Charles University in Prague
Faculty of Mathematics and Physics

DIPLOMA THESIS

Be. Lukas Berka

Profiling Translation of Conceptual
Schemas to XML Schemas

Department of Software Engineering

Supervisor: Mgr. Martin Necasky, Ph.D.

Study Program: Computer Science, Software Systems

2010

In this part, I would like to express my gratitude to all who supported my efforts
during months of my work on this diploma thesis.

Thanks go to my supervisor, Mgr. Martin Necasky, Ph.D., for his kindness
as well as valuable and inspiring suggestions.

I would like to thank my family and my girlfriend Alena for their devoted
support during my studies.

I declare that I completed the submitted work individually and only used the
mentioned sources and literature. Concurrently, I give my permission for this
diploma thesis to be used for study purposes.

In Prague on August 6th, 2010 Be. Lukas Berka

Title: Profiling Translation of Conceptual Schemas to XML Schemas
Author: Bc. Lukés Berka

Department: Department of Software Engineering

Supervisor: Mgr. Martin Necasky, Ph.D.

Supervisor’s e-mail address: necasky@ksi.mff.cuni.cz

Abstract: In the present work we analyze the algorithm that was introduced in [4].
The algorithm performs a translation of a conceptual schema to an XML schema
expressed in the XML Schema language. We look for limitations of the algorithm and
try to discover parameters that can be potentially used to influence its behavior. We
propose solutions to the most serious limitations. Also, we introduce a concept of a
translation profiling. The concept is based on a configuration that contains a set of
parameters. We modify the algorithm to use the user requirements specified in the
configuration.

Thanks to the improvements, the new algorithm works with the concept of XML
Namespaces, uses XML Schema designs and also, focuses on an elimination of redun-
dancy. The elimination of redundancy in an output of the algorithm is an important
part of this work and we create a formal model that helps us to solve this task.

Keywords: XML, XML Schema, conceptual modeling, profiling

Nazev prace: Profilovani prekladu konceptudlnich schémat do XML schémat
Autor: Be. Lukas Berka

Katedra (dstav): Katedra softwarového inzenyrstvi

Vedouci diplomové prace: Mgr. Martin Necasky, Ph.D.

e-mail vedouciho: necasky@ksi.mff.cuni.cz

Abstrakt: Price se zabyva analyzou algoritmu pro pifevod konceptualnich schémat

do XML schémat v jazyce XML Schema, ktery byl uveden v [4]. Snazime se najit ne-

dostatky tohoto algoritmu a také hleddme parametry, kterymi by bylo mozné jeho béh

ovlivnit. Na zakladé zjisténych poznatku poté navrhujeme jeho vylepseni. Uvadime

také tzv. koncept profilovani prekladu. Tento koncept je zalozen na mnoziné parametru,
zvané konfigurace. Puvodni algoritmus je podle né&j upraven tak, aby zohlednoval

pozadavky, které uzivatel zada skrze svou konfiguraci.

Diky vSem nagim upravam je algoritmus schopny pracovat se jmennymi prostory
XML, s navrhovymi vzory pro jazyk XML Schema a ve svém vystupu omezuje vyskyt
uréitych typi redundanci. Ukol omezit redundance ve vystupu algoritmu je dilezitou
soucasti této prace a proto vytvarime formalni model, ktery ndm s feSenim tohoto
problému velmi pomah4.

Klicéova slova: XML, XML Schema, konceptudlni modelovani, profilovani

i

Contents

1 Introduction
1.1 Contribution
1.2 Outline.
2 Conceptual Modeling for XML
2.1 Conceptual Model XSEM
2.1.1 XSEM-ER
2.1.2 XSEM-H.
2.2 XCase Tool e
2.2.1 PIM/PSM Modeling
3 Basic Translation Algorithm
3.1 Brief Description
3.2 Input and Output Definition
3.2.1 Space of All XML Schemas
3.2.2 Algorithm Illustration
3.2.3 XML Schema of Output
3.3 Limitations
3.3.1 Design Patterns oo
3.3.2 No Redundancy Elimination
3.3.3 Model and Attribute Groups Names
3.3.4 Grouping Entitieso
4 Improving Translation Algorithm
4.1 Translation Profiling,
4.2 Improvement Proposals
4.2.1 More Design Patterns
4.2.2 Naming Masks for Groups
4.2.3 Considering Entity Groups

il

5 Redundancy Elimination
5.1 Redundancy in Attribute Declarations
5.1.1 Definition of Equivalence
5.1.2 Redundant Attribute Parts.
5.1.3 Redundant Attribute Declarations
5.2 Redundancy in Element Declarations
5.3 Nestings of Choices

