 1}.
From now on we assume that ω0 =

∑S
s=1 ωs 6= 0.

Now, with regard to the conditions hs(πp|Q) = 0 ∀s = 0, 1, . . . , S. For
s = 0 it simply means that πp|Q is a pdf. In the proposition 1.3 we established

a necessary condition for this to be true as αn = 1 +
∑S

s=1 λsq
(s)
n > 0, n =

1, . . . , N, absolutely the same reasoning can be used to show that the latter
inequalities constitute a sufficient condition for h0(πp|Q) to equal to 0 as
well.

Recall that for s = 1, . . . , S the condition hs(πp|Q) means that

Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] = γ(s). (14)

In the subsection 1.3 we showed that

E[K (p ‖ p̃) |Q = Q] = K
(

Eπp|Q(p|Q = Q) ‖ p̃
)
.

It is tempting to presume that similarly

Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] = K

(
q(s) ‖ Eπp|Qp

)
(15)

and thus (14) can be rewritten as

K

(
q(s) ‖

S∑
s=0

ωsq
(s)

)
= γ(s), s = 1, . . . , S.

Unfortunately (and obviously) (15) does not hold, therefore we have to
look for ω such that ω0 6= 0 and λ = N (Is − ω1T )

−1
ω solves (9).

8For an arbitrary matrix A the symbol AT denotes the transposition of A.
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1.6 Recapitulation

1.6.1 Cooperation structure

Assume we have S Bayesian agents that consider K-dimensional random
vector X = (X1, . . . , XK) with N possible realizations x1, . . . ,xN . Accord-
ing to sth agent X has a pmf q(s). Denote p the true pmf of X.

1.6.2 Supra Bayesian approach

Assume that q(s), p are realizations of random vectors q(s),p. Denote Q the
random matrix {q(s)n }1≤s≤S,1≤n≤N .

1.6.3 Optimal estimator of the true distribution in case its pos-
terior distribution is known

We assume that given Q = Q the vector ṗ = (p1, . . . , pn) is continuously
distributed with the pdf π̇p|Q supported on L(1) = {(p1, . . . , pN−1) ∈ RN−1 :∑N−1

n=1 pn < 1}. For clarity sake we don’t write any dots bearing in mind
that it is ṗ that is continuous, not p, and so forth.

Denote p̂ = Eπp|Q(p|Q = Q). Then p̂ is an optimal estimator of p in the
sense that it minimizes for p̃ the expected conditional Kerridge inaccuracy
form p̃ to p given Q = Q, i.e. E[K (p ‖ p̃) |Q = Q].

1.6.4 Construction of posterior pdf of the true distribution

To utilize the latter result we need to construct πp|Q. Assume there are
known constants γs, s = 1, . . . , S such that

Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] = γ(s), s = 1, . . . , S.

Using this equalities as constraints we search for πp|Q as a pdf supported
on L(1) with the highest entropy. We then show that such a pdf exists if
and only if there is a solution of the following set of simultaneous equations:

solve for λ0, λ1, . . . , λS

hs(πp|Q) = 0 ∀s = 0, 1, . . . , S, (16)

where πp|Q(p) = exp
[
λ0 − 1 +

S∑
s=1

λsK
(
q(s) ‖ p

) ]
.
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1.6.5 Final estimator of the true distribution

We show that if (16) has a solution than the corresponding pdf πp|Q is a pdf

of a Dirichlet distribution with the parameters αn = 1 +
∑S

s=1 λsq
(s)
n , n =

1, . . . , N. Bearing that in mind and combing the results from the previous
two section we obtain the final estimator

p̂ = Eπp|Q(p|Q = Q) =
1∑N

n=1 αn
(α1, α2, . . . , αN) =

S∑
s=0

ωsq
(s),

where q(0) = ( 1
N
, . . . , 1

N
), ω0 = N

N+
∑S

s=1 λs
, ωs = λs

N+
∑S

s=1 λs
, s = 1, . . . , S.

We then show that
∑S

s=1 ωs 6= 0 and that for such ωs the corresponding

vector λ can be found as λ = N (Is − ω1T )
−1
ω. So alternatively we can

look for the vector of weights ω such that the corresponding λ solve the set
of simultaneous equations from the previous subsection.
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2 Several relaxations of assumptions

The supra Bayesian merging is considerably demanding in assumptions made
about input models. In this section we make an attempt at relaxing some
of those assumptions and making certain guidelines on what to do in case
some conditions cannot be met. We will not however remove the assumption
that each agent considers her domain to be a finite discrete random vector
as it is the topic of the section 3.

The idea behind each relaxation is to extend and/or transform input
data to make it compliant with the supra Bayesian merging described in the
section 1.

To avoid unnecessary repetition in following subsections we assume that
the same cooperation structure as in the section 1 except for explicitly stated
differences. The same notation is used as well.

2.1 Different supports

It is somewhat bit unreasonable to assume that all agents assign positive
probabilities to the same possible realizations, i.e. that the set they believe
to be the support of their common domain X is the same for each agent.
Let’s relax the assumption of the common support and allow sth agent to
have her own support supp(s) .

After doing so we need to decide what support the true distribution of
X has. For two reasons we define the support of X as

supp = ∪Ss=1 supp(s) .

First reason is conceptual: however small is our belief in sth agent’s skills
it should be still positive and no value that she thinks is possible should be
dismissed. If we have absolutely no belief in her skills then we should exclude
her from the consideration completely.

Second reason is a more technical one, but has the same roots. During
the supra Bayesian merging we assume that there is a know constant γs such
that

Eπp|Q [K
(
q(s) ‖ p

)
|Q = Q] = γ(s).

This assumption is never met unless supp(s) ⊂ supp, because otherwise
K
(
q(s) ‖ p

)
=∞.

We then extend the pmf q(s) onto supp in a ‘natural’ way by defining
extended pmf extq(s) as
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extq(s)(x) =

{
g(s)(x), if x ∈ supp(s)

0, otherwise.

and then use extended pmfs instead of the original ones
Remaining part of merging takes place without changes.

