
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Michal Richter

Pokročilý korektor češtiny

Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: Mgr. Pavel Straňák

Studijńı program: Informatika, Matematická lingvistika

Chtěl bych poděkovat Mgr. Pavlu Straňákovi za vedeńı práce, poskytnut́ı velmi cenných rad

a potřebného hardwaru. Dále pak Prof. Dietrichu Klakowovi za rady týkaj́ıćı se statistického

modelováńı a kombinace jazykových model̊u. Své ženě Olze děkuju za vytrvalou podporu,

jazykovou korekturu podstatné části textu a za pomoc při trénováńı chybových model̊u.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s použit́ım cito-

vaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 5.8.2010 Michal Richter

Název práce: Pokročilý korektor češtiny

Autor: Michal Richter

Katedra (ústav): Ústav formálńı a aplikované lingvistiky

Vedoućı diplomové práce: Mgr. Pavel Straňák

e-mail vedoućıho: stranak@ufal.mff.cuni.cz

Abstrakt: Cı́lem práce je implementovat český spell-checker, který bude využ́ıvat jazykové

modely a lexikálńı morfologické analýzy za účelem nab́ızeńı co nejkvalitněǰśıho seznamu možnost́ı

oprav pro jednotlivé překlepy a za účelem odhaleńı překlep̊u, které jsou zároveň platnými českými

slovy. Systém by měl zároveň poskytovat službu obnovy diakritiky v českém textu. Za ćılovou

platformu byl zvolen operačńı systém Mac OS X. Během implementace byl kladen d̊uraz zejména

na efektivńı paměťovou reprezentaci statistických model̊u.

V práci je podán přehled o použitých metodách - HMMs, language models, Viterbi algorithm.

Dále je popsána vlastńı implementace systému a trénováńı statistických model̊u. Na závěr pak

č́ıselná evaluace úspěšnosti systému a diskuze dosažených výsledk̊u.

Kĺıčová slova: opravováńı překlep̊u, obnoveńı diakritiky, statistické metody

Title: Advanced Czech Spellchecker

Author: Michal Richter

Department: Institute of Formal and Applied Linguistics

Supervisor: Mgr. Pavel Straňák

Supervisor’s e-mail address: stranak@ufal.mff.cuni.cz

Abstract: The aim of this work is to implement a Czech spell-checker using several language

models and a lexical morphological analyser in order to offer proper correction suggestions and

also to find real-word spelling errors (spelling errors that happen to be in the lexicon). The

system should also be able to complete diacritics to Czech text. Mac OS X was chosen as the

target platform for the application. During the implementation, emphasis was put especially on

memory-efficient representation of the above-mentioned statistical models.

In the beginning, a gentle introduction to Hiden Markov Models, Language Models and

Viterbi algorithm is given. The actual system implementation and the statistical models training

is discussed further. In the final part of the work, the achived results are evaluated and discussed

in depth.

Keywords: spell-checking, diacritic completion, statistical methods

Contents

1 Diploma Thesis Assignment 6

1.1 In English . 6

1.2 In Czech . 6

2 Introduction 7

3 Background 10

3.1 Noisy Channel Model for Spelling Correction . 10

3.2 Log-Linear Model Incorporating Morphological Features 11

3.3 N-Gram Language Models . 14

3.3.1 Maximum - likelihood estimation . 15

3.3.2 General Form of LM Smoothing . 15

3.3.3 Good-Turing Discounting Method . 17

3.3.4 Kneser-Ney Discounting Method . 17

3.3.5 Language Models as the Components of Log-Linear Model, Word Emis-

sion Models . 18

3.4 Error Model . 20

3.5 HMM model . 22

3.6 Decoding - Viterbi algorithm . 24

4 Data sources and Models Training 26

4.1 Lexicon . 26

4.2 Text Corpus . 26

4.2.1 Corpus Cleaning . 26

4.2.2 Corpus Splitting . 27

4.2.3 Training Data Processing . 28

4.3 Language Models and Emmision Models Training 28

4.4 Error Corpus and Error Models . 31

5 Implementation 35

5.1 Auxiliary Data Structures . 35

5.1.1 Memory Efficient Static Array . 35

4

5.1.2 Memory Efficient Static Array of Non-Decreasing Values 36

5.1.3 Forgetful Hash Map . 37

5.2 Dictionary . 38

5.3 Morphology Lexicon . 39

5.4 Language Model Implementation . 42

5.4.1 ZipTBO . 43

5.5 Decoding Algorithm Implementation . 43

5.6 Diacritic Completion . 48

5.6.1 Letter Language Model For Diacritics Completion on Unknown Words . . 48

5.7 Spell-checking of Text with No Diacritics . 49

5.8 MacOS X - Spell Checking Interface . 49

5.8.1 findMisspelledWordInString . 50

5.8.2 checkGrammarInString . 51

5.8.3 Installation of Spell-checker On Mac . 52

6 Evaluation 53

6.1 Diacritics Completion Evaluation . 53

6.2 Spell-Checking Evaluation . 55

7 Conclusions 60

References 62

5

1 Diploma Thesis Assignment

1.1 In English

The aim of this thesis is to design and implement a spell-checker, that will use the morphological

lexicon and the thesaurus developed at UFAL (Institute of Formal and Applied Linguistics). A

key feature of the application will be an ability to find real-word spelling errors (the spelling

errors that accidentally form another lexical entry). The application will use the ability of

morphological lexicon to setup restriction on style variants. The application should be also able

to check a text with no diacritics or a text with diacritics encoded by TeX sequences. The

important feature of the system will be an ordering of correction suggestions according to their

probabilities. The application will also provide service for removing diacritics from a Czech

text or completing diacritics to a text with no diacritics. The thesaurus will suggest properly

inflected synonyms to a given word form.

The system will be implemented as a Spell Server for Mac OS X or as a web application.

1.2 In Czech

Ćılem práce je navrhnout a implementovat spellchecker, který bude využ́ıvat morfologického

slovńıku a tezauru vyvinutého na UFALu. Zároveň bude kĺıčovou vlastnost́ı schopnost nalézt

překlep, který tvoř́ı správně zformované české slovo (a tedy je takové slovo ve slovńıku).

Nástroj bude využ́ıvat možnost́ı nab́ızených morfologickým slovńıkem pro omezeńı stylových

variant, bude korigovat jak text s akcenty, tak bez nich i text s akcenty zapsanými TeXovými

sekvencemi, to vše i v jednom dokumentu. Důležitou součást́ı systému bude také optimalizace

nab́ızených náhrad podle jejich pravděpodobnosti. Dále nástroj nab́ıdne možnost z textu di-

akritiku odstranit či ji přidat do textu, kde diakritika neńı. Tezaurus bude nab́ızet k danému

slovńımu tvaru synonyma správně vyskloňovaná, časovaná, stupňovaná a negovaná.

Celý systém bude implementován Spell Server pro Mac OS X nebo jako webová aplikace.

6

2 Introduction

A spell-checker is a computer program whose task it is to find spelling errors in a written

text and to suggest corrections to these spelling errors eventually. Spell-checkers usually run

as a background process within a text editor such as Microsoft Word or OpenOffice and flags

misspelled words by red underlining. A list of correction suggestions usually appears in a

context menu, when the user right-clicks on a misspelled word or it is often possible to open a

standalone spell-checking panel and carry out certain actions such as accepting or rejecting the

spell-checker suggestions.

Most spellcheckers available are not particularly good at linguistics. They search for words

typed by a user in their lexicons and flag those that fail to be recognized. Correction suggestions

are usually sorted according to their similarity to a misspelled word or according to a more

sophisticated model that assigns specific probabilities to distinct error types. However, the idea

of using the information coming from the context of a misspelled word to improve the spell-

checkers’ performance is quite old (Mays, Damerau, & Mercer, 1991). In recent years, advanced

spell-checkers that use context information and are sometimes even capable of recognizing real-

word errors started appearing. For example, Microsoft Word 2007’s spell-checker detects a

certain number of real-word errors and underline them with green color. Google has recently

released a feature called Google Suggest that checks search queries for spelling errors and offers

quite reasonable corrections.

These methods are usually based on Noisy-channel approach, which will be described in

Section 3.1. These spell-checkers use language models determining which word sequences are

likely to appear in a written text. The system implemented in this work also belongs to the

Noisy-channel framework and it also makes an extensive use of language models. In this case,

however, an attempt was made to go one step further and to use language models that work

with morphological features of words. These models prefer word sequences whose morphological

categories form a likely sequence (for example, preposition bez followed by a noun in the 2nd

case is likely to occur, but the occurence of bez followed by a 4th case noun is highly unlikely).

Such models can to some extend capture simple grammatical phenomena such as subject-verb

agreement in person and number or adjective-noun agreement in case and number. These

models were combined with the standard models used in context-sensitive spell-checking in a

log-linear model, which can be seen as a generalization of the Noisy channel model.

7

The purpose of this thesis, nevertheless, was not to come up just with a scientific proto-

type. The real aim was to develop a practical application that would help Czechs to write less

erroneous texts. Because of this, special care was devoted to the efficiency of provided imple-

mentation, both in terms of memory and CPU consumption. ZipTBO method that uses about

4 bytes per n-gram was used for the representation of language models1.

In the Czech language, there are certain special letters that do not belong to the standard

Latin alphabet. These are all variations of standard Latin letters made by adding diacritic sign

such as caron (háček) to Latin letters. When typing on computers, Czechs often write without

diacritics (they substitute diacritic letters for their basic Latin-letter equivalent). The reasons

for that were described in (Vrána, 2002) who wrote his Master Thesis on the topic of diacritic

completion. To sum up, the omission of diacritics is caused by the fact that people use English

keyboard layout and also by the fact that a text without diacritics does not suffer from problems

caused by different diacritic encoding on different platforms2.

Because of the nature of the implemented system, adding functions that complete diacritics

was not that complicated a step. It was accomplished by simple substitution of an error model

component that assigns costs to distinct edit operations such as a letter substitution, deletion,

insertion and a letter swap. The error model for diacritic completion simply assigns zero costs

to substitutions that add diacritic to a latin letter and infinite costs to any other edit operation.

As a consequence, the only correction that system does, is the diacritic completion.

By providing custom error model implementation, it is also possible to achieve a functionality

of spell-checking of text without diacritics (a word is considered to be correct, if a correct word

can be formed by adding diacritics to it).

The target platform of the system is Mac OS X, yet the overwhelming part of the code was

written in C

C++ and can be used on other platforms as well3. Only the classes providing Mac OS X

Spelling Server interface are platform-dependent. The reason for chosing Mac OS X as the target

platform was that it provides a unified spell-checking interface that almost every modern native

Mac application respects. It opens up the opportunity to use the implemented spellchecker

1It is possible to go even further and reduce memory consumption to 3 bytes per n-gram (as proposed by
(Church, Wa, Hart, & Gao, 2007)), but this representation is less CPU-efficient and ZipTBO seemed to be
more suitable for the given task.

2This problem is less acute nowadays because of the widespread usage of UTF8 encoding.
3The current implementation, though, runs on low-endian machines only. For efficiency reasons, data struc-

tures such as lexicon, morphology lexicon and language models are stored in bit arrays and low-level bit
manipulations are used. This is not a big limitation, since most personal computers are low-endian nowadays.

8

systemwide - when writting emails in Safari web browser, inside any text editor etc. However

the drawback is that Apple computers are still quite rare among Czechs.

In Section 3, the statistical models used in this work will be introduced together with the

description showing how they were utilized for the given tasks of spell-checking and diacritics

completion. Section 4 describes the data that were used, the processing of these data and the

process of the model training. Section 5 describes the details of the system implementation and

Section 6 presents the results of the performance evaluation. Section 7 contains the conclusions

of what was done and outlines possible future plans.

9

3 Background

The task of context-sensitive spelling correction and diacritics completion can be seen as a

problem of sequence decoding which is often formulated in terms of noisy channel model or a

more fine-grained log-linear model. These frameworks will be described in the following text

together with statistical models and the decoding algorithm that was used. Sections on language

models and Viterbi Algorithm are heavily based on the information provided in (Jurafsky &

Martin, 2008), however the practical use of these concepts for the spelling-correction problem is

described as well. Section 3.3.2 is based on the information that was found in (Yuret & Stolcke,

n.d.).

3.1 Noisy Channel Model for Spelling Correction

Noisy-channel is widely used to model a wide area of NLP problems such as speech recognition,

machine translation, question answering and also spelling correction. The noisy channel model

expresses the following idea: A transmitter sends a sequence of symbols to a reciever. During

the transfer, though, certain symbols of the transmitted sequence are confused due to the

deficiencies of the transmission channel. The distorted sequence is then received by the receiver.

The receiver’s goal is to reconstruct the original sequence using the knowledge of the input data

and transmission channel properties, the latter meaning e.g. the probabilities of specific errors’

occurrence.