6 Conclusions and Future Work
Bibliography

A XML Schema Translations of XSEM-H Constructs

v

48
49
93
56
67
5
79

84

86

88

Chapter 1

Introduction

Because of its simplicity, versatility and platform independence, XML [1] has
become a popular format for exchanging and representing structured and semi-
structured data [15][16]. As the amount of data represented in XML grows,
designing its representations effectively is becoming more and more important.

The representations of XML data are usually given by XML schemas and to
create them, we apply XML schema languages such as XML Schema [2], RELAX
NG [3], Schematron [17] or DTD [1]. Each XML schema language has its own
specifics, advantages and disadvantages [18]. XML schemas represent logical
models of XML documents.

When designing a new XML data representation its not easy to work on the
logical level only. The languages mentioned above provide a lot of constructs for
describing the structure of XML documents, but we can hardly express semantics
of data in them. A maintenance of created logical models brings the same
problem.

Constructing an XML schema in an XML schema language is difficult process,
because such languages are extensive and ambiguous, and non-technical users
cannot participate in it. Moreover, non-technical user can hardly understand
XML schemas written in that languages.

Therefore, we need to work on a higher level of abstraction first.

The described situation can be liken to the one in the world of relational
databases. Its not easy to design model of relational data directly on a logical
level, i.e. to design schemas of relational tables directly. Therefore, in a process
of designing relational databases we work on a conceptual level first.

There is the Entity-Relationship (E-R) [5] model for the conceptual model-
ing of relational data. Once the E-R model is constructed we can start creating
schemas of concrete tables.

The conceptual modeling is useful for designing of XML data representation
as well. The E-R model cannot be used for that purpose, because XML as a
logical database model has some special differences, e.g. XML has hierarchical
and irregular structure, ordering on siblings and mixed content. The E-R model
cannot deal with these special features.

Therefore, some extensions of the E-R model has been developed. However,
none of the extensions can express hierarchical structure of XML data. On the
other hand, models designed to express the hierarchical structure often have
problems with another XML features. A brief description of some models as
well as their comparison can be found in [4].

In present work, we are interested in a conceptual model for XML data
modeling called XSEM [4]. It consists of two parts, XSEM-ER and XSEM-H
models. The first part is an extension of the E-R model known from relational
databases, the second is used to express the hierarchical principle of XML data.

The conceptual model XSEM is implemented in some tools for XML data
modeling, e.g. in XCase tool [10].

After we create an XML schema on a conceptual level, it is good to design
data representation at a lower level, the logical one. A translation of an XML
schema from the conceptual level to the logical one can be done automatically.
An example of algorithm realizing such a translation can be found in [4].

However, the algorithm introduced in [4] is just a basic algorithm that needs
improvements. Another problem of the algorithm is that its process is fully au-
tomatical and cannot be influenced by preset parameters.

1.1 Contribution

In this thesis, we introduce a concept of profiling a translation from a conceptual

model XSEM to an XML schema expressed in the XML Schema language.
Thanks to the concept, everyone who wants to use the algorithm, described

in [4], is able to get the result that best suits his needs. The only thing the

user must do is to create his own configuration for the translation process. The
configuration can be also called the user profile.

We assume that once the user creates his profile, he should be able to save
it in a persistent storage and then, load it and reuse it at any time.

Another benefit of this work are improvements to the original translation
algorithm. Some of them are simple, some are complex, but all the improvements
are clearly described.

For example, thanks to the improvements the new version of the algorithm
works with the concept of XML Namespaces [14], uses XML Schema designs [13]
and also, focuses on an elimination of redundancy.

The description of the solution of the redundancy elimination problem is
considered to be an important part of this work. There are several types of
redundancy in an arbitrary output of the translation algorithm. For some of
them, we create a formal model that helps us to design algorithms for redun-
dancy elimination.

1.2 Outline

The rest of this work is organized as follows. In Chapter 2, we focus on a con-
ceptual modeling for XML, on its specifics and typical problems. We describe
the conceptual model XSEM in brief, we discuss which items it typically contains.

