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Chapter 1

Introduction

1.1 Motivation and goals

In recent years artificial neural networks (ANN) converted from a theoretical approach to
the widely-used technology with successful applications to different problems. The most of
these applications are related to the pattern recognition and neural networks are often used
as non-linear approximators that exhibit a high tolerance to imprecision and perform well
even in noisy environments. Those qualities also make neural networks suitable for financial
problems domains, and particularly for financial trading.

There have been numerous attempts to apply neural networks to the developing of the
trading systems that can not only predict future values of some goods, but also extract profits
from those predictions. Most of those attempts were formally and statistically successful, but
because of different reasons did not perform well on real-time financial trading and therefore
remained just a pure theoretical research. But there is at least one result that proved to be
extremely efficient on the real financial market.

Olexandr Topchylo is the winner of the Automated trading championship 2007. He devel-
oped an ANN-based automated trading program that was able to generate more than 1200%
of gross profit in three months. The program started with 10 000$ (standard starting amount
for the championship) and in less than three month ended up with more than 130 000$.
After the championship, he started using that program for individual automated trading.
And according to his trading reports, it is still very profitable.

Details of the methodology that Olexandr has used are unknown - as every successful
trader, he will not reveal his secrets. But his example shows that creating a profitable advisor
using ANN is possible. And that fact became the basis for the main objectives of that thesis.

Therefore, the main goals of that thesis can be stated as:

1. Explain and evaluate different types of neural networks.
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2. Explore the possibilities of using neural networks in automated Forex trading.

3. Create and evaluate ANN-based Forex trading model with respect to noise robustness
and its ability to approximate the input space. Compare that model to alternative
models.

4. Examine different approaches to automated trading that are based on different types
of neural networks.

The thesis is divided into eight chapters. The second chapter gives an introduction to
the one of the oldest models of artificial neural networks - a multi-layer perceptron (MLP).
There I will explain the model of the artificial neuron, how can artificial neurons be organized
into network and how that network can be trained to be able to recognize patterns in some
particular domain. In that chapter I will also give an overview of the similar model - so-called
RBF network and compare it to MLP.

Chapter 3 deals with the complete different types of ANN - networks that do not recognize
patterns, but rather group input space items and divide them into clusters. In that chapter
I will describe three well-known methods that perform that task - Kohonen’s self-organizing
maps, K-means clustering and Fuzzy c-means clustering. Kohonen’s maps will be described
in details as I will use that method in later chapters.

Backgrounds of the financial markets are explained in Chapter 4. That chapter gives an
overview of the terminology and processes that are happening on the financial markets and
is inevitable for understanding the financial trading domain and problems that I will try to
solve.

Chapter 5 provides an overview of how multi-layer neural networks can be applied to the
financial trading. It describes common problems that must be solved and based on the cited
sources suggest different approaches of how to use neural networks in that domain.

In Chapter 6 I will suggest two Kohonen’s maps-based approaches that can be used for
the financial market analysis. The first approach will show how to learn from the successful
traders by finding out what are their behavioral patterns. The second method will propose
how to classify market situations and then use that information for the profit extraction.
Both approaches will be tested and analyzed based on real financial data.

In Chapter 7 I will introduce, analyze and implement the framework for the automated
financial trading. Its efficiency will also be tested on real financial data.

Finally, in the last chapter I will discuss results of my work and propose some directions
for the future research.

The part of the thesis is also the tool that implements the suggested framework and make
it easy to use and evaluate. Description of that tool is the part of the Chapter 7 and the
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tool itself (including the source code) can be found on the attached CD. The CD content
description is also the part of the CD.
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Chapter 2

Artificial neural networks

A biological neural network is an essential part of human brain. It is a highly complex system
with the ability to process large amounts of information simultaneously. Biological networks
are able to recognize and process different visual inputs much faster than any modern high-
end computer. For example, human brain is able to recognize familiar face in about 100-200
ms, while modern computer requires minutes or even hours for solving the same problem.
In general, it is a known fact that in many tasks human brain is much more efficient than
computers.

Based on examples and feedback from the ”teacher”, our brain allows us learning how to
distinguish an apple from an orange or recognize letters. And even without the ”teacher”, we
are still able to group similar patterns together. Those and other strengths of human brain
challenged scientists to emulate those processes by researching how to use machines for tasks
that are common for humans. And one of the concepts that appeared as the result of that
research, is the Artificial neural network (ANN) concept.

First steps of the ANN theory were made in 1943 by neuro-physiologist Warren McCulloch
and mathematician Walter Pitts. They introduced artificial neurons with the threshold1, that
could be arranged into networks. Several years later, in 1949, a psychologist Donald Hebb
designed the first learning rule for artificial neural networks - Hebb’s rule. Its premise was
that if two neurons were active simultaneously, then the strength of the connection between
them should be increased.

In subsequent years, the ANN theory made significant progress: in 1960s more neuron
architectures - perceptron and adaline - were introduced. Next years, jointly with more pow-
erful computers, brought even more different types of ANN - self-organizing maps, associative
networks, RBF-networks and more. Nowadays, artificial neural networks are widely adopted

1Later called McCulloch-Pitts neuron. By threshold they meant the following idea: the unit fires only if
the input to the neuron is greater than the ”threshold value”.
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Figure 2.1: Model of the neuron.

by different scientific and industrial fields - from medicine to speech recognition. More about
ANN history can be found in [9].

2.1 Biological neural networks

Scientists started their attempts in discovering human brain secrets long time ago. But despite
the fact that in previous centuries the neuroscience made a huge breakthrough, there are still
numerous mysteries about how human brain works ([7], [26]).

One of the very first scientific attempts of discovering the main principle of brain func-
tioning was made by Santiago Ramon y Cajal2 in 1911. He used the method of Camillo Golgi3

for silver nitrate preparation, and then dyed brain neurons using that substance. Cajal dis-
covered that brain has a cell structure and described brain cells as a polar-sensitive cells that
receive signals using ramified sprouts (called dendrites) and send signals using formation
called axon. Axon contacts dendrites of other neurons through special connection points -
synapses - that adjust strength of the input signal (Fig. 2.1).

Golgi method helped to discover a great variety of neurons which differ in dendrites’
branching and axons length. Cajal found numerous differences between the types of neurons.
But despite all those distinctions, they all process signals in the same way: signals are rep-
resented by electric impulses that are transmitted across a synaptic gap and dendrites to
the soma. Soma, neuron’s body, then somehow sums up the incoming signal. If the result is
greater than some threshold value, the cell fires and transmits a signal over its axon to other

2Santiago Ramon y Cajal (1852 - 1934) was a Spanish histologist, physician, pathologist and Nobel
laureate.

3Camillo Golgi (1843 - 1926) was an Italian physician, pathologist, scientist and Nobel laureate.
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cells. Also, the synaptic behavior can change in time, so the neuron’s behavior changes as
well. Cajal came to the conclusion that synapses play an important role in learning. Basically,
the whole learning process is based on synaptic weights adjustments.

2.2 Mathematical model of the neuron

Biological neural networks are very complex. In contrast, the mathematical model of the
network is much more simplified and is based on several assumptions:

1. All neurons are synchronized. That means that the signal passing from one neuron to
another takes the same time for all connections. Signal processing is also synchronized
and is the same for all neurons.

2. Every neuron has a so-called transfer function which determines neuron’s output signal
depending on the input signal strength. That function is time-independent.

3. When the signal passes the synapse, it changes linearly, i.e., the signal value is multiplied
by some number. That number is called synaptic weight.

The very important property of the synaptic weight is that it changes in time. That feature
makes it possible for brain to react differently on the same input in different moments. Or,
in other words, to learn.

Of course, those assumptions simplify the initial biological neural network very much.
For example, brain signal transmission time naturally depends on the distance between neu-
rons. But despite those simplifications, artificial networks still preserve the most important
characteristics of biological networks - adaptability and ability to learn.

The first mathematical model of the neuron was introduced more than a half century ago,
but did not change much since then. First of all, the neuron is seen as a simple ”automate”
that transforms input signals into the output signal (Fig. 2.2).

The model functions as follows: inputs of the neuron’s synapses receiveN signals [X1, . . . , Xn].
Then every synapse makes a linear modification of the signal using its synaptic weight. After
that neuron’s body (soma) receives signals [X1w1, . . . , Xnwn] (where wi is the corresponding
synaptic weight) and sums those signals:

S =
n∑
i=1

Xiwi (2.1)

Then it applies some given function F (that is also called activation function) and
sends the final signal

Y = F (S) (2.2)

12



Figure 2.2: Artificial neuron model.

to the output.
There are different functions, that are commonly used as activation functions. In a net-

work, it is not necessary to use the same function for all the neurons. However, it’s a common
practice.

In most cases activation functions are non-linear. Otherwise, the whole network will im-
plement some linear transformation and will be equivalent to only one artificial neuron -
perceptron.

Most common activation functions are listed below:
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Function name Formula Values range

Linear F (S) = kS, k ∈ R+ (−∞,∞)

Semi linear F (S) =

{
kS, S > 0, k ∈ R+

0, S ≤ 0
[0,∞)

Sigmoid F (S) = 1
1+e−αS

(0, 1)

Bipolar sigmoid F (S) = 2
1+e−αS

− 1 (−1, 1)

Hyperbolic tangent F (S) = eαS−e−αS
eαS+e−αS

(−1, 1)

Exponential F (S) = e−αS (0,∞)

Sinusoidal F (S) = sin(S) [−1, 1]

Fractional F (S) = S
α+|S| [−1, 1]

Step F (S) =

{
1, S ≥ 0

0, S < 0
[0, 1]

Signature F (S) =

{
1, S ≥ 0

−1, S < 0
[−1, 1]

Binary step F (S) =


−1, S ≤ −1

S,−1 < S < 1

1, S ≥ 1

[−1, 1]

Where α ∈ R.

2.3 Multi-layer perceptron

That section describes one of the fundamental neural networks’ types - multi-layer per-
ceptron (or MLP, or back propagation network). Lots of other neural networks’ types
- such as RBF networks or probabilistic networks - are based on that model.

In general, an artificial neural network is a set of artificial neurons. Arrangement and
types of those neurons depend on the network type. Multi-layer perceptron contains three
types of neurons:
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Figure 2.3: Multi-layer perceptron.

1. Input neurons. Those neurons are taking input vector that encodes some action or
information about the external environment. Input neurons don’t perform any type of
computation, but only pass the input vector to subsequent neurons.

2. Output neurons receive signals from the preceding neurons and transform it using for-
mulas 2.1 and 2.2. Those values represent output of the whole neural network.

3. Hidden neurons are the basis of the neural network. Those neurons receive the signal
from the input neurons or preceding hidden neurons, process it in accordance with
formulas 2.1 and 2.2 and then pass result signals to the subsequent (hidden or output)
neurons.

In multi-layer perceptron neurons are divided into layers. Input and output neurons form
separate layer each - input layer and output layer. Hidden neurons form one or several
hidden layers. Every MLP neuron, with the exception of input neurons, is connected via
synapses with all neurons of the previous layer. Example of the MLP architecture is shown
on Fig. 2.3.

That network receives 4-dimensional input (as it has 4 input neurons). The result is rep-
resented by the 4-dimensional output vector. It also contains 3 hidden layers. In publications
such network is often referred as 4-5-2-5-4.

2.3.1 Back propagation network training algorithm

Neural networks are the powerful tool for solving different problems - such as classification
or prediction. However in order to solve some particular problem, the network should be
properly set up and then trained.

15



The very first step is the network architecture selection - e.g., how many input and output
neurons should the network contain, how many hidden neurons and layers. Number of input
and output units often follows the context. If the network is expected to produce boolean
values, like ”Yes” or ”No”, it is clear that it should have only one output. Similar thoughts
can be applied to the input neurons’ number.

In contrast, selecting the number of hidden units and layers is not simple. In most sit-
uations, there is no obvious way of how to determine the best number of hidden neurons
without training several networks and estimating the generalization error for each of them4.
Too few hidden units will produce high training error due to underfitting. Too many hidden
units lead to low training error but still have high generalization error due to overfitting.
Some discussions about number of hidden units and layers can be found, for example, in [5]
or [21].

The second step is training itself. Back propagation algorithm belongs to the group called
supervised learning. It means that to be trained, the network should learn on pairs (in-
put, expected output) which all together form the training set. In contrast, some classes
of networks, like Kohonen’s self-organizing maps, belong to the unsupervised learning
group. It means that the training set does not contain expected outputs for the given inputs.
Unsupervised learning is often used for clustering purposes.

At the beginning of the MLP’s learning, network’s weights are initialized randomly (often
by small random values). Then the network

1. processes one by one every item in the training set,

2. compares its output with the desired output,

3. computes error value and

After checking the whole training set, the network modifies its synaptic weights in order
to minimize the error.

Most of the MLP training methods are based on the gradient descent approach - iterative
change of the network’s synaptic weights that gradually decreases the error on the training
set. Algorithm that implements that idea is called error back propagation algorithm and
can be described as follows:

1. Initialization. The first step is selecting the network architecture and setting its initial
synaptic weights. The most common method of the synaptic weights initialization is
choosing small random numbers with the zero mean value and uniform distribution.

4The generalization error is a function that somehow measures how far the network is from the
”teacher”.
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2. Training pairs presentation. During that phase, elements of the training set are
passed one by one to the network. For every training sample, there are two steps -
forward computation and backward computation - that are taking place.

3. Forward computation. Assume that the training set consists of N of pairs (xi,di):

T = {(xi,di)}, i = 1, . . . , N,xi ∈ Rn,di ∈ Rm (2.3)

where xi is an input vector and di is the desired output vector.

