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 1 Introduction
Computers are very useful in solving many problems but it is necessary to describe the problems 

formally. One of the commonly used formalisms is constraint satisfaction. The specification of a 
constraint satisfaction problem (CSP) contains variables and constraints. Each variable has a finite 
set  of possible  values called the  initial  domain.  The variables are bound by  constraints,  which 
allow/deny some combinations of values to be assigned to participating variables. Constraints can 
be defined using a mathematical formula or another similar way (intensionally). The alternative 
definition of the constraint is by an enumeration of the allowed (compatible) tuples of values. Such 
a constraint is typically defined in a table, hence the name tabular constraints. Other common terms 
for tabular constraints are “ad hoc constraints” and “constraints defined in extension”. A solution of 
the CSP is such a variables' assignment that respects each constraint.

CSP solvers typically use backtracking search to find a solution. The time complexity of the 
search depends exponentially on the domain sizes, therefore any domain restrictions are desirable. 
One of  the restriction techniques, the arc consistency (AC), uses the following reasoning: If a value 
is pruned, all tuples containing the value are ignored. Tuples that are not ignored and are compatible 
(with respect to a given constraint) are called feasible. If the value is a part of a solution, it must be 
also part of some feasible tuple in all related constraints. Therefore the value, which is not part of 
any feasible tuple, can be pruned. The AC prunes all such values.

In this thesis we study arc consistency algorithms for tabular constraints. Our goal is to modify 
an existing or create a new AC algorithm for a specific class of problems. The constraints in these 
problems typically have higher arities. Our philosophy will be to exploit some particular properties 
of  these  problems by breaking the  high-arity  constraints  into  structures  of  constraints  of  small 
arities, typically binary constraints. The second step, exploiting some other characteristics of our 
problem class, will be the selection of pruning algorithms for these new constraints. 

We  will  develop  a  necessary  theory  and  present  various  algorithms  for  pruning  binary 
constraints. Then we will examine different structures and combinations of the algorithms to find 
the most suited for our class of problems.
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 2 Constraint satisfaction

 2.1 Preliminaries 

As written in the introduction, the constraint satisfaction problem (CSP) consists of variables and 
constraints. Variables as nodes and constraints as hyper-edges together form a hyper-graph called a 
constraint network.

Each variable has its initial domain defined. The domains are finite sets of integers. Because the 
same number can be the value of many variables, we use the notation (variable, value) to refer to a 
concrete value.

When defining the constraints, the ordered set of variables bound by the constraint is called the 
constraint's  scope and the size of the scope is called  arity. The set of those tuples of values, for 
which the constraint holds, is called a constraint domain.

The CSP solver uses search techniques to find a solution. However, some ways of reasoning can 
be used before the search in order to deny some values that cannot be part of the solution. These are  
called  consistency techniques and they can narrow the search space significantly. If the search is 
backtracking-like (by extending partial valuations) the consistency technique can be applied after 
each value selection and hence narrowing the search space even more. The consistency algorithm is 
sound if it removes only values that cannot appear in any solution. The algorithm is complete if it 
removes each value that can be excluded using the reasoning the consistency algorithm is based on.

Depending on the reasoning, many consistency levels can be defined. The more sophisticated 
consistency levels are also the more time-consuming. The most commonly used consistency level is 
arc consistency. We will define it for problems consisting of binary constraints:

Definition 2.1: Arc consistency

Let C be a constraint of the CSP and let V1 and V2 be the variables bound by the constraint 
C. Let x1 be a value in the domain of V1.

We say the value x1 is supported in the constraint C iff there is a value x2 in the domain of 
V2 such that (x1, x2) conforms the constraint.

We say that the arc (Vi, Vj) is consistent iff each value xi in the domain of Vi is supported in 
the constraint binding Vi and Vj.

We say that the CSP is arc consistent iff each arc is consistent.

We can analogically define generalized arc consistency (GAC) for constraints of higher arities. The 
only significant difference is the definition of support: while a supporting value is needed in the 
presented binary version, a supporting tuple is required by the GAC. Since there will be no risk of 
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misinterpretation, we will use the term arc consistency (AC) also for generalized arc consistency.

It  is  obvious  that  unsupported  value  cannot  be  part  of  any  solution.  The  goal  of  the  arc 
consistency algorithms is to remove (prune) all unsupported values; to restrict the domains of a CSP 
to an equivalent arc consistent form. The supported values are called  feasible. A tuple is called 
feasible iff it is compatible (element of the constraint domain), and none of the values in the tuple is  
pruned.

There are two approaches to maintain arc consistency that differ in the specification of flaws 
making the problem inconsistent:

1. The  fine  grained algorithms consider  the  problem to  be  arc  consistent,  when there  are  no 
unsupported values.

2. The coarse grained algorithms are trying to reach the state in which all arcs are consistent.
In  both cases,  correcting a  flaw can cause new flaws,  so there is  a  queue of flaws and the 

algorithms are iteratively correcting flaws until the queue is empty.

 2.2 Classical fine grained algorithms

The fine grained algorithms ensure that each value has a 
support. During the run of the algorithm, a value  (V, v) may 
lost  its  supports  in  the  variable  W.  Such  value  is  called 
pending (with respect to variable W) until a new support for v 
is found. The pending values are stored in a queue. The fine 
grained AC algorithms pop a pending value from the queue 
and  ensure  that  the  pending  value  is  still  supported.  The 
algorithms differ in a way the pending value is processed. For 
different algorithms, we will describe processing the pending 
value  (V, v) with respect to variable  W. First, we will present 
algorithm AC-4 introduced in [19].

 2.2.1 AC-4 algorithm

Figure  1 shows a  constraint  domain  represented  as  a  system of  linked lists,  each  of  which 
contains the tuples supporting one of the values. In fact, this structure (known as a sparse matrix) is 
not part of the AC-4 algorithm specification, on the other hand the structure is the result of a natural 
implementation of the algorithm. We are describing the AC-4 algorithm from this aspect because of 
a better understanding of later algorithms.

For now, we will consider only the linked lists composing the columns of the matrix. Each of 
these linked lists represents the set of tuples supporting one value of the variable V. Let us denote 
slist[v] the list  for value  v.  Some of the tuples may contain pruned values, such tuples are not 
feasible. The algorithm needs to detect, whether at least one of the listed tuples is feasible. In order 
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to do that, the algorithm maintains the number of feasible tuples for each value. For value v, we will 
denote it csup[v].

There are separate slist and csup structures for each arc (for each constraint in both directions). 
Note that when processing the pending value of variable  W with respect to variable V (the other 
direction of the constraint binding V and W), lists in slist form the rows of the matrix in figure 1.

Let us consider processing a pending value (V, v) that has lost a support in the variable W. The 
number of supports the value has, stored in csup[v], is decremented by 1. If csup[v] becomes zero, 
the value (V, v) has become unsupported and it is pruned. The tuples containing the pruned value are 
not feasible anymore. Let (v, x) be such a tuple in the constraint binding V with variable X. Then the 
value (X, x) becomes pending because it has lost support v in V. The algorithm needs to detect all 
such values  (X, x). In order to do that, the algorithm scans the lists  slist[v] corresponding to all 
constraints binding the variable V. All feasible values from the lists  slist are enqueued as pending 
values.  On the  other  hand,  if  csup[v] is  not  zero  after  the  decrementation,  the  value  v is  still 
supported and no pending values are generated. This way, the queue of pending values eventually 
becomes empty and the algorithm terminates.

We will denote the number of constraints e and the size of the largest domain d. There are 2e arcs 
with their respective  csup arrays. Each of the arrays has  O(d) elements and each element has the 
initial value at most  d. Therefore the sum of all elements in all  csup arrays is  O(ed2). This is an 
estimate of  the  number  of  decrementations  the algorithm makes.  All  operations  leading to  one 
decrementation require a constant time. Thus the time complexity of the AC-4 algorithm is O(ed2).

 2.2.2 AC-6 algorithm

The AC-4 algorithm kept the number of feasible supports (csup arrays) in order to determine, 
when the value becomes unsupported. The next classical algorithm, called AC-6 [8], will keep the 
smallest feasible support of each value instead. The smallest supports are stored in ssup array. (We 
will  consider the supporting tuples instead of the supporting values for future generalization to 
non-binary constraints.) To describe the algorithm we need to define an operation of processing the 
pending value.

The value became pending because it has lost the smallest support. To process the pending value, 
the algorithm searches for the next smallest support. The searching starts at the lost support and the 
vertical links in figure 1 are used until a feasible support is found. In such a case, the found support 
is set to ssup. On the other hand, if the end of the linked list is reached, the value has no support and 
it is pruned. All smallest supports containing the pruned value become invalid. The values, which 
have been supported by the invalidated supports, become pending. The list of all smallest-support 
appearances  of the given value is  maintained by the algorithm in order to  find the invalidated 
supports effectively. The lists are stored in a array called lbss and every time the algorithm alters the 
ssup array, the lbss array is modified accordingly. Again, the algorithm terminates when there is no 
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pending value.

Each tuple can be the smallest support at most once and the overhead of becoming the smallest 
support is constant. Thus the AC-6 algorithm requires O(ed2) time.

 2.2.3 AC-7 algorithm

To improve the AC-6 algorithm we can exploit a symmetry called constraint bidirectionality: If 
(V, v) supports (W, w) then (W, w) supports (V, v). When the smallest support for (V, v) is lost in the 
AC-6,  the  algorithm searches  for  the  next  smallest  support  using  the  vertical  links  in  the  v-th 
column of the sparse matrix. In fact, we do not need to search for the smallest support. Any support 
is sufficient to confirm that the value is feasible. The algorithm has the lbss available. The lbss[v] 
may contain some of the tuples of the v-th column of the sparse matrix. (In fact,  lbss[v] contains 
those tuples that are being smallest supports for values of the variable W.) If lbss[v] is non-empty, 
its elements are actually supports of the value  v because of the symmetry. The algorithm called 
AC-7 tries to find a support this way. On the other hand, if the list is empty, the AC-7 algorithm 
must search for a support in the AC-6 way.

The worst-case complexities are the same as complexities of the AC-6 algorithm, on the other 
hand, according to Bessière et. al [4] the AC-7 algorithm can save up to ed2 constraint checks. 

 2.3 The AC-3 algorithm and it's variants

 2.3.1 Algorithms AC-3 and AC-3.1

The  previous  algorithms  treated  each  value  individually.  As  opposed  to  those  fine  grained 
algorithms, we will now present the algorithms dealing with the whole constraints.

AC-3 algorithm

The oldest of the AC algorithms described in this thesis is called AC-3. The elementary step of 
the  AC-3  algorithm  [18] is  a  Revise  procedure.  It  makes  the  given  arc  (Vi, Vj) consistent  by 
excluding those values from the domain of  Vi, which have no support in the domain of  Vj. This 
exclusion can make arcs  (Vk, Vi) for  k≠j inconsistent. The AC-3 algorithm maintains a queue of 
possibly inconsistent arcs. The queue is initialized by a full enumeration of arcs. The arcs affected 
by the revision are then added into the queue. The next arc for revision is selected from the other 
end of the queue until the queue is empty.

The Revise procedure consumes O(d2) time and can be called at most O(ed) times. Therefore, the 
time complexity of the AC-3 is O(ed3). Besides the constraint domain representation, the algorithm 
uses only O(1) space.
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AC-3.1 algorithm

The AC-3.1 algorithm [22] fixes the ineffectiveness of the AC-3 regarding the subsequent calls 
of the Revise procedure on the same arc. For each value, the algorithm remembers the smallest  
support. Since supports are only disappearing, when support  t becomes invalid, search for a new 
support doesn't need to start from scratch but it can continue from the position of t. This guaranties 
that during all searches for support of xi each value of Vj will be tested at most once. Hence, in the 
worst case, the time complexity is O(ed2) and the space complexity is O(ed).

 2.3.2 Propagators

The only difference  between the  AC-3 and AC-3.1  algorithms is  the  implementation  of  the 
Revise procedure. Disregarding the implementation, we will introduce an abstraction of the Revise 
procedure.  The  abstraction  is  called  a  propagator.  The  propagator  is  a  procedure  related  to  a 
constraint  that  prunes  the  unsupported  values  of  the  variables  in  the  constraint's  scope.  The 
constraints  defined  by a  mathematical  formula  may have  their  own propagators  that  are  more 
efficient than the Revise propagator of the AC-3 or the AC-3.1. Note that such specialization is 
hardly conceivable in fine grained algorithms.

We will now describe the “interface” of the propagators: Each propagator has an ordered set of 
variables called scope (the size of the scope is propagator's arity). Just like in AC-3, when a domain 
of some variable in the scope changes1, the propagator is enqueued for execution. By pruning other 
domains, the propagator can then reestablish consistency, which could have been corrupted by the 
domain change.

The propagator can have its internal state, which is passed to it as in/out argument. The solver 
engine executes the propagator with that input internal state, which was the output internal state of 
the previous call of the propagator. Assuming backtracking involved, the previous call is the one 
represented by the parent node in the backtrack tree. Therefore the internal state must be cloned in 
order to branch the search.

When examining the propagator call, we will denote  stateIN and  stateOUT the input and output 
internal  state  respectively and  domIN[i] and  domOUT[i] the  input  and output  domain  of  the  i-th 
variable in the propagator's scope.

As a special case of the propagator we define an unidirectional binary propagator as the binary 
propagator that prunes only the second variable of its scope. We will call source and target variable 
the first and the second variable respectively.

1 In general, the propagators can choose a condition on which they are executed. Besides the domain change, it can be 
the change of the minimum or the maximum of domain. Other common condition is when the domain becomes  

singleton. In this theses we will consider only the change of domain as the condition.
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 2.3.3 Propagator properties

We will now introduce several properties of the propagators.

Definition 2.2: Contraction

We say the propagator is contracting iff i:∀  domOUT[i] ⊆ domIN[i].

Definition 2.3: Idempotency

Denote  dom1[i] and  dom2[i] the  i-th  input  and  output  domain  of  the  propagator's  call 
respectively. Consider the subsequent call of the propagator on input domains dom2[i] and 
denote dom3[i] the i-th output domain.

We say the propagator is idempotent iff i:∀  dom2[i] = dom3[i].

In other words the propagator is idempotent if the subsequent propagator call does not prune 
anything. There is no need to call the propagator again until some of the domains are pruned by 
other propagators. Note that we can make a non-idempotent propagator idempotent by iterating 
calls of the propagator until the domains reach a fixed point.

Recall that we call feasible such tuples that are compatible and the tuple's elements are in the 
current  domains  of  their  respective  variables.  Then  the  set  of  feasible  tuples  is 
C ∩ (dom[1]×...×dom[a]), where  C is the constraint domain,  a is the arity of the constraint and 
dom[i] are the current domains of variables.

Definition 2.4: Soundness

We say the propagator is sound iff it never prunes a value from solution.

We say the propagator is AC-sound iff it never prunes a feasible tuple.

Soundness is more general than AC-soundness: every AC-sound propagator is sound.

Definition 2.5: AC-completeness

We say an idempotent propagator is  AC-complete iff it prunes all unsupported values, as 
defined in the definition of AC (2.1).

A non-idempotent propagator is AC-complete iff the idempotent version of the propagator 
(iterating until a fixed point) is AC-complete.

Fact 2.6: Existence of the AC-sound and AC-complete propagator

Consider an a-ary constraint with the constraint domain C. Let us have a propagator that 
sets  domOUT[i] as  i-th  projection  of the  set  F C≔  ∩ (domIN[1]×...×domIN[a]).  Then  the 
propagator  is  contracting,  idempotent,  AC-sound  and  AC-complete.  Moreover,  any 
propagator  that  is  idempotent,  AC-sound and AC-complete  is  in  fact  equivalent  to  the 
above propagator.
(sketch of) proof: contraction is trivial consequence of properties of the projections.
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AC-soundness: F = C ∩ (domIN[1]×...×domIN[a]) ⊆ domOUT[1]×...×domOUT[a] because of 
properties of the projections. The set F is the set of feasible tuples. Therefore no feasible 
tuple was pruned.
Idempotency: For any sets A, B, C: C∩A ⊆ B ⇒ C∩A ⊆ C∩B and B ⊆ A⇒ C∩B ⊆ C∩A. 
Let  A dom≔ IN[1]×...×domIN[a],  B≔domOUT[1]×...×domOUT[a],  C C≔ .  Then  B ⊆ A is 
equivalent  with  the  contraction  and  we  already  used  C∩A ⊆ B in  the  section  about 
AC-soundness. Therefore both consequences  C∩A ⊆ C∩B and  C∩B ⊆ C∩A hold, hence 
C∩A = C∩B. The first call of the propagator computes projections of the set C∩A and the 
second call  computes  projections  of  the  same set  C∩B.  Therefore  the  returned  output 
domains are the same.
AC-completeness: Let us consider a value v that is in the (respective) output domain. The 
the value is in the projection of  F. In the set F, there is a tuple containing  v that was a 
reason for including  v into the projection.  The tuple is  feasible,  thus can be used as a 
support. Hence all values of the output domains are supported.
Uniqueness  of  the  propagator: We  will  denote  P our  projective  propagator.  Let  us 
consider an idempotent propagator Q (idempotency is needed because we will rely on the 
idempotent version of the definition of AC-completeness). If the propagators P and Q are 
different, there is a situation, in which they return different output domains. Let us consider 
a value that is feasible according to Q and pruned by P. If the value is supported, then P is 
not AC-sound. On the other hand, if the value is not supported, then Q is not AC-complete. 
We  will  now  focus  on  the  reverse  situation:  the  value  is  pruned  by  Q  and  feasible 
according to P. For the same reasons, either Q is not AC-sound or P is not AC-complete.  
We know that P is AC-sound and AC-complete. Therefore Q cannot be both AC-sound and 

AC-complete. QED

Definition 2.7: Entailment

We  say  domains  domF[...] form  a  fixed  point of  an  AC-complete  propagator  iff  the 
propagator does no pruning when called on domF[...] set as input domains (the call returns 
exactly domF[...] as the output domains).