2.2 Generalized moments of the domain as an input

Another possibility is that an agent instead of specifying the individual
probabilities of all possible outcome of X provides only L ∈ N general-
ized moments of X. That is she provides L measurable transformations
φl(X), l = 1, . . . , L, of X, L constants al, l = 1, . . . , L, and she asserts that

Eφl(X) = al, l = 1, . . . , L. (17)

Let’s assume that it is only the first agent who failed to comply with
the assumptions of the supra Bayesian merging and provided the above
generalized moments. To construct a pmf conq(1) to use as her input pmf we
apply the principle of maximum entropy, that is we search for conq(1) as the
solution of the following optimization problem:

maximize H(q(1))

subject to
N∑
n=1

q(1)(xn) = 1,

∧ Eφl(X) = al, l = 1, . . . , L,

∧ q(1) > 0.

Lagrangian function of this optimization problem

L(q(1),λ′) = L(q(1), λ′0, λ
′
1 . . . , λ

′
L)

= H(q(1))− λ′0(
N∑
n=1

q(1)(xn)− 1)−
L∑
l=1

λ′l(Eq(1) φl(X)− al)

has a saturation point at the point (conq(1),λ′) such that

∂L

∂q(1)
(conq(1),λ′) = −logconq(1) − 1− λ′01−

L∑
l=1

λ′lφl(
conq(1)) = 0
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and conq(1) satisfies the constraints of the problem.
Concavity of the maximized function (the fact that entropy is a concave

function on the set of pmfs on a given support can be proven in a way
similar to the way it was proven for pdfs in the section 1) and linearity of
the constraints guarantee that if there is such a point (conq(1),λ′) then under
the above constraints H(q(1)) is globally maximized at the point

conq(1)(xn) = C ′ exp
[ L∑
l=1

λ′lφl(xn)
]
, n = 1, . . . , N,

where the normalizing constant C ′ is chosen to make sure that conq(1) is
indeed a pmf (that it is a probability vector). If no such point exists then
we dismiss the first agent since her model is inconsistent within itself of is
not compliant with the support supp . In both cases instead of dismissing
her completely we can ‘split’ her into several ‘subagents’ assigning different
groups of moments to each of them.

2.3 Different domains and conditional pmfs

It would be favorable if we could incorporate models that consider only
part of the domain X and model this part by means of a conditional pmf.
Again, assume that it is only the first agent who considers only the vector
X(1) = (X1, X2, . . . , XK(1)) for some number K(1) ≤ K. Suppose also that
she provides a conditional pmf

q
(1)

X2|X1(x
1,x2),x(1) ∈ supp(1),

where

X1 = (X1, . . . , XK1) for some 0 ≤ K1 < K(1),

X2 = (XK1+1 . . . , XK(1))

x(1) = (x1, . . . , xK(1)),

x1 = (x1, . . . , xK1),

x2 = (xK1+1 . . . , xK(1)) and

supp(1) ⊆ {x(1) : ∃x ∈ supp}. (18)

Failure to comply with the last condition would make the first model
inconsistent (see the first subsection for details) with the other S−1 models
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or rather. In this case either the first agent should be excused from the
merging or supp should be extended so this condition is met. Note that we
allowed K1 to be zero and K(1) to be equal to K in order to include the
cases when the first agent provides a joint pmf ofX(1) or considers the whole
vector X as merely special cases.

Denote additionallyX3 = (XK(1)+1 . . . , XK) and x3 = (xK(1)+1 . . . , xK).
Then we can represent our notation graphically, which will prevent the pos-
sible confusion:

(X1, . . . , XK1︸ ︷︷ ︸
X1

, XK1+1, . . . , XK(1)︸ ︷︷ ︸
X2︸ ︷︷ ︸

X(1)

, XK(1)+1, . . . , XK︸ ︷︷ ︸
X3

).

The same scheme works if X is replaced with x at every instance and
also for any other letters.

We need to extend the pmf q
(1)

X2|X1 onto the whole domain X and onto

the whole support supp in such a way that the resulting pmf extq(1) is both
close to the original pmf q

(1)

X2|X1 and does not contain any unnecessary ‘junk’

information.
Let’s denote marginal and conditional marginal pmfs for an arbitrary

pmf q of X with the support supp at an arbitrary point x ∈ supp

qX2|X1(x(1)) =
∑

y∈supp:y(1)=x(1)

q(y)/
∑

y∈supp:y1=x1

q(y),

qX1(x1) =
∑

y∈supp:y1=x1

q(y).

Pmf qX3|X(1) is defined in the same manner as qX2|X1 . Using these defini-

tions we can postulate the condition of the resulting pmf extq(1) being close
to the original pmf q

(1)

X2|X1 as

extq
(1)

X2|X1 = q
(1)

X2|X1 ∀x(1) ∈ supp(1) . (19)

Now for the requirement of inserting as little ‘junk’ information as pos-
sible. If the first agent had to find this desired extension alone then it would
be reasonable to apply the principle of maximum entropy and search for
extq(1) as for the most entropic pmf of X supported on supp and meeting
the requirement (19). However, as we have S − 1 other models of X at our
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disposition it would be wasteful not to use them. Therefore we will look
for extq(1) closest to the true distribution p. Closest - as already usual for
us - in the terms of the expected Kerridge inaccuracy given Q = Q where
q(1) = extq(1).

Formally we look for extq(1) as the solution of the following optimization
problem:

minimize E[K (p ‖ q) |Q = Q]

subject to
N∑
n=1

q(xn) = 1,

∧ qX2|X1(x(1)) = q
(1)

X2|X1(x
(1)) ∀x(1) ∈ supp(1),

∧ q > 0.

Hereafter we write for shortness sake {x(1) : ∃x ∈ supp} meaning the set

{x(1) : ∃x3 such that x ∈ supp}.

Same idea applies to other similar sets as well.

Proposition 2.1 The solution of the above problem if the posterior pdf πp|Q
is given and supp(1) ⊆ {x(1) : ∃x ∈ supp} is the pmf extq(1) defined for
x ∈ supp as follows:

extq(1)(x) =

{
p̂X3|X(1)(x)q

(1)

X2|X1(x
(1))p̂X1(x1), if x(1) ∈ supp(1),

p̂(x) if x(1) 6∈ supp(1),

where p̂ = Eπp|Q(p|Q = Q) is an optimal estimator of the true distribution
p from the subsection 1.3.