More formally, when the target sentence t is received, the goal is to find the most probable

input sentence s according to

s = argmaxs′P (s′|t)

Using the Bayes theorem this can be rewritten as

s = argmaxs′P (s′|t) = argmaxs′P (t|s′)P (s′) (1)

The term P (s′) expresses the a priori probability of the input sentence. It estimates the probabil-

ity of s′ being the transmitted sequence. The term P (t|s′) expresses the a posteriori probability

of s′ being transformed into t during the transfer. A probabilistic model that estimates P (t|s′)

for all possible combinations of values for t and s′ is usually denoted as an error model.

The problem of spelling correction can be easily expressed in the terms of the Noisy-channel

10

model. The transmitter is a person that intends to type a natural-language text. In his/her

mind, an uncorrupted form of the text is present, but during its realization, errors are intro-

duced, both due to the typing and spelling skills of that person. This process of text realization

that introduces errors can be seen as a transfer phase. Finally, there is a receiver, a spell-checking

application, that should recognize what was originally in the writer’s mind and suggest possible

corrections. The knowledge which words or sequences of words are common in the particular

language is used to form the model of a priori probability. The knowledge of probabilities of

distinct error types such as confusion of adjacent letters is used to form the error model.

More formally, the spelling-correction task can be defined as a problem of finding an optimal

sequence of words w∗1...w
∗
n given the input word sequence w

′
1...w

′
n, possibly containing spelling

errors. The noisy channel formulation of spelling-correction problem conforming to Equation 1

can be written as

(w∗1...w
∗
n) = argmax

(ŵ1...ŵn)
P
(
ŵ1...ŵn|w

′
1...w

′
n

)
= argmax

(ŵ1...ŵn)
P
(
w
′
1...w

′
n|ŵ1...ŵn

)
P
(
ŵ1...ŵn

)
3.2 Log-Linear Model Incorporating Morphological Features

The purpose of a log-linear model is to provide a more general framework that allows to combine

any number of feature functions and to provide a greater flexibility for parameter settings. A

detailed description of log-linear models and their theoretical background is provided in (Smith,

2004). A general equation capturing a log-linear model for decoding of sequence w
′
1...w

′
n can be

written as follows

(w∗1...w
∗
n) = argmax

(ŵ1...ŵn)

N∑
j=1

αj × fj(ŵ1...ŵn, w
′
1...w

′
n)

where fNj=1 are feature functions and αNj=1 are their weights.

Noisy-channel described in section 3.1 can be seen as a special instance of log-linear model

as shown by the following derivation:

(w∗1...w
∗
n) = argmax

(ŵ1...ŵn)
P
(
w
′
1...w

′
n|ŵ1...ŵn

)
P
(
ŵ1...ŵn

)
= argmax

(ŵ1...ŵn)

[
1× log

(
P (w

′
1...w

′
n|ŵ1...ŵn)

)
+ 1× log

(
P (ŵ1...ŵn)

)]
There are two feature functions fe = log

(
P (w

′
1...w

′
n|ŵ1...ŵn)

)
and ff = log

(
P (ŵ1...ŵn)

)
with

weight parameters αe = αf = 1. In some situations, it may be reasonable to assign unequal

11

weights to the models (for example when there is plenty of data for a reliable estimation of the

first model, but not enough data for the estimation of the second model).

However it may also be desirable to add other feature functions. Given the target language of

the system (Czech), it might be desirable to utilize information coming from the rich morphology

of the Czech language. For example, in the sentence

Úředńıci vyhověli žádosti občan̊u.

the morphological suffix of the verb vyhověli shows that the subject of the sentence should be

in plural and in masculine gender. This is consistent with morpholexical interpretation of the

subject word úředńıci that holds both properties required by the given verb. Such constraints

can be defined by rules, but they can be also captured by statistics. Given that the morphological

analysis for the given sentence is

Úřednı́ci|NNMP1-----A---- vyhověli|VpMP---XR-AA---

žádosti|NNFP3-----A---- občana|NNMS2-----A----

a statistical system can induce from the given sentence that the word tagged as VpMP---XR-AA---

is likely to appear after a word tagged as NNMP1-----A----. Of course, many training sentence

instances are needed in order to estimate probabilities of distinct tag sequences correctly. The

advantage of statistical models working with morphological tags over statistical models working

with word forms is that they provide a basic generalization. Assuming that this sentence was

included in training data, another sentence

Policisté naslouchali st́ı̌znosti nájemńıka.

could be considered as highly probable according to a morphology-based statistical model,

because the morphological interpretation is exactly the same as the morphological interpretation

of the previous sentence which is included in the training data. On the other hand, a statistical

model working with word forms would consider the sentence as highly unprobable if we assume

that none of the word bigrams forming the sentence were contained in the training corpus.

The use of morphological features makes the data sparseness problem less acute, because the

amount of possible morphological tag combinations is much smaller than the amount of possible

combinations of word forms. Parameter space of the morphological model is thus significantly

12

smaller and the model can be estimated more accurately.

In this work, incorporation of morphological features was done by performing spelling cor-

rection, part-of-speech tagging and lemmatization simultaneously. Probability values given by

a lemmatizer and POS tagger were used as extra features in the log-linear model.

POS tagging can be formalized as a search for the optimal sequence of morphological tags

t∗1...t
∗
n given a sequence of words w

′
1...w

′
n.

(t∗1...t
∗
n) = argmax

(t̂1...t̂n)

P
(
t̂1...t̂n|w

′
1...w

′
n

)
= argmax

(t̂1...t̂n)

P
(
w
′
1...w

′
n|t̂1...t̂n

)
P
(
t̂1...t̂n

)
= argmax

(t̂1...t̂n)

[
log
(
P (w

′
1...w

′
n|t̂1...t̂n)

)
+ log

(
P
(
t̂1...t̂n

))]
= argmax

(t̂1...t̂n)

ft
(
t̂1...t̂n, w

′
1...w

′
n

) (2)

Similarly, lemmatization can be formalized as a search for the optimal sequence l∗1...l
∗
n

(l∗1...l
∗
n) = argmax

(l̂1...l̂n)

P
(
l̂1...l̂n|w

′
1...w

′
n

)
= argmax

(l̂1...l̂n)

P
(
w
′
1...w

′
n|l̂1...l̂n

)
P
(
l̂1...l̂n

)
= argmax

(l̂1...l̂n)

[
log
(
P (w1...wn|l̂1...l̂n)

)
+ log

(
P
(
l̂1...l̂n

))]
= argmax

(l̂1...l̂n)

fl
(
l̂1...l̂n, w

′
1...w

′
n

) (3)

The functions ft and fl defined in equations 2 and 3 were used as features of the log-linear

model which carries out a simultaneous search for the optimal word, tag and lemma sequence.

(w∗1...w
∗
n, l
∗
1...l

∗
n, t
∗
1...t

∗
n) = argmax

(ŵ1...ŵn,t̂1...t̂n,l̂1...l̂n)

[
αe × fe(ŵ1...ŵn, w

′
1...w

′
n)+

αf × ff (ŵ1...ŵn) + αt × ft(t̂1...t̂n, ŵ1...ŵn)+

αl × fl(l̂1...l̂n, ŵ1...ŵn)
]

Instead of just looking for (w∗1...w
∗
n) it is now requested to look for (w∗1...w

∗
n, l
∗
1...l

∗
n, t
∗
1...t

∗
n),

which may seem to be a much more complicated task. Nevertheless, the sequence (w∗1...w
∗
n)

remains the only important output parameter and the fact that we search for (l∗1...l
∗
n, t
∗
1...t

∗
n) as

well should only help us to obtain better (w∗1...w
∗
n).

The idea of combining probabilistic models working with different morphological factors via

a log-linear model was already used in machine translation (Koehn & Hoang, 2007).

13

3.3 N-Gram Language Models

The purpose of the language model is to provide a probabilistic distribution over the set S of

all possible sentences of the given language, such that
∑

s∈S P (s) = 1. It models how likely a

given sentence is to appear in a written text. This may seem absurd and it is arguable whether

there really is such a thing as a probability of a given sentence. For the application purposes,

the question of plausability of such probabilistic atitude is irrelevant. One can think of such

probabilistic measure as a scoring function assigning the scores to syntanctically or semantically

malformed sentences and high scores to well-formed sentences.

The probability P (s) cannot be modelled directly, because the set of all possible sentences is

tremendously large. It is posible, though, to split it into simpler probabilistic terms that can

be modelled directly. By using the chain rule of probability, the sentence probability can be

expressed as

P (s) = P (w1, ..., wn) = P (w1)× P (w2|w1)× P (w3|w1, w2)× ...× P (wn|w1, ..., wn−1)

Modelling of the conditional probabilities for longer word histories is not yet feasible. The

intuition of the N-gram model suggests that it is possible to approximate the entire word history

just by the few last words. The assumption that the probability of a word depends on the limited

number of previous words only is called Markov assumption. For example, a trigram language

model estimates the probability distribution for the next word on the basis of two previous

words. For natural languages, the Markov assumption is always over-simplifying and leads

to loss of important information. On the other hand, it makes the estimation of probability

distribution feasible under the condition of limited data sources. For a trigram language model,

the term expressing the probability of a sentence can be rewritten as

P (w1, ..., wn) = P (w1)× P (w2|w1)× P (w3|w1, w2)× P (w4|w2, w3)× ...× P (wn|wn−2, wn−1)

In a practical implementation, the start-of-sentence symbols <s> are being added to the

beginning of the sentence and a sentence-end symbol </s> is being added to the end of the

sentence. Sentence probability can then be expressed as (4)

14

P (w1, ..., wn) = P (w1|<s>,<s>)×P (w2|<s>, w1)×...×P (wn|wn−2, wn−1)×P (</s>|wn, wn−1)

(4)

which is very convenient, because all of the subterms are conditional probabilities with the

same length of history.

Conditional probabilities P (wi|wi−2, wi−1) are estimated on the basis of N-gram counts col-

lected from a text corpus. There are many different ways of constructing probability distribution

given the N-gram counts.

In order to focus on the methods used, Section 3.3.1 describes the most straightforward way of

probability estimation, Section 3.3.2 describes the general form of most smoothing algorithms,

Sections 3.3.3 and 3.3.4 describe particular methods of N-gram probability discounting.

3.3.1 Maximum - likelihood estimation

The Maximum-likelihood estimation (MLE) for N-gram LM is defined by the equation (5)

P (wi|wi−N+1, ..., wi−1) =
C(wi−N+1, ..., wi)

C(wi−N+1, ..., wi−1)
(5)

where C(w1, ..., wn) denotes the number of occurrences of a sequence of words w1, ..., wn in a

training corpus. However, there is one serious drawback to this method that makes it virtually

useless. It assigns all probability mass to the events that occurred in the training corpus.

Assuming that a trigram language model is used, this implies that every sentence which contains

at least one trigram unseen in the training corpus will be assigned zero probability according

to the MLE language model (there will be at least one zero element in the multiplication

chain). More importantly, though, this simple method serves as a basis for other more elaborate

estimation techniques.

3.3.2 General Form of LM Smoothing

Most of the discounting algorithms can be expressed by the equation 6

P (wi|wi−n...wi−1) =

f(wi|wi−n...wi−1) if C(wi−n...wi) > 0

α(wi−n...wi−1)× P (wi|wi−n+1...wi−1) if C(wi−n...wi) = 0

(6)

15

where f(wi|wi−n...wi−1) is a discounted probability estimation and α(wi−n...wi−1) is a nor-

malizing factor of N-gram (wi−n...wi−1).

If N-gram (wi−n...wi) was seen in the training data, the result is equal to the discounted

probability estimation f . f estimates lower values than the MLE, some probability mass is

reserved for unseen events (when C(wi−n...wi) = 0).

If N-gram (wi−n...wi) was not seen in the training data, the last word of N-gram is dropped

and the estimation is based on the shorter history. This operation is called backoff and can be

applied recursively. The shorter history estimation P (wi|wi−n+1...wi−1) must be normalized,

because there might be an unempty set W1 = {w′ : C(wi−n...wi−1, w
′) > 0}, which means that

the probability mass that is to be distributed by the shorter history distribution comprises/ac-

counts only for only 1−
∑

w′∈W1
f(w′|wi−n...wi−1). This normalization is ensured by the back-of

weight term.

LetW denote the whole vocabulary, W1 is defined as above andW0 = {w′ : C(wi−n...wi−1, w
′) =

0}. back-of weight is then derived as shown in (7)

1 =
∑

w∈W P (w|wi−n...wi−1)

1 =
∑

w∈W1
f(w|wi−n...wi−1) +

∑
w∈W0

(bow(wi−n...wi−1)× P (w|wi−n+1...wi−1))

1 =
∑

w∈W1
f(w|wi−n...wi−1) + bow(wi−n...wi−1)×

∑
w∈W0

P (w|wi−n+1...wi−1)

bow(wi−n...wi−1) =
1−

∑
w∈W1

f(w|wi−n...wi−1)∑
w∈W0

P (w|wi−n+1...wi−1)
=

1−
∑

w∈W1
f(w|wi−n...wi−1)

1−
∑

w∈W1
P (w|wi−n+1...wi−1)

(7)

In the case that f is estimated purely on the basis of the entire word history (wi−n...wi−1),

the model is denoted as backoff language model.