We say an AC-complete propagator is entailed with respect to current domains domC[...] iff 
any subsets domF[...] ⊆ domC[...] form a fixed point of the propagator.

A propagator that became entailed need not be called anymore because it will not prune any 
values (Of course, backtracking takes back the entailment, the propagator needs to be called again 
then). The propagator is entailed for domains domC[...] iff
C ∩ (domC[1]×...×domC[a]) = (domC[1]×...×domC[a]).

Having  a  constraint  solver  build  on  the  AC-3  scheme,  all  involved  propagators  must  be 
contracting and sound in order to find a solution. Moreover all propagators must be AC-complete 
for the solver to maintain arc consistency.
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The last aspect of the propagator interface we will define is the returned result. The result of the 
propagator call is one of the following:
• Failure, meaning there is no solution in the current branch of the backtrack tree.
• Entailment, signaling that any subsequent call of the propagator cannot prune anything.
• Dirty, returned when some values were pruned
• Clean, telling that no values were prune

 2.4 Remarks on time complexities

Note that any AC algorithm must at least read the constraint domains.  Therefore  O(ed2) is a 
theoretical lower bound for the worst-case time complexity the AC algorithm.

The time complexities stated up to this point measure the time needed to prune all the values. On 
the other hand no backtracking was assumed. We will call this kind of complexity a single branch 
time complexity, because it measures the time spent in one branch of the search tree. We can also 
measure the time requirements of a single propagator call in the coarse grained algorithms.

Other time requirements, such as the time spent during the whole search, are hard to estimate 
because many factors out of the scope of arc consistency are involved. Among others the shape of 
the search tree, the efficiency of a heuristics used to select values, the section of the search tree the 
solution is in, etc.

In  this  thesis,  we  will  estimate  both  the  single-propagator-call  and  the  single-branch  time 
complexities. All the time-complexity estimates will be the worst-case complexities.
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 3 A new concept of binarization
The philosophy of this  thesis is to create the propagators for the complex constraints by the 

composition  of  the  simpler  propagators.  For  this  we  need  an  instrument  for  decomposing  the 
complex constraint into a set of simple constraints. These elementary constraints will be typically 
binary. In this chapter we will build the necessary formal background.

 3.1.1 Binarization

In the constraint satisfaction theory, replacing arbitrary-arity constraints by binary constraints is 
called binarization. There are two classical methods: the hidden variable method [21] and the dual 
graph transformation [14]. These methods were developed mainly for the theoretical reasons. The 
existence of such transformation allows to generalize the results of research on binary constraints to 
arbitrary-arity constraints, or to focus the research on binary constraints only with pleading that any 
problem can be described by binary constraints only. On the other hand, our concept does not try to 
dispose  of  the  arbitrary-arity  constraints.  Our  goal  is  to  describe  the  internal  structure  of  the 
constraints in order to implement an efficient filtering algorithm.

We will now describe the hidden variable binarization. A new variable is introduced for each 
constraint in the CSP. Let us focus on a single constraint  C binding variables  V1, V2, …, Vn. The 
constraint C is replaced by the new variable W and n binary constraints binding W with each Vi. The 
initial  domain  of  the  variable  W is  the  constraint  domain  of  the  constraint  C.  Therefore  the 
compatible tuples of C are the values of the variable W. The constraint binding W and Vi is defined 
by the  i-th  value  of  the  tuple:  The tuple  (v1, v2, …, vn) is  compatible  with  value  vi.  The  added 
constraints fully replace the original constraint. There is a bijective relation between the solutions of 
the original CSP and the solutions in the binarized CSP. Moreover, arc consistency is preserved, 
because the supporting tuple of the constraint domain, which is required by the GAC definition, is 
represented by the supporting value of the variable W that is required by the binary AC definition.

Our proposed binarization is a generalization of the hidden variable binarization in two aspects. 
Firstly, we will allow to add more than one variable per constraint. Secondly, the added variables 
will represent the sets of tuples instead of single tuples.

 3.1.2 Preliminaries

We will  consider a constraint that will  be fixed for the rest  of the chapter.  We will  call  the 
constraint  superconstraint and  the  constraints  introduced  by  the  binarization  will  be  called 
subconstraints.  The  superconstraint  is  n-ary  and  we  will  refer  to  the  bound  variables  as 
V1, V2, …, Vn.  These variables appear in the CSP definition therefore we will  call them the  real  
variables.  The  added  variables  will  be  called  the  pseudovariables and  we  will  denote  them 
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Vn+1, Vn+2, …, Vm, where m is the number of all variables (both real and pseudovariables).

Denoting dom(Vi) the initial domain of the real variable  Vi, we will call  universe the Cartesian 
product dom(V1)×dom(V2)×...×dom(Vn). Any considerable tuple, either compatible or incompatible, 
is an element of the universe. We will use the term t-set (derived from “tuple set”) for a subset of 
the universe. The constraint domain (denoted  C), is an example of t-set. Any set of t-sets will be 
called t-system. We will use Greek alphabet letters to denote value tuples, lower case Latin letters 
for t-sets and upper-case letters for t-systems.

When decomposing the constraint we will  constitute  pseudovalues of  the pseudovariables. A 
pseudovalue can be any t-set, although when developing the theory we will see that only some t-sets 
are  useful.  The  real  values  will  also  be  represented  by  t-sets.  For  example  value  (V2, v2) is 
represented by the t-set  dom(V1)×{v2}×dom(V3)×...×dom(Vn). Note that this leads to the notation 
τ ∈ (V2, v2) (the tuple is an element of the t-set) instead of common (V2, v2) ∈ τ  (the tuple contains 
v2).

We will say the value x supports the value y iff x and y intersect. Let us consider an example in 
figure  2. The rectangle “a” represents a pseudovalue with t-set  2..6×2..3. Value  (V, 3), as defined 
above, is represented by t-set  {3}×dom(W)={3}×1..10. These t-sets intersect, therefore the values 
support  each  other.  The  value  (V, 3) also  supports  the  rectangle  “c”  but  does  not  support  the 
rectangle “b”.

Real  variables  and  pseudovariables  are  t-systems  because  they  are  sets  of  real  values  and 
pseudovalues that are represented by t-sets. The left part of figure  2 depicts a constraint domain, 
which is a set of tuples (t-set). On the other hand, the right part depicts a pseudovariable “R” that is 
a t-system of 3 t-sets (rectangles “a”, “b” and “c”). We will need to make statements such as that the 
pseudovariable “covers” the constraint domain. In order to do that, we introduce an operation of 
grounding to convert the t-system to a t-set. The grounded t-set of the t-system S is the union of 
t-sets the t-system S consists of, we use the notation ⋃S that is common in the set theory. Note that 
we can use the grounding operation on any t-system, not only on pseudovariables. For example 
consider a current domain of the real variable containing rectangles “a” and “b”. The grounding of 
the current domain (union of rectangles “a” and “b”) represents the set  of feasible  tuples after 
pruning the pseudovalue of rectangle “c”.

We will also need an operation generalizing the Cartesian product for pseudovariables. Let Vi and 
Vj be two variables (either real or pseudo). Let  Si be a subset of  Vi and  Sj subset of  Vj. Then we 
define the product of sets  Si and Sj as (⋃Si)∩(⋃Sj). Note that this definition is consistent with the 
Cartesian product of the real variables: Let us consider figure 2 again. Value v of the variable V is 
represented by t-set  {v}×dom(W). Then the set  Si of values  (V, 3), (V, 4) and (V, 5) is the t-system 
{{3}×dom(W),  {4}×dom(W),  {5}×dom(W)}.  Therefore  ⋃Si = {3, 4, 5}×dom(W).  Analogically 
subset Sj of W consisting of values 3..7 has grounding ⋃Sj = dom(V)×3..7. Then
(⋃Si)∩(⋃Sj) = (3..5×dom(W))∩(dom(V)×3..7) = 3..5×3..7
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Thus our definition of the product is  equivalent with the Cartesian product when the Cartesian 
product is applicable.

In the rest of this thesis, we will use the term variable for both real variables and pseudovariables 
and term value for both real values and pseudovalues.

 3.1.3 Motivation

As a motivational example, consider a constraint in the figure 2. We will denote a a pseudovalue 
corresponding to the proposition “value of V is in 2..6 and value of W is 2 or 3”. The t -set of the 
pseudovalue  “a”  is  2..6×2..3.  a with  analogically  defined  b and  c  will  form  the  domain  of 
pseudovariable  R.  The  reason  of  introducing  the  pseudovariable  is  this:  The  naturally  defined 
constraints, one binding R and V and another binding R and W (see figure 2), can together replace 
the original constraint between V and W. This is because the grounding of the pseudovariable R is 
equal  to  the constraint  domain.  Therefore,  we can  extend each solution  (V:=v,  W:=w) with an 
appropriate value for variable R. On the other hand, if we prune all values from the domain of R 
then there is no solution.

Let us focus on the mentioned fact that the grounding of the pseudovariable R is equal to the 
constraint domain. We will use such facts, in a more general form, in our theory. They will form a  
condition  for  soundness  of  our  binarization.  We  have  also  mentioned  the  “naturally  defined 
constraints” in the previous paragraph. Such naturally defined constraints exist only for particular 

17

Figure 2: an example of introducing a pseudovariable
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pseudovariables.  The existence  of  the  natural  definition  of  the  constraints  will  be  required  for 
AC-completeness of the propagation (on the binarized network of subconstraints).

Although  handling  two constraints  instead  of  one  does  not  seem better,  we will  show it  is 
reasonable  because  the  new constraints  have  a  particular  structure.  We can  also  use  the  same 
principle to transform one a-ary constraint consisting of hyper-rectangles into a binary constraints.

Another motivational example is a constraint in the form 
known  in  SICStus  Prolog  as  “case”.  Figure  3 shows  the 
constraint binding variables U, V and W with this semantics: 
A tuple  is  compatible  if  there  is  an  oriented  path  in  the 
directed  acyclic  graph  such  that  all  restrictions  denoted  on 
path's edges and leafs hold. The form of the case constraint 
requires the graph to consist of layers and all restrictions for a 
given variable are  required to be in  one layer.  Suppose we 
have  a  solution  (u, v, w).  The  solution  uses  a  path  and 
therefore it  uses one of the edges  in the first  layer.  Let  us 
denote this edge by pseudovariable IU. The pseudovariable IU 

consists of two pseudovalues: one corresponding to the edge 
“U in 1..2” and the second representing “U in 4..7”. Analogically we will define pseudovariable IV 

consisting of 3 pseudovalues representing the edges in the second layer. Finally IW is defined for the 
layer of leafs. This way we can internally implement the case constraint as a system of five binary 
constraints: U-IU, V-IV, W-IW, IU-IV and IV-IW.

 3.1.4 The concept

Nothing we mentioned up to this point is in conflict with the fine grained approach. On the other  
hand, for efficiency reasons we will use the skeleton of the AC-3 algorithm to develop our concept. 
As we have outlined in examples, the pseudovariables can be pruned just like variables (hence the 
name). Recall that the elementary constraints binding the pseudovariables are called subconstraints. 
As an analogy of the constraint network we define the subconstraint network:

Definition 3.1: Subconstraint network

The subconstraint network is a graph having real variables and pseudovariables as nodes 
and subconstraints as edges of the graph

The scheme of the subconstraint network of the above examples is shown in figure 4. The circles 
and the squares represent the variables (both real and pseudo) and the connections between them 
represent the subconstraints. The difference between circles and squares will be explained later (for 
now, the real variables are typically are circles and the pseudovariables are squares).
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The significant fact is that the whole subconstraint network must be acyclic. We also require that 
the real variables are leafs and the pseudovariables are inner nodes of the subconstraint network. 
That ensures that propagating each subconstraint at most once in each of its directions during the 
superconstraint propagation is sufficient to fulfill the AC-soundness and the AC-completeness. This 
proposition will be proven in theorems 3.6 and 3.7. This fact was discovered by Dechter and Pearl 
[13]  for the tree-shaped constraint networks. We will use it as an inspiration for the subconstraint 
networks and we will define the process of the superconstraint propagation accordingly. The process 
consists of the upward phase and the downward phase. In the upward phase, we propagate arcs from 
the leafs of the network to the root. The downward phase propagates in the reverse direction.

The propagation definition will expect that indices  i of variables  Vi define the ordering of the 
variables increasingly from the leafs to the root. If the ordering is unsuitable, the variables can be 
renamed in order to fulfill this property. We will show the process of renaming after the formal 
definition of the desirable ordering:

Definition 3.2: Topological ordering

Let us consider the subconstraint network as a rooted tree having the pseudovariable Vm as 
the root. We define function UP: {1, …, m-1} {1,⟶  …, m} such that  UP(j)=i iff  Vi is the 
parent node of Vj in the rooted tree (UP(m) is not defined because Vm is the root).

We say the constraint network is topologically ordered iff UP(i)>i for each i.

To find  the  proper  indices,  we will  pick  a  root  and set  it's  index  to  m.  Then we will  set  the 
orientation of all edges of the tree in the direction to the root. We can perform the topological 
sorting  because  the  tree  is  an  acyclic  graph.  Then  we  will  set  the  indices  of  the  variables 
respectively to the topologically sorted ordering.  From now we will  suppose that  V1, …, Vm are 
named in a way forming the topologically ordered constraint network.

Definition 3.3: Proper superconstraint propagation

Let us consider the topologically ordered subconstraint network.

We define the  upward domain Ui of the variable  Vi this way: If  Vi is real variable (leaf, 
i ≤ n), Ui is the i-th input domain of the superconstraint propagator call. Otherwise Ui is the 
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Figure 4: schemes of subconstraint networks. The left scheme represents the rectangles example  
(figure 2) and the right scheme represents the “case” example (figure 3)
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domain of Vi after applying the propagation from the upward domains Uj of each child Vj 

of Vi.

We will start the definition of the downward domain (denote Di) at root: Dm≝Um. For other 
node  i the downward domain is defined as  Ui after  applying the propagation from the 
parent node's downward domain DUP(i).

At the end of the process, downward domains D1, …, Dn of the real variables are returned 
as the output domains.

The defined procedure is shown in the following code:

procedure Proper_superconstraint_propagation(in out domains : array[1..n] of sets)
  for i in 1..n
    U[i] := domains[i]
  end for
  for i in 1..m-1
    propagate(U[i], U[UP(i)])
  end for
  D[m] := U[m]
  for i in m-1..1   /* m-1..1 represents the decreasing sequence {m-1, m-2, ..., 1} */
    D[i] := U[i]
    propagate(D[UP(i)], D[i])
  end for
  for i in 1..n
    domains[i] := D[i]
  end for
end procedure

Rectangularity

In the previous section, we focused on the acyclic shape of the subconstraint network. To define 
another requirement on the subconstraint network, let us study the above motivational examples. In 
the example in figure 2, all pseudovalues' t-sets were Cartesian products of subsets of the variable 
domains. This is not the case in the second example: There are three paths in the case graph, from 
the left: one representing the t-set (1..2)×(2..5)×(2..3), other standing for (4..7)×(3..4)×(2..3) and the 
last one corresponding to (4..7)×(5..9)×(1..2). The definition of the “case” form says that the tuple is 
compatible  iff  it  is  represented  by  one  of  the  paths.  Therefore,  the  constraint  domain  of  this 
constraint is the union of these three t-sets. Consider the edge labeled “U in 4..7” and its respective 
pseudovalue. In order to recognize the t-set of this pseudovalue, imagine that all other pseudovalues 
of the pseudovariable are pruned. Tuples that are feasible in this situation form the t-set  of the 
pseudovalue “U in 4..7”. The t-set is
(4..7)×(3..4)×(2..3) (4..7)×(5..9)×(1..2) = (4..7)×((3..4)×(2..3) (5..9)×(1..2))∪ ∪
This set is not a Cartesian product of three sets. Thus, pseudovalues can represent sets that are more 
complex than the Cartesian products of subsets of the variable domains. On the other hand, we need 
the pseudovalues to be rectangular locally: The pseudovalue must be the product of its projections 
to all neighboring (pseudo)variables. We will define this property in a form most suitable for future 
usage in proofs.
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Definition 3.4: Rectangularity

We say the t-set x is rectangular with respect to t-systems A and B iff  
∀ a ∈ A, b ∈ B: x∩a ≠ ∅ ∧ x∩b ≠ ∅ ⇒ a∩b ⊆ x
We say a pseudovariable V is rectangular iff each pseudovalue v of V is rectangular with 
respect to any pair of pseudovariables neighboring with V in the subconstraint network.
The subconstraint network is rectangular iff all its pseudovariables are rectangular.

Figure 5 shows a situation forbidden by the definition of rectangularity. a∩b it is not a subset of x, 
although  a and  x and also  b and  x intersect.  On the other hand, the rectangles in  figure  2 are 
rectangular.

For  a  better  understanding  of  this  concept,  let  us  recall  the  original  requirement:  “The 
pseudovalue must be the product of its projections to all neighboring variables”. When this holds, 
the  geometrical  boundary  of  the  pseudovalue  is  composed  of  boundaries  of  values  of  the 
neighboring variables. Boundaries of the real values are linear and orthogonal to axes. Combination 
of such boundaries forms a geometrical rectangle. On the other hand, the pseudovalues are arbitrary 
t-sets and the resulting shapes might be rather distant from geometrical view of rectangles.