Proof Let’s first show that extq(1) is indeed a pmf with the support supp .
That extq(1) is positive is obvious from its definition since p̂ is supported on
supp .∑

x∈supp

extq(1)(x) =
∑

x∈supp:x(1) 6∈supp(1)
p̂(x)

+
∑

x∈supp:x(1)∈supp(1)
p̂X3|X(1)(x)q

(1)

X2|X1(x
(1))p̂X1(x1).
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Let’s transform the second term.

∑
x∈supp:x(1)∈supp(1)

p̂X3|X(1)(x)q
(1)

X2|X1(x
(1))p̂X1(x1)

=
∑

x(1)∈supp(1)

∑
x3:(x(1),x3)∈supp

p̂X3|X(1)(x)q
(1)

X2|X1(x
(1))p̂X1(x1)

=
∑

x(1)∈supp(1)
q
(1)

X2|X1(x
(1))p̂X1(x1)

In the last equality we used the fact that a conditional pmf is a probability
vector for any given fixed value of the condition.

Denote supp1 = {x1 : ∃x(1) ∈ supp(1)} then∑
x(1)∈supp(1)

q
(1)

X2|X1(x
(1))p̂X1(x1) =

∑
x1∈supp1

∑
x2:(x1,x2)∈supp(1)

q
(1)

X2|X1(x
(1))p̂X1(x1)

=
∑

x1∈supp1
p̂X1(x1)

=
∑

x1∈supp1

∑
y∈supp:y1∈supp1

p̂(y)

=
∑

x∈supp:x(1)∈supp(1)
p̂(x).

Therefore∑
x∈supp

extq(1)(x) =
∑

x∈supp:x(1) 6∈supp(1)
p̂(x) +

∑
x∈supp:x(1)∈supp(1)

p̂(x)

=
∑

x∈supp

p̂(x) = 1

and extq(1) is indeed a pmf supported on supp .
Similar transformations can be used to show that for any x(1) ∈ supp(1)

extq
(1)

X(1)(x
(1)) = q

(1)

X2|X1(x
(1))p̂(x1), extq

(1)

X1(x1) = p̂(x1).

Consequently
extq

(1)

X2|X1 = q
(1)

X2|X1(x
(1))
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ant thus extq(1) satisfies the condition (19).
Recall that in the section 1 we showed that

E[K (p ‖ q) |Q = Q] = K
(

Eπp|Q(p|Q = Q) ‖ q
)

= K (p̂ ‖ q) .

Let q be an arbitrary pmf of X supported on supp and satisfying the
condition (19). Then

K (p̂ ‖ q) =
∑

x∈supp

p̂(x) log q(x)

=
∑

x∈supp

p̂X3|X(1)(x)p̂X2|X1(x(1))p̂X1(x1)×

× log
(
qX3|X(1)(x)qX2|X1(x(1))qX1(x1)

)
=
∑

x∈supp

p̂X3|X(1)(x)p̂X2|X1(x(1))p̂X1(x1) log qX3|X(1)(x)

+
∑

x∈supp

p̂X3|X(1)(x)p̂X2|X1(x(1))p̂X1(x1) log qX2|X1(x(1))

+
∑

x∈supp

p̂X3|X(1)(x)p̂X2|X1(x(1))p̂X1(x1) log qX1(x1)

=
∑

x∈supp

p̂X3|X(1)(x)p̂X2|X1(x(1))p̂X1(x1) log qX3|X(1)(x)

+
∑

x(1):∃x∈supp

p̂X2|X1(x(1))p̂X1(x1) log qX2|X1(x(1))

+
∑

x1:∃x∈supp

p̂X1(x1) log qX1(x1)

=
∑

x(1):∃x∈supp

p̂X2|X1(x(1))p̂X1(x1)

∑
x3:(x(1),x3)∈supp

p̂X3|X(1)(x) log qX3|X(1)(x)

+
∑

x1:∃x∈supp

p̂X1(x1)
∑

x2:∃(x1,x2,x3)∈supp

p̂X2|X1(x(1)) log qX2|X1(x(1))

+
∑

x1:∃x∈supp

p̂X1(x1) log qX1(x1) (20)

By using again the fact that a conditional pmf is a probability vector for
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any given fixed value of the condition and by noticing Kerridge inaccuracies
in equations above we can rewrite (20) as follows:

∑
x(1):∃x∈supp

p̂X2|X1(x(1))p̂X1(x1)K
(
p̂X3|X(1)(x(1), ∗) ‖ qX3|X(1)(x(1), ∗)

)
+

∑
x1 6∈supp1:∃x∈supp

p̂X1(x1)K
(
p̂X2|X1(x1, ∗) ‖ qX2|X1(x1, ∗)

)
+

∑
x1∈supp1

p̂X1(x1)
∑

x2:∃(x1,x2,x3)∈supp

p̂X2|X1(x(1)) log q
(1)

X2|X1(x
(1))

+ K (p̂X1 ‖ qX1) (21)

The only parts of the expression (21) that we can influence by the choice
of q are the Kerridge inaccuracies. Also, if we change any of the subjective
pmfs in those inaccuracies for any other pmf with the same support then the
altered q will still be a pmf supported on supp and satisfying the condition
(19). Therefore each such pmf can be chosen independently and thus each
of the Kerridge inaccuracies in (21) can be minimized independently. Those
are minimized by choosing

qX3|X(1)(x(1), ∗) = p̂X3|X(1)(x(1), ∗),
qX2|X1(x1, ∗) = p̂X2|X1(x1, ∗),x1 6∈ supp1 : ∃x ∈ supp,

qX1 = p̂X1 ,

which leads to minimizing K (p̂ ‖ q) by choosing

q = extq(1).

Extending partial pmf q
(1)

X2|X1 as described above make equations in the

set (9) implicit. Existence and uniqueness of a solution in this case requires
further research.

In the preceding part we assumed that only one agent provided a partial
pmf of X, which doesn’t have to be true, for all we know all agent could do
so. In this case we need to decide on what X and supp will be.