In Chapter 3, we describe a basic algorithm for translation of XML schemas
from the conceptual level into the XML Schema language. The algorithm was
originaly introduced in [4]. In this work, we describe it only in brief. In detail,
we focus on its limitations and show an XML schema, against which all of its
outputs are valid.

Chapter 4 is intended to bring some improvements proposals of the algorithm
described in Chapter 3. Moreover, in Chapter 4, we propose a concept of profiling
the translation process that helps users get results that best suits their needs.

In Chapter 5, we introduce the most important improvement of the basic
translation algorithm. We propose the algorithms for redundancy elimination
there.

Finally, Chapter 6 concludes and provides some future directions in our re-
search.

Chapter 2
Conceptual Modeling for XML

When designing an XML data representation we usually start on a pretty high
level of abstraction called a conceptual level. On that level we try to create a con-
ceptual model that describes the XML data independently of its representation
in XML documents.

That process is analogical to the one in the world of relational databases,
where we have a relational model as the logical one and the Entity-Relationship
(E-R) model [5] as the conceptual one.

There are several approaches to a conceptual modeling for XML. Conceptual
models can be based on the E-R model, the model of UML class diagrams, an
Object Role Modeling (ORM) or we can use a hierarchical approach for XML
data modeling.

Both the first two groups consist of models that are based on extending
the original models with new modeling constructs. With those constructs, the
models can express special features of XML, such as hierarchical and irregular
structure of a modeled data, mixed content or ordering on siblings.

The models based on the E-R model are especially these: Extended E-R [6],
EReX [7], EER [8], XER [9], etc.

Using this approach, the XML representation of the data is modeled directly
on the conceptual level. That means, when designing the conceptual schema we
have to concentrate on XML specific implementation details which is not easy
especially for non-technical users.

The UML-based approaches to conceptual modeling of XML usually ap-

ply Model-Driven Architecture (MDA) [11]. According to MDA, a conceptual
schema should be modeled in Platform-Independent Model (PIM) first. PIM
describes data independently of representations in XML documents.

After that, an XML schema in a Platform-Specific Model (PSM) should
be designed. The PSM specifies how the components of the PIM model are
represented in a given type of XML documents.

Several PSM schemas can be derived from the same PIM schema. Such a
derivation is fully automatical and that is the problem. PSM schemas should be
designed with respect to user requirements which cannot be done automaticaly.

A brief description of some conceptual models for XML as well as their com-
parison can be found in [4]. In present work, we are interested in the conceptual
model for XML data modeling called XSEM, which was introduced in [4].

In Section 2.1, we describe the XSEM model in brief. In Section 2.2, we
present a tool for XML data modeling called XCase, which implements the men-
tioned conceptual model.

2.1 Conceptual Model XSEM

The XSEM model is based on the idea that the XML schema design process
must be composed of two parts to be applicable in practice.

The first part should care about modeling the data on the conceptual level
abstracted from its representation in XML. The second part should model how
the data is represented in different types of XML documents.

In XSEM, the strict separation of the modeling process is achieved by divid-
ing the model to two parts: XSEM-ER and XSEM-H. We focus on these parts
in Section 2.1.1 and Section 2.1.2.

2.1.1 XSEM-ER

XSEM-ER is a conceptual model, extending the E-R model [5], that is not
influenced by XML schema languages or special features of an XML data model.

It is clear and self-describing, which makes non-technical users (investors,
stakeholders) able to understand it and participate on the process of XML

schema design.

The XSEM-ER is a platform-independent model (PIM) from the Model-
Driven Architecture (MDA) [11] point of view.

As an extension of E-R model, XSEM-ER provides two basic modeling con-
structs: entity type and relationship type.

The entity types model sets of real-world objects - entities. The entities
with the same semantics (e.g. all customers) are modeled by the same entity
type. Each entity type has a name and some attributes, that model properties
of corresponding entities. There can not be two attributes with the same name
in the same entity type.

Also, we have so-called weak entity types. There is only one difference be-
tween the ordinary (strong) entity types and the weak ones. The weak entity
types can’t be stand-alone, they always depend on existence of another entity
type. The definition of weak entity type includes a list of all entity types, which
the weak type depends on.

In E-R model each entity type (both strong and weak) has a key, which is a
subset of its attributes. Attributes of an entity type can be simple, composite,
multivalued or choice. In contrast, in XSEM-ER model only simple attributes
are considered and entity type keys are not considered at all.