Expressiveness equivalence

We will now define another property we need to preserve when defining the pseudovariables. We 
need the pseudovariables to express the constraint domain of the constraint we are trying to model. 
For  this  to  assert  we  require  that  tuple  τ is  in  the  constraint  domain  if  and  only  if  for  each 

pseudovariable there exists a pseudovalue comprising τ. Formally ∈C⇔∀V i∃v i∈V i :∈v i  and 

equivalently τ ∈ C ⇔ τ ∈ ⋂i(⋃Vi).

Definition 3.5: Expressiveness equivalence

We say that the system of pseudovariables {Vi}i is equivalent to the constraint domain C iff 
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Figure 5: An example of t-set x that is not rectangular with respect to t-systems A and B
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C = ⋂i(⋃Vi)

 3.1.5 Properties of the superconstraint propagation

Theorem 3.6: Soundness of the superconstraint propagation

Consider a proper superconstraint propagator of a subconstraint network equivalent to the 
constraint  domain  C.  If  all  propagators  of  the  subconstraints  are  sound  then  the 
superconstraint propagation is sound.

proof: For contradiction, suppose the superconstraint propagation is not sound. There is a 
tuple  τ in  the constraint  domain  C and in  the input  domains  U1, ..., Un that  have been 
pruned.  The superconstraint  propagator  generates  the sequence of  domains  U1,  U2,  …, 
Um=Dm, Dm- 1, ..., D1 (see definition 3.3). Consider groundings of these t-systems. We know 
that  τ was feasible before the propagation,  therefore  τ ∈ ⋃Ui for all  i ∈ {1, …, n} (τ is 
covered by each input domain). On the other hand, τ is not feasible after the propagation, 
therefore τ ∉ ⋃Di for some i ∈ {1, …, n} (some of the output domains exclude τ). There is 
a domain (either Di or Ui) that is the first excluding τ in the sequence.

First consider that the first excluding domain is upward (Ui). Let Vj be the source variable 
of the propagation that excluded τ from Ui (Vj is a child of Vi). Uj appeared in the sequence 
before Ui, therefore τ ∈ ⋃Uj. Thus there is a value vj ∈ Uj such that τ ∈ vj. Because of the 
expressive equivalence with C, there is also value vi of the variable Vi that contains τ. The 
problem is that the value  vi was pruned from Ui.  The value  vj supports value  vi because 
their t-sets intersect (τ is the common element). Therefore  vi was pruned incorrectly,  the 
propagator used on arc (Vj, Vi) was not sound.

The second alternative is that the first domain in the sequence was downward instead of 
upward. Analogically the propagator that pruned a value containing τ was not sound. Either 
way we have a contradiction with the assumption that all propagators of the subconstraints 

were sound. QED

Theorem 3.7: Completeness of superconstraint propagation

Consider  a  proper  superconstraint  propagator  of  the  subconstraint  network  having  all 
variables  rectangular.  Let  the  subconstraint  network  be  equivalent  with  the  constraint 
domain  C.  If  all  propagators  of  the  subconstraints  are  AC-complete  then  the 
superconstraint propagation is AC-complete.
proof: For contradiction, suppose that the propagation left an unsupported value in some 
output domain. Without loss of generality, let the unsupported value be  v1 in the output 
domain D1. Because the propagator of the arc from the parent node DUP(1) to D1 was AC-
complete, there is a value vUP(1) in DUP(1) supporting v1. The value vUP(1) has support vUP(UP(1)) 

in DUP(UP(1)) for the same reason and this way we can find values in the downward domains 
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indirectly supporting v1 in all variables on the path from V1 to the root. Continuing in the 
counter-propagation direction into the upward phase, we can find values vi ∈ Ui for the rest 
of the variables. We will  define a tuple  τ from values  (v1  , ..., vn) of  the real variables. 
Values v1 , ..., vn were in the respective input domains Ui. Therefore if τ is in the constraint 
domain, then τ is a supporting tuple of the value v1, and v1 need not have been pruned by an 
AC-complete propagator. The only fact left to prove is that τ ∈ C.

We have the system of values  {vi}i such that  vi supports  vj  for all the arcs  (Vi, Vj) in the 
subconstraint network.  Supporting means that t-sets  of  vi and  vj have a common tuple. 
Using the rectangularity we will show that the common tuple is identical for all the arcs. In 
fact, we will show that τ is such a common tuple, in other words τ ∈ vi for all i ∈ {1, …, 
m}.  This  holds  for  the  leafs  (real  variables)  because  that  is  how we defined  τ.  As an 
induction step, consider vi having supports vj and vk in two children2 nodes of Vi. Applying 
the induction assumption on the children, we get  τ ∈ vj and  τ ∈ vk. By the definition of 
support:  vi ∩ vj ≠ ∅ and  vi ∩ vk ≠ ∅. The rectangularity of  Vi then states that  vj ∩ vk ⊆ vi, 

therefore τ ∈ vi. By applying the induction up to the root, we get  τ ∈ vi, thus τ ∈ ⋃Vi for 

each  node  Vi.  Now  we  have  τ ∈ ⋂i(⋃Vi) and  because  the  subconstraint  network  is 

equivalent to the constraint domain C, τ ∈ C. Therefore we conclude that τ is compatible, 
feasible and therefore it supports the value v1. Leaving v1 in the output domain D1 does not 

violate AC-completeness of the superconstraint propagator. QED

We will now state some trivial facts without proofs.

Fact 3.8: Entailment of superconstraint propagation

If  all  the  subconstraint  propagators  are  entailed  then  the  superconstraint  propagator  is 
entailed.
If all the downward domains  Dn+1, …, Dm of the pseudovariables are singletons then the 
superconstraint propagator is entailed.

Fact 3.9: Failure of superconstraint propagation

If any of the subconstraint propagators returns failure then the superconstraint propagator 
also fails.
If any of the downward domains  Dn+1, …, Dm of the pseudovariables is empty then the 
superconstraint propagator fails.

 3.1.6 Advantages of using pseudovariables

This binarization approach allows us to study AC algorithms from yet another perspective. Many 

2 We assume each node has at least two children. There is no sense in creating other subconstraint networks because if  
we left out the node we would have a network with more efficient propagation (due to less subconstraint propagation 

calls). The theorem holds for such subconstraint networks too, but require a technically more complex proof.
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algorithms have the structure of pseudovariables although in an implicit way. We will try to reveal 
these structures in the rest of the thesis.

If  we found a  pseudovariables  structure  in  an  algorithm,  the  algorithm typically  prunes  the 
pseudovariables  in  the  fine  grained  way.  Using  coarse  grained  pruning  (propagation)  on 
subconstraints may have effect of multiplicative constant on time requirements. We will present the 
propagators extensively using the bit parallelism in chapter 5.

Some domain representations have their preferable ways of processing. Consider a domain of 
variable V in our “case” example (figure 3). Obviously, we need to test whether it intersects with the 
intervals on edges. The queries for individual intervals are in total less effective than one complex 
query listing all the intersected edges. The returned list is nearly the domain of variable IV.

We can also provide several propagation algorithms for pruning the binary constraints that have 
their particular strengths and weaknesses. Depending on the characteristics of the problem, we can 
choose which of the propagators to use or let the solver to choose the algorithm depending on the 
input data.
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 4 Existing domain 
representations and algorithms

 4.1 Set and domain representations

In this chapter we will describe data structures that can be used for storing sets and domains.

 4.1.1 Bit array

The simplest way to store domains and sets 
is a bit array. The bit indexed by a value is set 
to  1  if  the  value  is  an  element  of  the 
represented  set.  Note  that  we  can  represent 
only finite  domains,  we  will  without  loss  of 
generality assume that we represent at most  d 
values and they are all from {0, …, d-1}. We will call d the extent of the represented set.

For  efficiency,  we will  store  and process  bits  grouped into  CPU words.  The algorithms for 
operations with this data representation are trivial. Algorithms for inserting, removing and testing an 
element are using bit shift and bitwise operation and run in a constant time. To produce union or 
intersection of two sets the algorithm uses bitwise operations that require O(d) time. The operation 
of checking non-emptiness of the set  searches for non-zero word and require  O(d) time. As an 
example, code 4.1 shows the operation of inserting an element (The code is written in C language 
because it is too low-level to be shown in a pseudo-code).

Using this data structure for maintaining arc consistency was studied by Lecoutre and Vion [17], 
where the detailed description of the algorithms can be found. The main benefit of using the bit 
array, called the bit parallelism, is that the CPU processes many values at once. Although the effect 
on the time requirements is only multiplicative, it is significant.

Code 4.1: Inserting an element to the bit array

void insert_element(unsigned int* bit_array_data, int elem) {
  int position =       elem / WORD_SIZE;
  int mask     = 1 << (elem % WORD_SIZE);
  bit_array_data[position] |= mask;
}

We will also define an auxiliary data structure called bit-array  chunk. The chunk consists of a 
position and a mask and can be viewed as a single CPU word extracted from the bit array. The 
extracted word represents the mask and the position is the position of the extracted word. The chunk 
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Figure 6: a bit array example
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can represent sets having elements so close that the elements fall into single CPU word of the bit-
array representation.  For example any singleton set  {elem} can be represented by a chunk with 
position  elem div word_size and  the  mask  is  (elem mod word_size)-th  bit.  In  fact,  the  above 
algorithms for  setting,  clearing  and testing an element  create  the  chunk implicitly,  as  code  4.1 
shows.

 4.1.2 List of intervals

Another way of the set representation is to find maximal (with respect to inclusion) intervals and 
store them sorted in an array or a linked list. We can also represent some infinite domains using 
symbols infimum and supremum for negative and positive infinity. Denote i the number of intervals 
the set consists of. The set operations mentioned in chapter about bit arrays have their respective 
versions and all of them run in time O(i). For adding, removing and testing a single element, the 
list-of-intervals algorithms are worse compared to the algorithms for the bit array (O(i) vs.  O(1)). 
For other operations, these two data structures have the same worst-case time complexity (O(i) and 
O(d))  because  i is  O(d).  To present  these algorithms we will  introduce a  data  structure  that  is 
equivalent to the list of intervals but provides simpler formulation of the algorithms.

 4.1.3 Cumulative points

The cumulative points data structure also represents the set as the list of intervals. It can be seen 
in  the  algorithm proposed  by Beldiceanu  and  Carlsson  in  [3].  The  cumulative-points  structure 
consists of a number called bias (typically 1) and a set of points. The point consists of position and 
increment;  we use the notation position$increment.  An interval  min..max is then represented by 
points min$(+1) and (max+1)$(−1).

For example the set  A={2, 3, 4, 5, 9}, in the list-of-intervals form 2..5 9..9∪ , is represented by 
points 2$(+1), 6$(−1), 9$(+1), 10$(−1). The representation is shown in figure 7, the other depicted 
set  labeled  “B”  is  3..5.  Each  arrow  represents  a  point,  upward  with  the  positive  increment, 
downward with the negative one. By merging lists of points representing the sets A and B, we get 
list 2$(+1), 3$(+1), 6$(−1), 6$(−1), 9$(+1), 10$(−1). Points with the same position can be grouped 
into one point, setting its increment to the sum of increments of the points being grouped. This way, 
6$(−1), 6$(−1) can be replaced by 6$(−2).

We say the list of points is consolidated iff the increments of the points in the list are alternating 
$(+1) and  $(−1).  In  figure  7,  lists  “A” and “B” are consolidated,  while  “merge(A, B)” is  not. 
Consolidated lists can be straightforwardly transformed into the list-of-intervals representation. And 
the transformation from the list of intervals produces consolidated list of points.

Note that both A B and A B can be extracted⋂ ⋃  from the merge depicted in figure 7. The data 
structure  field  “bias”  is  used  to  distinguish  between  the  intersection  (bias=2)  and  the  union 
(bias=1). Then the intersection or the union is defined by sections, where the horizontal line is at 
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the level of bias or higher. 

For a given position  x, we need to determine the level at which the horizontal line is. If the 
cumulative points data structure was consolidated, the level would be 0 or 1 depending only on the 
last point preceding the position of x. In general, we need to accumulate the sum of all increments 
of points prior to x. Then the value x is element of the set iff

set.bias ≤ ∑{increment | (position $ increment) ∈ set.points ∧ position ≤ x} (4.2)

Unless  said  otherwise,  we  store  or  enumerate  the  set  of  points  sorted  by  the  position.  For 
technical reasons we introduce a new symbol sentinel which is greater than the supremum and put 
sentinel$0 at the end of each list of points. We will use three elementary operations and combine 
them to create intersections and unions of the sets in this representation.

The merge procedure merges points of two lists so that the result is their properly sorted join.  
Then we use the group procedure to replace many points of the same position by one point with the 
proper increment. The consolidate procedure horizontally cuts the image in figure 7 at the level 
of bias and returns arrows crossing the cut. More precisely, the procedure processes the points in 
order of increasing position and maintains the cumulative sum of increments. If the sum is below 
the  bias  and  the  point  position$increment rises  the  sum to  the  bias  or  higher,  then  the  point 
position$(+1) is  sent  to  output.  Analogically  point  position$(−1) is  generated  when  the  sum 
declines below the bias. The result  of the  consolidate procedure is consolidated and can be 
straightforwardly translated into the list-of-intervals representation.

27

Figure 7: two cumulative sets and their merge
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Code 4.3: Set operations in cumulative points representation

procedure merge(list1, list2)
  result := []          /* an empty list */
  do
    if (list1.First() < list2.First()) then
      point := enum1.First()
      list1.DeleteFirst()
    else
      point := enum2.First()
      list2.DeleteFirst()
    end if
    result.append( point )
  while point.position < sentinel
  return result
end procedure

procedure group(inputList)
  result := []
  kept := nil
  for point in inputList
    if kept.position == point.position then
      kept.increment += point.increment
    else
      result.append( kept )
      kept := point
    end if
  end for
  result.append( point(sentinel, 0) )
  result.DeleteFirst()      /* the first element of result is nil */
  return result
end procedure

procedure consolidate(inputList, bias)
  result := []
  level := 0
  for point in inputList
    newLevel = level + point.increment
    if level < bias and newLevel >= bias then
      result.append( point(point.position, +1) )
    else if level >= bias and newLevel < bias then
      result.append( point(point.position, -1) )
    end if
    level := newLevel
  end for
  result.append( point(sentinel, 0) )
  return result
end procedure

When intersecting or unioning more than two sets, we merge them all together and apply the 
consolidation only once. Let us denote n the number of sets to be intersected/unioned. To compute 
the intersection the bias is set to n. In the case of union, the bias remains 1.

 4.1.4 Sparse sets

When backtrack occurs, the retrieval of old search state is needed. The previously mentioned set 
data structures needed to be copied when entering a search tree branch and the copy was restored 
when backtracking. A data structure called sparse set introduced by Briggs and Torczon in [7] does 
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not have such drawback and it is restorable in a constant time.

The data structure consists of
• the size of the represented set
• the dense array containing elements of the set in  dense[0], …, dense[size−1]. The rest of the 

array is undefined.
• and the sparse array containing indices into the dense array, maintaining  dense[sparse[e]]=e 

for all elements. The value of sparse[e] is undefined if e is not an element of the set.

The following code shows adding a new element into the sparse set

Code 4.4: inserting the element into the sparse set.

procedure insert(element)
  size := size + 1
  dense[size-1] := element
  sparse[element] := size-1
end procedure

The elements in the dense array are ordered by the time of insertion. Setting the size can vanish 
elements added after some time moment. This operation allows us to restore the structure when 
backtrack occurs. Only information needed is the size of the structure in the moment of entering the 
search tree branch.

To test whether  elem is an element of the set, the algorithm needs to follow the data structure 
definition precisely. The reason is that the undefined items actually might be meaningful because 
they may have been set in backtracked branches. The algorithm first retrieves a possible index to the 
dense array from sparse[elem], denoting it index. Then if index≥size the data structure was restored 
upon backtracking and the restoration excluded the element from the set.  Number 1 in figure  8 
represents such a case. In case dense[index]≠elem, the elem was inserted in branch that was later 
backtracked and other element took its place in the current branch of the search tree. For example, 
number 8 was inserted into the set, later it was backtracked and replaced by number 7. In both cases  
the elem is not an element of the set, otherwise it is.
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Figure 8: sparse set representing set {0, 3, 7}. Numbers 1, 5 and 8 were elements in backtracked  
parts of the search tree. The continuous lines represent valid field values. The dashed lines  

represent field values that are undefined. Fields “?” were never written to.
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Code 4.5: testing whether the argument is an element of the sparse set.

procedure test(element)
  index := sparse[element]
  if index < size and dense[index] = elem then
    return true
  else
    return false
  end if
end procedure

A technical detail is that the data structure must be used to represent the set that is growing 
during filtering. Therefore we must store the set of pruned values instead of the set of feasible 
values.

Cheng and Yap prefer in [12] the sparse set over the bit array. They argue that the backtrack cost 
O(1) vs. O(d) might be significant for large sets. In the class of problems this thesis focuses on, the 
complexity of the problem is imposed by constraint arity rather than by the size of the domains. 
Besides, Cheng and Yap were using algorithms that could not profit from the bit parallelism. In our 
implementations, the possible benefit of using the sparse sets is balanced by loosing the benefits of 
bit parallelism. Therefore we use bit arrays in our experiments. Note that the difference in cost of 
backtrack  is  irrelevant  in  complexity  estimates  since  it  is  majorized  by the  complexity  of  the 
propagation itself.