A reasonable way to choose X is to pool all the variables considered by
all agents into one vector X. For supra Bayesian merging to make any sense
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in this case it would require that agents couldn’t be divided into two groups,
for which pooling of all considered variables would yield two vectors with no
elements in common. If agents can be divided this way then they should be.

For each s = 1, . . . , S subjective partial supports supp(s) should be com-
patible with supp in the sense of the condition (18). The support ofX should
be chosen accordingly. Cartesian product of unions of marginal supports, or
minimization in the sense of subsets come into mind.
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3 Continuous case

In this section we propose a way to apply supra Bayesian merging to the
continuous case, i.e. to the case when agents provide pdfs instead of pmfs. We
will still assume that agents share a common domain on a common support.
Finite variables in the discrete case are replaced by bounded continuous
variables, joint pmfs - with joint pdfs.

We will follow the direction of the section 1 in the beginning. However
at the point where in the mentioned chapter we arrived at searching for the
most entropic posterior pdf of the true distribution the problem of finding a
distribution of a continuous-time random process with the highest entropy
will arise. Instead of struggling with the solution of the latter problem we
will propose a work-around. It is based on assuming that the true pdf is in
fact a simple function on a predefined partition of the support such that the
true pdf is constant on each part. We will show that this assumption will
reduce the continuous case to a discrete one.

3.1 Cooperation structure

First, we need to redefine a ‘Bayesian agent.’

Definition A Bayesian agent is an entity characterized by its proba-
bilistic information, which is a pdf

g(x), x∈supp⊂RK ,

of a bounded continuous real random vector

X = (X1, X2, . . . , XK)

with the length K ∈ N and the bounded connected open support supp.
Random vector X is called agent’s domain.

Assume there are S ∈ N (as in the discrete case we assume that S ≥ 2)
Bayesian agents indexed by numbers from 1 to S with a shared domain

X = (X1, . . . , XK).

Assume that the sth agent provides a pdf q(s) of X support on a bounded
support

supp ⊂ RK ,
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which is the same for all agents.
Denote trueg the true pdf of X. Our goal is to find an estimate trueĝ of

trueg.

3.2 Supra Bayesian approach

Suppose sth agent’s probabilistic information g(s) is a realization of a random
process g(s) and the true distribution trueg is a realization of a random process
trueg. All the above processes are continuous-‘time’ processes indexed by the
K-dimensional elements of supp .

3.3 Optimal estimator of the true distribution in case
its posterior distribution is known

There is only so much precision then can be used and thus required. Our
approached is based on knowing how much precision one needs beforehand.
We will assume that there is a given partition (A1, A2, . . . , AN) of supp such
that ∪Nn=1An = supp and the sets A1, A2, . . . , AN are mutually exclusive.
Assume additionally that for each n = 1, . . . , N the Lebesgue measure λ(An)
is positive. It is not unreasonable to propose that all samples of trueg are pdf
that are simple functions of a form

trueg(x) =
N∑
n=1

IAn(x)
pn

λ(An)
, x ∈ supp (22)

where pn ≥ 0 for each n = 1, . . . , N,
∑N

n=1 = 1. Denote p = (p1, . . . ,pN) the
corresponding random vector.

Remark Utilization of the same letters (N and p) as in the section 1 is not
a mistake, and not a coincidence either, it is a deliberate choice that should
emphasize the parallel between two sections. More borrowing like this is to
take place below.

Denote G = (g(1), . . . , g(N)) a random vector (it can also be seen as
a matrix with N rows and columns index by the elements of supp, the
counterpart of the matrix Q from the first section) of input pdfs of which
we observed the realization G = (g(1), . . . , g(N)). As in the section 1 we
further assume that ṗ = (p1, . . . , pN−1) has a conditional pdf π̇ṗ|G given

37



G = G supported on the set L̇(1) and then drop dots keeping in mind that
the actual continuous vector is ṗ, not p.

We already showed in the subsection 1.3 that in this case the optimal
estimator of p is

p̂ = Eπp|G(p|G = G).

3.4 Construction of posterior pdf of the true distribu-
tion

To construct πp|G we assume that we know positive constants κ(s), s =
1, . . . , S such that

Eπp|G [K
(
g(s) ‖ trueg

)
|G = G] = κ(s). (23)

and then apply the principle of maximum entropy.
Similarly to (3) we assume that for each s = 1, . . . , S

κ(s) > H
(
g(s)
)
.

Using (22) we can write

K
(
g(s) ‖ trueg

)
=

∫
x∈supp

g(s)(x) log trueg(x) dx

=

∫
x∈supp

g(s)(x)

(
log

N∑
n=1

IAn(x)
pn

λ(An)

)
dx

=
N∑
n=1

log
pn

λ(An)

∫
x∈supp

IAn(x)g(s)(x) dx

Denote

q(s)n =

∫
x∈supp

IAn(x)g(s)(x) dx =

∫
x∈An

g(s)(x) dx.

Then for each s = 1, . . . , S the vector x(s) is a probability vector and

K
(
g(s) ‖ trueg

)
=

N∑
n=1

log
pn

λ(An)
q(s)n =

N∑
n=1

q(s)n log pn −
N∑
n=1

q(s)n log λ(An)
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So what we look for is the most entropic pdf πp|G such that for each
s = 1, . . . , S

Eπp|G [K
(
g(s) ‖ trueg

)
|G = G] = γ(s),

where

γ(s) = κ(s) +
N∑
n=1

q(s)n log λ(An).

Let’s define for each s = 1, . . . , S a pdf g̃(s) based on q(s) in the same
fashion as p defines trueg in (22):

g̃(s)(x) =
N∑
n=1

IAn(x)
q
(s)
n

λ(An)
, x ∈ supp .