The network passes the input vector from layer to layer and sequentially computes the
outputs for all the layer’s neurons. Those outputs form an input vector for the next
layer. For every neuron j in the layer l (with the exception of input neurons) the output
ylj signals are computed from the previous layer output signals yl−1i as follows:

Sj =

ml∑
i=1

wlijy
l−1
i (2.4)

ylj = F (Sj) (2.5)

Here ml is the number of synaptic weights for all the neurons of the layer l. That
number is determined by the number of neurons of the previous layer and is the same
for every layer’s neuron.

At the firs thep the neuron calculates the linear combination of outputs of the neurons of
the previous layer (2.4). The output value is calculated by applying neuron’s activation
function to the value computed in the first step (2.5).

For input layer - layer 0 - the formula is simpler:

y0j = xij (2.6)

where xij is the jth element of the input vector xi.

After the input vector xi passes all the layers, the network produces the output vector
oi = [yout1 , . . . , youtm ], that is used for the error signal computation:

ei = di − oi (2.7)
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4. Backward computation. During that step synaptic weights are adjusted in order to
produce smaller error value. Those adjustments are derived from the error signal.

For each output unit j calculate δoutj :

δoutj = eijF
′
(Sj) (2.8)

where eij is the jth element of the error vector ei and F
′

is the derevative function for
the function F.

For hidden neuron j of the layer l calculate δhidj :

δhidj = F
′
(Sj)

∑
k

δl+1
k wjk (2.9)

where summarization is done over all neurons k of the following layer, and wjk is the
synaptic weight that connects neurons j and k.

When all δ are calculated, synaptic weights are adjusted using (2.10) and (2.11):

wt+1
jk = wtjk + ∆wtjk (2.10)

∆wtjk = ηδjy
l−1
j + µ(wtjk − wt−1jk ) (2.11)

where η is called learning rate, yl−1j is the output of the neuron j of the previous layer
and µ is momentum. Learning rate and momentum are numbers between 0 and 1. They
will be discussed later.

2.3.2 Training algorithm - practical aspects

In the process of back propagation, two parameters are available to the modeler:

1. Learning rate. Learning rate is a number between 0 and 1 that determines how fast
the neural network adjusts itself to the patterns in the training data. It does not have to
be a constant and can also dynamically decrease or increase with time. That parameter
must be chosen carefully - too small one will make the learning process slow, and too
large one might lead to the divergence. Jacobs in [15] suggest modifying learning rate
dynamically and increasing it as long as gradient keeps pointing the same direction,
but lowering it when the gradient changes its sign.
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2. Momentum. Momentum term influences the way of how previous weights affect the
current one. It helps the algorithm in preventing being stuck in a local minimum. That
value must also be chosen carefully and should be determined experimentally. The use
of momentum can be omitted. However it may improve neural network’s performance
greatly and therefore it is commonly used.

The back propagation process can suffer from several problems:

1. Reaching of the global error function minimum is not guaranteed by the method. As
there can be several local minima, the algorithm might possibly remain at one of them.

2. Back propagation method might lead to overfitting: in cases where learning was per-
formed for too long or where the training examples are rare, the network may adjust
to very specific random features of the training data, that have no causal relation to
the target function. The other possible cause of overfitting is having too many hidden
neurons.

3. There is no exact way of how to determine that the algorithm has found the best solution
(i.e., global minimum). That problem can be generally approached by restarting the
algorithm several times with some changes (e.g., shuffling training set) and therefore
increase the probability that the reached minimum is the global one.

Despite those problems, back propagation is a very popular algorithm that seems to be
useful in many areas ([3], [1]). Moreover, other training methods are also available - conjugate
gradient descent, Quasi-Newton algorithm, Levenberg-Marquardt algorithm. However, those
are not widely used.

Another alternative training method is based on the genetic approach. The main principle
is the following: weights of the network are not adjusted by the back propagation algorithm,
but by the genetic algorithm. At the beginning, the initial population contains randomly
generated sets of weights. An evolution algorithm is then applied to the population - it gen-
erates set of new weights and keeps only the most appropriate ones. That solution generally
prevents the algorithm from being stuck in a local minimum and also shows a good perfor-
mance. Networks that employ that approach are generally called Genetic Algorithm Neural
Network or GANN. Kim in [17] gives an example and evaluates those networks in financial
forecasting.

2.4 RBF networks

Radial basis function networks (RBF networks) is the another neural network model that
contains several connected layers and shares some other principles with the MLP.
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RBF networks are often used for solving approximation and interpolation problems. Com-
monly, approximation or interpolation solution itself is represented by linear combination of
some basis functions (e.g., polynomials) that approximates the objective function with some
precision. The principle is the same for RBF networks. The difference is that the RBF network
uses so-called radial basis functions instead of polynomials.

Formally, interpolation of a set of N data points requires all the input vectors X = {xi|i =
1, . . . , N} to be mapped onto the corresponding target output vectors T = {ti|i = 1, . . . , N}.
So the goal is to find a function f(x) so that

f(xi) = ti,∀i = 1, . . . , N (2.12)

The RBF approach employs functions, each of those functions takes the form φ(||x−xi||)
where φ(.) is some radial basis function and ||x − xi|| is some metrics, normally Euclidean
distance.

The output of the mapping is then takes the form:

f(x) =
N∑
i=1

wiφ(||x− xi||) (2.13)

The last step is finding the weights wi such that function goes through all the data points.
Radial basis function networks implement the idea described above. In order to do so,

they employ a particular neural network architecture that is described below.

2.4.1 RBF network architecture

Radial basis function networks are built using so-called RBF units, and each of them imple-
ments RBF function. Every RBF unit has n inputs and one output. It also has two additional
parameters that are used for the corresponding RBF function computation - function center
c and function width b.

Then the output of the unit for the given input x = (x1, x2, . . . , xn) can be expressed as

φ(ξ) = φ(
||x− c||

b
) (2.14)

where φ(.) is a radial basis function. The most common radial basis functions are listed
below:
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Figure 2.4: RBF network. Source: Wikipedia

Function name Formula

Gaussian φ(ξ) = exp
−ξ2

2σ2 , σ > 0

Multi-quadric φ(ξ) = (ξ2 + σ2)1/2, σ > 0

Inversed multi-quadric φ(ξ) = (ξ2 + σ2)−1/2, σ > 0

Generalized multi-quadric φ(ξ) = (ξ2 + σ2)β, σ > 0, β ∈ (0, 1)

Thin plate spine φ(ξ) = ξ2ln(ξ)

Cubic φ(ξ) = ξ3

Linear φ(ξ) = ξ

RBF network itself is has three layers - input layer, RBF layer and output layer - and is
shown on Figure 2.4. The input layer passes the input vector x = (x1, x2, . . . , xn) to the RBF
layer. That layer - which is a hidden layer of H RBF units - using 2.14 transforms the input
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into new vector y = (y1, y2, . . . , yh) that is subsequently passed to the output layer using the
linear transformation. Then the final result f = (f1, f2, . . . , fn) can be expressed as

fk(x) =
h∑
j=1

wjkyj =
h∑
j=1

wjkφ(
||x− cj||

bj
) (2.15)

where fk is the output of the kth unit of the output layer.

2.4.2 Learning of the RBF networks

Similarly to MLP, RBF networks use supervised learning for the training. So the main idea
remains the same: based on the training set, at every step the error value is calculated and
subsequently used for the network parameters adjustment.

RBF networks employ two different approaches of how to train them:

1. Gradient training

2. Hybrid training

In that section I will describe the main idea of both of those methods. More information
can be found in [20].

Gradient training

Because RBF networks are very similar to MLP, the same training idea can also be applied
to the RBF learning. The only difference is that RBF networks parametrize not only their
weights, but also RBF units (by setting custom centers and widths). The main goal of the
training process can be stated as setting all required parameters in order to minimize overall
training error. Then the common rule for that step can be expressed as:

p(n+ 1) = p(n)− αδE
δp

(2.16)

where p is the value of some parameter during the iteration n, α is the learning rate and
n is an iteration. That approach reminds the MLP gradient descent learning algorithm.

RBF gradient training outline

1. Initialization. Set n = 0. Set random values to wij(0), ci(0), bi(0) for all i = 1, . . . , h,
j = 1, . . . ,m, where m is the number of outputs.
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2. Next iteration. Set n = n+ 1.

3. Error calculation. Calculate error E.

4. Parameters’ update. Update network’s parameters:

wij(n+ 1) = wij(n)− α δE

δwij
(2.17)

ci(n+ 1) = ci(n)− αδE
δci

(2.18)

bi(n+ 1) = bi(n)− αδE
δbi

(2.19)

5. Testing stop condition. If stop condition is met (e.g., the overall error is small enough
or maximum number of iterations is reached), then stop. Otherwise, continue at step
2.

That algorithm is accumulative, i.e., the error is calculated for the whole training set, not
for the individual (input, output) pairs.

Hybrid training outline

Hybrid training is based on the fact, that RBF network parameters can be divided into
several groups - parameters that determine location (centers), parameters that determine
size (widths) and weights. Hybrid training is using that classification in order to set those
parameters separately in tree steps.

1. Step 1. That step sets RBF units’ centers. The idea behind that process is very simple:
at some parts of the input space, there is a lot of items and therefore that part should
be ”covered” by the large number of the RBF units. In contrast, few items may be
”covered” by a significantly smaller number of the RBF units.

For finding those confluence regions, the training algorithm employs one of the cluster-
ing methods - such as Kohonen’s self-organizing maps or K-means. Then it uses found
clusters for setting the appropriate centers’ values.

2. Step 2. The next step is widths bi selection. If centers of RBF units define their
”location”, then the width can be seen as the ”size” of the unit. It is important to set
those parameters not too small as that poor selection may create areas into the input
space that are not covered by RBF units at all. At the same time, widths should not
be too large, because in that case RBF units will collide and that is also not desirable.
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The one of the possibilities of how to set width is based on a simple idea - the width
should be in a direct proportion to the distance between the unit and its closest neigh-
bor. The closer is the closest RBF unit, the smaller width value will suffice.

3. Step 3. While steps 1 and 2 are setting parameters of the hidden layer, the last step sets
up weights that are connecting hidden and output layers. That can be done, for example,
by solving the system of linear equations. Because for every xi the corresponding output
should be:

fk(xi) =
h∑
j=1

wjkyj = tki (2.20)

That condition can also be expressed in matrix notation:y1(x1) . . . yh(x1)
...

. . .
...

y1(xk) . . . yh(xk)


w11 . . . w1m

...
. . .

...

wh1 . . . whm

 =

t
1
1 . . . tm1
...

. . .
...

t1h . . . tmh

 (2.21)

or

YW = T (2.22)

Because the number of the training pairs is normally greater than the number of the
RBF units, equations above will have more than one solution. Then the solution with
the smallest error should be chosen.

The other approach of how to determine weight values is based on the least square
method and is described in details in [20].

2.5 Conclusions

In that chapter I have described two models of neural networks: multi-layer perceptrons
and RBF networks. Those networks both share a lot of similarities: both of them contain
several layers of neurons and they can employ the same principle of the error back propagation
learning. They also both play role of the non-linear mappers between multidimensional spaces.
In both cases mappings are expressed in terms of composition of functions of one variable.

At the same time, there are substantial differences between those two types:
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1. Network architectures may be different: while RBF networks have only one hidden
layer, MLP networks may have one or more hidden layers.

2. MLP nodes usually usw the same activation function, while RBF nodes use different
functions that are parametrized by centers’ and widths’ values.

3. MLP learning process determines all the parameters at the same time, while RBF
learning requires two or more stages of learning to set up the network.

The other substantial difference is that - MLP constructs global approximations, while
RBF construct local approximations. That means that for a given input vector, in MLP
many units contribute to determine the output value. By contrast, RBF networks form a
representation in the space of hidden units which is local. So for a given input vector, only
few of the hidden RBF-units will have significant activations.

Choosing between RBF and MLP networks should be motivated by the nature of the input
space. For more ”clustered” input spaces where some inputs may be considered less relevant
then the others, RBF networks may perform better. While in more uniformly distributed
spaces, MLP may be the better choice. However, there is no exact rule or algorithm for
choosing between those two alternatives and some researchers suggest trying both. The other
alternative is the combined RBF-MLP network that tries to take advantage of both MLP
and RBF networks ([10]).

For the purpose of my research, I have chosen MLP networks. The first reason for that
choice was the greater architecture flexibility provided by the MLP networks. The second
and more important reason is the nature of the problem I will try to solve. Using clustering
methods, in Chapter 6 I will show that the nature of the input space I will use can not be
naturally divided into a set of localized clusters.
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Chapter 3

Kohonen’s self-organizing maps

Self-organizing maps (SOM) were invented by Tuevo Kohonen in 1984. That neural
networks type proved to be a very powerful clusterization and visualization tool and is known
as one of the most popular models in the unsupervised learning category.

The main idea of the self-organized neural network was inspired by nature: SOM is based
on the same principle of self organization as the human brain. Human visual perception and
brain together make a very complex cognition system. More than 90% of the information is
entering brain through the visual inputs. Those inputs are then mapped onto corresponding
areas of the cerebral cortex, so that neurons dealing with the closely related information are
close to each other and can interact via short synaptic connections.

Self-organizing model employs the same principle: it perceives some complex input and
maps it onto lower dimensional surface of artificial neurons by activating some of them.
Also, same as it happens in brain, similar signals activate nearby neurons. As a result, self-
organizing maps can, in some sense, simplify multi-dimensional input space and visualize it
in human-friendly two or three dimensions.

It is worth mentioning that Kohonen’s model was not the first one inspired by the brain
self-organization features. Its predecessor - Willshaw-von der Malsburg model - was
introduced in 1976 ([30]). It contained two two-dimensional lattices (also called layers) of the
exactly same size - one for the input and one for the output (in contrast, the SOM’s input
is one-dimensional, as we will see later in that chapter). Those lattices were interconnected
using synaptic weights and nearby neurons on the input layer activated nearby neurons on
the output layer (Fig. 3.1).