In the case that f has the form of Equation 8,

f(wi|wi−n...wi−1) = g(wi|wi−n...wi−1) + bow(wi−n...wi−1)× P (wi|wi−n+1...wi−1) (8)

the model is denoted as interpolated LM, because the lower order models are always taken

into consideration. In Equation 8, g is a probability estimation based solely on the basis of the

entire word history (wi−n...wi−1).

16

3.3.3 Good-Turing Discounting Method

The intuitution of the Good-Turing algorithm is to estimate the probability of unseen events

by using the probability of events that were seen once. The Good-Turing algorithm works with

frequency of frequencies quantity Nc, the number of n-grams that occured c times. In Good-

Turing Discounting counts of N-grams are discounted in such a way that an N-gram with the

count c will be assigned a new count value c∗ such that

c∗ = (c+ 1)
Nc+1

Nc

where N0 is equal to the size of the training data.

Good-Turing n-gram probability estimation can be computed by using Equation 5, it is only

needed to replace the original n-gram counts with modified c∗ counts. However there is a

practical problem. Nc values can be zero for greater values of c. This problem can be solved by

defining

c∗ = c for c > k

where the suggested value of k is 5 (Katz, 1987).

The correct equation for c∗ in this variant is

c∗ =
(c+ 1)Nc+1

Nc
− c (k+1)Nk+1

N1

1− (k+1)Nk+1

N1

as was proposed by (Katz, 1987).

3.3.4 Kneser-Ney Discounting Method

Kneser-Ney discounting (Kneser & Ney, 1995) method is based on the idea that backoff proba-

bility can be better estimated from counts of contexts in which the lower-order n-gram appears

rather than from the standard n-gram counts. The Kneser-Ney estimation of a bigram proba-

bility can be expressed as

PKN(wi|wi−1) =

C(wi−1,wi)−D

C(wi−1)
if C(wi−1, wi) > 0

bow(wi−1)
|{wi−1:C(wi−1,wi)>0}|∑
wi
|{wi−1:C(wi−1,wi)>0}| otherwise.

17

for a backoff language model and as

PKN(wi|wi−1) =
C(wi−1, wi)−D

C(wi−1)
+ bow(wi−1)

|{wi−1 : C(wi−1, wi) > 0}|∑
wi
|{wi−1 : C(wi−1, wi) > 0}|

for an interpolated language model. D is a properly chosen discounting constant, bow denotes

the backoff weight4.

In the variant of Kneser-Ney called modified Kneser-Ney (Chen & Goodman, 1998), there

are multiple discounting constants D1, D2, D3+.

Y =
n1

(n1 + 2× n2)

D1 = 1− 2× Y n2
n1

D2 = 2− 3× Y n3
n2

D3+ = 3− 4× Y n4
n3

where ni denotes the number of N-grams with count i. D1 is used for the discounting of

unigrams, D2 is used for the discounting of bigrams and D3+ is used for the discounting of the

higher order N-grams.

There are empirical studies (Zhai & Lafferty, 2004) showing that modified Kneser-Ney outper-

forms other smoothing techniques such as Good-Turing or Witten-Bell (Witten & Bell, 1991).

3.3.5 Language Models as the Components of Log-Linear Model, Word Emission Models

Language models are essential for establishing many feature functions of the log-linear model

that was proposed for spelling correction in Section 3.2. P (w1...wn) in definition of ff is

estimated by language model based on word forms, P (l1...ln) and P (t1...tn) in the definitions

of fl and ft are estimated by language models on lemmas and morphological tags. Using the

definitions

f̂f
(
(ŵi−2, ŵi−1)→ ŵi

)
= log

(
P (ŵi|ŵi−2, ŵi−1)

)
f̂l
(
(l̂i−2, l̂i−1)→ (l̂i, ŵi)

)
= log

(
P (l̂i|l̂i−2, l̂i−1)

)
+ log

(
P (ŵi|l̂i)

)
4There is an error in (Jurafsky & Martin, 2008) in Equations 4.50 and 4.51. There should be α(wi−1) and β(wi−1)

instead of α(wi) and β(wi), otherwise the equations do not conform to the general back-off/interpolated
language model definitions.

18

f̂t
(
(t̂i−2, t̂i−1)→ (t̂i, ŵi)

)
= log

(
P (t̂i|t̂i−2, t̂i−1)

)
+ log

(
P (ŵi|t̂i)

)
the feature functions ff , fl and ft can be expressed as

ff (ŵ1...ŵn) = log
(
P (ŵ1...ŵn)

)
= log

(n+1∏
i=1

P (ŵi|ŵi−2, ŵi−1)
)

=
n+1∑
i=1

log
(
P (ŵi|ŵi−2, ŵi−1)

)
=

n+1∑
i=1

f̂f
(
(ŵi−2, ŵi−1)→ ŵi

)
(9)

fl(l̂1...l̂n, ŵ1...ŵn) = log
(
P (l̂1...l̂n)

)
+ log

(
P (ŵ1...ŵn|l̂1...l̂n)

)
= log

(n+1∏
i=1

P (l̂i|l̂i−2, l̂i−1)
)

+ log
(n+1∏
i=1

P (ŵi|l̂i)
)

=

n+1∑
i=1

log
(
P (l̂i|l̂i−2, l̂i−1)

)
+ log

(
P (ŵi|l̂i)

)
=

n+1∑
i=1

f̂l
(
(l̂i−2, l̂i−1)→ (l̂i, ŵi)

)
(10)

ft(t̂1...t̂n, ŵ1...ŵn) = log
(
P (t̂1...t̂n)

)
+ log

(
P (ŵ1...ŵn|t̂1...t̂n)

)
= log

(n+1∏
i=1

P (t̂i|t̂i−2, t̂i−1)
)

+ log
(n+1∏
i=1

P (ŵi|t̂i)
)

=

n+1∑
i=1

log
(
P (t̂i|t̂i−2, t̂i−1)

)
+ log

(
P (ŵi|t̂i)

)
=

n+1∑
i=1

f̂t
(
(t̂i−2, t̂i−1)→ (t̂i, ŵi)

)
(11)

In Equations 10 and 11, the following simplifying assumptions are made

P (w1...wn|l1...ln) =
n∏
i=1

P (wi|li) (12)

P (w1...wn|t1...tn) =

n∏
i=1

P (wi|ti) (13)

The expressions P (wi|li) and P (wi|ti) will be denoted as word emission probabilites and the

19

models that estimates these probabilities as word emission models. They are estimated as

P (wi|li) =
C(ti, wi)

C(ti)
(14)

P (wi|ti) =
C(li, wi)

C(li)
(15)

where the counts C(ti, wi) and C(li, wi) can be smoothed by adding a distinct small value to

each word-lemma or word-tag pair with zero count.

3.4 Error Model

The purpose of an error model is to estimate the probability P (Wt|Ws) that the person typed

Wt having Ws in his/her mind. Obviously, P (black|black) should be very high as most of the

time, people type exactly the word they intend to. P (back|black) should be much smaller,

but relatively high, because back differs from black only by one letter. On the other hand,

P (democracy|black) should be extremely low.

As observed by (Damerau, 1964) and (Peterson, 1986) most of the spelling errors are caused

by one of the following reasons:

1. Single letter insertion (black → bvlack)

2. Single letter deletion (black → back)

3. Swapping of two adjacent letters (black → balck)

4. Single letter replacement (black → nlack)

This fact was directly used by (Mays et al., 1991) in their error model implementation. When

P(w—s) is requested, a confusion set CS which contains s together with all dictionary words

that can be obtained from s by exactly one edit operation is constructed. The error model

probability P (s|w) is then defined as

P (s|w) =

0 w /∈ CS

α w = s

1−α
|CS|−1 w ∈ CS & w 6= s

20

where α denotes the a priori probability that a word was typed correctly. This error model

assigns the highest degree of probability to the word that was typed and distributes the rest

along the confusion set uniformly.

In (Church & Gale, 1991), a more advanced error model is suggested. Similarly to (Mays

et al., 1991), they consider only candidate words obtained by one edit operation. In their

approach, however, each edit operation has its distinct probability, i.e. the probability of the

letter substitution s→ d may differ from the probability of e→ a. They also context-condition

the probabilities of a letter insertion and deletion. These probabilities were trained on a large

error corpus.

A more general model is proposed in (Brill & Moore, 2000). Their model allows an arbitrary

edit operation of the form α → β, where α and β can be arbitrary letter sequences. As in the

previous model, each edit operation has its probability score P (α → β|PSN) assigned, where

PSN is a positional feature with a following set of values {S = start of word, M = middle of

word, E = end of word}.

P (s|w) is defined as

P (s|w) = max
R∈Part(w),T∈Part(s)

P (R|w)

|R|∏
i=0

P (Ri → Ti|PSN(i))

' max
R∈Part(w),T∈Part(s)

|R|∏
i=0

P (Ri → Ti|PSN(i))

where Part(w) denotes a set of all possible partitions of w into substrings.

In the above-cited paper, the following example is shown: P (fisikle|physical) is to be eval-

uated. Considering that the optimal word partitions are T = f − i − s − i − c − le and

R = ph− y − s− i− c− al, the error model probability is computed as

P (fisikle|physical) = P (ph→ f |S)× P (y → i|M)× P (s→ s|M)

×P (i→ i|M)× P (c→ k|M)× P (al→ le|E)

An error model of such generalness can be particularly useful for languages with complicated

relations between phonetic and orthographic representations of words. A typicle example of such

language is English. In English it is often possible to come up with multiple letter sequences

corresponding to a single sequence of phonemes such as shell, shall; pea, pee. Due to this fact,

many spelling errors in English texts are caused by the writer’s unfamiliarity with the correct

21

word form. On the other hand, there are also languages with relatively straightforward phonol-

ogy ↔ orthography mapping, such as Czech language. Just by knowing a word phonetically,

a Czech native speaker can figure out the correct written form with high confidence. The only

problematic issues arise when choosing between i/y, these letters are pronounced identically

in modern Czech. Furthermore, it is difficult to choose the right variant from a voiced/surd

consonant pair and there is a limited number of other special phenomena like bě ↔ bje, vě ↔

vje, mě ↔ mně etc. that may lead to mistakes.

The error model that was used in this work resembles the error model of (Church & Gale,

1991). The four basic edit operations are distinguished - insertion, deletion, substitution and

swap. Probabilities of letter deletions are conditioned on the context. The detailed classification

of error types and their probabilities will be given in Section 4.4.

In the provided error model implementation, the P (word1|word2) that word1 was misspelled

to word2 is equal to the product of probabilities of all edit operations that are needed in order

to obtain word1 from word2.

3.5 HMM model

So far, the components of statistical model have been introduced. However, in order to identify

the optimal correction of a given sentence, the strategy of searching for the optimal hypothesis

is needed. As stated above, spelling correction problem can be defined in terms of the noisy

channel or log-linear model. A convenient way of implementation of these models is the Hidden

markov model (HMM).5

HMM provides a model of sequence generation.6 It is a finite-state automaton consisting

of a set of states S, set of transitions T and output alphabet
∑

. The states are capable of

emitting symbols from
∑

with a certain probability. The probabilities of all symbol emissions

sum up to 1 for each state. The transitions are directed edges connecting the pairs of states,

each transition has a probability value assigned and the sum of probabilities of all transitions

leaving particular state is equal to 1. Sequence generation process of HMM proceeds as follows:

1. Start at the single start state.

5There are many variants of HMMs - HMMs with/without empty transition, HMMs emitting output symbols
by states/transitions etc. Only the variant that is suitable for solving the spell checking problem will be
described.

6But it is never directly used in this way. Common usage of HMM will be addressed later in this section after
explaining the basic HMM concepts.

22

2. Choose randomly a transition leaving the current state. During choosing, respect the

distribution of the transition probabilities.

3. Follow the chosen transition and traverse to a next state.

4. Emit randomly one output symbol with respect to the emission probabilities in the current

state.

5. If the final state is reached finish the sequence generation process. Otherwise repeat from

Step 2.

In the spelling correction scenario, an HMM capable of generating sentences possibly contain-

ing misspelled words can be utilized. Such a model directly incorporates the already described

components - Language models, word emission models and error model.

In the remaining part of this section, the multi-factor second order HMM will be described.

The states of the HMM correspond to the bigrams of triplets wf = (w, l, t)7 and they can be

denoted as (wfhist,wfact). Transitions are defined for all pair of states of the form (wf1,wf2)→

(wf2,wf3) and the transition costs can be expressed, in conformity with the suggested log-linear

model for the multi-factor spell-checking, as

f
(
(wf1,wf2)→ (wf2,wf3)

)
= αf × logP (w3|w1, w2)

αl × log
(
P
(
l3|l1, l2

)
P (w3|l3)

)
αt × log

(
P (t3|t1, t2)P (w3|t3)

)
= αf × ff

(
(w1, w2)→ w3

)
αl × fl

(
(l1, l2)→ (l3, w3)

)
αt × ft

(
(t1, t2)→ (t3, w3)

)
where t1 stands for the tag coming from wf1 triplet etc.