Then

γ(s) = κ(s) +
N∑
n=1

q(s)n log λ(An)

> H
(
g(s)
)

+
N∑
n=1

q(s)n log λ(An)

=

∫
x∈supp

g(s)(x) log g(s)(x) dx+
N∑
n=1

q(s)n log λ(An)

=

∫
x∈supp

g(s)(x) log g(s)(x) dx−
N∑
n=1

q(s)n log
q
(s)
n

λ(An)

+
N∑
n=1

q(s)n log
q
(s)
n

λ(An)
+

N∑
n=1

q(s)n log λ(An)

=

∫
x∈supp

g(s)(x) log g(s)(x) dx−
∫

x∈supp

g(s)(x) log g̃(s)(x) dx

+
N∑
n=1

q(s)n log q(s)n

=

∫
x∈supp

g(s)(x) log
g(s)(x)

g̃(s)(x)
dx+

N∑
n=1

q(s)n log q(s)n

= D
(
g(s)‖g̃(s)

)
+ H

(
q(s)
)
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Applying Gibbs’ inequality (see subsection A.2) we get the following
inequality

γ(s) = D
(
g(s)‖g̃(s)

)
+ H

(
q(s)
)
≥ H

(
q(s)
)

and thus acquire the condition (3).
Therefore we’re solving the problem that we’ve already solved in the first

section by applying Lagrange multipliers.

3.5 The final estimator of the true distribution

The constructed πp|G is a pdf of a Dirichlet distribution and p̂ is its expected
value. The estimated p̂ defines an optimal estimator of trueg as

trueĝ =
N∑
n=1

IAn(x)
p̂n

λ(An)
, x ∈ supp .

3.6 Recapitulation

Assume that S agents provided S pdfs g(1), . . . , g(S) of the same vector X
and supported on the same set supp . Denote trueg the true pdf ofX. Assume
that the required level of precision was set by proposing that

trueg(x) =
N∑
n=1

IAn(x)
pn

λ(An)
, x ∈ supp (24)

for some predefined partition (A1, . . . , AN) of supp . Denote p = (p1, . . . ,pN)
the corresponding random vector and π̇ṗ|G its conditional pdf given G = G
where G = (g(1), . . . , g(S)).

Assume also that we were able to assess agents’ skills by finding positive
constants κ(s), s = 1, . . . , S such that

Eπp|G [K
(
g(s) ‖ trueg

)
|G = G] = κ(s). (25)

Then an optimal estimator of trueg can be found in two steps:

1. Apply the supra Bayesian merging on

q(s)n =

∫
x∈An

g(s)(x) dx,

γ(s) = κ(s) +
N∑
n=1

λ(An)q(s).
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and calculate p̂.

2. Calculate a pdf trueĝ corresponding to the p̂ and satisfying (24) as

trueĝ =
N∑
n=1

IAn(x)
p̂n

λ(An)
, x ∈ supp .
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4 Conclusion

In this section we would like to discuss gains and shortcomings of the pro-
posed supra Bayesian merging. Also we propose a way that will possibly
lead to elimination of one of the latter and review open problems.

4.1 Gains

• Proposed method of supra Bayesian merging gives a systematic way
to approach the problem of statistical model pooling.

• Intuitive approach of arithmetic pooling used widely as ad-hoc method
(see [9] for an overview of those methods or [8] for a specific method)
was both refined by introducing a necessary shift and given a proper
justification.

• In the section 2 we established a way to merge models even in case
agents provided us only with partial information: generalized moments
or conditional pmf of only some of the considered variables.

• Usually silently ignored question of the support on which pooling is
conducted was given proper attention. It may seem to be a small ir-
relevant thing, but it may lead to mistakes both in theoretical part
and, even if mistakes are avoided there, it can still lead to mistakes
in implementation. This is due to the fact that outcomes of both the
principle of maximum entropy and the principle of minimum cross-
entropy (Kullback-Leibler divergence) heavily depend on the support
of the optimized distribution.

• One of the mistakes connected with not giving enough attention to
support occurred in the propositions 4.1 through 4.3 in [20]. That inac-
curacy was fixed and those propositions were unified in the proposition
2.1.

• A way of dealing with the continuous case was suggested.

• Concavity of entropy was proven in this work. And the derivative of
entropy was calculated under the assumption that it exists. Proving the
latter showed to be unnecessary. Both are quite simple, yet unnecessary
for rigorous proves in the first case and for understanding in the case.
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While applying the principle of maximum entropy it is usually (see
for example [5] or [13]) assumed that differential (continuous-case) en-
tropy is a concave functional and that differentiating the entropy H(f)
with respect to f we get − log f. The first fact is assumed to be true
by automatically extending the property of the discrete-case entropy
to the continuous-case entropy. That the second fact holds is either
assumed using the same logic or it is assumed that the reader is fluent
in the calculus of variations. We can only guess as no comments are
given. As differential entropy is not a limit of its discrete version sim-
ply extending properties to the continuous case is not a sound way to
go. Assuming that the reader is familiar with the calculus of variation
is at the very least strange.

4.2 Shortcomings

• No obvious extension onto the infinite discrete and unbound contin-
uous case was found. Considering the corresponding limits was con-
ducted, but unsuccessfully.

• In the initial guidelines of this work it was supposed that the method
could be applied to the so-called LQ (Linear-Quadratic) scheme. Un-
fortunately this was unsuccessful.

Suppose unknown process is controlled by a linear regression with mul-
tiple parameters and at each point of time has Normal distribution
with known variance and mean that is given by linear combination of
regressors and parameters. Each agent is supposed to provide a prior
distribution of the parameters which also has Normal distribution. It
was conjectured that by pooling of the prior distribution we would get
a mixture of Normal distributions. Unfortunately the method to deal
with continuous distributions described in this work cannot be applied
to this case, therefore the mentioned conjecture is still a conjecture.

4.3 Possible adjustment

A way to get round the second shortcoming is to switch arguments in
Kullback-Leibler inaccuracies representing agents’ skills. That would mean
assuming that we were given positive constants γ′1, . . . , γ

′
S such that

Eπp|Q [K
(
p ‖ q(s)

)
|Q = Q] = γ(s)
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(compare with (2).)
First calculations suggest that in this way the posterior pdf π̂p|Q would

be of a form

π̂p|Q(p) = C
N∏
n=1

e−βnpn

for some positive constants C, β1, . . . , βN . Assuming that this is true it would
in turn lead to a shifted geometric mean as the final estimator of the true
pmf p, which is less intuitive but nevertheless reasonable.