Kohonen’s model appears to be more general then the Willshaw-von der Malsburg model
(that is specialized to mapping inputs and outputs of the same dimensions) [31]. What
Kohonen proposed was a much simplified learning mechanism that is capable of performing
data compression and don’t require the same dimensions of the input and the output. That
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Figure 3.1: Willshaw-von der Malsburg model. Input and output layers are connected.
There are also interconnections within output sheet [31].

is the reason why that model became much more popular then the previous one.

3.1 Self-organizing maps general overview

SOM’s architecture differs from the multi-layer perceptron. Same as Willshaw-von der Mals-
burg model, it contains only two layers. The first layer is the input layer that only passes
input vector to the next layer. The second layer is represented by the two-dimensional1 lattice
of interconnected neurons. Every neuron of the input layer is connected to the every neuron
of the output layer. Typical SOM architecture is shown on Fig. 3.2.

Output lattice is often two-dimensional and is organized as a rectangular grid. Every
neuron of that layer represents some class of possible inputs. That is done by assigning it
a numerical n-dimensional weight vector that is also sometimes called synaptic weight.
Also, every output neuron is connected with its closest neighbors.

Like most artificial networks, SOM operates in two modes: training mode and mapping
mode.

1. Training mode. At the beginning, newly created SOM does not now anything about
the input space it should represent and therefore can not work correctly. So the first step

1Higher or lower dimensions are also possible, but not common.
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Figure 3.2: SOM architecture. Input layer contains two neurons: x1 and x2. Those neu-
rons are connected with all the output layer neurons. Neurons of the output layer are also
connected.

is to teach the network of how to classify possible inputs. That process is called self-
organization or SOM training and is very important. Training phase will be described
in details later in that chapter.

2. Mapping mode. Mapping is performed by the trained network. It automatically clas-
sifies a new input vectors.

3.2 Self-organizing maps training algorithm

As mentioned before, SOM training is the most important phase because it de facto deter-
mines quality of the whole network and its ability to process input data correctly. In that
section that process is explained in details.

SOM training algorithm can be divided into four main steps that can be summarized as:

1. Initialization. During that phase synaptic weights are being initialized. That can be
done by assigning them some small random values. Also, it’s important to select the
right size of the output layer that will represent the input space properly.
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2. Competition. For each input pattern from the training set, neurons are competing
with each other by computing their output (i.e., as scalar product of the input vector
and output neuron weight vector) and on the ground of this computation the particular
neuron is declared as a winner of the competition.

3. Cooperation. During that step topological neighborhood of the winning neuron is
being determined. Thereby providing the basis for cooperation.

4. Synaptic adaptation. Weight vectors of the winning neuron and neurons from its
topological neighborhood are being adjusted under the impact of the input vector.

3.2.1 Initialization process

During the initialization process network parameters (e.g., number of output layer neurons
and synaptic weights) are set. It’s important to select good initial values to make training
more effective.

The very first step is the output map size selection. On the one hand it’s important to
select number of neurons that will represent the input space, on the other hand if the map
is too large it may not be efficient. The other important step is to select neurons’ initial
weights. There are three main possibilities how to do so:

1. Random initialization. Vectors are being initialized with the small random values.

2. Sample initialization. Initial neurons’ weights values are selected among sample val-
ues.

3. Linear initialization. In that case initial weights are being initialized on the basis
of the training set principal eigenvectors (that could be found by using Gram-Schmidt
procedure). The main goal of that method is to distribute initial synaptic weights
uniformly.

Other important initialization parameters - initial constants, neighborhood and initial
radius - will be discussed later.

3.2.2 Competition process

Let

X = {xi|xi = [xi1, xi2, . . . , xin]T}, i = 1, 2, . . . , N (3.1)

be the training set which contains N of n-dimensional vectors.
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Then let

S = {j|wj = [wj1, wj2, . . . , wjn]T}, j = 1, 2, . . . ,M (3.2)

be the set of the output lattice neurons. There are M neurons on the output layer (their
order is not important at that moment), and every neuron j is assigned a weight vector wj

of the same dimensionality as every of the input vectors.
During the competition process vectors from the training set are being submit, one by

one, to the network’s input layer that passes it to the output layer. The next step is finding a
winning neuron (also called a best-matching neuron or simply a winner) - the neuron
of the output layer, that, in some sense, corresponds the given input vector best of all. The
most established approach for the winner selection is based on the inner product criterion:
neuron j with the maximum value of inner product wT

j x is selected as a winning neuron.
As known from the geometry, inner product is equivalent to the distance between two

vectors in some Euclidean space, so the inner product condition can be rewritten as:

i(x) = argmin
j
‖x−wj‖, j = 1, 2, . . . ,M (3.3)

where i is a winning neuron and ‖.‖ stands for Euclidean distance.

3.2.3 Cooperation process

One of the basic SOM properties is that in trained network, neurons that are spatially located
close to each other also represent similar classes of input space patterns. That property can be
achieved during the learning process when the winning neuron is taken as the center of some
topological neighborhood where all neurons are cooperating. When the winner is selected
and its weight vector changes, all neighborhood neurons’ weights are adjusted as well. Those
adjustments depend on how far the adjusted neuron is located from the winner.

That section explains the process of cooperation in details and also answers the question:
what is the topological neighborhood and how it changes in time.

Definition. Let i and j be two neurons on the output layer. Then the lateral distance
between those two neurons di,j can be defined as d2i,j = ‖ri − rj‖2 where ri defines the
position of the neuron i, and rj defines the position of the neuron j. Both are in the discrete
n-dimensional output space.

For example, for one-dimensional space di,j is an integer equal to |i − j| where i, j are
neurons’ coordinates on the one-dimensional line. For two-dimensional case, di,j turns into
Euclidean distance between neurons i and j, where neuron’s position is defined by its coor-
dinates on the lattice.
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Definition. Neighborhood (or topological neighborhood) of the neuron i with the
neighborhood radius σ (sometimes also called effective width) is the set of neurons with
the lateral distance di,j smaller then σ:

N(i, r) = {j|di,j ≤ σ}, j = 1, 2, . . . ,M (3.4)

For the topological neighborhood we can also define a neighborhood function.

Definition. Let N(i, σ) is the topological neighborhood, centered in the neuron i. Then
neighborhood function hi,j is a a function of the lateral distance di,j defined on the N(i, σ),
such that satisfies:

1. The topological neighborhood hi,j is symmetric to the central neuron for which di,j = 0
and hi,j has its maximum at that neuron.

2. Topological function hi,j decreases monotonically with the lateral distance di,j increas-
ing and limdi,j→∞ hi,j = 0. That condition is necessary for convergence.

A typical example of the topological function is the Gaussian function:

hi,j = e−
d2i,j

2σ2 (3.5)

One of the features of the SOM training algorithm is that topological neighborhood
shrinks with time. It means that parameter σ is a function that is decreasing in time. A
popular choice for the σ(n) is the exponential decay:

σ(n) = σ0e
− n
τ1 (3.6)

where σ0 indicates initial neighborhood radius and τ1 is a time parameter.
Therefore, topological neighborhood function can now be written as:

hi,j(n) = e
−

di,j

2σ2(n) (3.7)

3.2.4 Adaptation process

The last part of the learning process is the synaptic adaptation. That means that for every
neuron within winner’s neighborhood N(i, σ), its synaptic weights need to be adjusted with
a glance of the input vector x. That adjustment could be made using generalized Hebb’s rule:

∆wj = ηyjx (3.8)
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where η if the learning rate parameter and yj is the response of the neuron j to the
input x.

However, the Hebb’s rule in its initial form is not good for the unsupervised learning
and should be modified by including the forgetting term g(yj)wj, where wj is a synaptic
weight of the neuron j and g(yj) is some positive scalar function of the response yj. The only
requirement on the function g(yj) is

yj = 0⇒ g(yj) = 0 (3.9)

Given such function, the synaptic change of the output neuron j can be expressed as
follows:

∆wj = ηyjx− g(yj)wj (3.10)

The simplest and the most obvious choice for the forgetting term is the linear function:

g(yj) = ηyj (3.11)

It’s obvious that is satisfies the condition 3.9.
3.10 can be also simplified by setting

yj = hi,j (3.12)

where i is the winning neuron. Then, using 3.11 and 3.12, 3.10 can be rewritten as:

∆wj = ηhi,j(x−wj) (3.13)

And finally, adding discrete time:

wj(n + 1) = wj(n) + η(n)hi,j(n)(x−wj(n)) (3.14)

that is applied to all the neurons that are inside of the topological neighborhood of the
winning neuron i.

In 3.14 the learning-rate parameter η(n) should be time varying. In particular, it should
start at initial value η0, and then decrease gradually with increasing time n. That requirement
can be satisfied by choosing

η(n) = η0e
− n
τ2 (3.15)

Here τ2 is another SOM algorithm constant.
Equation 3.14 visually means moving of the winner’s synaptic weights vector wi towards

the input vector x . Neurons in the winner neighborhood are impacted as well, but in propor-
tion to the neighborhood function value. Repeating presentation of the training data means
that synaptic neuron weights tend to follow input vector distribution. The algorithm there-
fore leads to a SOM layer topological ordering in sense that neurons that are adjacent in the
lattice will tend to have similar synaptic weights vectors.
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3.2.5 Parameters’ selection

It is important to select initial training parameters well. In [13] Haykin argues for the following
selection:

1. The learning-rate parameter η(n) should begin with value close to 0.1 and then decrease
gradually, but remain above 0.01 and not allowed to be decreased to zero. The values
of the initial parameters for the formula 3.15 that satisfy that demand may be set as:

η0 = 0.1

τ2 = 1000

2. The neighborhood function hi,j(n) should initially include all or almost all the neurons
of the lattice, centered in the winning neuron i and then diminish slowly with time. To
satisfy that, in 3.6 we may choose

τ1 =
1000

logσ0

At the end of the training, the neighborhood function should contain only the closest
neighbors of the winning neuron.

3.2.6 Training algorithm

Now we can describe the SOM algorithm. The first step is initialization of the key parameters
that were discussed in the previous section. In short, we need to initialize:

• Training patterns. Those vectors should be selected carefully and reflect the input
space distribution.

• Network topology i.e., number of the output neurons, their locations and initial
weights.

• Time-varying neighborhood function hi,j(n) that decreases in time and was de-
scribed in details above.

• A learning-rate parameter η(n) that starts at initial value η0 and then decreases.

The algorithm is then can be summarized as Algorithm 1.
In Algorithm 1 while cycle tests stopping condition. It can be, for example, whether

maximum number of iterations is reached or there are no significant changes in the map.
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Algorithm 1 SOM training algorithm

Require: Training set X
Initialization:
Initialize synaptic weights wij
Set topological neighborhood parameters
Set learning rate parameters
Processing:
while stopping condition is false do

for all input vector x in X do
for all output neuron j do

compute j(x)← ‖x−wj‖
end for
winning neuron i(x)← neuron with the smallest value of j(x)
for all neuron j within a winner’s neighborhood do

update synaptic weights wj:
wj(new)← wj(old) + η(old)hi,j(x−wj(old))

end for
end for
update learning rate η(old)← η(new)
reduce topological neighborhood radius σ

end while
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3.3 Other clustering methods

Kohonen’s SOM is not the only one clustering method and there are different alternatives to
it. Two of them - K-means clustering and Fuzzy c-means clustering (FCM) - will be in short
described in that section.

3.3.1 K-means clustering

K-means clustering is one of the simplest and the oldest clustering methods. It is called
K-means, because the number of clusters K should be fixed ”a priori”.

In general, the K-means clustering idea can be described as following: given a set of N data
points (observations) X = {x1, . . . ,xN},xi ∈ Rn, the goal is to partition those observations
into K sets S = {S1, . . . , SK} so that the value of the function 3.16 is minimal.

F (X) =
K∑
i=1

∑
xj∈Si

||xj − ci||2 (3.16)

Here ci is the mean of all points in Si.
The algorithm that fulfills that idea is shown below:

Algorithm 2 K-means algorithm

1. Select initial K points from the set X as representatives for each cluster (centroids)
C = {c1, . . . , cK}. Those points can be selected randomly, or using some heuristics.

2. Assign each point from X to the cluster, that has the closest centroid.

3. When all points from X are assigned, recalculate centroids using the following formula:

cnewi =
1

|Si|
∑
xj∈Si

xj (3.17)

4. Repeat Steps 2 and 3 until centroids no longer move.

The K-means clustering algorithm is simple and is relatively undemanding on the re-
sources (comparing to Kohonen’s SOM, for example). However, it has some weaknesses.
Among them:

• The ways of how to initialize centroids is not specified. However, the result may depend
on that selection.
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• Number of clusters K should be fixed in advance and the result depends on that value.
On the other hand, determining that number for a complex data sets may become a
very non-trivial task.

• The result also depends on the metric, that is used to measure ||xj − ci||.

3.3.2 Fuzzy c-means clustering

Fuzzy c-means clustering employs a very similar idea to the K-means algorithm - it divides a
set of observations into several clusters. However, in contrast to the previous method it also
maintains one additional function - a degree of belonging to clusters. Therefore, each data
item may belong to more than one cluster and there is a function ui(xj) = uij that measures
the degree of being in the cluster Si for the item xj. Also, the sum of all the coefficients must
be designed to be equal 1:

K∑
i=1

uij =
K∑
i=1

ui(xj) = 1,∀xj ∈ X (3.18)

Then the main goal of the FCM algorithm is to minimize the the following objective
function:

F (X) =
K∑
i=1

∑
xj∈Si

umij ||xj − ci||
2, 1 ≤ m (3.19)

Here ci is the mean of all points in Si.
The algorithm of the fuzzy partitioning is iteratively optimize the objective function 3.19

by updating parameters uij and ci using the following rules:

ci =

∑|X|
j=1 u

m
ijxj∑|X|

j=1 u
m
ij

(3.20)

uij =
1∑|S|

k=1(
||xi−cj ||
||xi−ck||

)
2

m−1

(3.21)

Then the FCM algorithm is described below (3).
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Algorithm 3 FCM algorithm

1. Select number of clusters K and initialize uij randomly or using some heuristics.

2. Calculate clusters’ centers using 3.20

3. Update uij using 3.21

4. If maxij |unewij − uoldij | < ε, where ε is termination criterion, then stop. Otherwise return
to the step 2.

3.4 Conclusions

In that chapter I’ve described tree methods: Kohonen’s self-organizing maps, K-means and
Fuzzy c-means clustering. All those algorithms are used for similar tasks - grouping similar
input space items together.