The relationship types model relationships between entities, e.g. the fact
that a customer makes a purchase. Like entity types, relationship types have
their names and attributes. Relationships with the same semantics are grouped
to a relationship set, which is modeled as a relationship type in E-R model.

Two or more entities may participate in the relationship. Each of them may
have its role assigned. Especially, the roles are useful when a given entity type
participates in the same relationship type twice or more times. In that case,
such participations are distinguished by the roles.

The relationship types with more than two participants are allowed. It is
necessary to constraint the number of instances of a relationship type in which
an instance of a given entity type can appear. For this, cardinality constraints
are applied. A cardinality constraint is a pair (m,n), where m and n are natural
numbers including 0 and * (infinity) and m is lower than n.

The E-R model has an extension called IS-A hierarchies, which is used
to classify instances of a general entity type G to more specific entity types

. - offers part
Regicn Supplier = — Part
- TAme - supplier-no - part-no
1 b -
- phone
in Messenger - 1 2
o+ g supplisd by we o suppliss
- MESSENZET-T0 T -
Addrass & Al
0.* Van Supply ProduciSet
- sireet for
- postcode - VAN-Tuo - m‘;mdate - a.mnu;t. i
- eity b messenger 0 - Suppiy-C - completion-date
- - unit-price
0.1 b 'i.-'a;l// 0.
delrver to 0 * ¥ produces
0.1 i)
1 o Purch 1 1.* - purchases —
Customer urchase m roduct
miakes contained in n.* 1
- CUSTOMET-No - purchase-no - amount - produci-no
- hame - date - unii-price - title
- email - price
- color
parent 1.1 0.* - tax
Catalogue contains [0 * Category R
- name categary | 0.1 - title product
0.*1 child [0
contains

Figure 2.1: Sample XSEM-ER Schema

S1,S9,...,5,. It means that an instance of a specific entity type .S; is also an
instance of G and has values of its attributes.

The fact that S; is a specific entity type to a general entity type G can be
written (S;, G)rs—a-

Unlike other models that extend the E-R model, XSEM-ER doesn’t contain
new modeling constructs applying the special features of XML. The only ex-
tending modeling construct is called a cluster type. It should be applied for
modeling irregular data on the conceptual level.

For example, for the modeled data, there can be a requirement that a pur-
chase order is assisted by a sales person or a web application. Both possibilities
must be expressed.

A cluster type is a solution, because it can group two or more entity types.
It can be assigned as a participant to a relationship type or a determinant to a
weak entity type. Even entity types with no common semantics can be grouped
by a cluster type.

In Figure 2.1 there is a sample XSEM-ER schema. In this text, we describe
the ways of displaying the PIM objects just in words. Their illustrations can be
found on many XSEM-ER examples in [4].

An entity type is displayed by a rectangle, containing the name of the entity
type and list of its attributes (datatypes are not shown). If the entity type is
weak, moreover, an inner hexagon is added.

A relationship type is displayed by a hexagon, again, with the name and the
attributes listed. The participants are connected with the hexagon by a solid
arrow oriented from the relationship type to the participant.

An IS-A relationship type is displayed by an empty arrow oriented from the
special to the general entity type. A cluster type is represented by a small circle
with a symbol + in it.

2.1.2 XSEM-H

XSEM-H is a platform-specific model (PSM) from the MDA point of view. It
expresses how data modeled by XSEM-ER models are represented in XML doc-
uments.

Schemas expressed in the XSEM-H model are called XSEM-H views. Each
XSEM-H view is a graph that models a given type of XML documents. Its nodes
are formed by the entity and relationship types, defined in XSEM-ER models.
Its edges are formed by so called hiararchical projections of node types.

The hierarchical projection of a relationship or a weak entity type is an
expression specifying a required hierarchical representation of a given type in a
formal way. Each hierarchical projection consists of two entity or relationship
types called parent and child, and a sequence of entity or relationship types,
which is called a context.

An entity or relationship type from an XSEM-ER schema can be represented
two or more times in the same XSEM-H view. Each node in an XSEM-H view
can have some attributes, content and element label.