 4.1.5 Choosing appropriate representation for domain

The time complexities of the bit array and the sparse set algorithms depend on the size of domain 
representation (denoted by d). On the other hand, the complexities of the list of intervals and the 
cumulative points are determined by the count of intervals the domain consist of (i). In the worst 
case i=O(d), under some circumstances this is the expected case. Let us consider a variable having 
statistically independent values with uniform probability  p of being feasible.  The lengths of the 
intervals then obey geometrical distribution and so do the lengths of the gaps between the intervals. 
The expected value of geometrical distribution is constant; we will denote l the expected length of 
the interval and the following gap together. We can expect i=d/l=O(d) intervals to be present in the 
domain of size  d.  In this  case,  the bit  array and the list  of intervals have the same asymptotic 
complexities of algorithms. We should prefer the bit array in such a situation. We can expect a 
smaller multiplicative constant because the bit array representation is more processor-friendly. The 
bit array is processing the whole CPU word in one instruction and does not use so many conditional 
jumps as cumulative points3.

We will call discrete those variables, which we find to be more suited for representation by the 
bit  array then by the list of intervals. We will  use the word “discrete” as a philosophical not a  
mathematical term, including not only the variables that fulfill the strict specification in the above 

3 Conditional jumps are known to be ineffective because after-jump instructions must be prepared for execution after 

it is known whether condition holds or not. It makes the processor instruction queue dormant.
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example but also the variables meeting it only partly. The variables, which are better represented by 
the list of intervals, will be called  continuous. Those variables have typically strongly dependent 
neighboring values. In the subconstraint network schemes such as in figure 4 we will use squares 
for the discrete variables and circles for the continuous variables.

A typical  example of  the  discrete  variable  is  R in  the  rectangles  example on page  17.  Any 
permutation  can  be  used  to  represent  rectangles  “a”,  “b” and  “c” by  numbers  1,  2  and  3. 
Therefore, we have no reason to claim that the neighboring values 1 and 2 are more dependent than 
the distant values 1 and 3.

The list of intervals is based on the same principle as the run-length encoding compression. So 
let us consider data compression as an analogy. Compression exploits some structures (patterns, 
symmetries, relations) in the plain data and produces smaller compressed data. The compressed data 
does not contain such structures anymore, therefore they cannot be compressed more. Analogically, 
the constraint binding a pseudo and a real variable typically exploits continuity of the real variable, 
leaving the lack of dependencies in the pseudovariable. Therefore, pseudovariables are typically 
discrete.

When deciding whether a real variable should be treated as discrete or continuous we might also 
take solver's interface into consideration. For example, in SICStus prolog, all domains are passed 
and pruning results are expected in the list-of-intervals form. The same is true for the GECODE 
library unless the user extends the library by a new variables' implementation. We should handle the 
real variables as continuous in such cases.

On page 14 we mentioned the theoretical lower bound for the worst-case time complexity of any 
AC algorithm. The stated complexity depends on d. Using the list-of-intervals representation leads 
to such asymptotic complexity assessments that depend on i instead of d. Those assessments are still 
bounded by O(ed2) but offer stronger results if the worst case i=O(d) is not met.

Note that the fine grained algorithms handle values separately instead of organized in variables. 
Those algorithms are not aware of values being neighboring; therefore treat all variables as discrete. 
Because of that, the fine grained algorithms are inherently ineffective in some kinds of problems.

 4.2 AC algorithms for discrete ad hoc constraints

We will now describe well known AC algorithms for ad-hoc constraints. First we will focus on 
the algorithms that expect the variables to be discrete. In the next chapter we will then focus on 
algorithms reading domains in list-of-intervals form.

For  now,  we will  define  an  example  constraint,  which  we will  use  in  figures  depicting  the 
algorithms'  data structures.  Our constraint will  bind variables A, B and C, each with the initial 
domain  {0, 1, 2}.  Triples allowed by the constraint are  those,  for which  (A + B + C) mod 2 = 0. 
Although this is not a constraint definition by extension, we can represent it in a constraint domain 
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consisting of 14 triples.

 4.2.1 Tuple list4

The algorithms described in chapter 2 are in fact 
for  ad-hoc  constraints.  When  dealing  with 
constraints  defined  by  mathematical  or  logical 
formula,  the  algorithms  broke  the  constraint 
definition into a list of tuples as if it was defined in 
extension.  Problem  of  these  algorithms  was  their 
dealing  with  binary constraints  only.  Bessière  and 
Régin  proposed  in  [5] a  new  scheme  of  ad  hoc 
arbitrary-arity algorithms.  As the  first  instantiation 
of  this  scheme  they  introduced  an  algorithm,  on 
which we will focus now.

The algorithm is based on a generalization of the 
AC-6  or  the  AC-7  algorithm  for  arbitrary-arity 
constraints.  We  were  trying  to  describe  these  AC 
algorithms in a more general form. However, there is 
one  non-trivial  aspect  of  the  generalization:  the 
sparse matrix. We will now explain why such data 
structure, depicted in figure  1, naturally emerges in 
AC-4.

Considering the constraint domain as the set  of 
tuples, we were using two equivalence relations on 
this  set.  One equivalence  represented  the  columns 
and  the  other  equivalence  forms  the  rows  in  the 
matrix in figure 1. The first equivalence is grouping 
tuples with the same value of the variable V and the 
second one is defined by projection to the variable 
W. Let us consider creating a system of linked lists 
such that each list represents one class of the given 
equivalence relation. We can extend the object's data 
structure  by  one  pointer  to  link  the  objects  directly  because  each  object  is  in  exactly  one 
equivalence class. The AC-4 algorithm uses two equivalence relations, therefore each tuple has two 
pointers (horizontal and vertical). Let us denote a the arity of the constraint, on which the “tuple list 

4 It is not very common for the author of the paper to give a name to the newly proposed algorithm, especially when  
the algorithm is not the main concern of the paper. Therefore we use the name given to the algorithm's constraint 

domain representation by Cheng and Yap in [12].
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Figure 9: The tuple list data structures after  
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algorithm” is used. Then we will need a equivalence relations linked by a pointers in each tuple. For 
example in figure 9, three systems of linked lists are shown in the columns representing variables 
“A”, “B” and “C” respectively. When generalizing the sparse matrix for the tuple list algorithm, we 
need to operate on a class of supports of given value. In such class, tuples have one value fixed, 
while values of the other a-1 dimensions vary. The classes represent a-1 dimensional hyperplanes 
in the hypercube (That may not be the most intuitive way of generalizing the sparse matrix). Figure 
10 shows constraint domain of our example constraint in 3-dimensional space. One system of linked 
lists,  representing one equivalence relation,  is  shown. The other  two systems group tuples  into 
planes oriented in the other dimensions.

As  a  result,  each  tuple  in  the  algorithm's  constraint-
domain representation has a pointers (as in figure 9). Let i- th 
value in the tuple be (V, v), then the i-th pointer points to the 
next  tuple  supporting  (V, v).  When  processing  a  pending 
value (V, v), the algorithm uses ssup to determine the position 
of  the  lost  support.  To  find  a  new support,  the  algorithm 
dereferences the  i-th pointer and checks, whether the target 
tuple is feasible (all values in the tuple are in actual domains 
of their respective variables). When needed, the algorithm is 
moving along  i-th  tuples'  pointers  until  a  feasible  tuple  is 
found. If no support is found, the values determined by lbss 
become pending, just like in the AC-6 algorithm. Of course, 
the  multi-directional  version  of  the  algorithm first  tries  to 
find the new support by the method analogical to the AC-7's.

For example, let us consider a situation in which the value  (C, 1) is pruned (because of some 
other constraint). Then values listed in lbss[(C, 1)] become pending, because the smallest supports 
for these values become invalid. All four values listed in lbss[(C, 1)] are enqueued as pending. For 
example the value  (B, 0) has the smallest support  csup[(B, 0)] = (1, 0, 1). When the value  (B, 0) 
will be popped from the queue of pending values, the algorithm will try to find the new support. The 
tuple  (1, 0, 1) has three links, we will dereference link in the column of the variable  B. The link 
points to the tuple  (2, 0, 0) which is  feasible.  If  the tuple was not feasible (contained a pruned 
value), we would continue by using the B-column link of the tuple  (2, 0, 0) and so on until the 
feasible support is found.

Denoting  a the  constraint's  arity  and  t the  number  of  tuples,  the  space  complexity  of  the 
algorithm is O(at). Each pointer is used at most once, therefore the worst-case time complexity is 
O(at) too.
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Figure 10: one system of linked lists
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 4.2.2 Trie

The drawback of tuple list is that the algorithm must traverse the whole link list when there is no 
support. To save some tuple viability checks, Gent et al. [16] proposed storing the constraint domain 
in trie [15], the well known data structure for string algorithms.

To define the trie data structure, we will need some string-like terms. We will say that m-tuple 
(a1, a2, …, am) is a prefix of  n-tuple  (b1, b2, …, bn) iff  m ≤ n and  ai = bi for  1 ≤ i ≤ m. The nearest 
proper prefix of  m-tuple  (…, am) is the tuple's prefix of length  m-1,  while  am  will be called the 
distinguishing value. Then a  trie over the constraint domain is a tree with nodes representing all 
prefixes of all tuples in the constraint domain. There is an edge between the parent node P and the 
child  node  C iff  P is  the  nearest  proper  prefix  of  C.  Each  edge  is  labeled  by  the  respective 
distinguishing value and each node is determined by concatenation of labels along the path from the 
root to the node.

Prefixes of the same length form layers in the trie. The constraint domain tuples are stored in the 
layer of leafs. Distinguishing values in the  l-th layer relate to the  l-th variable in the constraint's 
scope. A tuple represented by a leaf is feasible iff the distinguishing values along the path from the 
root to the leaf are feasible (in the current domains of the respective variables).

Let us consider a child of the root and it's distinguishing value v. A subtree determined by the 
child contains tuples having v as the first element. Search for supports of v is done by traversing the 
subtree. As in the AC-6, the algorithm maintains reference to leaf representing the current smallest 
support. When the support is lost, the algorithm search for the next support by depth-first-search-
like traversing:  First  visit  the node's  children;  when returning from children,  step to  the node's 
sibling; if the node is right-most of the siblings, move to the node's parent. These steps are iterated 
until some leaf that represents a feasible tuple is reached. Compared to the tuple list, an advantage 
of using the trie is that the support-search algorithm can omit whole subtrees rooted in the nodes 
having the distinguishing value pruned.

This way the algorithm searches for supports of the variable related to the first level of the trie. 
Trying to apply this algorithm to generate supports of other variables discards advantages of using 
the trie. Therefore authors of the algorithm recommend to use a tries for an a-ary constraint, having 
for each variable one trie that has it's first level differentiated by the variable.
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Figure 11: a trie for the example constraint
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Each trie has t leafs and a layers. Therefore the trie has at most O(at) nodes, all tries consume 
space O(a2t). One trie can be built in time O(at). Building tries is the limiting factor, since each edge 
of a trie is used at most two times. Therefore the worst-case time complexity of the algorithm is 
O(a2t).

 4.2.3 Multi-valued decision diagram

In the string algorithms theory, a generalization of the trie data structure called directed acyclic  
word graph (DAWG) [6] was  proposed  in  order  to  reduce  the  memory consumption.  The  trie 
algorithm is  traversing the trie,  therefore a  more compact  data  structure can save not  only the 
memory  but  also  a  significant  amount  of  time.  In  the  constraint  satisfaction,  a  data  structure 
analogical to DAWG is called multi-valued decision diagram (MDD) and was introduced by Cheng 
and Yap in [12].

In the trie, each child had one parent (except for the root). 
The  MDD  allows  a  node  to  have  more  neighbors  in  the 
preceding  layer.  Therefore  MDD  forms  a  directed  acyclic 
graph  instead  of  a  tree.  The  trie  can  contain  couple  of 
subtrees that are pair-wise isomorphic. In the MDD all those 
subtrees  can  collapse  into  one  copy.  Figure  12 shows  the 
resulting MDD after one such operation performed on the trie 
from figure  11. We expect all possible collapses to be done 
when creating the MDD, as depicted in figure 13. Note that 
using this rule, all leafs collapse into one leaf. On the other 
hand, the MDD keeps some properties of the trie: The MDD also consists of layers related to the 
variables in the constraint's scope. Again, a tuple is represented 
by the MDD iff there exists a path from the root to the leaf that 
has edges labeled by the tuple's respective values. The tuple is 
feasible, is all edges of the path have feasible labels (Edge has a 
feasible label iff the value on the label is not pruned).

Although the trie and the MDD data structures are similar, 
their  respective  pruning algorithms are  significantly different. 
The  trie  algorithm  was  fine  grained,  keeping  the  smallest 
support  and dealing  with a  loss  of  the  support.  On the  other 
hand, the MDD algorithm called  MDDC is coarse grained, in 
fact it is a propagator: The algorithm gets the input domains of 
all constraint's variables and computes all the output domains.

To describe the algorithm, let us consider the nodes of the MDD to be pseudovalues defined in 
this way: A node represents the set of all tuples using the node in their path from the root to the leaf. 
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Declaring the node to be a pseudovalue gives meaning to terms feasible node and pruned node. A 
node is feasible when these conditions hold:

1. The node is reachable (by an oriented path) from the root only by edges that has feasible labels, 
and

2. The leaf is reachable from the node also by edges having feasible labels
The oriented path from the first rule and the oriented path from the second rule together form a path 
from the root to the leaf. Labels along this path determine a tuple that is support of the node. If  
some of the conditions does not hold, there is no support, ergo the node not feasible.

Consider an edge e that has feasible nodes on both ends. Again, there is a path from the root to 
the leaf using the edge. The labels along the path define a feasible tuple. The tuple supports each 
value contained in the tuple, among others the value of the edge's e label.

The algorithm for searching the next support in the MDD is called MDDC. It traverses the MDD 
from the root in the depth-first-search way. The algorithm uses only edges having feasible labels. 
Therefore the condition 1 is implicit for all visited nodes. The algorithm determines by results of 
recursive calls, whether the condition 2 holds for a current node. Each of the recursive calls returns 
success if the leaf was reached and failure if the leaf is not reachable. When none of the recursive  
calls has reached the leaf, the node is pruned and failure is returned. Otherwise the node is feasible 
and the call returns success. In such case, not only the current node is feasible, the parent node of 
the current node will be marked as feasible too. Therefore an edge between the current and the 
parent node is feasible and the value of the edge's label is supported. The algorithm collects all these 
labels and returns them as the new current domains after inspecting the whole MDD.

When it is determined whether a node is feasible or pruned, this information is saved. Next time 
the algorithm reaches an already visited node, the saved value is returned instead of searching the 
subtree again. Once a node is pruned, it cannot become feasible until backtrack occurs. Therefore 
the algorithm can store the set of pruned nodes in its internal state. Cheng and Yap recommend to 
use the sparse set data structure to store the set of pruned nodes. On the other hand, a set of feasible 
nodes can shrink. Therefore the algorithm must empty the set of feasible nodes at the beginning 
each propagation.

To estimate the complexities of the MDD we will focus on the 
global constraint called regular, introduced by Pesant in [20]. The 
regular constraint is described by two parameters: an arity a and a 
deterministic finite state automaton (DFA) F. Figure 14 shows the 
DFA for the example constraint. The constraint allows tuples that 
have length a and are accepted by the DFA F. Denote f the count of 
transitions in the DFA F. The regular constraint description can be 
disposed  of  the  length  parameter,  implanting  it  into  the  DFA. 
Instead of the original DFA, we will use a layered DFA that has 
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O(af) transitions5. The layered DFA can be used as MDD (providing all final states of the DFA were 
collapsed into one).

The algorithm uses each edge at most twice during a single propagation. Denoting f the minimal 
number of transitions of DFA defining the constraint domain, the space complexity of the MDD and 
the worst-case time complexity of single propagation is O(af). There are O(ad) values to be pruned, 
where  d is  the  size  of  the  largest  initial  domain.  Therefore  the  single-branch  worst-case  time 
complexity is O(a2df).

 4.3 AC algorithms for continuous ad hoc constraints

The previous algorithms accepted domains in the bit-array form. We have explained that the list-
of-intervals form is more suitable when neighboring values of variables are statistically dependent. 
We  need  to  define  new  algorithms  for  continuous  variables  because  the  algorithms  from  the 
previous chapter would cease the advantages of using the list of intervals.

 4.3.1 The case in SICStus

One of the ways to exploit the list-of-intervals representation of the domains is to generalize the 
MDD. The original MDD has values in the labels of edges. Labeling the edges by intervals instead 
of values result in the format of the SICStus case constraint. In fact, the paper [12] of Cheng and 
Yap  on  MDD  contains  the  algorithm  analogical  to  the  algorithm  given  by  Mats  Carlsson  at 
presentation [9]. The difference is in the definition of an edge having a feasible label: In the “case” 
form, the label is an interval and it is feasible iff the interval intersects the current domain of the 
respective variable.

 4.3.2 Set of rectangles

Particular constraints can have specific properties that a filtering algorithm can exploit. There are 
many algorithms being strong on some classes of constraints. One of the typical approaches is to 
identify rectangles that cover the constraint domain. It is one of the steps done in figure 2. Some 
algorithms might require rectangles to be non-overlapping. We will not restrict the overlapping of 
the rectangles for now. Another variation of algorithms can accept also discontinuous rectangles 
defined as Cartesian products of general sets instead of intervals. There are also algorithms that 
require continuity of rectangles only with respect to some dimensions of the rectangle. It is natural 
to accept continuous rectangles only when working with the list-of-intervals.

First we will describe the simplest algorithm, the first of two algorithms introduced by Barták 

5 There is DFA with a+1 states that accepts language of all words of length a. We need to intersect this language with 

the language defined by the DFA F. It can be done by creating DFA with states defined as Cartesian product of state 
sets of automatons. The resulting DFA (the layered DFA) has (a+1)-times more states than the DFA F and (a+1)f 

transitions.
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and Mecl in  [1]. We will consider a rectangle to be a pseudovalue, thus giving meaning to terms 
“supported rectangle”, “feasible rectangle”, etc.. Consider the rectangle and the interval induced as 
the projection of the rectangle into the dimension of one of the variables. The rectangle is supported 
in the variable iff the variable's current domain intersects with the interval. On the other hand, the 
interval is a set of values of the variable that are supported by the rectangle.