K-means and FCM clustering methods are very similar. They both are starting with the
predefined number of random clusters and then gradually recalculate those clusters. The only
difference between them is one additional parameter - degree of belonging - for FCM. Both
those algorithms are rather simple and effective when the number of result clusters in known
in advance. Those algorithms also have their drawbacks - for example, clusters depend on
the initial state and the order of the input. But the main obstacle for their practical usage is
the need to know number of clusters in advance.

In contrast, Kohonen’s SOM employs different principle - it maps highly dimensional
input space into lower dimensional output space. Basically Kohonen’s maps rearrange the
data in order to preserve some topological characteristics of the input space. That method
does not operate with clusters directly and therefore knowing number of clusters in advance
is not necessary.

Because my research is based on highly dimensional and complex data, I have decided
to use Kohonen’s maps . Mainly because they can operate on data without additional input
information (such as number of clusters).
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Chapter 4

A general introduction to financial
markets

In recent years financial markets became very popular. The main reason for that shift is that
joining such market is incredibly easy nowadays: there are a lot of banks, individuals and
web pages that offer those services. Because of that accessibility, information availability and
potential profitability, I have selected financial markets as the domain for my research.

That chapter introduces a general concept of the financial market and explains how it
works.

4.1 Financial market basics

Financial market is closely related to the trading concept. By trading here I mean doing
”buy” and ”sell” actions by using a special terminal (usually computer). Participants of the
market are often called traders or players.

Financial markets can be divided into several types:

1. Stock markets. That kind of market operates with stocks and shares of the large
companies like Google or Microsoft.

2. Foreign exchange markets or Forex facilitate exchange of national currencies. Those
markets use currency pairs as a basic tool. The most common example of such pair is a
relationship between US dollar and euro (which is denoted as EUR/USD or USD/EUR,
depending on the data provider).

3. Commodity markets operate with commodities like oil, gold and natural gas.
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4. Futures and derivatives markets. Those markets provide tools for buying and sell-
ing futures and derivatives respectively. The most common object of the transaction is
a deferred commercial agreement.

5. Finally, lots of different types of financial markets have appeared in recent years. For
example, index markets that remind betting agency. Traders are not buying particular
goods, but stake on different conditions in the future (e.g., Dow Jones index value next
week).

On financial markets all operations are performed ”virtually” and do not imply the actual
movement of funds and goods. Basically, any trader can perform ”buy” or ”sell” operation
at the current market price anytime (except some days when the market is closed). At any
moment, equilibrium market price is calculated as the result of the supply and demand
comparison.

Every market type has its own distinctive characteristics. But the main principle remains
the same: recent price values form a time series that is called price curve or rate curve.
Traders analyze that curve and make their decisions about the actions that should be taken.

4.2 Market analysis techniques

There are two basic approaches that can be used for the market analysis:

1. First method is based on the analysis of external factors that could effect current price
and is called fundamental analysis. It is generally known, that decisions that the
board of directors makes can effect their company’s stock prices. Similarly, political
instability and high inflation reflect in the country’s currency strength. Traders are
gathering that type of information from newspapers or annual reports in effort to make
better future predictions.

2. In contrast, technical analysis is based on mathematical, statistical or numerical
analysis of the price curve. That approach is based on the Dow theory. It is worth
mentioning that other curves also can be used sometimes in addition. For example, US
dollar rate and US industrial index are correlated.

4.2.1 Fundamental analysis

The main drawback of the fundamental analysis approach is its complexity. Every funda-
mental indicator movement often effects at least several another indicators (e.g., high unem-
ployment rate commonly leads to lower inflation rate). In case when the country has over
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50 fundamental indicators with their own cause-effect relations (that can be inconsistent
with other indicators), detailed analysis becomes almost impossible. That is the main reason
why only 15-25% of traders use fundamental methods, and most of them perform analysis
superficially.

The main classes of basic fundamental indicators are:

1. Indicators that describe country’s financial market

2. National measures (e.g., gross national product)

3. Inflation rates

4. Monetary and government regulations indicators

5. Index of economical activity and overall economic optimism

More information about fundamental analysis can be found in [19].

4.2.2 Technical analysis

Technical analysis is the study of how prices behave, which uses only one source of information
- price curve. That technique is based on three postulates, that were stated by Dow:

1. Price movements discount all news.
It means that every external factor that can effect the price (e.g., political, economical,
psychological factors) is taken into account as soon as it becomes available. Once news
is released, prices will change to reflect this new information immediately. Hence, there
is no need in fundamental analysis because all the known information is reflected in the
price already.

That statement is a cornerstone of the whole technical analysis. And here is also the
main difference from the fundamental analysis. Fundamental techniques state that for
the future price prediction, it is necessary to predict all factors that can effect supply
and demand of the product. In contrast, technical techniques assume that if the price
has changed already - there was ”something” (e.g., political or economical news) that
effected the price. And that ”something” doesn’t have to be considered again, because
prices have changed already. In financial terms, market is adoptive to fundamental
factors.
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That statement also agrees with the efficient market hypothesis (EMH), that asserts
that financial markets are ”informational efficient”. That means that fundamental anal-
ysis doesn’t lead an advantage, because other traders have analyzed all known factors
and their actions have changed the price already.1

2. Market movements are directed.
Trend, or directed price movement, is one of the central ideas of the technical analysis.

Trends can be divided into three categories:

• Bullish Trend - price is going up

• Bearish Trend - price is going down

• Trading Range (sometimes also called Flat or Sideway) - price does not change
much

All those types of trends almost doesn’t appear per se as a motion along a straight line.
Therefore trend can be defined as a prevalent movement.

In terms of trends, goals of technical analysis can be formulated as:

• Recognizing new trends at an early stage

• Using those trends for profit deriving

• Discovering ending of the trend

3. History repeats itself.
That statement acts on the premise that human psychology doesn’t change much. In
similar cases the crowd behaves identically. As a result, technical analysis can also be
used for patterns detection.

At present, technical analysis is the most popular method for the future rate prediction.
Various sources estimate that approximately 60-70% of trades use technical analysis as the
main method (other use fundamental analysis or simply intuition).

That popularity of technical methods has its reasons. Among them:

• Price history is often easier to access then fundamental data

• Most of the technical indicators are the part of the trading terminal

• Technical analysis is much simpler then fundamental analysis

1Despite the fact that EMH is very popular among financial market players, it has never been proved or
disproved.
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4.3 Introduction to trading

In that thesis I am going to analyze artificial neural networks through their application to
Foreign Exchange market (or simply Forex). Main arguments for that decision are:

• Easy access to the historical data and related information

• Large number of published researches and papers

• Variety and functional capabilities of available tools

• Market stability, especially presence of fundamental patterns

• Market liquidity and transactions simplicity

• Simple performance metric: loss or profit amount

Dealing centers

Dealing center is a company, that works as an intermediary between the financial market and
individual trader. It provides on-time data delivery to the client. Dealing center also fulfills
orders like ”buy X”/”sell Y”, which the trader gives through the trading terminal.

Nowadays there are a lot of companies that operate as dealing centers. To enter the
financial market, the trader should select some dealing center, register an account, download
trading software and make an initial deposit (often up to several hundreds dollars). All those
operations can be performed via Internet.

Positions and orders

Opened position is a presence of certain amount of goods that the trader bought for the
speculative purposes. The process of buying those goods is called a position opening. Selling
of available goods is called a position closing.

On many markets, including Forex, it is possible to sell certain goods without opening
corresponding position before that (i.e., without buying those goods previously). Thereby,
we can describe two types of positions: long position and short position.

• Long position is the position that was opened by the buying of a security such as
a stock, commodity or currency, with the expectation that it will rise in value. For
example, the trader can buy USD dollars, planning to hold it for some time and then
sell it with profit for himself. Sometimes that type of position is also called a bullish
position or bull transaction.
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• In contrast, short position is the sale of a borrowed stock, commodity or currency with
the expectation that the asset will fall in value. The trader doesn’t have to buy that
asset before the transaction. In case that trader’s prediction was fulfilled, he just takes
all the profit of the transaction and ”returns” borrowed asset2. In opposite case, the
trader has to cover the loss. That type of position is also sometimes called a bearish
position or bear transaction.

Commands ”buy X” or ”sell Y”, that the trader gives through the terminal, are called or-
ders. There are several types of orders. The simplest and the most common one - immediate
market order - is executed immediately at the current market price. More complex orders
could be postponed until some condition (like a certain price or when maximum allowed loss
is reached) is met.

Prices and ticks

The asset’s price at any moment is determined as the result of matching supply and demand.
For many markets, that price is set by individual dealing centers separately and therefore
may differ from one center to another. However, it is important to state that the price doesn’t
differ much. In other case traders can simply buy some asset at lower price and immediately
sell it to other dealer at higher price. Therefore dealing centers watch over other centers’
prices carefully and price differences are insignificant.

One iteration of the price update is called a market tick. Market tick is a random event
and there is no regular time interval for it. On Forex, number of ticks can reach hundreds per
minute during active trading hours, and then fall to just several ticks per minute for night
hours, when activity is low.

Buy and sell price

As mentioned before, the equilibrium market price is the result of matching current supply
and demand. Every moment there is a number of subjects willing to buy or sell certain assets
and offering the price that they are going to buy or sell for. Then maximum of buying prices
is called BID price, and minimum of selling prices is called ASK price. Those two values
form equilibrium price (which is represented as a pair BID/ASK). Generally, BID and ASK
prices can be very far one from another. In such case, there is no single price chart, but two
charts - BID price chart and ASK price chart. But on active markets, such as Forex, those
two prices are always very close.

It is also important to state, that the price can not be effected by individual traders
(unless the trader is buying a really huge amount of some goods), but by the bigger players

2It is done automatically by the terminal.
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like banks or event countries. Individual traders usually only buy or sell at the price that is
given already.

The difference between the BID and ASK prices is called spread. Normally the spread
is rather low - for example, on Forex it often differs in the forth decimal place.

It is also important to state, that dealing centers include their charges into spread and
there is no extra fee.

Price charts

Market price chart is determined by several components:

1. Time frame
Time frame specifies a particular period that is used for the price visualization. The
most common time frames are: month (MN), day (D1), 4 hours (H4), 1 hour (H1),
30 minutes (M30), 15 minutes (M15), 10 minutes (M10), 5 minutes (M5), 1 minute
(M1), one tick. Every chart that is based on a time frame bigger then one tick, contains
aggregative information about the whole time frame period.

2. Opening price
Price at the beginning of the period.

3. Closing price
Price at the end of the period3.

4. High
The highest price during the whole period.

5. Low
The lowest price during the whole period.

6. Tick volume
Number of ticks during the period.

Price chart can be displayed in several forms: tick chart, bar chart and line chart.

1. Tick chart.
Tick is the smallest scale for the chart. The chart is represented as the sequence of
vertical lines (Fig. 4.1). The upper part of each line indicates ASK price, and the lower
part - BID price. The tick chart is not used by traders often.

3Closing price of the one period and opening price of the next period may not be the same.

44



Figure 4.1: Tick chart example.

2. Bar chart.
Bar chart is based on a series of vertical bars. Every bar represents a certain period
(Fig. 4.2). Lowest point of the bar indicates the lowest price during the period - Low.
Topmost point is the maximum price value during the whole period - High. There are
also two small dashes. The left one is the period opening price (Open) and the right
one is the closing price (Close).

3. Line chart.
In most cases, line chart is based on the closing price (Close). Other options - such
as Open, High, Low - are also possible, but rather rare. Sometimes line chart can also
use so-called median price ([High+Low]/2) or typical price ([High+Low+Close]/3)
(Fig. 4.3).

Line chart has its disadvantages. For larger time frames, it may be very difficult to
understand what happened inside the period - e.g., whether the price felt and rose, or
was stable. On the other hand, line chart is rather ”short-spoken” and does not display
information that traders could take as redundant.
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Figure 4.2: Bar chart example.

Figure 4.3: Line chart example.
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Trading terminal

As already mentioned, Forex trading is available to everyone. Any person who has a computer,
Internet connection, 50$ for initial deposit4 and wants to trade, can do that. Then to start
trading, the one needs only to choose a dealing center and download a trading terminal,
which is basically a program.

Trading terminal provides trader with basic tools for working on the financial market.
The most basic features of the terminal are:

• Obtaining and displaying information about the price change.

• Orders’ execution.

An essential prerequisite for working with the trading terminal is an agreement with some
of the dealing centers. That center will provide the data and will execute orders that are sent
from the trader’s terminal.

Often, trading terminals provide the user with much more advanced functionality then the
only basic features - such as data analysis or automated trading tools. Most of terminals also
have their own programming language (or support some common language, such as Java),
so the trader can not only use built-in functions, but also implement custom behavior.

Trading terminal may be, but doesn’t have to be exclusive for the given dealing center.
As those centers are only data providers and orders executors, they may use the same type
of the terminal.