An attribute set of an XSEM-H view node is a subset of all attributes of
the entity or the relationship type, which is represented by the node. Each
attribute can have its alias assigned. If we want an attribute to model an XML

purchasa-raque st catalogue
Purchase Catalogue
- dale - mame
]
1 L | e
messenger it Category
Customer Messenger Van ltem I - tifle
= Gughomer-ng - MESSENGEr-no - Wan-no AS no 0.* v
AS cusing AS na 3 cat " prod
Catego 1 Product
- amount Product | _Taeey)
= unit-price - product-ne
AS price - product-no AS no
AS prodno T

- titla
- color
| w s

Figure 2.2: Sample XSEM-H View

element instead of an XML attribute, we put it into a special construction called
attribute container.

A content of a node is an ordered sequence of edges going from the node
and attribute containers (and content containers, content choices, see below)
assigned to the node.

An element label of a node is optional.

In an XSEM-H view, sometimes, we need to specify that XML elements,
modeled by one or more edges in a content of the node, are enclosed into a
separate XML element. For that purpose, there is a construction called con-
tent container in the XSEM-H model. Content container has always its name
assigned.

Sometimes, XML documents have an irregular structure, e.g. a purchase
order can be made by a new or an existing customer. We must be able to
expressed the situation in our XML schema. For modelling such an irregular
structure, content choices and node choices are defined in XSEM-H.

A structural representative is a construction that is useful when different
nodes of an XSEM-H view represent the same entity or relationship type.
Without using the structural representative we must repeat the same repre-

sentation several times at different locations in the XSEM-H view. Using the

construction, a recursive structure of data can be expressed, as well as IS-A hi-
erarchies described in XSEM-ER.

The detailed description of the XSEM-H model in [4] also focuses on two
other features, very typical for XML: an ordering of edges (of a node) and a
representation of mixed content.

In Figure 2.2 there are sample XSEM-H views, both are based on the XSEM-
ER schema shown in Figure 2.1.

The views are visualized as follows: A node is a rectangle. In the rectangle a
name of the node can be found. A list of its attributes is shown under the node
name. An element label of the node is displayed above the rectangle. An edge
is represented by a solid arrow oriented from the parent to the child node. For
each edge the cardinality of the parent node is displayed.

2.2 XCase Tool

In this section, we provide an example of work with a case tool for conceptual
modeling for XML called XCase. It implements the conceptual model XSEM
described in Section 2.1 and allows user to design XML schemas at the conceptual
level in a comfortable way.

The process of XML schema design is separated in two parts, as required
by the XSEM model. In XCase, PIM diagrams are realizations of XSEM-ER
models, while PSM diagrams are realizations of XSEM-H models.

We want to give you a basic idea, what is the XCase tool good for and how
the XSEM model is implemented in it. More detailed description of the appli-
cation can be found in the oficial XCase User Guide.

2.2.1 PIM/PSM Modeling

We demonstrate work with XCase on an example, on which we can show most
of special XSEM constructions easily.

10

Customer Purchase
1 0.* 1> Item
name : string purchase-no : string -
) . r . amount ! integer
ernail : string [rmakes } issue-date : date 1 L .
\ . . unit-price : decima
customer-no : string expedition-date : date o
0.1 0.1 1|
deliver-to | (bil-to) Product
code : string
1 1 title : stning
unit-price : decirma
; Address description : string
Reglun street : string color : string
name : string | 1 0.* | postcode : string size : string
city : string weight : string

Figure 2.3: Sample PIM Diagram, Sales

We have a company that produces and sells some products. We want to
model a purchase request for the company.

When modeling the situation in XCase tool, first, we must make the decision
what entity types should be used and what relations the model should contain.
With this knowledge we can construct a PIM diagram, illustrated in Figure 2.3.

In Figure 2.3 rectangles with labels Customer, Purchase, Item, Product, Ad-
dress and Region represent entity types of the XSEM-ER model.

In top parts of the rectangles there are names of the entity types. Attributes
of each entity type are displayed under the names. Their names and datatypes
are listed.

In this example no relationship types are included. Instead, labels makes,
deliver-to and bill-to are added to some associations.

Figure 2.4 illustrates a PSM diagram of a purchase request. It represents an
XSEM-H view, as introduced in Section 2.1.2.

The XCase tool won'’t let you put a node, that is not defined in any PIM
diagram, to your PSM diagram. It also checks if the relationships at the PSM
level and at the PIM level are mutually consistent.