Emission costs are defined as

g
(
w
′
2|(wf1,wf2)

)
= αe log

(
P (w

′
2|w2)

)
where the probability P

(
w
′
2|form2

)
is estimated by the error model and w

′
i denotes the word at

position i in the original sentence.

7wf is used as a abbreviation of word factors, w denotes word, l denotes lemma and t denotes morphological
tag

23

The process of sentence decoding can be formulated in the following way: When given a

sequence of words possibly containing typos, identify the most probable sequence of underlying

word factor triplets (wf). This can be formally expressed as

(wf∗1...wf∗n) = argmax
wf1,...wfn

n+1∑
i=1

(
f
(
(wfi−2,wfi−1)→ (wfi−1,wfi)

)
+ g
(
w
′
i|(wfi−1,wfi)

))
(16)

where (wf∗1...wf∗n) is the optimal word factor triplet sequence, wf0 = (<s>, <s>, <s>),

wf−1 = (<s>, <s>, <s>) and wfn+1 = (</s>,</s>,</s>).

Given that states correspond to word bigrams, it would be needed to examine |D|2n pos-

sibilities, if the hypothesis space was searched exhaustively. Fortunately, there is an efficient

dynamic algorithm that finds the optimal sequence of the underlying states.

3.6 Decoding - Viterbi algorithm

The Viterbi Algorithm will be described on the basis of description found in (Jurafsky & Martin,

2008)8. The formulas and notation will be adjusted in order to conform to the expressions

introduced in Section 3.5, however for simplicity, the states will be denoted by a single letter

(the inner structure of states - tuplets of triplets wf = (w, l, t) will not be indicated anymore).

The sequence decoding task can be defined as the task of finding most probable sequence of

statesQ = q1, q2, q3, ...qT of the given HMM when a sequence of observations S = w
′
1, w

′
2, w

′
3, ..., w

′
T

is given.

During the decoding, Viterbi trellis matrix is filled from left from to right as the input

sequence is being processed. Each cell of the trellis vt(j), corresponds to the probability9 that

HMM is in state j after seeing the first t observations and passing through the most probable

state sequence q0, q1, ..., qt−1.

vt(j) = max
q0,q1,...,qt−1

logP (q0...qt−1, w
′
1...w

′
t, qt = j)

At the initialization step, the values v0 are set to

v0(0) = 0

v0(j) = +inf j = 1...N

8Few formulations are even written exactly as they were found in (Jurafsky & Martin, 2008)
9In order to conform with the definitions introduced in Section 3.5, vt(j) expresses a cost function, not a

probability function as in (Jurafsky & Martin, 2008).

24

where 0 denotes the sentence start state and the rest of HMM states is denoted by numbers

1...N .

Viterbi fills the cells recursively, at the time of computation of vt(j) all cells of the form

vt−1(i) have been already computed and the values vt(j) for j = 1...N are computed as

vt(j) =
N

max
t=1

(
vt−1(i) + f(i→ j) + g(w

′
t|j)
)

In order to reconstruct the best state sequence from the trellis matrix, back pointers bt are

needed. They are computed as

btt(j) =
N

argmax
t=1

(
vt−1(i) + f(i→ j) + g(w

′
t|j)
)

The reconstruction of best state sequence starts with identifying the state final such that

vT+1(final) is maximal10. The last state can be obtained as

qT = btT+1(final)

The states q1...qT−1 are obtained recursively.

qt = btt+1(qt+1)

10There are T + 1 columns in the trellis matrix and the output symbol at time T + 1 is the end of sentence
symbol </s>

25

4 Data sources and Models Training

4.1 Lexicon

A high coverage lexicon is the key component of each spelling correction system. Open Source

Aspell lexicon of Czech language was used as the basis for lexicon creation. Aspell contains

around 3 000 000 word forms. Out of this number, 170 582 word forms are names. The number

of distinct lemmas found in the dictionary is much smaller, it is only about 250 000. The Aspell

lexicon provides quite a good coverage on common words, but its coverage on names could be

further extended by providing a name lexicon. In order to further improve the lexicon coverage,

words that appeared more than 5 times in the training corpus11 were added into the lexicon.

Morphological analysis of all words in the lexicon was made using the morphology analyser

created at ÚFAL (Hajič, 2004). The result of lexical morphological analysis of a word is a list of

all (lemma, morphological tag) pairs that represent possible morphological interpretations of

a given word. As a result of these analyses, a morphological lexicon was created12. Words that

were unknown to the morphological analyser were filtered out. This prevents common spelling

errors from becoming part of the spell-checker lexicon. After having added frequent words from

the corpus and having filtered out the words unknown to the morphological analyser, the final

size of the lexicon became about 2 800 000 words.

4.2 Text Corpus

A large scale text corpus was needed in order to produce well-estimated language models and

word emmision models. This need was met by Czech Web Document Collection13 (WebColl) by

Pavel Pecina, which is a collection of 111 milion words contained in 223 000 articles downloaded

from news servers and on-line archives of Czech newspapers.

4.2.1 Corpus Cleaning

When a text corpus is being built out of the documents found on the web, it is important to

filter out irrelevant parts of the web pages’ content - HTML tags and small stubs of text that are

not suitable for further linguistic processing. From this aspect, the data provided by WebColl

were of a high quality. However there was still a content that needed to be filtered out, such

11The text corpus will be described later in this chapter
12The implementation of the morphology lexicon is described in Section 5.3
13This corpus is not available for public, it is designated for the research purposes at UFAL only.

26

as chunks of text written in forreign languages (mostly English and Slovak) and Czech texts

written without diacritics. The following procedure was used in order to filter out these bad

data: A score was computed for each sentence of the corpus. Each sentence received +1 point

for each word that was found in the Czech lexicon, -2 points for each word not found in Czech

lexicon, which was found in a Slovak, English or German lexicon and -1 point for each word

that was not found in any lexicon. The sentences with a negative score were filtered out. By

this procedure, 146 000 sentences out of 7 002 000 were filtered out. Most of them contained

either erroneous or foreign-language text.

There were also a lot of duplicities in the data. By a thorough analysis of the corpus, it was

revealed that out of all 7 million sentences, there were only about 3.5 million unique sentences.

This means that on average, each sentence was included twice in the corpus. Of course some

duplicities are natural, because certain very simple sentences are likely to occur in different

articles independently or one article may be quoted in another one. However, a large amount

of duplicities in the corpus was unnatural, it was most likely caused by multiple downloads

of various documents that happenned during web crawling14. This corpus feature had not

been revealed until the testing of the diacritics completion feature. The results achieved on

the testing data coming from the corpus were to good to be true (around 99,3%). Then, an

extensive overlap between the training and the testing data was shown.

4.2.2 Corpus Splitting

The cleaned corpus was splitted into three subparts: training data, heldout data and testing

data. The training data were created out of 98% of all corpus data, heldout data and testing

data were both created out of 1% of the data. In NLP, it is always important not to evaluate

system performance on the data that were used during the training of a system. The reason is

that results obtained on training data are usually significantly better than results obtained on

data that was not used during the training.

The training data were used for the training of the language models and emmision models and

also as a source for lexicon enrichment (the most frequent words from the corpus were included

into the dictionary if not yet present there). Heldout data were used for finding of optimal

weights of distinct features of the log-linear model. The testing data were used for evaluation

14Web crawling is a process of automatic web content downloading carried out by a computer program

27

když|když|J, syna|syn|NNMS4 s|s|RR7 vypětı́m|vypětı́|NNNS7 všech|všechen|PL-P2

sil|sı́la|NNFP2 vypravila|vypravit|VpQW-RA ,|,|, úlevně|úlevně|Dg si|se|P7--3

oddychla|oddychnout|VpQW-RA a|a|J večer|večer|Db spokojeně|spokojeně|Dg

usnula|usnout|VpQW-RA .|.|.

Figure 1: Result of lemmatization and morphological tagging of sentence Když syna s vypět́ım
všech sil vypravila, úlevně si oddychla a večer spokojeně usnula.

of system performance.15

4.2.3 Training Data Processing

Lemmatization and morphological tagging were the first steps in the training data processing.

In this way, the most probable lemma and morphological tag was assigned to every token in

the training corpus. The result of this lemmatization and tagging process was stored in a

format shown in Figure 1. There is a morphological triplet form|lemma|tag for each word.

As a next step, the morphological triplets of words that were not found in the dictionary were

substituted by <name>|<name>|<name> if the word was capitalized or by <unk>|<unk>|<unk>

in other cases16. Each number expression was substituted by <number>|<number>|<number>.

4.3 Language Models and Emmision Models Training

The data format that was used for the language model and error model training is shown

in Figure 1. By using the training corpus, n-gram counts for each morphological factor and

counts of form-lemma and form-tag combinations were collected. For the word forms and

lemmas, n-grams up to order 3 were collected. For morphological tags, 4-grams were collected

as well. These n-grams were used for estimation of the language models as described in Section

3.3. It has been proved empirically that the modified Kneser-Ney smoothing provides better

results than other smoothing methods such as Witten-Bell or Good Turing (Zhai & Lafferty,

2004). Tables 1, 2 and 2 show the perplexities achived on held-out data for distinct smoothing

techniques. As expected, the interpolated Kneser-Ney smoothing achieved the best results on

word forms and lemmas. However, the other smoothing techniques achieved better results on

15However results of the evaluation made on the same corpus that was used for training (but training and testing
data were not overlapping) can be significantly better than results obtained during the real usage of the
system. The reason is that the language of the training and the testing data is very similar, as they both
come from the same corpus. Because of this, evaluation was made on other data sets containing data from
different domains as well.

16In the data format used in this step, first words of a sentence do not start with capital letters unless it is a
name

28

Smoothing Method Perplexity

Good-Turing, interpolated 348.5
Good-Turing, Katz backoff 348.5
Witten-Bell, interpolated 355.7
Witten-Bell, Katz backoff 350

modified Kneser-Ney, interpolated 322.7
modified Kneser-Ney, Katz backoff 332.3

Table 1: Perplexities of the language models on word forms

morphological tags. This may have been caused by the fact that there are only about 1000

distinct morphological tags in the training corpus, the language model vocabulary thus being

much smaller in this case. A possible explanation is that in the case of an extremely small

language model vocabulary, it is better to estimate lower order probabilities on the basis of

regular counts. To examine this hypothesis, it would be helpful to compare the performance

of language models on tags on testing data coming from different domains. It is possible that

Kneser-New could prove a better solutione when the language used in the training and testing

data differs significantly.

Experiments on testing data coming from a different domain were made for language models

on word forms. The results are outlined in Table 4. The results show a clear superiority of

Kneser-Ney in such a case, while on the heldout data coming from the same corpus all methods

performed almost equally well.

As already mentioned in Section 4.2.1, the web corpus used for the language model training

contained a very high number of duplicities. This fact went unnoticed for a long time and a

lot of experiments were made on the held-out and testing data that overlapped with training

data significantly. In this case, Kneser Ney performed even much worse than Good Turing and

Witten-Bell (Witten & Bell, 1991).

To estimate the language models on word forms and lemmas, an interpolated version of

modified Kneser-Ney smoothing was used, to estimate the language model on morphological

tags, an interpolated Witten-Bell was chosen.

The emission models were estimated on the basis of counts of the form-lemma and form-tag

combination found in the training data. In order to smooth these models, the count of each

form-lemma and form-tag that was valid according to the morphological lexicon was increased

by +1. Emission models were estimated according to Equations 14 and 15 in Section 3.3.

29

Smoothing Method Perplexity

Good-Turing, interpolated 192.2
Good-Turing, Katz backoff 192.2
Witten-Bell, interpolated 195.3
Witten-Bell, Katz backoff 192.7

modified Kneser-Ney, interpolated 182.4
modified Kneser-Ney, Katz backoff 187.4

Table 2: Perplexities of the language models on lemmas

Smoothing Method Perplexity

Good-Turing, interpolated 24.2
Good-Turing, Katz backoff 24.2
Witten-Bell, interpolated 20.6
Witten-Bell, Katz backoff 20.8

modified Kneser-Ney, interpolated 20.6
modified Kneser-Ney, Katz backoff 21.1

Table 3: Perplexities of the language models on morphological tags

Smoothing Method Perplexity

Good-Turing, interpolated 1256
Good-Turing, Katz backoff 1256
Witten-Bell, interpolated 1350
Witten-Bell, Katz backoff 1223

modified Kneser-Ney, interpolated 1165
modified Kneser-Ney, Katz backoff 1142

Table 4: Perplexities of the language models on word forms - testing on data from different
domain (Lion Feuchtwanger: Foxes in the Vineyard)

30

4.4 Error Corpus and Error Models

The probabilities of distinct error types can be best estimated from the spelling error corpus.