Also

Eπp|Q [K
(
p ‖ q(s)

)
|Q = Q] = K

(
Eπ̂p|Q [p|Q = Q] ‖ q(s)

)
,

which would allow us to look for a p̂final as a shifted geometric mean of
q(s), s = 1, . . . , S, such that K

(
p̂final ‖ q(s)

)
= γs, s = 1, . . . , S, and forget

about the posterior pdf π̂p|Q completely. Apart from obvious numerical ad-
vantages, this fact would probably allow for a reasonable way to consider
N converging ∞ and thus extend the supra Bayesian merging to infinite
discrete random variables.

At the present stage all of the above conjectures are merely what they are
- conjectures derived from the author’s hunch. There is a need for more cal-
culations and elaboration that constitute a possible direction for the future
work.

4.4 Open problems

• Shortcoming described above should be further studied and hopefully
removed.

• Constants γs in the section 1 were supposed to be provided externally.
A systematic way to assess agents’ skill is still lacking.

• Solvability and uniqueness of both the set of simultaneous equations
and its implicit version as described in 2.3 are yet to be looked into.
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A Appendix

This section used to be a part of the section 1, which grew too large and so
part of it had to be moved. The purpose of this appendix is to give a short
overview of the subjective probability, measures connected with the concept
and infinite-dimensional optimization. If ‘expected value with respect to a
given distribution,’ ‘Kullback-Leibler divergence,’ ‘entropy of a probability
distribution,’ ‘Kerridge inaccuracy,’ ‘Gateaux differential’ or ‘Frechet differ-
ential’ sounds unfamiliar then you might consider reading an appropriate
part of this section.

A.1 Preliminaries

Though not stated explicitly all random variables in this appendix are as-
sumed to be real-valued unless it makes no difference as in the definition of
the Kullbak-Leibler divergence.

All formulas in this section can be expanded onto random vectors by
simply writing a x for a multidimensional real variable instead of a one-
dimensional x.

A.2 Several distributions of one random variable

Recall that in probability theory random variable X is defined as a mea-
surable mapping

X : (Ω,A, P )→ (S,S), (26)

where (Ω,A, P ) is a probability space and (S,S) is a measurable space called
observation space.

The mapping X induces a pushforward measure

PX(B) = P (X−1(B)) for B ∈ S (27)

on the space (S,S), which is called probability distribution of X. This
definition makes no room for possibility of one random variable to have two
different distributions.

However, in information theory and decision-making theory this possibil-
ity is allowed. Justification for this is that when we try to apply the notion
of a random variable to real-world we might have different opinions about
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how it is distributed. While we can consider an indicator of tomorrow mean
temperature being above zero to be a random variable X defined as follows:

X =

{
1, if that temperature is above zero,

0, otherwise,

we couldn’t possibly know on what probability space this random variable
is, and, therefore, we couldn’t know what distribution it has.

Hence, when someone says that X has Bernoulli distribution with pa-
rameter, say, 0.5 they merely express their opinion of how likely it is for
temperature to be above zero tomorrow. There is no objectivity in that,
and there couldn’t be any since we cannot observe random variables, but
only their realizations. Consequently, someone else might say that X has
Bernoulli distribution with parameter 0.1 and be in their right to do so.
While it contradicts the definitions of a random variable and a probability
distribution as stated above, it still makes sense to refer to X as one ran-
dom variable with multiple subjective probability distributions. In this case
we use the following definitions (sometimes called subjective) of a random
variable.

Definition A random variable is an unknown outcome of a particular
event.

To apply the probability theory we treat such unknown outcomes as
random variables by the definition of the probability theory. We attribute
properties of these probability-theory variables back to the said outcomes.
This approach yields definitions like the one below.

Definition Assume that a random variable (in the sense of the subjective
definition) X is treated by someone as a random variable (in the sense of the
probability theory) with the distribution P. Then we call P a probability
distribution in the sense of the subjective definition.

These definitions allow us to work with several opinions about how some
random variable is distributed and use the whole probability theory appa-
ratus at the same time. Also, these definitions may be a little confusing.
Fortunately (and hopefully) it brings no substantial complications to their
application.

Since we allowed random variables to have multiple distributions we can-
not simply say ‘expected value of X’ anymore, but have to say ‘expected
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value of X with respect to distribution P ’ or ‘expected value of X with
respect to pdf fP ’ instead. To respect this the following notation is used:

EP X or EfP X respectively.

At the same time as we allow subjective probability distributions we also
assume that each random variable does have the true objective distribution
that cannot be observed. Let’s imagine a lottery that issues one thousand
tickets numbered from one to one thousand, only one of which will win
tomorrow when the winning number X is announced. Say, we buy one ticket
and try to weigh our chances of winning. It is natural to apply what is called
the principle of indifference and assign the same probability 1/1000 to each
number. If we do so then our subjective probability distribution Pours is

Psubj(X = k) = 0.001 for k = 1, . . . , 1000.

It is not that much improbable that organizers are lazy enough to pick
the winning number by simply flipping the coin: if it comes up heads then
the winning number is 257, otherwise it is 312. Presumably said organiz-
ers assume that their coin is perfect and, therefore their (still subjective)
distribution Porg is

Porg(X = k) =

{
1/2, if k = 257 or k = 312,

0, otherwise.

Now imagine that there is some entity – the nature, God or the giant
random number generator – that governs every single event in our world by
assigning a probability distribution to its outcome, which is the true distri-
bution in our terms. Assume that this entity ‘knows’ that the probability of
the organizers’ coin coming coming up heads is exactly

√
2/2 then the true

distribution P true of X is

Porg(X = k) =


√

2/2, if k = 257,

1−
√

2/2, if k = 312,

0, otherwise.

It might be helpful for understanding the notion of the true distribution
to picture God playing dice behind any random outcome. The fact that we
do not know the law controlling the random variable in question does not
mean there is not one. The true distribution is the one that God uses to
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determine the yet unknown, neither to us nor to Him, outcome of some
event.

Though “it seems hard to sneak a look at God’s cards” we can still
observe, infer, and make conjectures about probability distributions of real-
life events. That is exactly how different subjective distributions of a common
random variable are created.