The algorithm process each rectangle separately. To check, whether a rectangle is feasible, the 
algorithm  ensures  that  the  rectangle  is  supported  in  each  of  the  variables  (by  checking  the 
intersection  of  the  current  domain  and  the  projected  interval).  If  the  rectangle  is  feasible,  the 
algorithm adds  each  projection  into  the  new domain  of  the  respective  variable.  The  algorithm 
processes all rectangles forming the constraint domain this way. At the end, the algorithm ensures 
the domain contraction by intersecting each new domain with the corresponding old domain.

Denote  i the number of intervals the domain consist of. Symbol  r will refer to the number of 
rectangles  the  constraint  domain  is  decomposed  to.  The  decision,  whether  rectangle  projection 
intersects the domain,  can be made in time  O(log i) using binary search.  All  rectangles can be 
processed in time O(i+r.log i) including creation of array for the binary search. To create the new 
domain, the algorithm unions the projections of feasible rectangles. This can also be done in time 
O(i+r.log i). Then the worst-case time complexity of the propagation is O(a(i+r.log i)), where a is 
arity of the constraint.

 4.3.3 Sweep pruning

The other algorithm Barták and Mecl proposed in [1] is more complex. The algorithm is based 
on a  concept  of sweep from the computational  geometry.  The algorithm is  designed for binary 
constraints. The rectangles are considered as placed in a plane with axes  x and  y. The algorithm 
keeps a line called the sweep line that is orthogonal to axis x and is being moved with ascending x. 
For the current position of the sweep line the algorithm maintains a set of  active rectangles. The 
rectangle is active iff it intersects with the current sweep line and is supported in the domain of Y. 
Beside of the set of active rectangles the algorithm also keeps an information, whether the current 
position of the sweep is inside of the domain of the variable X.

The state of the sweep line can change at the positions of x where
• some rectangle starts or ends (with respect to the projection of the rectangle to the dimension X)
• an interval of the domain of variable X starts or ends

Such positions of  x are called  events and are processed in the order of increasing  x. Events of 
starting or ending a rectangle also carry a information identifying the rectangle. Each of the 4 kinds 
of events has it's processing procedure. Firstly when processing the start/end of a rectangle, the 
rectangle is added/removed from the set of active rectangles. When processing the start/end of a 
domain interval, the inside flag is set/cleared.

The operations described so far have only maintained the sweep line state.  Besides that,  the 
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algorithm also  uses  event  processing  to  build  new domains.  The new domain  of  variable  Y is 
determined by the union of Y-projections of all feasible rectangles. The rectangle is feasible if it is 
active and the inside flag is set. To follow this rule the event processing checks one condition when 
the other condition is starting to hold. Namely:
• when the rectangle starts and the rectangle is supported in the current Y-domain, the rectangle 

becomes active.  The algorithm therefore checks the inside flag and considers the rectangle 
feasible if the flag is set.

• when the domain interval starts, the inside flag is being set. Thus all active rectangles become 
feasible.

When the conditions meet either way, the algorithm adds Y-projection of the feasible rectangle into 
the new Y-domain.

The new domain of the variable X is being build using a similar principle. Value v is in the new 
X-domain iff v is in the old X-domain and there is an active rectangle in the sweep line at position v. 
Again,  there are two conditions that must coincide.  The event processing checks one condition 
when the other starts to hold:
• when processing the domain-interval start event, the algorithm checks, whether there is at least 

one active rectangle
• when processing the rectangle start event, the algorithm can transit from state in which there 

were no active rectangles to state in which there is an active rectangle. Then the algorithm 
checks, whether the inside flag is set

One way or the other,  when the conditions coincide,  a  new interval  of the output  X-domain is 
started.

 The algorithm must also recognize the end of the interval: When one of the conditions ceases, 
the event processing checks the other condition. If the other condition does not hold, the X-domain 
interval is already closed. On the other hand, if one condition holds while the other ceases, the 
interval of the new X-domain should be ended. Again, there are two conditions and therefore two 
ways this can happen in:
• when processing the rectangle end, the rectangle becomes inactive. If the rectangle was the 

only active, the algorithm must check, whether the inside flag is set
• when processing the domain interval end event, the algorithm checks, whether there are any 

active rectangles
If one of these situations occur, the interval of the output X-domain is ended.

We should mention a technical detail that is important for the algorithm to work properly. There 
might be two events on the same position such that one sets one of the watched conditions and the 
other ceases the other condition. For example one event starts an active rectangle while the other 
event ends a domain interval. If these events occur on the same position, the conditions meet for a 
moment and the rectangle is feasible. It is important to first process the rectangle start and then the  
end of the domain interval. The other ordering would fail to recognize the rectangle feasible. As a 
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general rule to solve all problems of this kind, the algorithm always processes the start events before 
the end events of the same position.

We will now estimate the worst-case time complexity, using i and r as before. There are r events 
of  rectangle  start,  each  of  which  requires  O(log i) time to  determine  whether  the  Y-projection 
intersects  the  Y-domain.  Again,  processing  of  all  these  events  requires  O(i+r.log  i) time.  The 
rectangle end event can be processed in a constant time. The domain interval start event occurs  i 
times. Except for processing a feasible rectangles only constant work is done. Each rectangle is 
processed as feasible only once during the propagation,  assuming some additional  effort  of the 
algorithm. Each feasible rectangle generates Y-projection interval. The algorithm needs O(r.log r) 
time to union all  these  intervals.  The end of  domain interval  events  require  time  O(i) because 
processing of a single event is constant. Putting it all together, the propagation's worst-case time 
complexity is O(i+r.log r+r.log i).

 4.3.4 Box constraints collections

To generalize decomposing the constraint domain into rectangles, Cheng et al. [10] expanded a 
repertoire of covering objects by introducing triangles. A triangle is a hyper-rectangle intersected by 
half-space defined by linear inequality of the form

∑ pi x iq (4.6)

The common name for both triangles and hyper-rectangles is a box.

Let us assume that all p i are positive. We can separate x1, leading to inequality:

x1

q−∑
i≠1

p i xi

p1

(4.7)

Let min i..max i be the projection of the box into i-th dimension and let Di be the current domain 
of the i-th variable. Then 
x i∈Di∩mini ..maxi (4.8)

therefore
x imin D i∩mini ..maxi (4.9)

By replacing xi in (4.7) by the right side of inequality (4.9), the inequality is preserved and we get

x1

q−∑
i≠1

p imin Di∩mini ..max i

p1

, leading to the interval notation

x1∈min1..
q−∑

i≠1

pi minDi∩mini ..maxi

p1

 (4.10)

When  p i is  negative,  some  inequalities  revert,  causing  usage  of  the  maximum instead  of  the 
minimum.

A box that has the intersection Di∩(mini..maxi) empty is not supported in the domain of the i-th 
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variable. All such boxes are ignored by the algorithm. The algorithm computes the intervals like in 
(4.10)  for  all  other  triangular  boxes.  For  hyper-rectangle  boxes  the  needed  interval  is  just 
x1 (min∈ 1..max1).  Union  of  all  the  resulting  intervals  is  the  new  domain  of  X1.  The  algorithm 
computes new domains of all other variables in the same way.

The  original  version  of  the  algorithm instantiate  constants  p i and  group expressions  for  all 
triangles  into  one  big  expression.  The  expression  is  then  written  in  an  indexicals  formalism 
supported by CSP solvers.

A question  we  have  not  answered  yet  is  how to  build  the  collection  of  boxes  for  a  given 
constraint.  Because  finding  the  optimal  collection  is  expensive,  the  authors  propose  greedy 
algorithm giving not necessarily optimal collection. The algorithm works with three kinds of tuples:
• positive tuples must be covered by boxes
• neutral tuples may or may not be covered. For example already covered tuples are neutral. 

Some other optimizations in the Cheng's paper produce neutral tuples.
• negative tuples must not be covered by boxes.

Initially all tuples in the constraint domain are positive and tuples outside of the constraint domain 
are negative.

Searching for the box starts by picking a random positive tuple (the tuple is considered as hyper-
rectangle of size 1). The algorithm tries to extend the  hyper-rectangle of the box in one of the 
dimensions. New tuples might be of all kinds, the algorithm only needs to enforce that positive and 
negative tuples will  be separable by a hyper-plane in (4.6). To test  the separability and to find 
parameters  p i and  q, the algorithms keeps all restrictions on the parameters in a system of linear 

equations. If the tuple (d1, d2, …, dn) being added is positive, equation  ∑ pi d iq is added to the 

system. If the tuple is negative, equation ∑ pi d iq  is added to the system. No equation is added 

to the system for a neutral tuple. When extending the box, the algorithm adds equations for all new 
tuples. If the system of equations has a solution, the algorithm commits to the extension. Otherwise 
the algorithm tries to extend the box in the other direction or another dimension. When there is no 
box extension possible,  the algorithm computes parameters  p i and  q and adds the box into the 
collection. All positive tuples in the box become neutral. The algorithm searches for another box or 
terminates if there are no positive tuples left.

While  the  algorithm  described  in  chapter  4.3.2 has  worst-case  time  complexity  of  one 
propagation  O(a(i+r.log i)),  this  algorithm has the complexity  O(a(i+b.log i)).  Boxes are  more 
expressive than rectangles therefore b might be much less than r.
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 5 Elementary propagators
In this chapter we will focus on some propagators for binary constraints that we can use on 

subconstraints. Propagators are unidirectional and deal with the source and the target variable. The 
source variable is used for searching for supports only, while the target domain is being pruned.

 5.1 AC-3.1-like propagators

 5.1.1 AC-3 propagator

The first propagator we will focus on is the AC-3 Revise procedure described in chapter 2.3.1: 
(Recall that we use term “extent” for the size of the bit-array representation as opposed to term 
“size” that refers to the number of elements the represented set has)

Code 5.1: AC-3 propagator

 1  structure AC3.Constraint
 2    supports : array[0..targetDom.extent-1] of BitArray[0..sourceDom.extent-1]
 3  end structure

 4  structure AC3.InternalState
 5    /* empty */
 6  end structure

 7  procedure AC3(constraint, state, sourceDom : BitArray, targetDom : BitArray)
 8    for i in targetDom
 9      if {} = sourceDom ∩ constraint.supports[i] then
10        targetDom := targetDom \ {i}
11      end if
12    end for
13  end procedure

In  the  code  above,  we  have  defined  data  structures  AC3.Constraint and 
AC3.InternalState. The “constraint” data structure is shared by all calls of the propagator. On 
the other hand, the “internal state” data structure passes data between the consecutive calls within a 
single search-tree branch. Therefore the internal state must be cloned in order to backtrack. In order 
to understand the propagators, it is necessary to distinguish between data stored in the internal state 
and the “constraint” data structure. Therefore we will declare these data structures in all pseudo-
code segments describing the propagators.

We  will  denote  dS the  size  of  the  representation  of  the  source  domain,  dT the  size  of  the 
representation of the target domain and cT the number of elements in the target domain. The time 
complexity of a single propagator call is O(dT+cTdS) as we have shown in chapter 2.3.1.
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 5.1.2 AC-3.1 propagator

To change propagator from code 5.1 to the AC-3.1 algorithm, we will modify the test on line 9 of 
the code  5.1. A IntersectUsingHint procedure will be used to determine whether the source 
domain and the set of supports intersect. The procedure gets a hint as an argument in addition to the 
arguments  of  two  sets  being  intersected.  The  hint  is  an  index  of  CPU  word  in  the  bit-array 
representation where the procedure found the largest support the last time the procedure was called. 
Because the domains are only shrinking, no common element (support) can be found past the hint. 
Therefore the procedure scans the bit-arrays from the position of the hint until a support is found. 
The position of the newly found support is set as a new hint. If no support is found, the hint is set to  
−1 and the sets does not intersect.

In fact the hint is analogical to the smallest support that the AC-3.1 algorithm saves. There are 
two technical differences: The first is that while the classical AC-3.1 stored the smallest support, the 
hint points to the largest support. The reason is that −1 is easier to test than the past-the-end word 
index of the bit array. The second difference is that the hint points to the bit-array chunk instead of 
the  individual  element.  The  chunk  position  would  have  been  computed  from  the  individual 
element's position anyway.

The AC-3.1 algorithm stores the smallest supports for each value in the propagator's internal 
state. The hint version will analogically store the hints. The initial value of hints is the index of the 
last CPU-word in the bit-array representation of the sets (namely (extent−1)/WORD_SIZE). To 
illustrate how CPU-friendly the procedure is, the code is written in C language:

Code 5.2: IntersectUsingHint procedure

void IntersectUsingHint(unsigned int* bit_array_data_1,
                        unsigned int* bit_array_data_2,
                        int* hint)
{
  while (*hint>=0 && 0==(bit_array_data_1[*hint] & bit_array_data_2[*hint])) {
    (*hint)--;
  }
}

The resulting code for the AC-3.1 algorithm is then

Code 5.3: AC-3.1 propagator

 1  structure AC31.Constraint
 2    supports : array[0..targetDom.extent-1] of BitArray[0..sourceDom.extent-1]
 3  end structure

 4  structure AC31.InternalState
 5    hints : array[0..targetDom.extent-1] of integer
 6  end structure
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 7  procedure AC31(constraint, state, sourceDom : BitArray, targetDom : BitArray)
 8    for i in targetDom
 9      IntersectUsingHint(sourceDom, constraint.supports[i], state.hints[i])
10      if -1 = state.hints[i] then
11        targetDom := targetDom \ {i}
12      end if
13    end for
14  end procedure

Consider all calls of this propagator in a single branch of the search tree. The initial hint value is  
O(dS), the internal state consists of dT hints, therefore the hint can be decremented at most O(dSdT) 
times. Except for decrementation, one iteration of the “for” loop at line 8 requires a constant time. 
Propagator is called at most dS times (when the source domain shrinks). The “for” loop has at most 
dT iterations. Therefore the single-branch time complexity of the algorithm is O(dSdT).

 5.2 Building propagators

We will now present new propagator algorithms that are asymptotically worse than the AC-3.1 
but practically behave better in some situations as the experiments showed.

 5.2.1 Simple builder

The previous algorithms were checking whether the value has a support and pruning those values 
that had no support. The following algorithms will build the domain by collecting the compatible 
values of all values in the source domain. We will need a different organization of the constraint 
domain data, so we define the array compatible of bit arrays as:

i∈compatible[ j ] ⇔
def.

j∈supports [i ]
As a consequence, the bits representing the constraint domain are organized into CPU words of bit 
arrays differently. An example for four-bit processor is shown in figure  15. Code  5.4 shows the 
simplest algorithm based on this idea.
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Code 5.4: Simple builder

structure SimpleBuilder.Constraint
  compatible : array[0..sourceDom.extent-1] of BitArray[0..targetDom.extent-1]
end structure

structure SimpleBuilder.InternalState
  /* empty */
end structure

procedure SimpleBuilder(constraint, state, sourceDom : BitArray, targetDom : BitArray)
  accumulator := {}
  for i in sourceDom
    accumulator := accumulator ∪ constraint.compatible[i]
  end for
  targetDom := targetDom ∩ accumulator  /* to be contracting */
end procedure

This procedure has time complexity O(dS+cSdT), which is comparable to the time complexity of 
the AC-3 propagator. In order to create a more efficient algorithm we will introduce a more complex 
data structure.

 5.2.2 Tree builder

The  tree  builder algorithm will  build  binary trees  consisting  of  nodes  that  will  carry partly 
accumulated sets of compatible values. Each node i has its check set and a result set such that

resultSet node=∪j∈checkSet nodecompatible [ j ]

The goal is to create or to have available such a node that its check set is equal to the source domain 
of the current propagation call.  Then we can use the result  set  of this node to prune the target 
domain, in the same way the accumulator was used in the code 5.4.

The initialization of the tree is started by creating the nodes for singleton check sets. Their result 
sets are trivially the members of the array compatible. The nodes for singleton check sets will be the 
leafs of the trees in our data structure.  The inner nodes of the trees will  be created by a  Join 
procedure.  Given  node  indices  i and  j,  the  procedure  will  create  a  new  node  k with
checkSet k =checkSet i ∪checkSet  j   and  resultSet k =resultSet i ∪resultSet  j  .  Using the 

Join procedure we will build the balanced binary tree over the leafs. When the perfect balance of 
the tree cannot be achieved, any tree with the minimal (logarithmic) possible height can be created. 
The check set of the root of the initial tree is the initial domain of the source variable.

The propagator will store the index of the root of the most recently generated tree in its internal 
state. When called again, the propagator will create a new tree. The previous tree will be preserved 
intact to reuse in case of backtracking.

The new tree is created in such way that the check set of its root is the current domain of the 
source variable. Recall that then the result set of the new root can be used for pruning the target 
domain. The new tree will share as many nodes with the previous tree as possible. For example 
consider a situation in which the source domain is one element smaller compared to the previous 
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propagator call. Then one leaf will be left out. The nodes on the path from this leaf to the root will  
have to be created for the new tree while other nodes will be shared with the previous tree (as 
shown in figure 17).