For the Czech language, such corpus is available (Pala, Rychlý, & Smrž, 2003). This corpus

contains about 2000 spelling errors; other types of errors such as morpho-syntactical errors,

stylistical errors and punctuation errors are anotated as well. Nevertheless, the existence of this

corpus was not known until the later stage of the system evaluation and this error corpus has

not been utilized so far.

Another option is to obtain spelling error instances automatically from a big text corpus.

Such method was proposed by (Church & Gale, 1991). They considered each word that does

not appear in the dictionary and is not further than one edit operation from a word included

in the dictionary as spelling error. They built their error corpus out of such words. First, they

set probabilities of all edit operations uniformly. Later on, they iteratively spell-checked their

error corpus, found the best correction for each word and updated edit probabilities according

to the proposed error → suggestion pairs.

This method of finding spelling errors was tried out on the WebColl corpus. However this

method turned out to be useless. The reason was that the vast majority of words identified as

spelling errors were correct words or they were colloquial word forms.

The next idea was to build an error corpus manually. A small scale error corpus was created

during this work. It contains 9500 words, 570 of them are spelling errors. The corpus was

constructed by making transcriptions of an audio version of a Czech novel by Jaroslav Hašek:

Osudy dobrého vojáka Švejka.17 There was no postcorrection made on the transcribed text and

the spelling error rate in the resulting text is relatively high. Nevertheless, this error corpus

has two drawbacks: Its size is limited and all data were typed by a single person. Because

of this fact, the error model constructed on the basis of these data can be biased (the error

distribution function of the training person is more or less different from the error distribution

function of the ”average” person). On the basis of the errors found in this error corpus, a

classification of spelling error types was made. The error classification and the counts of each

error type are shown in Table 5. Four basic error types can be distinguished (insertion, deletion,

substitution and swap) and the insertions depend on context. This is in conformity with the

error model definition used by (Church & Gale, 1991), although the error model described here

17The audio extracts can be downloaded for free from the web-sites of Český rozhlas:
http://www.rozhlas.cz/ctenarskydenik

31

Error Type Occurence Count

Substitution - horizontally adjacent letters 142
Substitution - vertically adjacent letters 2

Substitution - z → s 6
Substitution - s→ z 1
Substitution - y → i 10
Substitution - i→ y 10

Substitution - non-adjacent vocals 13
Substitution - diacritic confusion 21

Substitution - other cases 19
Insertion - horizontally adjacent letter 162

Insertion - vertically adjacent letter 13
Insertion - same letter as previous 14

Insertion - other cases 46
Deletion - other cases 58

Swap letters 34

Table 5: Error Counts - Manually created corpus

is much less detailed. However, given the characteristics of Czech language, an error model

of such generalness as described in (Church & Gale, 1991) would not necessarily result in a

significant performance gain.18 On the basis of error counts, error probabilities P (a→ b) that

letter sequence b was intended when letter sequence a was written were estimated. The way

these values were obtained will be demonstrated on the error type ABC → AC | other cases.

In the error corpus there were 46 errors caused by insertion of letter non-adjacent to any

of its neighbours. The error corpus contained 49547 letters that were non-adjacent to their

neighbouring letters. So the probability that the letter was inserted accidentally was computed

as P = 46/49547. Probability estimations of each error type are shown in Table 6.

After the spellchecker had been completed, the idea how to modify the method of authomatic

error corpus creation (Church & Gale, 1991) was devised. The modified version builds an error

corpus out of the words recognized by the spellchecker as spelling errors, however there must

be a significant evidence that the proposed correction is right, otherwise the spelling error is

not added to the error corpus. To be more specific, both bigrams (wi−1, s) and (wi+1, s), where

wi−1 is the predecessor of misspelled word e, wi+1 is the successive word and s is the correction

suggestion, must be present in the language model, otherwise the error-correction pair e → s

is not included in the error corpus. Recall of this method is rather small, but the precission is

quite satisfactory and most of the recognized error-correction pairs were correct. This method

18This issue is discussed in the end of Section 3.4.

32

Correction − log10(Probability

λ→ A 4.435
ABC→ AC | hadj(B,A) ∨ hadj(B,C) 1.28
AA→ A 1.081
ABC→ AC | vadj(B,A) ∨ vadj(B,C) 2.375
ABC→ AC | other cases 3.032

A→ Ǎ,A→ Á 2.891

Ǎ→ A, Á→ A 3.308
A→ B | hadj(A,B) 2.8
A→ B | vadj(A,B) 4.655
A→ B | vocal(A) ∧ vocal(B) 3.734
i→ y 2.454
y→ i 2.097
s→ z 3.291
z→ s 2.129
A→ B | other cases 4.898
AB→ BA 3.123

Table 6: Error Model estimated on the basis of manually created error corpus - capital letters
denote variables - they can be substituted for any letter, lower case letters stand for
the letter they represent (and also for its uppercase variant)

identified 12761 words out of 111 000 000 words in the cleaned WebColl as spelling errors, the

classification of these errors is shown in Table 7 and the corresponding probabilities in Table 8.

Both error models (the first one obtained from a manually created error corpus, the second one

obtained by automatic processing of WebColl) were used during the evaluation.

.

33

Error Type Occurence Count

Substitution - horizontally adjacent letters 630
Substitution - vertically adjacent letters 103

Substitution - z → s 30
Substitution - s→ z 86
Substitution - y → i 57
Substitution - i→ y 54

Substitution - non-adjacent vocals 325
Substitution - diacritic confusion 4473

Substitution - other cases 1845
Insertion - horizontally adjacent letter 380

Insertion - vertically adjacent letter 155
Insertion - same letter as previous 212

Insertion - other cases 1226
Deletion - other cases 2637

Swap letters 548

Table 7: Error Counts - Automatically obtained error instances

Correction − log10(Probability

λ→ A 4.14
ABC→ AC | hadj(B,A) ∨ hadj(B,C) 2.29
AA→ A 1.227
ABC→ AC | vadj(B,A) ∨ vadj(B,C) 2.661
ABC→ AC | other cases 2.975

A→ Ǎ,A→ Á 2.250

Ǎ→ A, Á→ A 2.235
A→ B | hadj(A,B) 3.519
A→ B | vadj(A,B) 4.305
A→ B | vocal(A) ∧ vocal(B) 3.706
i→ y 3.167
y→ i 2.679
s→ z 2.747
z→ s 2.854
A→ B | other cases 4.285
AB→ BA 3.278

Table 8: Error Model estimated on the basis of automatically obtained error instances - capital
letters denote variables - they can be substituted for any letter, lower case letters stand
for the letter they represent (and also for its uppercase variant)

34

5 Implementation

Spell-checking usually runs as a background process inside a text editor. It shouldn’t make

computer run slowly and it should also consume only a little amouth of memory, because from

the user’s point of view it is only a low priority task. In other words, spellchecker should be

invisible and only correct typos when it’s appropriate. Consequently, a good spellchecker should

be implemented maximally efficiently in terms of both memory and CPU time consumption.

When context sensitive spell-checking feature was implemented for Microsoft Office 2007, the

momory consumption question was stressed out and the sophisticated method of loosy language

models representation (HashTBO) was applied (Church et al., 2007). Following sections contain

a describtion of individual parts of the system and ideas behind their implementation.

5.1 Auxiliary Data Structures

During the implementation, the need for certain non-standard data structures arose and, fol-

lowingly, these data structures were implemented. These data structures are based on my own

ideas, nevertheless, they are all quite simple and were certainly already discovered19

5.1.1 Memory Efficient Static Array

During the implementation, one particular data structure was needed in many contexts - a static

array of non-negative integer values. Obviously, there are standard data structures already

available for such case. In the standard implementations, one can easily store 16 bit, 32 bit or

64 bit integer types. However, Since low memory consumption is viewed as a priority in the

current task, it might be desirable to store for example 10 bit or 34 bit integer value.

Such static array class was implemented in this work and it was called PackedArray. In-

stances of PackedArray can be initialized from the standard integer arrays or by loading

from a binary file. In the prior case, the number of bits needed per element is computed

as bits = dlog2(maximal value + 1)e. The elements of the original integer array are stored in a

raw bit array using bits bits per each value. For each static array, this conversion operation is

done only once during the data preparation phase. The static arrays are always instantiated

from the binary file in the release version of the spell-checker. The initialization from the binary

19The so called ”Reinventing the wheel approach” is generally considered a bad programming practice. The
personal view of the author of this thesis is, though, that a certain degree of reinventing the basics makes
programming much more delightful and should be tolerated.

35

INDEX

VALUE

Figure 2: Non-decreasing array illustration. Only differences between array values and floored
linear function values are stored.

file is extremely efficient, because it is done just by a single call of C routine for copying of

continuous memory segments.

5.1.2 Memory Efficient Static Array of Non-Decreasing Values

A special implementation of non-decreasing integral arrays such as (0, 3, 3, 6, 8, 8, 15) was pro-

vided for memory-efficient representation of such arrays. The implementation of this data

structure is based on the idea that the stored values can be approximated by a linear function.

Let V (i) denote the i-th value that should be stored, f(i) is the value of the approximating

linear function f in point i. For each value V (i), only the offset value offset(i) = V (i)− bf(i)c

will be stored in the data structure. The values V (i) can be reconstructed using the formula

V (i) = bf(i)c +offset(i). For efficiency reason bf(i)c is implemented only by using integer mul-

tiplication and divison. Coefficients multiplier and denominator are found, such that function

f
′
(i) = i×multiplier/denominator provides best possible approximation of bf(i)c. The idea is

ilustrated by figure 2 on page 36. Memory consumption per single value is defined by

bits per value = dlog2(max
i=1..N

offset(i)− min
i=1..N

offset(i))e (17)

36

INDEX

VALUE

Figure 3: Non-decreasing array that uses two linear functions for different segments aproxima-
tion.

Sometimes the values to be stored cannot be conviniently approximated by a linear function.

There can be different growth factors for different subsections of the data. In such a case, it is

convenient to use several linear functions, each of them approximating its own data segment.

This approach is illustrated by Figure 3. By using this technique, the memory consumption

of the non-decreasing value array can be reduced rapidly in comparison to the Packed Array

representation. For example, the number of bits needed per a single value of the offset array in

the lexicon representation was reduced from 19 to only 5.

5.1.3 Forgetful Hash Map

The implemented spell-checker uses caching of data extensively in order to boost the application

speed. Many important data such as the lexicon, morphology lexicon and language models were

stored in bit arrays in order to decrease the memory consumption. Nevertheless, the drawback

of such memory representation is the reduction of speed. To reduce this drawback, caching was

used extensively. In order to make caching convenient, a generic data structure for caching of

key-value pairs was implemented - the so-called forgetful hash map. It operates similarly to the

standard hash map, but there is a limit on the number of elements that can be stored. When

the limit has been reached and a new key-value pair is to be added, the key-value pair that was

37

not needed for the longest time is removed.

The forgetful hash map consists of a hash map, a dually-linked list and a counter of the stored

values. There is a correspondence between the hash map and the linked list, each element in

the linked list contains the key of a certain element stored in the hash map. For each key k, the

hash map stores its value v and a pointer to the element inside the linked list that contains k.

Whenever the value of a certain key k is required, the corresponding element of the linked list

is moved to the front of the list20

Whenever a new key-value pair is being added, a new element containing the new key is aded

to the front of the linked list, the key-value pair is stored in the hash map together with a

pointer to the new linked-list element and the counter value is increased. If the counter value

exceeds the predefined maximum, one element is erased from the back of the linked list and

the hash map key that is stored in the erased element of the linked list is erased from the hash

map as well. This ensures that there will not be more than the predefined maximum number

of elements after each insertion.

It is possible to define a forgetful hash map for an arbitrary type of keys and values. Nev-

ertheless, an implementation of hashing function21 and equality comparator must be provided

for type of key if there is no default implementation of these functions for the given data type

in standard libraries22.

5.2 Dictionary

Dictionaries are widely implemented as TRIE data structures. TRIE is a tree containing one

letter in each node. Each node in the tree corresponds to a single word prefix which can be

reconstructed by concatening all letters on the path from the root to the given node. For

convenience, nodes that correspond to the dictionary entries will be denoted as word nodes,

the remaining nodes will be denoted as prefix nodes23 Building of the dictionary TRIE is a

straightforward process. It starts with TRIE containing only a root node that has no letter

inside. In each iteration of the TRIE building process, one word is picked from the dictionary

and processed using the following procedure.

20The corresponding element can be found in constant time, because the hash map stores also the addresses of
the linked list elements for all keys.

21This can be done easily with the use of boost::hash function
22In C++, default implementation is provided for integral types, string, pair and many others.
23The word nodes does not necesarrily need to be leaves. The word node can have outcoming edges as well if it

is a prefix of another word).

38

1. Set current node to root node.

2. Pick the next letter of the word being added.

3. If current node does not have a child node marked with the picked letter, create such child

node.