A.3 Kullback-Leibler divergence

Kullback-Leibler divergence9 is an asymmetric measure of difference between
two probability distributions. It was introduced by Kullback and Leibler in
[17] as the mean information contained in a random variable X to discrim-
inate from false hypothesis H1 that L(X) = Q to the true hypothesis H0

that L(X) = P.

Definition Suppose P and Q are mutually absolutely continuous (meaning
both P � Q and Q � P are true) distributions of a random variable X
and both measures are absolutely continuous with respect to a common
probability measure µ on the same space on which P and Q are defined (the
observation space of the variable X). Denote

fP =
dP

dµ
and fQ =

dQ

dµ

the respective Radon-Nikodym derivatives of P and Q with respect to µ.
Call then the Kullback-Leibler divergence from Q to P the expected
value

D (P‖Q) = EP log
P

Q
=

∫
supp

fP (x) log
fP (x)

fQ(x)
dµ(x), 10

where supp is the common support of P and Q. Notation D (fP‖fQ) is used
as an equivalent to D (P‖Q) .

Note that P and Q having a common support is not an additional as-
sumption but an implication of P and Q being mutually absolutely contin-
uous. The latter assumption is easily alleviated by accepting the following
convention based on continuity arguments:

9This is the term that articles [15] and [14], which this work roots from, and Wikipedia
prefer. If you, however, want to find out more about the subject on the Internet you might
wanna consider looking for the relative entropy instead.

10The logarithm in this definition can be taken to any base as long as the same one is
used consistently. We assume that the logarithm is taken to base e.
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0 log
0

x
= 0, if x 6= 0;

x log
x

0
=∞, if x 6= 0;

0 log
0

0
= 0.

The last equality actually has nothing to do with the continuity, its pur-
pose is to allow us to, at least formally, take the integral in the definition A.3
over the whole space S and not bother with writing the region of integration
all the time.

A corollary of the second equality is that if support of the assumed
distribution is a proper subset of the support the true distribution then the
Kullback-Leibler divergence is infinite:

suppQ ( suppP ⇒ D (P‖Q) =∞.

It makes sense in Kullback-Leibler terms because if suppQ ( suppP then we
will observe with positive probability values of X that are in suppP \ suppQ
and are only compatible with the true distribution P and, thus, have infinite
amount of information to discriminate between the two in favor of P.

If both P and Q are discrete probability measures then

D (P‖Q) =
∑
i∈supp

P (x) log
P (x)

Q(x)
,

where P (x) = P ({x}), Q(x) = Q({x}) and supp is the union of supports of
P and Q.

In case P and Q are continuous

D (P‖Q) =

∫
supp

fP (x) log
fP (x)

fQ(x)
dx,

where fP and fQ are probability density functions of P and Q respectively
and supp is again the union of supports of P and Q.

It can be shown (proof can be found for example in [5]) with the appli-
cation of Jensen’s inequality that for any two probability measures P and
Q

D (P‖Q) ≥ 0 and D (Q‖P ) = 0⇔ P = Q.
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This theorem is usually referred to as Gibbs’ inequality.
Furthemore, the Kullback-Leibler divergence is well-defined for infinite

discrete and continuous random variables as well as for finite discrete vari-
ables (as we will see in the next subsection, this is not true for the entropy,
which is not always defined for continuous variables). Other property of
the Kullback-Leibler divergence is the one that would be expected from a
measure of difference between probability distributions - invariance under
one-to-one transformations (also not true for the entropy of continuous vari-
ables).

The Kullback-Leibler divergence is not a true distance measure since it
is not symmetric and does not satisfy the triangle inequality; it is useful,
however, to think of it as a some sort of distance between probability dis-
tributions. For example, in case we have to choose a distribution Q out of
some set of distributions Q it stands to reason to choose the one that is
the ‘closest’ to the true distribution P. That means that we solve for Q̂ the
following optimization problem:

Q̂ = argmin
Q∈Q

D (P‖Q) .

A.4 Entropy

Entropy of a random variable is a measure of the uncertainty contained in
it. If we think that a random variable has some distribution then entropy
represents how vague is our knowledge about this random variable. The
term was introduced by Shannon in [21]and, thus, sometimes referred to as
Shannon’s entropy.

Definition The entropy of a discrete random variable X with support
suppX and probability distribution P is

H(X) = H(P ) = −
∑

x∈suppX

P (x) logP (x).

If the support of X has n elements then

H(X) ≤ log n,

latter being the entropy of a uniformly distributed variable on the same
support.
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Let X now be an infinite discrete random variable. It can be shown that
if a sequence of discrete finite random variables Xn with supports suppXn

converges to X in distribution at the same time as suppXn ↗ suppX then

lim
n→∞

H(Xn) = −
∑
x∈supp

P (x) logP (x).

Therefore, if X is an infinite discrete random variable then the same equation
can be used to define its entropy as the one used in the definition above.

For each x ∈ suppX probability P (x) lies in the interval (0; 1] and there-
fore −P (x) logP (x) is a positive finite number. Thus, entropy of a discrete
random variable is always defined and

H(X) ≥ 0.

For a continuous random variable X with a pdf fX Shannon proposed
to define entropy as

H(X) = −
∫
R
fX(x) log fX(x) dx

with the convention 0 log 0 = 0 based on continuity arguments.
This definition, being derived by simply substituting

∑
in the defini-

tion at the beginning of this subsection with
∫
, lacks some properties of

the discrete-case entropy. It is not always defined, not always non-negative
and is not invariant under one-to-one transformations. Consequently, this
continuous entropy is often referred to as differential entropy to emphasize
the difference in properties. One of the solutions to this problem would
be to use Kullback-Leibler divergence between the distribution in question
and some referential distribution instead of entropy. If the support of the
variable is bounded then uniform distribution over the same support is a
reasonable choice of referential distribution because it contains the greatest
amount of uncertainty. No such universal choice exists in case the support
is unbounded.