To build the new tree we will use the  procedure Restrict. The arguments of the Restrict 
procedure are the current source domain and the node, the restriction of which should be returned. 
The Restrict returns nil if it reaches bottom of the tree. Otherwise it returns the node that has 
the check set equal to the intersection of the argument node's  check set  and the current source 
domain. As a special case,  Restrict on the root of the previous tree will return the root of the 
desired new tree. The Restrict procedure will do its job this way:

If the argument node's check set is subset of the source domain, no restriction is needed and the 
procedure will return the argument node (for example node “{1, 2, 3, 4}” in figure 17). Otherwise 
the procedure returns the join of results of the recursive calls on the node's children. The recursive 
call may return nil, in such a case the procedure returns the result of the other child (Restrict on 
node  “{7, 8}”  returned  node  “{8}”).  The  recursion  is  stopped  at  leafs  by  returning  nil.  The 
complete procedure is shown in the following code:

Code 5.5: Restriction procedure

 1  procedure Restrict(sourceDom : BitArray, node, in out last)
 2    if node.checkSet ⊆ sourceDom then return node
 3    if node.isLeaf then
 4      return nil
 5    else
 6      restrLeft  := Restrict(sourceDom, node.left, last)
 7      restrRight := Restrict(sourceDom, node.right, last)
 8      if restrLeft = nil and restrRight = nil then return nil
 9      else if restrLeft  = nil then return restr.Right
10      else if restrRight = nil then return restr.Left
11      else return Join(restr.Left, restr.Right, last) /* Join creates a new node */
12    end if
13  end procedure

For efficiency reasons we perform the inclusion check from line 2 only if the whole check set 
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falls into one bit-array chunk. Such check is performed in a constant time. Nodes with so compact 
check sets are in the lower part of the tree. In the upper part, the check set is not stored because it  
cannot be represented by a single bit-array chunk. We will recognize the inclusion relation from line 
2  by  the  results  of  the  recursive  calls  on  node's  children:  The  inclusion  relation  holds  iff 
restrLeft = node.left and restrRight = node.right. This way, the actual subset checks are delegated to 
the highest level of the lower part of the tree (border level). This algorithm alteration has only the 
multiplicative effect on the time complexity because the number of nodes in the border level is 
proportional to the size of the bit-array representation in the root. On the other hand, it allows us to 
store only constant memory bit-array chunk as node's check set.

All nodes are stored in a dynamic array. The array is enlarging on demand and does not need to 
be stored in a continuous region of the memory. The propagator remembers the index of the last 
valid element of the array, which is shifted when the Join procedure creates a new node. The last-
valid  index is  stored  in  the  propagator's  internal  state.  Thus  when backtrack  occurs,  all  nodes 
created in the failed branch of the search tree will be invalidated just by restoring the last-valid 
index from the appropriate internal state. Creating new nodes then overwrites the memory of nodes 
created in the failed branches of the search tree.

Code 5.6: Tree builder propagator

structure TreeBuilder.constraint
  nodes : array[0..] of Node
end structure

structure TreeBuilder.InternalState
  root : integer
  last : integer
end structure

procedure TreeBuilder(constraint, state, sourceDom : BitArray, targetDom : BitArray)
  constraint.nodes.size := state.last   /* overwriting data of backtracked branches */
  newRoot := Restrict(sourceDom, state.root, state.last)
  targetDom := targetDom ∩ constraint.nodes[newRoot].resultSet
  state.last := constraint.nodes.size
  state.root := newRoot
end procedure

Top-most  Restrict typically calls  Join,  which returns an index of a newly created node. 
Therefore in such a case root = last. This is not always the case, therefore we need separated 
root and last fields in the internal state.

Also note that in contrast with all the previous propagators, the representation of the constraint 
domain cannot be shared between the constraints having the same constraint domain.

Tree builder analysis

We will estimate the number of nodes that can be generated in a single branch of the search tree. 
Each call of the propagator removes the leafs representing the elements of the set difference of the 
previous and the current source domain. The nodes on the paths from the removed leafs to the root 
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have to be restricted. If one call of the propagator removed several leafs, the common nodes of the 
paths from the leafs to the root would be restricted only once. On the other hand, if the propagator 
was called to remove each leaf separately, it would have to create intermediate restrictions for such 
nodes. Therefore, as the worst case, we will assume that the source domains for two consecutive 
calls of the propagator differ only in one element.

We will now examine the effects of removing a leaf. When the leaf in depth  d is removed, its 
parent is left out from the tree and the leaf's sibling takes the place of the parent. The restriction of  
d−1 nodes on the path from the sibling's new position to the root requires creation of  d−1 new 
nodes. Other nodes can be shared with the previous tree. We will focus on three characteristics:
• n is the number of nodes of the current tree and all the preceding trees
• l is the number of leafs of the current tree
• s is the sum of depths of all leafs of current tree

As we have shown, when removing the leaf in depth d,  d−1 new nodes are created. On the other 
hand, s is decremented by d+1: the leaf in depth d is left out and its sibling is moved one level up. 
The third  parameter,  l,  is  decremented  by 1.  Then the  expression  n+s−2l is  invariant,  because 
(d−1)−(d+1)−2(−1) = 0. More formally

n0+s0−2l0 = n1+s1−2l1 (5.7)
for n, s, l describing two moments indexed by 0 and 1. We will denote the state after initialization 
by index 0: There are l0 = dS leafs, n0 = 2dS−1 nodes and s0 ≤ dS ⌈log2 dS  (where ⌉ dS is the initial size 
of the source domain). The final state will by denoted by index 1. There is only one leaf left and the 
propagator is entailed, l1=1, s1=0 and n1 is the maximum number of nodes we are trying to estimate. 
Exploiting the invariant (5.7) we get
n1 = n0+s0−2l0−s1+2l1 = (2dS−1)+s0−2dS−0+2 = s0 +1 ≤ dS ⌈log2 dS⌉+1.

Except for the leafs, all of the  O(dSlog dS) nodes were created by the  Join procedure, which 
computes the union of  dT-sized bit arrays (to create the result  set).  Thus all  Join calls require 
O(dTdSlog dS) time in total. To examine the Restrict procedure we will consider line 2 of code 5.5 
and the rest of the procedure separately. The line 2 requires at most O(dS) time when called on a root 
of some tree and  O(dS).2-h for a node in depth  h. Sum of the geometric progression,  O(dS), is the 
time spent on line 2 needed to create a single tree. Therefore, the total time spent on line 2 is O(dS

2). 
Other parts of the Restrict procedure, measuring the recursive calls separately, run in O(1) time. The 
Restrict is called O(dS log dS) times. The propagator procedure itself is constant and it is called at 
most  dS times.  Putting it  all  together,  the  single-branch worst-case time complexity of  the  tree 
builder is O(dS

2+dTdS  log dS). Although this time complexity is much higher compared to AC-3.1's 
O(dSdT), according to our experiments the builder tree outperforms AC-3.1 when dS is small.

 5.3 Interval list propagators

So far both the source and the target domain were represented as bit arrays. In this chapter, we 
will introduce algorithms dealing with the source domain in the list-of-intervals representation. We 
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will  gather  the  constraint  domain  elements  into  segments  (minS..maxS)-valueT,  maximal  (with 

respect to inclusion) such that ∀ x∈minS .. maxS: 〈x , valueT 〉∈constraint domain

Goal  of  the  propagator  is  to  find  all  intervals  minS..maxS that  intersect  with  some intervals 
minD..maxD in the list of intervals of the current source domain. Values  valueT of the intersected 
segments (minS..maxS)-valueT are supported values in the target domain.

 5.3.1 Collecting intersected intervals

We will use the term gap for the maximal interval of non-elements of a given set. Having set in 
the  list-of-intervals  representation,  we can  identify the  gaps  from the  limits  of  the  consecutive 
intervals  as  (maxD[i]+1)..(minD[i+1]−1); intervals  −∞..(minD[0]−1) and  (maxD[last]+1)..+∞ are 
also gaps. An interval minS..maxS is disjoint with the set iff the whole interval falls into one gap.

This propagator works according to the builder paradigm, collecting all supported values valueT 

into an accumulator. When finished, the accumulator is intersected with the input target domain 
resulting in the output target domain.

The intersected-intervals propagator will use a list of segments sorted by minS increasingly. The 
propagator procedure scans the list in the alternating phases representing the intervals and the gaps 
of the source domain. In the interval phase the procedure advances to the last segment with minS not 
greater than the end of the domain interval. All processed segments (such as segment A in figure 18) 
are  intersected  with  the  current  source  domain  and  their  respective  valueP are  put  into  the 
accumulator. In the gap phase the propagator advances to last segment with minS not greater than 
gap's end. Those of processed segments, which have maxS past the gap's end (like segment B), are 
intersected. The valueT values of the segments are put into the accumulator. On the other hand other 
segments (for example segment C) are not intersected.

Code 5.8: Intersected intervals collector

structure Segment
  min : integer
  max : integer
  value : integer
end structure
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structure IIC.Constraint
  segments : array[1..] of Segment
end structure

structure IIC.InternalState
  /* empty */
end structure

procedure IIC.Constraint.Initialize(out constraint, in compatible)
    /* compatible represents constraint domain as in code 5.4 */
    /* this code assumes that queries of compatible[s][t] when s is out of range
         are legal and result in 0 */
  for t in 0..targetDom.extent-1
    for s in 0..sourceDom.extent-1
      if compatible[s-1][t] = 0 and compatible[s][t] = 1 then
        min := s
      end if
      if compatible[s][t] = 1 and compatible[s+1][t] = 0 then
        max := s
        constraint.segments.append(new Segment(min, max, t))
      end if
    end for
  end for
end procedure

procedure ProcessInterval(constraint, in out index, in out accumulator, end : integer)
  lastSeg := constraint.segments.size-1
  while index <= lastSeg and constraint.segments[index].min <= end do
    accumulator := accumulator ∪ {constraint.segments[index].value}
    index := index+1
  end while
end procedure

procedure ProcessGap(constraint, in out index, in out accumulator, end : integer)
  lastSeg := constraint.segments.size-1
  while index <= lastSeg and constraint.segments[index].min <= end do
    if constraint.segments[index].max >= end then
      accumulator := accumulator ∪ {constraint.segments[index].value}
    end if
    index := index+1
  end while
end procedure

procedure IIC(constraint, state, sourceDom : ListOfIntervals, targetDom : BitArray)
  accumulator := {}
  index := 0
  for (a..b) in sourceDom.intervals
    ProcessGap(constraint, index, accumulator, a-1)
    ProcessInterval(constraint, index, accumulator, b)
  end for
  ProcessGap(constraint, index, accumulator, +infinity)
  targetDom := targetDom ∩ accumulator
end procedure

We will denote iS the number of intervals of the source domain and g the number of segments; g 
is  O(dSdT). The propagator needs only one pass over the sorted list of segments, therefore its time 
complexity is  O(iS+g+dT). Summand  dT is induced by intersecting the accumulator and the target 
domain at the end of the propagation procedure.
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 5.3.2 Mono-intervalic constraints

We will now introduce a special kind of constraint: 

Definition 5.9: Mono-intervalic constraint

We say that n-ary constraint with the constraint domain C is mono-intervalic with respect 
to the i-th variable of its scope iff for each v1, v2, …, vi-1, vi+1, …, vn is the set
{x ∣ 〈v1, v2, ... , v i−1, x , vi1, ... , vn〉∈C} (5.10)

either an interval or an empty set.

A binary constraint is mono-intervalic (with respect to the source variable) if there is at most one 
(minS..maxS)-valueT segment for every valueT (If there is no segment, the the set (5.10) is empty, if 
there is exactly one segment, then the set is (minS..maxS))

When  considering  the  constraints  used  in  CSPs,  the  mono-intervalic  constraints  are  hardly 
typical. On the other hand, the pseudovariables are artificial and the design of the pseudovariables 
determines  characteristics  of  subconstraints.  Thus  propagators  dealing  with  mono-intervalic 
constraints might be useful in some designs. For example consider the motivational example on 
page  17. Both constraints added in the example depicted in the figure  2 are mono-intervalic. As 
another  example,  the  SICStus's  “case”  constraint  allows  edges  to  be labeled  only by intervals, 
therefore the subconstraint mapping the values to edge indices is mono-intervalic.

 5.3.3 Open-Close propagator

The fact that the constraint domain is mono-intervalic can be exploited in the propagator. We will 
introduce the propagator that we will call “Open-Close”.

We will say that an interval min..max opens at point min and closes at point max+1. The interval 
is open at points min and greater and it is closed at points greater than max. The interval min..max 
intersects with the interval a..b if a ≤ max and min ≤ b. In the above terms if the interval min..max is 
not closed at  point  a (a ≤ max) and it is open at point  b (min ≤ b).  The Open-Close propagator 
computes the arrays of bit arrays  open and  notClosed such that  open[i] represents the set of 
values valueT of all segments that are open at point  i. Analogically notClosed[j] represents all 
segments not closed at point j (as shown in figure 19). Then open[b] ∩ notClosed[a] is the set 
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Figure 19: Open-Close data organization and the computation of segments intersected with the  
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of segments intersected with interval a..b. We will compute such intersection for each interval of the 
source domain. In the accumulator, we store union of all the computed sets. The union is the set of 
supported values in the target domain.

Code 5.11: Open-Close propagator

structure OpenClose.Constraint
  open      : array[0..sourceDom.extent-1] of BitArray[0..targetDom.extent-1]
  notClosed : array[0..sourceDom.extent-1] of BitArray[0..targetDom.extent-1]
end structure

structure OpenClose.InternalState
  /* empty */
end structure

procedure OpenClose.Constraint.Initialize(out constraint, in compatible)
    /* compatible represents constraint domain as in code 5.4 */
  constraint.open := compatible
  for i in {1, 2, ..., sourceDom.extent-1}
    constraint.open[i] := constraint.open[i] ∪ constraint.open[i-1]
  end for

  constraint.notClosed := compatible
  for i in {sourceDom.extent-1, sourceDom.extent-2, ..., 1}
    constraint.notClosed[i-1] := constraint.notClosed[i-1] ∪ constraint.notClosed[i]
  end for
end procedure 

procedure OpenClose(constraint, state, sourceDom : ListOfIntervals, targetDom : 
BitArray)
  accumulator := {}
  for (a..b) in sourceDom.intervals()
    accumulator := accumulator ∪ (constraint.open[b] ∩ constraint.notClosed[a])
  end for
  targetDom := targetDom ∩ accumulator
end procedure

The propagator procedure requires  O(iSdT) time, which is asymptotically much more than the 
time complexity of the Intersected intervals collector (IIC) from the chapter 5.3.1. Considering g is 
O(dT) for  the  constraints  that  are  mono-intervalic  with  respect  to  the  target  domain,  the  time 
complexity  of  the  IIC  is  O(iS+dT).  On  the  other  hand,  the  Open-Close  propagator  uses  bit 
parallelism  and  operations  that  are  more  processor-friendly  than  those  of  the  IIC.  For  small 
domains, such as those in the application this thesis focuses on, the Open-Close may outperform the 
IIC.

 5.4 Propagators creating the interval lists

In the previous chapter we have described the propagators, which pruned the bit-array target 
domains based on the list-of-intervals source domains. This chapter analyses the reverse case: the 
source domain is represented as a bit array and the target domain is in the list-of-intervals form.
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 5.4.1 Interval list generator

To prune the list-of-intervals domain, we will use the segments as defined in chapter 5.3 with this 
difference: Because we swapped the representations (the bit array and the list of intervals) of the 
source  and  the  target  domain,  we  will  operate  on  segments  (minT..maxT)-valueS instead  of 
(minS..maxS)-valueT.

As the most inner operation, the propagator enumerates the supported segments. The result is a 
list of such intervals minT..maxT that their respective valueS are in the source domain, in the order of 
increasing  minT.  Those intervals  may overlap,  the  overlapping intervals  are  consecutive  in  this 
ordering. Thus when enumerating the segments, the propagator can unite the overlapping intervals 
into one interval. The resulting list of the united intervals conforms the requirements of the list-of-
intervals representation. This list is intersected with the input target domain in order to create the 
output target domain.

Code 5.12: Interval list generator

structure ItlListGen.Constraint
  segments : array of Segment  /* array is sorted in order of increasing min */
end structure

structure ItlListGen.InternalState
  /* empty */
end structure

procedure ItlListGen(constraint, state, sourceDom : ListOfIntervals, targetDom : 
BitArray)
  list := []
  lastMin := nil
  lastMax := nil
  for segment in constraint.segments
    if segment.value ∊ sourceDom then
      if lastMax < segment.min-1 then
        /* intervals does not overlap, sending the last interval to the final list */
        list.append( lastMin..lastMax )
        lastMin := segment.min
        lastMax := segment.max
      else
        /* unite lastMin..lastMax with segment.min..segment.max */
        lastMax := max(lastMax, segment.max)
      end if
    end if
  end for
  list.append( lastMin..lastMax )
  list.exclude(0) /* deleting first element of list, which is nil..nil */
  targetDom := targetDom ∩ list
end procedure

Time complexity of the propagator is O(g), which is O(dS) for mono-intervalic constraints.

As an alternative, the Tree Builder propagator can also be used to generate target domain in the 
list-of-intervals form. Only modification needed is to represent the result sets as lists of intervals. 
We don't discuss this alternative in more detail, because it performed badly in our experiments.
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 6 Composing algorithms
In this chapter, we will put the ideas of the previous chapters together. We will describe the 

resulting superconstraint propagation algorithms and estimate their complexities. First we will focus 
on the constraints described as the set of hyper-rectangles.

 6.1 Hyper-rectangle

We expect the domains of real variables to be represented as the lists 
of intervals. We will denote i the length of the longest list of intervals 
and r will stand for the number of rectangles in the constraint definition. 
The  algorithm assigns  numbers  1,  …,  r to  the  hyper-rectangles  and 
these numbers will be the pseudovalues of the only pseudovariable. The 
constraint network is star-shaped as in figure 20.

The propagation algorithm works in two phases. First the algorithm 
propagates the changes of the real variables to the pseudovariable. This 
can  be  done in  time  O(i+r) using  the  Intersected  intervals  collector 
from chapter  5.3.1.  After  this  phase,  the  domain  of  the  pseudovariable  contains  only  feasible 
pseudovalues (rectangles). All rectangles, which were not supported in every real variable, were 
pruned. In the second phase, the algorithm uses the Interval list generator from chapter  5.4.1 to 
create new domains from the projections of feasible rectangles in time O(r). For a-ary constraint, 
the worst-case time complexity of the propagator is O(a(i+r)).