4. Set current node to the child that is marked with the picked letter.

5. If the word being processed contains more letters, repeat from Step 2

6. Mark current node as a word node (as a dictionary item).

The memory representation of TRIE that was implemented in this work was inspired by the

representation of Finite State Transducers24 in OpenFST toolkit (Allauzen, Riley, Schalkwyk,

Skut, & Mohri, 2007).

Nodes were assigned IDs in such way that word nodes received greater IDs than prefix nodes.

Edges were sorted according to their parent node IDs. The dictionary TRIE was represented

using arrays letter, offset and edge. letter[ID] stores the letter of the given node ID, offset stores

pointers into the edge array. The edges leaving a particular node can be found at positions

offset[ID], ..., offset[ID + 1] − 1 in the edge array. The edge array stores the only missing

information about the edges - the IDs of their child nodes. The idea is illustrated in Figure 4.

The offset array was implemented as described in Section 5.1.2, The letter and edge arrays were

implemented as described in Section 5.1.1.

Due to the fact that word nodes have greater IDs it is straightforward to distinguish them

from prefix nodes. If nodeID ≥ |#prefix nodes|, then the node is prefix. The unique inte-

gral identifier of word wordID is defined as wordID = nodeID − |#prefix nodes|. These word

identifiers represent the words in the other parts of the system.

5.3 Morphology Lexicon

The morphology lexicon stores all possible morphological analysis of words in the dictionary.

Figure 5 provides an example of morphological anaysis of certain Czech words. Most of the words

have several morphological interpretation, for example, case is often ambiguous by nouns. As

it is shown in the figure, sometimes even lemma is ambiguous. In the morphological lexicon,

24To be more specific, it was inspired by the implementation of ConstFST class

39

a

u

t o

r a

p

e c

y l

1

2

4

3

0

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

1

5

2

3

4

8

9

6

10

11

END
10

11

a

u

t

r

p

e

y

o

a

c

l

Nodes Edges

Figure 4: The simple dictionary storing words auto, aura, pec and pyl. IDs of prefix nodes are
smaller than IDs of word nodes. Both the three structure and its internal representa-
tion are shown.

40

Analysis of word ženu:

• lemma = žena

– tag = NNFS4-----A----

• lemma = hnát

– tag = VB-S---1P-AA---

Analysis of word stroje:

• lemma = stroj

– tag = NNIP1-----A----

– tag = NNIP4-----A----

– tag = NNIP5-----A----

– tag = NNIS2-----A----

• lemma = strojit

– tag = VeYS------A----

Analysis of word jarńı

• lemma = jarńı

– tag = AAFP1----1A----

– tag = AAFP4----1A----

– tag = AAFP5----1A----

– tag = AAFS1----1A----

– tag = AAFS2----1A----

– tag = AAFS3----1A----

– ... 22 possibilites in total

Figure 5: Morphological analysis example

41

wordID

...

151

152

153

lemmaID

...

2156

84

456

2156

Tag Group Definitions

0 28, 600, 825

.......

48 15, 60, 61, 62, 84, 156

.......

765 78, 201

...

...

.......

Figure 6: Representation of multi-lemma words’ morphological analysis.

word forms, lemmas and tags are represented by IDs (Each category has its own numbering).

Given string representation of a word, wordID can be obtained by traversing dictionary TRIE

as described in Section 5.2).

There are several thousands of theoreticaly possible tag symbol. However there were only

about 1000 distinct tag groups as results of the analysis of all form-lemma pairs found in the

dictionary. This fact allows much more compact memory representation. Instead of storing

array of tags for each form-lemma pair, it’s possible just to store groupID pointing to the tag

group definition. The memory representation of the morphology lexicon is shown in Figure 6.

For each word, offset into the array storing lemmaIDs and groupIDs are stored.

5.4 Language Model Implementation

Section 3.3 describes how n-gram probabilities and backoff weights can be computed given the

n-gram counts. General form of LM smoothing was expressed by equation (6). For performance

reasons, functions f and bow used in this formula are usually precomputed. In this case,

language model defined by enumeration of f and box values for set of n-grams. If P (w3|w1, w2)

is requested and f(w3|w1, w2) is not stored, then backoff operation will be performed. In such

case, if box(w1, w2) is not stored, then its value is zero.25

Language model size reduction is non-trivial problem and there was a lot of research done on

25[w1, w2] is not part of the model, which also implies that there is no n-gram of form [w1, w2, w] in the model.
This means that none of probability mass was consumed by higher level n-grams, thus backoff weight is zero).

42

methods that reduce number of stored n-grams rapidly without significant impact on language

model performence. Some of these methods were mentioned in section 3.3. But appart from

number of stored n-grams, memory efficient n-gram storing also plays an important role.

5.4.1 ZipTBO

ZipTBO representation is based on notion of tree structure of N-gram LM as it is shown in

figure 7 on page 44. Detailed description of this representation can be found in (Whittaker &

Ray, 2001). In LM tree, nodes in depth 1 correspond to unigrams, nodes in depth 2 to bigrams

etc. Branching of the tree can be expressed by the equations (18) and (19).

children([w1]) = {[w1, w];w ∈ Dictionary&[w1, w] ∈ LM} (18)

children([w1, w2]) = {[w1, w2, w];w ∈ Dictionary&[w1, w2, w] ∈ LM} (19)

Trigram consists of three distinct words, however there is only one wordID stored in trigram

node. The missing wordIDs comes from parent and grand-parent nodes.26 Sibling nodes are

sorted according to their wordIDs. This feature allows using of binary-search during n-gram

lookup.

As shown in figure 8 on page 45, LM tree can be efficiently represented by using separate

arrays for storing nodes at distinct levels.27 Unigram array contains pointers into bigram array

and bigram array contains pointers into trigram array. There is no backoff weight for trigrams,

since backoff weight is defined only for n-grams that can appear as word history of higher order

n-grams.

5.5 Decoding Algorithm Implementation

The task is to find the optimal S∗ = (w∗1...w
∗
N) for the input sentence S = (w

′
1...w

′
N). As

the underlying statistical model, the HMM is used. In Section 3.6, the Viterbi algorithm was

introduced as an efficient algorithm of the sequence decoding for HMMs.

In the provided description of the algorithm, trellis values were computed for each state at

each trellis stage. However, the number of states of the HMM for the multi-factor spell-checking

as described in Section 3.5 is enormous. The set of HMM states consists of all (wfi,wfj) pairs28,

26ancestor unigram node gives the first nodeID, ancestor bigram node gives the second nodeID.
27These levels corresponds to n-grams of different order.
28For convenience, multi-factor second order HMM is described here.

43

ROOT

id = 0
f = -2.3
b = -0.8

id = 1
f = -3.4
b = 0

id = 2
f = -4.7
b = -1.3

id = 1589
f = -3.7
b = -2.9

id = 7539
f = -2.4
b = 0

id = 56
f = -1.8
b = -1.5

id = 1407
f = -2.5
b = -1.1

id = 5961
f = -4.9
b = 0

id = 762
f = -3.6

id = 2855
f = -1.7

id = 483
f = -2.5

id = 994
f = -1.9

id = 6410
f = -3.3

id = 8057
f = -1.7

id = 679
f = -1.9

id = 3277
f = -3.1

id = 6853
f = -2.5

Unigrams

Bigrams

Trigrams

Figure 7: Tri-gram LM tree structure. (b stands for backoff weight)

44

Unigrams

wordID f bow

0 -2.3 -0.8

1 -3.4 0

....

Bigrams

wordID f bow

1589 -3.7 -2.9

7539 -2.4 0

56 -1.8 -1.5

1407 -2.5 -1.1

5961 -4.9 0

....

Trigrams

wordID f

762 -3.6

2855 -1.7

483 -2.5

994 -1.9

6410 -3.3

2 -4.7 -1.3

8057 -1.7

679 -1.9

3277 -3.1

6853 -2.5

....

Figure 8: ZipTBO representation of LM tree shown in figure 7. Cells that defines unigram (1)
are marked blue, cells that defines bigram (7539, 0) are marked green, cells defining
trigram (3277, 1407, 2) are marked pink.

where wfi and wfj can be any (form, lemma, tag) triplet found in the morphology lexicon. Given

that the dictionary contains about 3 million words, there are certainly more than 1012 possible

states. Nevertheless, it is not necessary to build the memory representation of the given HMM,

because all the transition and emission probabilities can be computed on demand.

Also, it is not necessary to examine each HMM state at each trellis stage. If there is the word

stromk in the input sentence, then it makes no sense to consider the word potopa as a possible

correction (the intended word was most likely strom or stromek). A list of possible corrections

for each word of the input sentence is precomputed before the actual decoding starts. The list

of possible corrections for word w
′
i of the input sesntence is denoted as SPi (Stage Posibilities).

Such list of possible corrections for the word stromk is shown in Figure 9. Each correction forms

a triplet wf = (w, l, t) (word, lemma and morphological tag).

SPi is computed for each input word w
′
i in the input sentence, SPN+1 = {wf</s> = (</s>, </s>, </s>)}.

Further, the Viterbi decoding can start. However instead of filling the trellis matrix, trellis

sets TS are to be constructed for each trellis stage. Trellis sets store the same information as

the trellis matrix in the viterbi algorithm description in Section 3.6 - trellis probabilities v and

back pointers bt.

45

Initialization step:

TS0 = {wf<s> = (<s>, <s>, <s>)}

Recursive step:

For i = 0 to N

For each (wfx, wfy) ∈ TSi

For each wfz ∈ SPi+1

//summing logs of probabilities

prob = f
(
(wfx,wfy)→ wfz

)
+ g
(
w
′
i+1|(wfy,wfz)

)
if (wfy,wfz) /∈ TSi+1

add (wfy, wfz) into TSi+1

vi+1

(
(wfy,wfz)

)
= prob

bti+1

(
(wfy,wfz)

)
= (wfx,wfy)

else if prob > vi+1

(
(wfy,wfz)

)
vi+1

(
(wfy,wfz)

)
= prob

bti+1

(
(wfy,wfz)

)
= (wfx,wfy)

bestProb = max
state∈TSi+1

vi+1(state)

For each state ∈ TSi+1

if vi+1(state) < bestProb− prunningConstant

remove state from TSi+1

Construction of the optimal solution:

state = argmax
state

vN+1(state)

For i = N downto 1

state = bti+1(state)

wf∗i = state.second //(wf1, wf2).second = wf2

w∗i = wf∗i .w //(wi, li, ti).w = wi

The functions f and g are the transition and emission probability functions introduced in

Section 3.5.

If w∗i 6= w
′
i, an error is indicated at i-th word29. In such case, a list of correction suggestions

sorted according to their probabilities is constructed using the following procedure:

29If w
′
i is a valid dictionary entry, then a grammar error is indicated, a standard spelling error is indicated

otherwise.

46

strom|strom|NNIS4

strom|strom|NNIS1

stromů|strom|NNIP2

stromy|strom|NNIP1

stromy|strom|NNIP7

stromy|strom|NNIP4

stromu|strom|NNIS2

stromu|strom|NNIS3

stromky|stromek|NNIP1

stromky|stromek|NNIP7

stromků|stromek|NNIP2

stromky|stromek|NNIP4

strome|strom|NNIS5

stromek|stromek|NNIS4

stromek|stromek|NNIS1

stromě|strom|NNIS6

stromky|stromek|NNIP5

stromy|strom|NNIP5

stromku|stromek|NNIS5

stromku|stromek|NNIS2

stromku|stromek|NNIS3

stroma|stroma|NNNS5

stromu|strom|NNIS6

stromku|stromek|NNIS6

strok|strok|NNMS1

stroma|stroma|NNNS1

stroma|stroma|NNNS4

Figure 9: Posible corrections of word stromk.

For each wfs ∈ SPi

suggProb = f
(
(wf∗i−2,wf∗i−1)→ (wf∗i−1,wfs)

)
+ f

(
(wf∗i−1,wfs)→ (wfs,wf∗i+1)

)
+f
(
(wfs,wf∗i+1)→ (wf∗i+1,wf∗i+2)

)
+ g
(
w
′
i|(wf∗i−1,wfs

)
word = wfs.w

If word /∈ suggMap or suggMap[word] < suggProb

suggMap[word] = suggProb

sorted suggestions = keys of suggMap sorted in decreasing order according

to the corresponding probabilities

By using this approach, it is possible to obtain a list of correction suggestions without perform-

ing the search for n-best Viterbi paths which would decrease the decoding speed significantly.

47

5.6 Diacritic Completion

In order to provide the implementation of the diacritics completion feature, the error model

component was substituted. The other components of the system could remain unchanged. for

a diacritics completion error model that assigns zero costs to the substitutions that add diacritics

to a Latin letter. All the other edit operations are assigned infinite costs. As a consequence, all

the candidate words for words in the input sentence are possible diacritics completions of these

words.

For example, candidate words for the word radu according to the diacritics completion error

model are rádu, řadu, řádu, řád̊u, rad̊u.