Technical indicators and expert advisors

There is a variety of methods that can be used for extracting useful information from the
price chart - such as statistics, time series analysis or function approximation. But there is
one method that is much more popular among traders then the rest - technical indexes
(or technical indicators).

Technical index is a real-time function of the price chart. Value of that function at
the given point of time is calculated based on the recent price values. Those indexes can
be displayed together with the price chart and when new tick (i.e., new price value) comes,
current value of the technical index is updated and immediately displayed along with the
price value. Traders use technical indicators to visualize more information, then just raw
series data.

There is a big number of different indexes that might be used (and every trader can
develop his own indexes). Some of the most common indexes are:

4Even that is often not important as lots of dealing centers grant initial deposit as a bonus to newcomers.
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• Moving average or MA. That indicator is an average value of the prices of the certain
period. That period may vary from several ticks (or bars) to several hundreds of ticks
(bars). That index is used for understanding trend.

• Weighted moving average or WMA. That index is similar to the moving average.
The difference is that every price value also has a weight and more recent values have
bigger impact on the resulted value.

• Moving Average Convergence-Divergence or MACD. The Moving Average Con-
vergence Divergence was developed by Gerald Appel in the 1960s. The MACD compares
two moving averages, and displays the difference between the moving averages as a sin-
gle line, with positive and negative values, above and below a zero line. That index is
primarily used for indicating trends.

Example of the price chart with two indexes (moving averages with the different period)
is shown on Fig. 4.4.

Expert advisor is an automated trading system that is based on a certain price chart
and contains its own trading logic. The advisor is launched every time when new tick comes.
As the result, it generates buy, sell or no change signals, or even trades on its own.

4.4 MetaTrader platform

MetaTrader platform is one of the most popular trading platforms nowadays. It provides
a very rich functionality - from its own programming language to mobile trading - and is
used by many dealing centers (detailed list of the most popular of them can be found at [34]).
That platform can also be used on different types of financial markets (not only Forex). Its
functionality also includes:

• Dow Jones Forex news feed - a specialized selection of information in real time, led by
professional currency traders

• Multilingual, intuitive interface. It supports Russian, English, German, Czech and much
more other languages

• Embedded programming language MetaQuotes Language 4 (or MQL 4) that allows
the trader to create his own scripts

• Comprehensive technical analysis: a large amount of embedded indicators and line tools,
the capability to write one’s own scripts and indicators, and periodicity support (from
minutes up to monthly charts)
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Figure 4.4: MetaTrader 4 terminal.

• Open MetaTrader Client API that allows creating custom interfaces and functionality

• Transaction confidentiality using 128-bit key data encryption

• Multiple accounts support

Current stable version of the platform is MetaTrader 4 (Fig. 4.4).

4.4.1 MQL4 language

MQL4 is a C++-like embedded language for the MetaTrader 4 platform. It allows the trader
to create his own indicators and advisors. That language defines number of the trading-
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specific functions and work flows that are automatically executed when some standard event
(e.g., new tick) appears.

MetaTrader 4 platform also comes with the MetaTrader editor - special environment
for the MQL4 programs development. MQL4 language is also well documented - all the
information is available for free on its web page.

Although MQL4 is a powerful programming tool that even supports object-oriented pro-
gramming, it has certain limitations (e.g., execution efficiency) that make implementation of
some (such as neural networks) strategies problematic.
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Chapter 5

Neural networks for Forex trading

Financial series prediction is an essential part of any investment strategy. As most of the Forex
transactions are speculative (i.e., made for the profit extraction), all trading participants are
interested in the future rate prediction for making better decisions. And despite the efficient
market hypothesis, that basically states that stock prices and rates follow a random walk
and that all profits are due entirely to chance, most of the market participants believe that
there are still regularities that make prediction possible. Numerous researches also share that
opinion ([8], [27]).

Neural networks are widely used for the financial time series forecasts ([33], [12], [25]).
Despite the efficient market hypothesis, many researches were able to extract rules for pre-
dicting future rates using neural networks. In that chapter I will discuss different stages and
approaches to time series forecasting, with the main focus on neural networks’ application.

5.1 Selection of input and output variables

Good selection of the input and output variables is fundamental for the accurate forecast.
Often it requires a deep understanding of the economical background.

There are several approaches that are commonly used:

1. Sliding window. Financial time series can be represented as a series of vectors:

Xd
t = [xt−1, . . . , xt−d] (5.1)

where Xd
t contains d values that preceded tth value of the series. Then the forecasting

method can be formally stated as finding a function f : Rd → R such as next value
xt+1 is determined by the previous d values of Xd

t :

51



Figure 5.1: Scheme of the sliding window technique.

xt+1 = f(Xd
t ) (5.2)

Neural networks perform that task by using feedforward network architecture, such
as MLP or RBF. The input value is a d-dimensional vector and output is the single
number that represents next value (Fig. 5.1). Multiple next values are also possible,
but rare. That method is also called sliding window as vector Xd

t ”slides” over the full
training set.

That method is also closely related to the Takens’ theorem ([22]), which has one useful
implication: if the market movements are not completely random (e.g., efficient market
hypothesis is not true), then exists such d ∈ N, that provides unambiguous prediction
of the next series value.

It is necessary to take into account that even if exists, value of d can be rather big and
therefore neural networks could not be able to process such input vectors in a reasonable
time. Huang and others in [14] suggest method of how to overcome that by compressing
the input and reducing the dimensionality. Other well-known dimensionality reduction
methods (e.g., Principal component analysis) can be found in [3].

2. Sliding window for trend. For making profitable trades, it is not necessary to know
exact values of the the future rate. So the previous method can be adapted for predict-
ing the trend movement and its strength instead of the exact future rate value. Then
the output can be represented by the binary signal, that encodes rate’s increasing or
decreasing. Such an output is rather useless, though. It should also carry some addi-
tional information such as expected length of increasing or decreasing signal. Networks
can also be trained to produce signals for buying, selling or doing nothing, instead of
doing the prediction.
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3. Prediction based on extracted data. Analyzing raw series data using neural net-
works can be rather expensive. That is why it makes sense to analyze data that already
have economical context and contain extracted information from the raw data - such as
technical indicators. Selecting right set of indicators can be a challenging task and often
requires a deep understanding the trading economical background. But that method
requires less input data and can significantly improve computational performance.

5.2 Data preprocessing

Before the data are analyzed by the neural network, they have to be preprocessed in order to
increase the accuracy of the output results and to facilitate the learning process. That stage
is crucial and the way the data are represented influences network’s behavior directly.

Sometimes it may be necessary to fill up empty or missing data ([23]). As Forex trading
stops on weekends, there might be a gap between Friday and Monday data (e.g., closing price
on Friday is almost always not the same as opening price on Monday). Those data may be
interpolated or rebuilt by separate neural network.

Another important preprocessing operation is data normalization. First and foremost, it
should be noted that before starting the ANN training, the training set must be properly
prepared. Prices and quotations should not be chosen as inputs and outputs themselves.
([28]). The most common preprocessing methods are:

1. Scaling. Here we are assuming that every input variable belongs to some interval
x ∈ [Min,Max]. Then the most simple normalization is:

xnew =
x−Min

Max−Min
(5.3)

After that transformation, every input value is over the range 0 to 1 (Fig. 5.2).

Linear scaling is a good method when input values are distributed uniformly within
[Min, Max] interval. If not, values can be normalized using statistical indicators:

xnew =
x− x
σ

(5.4)

where x is an average and σ is a variance of the initial data.

2. Increments. Let Ct be the rate value at the time t. Then the next value Ct+1 can be
expressed as:
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Figure 5.2: Data transformation to the unit interval.

Ct+1 = Ct + ∆Ct (5.5)

where ∆Ct is called rate increment.

As those incrementations are much smaller then rates values, there is a strong correla-
tion between the next and previous rate values. The most probable value of the next
exchange rate is the same as the previous one: Ct+1 = Ct.

To avoid that correlation, input series can be represented not by rates, but by their
increments ∆Ct (Fig. 5.3) or relative logarithm increments log(Ct/Ct−1) ≈ ∆Ct/Ct−1.

3. Decomposition. Sometimes time series are also built from separate components such
as trend, seasonality, cycles and noise ([23]). In that case, series data may be prepro-
cessed using those components - input data are divided into those components and
prediction is taking place within the scope of each component separately. If the series
contain a lot of regularities, it is much easier to predict it. However, Forex (and other
financial markets) data do not contain such obvious patterns and also do not seem to
be autocorrelated.

5.3 Model construction

There are three types of neural networks that are commonly used by economists and re-
searchers in market prediction:
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Figure 5.3: Quote increments as input variables.

1. Multi-layer perceptron. That layered feed-forward network was explained in details
in previous chapter.

2. Radial basis function network (RBF). RBF is a hybrid multi layered network that
contains a single layer of processing units. Those units use some RBF function (most
commonly Gaussian transfer function) rather than standard sigmoid function. That
type of network is explained in details in [3] and [13].

3. Generalized feed-forward network. That network is a MLP generalization that
allows jumping over one or more layers.

The right type of neural network is often selected by developing and comparing numerous
possibilities and by keeping only the best ones. However, some researchers approached the
problem of the right model selection and extracted some advices which model can be more
appropriate for which task ([28], [12]). It is necessary to take into account that those advices
do not guarantee better results in any case.

After the model is selected, it should be instanced using particular parameters, e.g.,
number of inputs and outputs and number of hidden layers.

1. Number of input neurons. That number is determined easily when the previously
defined steps have been done. As every input variable is treated by a single input neuron,
input neurons’ count is determined by the size of the input vector (which, as we seen
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before, can be found using Takens theorem with the following input compression, or
selecting a set of input indicators).

2. Number of hidden layers. Number of hidden layers can not be clearly defined be-
cause the optimal number strongly depends on the data and may differ from case to
case. However, some researches approached that problem and developed common ad-
vices ([21], [5]). In most cases, one or two hidden layers proved to be enough, and
increasing the number of those layers also increases the danger of overfitting ([4]).

Due to the nature of the quote or stock movements, number of hidden layers can’t be
predicted easily and training of networks with the different number of hidden layers for
the following comparison may be required.

3. Number of hidden neurons. There are no clear rules of how to select the right
number of hidden neurons. The most common technique is to determine appropriate
number during the experimentation phase. But it also necessary to keep in mind that
too big number is demanding on resources, and too small number may not reflect all the
variety of the input data. Kaastra and Boyd in [16] suggest always prefer the network
that performs well on the testing set and has the least number of hidden neurons.

4. Number of output neurons. Most neural networks use only one output neuron for
the next value forecasting. However, as predicting exact price may not be the best
approach for the Forex trading, it may be useful to consider several output neurons.

5. Number of neural networks. Different networks have different strengths and weak-
nesses and individual network, even when it has good results on the testing data, may
not perform well in all real situations. Impact of that factor may be decreased by using
a set of L different networks (also called a committee of neural networks).

It is easy to see that the average error of the whole committee is smaller then the
average expert from the set. Let εi(x) be the error for the ith network for the input x.
Then using Cauchy-Bunyakovsky-Schwarz inequality, it is easy to prove that:

(
1

L

L∑
i=0

εi)
2 ≤ 1

L

L∑
i=0

ε2i (5.6)

Error decreasing can be rather significant. If errors of individual networks do not cor-
relate, the committee error can be up to

√
L times less than the average error of the

average network error. That is why predictions can be improved significantly by using
the average predicted value of the whole committee.
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Figure 5.4: MACD advisor.

Another approach that uses several neural networks can be based on the following
idea: every network from the committee receives the same amount of resources at the
beginning. During the trading process, resources are being redistributed - profitable
networks receive more resources that are taken from unprofitable networks from the
same set.

5.4 Other forecasting techniques

There is a huge number of different forecasting approaches - some are based on statistics
(e.g., ARIMA model), some are based on heuristics (e.g., Elliot waves) and others are based
on neural networks. Among the most commonly used techniques (besides neural networks)
are1:

1. Moving average. That method is based on two moving averages - one is for short
period (usually 9-12 bars), and other is for a long period (usually 15-25 bars). Buy and
sell signals are determined by the lines intersection: buy signal is generated when the
short period moving average is going above the long period moving average and vice
versa (Fig. 5.5).

1I will compare suggested neural networks’ approaches to those methods later
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Figure 5.5: Moving average advisor.

2. Moving Average Convergence/Divergence or MACD. That advisor is based
on MACD indicator which is calculated as the difference between the fast (i.e., with
the smaller period) and slow moving averages values (MACD indicator is explained in
Chapter 4). The other part of the MACD advisor is so-called signal line which is also
a moving average line with the period close to 10.

MACD advisor works with the difference between MACD indicator and the signal line.
When the difference is 0, it generates buy or sell signal. Buy signal is generated when
the MACD indicator is increasing, and sell signal is generated when the indicator is
decreasing (Fig. 5.4).
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Chapter 6

Self-organizing maps and Forex

That section shows by example how self-organizing maps can be used for the useful data
extraction and trading strategy implementation. Here I will present two different applications
- traders’ profiling and SOM-based automated advisor for Forex trading.

There is a number of books and articles that advice traders to be more or less active,
open more long or short positions, be risky or use more conservative strategies. Therefore the
first part’s goal is to explore the set of different strategies and try to answer the question:
”Are there some behavior patterns of the successful strategies?”. If such patterns are found,
that could provide the trader with a very useful information.

Second part of the section proposes different approach to the ANN-based Forex trading
then those described in Chapter 5. I will show how to create advisor that is based on self-
organizing maps. That advisor does not try to predict the future, but recognize situations
that are appropriate for trading and then using them.

6.1 Example: Advisors’ profiling

Automated trading championship is a yearly competition, organized and supported by com-
panies related to Forex - dealing centers, banks and financial software providers. To compete,
every trader has to develop an automated advisor using MQL4 language. That advisor then
trades on its own on real-time data for the period of approximately three month. Once
submitted, the advisors can not be changed. One trader can only submit one advisor.