The algorithm uses the same principle as the algorithm by Barták and Mecl described in chapter 
4.3.2:  identify  the  feasible  rectangles  and  build  the  new  domains  from  their  projections.  The 
difference is that the algorithm breaks the list of hyper-rectangles into a lists in such way that each 
list  contains the  hyper-rectangles'  projections into one dimension (middle section of figure  21). 
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Figure 20: a star shaped 
subconstraint network
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Each of  the  lists  is  sorted by the  starts  of  projected  intervals  (right  section of  figure  21).  The 
“Intersected intervals collector” propagator uses the sorted list to detect all rectangles supported by 
the domain in a single pass (in a linear time). In the second phase, “Interval list generator” is used. 
Again, the fact that the lists of segments are sorted, allows us to create the output domains using a 
single  pass  in  a  linear  time.  This  way the  algorithm ceases  the  logarithmic  factor  the  original  
Barták's algorithm has.

The difference of these two algorithms is  in  a granularity:  Preforming individual  queries on 
intersections  of  the  domains  and  the  projections  can  be  seen  as  fine  grained  while  one  query 
generating all intersections is coarse grained.

 6.2 Revision of the MDD

When describing the MDDC algorithm in chapter 4.2.3 we have regarded the algorithm coarse 
grained. The algorithm acts as a propagator that has domains of the variables as the input and 
produces the new domains.  On the other hand,  we will  show that it  works internally as a fine 
grained  algorithm.  Therefore  we  will  later  distinguish  internal  and  external  granularity  of 
algorithms.

To refer the internal granularity of the MDD we will now show the possible internal structures. 
When describing the MDDC algorithm, we have mentioned the rules for a node to be feasible:

(A1) The node is reachable (by an oriented path) from the root only by the edges that has 
feasible labels
(A2) The leaf is reachable from the node also by the edges having feasible labels

In fact, these rules can be formed in a more local way. The rule A1 can be replaced by:

(B1) The node is connected with a feasible node in the previous layer using the edge with a 
feasible label.

The rule (A2) can be replaced analogically. These definitions are equivalent because iterative using 
of rule (B1) creates the path required by rule (A1). The rule (B1) is in fact a ternary constraint 
binding the index of the node in the previous layer, the index of the node in the current layer and the 
label of the edge. The constraint can be defined for example by a list of triples. The constraint can 
be defined for each layer of the MDD. All those ternary constraints then form the subconstraint 
network depicted in figure 22 that models the MDD. Variables Vi are real variables, while variables 
Ni store  the  node  indices  (variables  N0 representing  nodes  in  the  layer  of  the  root  and  Nn 

representing nodes in the layer of the leaf have trivially singleton domains, therefore the top-most 
and  the  bottom-most  level  can  be  pruned  by binary  constraints).  We  can  prune  each  of  three 
variables bound by the constraint. Pruning the indices of nodes in the current layer applies the rule 
(B1) and pruning the indices of nodes in the previous layer corresponds to rule (B2). The third 
direction, pruning the labels of edges creates the domain of the real variable of the layer.
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Note that the ternary subconstraints can be used as well as binary although we have proven 
required  theorems  only  for  the  binary  constraints.  On  the  other  hand,  there  is  an  alternative 
modeling of MDD that uses binary constraints. As opposed to focusing on feasibility of nodes, the 
next binarization of MDD defines feasibility of edges. The edge is feasible if:

(C1) There is a neighboring6 feasible edge in the previous layer
(C2) Label of the edge is feasible, meaning it is in the current domain of the variable respective 
to the edge's layer.
(C3) There is a neighboring feasible edge in the next layer

Rule (C1) and rule (C3) applied to a pair of consecutive layers represent two directions of the same 
binary constraint. The subconstraint network modeling the MDD is shown in figure 23.

From this perspective, the MDDC algorithm is internally fine grained because it treats the nodes 
individually. This view of MDD also gives us an idea, how to implement the filtering algorithm for 
the MDD. We might either choose to implement it in the way of some fine grained algorithm (for 
example AC-6) or as coarse grained using the appropriate propagators from chapter 5. The coarse 
grained approach is specially useful when implementing the SICStus case constraint – MDD with 
the edges labeled by intervals instead of the values. We can eliminate the logarithmic factor by 
using the same interval processing as we used for hyper-rectangles in the previous chapter.

To estimate the complexity of the filtering algorithm for MDD, we will denote a the arity, d the 
size of the largest initial domain and f the number of transitions of the smallest deterministic finite 
automaton defining the constraint domain. The domains of the real variables have size O(d) and the 
domains of the pseudovariables have size O(f). The propagations between the real variables and the 

6 Edges in consecutive layers are neighboring iff they share a node.
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corresponding pseudovariables require single branch time O(df) when using the Intersected intervals 
collector and the Interval list generator. The propagations between the pseudovariables require time 
O(f2 ) in a single branch of the search tree. In total for a layers, the single-branch worst-case time 
complexity of the proposed algorithm for MDD is O(adf+af2). In comparison, the original MDDC 
algorithm has the complexity of the same type  O(a2df). The MDDC is worse of factor  a because 
when one domain changes, the algorithm must traverse the whole MDD. On the other hand, the 
pseudovariables'  algorithm can  propagate  locally  by stopping at  level  of  the  MDD, where  the 
domain of the pseudovariable does not change.

More precisely, the subconstraint propagator signals, whether the target domain was changed. 
For example the Builder Tree can detect this in the following way: the target domain was pruned if  
the index of the old tree's root is not equal to the new root index. When the target domain was 
pruned, the target pseudovariable is  marked as dirty.  The real variables are marked dirty if  the 
domain has changed since the last superconstraint propagator call. Then the dirty flag is used to 
determine, whether it is necessary to call subconstraint propagator on given arc of the subconstraint 
network. If the source variable of the arc is not dirty then the target domain did not loose supports in 
the  source  domain.  Of course,  we assume that  when the  super  constraint  propagator  starts,  all  
domains  of  pseudovariables  are  initialized  to  their  state  after  the  previous  superconstraint 
propagator call.

 6.3 How to decompose constraints into subconstraint networks?

We have not discussed yet how to create the subconstraint network for a given constraint. We 
expect  that  this  decision is  made by the person that  formalizes  the problem into the CSP.  The 
modeler  has  the  same  responsibility  when  choosing  variable  ordering  in  the  SICStus's  “case” 
constraint, which can also have great impact on the constraint propagation effectiveness7. First we 
will describe the algorithms creating the subconstraint network for a given constraint domain. The 
algorithms are too ineffective to be used in practice, except for cases when one constraint is reused 
many times in CSPs. On the other hand, the algorithms show the principles that the human modeler 
needs to understand to create efficient subconstraint network designs. Note that the modeler has 
typically  more  complex  objective.  While  the  algorithm  is  creating  the  network  for  the  given 
constraint  domain,  the  modeler  typically  designs  the  network  for  a  whole  class  of  constraint 
domains.

First we will define a criterion measuring the efficiency of the subconstraint network. In the 
chapter  5 we have  shown algorithms for  propagating  discrete  domains,  continuous domains  to 
discrete domains and discrete domains to continuous domains. These are all kinds of propagators 
we need when implementing superconstraint propagation over the subconstraint network. For each 
of these three kinds of propagations we have presented algorithms with single-branch worst-case 

7 This issue is targeted for example in [11].
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time complexity O(dSdT). Therefore we define a score of an edge of the subconstraint network as a 
product of the initial domain sizes of variables represented by the nodes at both ends of the edge. 
The score of the whole network is the sum of scores of all the edges in the network. Then the score  
is  related to the time complexity and therefore is  a good measure of the subconstraint network 
efficiency.

 6.3.1 A hill climbing algorithm

The presented algorithms will try to find a  subconstraint network with the smallest score. One 
possible algorithm can find such a subconstraint network by computing the score of all possible 
networks.  We will  now present  another algorithm that  is  more efficient but does not guarantee 
finding the optimal solution.

The  algorithm  starts  with  a  star-shaped  subconstraint  network:  The  network  has  one 
pseudovariable  and the  pseudovariable  is  bound by binary  subconstraint  with  each  of  the  real 
variables  (first  network  in  figure  24).  The  algorithm  performs  the  following  operation:  A 
pseudovariable having at least three children is selected. Then the algorithm chooses a subset of 
children of the selected node and connect the chosen children to a newly created parent node. The 
parent node will be a child of the selected node, so the chosen children become grandchildren of the 
selected node. We can form any subconstraint network by iterating this operation.

In  order  to  determine,  which  node  to  select  and  which  children  to  choose,  the  algorithm 
computes the score of all networks that can be results of all possible choices. The algorithm then 
commits to the best choice. The algorithm continues by examining the possible operations on the 
new network. The algorithm stops when there is no choice leading to a network with the score better 
than the current score.

 6.3.2 A greedy algorithm

The previous algorithm needed to examine  O(2a) choices in one iteration. The problem of the 
algorithm is  that  the  computation  of  the  score  is  time-expensive.  For  the  given  subconstraint 
network the algorithm must constitute the pseudovalues in order to count them. Consider a parent 
node having n children. In the worst case, the parent node values reflect n-tuples of the children's 
values. If possible without violating the rectangularity, the parent value can represent a group of 
such tuples. Such grouping is analogical to identifying isomorphic subtries when building the MDD. 
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Figure 24: example process of the hill climbing algorithm



Two conditions must hold to group the values:
1. The set of grouped values must be rectangular with respect to the children
2. Value's t-set projected to variables that are not in the subtree of the current node must be equal 

for each value that is being grouped.
The second rule ensures that the group will be rectangular with respect to the parent node too. This 
way we can constitute values of all pseudovariables up to the root. Also we can estimate scores for  
subtrees of the network by running this computation on a subtree only.

The following algorithm will work with a set of trees over the variables. Initially there are n trees 
each consisting  of  a  single node representing  one real  variable  (as  depicted  in  figure  25).  The 
algorithm will use two operations to join the trees, the operations are used until there is only one 
tree. The final tree will be the resulting subconstraint network. The operations are:

1. A new node is created and the roots of two trees become children of the new node.
2. The root of the tree becomes a child of the other existing root. We want real variables to be 

leafs  in  the  subconstraint  network,  therefore  the  potential  parent  must  represent  a 
pseudovariable.

The algorithm must choose two trees to join. There are O(a2) choices, much less in comparison 
with the hill climbing algorithm. Moreover the greedy algorithm computes only partial score when 
deciding which choice to commit. Therefore the greedy algorithm is more efficient than the hill 
climbing  algorithm.  On  the  other  hand,  the  resulting  network  may  be  more  distant  from  the 
optimum when using the greedy algorithm.

As said at  the beginning of  this  chapter,  these algorithms will  serve us as  an inspiration to 
formulate the guidelines for creating subconstraint networks by human modelers. To describe the 
principles on examples we will introduce the problem class that was an inspiration for the theory in 
this thesis.

 6.4 Planning problems

 6.4.1 Introduction to planning

The problem class  origin  is  in  an  artificial  intelligence  branch called  planning.  Goal  of  the 
planning is to find a sequence of actions (plan) transforming a world into a desired state. The world 
is defined by a set of state variables. An initial state of the world is described by values given to the 
state variables. A set of actions is defined to alter the world. Each action may have conditions and 
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Figure 25: example process of the greedy algorithm
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effects defined for some of the state variables. An effect of the action sets a given value to a given 
state variable. If the action has no effect defined for a given state variable, the state variable keeps 
the value it had before the action application. The condition requires a given state variable to have a 
given value. The action can appear in the plan only if all conditions hold at the moment of the 
appearance. The planning problem definition also includes a goal, which is a set of conditions that 
must hold after applying the whole sequence of actions.

We can use constraint satisfaction to find a plan of a given length N8. Actions will be represented 
by variables A1, …, AN and state variables by S0, 1, …, SN, 1, S0, 2, …, SN, 2, …,S0, M, …, SN, M, where M is 
the number of state variables the world is described by. Action  Ai checks its conditions in states 
Si- 1, 1, …, Si- 1, M and effects  of the action appear  in  states  Si, 0, …, Si, M.  We can formulate  the key 
aspect of the planning,  the state  transition,  as a  (2M+1)-ary constraint  on variables  Si-1, 1, …, Si-

1, M, Ai, Si, 1, …, Si, M. Alternatively we can use a set of ternary constraints on variables Si-1, j, Ai, Si, j for 
j ∈ {1, ..., M}. We can describe the ternary constraints by logical formulas describing the relations 
of the preceding state, the action and the following state as stated in the previous paragraph. On the 
other hand, as shown by Barták and Toropila in [2], such formulas are so complex that constraint 
definition in extension leads to much effective propagation. Therefore we will generate the set of 
compatible triples for (Si-1, j,  Ai,  Si, j) from the planning problem. For action a having condition c and 
effect e we will put (c, a, e) into the constraint domain. If an effect is not defined, the corresponding 
triple is  (c, a, c). If neither condition nor effect are defined for the action, triples (k, a, k) for each 
possible state value k are added. And finally if only effect is defined, we include triples (k, a, e) into 
the constraint domain.

The constraint domain C for the (2M+1)-ary state transition constraint is impracticably large to 
enumerate. The description of the constraint by a subconstraint network may have reasonable size 
even for large constraint domains. In our case, the size of the subconstraint network description will 
be comparable to the size of all ternary state transition constraints together. The question is the 
shape  of  the  subconstraint  network.  The  structure  of  the  problem  class  suggests  us  that  the 
subconstraint network should comprise of  M similar parts. Let us put this suggestion aside and 
focus on more general criteria that might be helpful for modeling other problems.

 6.4.2 Shaping the subconstraint network

Relatedness

Let us start by selecting two variables, which we will make siblings in the network. Consider 
selecting an old state and a new state of the same variable S_, j as siblings. Their parent will (in the 
worst case) represent pairs of values of the siblings. An action having neither the condition nor the 

8 The CSP formalism does not allow adaptable number of variables and constraints. When no plan is found for the  
given length, we formulate a new CSP for incremented length. Unlike the CSP formalism, the Gecode library (also  

SICStus, etc.) allows to create variables and constraints during the search.
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effect on the variable  S_, j generates pairs  (k, k) for each state value  k. Some other pairs  (c, e) are 
generated by actions having a condition c and an effect  e. Typically, not all the possible pairs are 
present.

On the other hand, if we chose non-related variables (for example two old state variables or an 
old state and a new state of different planning state variables), typically all pairs would appear in the 
domain of the parent. For example let the children variables be new state variables Si, 1 and Si, 2 and 
we are trying to find a pair  (k, l). Typically there is an action that has neither the condition or the 
effect defined for both the state variables. Such action a allows triple (k, a, k) for variables (Si-1, 1,  
Ai,  Si, 1) and triple  (l, a, l) for variables  (Si-1, 2,  Ai,  Si, 2). In the constraint domain, there is a tuple 
(k, l, …, a, k, l, …) for  variables  (Si-1, 1, …, Si-1, M, Ai, Si, 1, …, Si, M) respectively.  The  tuple  has  pair 
(k, l) on positions of variables Si, 1 and Si, 2.

If such non-related variables were chosen to be siblings, the parent domain would represent all 
the pairs. On the other hand, the parent domain would be smaller, when choosing the related pair of 
the old and the new state of the same state variable as siblings. Therefore the greedy algorithm 
would  choose  the  related  variables.  As  a  general  rule,  the  modeler  should  place  more  related 
variables nearer in the subconstraint network.

Independence

There is another view on the problem: While the pairs of the old and the new variable of the 
same state are bound by rules, the non-related variables are bound only indirectly via the action 
variable. If some variables were not bound at all, we say they are independent. Of course, there is 
no reason to bound independent variables by a constraint. When the dependency is defined as a 
quantity property, we might have a constraint in which some groups of variables would be more 
dependent and some groups would be less dependent. Then we should place the more dependent 
variables nearer in the subconstraint network and that way we separate the less dependent variables 
to distant parts of the networks.

To  define  the  (in)dependency,  let  us  have  a  constraint  and  Γ and  Δ disjoint  subsets  of  the 
constraint's scope. Let C/Γ be the constraint domain projected to the variables in Γ only; we define 
C/Δ and  C/(Γ Δ∪ ) analogically. If  Γ and  Δ are independent groups of variables, any partial tuple 
from C/Γ would be compatible with a partial tuple from C/Δ. There would be combination of those 
two partial tuples in C/(Γ Δ∪ ). When comparing the sizes of those sets, equation
|C/Γ| |C/Δ| = |C/(Γ Δ∪ )| holds for independent  Γ and  Δ. When  Γ and  Δ are more dependent, less 
combinations of the partial tuples are compatible and the set |C/(Γ Δ∪ )| is smaller. We can measure 
dependency by ratio

0
∣C / Γ∪Δ∣
∣C /Γ∣∣C /Δ∣

1

In fact, the children of the selected node in each iteration of the hill climbing algorithm are in the 
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role of (Γ Δ∪ ). The algorithm searches for the best factoring of (Γ Δ∪ ) into Γ and Δ, using a criterion 
similar to the dependency.

Aside of the mathematical description, the dependency is intuitive. The human modeler should 
have sense of which variables are less and which are more dependent and model the subconstraint 
network accordingly.