According to the standard spell-checking error model, the candidate words are radu, rádu,

řadu, rady, rada, rad, radě, rady, hradu, rodu, řádu, rad́ı, rado, vadu, rad̊u, zradu, sadu ... and

many others.

After the candidate words are generated, both the spell-checking and diacritics completion

work exactly the same.

Nevertheless, the lists of possible corrections are not generated for the diacritics completion,

the result of this task is just the text with diacritics added.

5.6.1 Letter Language Model For Diacritics Completion on Unknown Words

It may possibly happen that for a given word of the input sentence, no candidate word is

found. The example of such word is the word nemeckofrancouzsky. In such case, word remains

untouched and no diacritics is added. However there is a high probability of error in such case,

in the provided example the diacritics should rather be completed as německofrancouzský or

německofrancouzsky.

In order to decrease the number of errors made on unknown words, a custom implementation

of Viterbi decoder was provided. The states on the underlying HMM are tuplets of letters

and the transition probabilities are given by a letter n-gram language model (it estimates the

probability of next letter on the basis of previous letters). The aim of this Viterbi decoder is to

find the most probable letter sequence given the input letter sequence. The only substitutions

allowed are the substitutions that add diacritics.

Using this approach, diacritics can be added correctly even to the unknown words.

Given that the vocabulary of letter n-gram language model is extremely small (size of the

alphabet), it is possible to train letter LMs of very high order. In this work, letter LMs of order

48

up to 7 were trained. The letter LMs were trained on the training part of WebColl. The data

were preprocessed in such way that there was only one word per each line and the letters were

separated by spaces. From the perspective of SRILM toolkit, each word was a sentence and

each letter was a word.

5.7 Spell-checking of Text with No Diacritics

Spellchecking of a text that does not contain diacritics - diacritics insensitive spell-checking

(DI spell-checking), should not consider the words such as priusnice, skolnik, sislam as spelling

errors, because by adding of diacritics, the proper Czech words př́ıušnice, školńık and šǐslám

can be formed out of them.

For the word that is spell-checked, the DI spell-checking tries to find a diacritics completion

that is contained in the dictionary. If such diacritics completion is found, the word is not

considered as a spelling error.

Similarly to the implementation of the diacritics completion feature, the diacritics insensitive

spell-checking functionality is achieved by providing of a custom implementation of an error

model. In the DI spell-checking error model, edit operations that add diacritics to latin letters

do not increase the edit distance and have assigned the zero cost. The cost of all the other edit

operations remains the same as in the standard spell-checking error model. Figure 10 shows

the list of the correction candidates for the word stribo according to DI spell-checking error

model. According to the standard error model, the edit distance of words stribo and stř́ıbro

is 3 and the word stř́ıbro is not considered as a correction candidate. According to the DI

spell-checking error model, the edit distance of these words is only 1, because the operation of

adding of diacritics does not increase the edit distance.

After the decoding is finished, the diacritics insensitive equality comparison is made for each

pair (w∗i , w
′
i)
30. If w∗i is not equal to w

′
i, then the spelling error is indicated. For example, if

the word on input is jablicko and the decoded word is jabĺıčko, then the spelling error is not

indicated.

5.8 MacOS X - Spell Checking Interface

On the Mac OS X operation system, there is a unified spellchecking interface that allows devel-

opers to create their own spellchecker implementations that can be used by any native Mac OS

30The pair of the decoded and input word.

49

střı́bro|střı́bro|NNNS4

střı́bro|střı́bro|NNNS1

Střı́bro|Střı́bro|NNNS1

Střı́bro|střı́bro|NNNS1

střı́bro|střı́bro|NNNS5

Strabo|Strabo|NNMS5

střı́do|střı́da|NNFS5

Střı́bro|Střı́bro|NNNS5

Střı́bro|střı́bro|NNNS5

Střı́bro|Střı́bro|NNNS4

Střı́bro|střı́bro|NNNS4

Strabo|Strabo|NNMS1

Figure 10: Correction candidates for word stribo in diacritics insensitive spell-checking

X application. On Linux or Windows there is no such easy possibility to create a system-wide

applicable spell-checker and that is the main reason why Mac OS X was chosen as a target plat-

form of this work.31 The major programming language of the Mac platform is Objective C and

the classes that provide the spellchecking interface are also written in it. The core spellcheck-

ing class is called NSSpellServer. It processes the spellchecking tasks sent by the applications

through the instances of NSSpellChecker class. Those tasks are sent in traditional Objective-C

manner - in the form of messages. It is a simplification, yet not an extremely big one, to say that

a message in Objective-C is the equivalent of function call in C++. A spelling server forwards

the messages to an instance of spellserver delegate and this is the class whose implementation

is provided by the spellchecker developer and that does the important work - finding misspelled

words, suggesting corrections etc. There are many tasks that a spellserver delegate may be able

to perform, it only needs to provide an implementation of the corresponding methods.

Following is the list of methods that a spellserver delegate may implement:

5.8.1 findMisspelledWordInString

− (NSRange) s p e l l S e r v e r : (NSSpel lServer ∗) sender

f indMisspe l l edWordInStr ing : (NSString ∗) stringToCheck

language : (NSString ∗) language

wordCount : (NSInteger ∗) wordCount

countOnly : (BOOL) countOnly

31Although functionality could be easily transported into any other platform, because all backend functions were
written in C++ in a platform independent way.

50

This method should check for misspelled words in stringToCheck and return a range of the first

misspelled word found. For example, if the method is called on text

”The French defence ministyry said last week that it had profided logistical and technical support

to Mauritanian forces carrying out the raid in northern Mali.”

it should return the range of ministyry which is a typo and should have been ministry instead.

After NSSpellChecker received this result from the spellserver, it usually sends a new message

to the spellserver demanding the spellchecking of the rest of the text. In this case, consequent

spellchecking would be asked for text

” said last week that it had profided logistical and technical support to Mauritanian forces

carrying out the raid in northern Mali.”

which should return the range of word profided which is a typo and should have been pro-

vided instead. findMisspelledWordInString method is not capable of returning any other useful

information such as suggestion of possible corrections.

In this work, this method was simply implemented by consecutive dictionary lookup on each

token formed by letters and by returning the range of the first such token that was not found

in the dictionary. The Viterbi decoder cannot be utilized inside this method.

5.8.2 checkGrammarInString

− (NSRange) s p e l l S e r v e r : (NSSpel lServer ∗) sender

checkGrammarInString : (NSString ∗) s t r i n g

language : (NSString ∗) language

d e t a i l s : (NSArray ∗∗) ou tDe ta i l s

This method checks for grammar errors in string. These errors are usually highlighted by green

underscoring by an application that uses a spell-checker with grammar checking turned on

(spelling errors are highlighted by red underscoring). Grammar checking can be used for the

purpose of checking of subject - verb agreement, proper sentence start capitalization and many

other things (for example, native Mac OS X spellserver highlight phrase We is as a grammar

error). In this work, grammar checking interface was used for identifying spelling errors that

51

accidentally form words contained in the dictionary.32

Function checkGrammarInString returns a range of text segment containing grammar errors.

Further details about errors found in this text segment can be specified by setting outDetails

output parameter. outDetails should contain details of every grammatical error found in the

checked text segment. A detailed description of each error consists of specifying a subrange of

this error in the context of the checked text segment, an array of correction suggestions and an

error description (which is intended to be presented to the user).

A text checking server stores error details for sentences that have already been checked in

a checked sentences hash map. This feature is utilized by the provided implementation of

checkGrammarInString method which works as follows: string is first splitted into sentences.

The first sentence is looked for in a hash map of checked sentences. If it is found, then the error

details stored in the hash map are returned. If it is not found, then the ViterbiDecoder is run

on the sentence in order to find errors. The result is then stored in the checked sentences hash

map. Both standard and grammar errors are looked for. However, only grammar error details

are stored in outDetails output variable.

However, the interface method suggestGuessesForWord which should provide a list of sugges-

tions is context in-sensitive, the only parameter than can be specified is the word itself. Because

of this limitation,

Due to the limitations of suggestGuessesForWord function that will be discussed later, sug-

gestions for standard spelling errors are stored into suggestions hash map (keys of this hash

map are misspelled word forms and values are arrays of suggestions). When there is a request

for the list of suggestions for a given misspelled word, the list of suggestions found in hash map

is used.

5.8.3 Installation of Spell-checker On Mac

All the information regarding the installation and using of spell-checker developed in this thesis

can be found in README file in the root directory of the accompanying CD.

32This is a different purpose from what people usually mean by grammar checking. However it is practical to
highlight such spelling errors in a way different from highlighting the standard spelling errors, because there
is a greater possibility that the spell-checker’s suggestion is wrong (the word that was typed might in fact be
correct), so the less alarming green colour is a good choice here.

52

6 Evaluation

In order to evaluate the system’s performance for both tasks (context sensitive spell-checking

and diacritics completion), dirty data and golden standard data are needed. Dirty data contain

problems that need to be solved (spelling errors or missing diacritics), golden standard data

contain the right solutions. The more the output of the system matches the golden standard

data, the better.

The system evaluation was made in order to judge the contribution of the proposed method

of multifactor spelling correction and diacritics completion. As the baseline for the comparison,

a single-factor approach utilizing language models based on word forms solely can be used.

6.1 Diacritics Completion Evaluation

Obtaining of testing data for diacritics completion is an easy task. Any text containing diacritics

can be taken as golden standard data, dirty data can be obtained easily by removing the

diacritics. The diacritics can be easily evaluated by counting the rate of words that were

completed correctly (i.e. the ratio of output words that are identical to the golden standard

words, the punctuation tokens and numbers are not considered, because there is nothing to be

done for these tokens).

The diacritics Completion was evaluated on four different datasets, part of the WebColl corpus

devoted for testing and three different books33: Martin Gilbert: A History of the Twentieth

Century (non-fiction), Lion Feuchtwanger: Foxes in the Vineyard (fiction) and August Sedláček:

Sb́ırka pověst́ı historických lidu českého v Čechách , na Moravě i ve Slezsku (archaic).

The main parameters are the weights αf , αl and αt of features ff (word form feature), fl

(lemma feature) and ft (tag feature).

First, the contribution fl and ft was examined separately. In these experiments αf was

ranging from 0 to 1 and the weight (1− αf) was given either fl or ft, all the language models

used were trigrams. The results of such experiments for each data set are plotted in Figures 11,

12. It is clear from the plots that both features fl, ft improve the system performance. However

the contribution of ft is more significant. Surprisingly, it seems to better to give all the weight

to ft than to give all the weight to ff .

The performance boost achieved by using ft is most visible on a comparison of results achieved

33Obviously, Czech translation were used for books that were written in a forreign language originally

53

on history domain and fiction domain data. For baseline setup (αf = 1, αt = 0), the accuracy is

97,39% on non-fiction data and 96,74% on fiction data, which means that the error rate is 25%

bigger on fiction data. Nevertheless, by increasing the weight of ft the difference in performence

was becoming less significant and for the best parameter settings (αf = 0.4, αt = 0.6), the

error rate on fiction data was only 7% bigger (97.72% accuracy on fiction data and 97.89 on

non-fiction data).

The performance on the domain of archaic text follows the same pattern, but the achieved

results were much worse. The maximal accuracy of 94.61% was achieved for αf = 0.4, αt = 0.6.

The chosen for out data represents a really old form of Czech and both the vocabulary and

writing style are different from the modern Czech:

Na poděkováńı, Že jej Pán B̊uh od jisté záhuby zázračně vysvobodil, umı́nil si postaviti při

Lnář́ıch klášter, když panstv́ı to jako d́ıl otcovský a bratrský obdržel. Jǐz se začaly základy

vyb́ırati u bažantnice, když se Čerńın tam, kde nyńı klášter stoj́ı, procházel. Ohĺı̌zel se po všech

předmětech známých, ale najednou uzřel tu strom o třech korunách, na něǰz se nepamatoval,

že by jej tu byl viděl. Zdálo se mu, že v tom vid́ı znameńı nejsvětěǰśı Trojice, a proto kázal

začaté základy zaházeti a nově dal kopati na tom mı́stě, kde ten strom viděl. Tak povstal klášter

s kostelem, na jehož hlavńı oltář dal Čerńın takový obraz, jako mu byl zanechal archanděl.

Next, the estimation of the best parameter setting for each data set was done using a simple

hill-climbing algorithm34 (description can be found in (Russell & Norvig, 2003)) As the starting

point, all the weights were set equally. The resulting parameters and the accuracy values are

shown in the Figure 10. The results of experiments with the letter LM feature turned on were

made as well for the particular settings.

It can be seen that the use of letter LM for the completion of the unknown words improves the

results significantly. Table 9 provides a detailed view on the performance of letter LM on each

dataset. For the data that was translated from a forreign language (fiction and non-fiction)

there was a lot of errors made on names. When foreign proper names are translated to the

Czech language, the diacritics is added only to the word’s suffix if grammar demands that. This

result suggest that it might be plausible to provide a custum behaviour of this feature for both

34Start in a random point in the parameter space, make update steps iteratively in the direction of gradient of
the given fitness function until the stopping criterion is met.