At the beginning, every advisor receives 10 000 fictitious US dollars (for the simulation
purposes only). Absolute profit is always the winning criterion.

After the championship, the organizer publishes participants’ statistics on the champi-
onship web page. For the analysis, I have extracted information about 186 participants of the
last competition - Automated trading championship 2008. Final profits of those participants
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vary from approximately 159 500$ for the winner to -2 926$.

6.1.1 Data for the profiling

The profiling is based on the following parameters:

1. Profit. The first and the most important parameter is a total profit amount. Advisor’s
efficiency evaluation is based on that parameter.

2. Total trades. That parameter indicates how active was the advisor. Some strategies
made only tens of trades, while others did hundreds.

3. Expected payoff. Expected payoff is the average profit per trade in a deposit currency
(USD).

4. AvgWin/AvgLoss factor. Ratio of an average winning trade to an average losing
trade.

5. Relative wins. That parameter indicates the percent of the winning trades.

6. Short positions or shorts. Percentage of the short positions among all trades.

Some of those variables were preprocessed (e.g., total profit was normalized to the interval
[0, 1]) in order to give more accurate results. For the clustering I have used squared network
7 ∗ 7 with 49 neurons.

6.1.2 Results

The result of the self-organizing algorithm application to the data is shown of Fig. 6.1 and
Fig. 6.2.

Algorithm divided trading strategies into 4 clusters:

• Cluster 1 and Cluster 2. Those clusters contain the most of all advisors - unprofitable
ones.

• Cluster 3 and Cluster 4. In contrast to previous two clusters, strategies from Cluster
3 and 4 are profitable. Cluster 4 contains the most prosperous advisors and Cluster 3
contains not the most successful, but still profitable advisors.

Based on the results of the Kohonen’s clusteriing, I have made the following conclusions:

60



Figure 6.1: Advisors’ clustering.
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Figure 6.2: Clustering of the individual parameters.

1. The most successful strategies were also the most active ones - they did more trades
than strategies from other clusters.

2. Successful strategies also had the highest expected payoff rate. However, that result is
not unexpected - the correlation between total profit and average profit per trade is
very high.

3. The most successful advisors do not have the highest - but slightly above average -
winning rate. It means that those traders had to make several very profitable trades to
compensate relatively low percent of the winning trades.

4. Best strategies did not prefer short or long positions and opened both of them equally.

5. Expected payoff values are rather close for both ”profitable clusters”. On the other
hand, strategies from the Cluster 4 earned approximately five times more money then
those from the Cluster 3. That can be explained by the fact, that advisors from the
winning cluster were much more active.

6. Strategies from the Cluster 2 had the highest win rate. It means that those strategies
were probably optimized for making winning trades. However, it did not grant them
profit.
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7. Profitable strategies also had large AvgWin/AvgLoss factor. Surprisingly, automated
advisors with the largest values of the factor do not belong to the winning cluster.

6.1.3 Conclusions

Championship table indicates that only 122 of more than 700 traders ended with some profit.
That can be explained by several factors:

First of all, participants had to prepare automated advisors for the rather long period of
time - three month. And it could be difficult, to create an adaptable strategy that will adjust
itself to all nonstandard changes that will happen.

Secondly, clustering indicated that superior profits of the winning strategies could be due
to several large winning trades. And those could be just matter of luck. As participating
automated advisors are not shared, that conclusion can not be proved or disproved.

And finally, having a good strategy that will have a big percentage of winning trades still
does not grant profit.

6.2 Example: SOM-based Forex advisor

Almost every neural network’s application to Forex prediction is based on attempt to predict
the future of the market. The most common predictions are exact price values or trend
direction and its strength. As an alternative, prediction can be also based on the market
situation classification: what if there are situations that appear to be favorable for opening
long or short positions? If so, those situations could be found using a classification tool - such
as self-organizing maps.

6.2.1 Data for classification

For prediction, I have chosen pair USDCHF - US dollar and Swiss franc. For the network
training I’ve used M30 quotes data for years 2007 and 2008 - 24 587 bars in total. Year 2009
was used for evaluation. The rates data are obtained from the Alpari dealing center through
the MetaTrader4 terminal.

The most simple and natural way of how to describe current market situation is to use
of different indicators. So I’ve also extracted satellite information - some indicators.

The extracted data contain following information:

1. Bar information. Standard information about every bar - date, time, high value, low
value and close value (those parameters are explained in first chapter).
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2. Information about quote behavior in the future. There are two values - for convenience
called BUY and SELL - that indicate position of the current price in comparison with
maximum and minimum prices within the scope of some sliding window. In that example
the window has size of 20 next bars.

The idea of those values is based on following empirical observation: if the price has
grown since the first observation, then buying (i.e., opening long position) would be
profitable, especially in the situation when the growth was significant. And vice-versa
for short positions - big price drops indicate sell signal. So high BUY values indicate the
situation when long position should be opened. And low SELL values state for short
position.

Those signals will be used as basis for self-organizing maps analysis.

3. Indicators values for every bar. For classification, I’ve used following indicators (all
those indicators are explained in detail in Appendix A):

(a) Relative strength index -iRSI

(b) Momentum index - iMomentum

(c) Bill Williams’ Accelerator/Decelerator oscillator - iAC

(d) Movement directional index - iADX

(e) Indicator of the average true range - iATR

(f) Bill Williams’ Awesome oscillator - iAO

6.2.2 Clusters

SOM algorithm used the map with 1000 nodes. No input data transformation was performed.
Training data contained information about BUY and SELL signals and all the indicators
listed above. Result map indicates that that there are two areas - one is favorable for opening
long positions, and another is favorable for opening short positions (Fig. 6.3).

Selected areas indicate situations when the price change was more then 100 points. Ap-
plication of those areas to indexes’ maps shows that none of them indicates BUY or SELL
situation explicitly (Fig. 6.4).

Further analysis shows that BUY and SELL areas mark out same intervals for almost all
of the indicators. That fact suggests the following idea: BUY and SELL indicators’ intervals,
when put together, can recognize the situation when some action (BUY or SELL) should
take place. As type of the position that should be opened - long or short - is unknown at that
moment, the advisor should open both long and short positions. Every of those two positions
should have set two values:
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Figure 6.3: BUY and SELL signals.

1. Stop loss level. That parameter limits losses if the market does not move in the preferred
direction. When the stop loss value is reached (that could be certain amount of money
or quote value), the position is closed automatically at the current market value in
order no to lose any more resources.

2. Take profit level. Similar to the previous one, a take profit order is an order that closes
the position once it reaches a certain level of profit.

As both orders start simultaneously, stop loss level should be much less than take profit
level. Thereby, unprofitable order will be closed rather quickly while profitable one will be
opened until desired profit level is reached.

At that point it is important to understand that proposed method does not guarantee
that the order that is closed by the stop loss signal will not become profitable in near future.
As well as order that remains opened could finally appear unprofitable and take profit level
will never be reached.

Based on the BUY and SELL clusters, following conditions were extracted: Fig. 6.5
Stop loss parameter was set to 15 points. Here one point equals to 0.0001. It means that

the position is closed when rate changes on 0.0015 in unfavorable direction. For example:

• For long position that was opened at price 1.15856, the position is closed as soon as the
price drops to 1.15706.
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Figure 6.4: BUY and SELL signals with other indicators.
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Figure 6.5: SOM-based advisor: conditions for opening new order.

• For short position not decreasing, but increasing is unfavorable. So for the same opening
price at 1.15856, the position is closed when the price increases to 1.16006.

Similarly, take profit value was set to 46 points

6.2.3 Results

As already mentioned, the training set was represented by M30 bars from years 2007 and
2008. Then the advisor was tested on USDCHF M30 bars for the first 6 months of the year
2009 and then for the whole year 2009. Two other advisors - MACD and Moving average
(both explained in Chapter 4) - were also tested on the same data for comparison purposes.
The initial deposit was set to 10 000 US dollars.

Results for 6 months

Those results were received based on M30 USDCHF testing on real data. The testing period
was 1.1.2009 - 30.6.2009.

SOM advisor MACD advisor Moving average advisor

Total net profit 5 428.34$ -1 907.45$ -1 384.19$

Total trades 100 329 285

Expected payoff 54.28$ -5.80$ -4.86$

Profit trades (% of total) 31% 93.62% 24.91%

Long positions (% of total) 51% 49.5% 46.3%
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Figure 6.6: SOM-based advisor: 6 months of trading

Figure 6.7: MACD advisor: 6 months of trading

68



Figure 6.8: Moving average advisor: 6 months of trading

Figure 6.9: SOM-based advisor: 1 year of trading

Results for 1 year

Those results were received based on M30 USDCHF testing on real data. The testing period
was 1.1.2009 - 31.12.2009.
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Figure 6.10: MACD advisor: 1 year of trading

Figure 6.11: Moving average advisor: 1 year of trading
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SOM advisor MACD advisor Moving average advisor

Total net profit 3 497.70$ -1 962.69$ -2 983.64$

Total trades 172 556 610

Expected payoff 20.34$ -3.53$ -4.89$

Profit trades (% of total) 29.65% 93.88% 21.97%

Long positions (% of total) 50.6% 51.61% 78.03%

Results’ interpretation

• As seen from the results’ table, SOM-based advisor significantly exceed both MACD
and Moving average advisors. Comparing to those two strategies, SOM-based strategy
is not very active - it makes approximately 3 times less trades than other strategies.

• Results indicate that 6 months return is higher than 1 year return. There are two
possible reasons for that:

1. Indicators’ intervals are dynamic and should be recalculated on less than 1-year
basis. Simply put, values that worked out at the beginning of the year do not
have to remain the same for the whole year. If so, SOM-based advisor’s conditions
should be updated in 6-months period or so.

2. Because of economic crisis in years 2009-2010, all the financial markets (including
Forex) became more dynamic and unpredictable. Those circumstances did not
effect Forex at the beginning of the crisis (which was exactly first part of the year
2009) as much as during the second half of 2009. That is why extracted intervals
worked in the 6 months experiment much better.

Those problems could be generally solved by updating advisor’s conditions more often.
But there is a possible problem there - as during the unstable period Forex is much
more changeable, there might be not enough data for applying Kohonen’s method. It
would be reasonable to assume that our method will give much better results during
the economic stability. In general, this assumption is applicable to all methods. But
as self-organizing maps require much more data for training that MLP networks, they
may become impracticable is the insufficient data situation.

• SOM-advisor has a rather low profit trades rate at about 30%. That fact is easily
explained by the advisor’s behavior: it opens a lot of unprofitable trades that are closed
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quickly by the stop loss signal.

That observation could be also applicable to the advisors’ profiling. Recall that the
most profitable advisors also had low profit trades rate. One possible reason for that is
luck. The other and more likely one is that those strategies open short and long position
at the same time and then quickly close unprofitable one.

• SOM-advisor opens short and long positions equally. That result is expected as it opens
two different positions at the same time.

• Self-organizing maps can be used as an evaluation tool for new indicators. If clustering
results for some indicator agree with BUY or SELL clusters, that indicator can be used
for recognizing BUY or SELL situation.

It is important to understand that indicators do not create new information, but rather
extract and consolidate information from the existing series data. And self-organizing maps,
that could hardly work with the raw series data, still prove to be an effective tool for Forex
trading strategies.

6.2.4 Conclusions and future work

Self-organizing maps appear to be a very useful tool for creating a Forex advisor. Clustering
of BUY and SELL signals helped in indication of conditions that are favorable for taking
action. Also, SOM can be employed as evaluation tool for Forex indicators.

But there are still many directions for future research. Among them:

• That method was tested on a limited number of indicators. More indicators can be
examined.

• That method can be examined on different currency pairs. USDCHF pair is partially
stable: US dollar is a rather dynamic currency, while swiss franc is more stable. Testing
that method with two stable or unstable currencies may give different results.

• Also, SOM could be used for finding some effective set of indicators that is still efficient
in recognizing the situation when market is about to change significantly. I have used
8 indicators, but some of them could be redundant or correlated. And some important
indicators could be missed.
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Chapter 7

FXANN - A Forex trading model

In that chapter I will propose an ANN model for the Forex technical analysis and improvement
of the learning method for that enhances the prediction capability of the network. I have called
that model FXANN (Forex + Artificial Neural Networks). Because working with technical
indicators seems to be much more efficient than using exact price rates or closely related data
like rate increments, FXANN is applied to the set of extracted Forex indexes.

7.1 FXANN model

The overview of the proposed model for Forex trading is shown of Fig. 7.1. FXANN classifies
the input pattern that consists of several technical indicators, and generates buying, selling
or idle (no-change) signal.

As seen on the figure, the whole system consists of a multi-layer neural network, prepro-
cessing unit and postprocessing unit. The preprocessing unit normalizes every input signal
to the unit interval. After that the network generates output and the postprocessing unit
converts result into a corresponding signal.

There are four possible alternatives of how the rate is changing over time:

• The rate grew in the recent past, but will drop in the near future. In case that those
rate changes are not really small, that situation is favorable for selling (i.e, opening a
short position).

• The rate movement in future is the same as it was in the past - the price will continue
growing or falling.

• The rate felt in recent past, but will grow in near future. That situation is favorable
for buying (i.e., opening a long position).
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Figure 7.1: FXANN model overview.

For the FXANN model, I’ve divided rate alterations into three groups: selling, buying
and no-change signals. Those groups and their possible encoding is shown on Fig. 7.2. To
be considered as buying or selling signal, every rate change should be greater than some
threshold value (usually threshold is set at about 0.005). If the threshold is too small, final
profit may not even cover dealing center’s charges.