A.5 Maximum entropy principle

The maximum entropy principle states that under given constraints that
represent all our knowledge about a random variable X we should choose
the distribution with the greatest entropy (see [10] and [11] - the articles by
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one of the most prominent apologists of the said principle). Denote P the
set of all probability distributions that meet mentioned constraints. Then
applying the maximum entropy principle means solving for P̂ the following
optimization problem:

P̂ = argmax
P∈P

H(P ).

The justification for this principle is that apart from the information we
have about X there is no other reason to have any certainty about X. Any
distribution that has less entropy contains more unsubstantiated certainty
and therefore we should not choose this distribution. The maximum entropy
distribution contains the least amount of information other than given by
our knowledge of X and therefore is the preferred choice. An axiomatic
justification for the principle was given in [22].

‘Constraints that represent our knowledge’ sounds a little vague so it
is worth some elaborating. Usually those constrains have a form of either
generalized expected values or bounds on them, e.g.

EP X = β1,

EP (X − EX)2 ≤ β2,

P (X < 0) = EP I(−∞;0) = β3,

or something else along those lines.
It is often stated that if we have no information about the variable X

then the uniform distribution is the one with the most entropy, which can
be seen as a justification for the principle of indifference. This statement,
while true, is a little imprecise: it is implied that 1. X has a finite (discrete
case) or at least bounded (continuous case) support and 2. we know what this
support is or at least can be (we might not know that suppP = supp, but only
that suppP ⊂ supp).This might not help understanding the principle, but is
important in applying it since outcome may differ considerably depending
on the support constraint. Note that statement suppP ⊂ supp can be written
in terms of expected values as EP Isupp = 1.

Here is the correct statement about uniform distribution being the most
entropic one and two other examples of the maximum entropy principle
application.

1. Out of all distributions P with the support suppP ⊂ supp, where supp
is either finite or bounded set, the uniform distribution U(supp) is the
one with the maximum entropy.
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2. Out of all non-negative distributions with the expected value 1/λ the
one with the most entropy is the exponential distribution Exp(λ).

3. Out of all real-valued distributions with the expected value µ and the
variance σ2 the one with the highest entropy is the normal distribution
N(µ, σ2).

A.6 Kerridge inaccuracy

Kerridge inaccuracy is, like Kullback-Leibler divergence, is an asymmetric
measure of ‘difference’ between two probability distributions. It was intro-
duced by Kerridge in the article [16] as a measure combining the amount of
mistake made by assuming that the random variable in question has distri-
bution Q when its true distribution is P and uncertainty contained in the
true distribution P.

Definition The Kerridge inaccuracy K (P ‖ Q) from a distribution Q to
a distribution P is defined as

K (P ‖ Q) = D (P‖Q) + H(P ).

The Kerridge inaccuracy K (P ‖ Q) is defined if and only if the right side
of the equation above is defined, which means not only that the entropy
H(P ) has to be defined, but also that H(P ) = −∞ and D (P‖Q) = ∞
cannot be true at the same time.

Provided that K (P ‖ Q) exists and that we accept the following conven-
tion:

x log 0 = −∞, if x 6= 0,

0 log 0 = 0,

we can write in case both Q and P are discrete distributions (denote supp
the union of supports of Q and P )

K (P ‖ Q) = −
∑
x∈supp

P (x) logQ(x),

and if Q and P are continuous distributions with pdfs fQ and fP respectively
then

K (P ‖ Q) = −
∫

x∈supp

fP (x) log fQ(x) dx.
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Properties of the Kerridge inaccuracy are a corollary of the properties
of the Kullback-Leibler divergence and entropy. One that might be worth
repetition though is that if the support of an assumed distribution is smaller
than the support of the true distribution then the Kerridge inaccuracy (given
it is well-defined) from the first one to the second is infinite:

suppQ ( suppP ⇒ K (P ‖ Q) =∞.

In some case searching for an optimum distribution may be reformulated
as an optimization problem involving minimization of the Kullback-Leibler
divergence from Q to P given a certain distribution P and some constraints.
Assuming that P has a finite entropy mentioned optimization problem is
equivalent to the minimization of the Kerridge inaccuracy from Q to P
under the same constraints. The latter statement is an immediate corollary
of the definition of the Kerridge measure.

A.7 Infinite-dimensional differentiation and optimiza-
tion

Applying the principle of maximum entropy in continuous case leads to a
bit unusual optimization problems, in which optimization is conducted for
a variable which is infinite-dimensional, namely a probability density func-
tion. Fortunately the following two definitions and two propositions allow
generalization of usual finite-dimensional optimization methods to infinite-
dimensional spaces.

Definition Let X be a vector space, Y a normed space, T a transformation
defined on a domain D ⊂ X having range R ⊂ Y. Let x ∈ D and h ∈ X
be arbitrary elements and let x + αh ∈ D for all α sufficiently small. If the
limit

∂T (x;h) = lim
α→0

1

α
[T (x+ αh)− T (x)]

exists, it is called the Gateaux differential of T at x with increment h. If
this limit exists for each h ∈ X, the transformation T is said to be Gateaux
differentiable at x.

Definition Let X be a vector space, Y a normed space, T a transformation
defined on an open domain D ⊂ X having range R ⊂ Y. If for each x ∈ D
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and each h ∈ X there exists ∂T (x;h) ∈ Y, which is linear and continuous
with respect to h such that

lim
||h||→0

||T (x+ h)− T (x)− ∂T (x;h)||
||h||

= 0,

then T is said to be Frechet differentiable at x and ∂T (x;h) is said to be
the Frechet differential of T at x with increment h. The Frechet differential
for a fixed x ∈ D by the definition can be written as ∂T (x;h) = 〈Ax, h〉 ,11
where Ax is the corresponding unique linear operator. The correspondence
x → Ax defines a transformation, which is called the Frechet derivative
T ′ of T.

Proposition A.1 If the Frechet differential exists then the Gateaux differ-
ential exists as well and the two are equal.

Proposition A.2 Let the real-valued functional f have a Gateaux differen-
tial on a vector space X. A necessary condition for f to have an extremum
at x0 ∈ X is that ∂f(x0;h) = 0 for all h ∈ X.

For more on the topic see [18], from which the definitions and the propo-
sitions above are taken.

11We use notation 〈∗, ∗〉 for scalar product.
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