 6.4.3 The resulting subconstraint network for planning

Applying the above principles,  we create  a  subconstraint  networks  for  the  (2M+1)-ary state 
transition constraint. The scheme of the network is shown in figure 26. The node “A” represents the 
action variable, “Oi” and “Ni” nodes represent the old state and the new state of the i-th planning 
variable.  The pseudovariable  “Pi”  is  created  to  group “Oi”  and “Ni”  because  they are  strongly 
related.  Other  pairs  of  variables  are  rather  independent,  therefore  no  other  pseudovariable  is 
introduced and the variables are connected only via the root (denoted “R”).
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Figure 26: The subconstraint network for (2M+1)-ary state-transition constraint in planning
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 7 Experimental evaluation
In this chapter, we will present the results of experiments. The experiments are divided into the 

following two chapters. The first group of experiments will focus on evaluating the concept of the 
pseudovariables  itself.  Then  we  will  present  the  experiments  comparing  the  effects  of  using 
different subconstraint propagators described in chapter 5.

All experiments ran on a 64-bit Intel Core 2 Duo 1.6GHz CPU with 2MB L2 cache and 2GB 
operating memory. The computer runs the Linux 2.6 OS kernel and the user-space9 time of the 
process  is  measured.  The experimental  implementation,  called  genesis,  is  implemented  in  C++ 
using the Gecode10 constraint library. The genesis is compiled using the GCC 4.4.3 with “−O2” 
optimization option.

The  inspiration  for  our  research  was  solving  the  planning  problems.  Therefore  we measure 
efficiency of solving the problems in the experiments. We compare implementations of the state 
transition  that  is  the  essential  aspect  of  the  planning.  Besides  of  that,  the  genesis  solver  also 
implements some auxiliary planning techniques. The first technique is relevance of action at the last 
(goal) layer. The last action of the plan must have effect that is needed to accomplish the goal. The 
actions that does not have relevant effects are excluded from the last layer by an unary constraint. 
The second technique is used to eliminate some symmetrical solutions. We say that actions Act1 and 
Act2 are independent if sequences (…, Act1, Act2, …) are exchangeable with (…, Act2, Act1, …) in 
any plan. The actions are independent if they have no conflicted conditions and effects and effect of 
one action is not needed by condition of the other action. To narrow the search space, we introduce 
constraints allowing only one of the orderings of the independent actions (actually we implement 
unidirectional version relying on allovance instead of independence). The action variables and the 
state variables are labeled together using the “dom/deg” labeling strategy.

 7.1 The main experiments

 7.1.1 Compared approaches

In this chapter we will focus on solving the planning problem in different ways. One approach 
uses  the  2M+1 dimensional  complex  state-transition  constraint  modeled  by  the  subconstraint 
network in figure  26. Another approach uses the set of the 3-dimensional single-state transition 
constraints, each of which binds the action, the old state and the new state of one planning state 
variable. We model the ternary constraint by two different propagators: In the first case, we use the 

9 The time the process spent on the CPU, except for OS kernel calls (reading files, memory allocation, etc.). The time  
is reported by the OS kernel module that is responsible for allocating the CPU to the process.

10 http://www.gecode.org/
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hyper-rectangle superconstraint from chapter 6.1. The second model of the ternary constraint uses 
the Gecode's standard extensional constraint DFA, implementation of which is similar to the MDD 
algorithm described in the chapter 4.2.3.

The  first  two  approaches  uses  the  concept  of  the  subconstraint  network,  therefore  various 
subconstraint  propagators  (from  chapter  5)  can  be  used.  We  will  evaluate  the  individual 
subconstraint propagators in the next chapter. In this chapter, we evaluate the “global” approaches. 
Therefore we use the best combination of the subconstraint propagators: We choose “Open-Close” 
to propagate the real variables to the pseudovariables and the “Interval List Generator” for the other 
direction of propagation. Moreover, the (2M+1)-ary constraint also contains subconstraints binding 
pseudovariables  together.  We  have  two  options  for  this  kind  of  subconstraints:  the  AC-3.1 
propagator and the Tree Builder. We use the Tree Builder for the upward propagation (P i R in➝  
figure 26) and the AC-3.1 for the downward propagation (R P➝ i).

Unfortunately, single propagations run too short to measure. To compare the above approaches 
we will measure the runtime of the complete search for a solution. Besides the propagator calls, 
there are other computations made by the solver. We run the experiments with the same parameters 
of  the search.  The evaluated propagators  are  all  AC-sound and AC-complete.  Therefore all  the 
propagators  are  equivalent  and  the  same  values  are  pruned  at  the  same  phases  of  all  the 
experiments. In other words, the search trees are identical. Therefore all computations except for the 
propagations are done identically and all differences in measured times are caused by propagations.

There is another reason for measuring the time required by the complete search: We are not 
comparing the propagation algorithms only, but also the structures of the CSP ((2M+1)-ary versus 
ternary constraints). Evaluating the propagation of the  (2M+1)-ary constraint in comparison with 
the set of ternary constraints is possible at the level of a single propagation. On the other hand, this 
fact justifies making the comparison at level of the complete search.

The experiments consist of running the solver variants on the set of 86 planning problems. The 
problems were selected from the International Planning Competition. The set of planning domains 
is the same as in the evaluation of findings in [2] (which will be compared with the genesis later). 
The planning domains  are:  Gripper,  Logistics,  Mystery (from IPC 1),  Blocks,  Elevator  (IPC 2), 
Depots, DriverLog, Zenotravel (IPC 3), Airport, PSR (IPC 4), Pipesworld, Rovers and TPP (IPC 5). 
Each problem is solved 10 times and the average times are then compared. Problems that are not 
solved within 1000 seconds are ignored.

 7.1.2 Implementation of the ternary constraint: The hyper-rectangle versus the 
Gecode's original propagator

In the previous chapter we have presented three approaches that we will compare. In fact, the 
hyper-rectangle  approach  is  a  midway  milestone  in  an  evolution  from  the  Gecode's  original 
propagator  approach  to  the  complex  state-transition  constraint.  Therefore  we  will  divide  this 
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evolution into two steps and evaluate the impact of the steps individually.

Figure  27 presents the improvements induced by the first step. Only 50 problems were solved 
using  both  the  compared  approaches  within  the  1000-second  time  limit.  The  chart  represents 
10-iteration  averages  of  runtimes  on  the  problems.  The  dashed  line  x = 3.06y represents  the 
geometric-mean ratio of the compared times.

To interpret the results we will describe the differences in the compared approaches. The main 
difference is in the internal granularity of the propagators: The GECODE's DFA propagator works 
in a way similar to the MDDC propagator and therefore the propagator is internally fine grained. On 
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Figure 27: Comparison of the GECODE's DFA constraint and the hyper-rectangle constraint
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the other hand, the hyper-rectangle propagator is internally coarse grained as shown in chapter 6.1. 
For  example,  the  hyper-rectangle  propagator  uses  the  Open-Close  algorithm exploiting  the  bit 
parallelism.

Figure 28 shows the dependency of the time ratio on the problem complexity. The complexity is 
measured  by the  number  of  actions  the  planning  problem has.  The  number  of  actions  is  used 
because it is the size of the largest initial domain. We can see that the hyper-rectangle propagator 
improves  the  total  solver's  time more  for  the  more  complex  planning problems.  This  result  is 
unexpected and we will focus more deeply on the differences of the compared approaches in order 
to interpret the results.

The (Gecode's original) DFA propagator uses the sparse matrix data structure to store the set of  
pruned nodes in the MDD. Cheng and Yap recommend in [12] usage of the sparse matrix structure 
instead  of  the  bit  array  because  the  sparse  matrix  can  be  restored  in  a  constant  time  upon 
backtracking. The bit array that is used by the hyper-rectangle propagator needs a linear time for 
restoration. Despite of that, the results show that the benefits of the bit parallelism overbalance this 
disadvantage. Note that the recommendation in [12] may be valid for the MDDC algorithm because 
it is internally fine grained and thus no bit parallelism is conceivable.

We should  also  note  that  we have  used  the  hyper-rectangle  algorithm with  the  Open-Close 
propagator. We have discussed the Open-Close complexity in chapter 5.3.3. We have stated that the 
algorithm  is  asymptotically  worse  than  the  Intersected  Intervals  Collector  (chapter  5.3.1)  and 
therefore it should be less efficient for greater domains. This is the second reason why the trend in 
figure  28 is  surprising.  We don't  expect  the time ratio to  rise for even more complex planning 
problems.
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Figure 28: dependency of the time improvement on the problem complexity
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 7.1.3 Comparing the single-state transition and the complex state transition 
constraint

After evaluating the first step of the evolution, we will now focus on the second step. The second 
step  groups  the  set  of  ternary  single-state  transition  constraints  into  one  (2M+1)-ary  complex 
state-transition constraint (depicted in figure 26). As the previous chart, the chart on figure 29 shows 
the relation of 10-iteration averages of the runtimes.  The chart  displays  56 problems that  were 
solved  within  the  time  limit  by  the  both  compared  solvers.  Again,  the  dashed  line  x=2.81y 
represents a geometric mean of the time ratios.
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Figure 29: Comparison of the single state and the complex state transition constraint approach
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We will  now analyze the relation of the improvement time and the problem complexity.  We 
define the problem complexity as  the number  of  the state  variables  the planning problem has. 
Denoting this number M, we are comparing usage of M ternary constraints versus usage of single 
(2M+1)-ary constraint. Therefore using  M to define the problem complexity is a good choice for 
analyzing the improvement time ratio.

The hypothesis is that the effect of replacing M ternary constraints by single high-arity constraint 
will  be  more  significant  for  larger  M.  Results  of  the  experiment  are  shown  in  figure  30. 
Unfortunately, although some trend can be seen in the chart, no statistically significant conclusion 
can be made from the results of the experiment.

There are various reasons why the hypothesis was not supported by the experiment. One of the 
possible reasons is the distribution of the problems. The problems represent 14 families of planning 
problems. Each of the families has a particular characteristics and the selection of the problems may 
not  be representative.  Another  possible  cause  is  measuring the  total  search time instead of  the 
runtime of a single propagator call. And also the hypothesis may not have been supported by the 
experiments simply because the hypothesis is not valid.

 7.1.4 Comparison with an external solver

The  motivation  for  this  thesis  came  from  the  paper  of  Barták  and  Toropila  [2] studying 
formulation of planning problems into a CSP. For comparison, we also run the solver called SeP that 
Barták and Toropila developed to evaluate their findings in the paper. The paper and this thesis 
studies different problems: The paper was focusing on formulating the planning problem into the 
CSP.  The  authors  have  developed  and  implemented  many  techniques  that  concerns  more  the 
planning than the constraint satisfaction. The SeP solver was implemented in the SICStus Prolog. 
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Figure 30: dependency of the time improvement on the problem complexity
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On the other hand, this thesis focuses on the implementation of the AC filtering algorithms and 
implements only a part of the planning-originated techniques (breaking symmetries using action 
allovance, action relevance at the goal layer). Moreover, our experimental solver is implemented in 
the C++. Therefore the SeP and the genesis are so distant that their comparison cannot conclude into 
any scientific results. We use this comparison only to decide, whether this thesis brought an actual 
improvement for solving the planning problems.

The SeP solved 67 problems within the 1000 second time limit  while the genesis solved 65 
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Figure 31: comparison of runtimes of SeP and the best variant of genesis
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problems. Runtimes (10-iteration average) of 63 problems that were solved by both solvers are 
shown in figure 31. The genesis outperforms the SeP solver on about 87% of the problems. On the 
other  hand,  we  can  see  that  the  dominance  of  genesis  is  clear  for  simple  problems  but  less 
significant  for  harder  problems.  We presume that  the  genesis  solver  efficiently implements  the 
propagation.  On  the  other  hand,  the  SeP  profits  of  implementation  of  the  planning-related 
techniques when solving the harder problems.

 7.2 Evaluation of the elementary propagators

In chapter 5 we have described several binary propagators. The propagators differ in forms of the 
source and the target domain the propagators work with. There are three kinds of propagators: bit-
array ➝ bit-array,  list-of-intervals ➝ bit-array and bit-array ➝ list-of-intervals.  Algorithms of  the 
same kind are exchangeable. We have presented two propagators of kind “bit-array ➝ bit-array”: 
the AC-3.1 propagator and the Tree builder. In the category “list-of-intervals ➝ bit-array” we have 
proposed the Intersected Intervals Collector propagator and the Open-Close propagator. We will 
now evaluate these propagators.

First we will focus on the AC-3.1 propagator and the Tree builder. These propagators expect both 
the source and the target domain to be in the bit-array form. Therefore they are suitable for the 
subconstraints between the “Pi” and the “R” node in figure  26. There are two directions of the 
propagation: the upward Pi R and the downward R P➝ ➝ i. While the initial domain of the “R” may 
contain thousands of values, the “Pi” has typically the number of values is the order of tens. Recall 
our notation denoting dS the size of the source domain and dT the size of the target domain. The Tree 
builder time complexity, which in O(dS

2+dTdS log dS) in a single branch, is much more sensitive on 
the  source  domain  size  than  the  target  domain  size.  Therefore  using  the  Tree  builder  in  the 
downward direction,  where  dS would be 1000, is  inefficient.  On the other  hand, in the upward 
direction is dS relatively small and dT is large. In this case, the Tree builder may be competitive with 
the AC-3.1 propagator that has the time complexity O(dSdT).

We  have  tested  all  four  variants  of  the  propagator  usage.  The  most  efficient  is  the  one 
implementing the downward propagation using the AC-3.1 and the upward propagation by the Tree 
builder. We will call this variant “AB”. The “AA” variant uses the AC-3.1 propagator for both the 
upward and the downward direction and the “BB” variant uses the Tree builder propagator for both 
directions. The last variant (“BA”) uses the Tree builder for the downward propagation and the 
AC-3.1 propagator for the upward direction. Chart 3 in figure 32 shows the average of runtimes of 
these variants normalized to the best “AB” variant. Chart 1 shows the “AA” to “AB” runtime ratio 
depending on the domain size of the “R” pseudovariable. Analogically chart 2 shows the runtimes 
of the “BB” variant.

The second choice is whether to use the Intersected intervals collector (IIC) or the Open-Close 
propagator. These propagators expect the source domain in the list-of-intervals form and produce 
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the target domain in the bit-array form. Therefore we are using one of these propagators on arcs “O i 

” ”P➝ i”  and “Ni ” ”P➝ i” (of the subconstraint network depicted in figure 26). The arc “A ” ”R” is➝  
also of this kind, but in fact the arc represents an identity constraint, therefore it is handled in a 
different way.

Chart 5 shows the runtime ratio of the IIC and the Open-Close propagator. The x-axis of the 
chart represents problems sorted by their average “Oi ” and “Ni ” domain size increasingly. Both the 
IIC and the Open-Close performed well  in the experiments and it  is undecidable,  which of the 
propagators is more efficient.
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Figure 32: Results of the experiments comparing the propagators
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 8 Conclusion
In  this  thesis  we  have  studied  an  implementation  of  filtering  algorithms  for  the  constraints 

defined in extension. In order to represent the constraint domain, we have proposed a new concept 
of binarization. The constraint domain is decomposed into values of the newly created variables. 
The concept is so general, that many of the existing algorithms can be described in terms of the 
concept. Moreover, the concept can be used also for constraints that cannot be effectively expressed 
by the current  techniques such as MDD. For example,  the  (2M+1)-ary complex state-transition 
constraint  cannot  be  efficiently handled by the  existing filtering algorithms.  The set  of  ternary 
single-state  transition  constraints  must  be  used  instead.  The  experiments  showed  that  such 
replacement results in a loss of efficiency.

Another contribution of the binarization approach is expressed by the internal granularity. We 
can describe an internal structure of the existing algorithms in the perspective of our concept. The 
values of the revealed structure are typically pruned individually, in a fine-grained way. Using the 
coarse-grained  propagation  for  the  internal-structure  constraints  is  more  efficient,  as  the 
experiments show. Moreover, when handling the domains in the list-of-intervals form, the coarse-
grained approach also leads to an asymptotic improvement (of a logarithmic factor).

The requirements on the binarization were shown in the developed theory. We have presented 
guidelines  for  creating  the  internal  structure  by  a  human  modeler.  Also  the  algorithms  for  an 
automated  modeling  were  presented.  Unfortunately,  the  algorithms  are  more  costly  than  the 
propagation itself, therefore they are useful in special situations only.

We have presented several elementary propagators that can be used on the internal constraints. 
As the experiments show, each of the propagators is useful for particular constraints. For example, 
the Tree Builder is more efficient than the AC-3.1 propagator when the source domain is relatively 
small. This is typical in the upward phase of the propagation of the complex constraint. On the other 
hand,  the higher  nodes of the constraint's  internal structure have greater  domains,  therefore the 
AC-3.1 propagator is more suitable in the downward phase. The suitable propagators can be chosen 
not  only  when  modeling  the  constraint  structure,  but  also  the  solver  can  choose  the  suitable 
propagator at runtime.

At last, our findings contribute to efficiency of solving the planning problems, which was the 
motivation for our research.
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Appendix A: Notation in complexity estimates

Symbols  used  in  complexity  estimates  are  defined  in  different  parts  of  the  thesis.  We  will 
recapitulate their meaning here

Measures of the problem

e Number of constraints in the problem (edges in the constraint network)

Measures of constraints

a Constraint's arity

t Size of the constraint domain. Number of tuples

g Number of segments the constraint domain can be broken in. See chapter 5.3.1 for 
definition

r Number of (hyper)rectangles. Size of the smallest set of rectangles that covers the 
constraint domain

b Number of boxes in box collection constraint. See chapter 4.3.4 for definition

Measures of domains and sets

d Size of the initial domain.

c Size of the current domain (set). Count of elements

i Number of intervals (maximal with respect to inclusion) the current domain consist of. 
Size of list-of-intervals representation

Indices for variables of unidirectional binary propagation

dS cS iS Domain of the source variable, the domain that is left intact by the propagator

dT cT iT Domain of the target variable, the domain that is being pruned by the propagator
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