54

dataset success - general fail - general success - proper fail - proper

non-fiction 505 52 279 202
fiction 326 69 174 237
archaic 237 36 134 39
heldout 823 66 437 136

Table 9: The detailed statistics of Letter LM feature performance. success - general denotes the
number of succesfull completions on general words, fail - general denotes the number
of errors newly introduced on general words. The same statistics are given for the
proper names in the next two columns.

dataset αf αl αt accuracy accuracy with letter LM

non-fiction 0.309 0.283 0.407 97.91 98.31%
fiction 0.312 0.141 0.547 97.73 97.88%
archaic 0.313 0.236 0.451 94.53 95.7%

WebColl 0.340 0.330 0.330 98.57 99.11%

Table 10: The best accuracy values achieved on each testing set (no letter language model, all
the LMs are trigrams).

word types (For example, separate letter LMs for proper names and general words words or

there could be a possibility to disable the feature for proper names).

6.2 Spell-Checking Evaluation

In contrast to diacritics completion, obtaining of the testing data for spell-checking is much

more complicated task. Such data must be produced manually. The error corpus Chyby (Pala

et al., 2003) which is being built in Brno could provide an ideal data for evaluation of the

given task, since the error such as i/y s/z or morphological errors that could not be found by

non-context sensitive spell-checker are anotated as well. Nevertheless, the evaluation on this

corpus is left for the future work.

However two smale scale test sets were created in order to provide a limited evaluation of the

spell-checking.

One of these testing sets was created by a volunteer person by a transcription of the spoken

word. This testing set contains 218 spelling errors (out of this number, 12 errors are real-word

errors) and there were 1371 words in total (this testing data set will be denoted as olga).

The other set was created from the part of WebColl devoted for testing (this testing data

55

Figure 11: Results of form - lemma, form - tag experiments. The values of αf are on the x-axis.
The other feature gets the remaining weight (1− αf). The blue line: form - lemma
combination on non-fiction data, the yellow line: form - tag on non-fiction, the red
line: form - lemma on fiction, the green line: form - tag on fiction.

56

Figure 12: Results of form - lemma, form - tag experiments on archaic texts. The values of αf
are on the x-axis. The other feature gets the remaining weight (1 − αf). The blue
line depicts the results for form - lemma combination, the red line for form - tag
combination.

57

set will be denoted as test). The words identified by the spell-checker35 as spelling errors were

examined manually and the words that were flagged as spelling errors by mistake were filtered

out. The result of this process was the set of sentences containing spelling errors authorized by

a human. The golden standard data were created manually in the next step. This approach

made the collecting of errors in the WebColl testing data feasible, however all the real-word

errors were missed (they were overlooked, because they were not flagged as spelling errors by

spell-checker in the first step).

The quality of spell-checkers is usually measured by the spelling correction error rate (i.e.

what is the probability that the first given suggestion is correct or that the correct suggestion

is included in the list of first three suggestions etc.) If the context sensitive spell-checker is

considered and the ability of recognizing the real-word errors is to be tested, F-measure based

on Precission and Recall can be used.

P =
TP

TP + FP

R =
TP

TP + FN

F =
2× P× R

P +R

where TP (true positives) denotes the number of succesfully recognized real-word errors, FP

denotes the number of words that were incorrectly marked as real-word errors and FN denotes

the number of real-word errors that were not recognized. F-measure provides the harmonic

mean of Precission and Recall and it is a good indicator of a quality of a classifier.

Small scale experiments were made for the combinations of two testing data sets and two

estimated error models (the error model creation process was described in section 4.4). The

optimal setting of parameters αf , αl, αt, αe of features ff , fl, ft, fe is looked for using the hill-

climbing algorithm. During the lookup, the fitness function of the hill-climbing algorithm was

constructed by the interpolation of the accuracy on the first suggestion, the accuracy on first two

suggestion and F-measure on real word errors. The results achieved for distinct combinations

of testing corpus and error model are shown in Table 11.

35The spell-checker made look-up for the out of vocabulary words easier. The correction suggestions given by
spellchecker weren’t taken into the consideration during the creation of golden standard data, so the fact that
the spell-checker that is to be tested participated in the creation of the testing set does not invalidate the
testing set.

58

evaluation set error model 1 sugg 1st 2 sugg 5 sugg precission recall f-measure

olga auto 91.63 97.2 98.6 1 0.77 0.87%
olga manual 91.63 97.2 98.6 1 0.77 0.87%
test auto 91.39 95.08 96.31 - - -
test manual 90.57 95.08 96.31 - - -

Table 11: Multi-factor spell-checking: The best results achieved for each combination of test set
and error model (no letter language model, all the LMs are trigrams). 1 sugg stands
for the accuracy on the first suggestion, 2 sugg stands for the accuracy on the first
two suggestions etc.

evaluation set error model 1 sugg 1st 2 sugg 5 sugg precission recall f-measure

olga auto 90.09 96.7 97.64 0.875 0.54 0.66%
olga manual 90.09 96.7 97.64 0.875 0.54 0.66%
test auto 90.16 95.08 96.31 - - -
test manual 90.16 95.08 96.31 - - -

Table 12: Single-factor spell-checking: The best results achieved for each combination of test set
and error model (no letter language model, all the LMs are trigrams). 1 sugg stands
for the accuracy on the first suggestion, 2 sugg stands for the accuracy on the first
two suggestions etc.

The results achieved for baseline setup - fl and ft are not used - are shown in Table 12.

Although better results were achieved for the multifactor spell-checking, the differences are

insignificant. In both testing sets, there are around 200 errors, so the 0.5% difference in spelling

correction error rate means the difference on one single words. Given this fact, on the basis of

the current evaluation of context sensitive spell-checking, the contribution of the multi-factor

decoding cannot be measured. However the results obtained on real-word spelling errors (f-

measure = 0.87) for multi-factor decoding are quite promissing (although there were only 12

real-word errors).

Both error models performed equally good although there were big differences in the estimated

error probabilities for distinct edit operations. For the evaluation of the error models, more

testing data would be needed as well.

For the comparison, (Brill & Moore, 2000) achieved the spelling correction error rate of

97.6% for the first suggestion when trigram language model was used. This promissing result

was achieved by the use of very powerful error model. However the results obtained for the

different languages are not easily comparable.

59

7 Conclusions

A context-sensitive method of spell-checking and diacritics completion was designed and imple-

mented in this work. Both features can be helpful in producing better-quality Czech texts with

less effort. Regarding the spell-checking task, emphasis was put on the ability of the system to

recognize real-word spelling errors and also on the ability to suggest the right corrections for

spelling errors.

The overall accuracy of diacritics completion was about 98% with training and testing data

coming from different domains36. The accuracy on testing data coming from the same corpus

was over 99%. This seems to be a significantly better result than the one achieved by (Vrána,

2002), because the best accuracy he published was 97.4% and his training and testing data

came from the same corpus37.

However, only a small scale evaluation of context sensitive spell-checking was made and the

contribution of multi-factor decoding for spelling-correction cannot be determined from the

obtained evaluation results.

The proposed solution of context-sensitive spell-checking and diacritics completion is based

on statistical methods and uses language modelling extensively. The following hypothesis was

addressed, too: Can the use of statistical models that work on morphological features such as

lemma and morphological tag lead to better results? The evaluation showed that the use of

these features can improve the system’s performance significantly. For diacritics completion,

it led to 20% - 30% decrease of error rate (depending on the testing dataset) when compared

to the baseline setup that uses language models based on word forms solely. In the spelling

correction task, the use of morphological features improved f-measure for the real-word spelling

error identification problem from 0.66 to 0.87, however a bigger testing data would be needed

for the serious evaluation.

A method for diacritics completion on unknown words was proposed. This method is based on

a language model that works on letter sequences. By using this approach for handling unknown

words, error rate decreased significantly. However, the application of this approach often led to

ridiculous errors such as completion of Picasso to Pičasso. It is evident that adding diacritics

incorrectly can be more harmfull than failing to recognize a word that diacritics should be added

36Statistical models were trained on a corpus of news articles, the testing was carried out on a novel by Lion
Feuchtwanger and a book on the history of 20th century

37He also published a 98% accuracy when his training and testing data were identical, but this figure does not
say much about the real-life system performance

60

to. This is the aspect of automatic diacritics completion that could be further looked into.

The spell-checker application developed in this work implements the standard Spelling Server

interface of Mac OS X Snow Leopard. Leopard operation system and was released as a standard

Mac OX X application bundle - michalisekSpell. Because of this, the users of any modern Mac

OS X application enabling spell-checking can decide to use michalisekSpell for the correction

of Czech texts. The application michalisekSpell provides diacritics completion feature as a

standard Mac OS X system service which means that it can be used system-wide. A user just

selects a text s/he wants to add diacritics to, chooses the Add diacritics! service in the context

menu (or uses a keyboard shortcut) and diacritics is added instantly.

A minor point of the thesis assignment was to integrate certain linguistical resources developed

at UFAL, such as morphological lexicon and thesaurus, into the spell-checker. This point of

the assignment was fullfilled only partially. The morphological lexicon and its feature of style

signs of lemmas was integrated, which allows the application of style restrictions on the lexicon

(meaning that vulgar, expressive or archaic words may or may not be accepted). The integration

of the thesaurus was left for future work, as it has no direct connection with the main focus of

this work and it is only a matter of implementation without a significant scientific challenge.

61

References

Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., & Mohri, M. (2007). Openfst: a general and

efficient weighted finite-state transducer library. In Ciaa’07: Proceedings of the 12th inter-

national conference on implementation and application of automata (pp. 11–23). Berlin,

Heidelberg: Springer-Verlag.

Brill, E., & Moore, R. C. (2000). An improved error model for noisy channel spelling correction.

In Acl ’00: Proceedings of the 38th annual meeting on association for computational lin-

guistics (pp. 286–293). Morristown, NJ, USA: Association for Computational Linguistics.

Chen, S. F., & Goodman, J. (1998). An empirical study of smoothing techniques for language

modeling (Tech. Rep.). Cambridge, Massachusetts: Computer Science Group, Harvard

University.

Church, K., & Gale, W. (1991). Probability scoring for spelling correction. Statistics and

Computing , 1 (7), 93-103.

Church, K., Wa, R., Hart, T., & Gao, J. (2007). Compressing trigram language models with

golomb coding. In In proceedings of emnlp-conll 2007. Prague, Czech Republic.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling errors.

Commun. ACM , 7 (3), 171–176.

Hajič, J. (2004). Disambiguation of rich inflection (computational morphology of czech). Nakla-

datelstv́ı Karolinum.

Jurafsky, D., & Martin, J. H. (2008). Speech and language processing: An introduction to

natural language processing, computational linguistics and speech recognition (Second ed.).

Prentice Hall. Paperback. Available from http://www.worldcat.org/isbn/013122798X

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model

component of a speech recognizer. In Ieee transactions on acoustics, speech and signal

processing (pp. 400–401).

Kneser, R., & Ney, H. (1995). Improved backing-off for m-gram language modeling (Vol. 1).

Available from http://dx.doi.org/10.1109/ICASSP.1995.479394

Koehn, P., & Hoang, H. (2007). Factored translation models. In In proceedings of emnlp-conll

2007. Prague, Czech Republic.

Mays, E., Damerau, F. J., & Mercer, R. L. (1991). Context based spelling cor-

rection. Information Processing & Management , 27 (5), 517 - 522. Avail-

62

able from http://www.sciencedirect.com/science/article/B6VC8-469WV1X-10/2/

93f4211e2b7779cae43d8b1dc2db6585

Pala, K., Rychlý, P., & Smrž, P. (2003). Text corpus with errors. In Text, speech and dialogue

(pp. 90–97). Springer Verlag.

Peterson, J. L. (1986). A note on undetected typing errors. Commun. ACM , 29 (7), 633–637.

Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd edition ed.).

Prentice-Hall, Englewood Cliffs, NJ.

Smith, N. A. (2004). Log-linear models.

Vrána, J. (2002). Obnoveńı diakritiky v českém textu. Diploma Thesis. (Version 5.10.0)

Whittaker, E., & Ray, B. (2001). Quantization-based language model compression. In In

proceedings of eurospeech.

Witten, I., & Bell, T. (1991). The zero-frequency problem: Estimating the probabilities of

novel events in adaptive text compression. In Ieee transactions on information theory

(p. 1085-1094).

Yuret, D., & Stolcke, A. (n.d.). ngram-discount - notes on the n-gram smoothing imple-

mentations in srilm. Available from http://www-speech.sri.com/projects/srilm/

manpages/ngram-discount.7.html. (SRILM man pages)

Zhai, C., & Lafferty, J. (2004, April). A study of smoothing methods for language models

applied to information retrieval. ACM Trans. Inf. Syst., 22 (2), 179–214. Available from

http://dx.doi.org/10.1145/984321.984322

63