7.1.1 Input data

FXANN does not work with the rates values, but with the different indicators. The main
reason for that choice is similar as that was used for the SOM prediction: prediction of
the exact rate is difficult and needless. While approach when the network recognizes the
market situations and makes its own decisions - buy, sell, no change - is much closer to the
trading nature itself. That is why the network should be optimized not for the next number
estimation, but for making the right decision at the right moment.

As isolated rates are non-informative, the best way of how to describe current market
situation is using of technical indicators. List of indicators that may be used within FXANN
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Figure 7.2: FXANN model overview.

is shown on Fig. 7.31.
All those indicators are relative - i.e., they measure rate’s behavior, but not rate itself

(example of non-relative indicator is Moving average).

7.1.2 Output data

FXANN network has three output neurons and is expected to generate buy, sell or no-change
signals (Fig. 7.2). Because those output patterns contain only analog values - 0 and 1 - actual
output pattern may not match with any of those three signals.

In this case, the postprocessing unit converts actual output to analog value by using
two thresholds. In the experimental simulation (that is described further), I have used the
thresholds values 0.4 and 0.6. When the output is beneath 0.4, 0 is selected. Similarly, for
the output greater than 0.6 postprocessed value equals to 1.

In some situations - e.g. when some of the outputs is between 0.4 and 0.6 or final signal
does not match any of three categories - the network’s output can not be classified. In that
case FXANN produces failure signal NA.

1All those indicators are explained in Appendix A

75



Figure 7.3: Possible FXANN input indicators.
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7.1.3 Training and testing sets

FXANN can work with any trading pair and any time frame. Extracted data should contain
all necessary information about every bar: all indicators, current price, past price, future
price.

In addition to the current rate value, every bar item contains information about the set
of the past and future rates within different time frames (called windows). FXANN operates
with 8 possible window values: 9, 14, 20, 34, 50, 75, 100 and 200 bars. Every bar item also
contains information about values of different indicators for the current bar.

Based on the training data and the selected window size, the FXANN preprocessing unit
creates correct output signals. For that purpose it compares previous and current rates with
th current value. For example, for the 20 bars’ window three values are compared - 20 bars
ago value, current value and 20th bar in the future value. Those three values fit one of
four possible output signals (Fig. 7.2). In addition, to be considered as buy or sell signal,
all differences between prices should be greater than some threshold value. In FXANN, the
threshold value is set a 0.01.

• For example, let some bar’s rates are 1.0710 (past), 1.0671 (current) and 1.0696 (fu-
ture). Despite the fact that those rates formally fit buying signal, that triplet is evalu-
ated as no-change signal because rates’ differences are smaller than 0.01.

7.1.4 Adjusted learning

As mentioned earlier, the FXANN’s network tries to generate one of three output patterns
for classification. Learning of the network is done by using of the MLP back propagation
algorithm. As described in Chapter 2, the strategy of the algorithm is to modify the weights
of the connections between neurons towards decreasing the total sum of prediction error.
However, in case that the deviation of the numbers of learning samples is large among output
patterns categories, the following problem arises: the neural network will have the tendency
to improve prediction accuracy of the dominant pattern only (which is no-change signal). As
the result, the FXANN generates less buying and selling signals than expected.

To overcome that problem, the FXANN employs so called Adjusted learning. The main
idea is to duplicate buying and selling samples in order to achieve more uniform distribution
among input patterns. So the learning process may be expressed in the following steps:

1. Multiplication factors calculation. All training samples are divided into three
groups in accordance to Fig. 7.2. After that, according to the groups’ sizes, we should
define two numbers - multiplication factors (i.e., how many times to duplicate) for
buying and selling groups.
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• For defining the FXANN learning multiplication factors, I’ve used equations:

sellfactor = ROUND(
|NO − CHANGE|

2 ∗ |SELL|
) (7.1)

buyfactor = ROUND(
|NO − CHANGE|

2 ∗ |BUY |
) (7.2)

where |NO − CHANGE|, |SELL| and |BUY | is the number of no-change, buy
and sell bars correspondingly.

2. Sample duplication. During that step, buy and sell sets are duplicated in accordance
to its multiplication factors.

3. Shuffling training set. After the duplication, (duplicated) buy, (duplicated) sell and
no-change sets are merged into one training set that is then shuffled.

• For example, for USDCHF M30 training for 2008 and 20 bars window, there are
308 samples that generate buying signal, 11574 samples with no-change signal
and 459 samples generating selling signal. Then multiplication sell factor is 13
and multiplication buy factor is 18. After sampling adjusting, the result training
set contains 22825 items.

4. Back propagation training.

7.2 FXANN tool

FXANN tool is a program that implements FXANN model (Fig. 7.4). It allows configuring
the model by setting different parameters - like window size and number of learning iterations.
The FXANN tool is developed for testing different FXANN instances in order to select most
effective one.

As the first step, FXANN preprocessing unit loads testing data, calculates correct output
patterns and display data for every bar - past price (P1), current price (P2), future price
(P3) and the correct output (Pattern) - to the user in the Data list. Corresponding technical
indicators to the testing set are loaded as well, but only internally and are not shown to the
user.

Second step is creating FXANN neural network and training it. Both network and training
parameters are set buy the user.
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Figure 7.4: FXANN tool.
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The last step is prediction itself. Trained network is launched with the testing data for
prediction. After that, prediction results are displayed in the Estimation column of the Data
list. If the network fails to predict pattern for some bar, NA value is generated. After, result
prediction statistics are shown to the user.

7.2.1 FXANN settings

FXANN is a model that gives the user broad configuration possibilities. Parameters that may
be determined using FXANN tool before training and prediction are the following:

1. Learning rate. Learning rate parameter is set by default on 0.1, but may be changed.
The value should be a number between 0 and 1, otherwise default value is used.

2. Momentum. Default momentum value is 0. Entered value should also be a number
between 0 and 1, otherwise default value is used.

3. Activation function. FXANN supports two activation function types: sigmoid activa-
tion function (called Sigmoid) and bipolar sigmoid activation function (called Bipolar).
Default function is sigmoid.

4. Alpha value. Alpha value is the parameter for both sigmoid and bipolar sigmoid
functions. To make learning process effective, its value should not be set too big or too
small. Values smaller than 1 and greater than 2.5 are not favorable and may result in
inefficient learning.

5. Preprocessing method. There are two options: simple preprocessing (5.3) and sta-
tistical preprocessing (5.4). By default FXANN employs simple preprocessing.

6. Window size. That parameter determines the size of the window for getting the past
and the future rates. For example, is window size is 14, rates that are considered are:
14 bars past rate, the current rate, 14 bars future rate. By default, FXANN works with
the 9 bars window.

7. Iterations. That parameter indicates number of training epochs. During one epoch,
the network processes the whole training set. By default, that parameter is set to 1000
iterations.

8. Adjusted learning flag. FXANN allows indicating whether the adjusted learning
should be used or not. Default flag value is false.
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Figure 7.5: FXANN network configuration.

9. Network. The user may also define FXANN network architecture (Fig. 7.5). The
network may contain up to 3 hidden layers. Default configuration is 1 hidden layer
with 10 neurons.

10. Input parameters. FXANN tool allows the user configuring input indicators. List
default indicators is shown on Fig. 7.3.

11. Data sets. By default, FXANN tool assumes that training and testing files are places
in a special directory (”../../data” directory) and are named ”training.txt” and ”test-
ing.txt”. That default setting may be changed by hitting ”Configure” button at ”Data
sets”.

7.2.2 FXANN report

After FXANN makes its prediction on the testing data, it shows general report that helps
the user with the FXANN instance evaluation. Results are shown in separate window (Fig.
7.6) and contain the following parameters:

1. Bar count. Number of bars (samples) in testing set.

2. Success rate. Correct prediction rate for the whole testing set.
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Figure 7.6: FXANN report.

3. NA %. ”NA” failure signals rate among all signals.

4. NA count. Number of ”NA” failure signals generated.

5. Opposite action rate. Opposite action signal is generated when instead of correct
buying signal, selling signal is generated and vice versa. Those signals may potentially
lead to large financial losses and knowing how many of them the FXANN instance
generates may be crucial for its potential usage. Also, that rate is calculated not from
the whole testing sets, but from buying and selling signals only.

• For example, if the opposite action rate is 5%, it means that 95% of buying and
selling signals were recognized correctly or as no-change signals. And 5% were
recognized as opposite signal.

6. Successful BUY/SELL rate. That parameter shows how much buying and selling
signals were recognized correctly. Successful identification of those signals is crucial for
making profit. That rate is calculated from buying and selling signals only.

7. False action rate. That parameters shows how often no-change signal was recognized
as buying or selling signal. High rate values mean that the FXANN instance may do a
lot of unprofitable trades.
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Figure 7.7: FXANN export buttons.

7.2.3 FXANN data export

FXANN tool allows exporting of both prediction results and FXANN network configuration
including synaptic weights (Fig. 7.7).

1. Results saving. After clicking the Export results button and selecting text file name
and location, the FXANN tool will save the FXANN instance parameters (e.g., network
architecture, learning rate and momentum values) and final statistics (shown on the
Results window).

2. Network saving. For saving trained network configuration - number of layers, neurons
and synaptic weights of every neuron - the user should click the Save net button and
select a text file for storing the information. The information is saved in MQL4 format
and can be directly used as the part of the MQL4 advisor code.

7.2.4 FXANN requirements

For using FXANN tool, you must have:

1. Operating system: Windows XP, Windows Vista, Windows 7

2. Software: .Net Framework version 3.5

3. Training and testing data: Those files should be located in the same directory as the
FXANN executable file. Their names should be training.txt and testing.txt accordingly.

7.3 Experimental simulation

FXANN model was tested on real data, received from the Alpari server (Fig. 7.8). Same as in
previous chapter, I have used USDCHF M30 data. Data for year 2008 were used for training
and data from 1.1.2009 to 19.05.2009 were used for prediction.

Training data contains 12321 bars. And testing set contains 4630 bars.
To select the most appropriate FXANN model, I’ve created more than 100 instantiations

with different parameters. As the results, I’ve chosen several of them that gave the most
accurate predictions. In that section I will discuss different parameters’ impact on the system’s
prediction capability and then introduce and evaluate the most successful model.
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Figure 7.8: USDCHF 2008-2009 data used for FXANN experiments.

7.3.1 Observations

After testing a big number of different models, I have made several empirical conclusions
about FXANN parameters’ values.

1. Network configuration. Regardless other parameters, the best results were achieved
by using the network with only one hidden layer with rather big number of neurons
- from 10 to 15. However, the neural network with two hidden layers, one of which
contained approximately as many neurons as there were input indicators, and the second
layer contained just a few neurons, also was able to generate acceptable results. Three-
layered networks appeared to be slow and much less effective, regardless of the number
of neurons in each layer. I also assume that more than three layers would be even more
ineffective.

2. Adjusted learning. As expected, adjusted learning has brought significant improve-
ments in recognizing buying and selling signals within all window sizes and input indi-
cators’ sets.

For example, for 20 bars window and default parameters, FXANN produced following
results2:

2Because network’s initial synaptic weights are set to small random values, different models with the same
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Table: Adjusted learning impact

Without adjusted learning With adjusted learning

Success rate 91.1% 89.8%

NA % 2.6% 1.7%

Opposite action rate 0% 0%

Successful B/S rate 29.9% 59.5%

False action rate 3.3% 6.5%

3. Window size. If the window is too small or too large, technical indicators may not
reflect current market situation comprehensively. When the window is too small, past,
present and future values may be correlated. When the window is too large, rate changes
are reflected by fundamental indicators much more than by technical indicators. There-
fore, the use of technical indicators as input parameters may be less effective. As the
result of experimentation, the window size of 20 bars was considered the most appro-
priate.

4. Technical indicators. To make learning and predicting more effective effective, the
input parameters should cover the market situation as fully as possible. Also, number
these parameters must be neither too high nor too low. Experimental results show that,
for example, such input set may be made by two indicators with the small and large
scope from each of four indicators’ groups (StdDev, RSI, ADX, CCI). Example of the
selection that worked well is shown on Fig. 7.3.

5. Iterations. Optimal number of iterations depends on the network architecture and
the number of input indicators. However, experimental results show that the number
of iterations should be in the range from 500 to 4000 or 5000. For the network with one
hidden layer and 10 hidden neurons, optimal number of iterations is about 1000.

7.3.2 Selected model

For experimental simulation, I’ve selected the following model:

parameters may produce slightly different results.
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Table: Selected FXANN model

Parameter Value Parameter Value

Learning rate 0.1 Momentum 0

Activation function Sigmoid Preprocessing type Simple

Network architecture 1 hidden layer with 10 neurons Adjusted learning Yes

Window size 20 bars Alpha value 2

I have also selected the following indicators: Deviation 25, Deviation 100, RSI 25, RSI
100, ADX 25, ADX 100, CCI 25, CCI 100, AD.

As a currency pair, I have selected USDCHF. Whole year 2008 M30 historical rates were
used for training, and M30 data from 1.1.2009 to 19.05.2009 were used for testing. The data
characteristics are the following:

Table: 20 bars window data

Training samples Testing samples

Selling signal 308 (2.4%) 129 (2.7%)

Buying signal 439 (3.6%) 172 (3.7%)

No-change signal 11574 (93.8%) 4329 (93.6%)

Total 12321 4630

The low amount of buying and selling signals is expected. Because 20 bars is a rather small
time frame, most rate changes within that interval are not significant (i.e., rates dispersion
is low). For larger window there will be more action signals. For example, characteristics of
the same data with the window size of 100 bars are the following:

Table: 100 bars window data

Training samples Testing samples

Selling signal 1099 (8.9%) 744 (16.0%)

Buying signal 1469 (11.9%) 703 (15.2%)

No-change signal 9753 (79.2%) 3183 (68.8%)

Total 12321 4630
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Figure 7.9: FXANN results of 50 different instances with the same parameters.

7.3.3 Prediction results

I have tested 50 FXANN instances with the same parameters (described in previous section).
Because at the beginning synaptic weights are initialized randomly, all those models produced
slightly different predictions. The results’ summary is shown on Fig. 7.9.

Aggregated results are also shown in the following table:

Table: Selected model results (window size = 20 bars)

87



Min Max Mean Sd deviation 95% confidence interval

Success rate 85.3% 89.3% 87.8% 0.917 [87.54, 88.05]%

B/S success rate 56.8% 78.4% 65.43% 5.150 [64.00, 66.86]%

False action rate 6.4% 10.6% 8.38% 0.998 [8.10, 8.66]%

NA rate 1.1% 5.1% 2.60% 0.825 [2.37, 2.83]%

Opposite action rate 0% 4.7% 0.41% 0.861 [0.17, 0.65]%

For the comparison purposes, I have also selected 2 alternative FXANN models:

1. Model 1. That model is the same as the selected one, but instead of 20 bars window
size it employs 100 bars window size.

2. Model 2. In addition to the selected model parameters, that model is based on more
input indicators - it also adds StdDev 9, ADX 9, RSI 9, CCI 9, AC, AO and MACD
indicators to the input set. And because of extended number of input parameters, it
contains 15 instead of 10 hidden neurons.

Similarly as with the selected model, I have trained 50 instances for each of those two
alternative models. Aggregated results for 50 instances are displayed in the following tables:

Table: Model 1 results (window size = 100 bars)

Min Max Mean S. deviation 95% confidence interval

Success rate 56.1% 68.7% 62.4% 2.817 [61.66, 63.22]%

B/S success rate 22.6% 73.0% 54.95% 8.834 [52.50, 57.40]%

False action rate 5.7% 32.3% 22.08% 4.590 [20.81, 23.35]%

NA rate 9.0% 29.5% 14.67% 4.099 [13.54, 15.81]%

Opposite action rate 0% 8.8% 2.70% 2.365 [2.04, 3.35]%
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Table: Model 2 results (window size = 20, additional input indicators)

Min Max Mean S. deviation 95% confidence interval

Success rate 78.8% 92.9% 89.5% 2.608 [88.76, 90.21]%

B/S success rate 18.9% 64.1% 35.04% 9.251 [32.48, 37.61]%

False action rate 1.7% 11.1% 4.42% 1.963 [3.87, 4.96]%

NA rate 0.6% 9.2% 2.69% 1.591 [2.25, 3.14]%

Opposite action rate 0% 9.6% 1.18% 1.708 [0.71, 1.66]%

As shown in tables above, comparing to alternative models, the selected FXANN model
has rather high buying and selling signals recognition rate (about 65.43%). It also has a
high overall prediction rate (about 87.7%), especially comparing to the Model 1. Taking into
account the Opposite action rate parameter, that is rather low (i.e., less than 0.5% in average),
buying and selling signals that were not recognized correctly, were recognized as no-change
signal or prediction was failed. That by-turn means that not all favorable buying and selling
situations will be recognized, but that will not lead to somehow significant financial losses.

The other potential ”loss spot” is the situation when no-change signal is recognized as
an action (buying or selling) signal. That misprediction could also cause potential financial
losses. However, the selected model does not have a high False action rate - only about 8.38%.
Losses caused by that signal may be avoided by setting stop loss signal value that will close
the position as soon as it becomes potentially highly unprofitable.

Finally, the most dangerous situation is so-called opposite action, when buying signal is
recognized as selling signal and vice versa. But experiments shown that the overall Opposite
action rate is insignificant that those situations will appear rarely.

Low success rates and high misprediction and failure rates of the Model 1 (comparing to
the selected FXANN model) imply high dynamism of the USDCHF market. 100 bars window
size appears to be too large and selected technical indicators are not able to describe all the
variety of changes that may happen between the past and future rates for every bar. However,
despite that 100 bars window is not applicable to the USDCHF pair, it does not mean that
it is not a generally good choice - that window may work well for some other currency pair.

Furthermore, the Model 2 results show that selecting too many technical indicators as
input parameters is not a good choice (at least on the USDCHF market). Additional indica-
tors slightly improved the ability to recognize no-change situation, but significantly reduce
the ability to recognize buying and selling situations. As results’ table indicates, the most of
those situations were recognized as no-change signals.
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Figure 7.10: FXANN-based advisor simulation results

7.3.4 Simulation results

In order to test FXANN on Forex, I set up an automated advisor (FXANN-based advisor)
that is based on a random instance of the selected model. The advisor commits financial
transactions based on signals received from the FXANN model. Similarly as with the SOM-
adviser, FXANN advisor also takes into account stop loss and take profit levels. Similarly as
in SOM-based advisor, those values were set to 15 and 46 points accordingly.

The advisor was tested on the exactly same testing data and FXANN model - USDCHF
M30 rates from 1.1.2009 to 19.05.2009.

Results of the simulation are shown in the following table:

Table: FXANN simulation results

FXANN advisor

Total net profit 590.22$

Total trades 53

Expected payoff 11.14$

Profit trades (% of total) 96.23%

Fig. 7.10 shows FXANN-based advisor financial results.
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7.3.5 Model evaluation

In order to make sure that the selected FXANN model is stable, I have also performed two
additional tests - robustness test and independent data set test.

Robustness test aims to ensure that the model is stable. For that purpose I’ve created 50
FXANN model instances and then changed all their ANN synaptic weights. The amount of
change was 5% of the original value and that change was added to or subtracted (that action
was determined randomly) to/from the original synaptic weight value.

Table: Robustness test results (±5% change)

Min Max Mean S. deviation 95% confidence interval

Success rate 80.9% 90.5% 86.8% 2.102 [86.20, 87.36]%

B/S success rate 47.2% 83.4% 63.29% 7.140 [61.32, 65.28]%

False action rate 4.8% 13.1% 8.15% 1.644 [7.69, 8.61]%

NA rate 1.6% 11.7% 3.87% 1.772 [3.37, 4.36]%

Opposite action rate 0% 4.3% 0.43% 0.839 [0.20, 0.66]%

Results’ table indicates that despite that overall prediction ability of the model was
slightly decreased, the selected model is stable and is able to produce quality results even
when slightly noised.

Second test was performed in order to evaluate model’s prediction ability within different
data set from the same domain. For that purpose, I have selected USDCHF M30 data for the
following several month: from 19.5.2009 to 17.09.2009. The characteristics of the alternative
testing set are the following:

Table: Alternative testing data

Testing samples

Selling signal 57 (2.7%)

Buying signal 116 (5.6%)

No-change signal 1913 (91.7%)

Total 2086

91



Following table is based on 50 different FXANN instances and shows prediction results
on the new data set:

Table: Independent data set test results

Min Max Mean S. deviation 95% confidence interval

Success rate 75.8% 88.9% 85.8% 2.319 [85.14, 86.43]%

B/S success rate 31.8% 72.3% 55.10% 8.493 [52.75, 57.46]%

False action rate 5% 14.2% 8.35% 1.842 [7.84, 8.86]%

NA rate 1.6% 14.8% 3.89% 2.085 [3.31, 4.47]%

Opposite action rate 0% 1.7% 0.16% 0.449 [0.04, 0.27]%

As expected, the model’s performance decreased - it was able to recognize about 55.1% of
buying and selling signals, comparing to 65.43% of the original results. It also ended up with
higher deviation values. However, overall performance of the model did not change much and
remained satisfactory.

7.4 Conclusions

In that chapter I have introduced and evaluated the model based on a multi-layer neural
network. Trading and prediction results of the selected model shown that neural networks
have the ability to successfully classify Forex trading situations. Experimental simulation
applied to the real data has demonstrated that the prediction system generates buying and
selling signals with the high success rate.

The model was also able to successfully classify trading situation of the completely new
testing set from the same domain. Despite the fact that final results of the model were slightly
worse then on the original testing set, results still remained reasonable and solid.
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Chapter 8

Conclusions and future work

In that thesis I have presented two approaches of how to create ANN-based automated trading
advisors. The first advisor was based on Kohonen’s self-organizing maps and the second one
was based on the back propagation network. Both models worked with technical indicators
instead of currency rates. Both models tried to recognize situations that were favorable for
buying or selling actions.

Kohonen’s maps were not able to recognize buying or selling situations. Moreover, indi-
cators’ buying and selling clusters were very similar. That fact was used for extraction of
information about indicators’ intervals that were favorable for taking action. Despite the fact
that the nature of action was unknown and the advisor was coerced opening both buying
and selling positions, setting stop loss and take profit levels contributed to its significant
profitability.

However, SOM-based advisor was developed rather as a ”proof of concept” than as a
proper model - only one network was trained, only one set of indicators was tested and no
statistical evaluation was performed. The idea appeared promising and further developing
and evaluation of the SOM-based model may become one of the possible directions for future
work.

In contrast, FXANN model was able to recognize buying and selling situations with the
high probability. The advisor that was based on that model also appeared to be profitable.
That model was selected after more that 100 different models’ tests and significantly outper-
formed other models. FXANN model also was tested for robustness and input space approx-
imation and both tests results were satisfactory - the model was able to produce reasonable
results on other than training set, as well as with noised weights.

Also, as the part of my project I have created a tool that can be used by traders without
understanding of complex neural networks concepts. As for today, programs like the one I’ve
developed are not available for traders and according to the fact that many of them try using

93



neural networks in their attempts of making profit, that tool may become very handy to
them.

As future work, there are still plenty of possibilities of how to continue that research.
Among them:

• As mentioned before, SOM-based model could be developed and properly tested.

• The thesis is based on the same one data set - USDCHF M30 data. Testing those
models on different currency pairs and different time frames may also become a possible
direction for future work.

• Both models could be tested towards different Forex parameters - such as take profit
and stop loss levels.

• Different types of networks could be examined (e.g., Probabilistic neural network (PNN)).

• Different types of learning methods could be used as well (e.g., [29]). Also, error function
can be optimized in order not to minimize error, but to maximize profit.
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Appendix A

Technical indicators

A.1 Commodity Channel Index (CCI)

CCI indicates how much current rate deviates from the average price. The index is designed
such as 70% to 80% percent of CCI values fall between -100 and +100 (Fig. A.1). High values
of the index point out that the price is unusually high being compared with the average one,
and vice versa for low price. That index is calculated based on predefined number of bars
(e.g., CCI 25 - indicator for the last 25 bars).

A.2 Relative Strength Index (RSI)

The RSI compares the upward price movement to downward price movement over the spec-
ified time frame, and displays the result as a momentum line oscillating between 0 and 100
(Fig. A.2). It measures the current and historical strength or weakness of a market. RSI
assumes that prices are higher in strong market periods and lower in weak market periods.
That indicator is based on some predefined number of bars (e.g., RSI 14).

A.3 Average Directional Movement Index (ADX)

Average Directional Movement Index Technical Indicator (ADX) helps to determine if there
is a price trend as it calculates the strength of the upward or downward movement. An ADX
level below 20 is considered low. It is a strong indicator of a currency trading within a range.
When the ADX is at 25, the strength of a trend is growing, but still may not be strong
enough yet to break out of the range (Fig. A.3).

ADX indicator exists into 3 several modes:
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Figure A.1: CCI index ([35]).
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Figure A.2: RSI index ([35]).
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Figure A.3: ADX index ([35]).
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1. MAIN. Standard indicator value (blue line on (Fig. A.3)).

2. PLUSDI. +DI value (green line on (Fig. A.3)).

3. MINUSDI. -DI value (red line on (Fig. A.3)).

Here +DI and -DI state for positive/negative directional index respectively. Those are
calculated by comparing the current price with the previous price range, and displayed as an
upward movement line (+DI), and a downward movement line (-DI) with the values between
0 and 100.

A.4 Momentum

The Momentum indicator is a speed of movement (or rate of change) indicator, that is
designed to identify the speed (or strength) of a price movement (Fig. A.4). Usually, the
momentum indicator compares the most recent closing price to a previous closing price, but
it can also be used on other indicators such as moving averages.

A.5 Standard Deviation (StdDev)

Generally, ctandard deviation is a statistical measurement that shows how much variation
there is from the arithmetic mean (simple average). Traders use technical indicator named
Standard Deviation (StdDev) for measuring the market volatility - quantification the risk of
the financial instrument over the specified time period. Thus, if the indicator value is large,
the market is volatile and the bars prices are rather dispersed relating to the moving average.
If the indicator value is not large, it means that the market volatility is low and the bars
prices are rather close to the moving average (Fig. A.5).

A.6 Average True Range (ATR)

ATR indicator measures predictability of the market (Fig. A.6). Average True Range can
often reach a high value at the bottom of the market after a sheer fall in prices occasioned
by panic selling. The indicator does not provide an indication of price direction or duration,
simply the degree of price movement. ATR is also based on periods (e.g., ATR 14).
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Figure A.4: Momentum index ([35]).

100



Figure A.5: Standard deviation ([35]).
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Figure A.6: ATR index ([35]).
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Figure A.7: AC index ([35]).

A.7 Bill Williams’ Accelerator/Decelerator (AC)

Acceleration/Deceleration Technical Indicator (AC) measures acceleration and deceleration
of the current driving force (Fig. A.7).

A.8 Bill Williams’ Awesome oscillator (AO)

Awesome Oscillator (AO) is simply the difference between the 34-period and 5-period simple
moving averages of the bar’s midpoints (H+L)/2. Awesome Oscillator (AO) is displayed on
Fig. A.8.
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Figure A.8: AO index ([35]).
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Figure A.9: AD index ([35]).

A.9 Bill Williams’ Accumulation/Distribution (AD)

AD indicator that attempts to gouge supply and demand by determining whether investors
are generally ”accumulating” (buying) or ”distributing” (selling) a certain currency by iden-
tifying divergences between stock price and volume flow (Fig. A.9).
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