11

purchase-reguest

Purchase \
1 l; Y - f item list :'

delivery-address bill-address

1 / \ 1 ‘ Address ‘ DeliveryAddress 1.*
DeliveryAddress BillAddress iterm

new-customer reg-customer |) Item
Custormner Customer
‘ NewCustomer RegCustomer Street : string 1
customer-no : string posteode : string
city : string Product

name : string

Coge | 5Irng

email : strin
title : string

Figure 2.4: Sample PSM Diagram, Purchase Request

Nodes of the PSM diagram, depicted as rectangles, are mainly derived from
the entity types of the PIM diagram. The grey node with label item list is a
content container. The grey circle with vertical line in it is a content choice.
Attribute containers are depicted as nameless rectangles with attribute declara-
tions only.

The blue rectangle with label BillAddress is a structural representative of the
one with label DeliveryAddress.

12

Chapter 3

Basic Translation Algorithm

Modeling data representation on the conceptual level first is very benefical, but
for practical reasons we need a possibility to convert an XSEM-H model onto
the logical level. For modeling of XML data representation, the logical level is
represented by its expression in any XML schema language.

The translation from the conceptual level to the logical one can be done
automatically. An example of an algorithm realizing such a translation can be
found in [4], where an output of the algorithm is written in the XML Schema
language. In this work, let us call it the basic translation algorithm.

In Section 3.1 we focus on brief description of the basic translation algorithm
and in Section 3.3 we discuss some of its limitations. The algorithm is presented
with a descriptive example of its input and corresponding output. In Section 3.2
a set of all possible outputs of the algorithm is defined formally.

3.1 Brief Description

We describe the basic translation algorithm in brief and demonstrate it on an
example. A detailed description of the algorithm can be found in [4]. In Ap-
pendix A at the end of this thesis, we summarize the translation of the XSEM-H
constructs in a table.

The basic translation algorithm gets an XSEM-H view as its input structure
and gives an output in the XML Schema language. For each root node of the

13

view, it creates a global declaration, continues with translation of the node’s
contents and then proceeds recursively.

Nodes of an XSEM-H view with defined element labels are translated to
global zs:complexType definitions. Root nodes also add global xs:element def-
initions. Nodes without element labels are translated into model groups and
attribute groups.

Each XSEM-H view node has some attributes and contents. Attributes model
a set of XML attributes. Contents model a sequences of XML elements and are
translated to a ws:sequence constructions. Each content is an edge, attribute
container, content container, or a content choice.

Edges of an XSEM-H view are translated into element declarations referenc-
ing complex types if child of the association is translated into a complex type.
If it is translated into groups, references to the groups are propagated to the
complex types above.

An attribute container is translated to a sequence of element declarations.

A content container is translated to an element declaration and a complex
type declaration, that is a child of the element declaration. A content of the
content container is translated to a zs:sequence of the complex type declaration.

A content choice is translated to a zs:choice content model. Translations of
its contents are placed directly in the zs:choice construction.

The XSEM-H model defines a structural representative construct, as de-
scribed in 2.1.2. Let U be a structural representative of V. If V does not have an
element label, it is translated to a model and attribute group. If it does have an
element label, it’s not translated into a complex type, as expected. Instead, it’s
translated into an attribute group, a model group and a complex type definition.
The complex type definition contains references to both the groups.

U itself is translated to a zs:sequence content model, that contains a reference
to the model group of V, as well as translations of contents of U. Attributes of
U are translated to a reference to the attribute group of V and translations of
attributes of U.

For each child of U without an element label and not contained in a content
container, a translation of attributes of U is extended with the reference to the
attribute group translated from the child (if there is any).

14

<xs:schema...»
<¥5:element name="purchase-request” type="Purchase” /=

<xs:complexType name="Purchase" =
<X5:seqUences
<x5:choice=
<xs:element name="naw-customer” type="NewCustomer" =
<xs:element name="reg-customer” type="RegCustomer /=
< fxs:choicex
<¥5:element name="delivery-addrass”
type="DeliveryAddress” /=
<xs:element name="bill-address" type="BillAddress" /=
<%5:element name="tem-list"=
<xswcomplexType:s
<¥SI5eqUEnces
<xs:element name="ttem” type="Ttem"
maxOccurs="unbounded” /=
<[¥515equences
<fusicomplexTypes
< fxs:element:=
< [¥5:5equUences
< fxscomplexTypes

<xs:complexType name="MewCustomer"=
<X5:seqUences
<¥5:element name="name" type="xs:string" />
<x5:element name="email" type="xs:string” /=
< f¥5:580qUEnce:
< fxs.complexType=

<¥5:complexType name="RegCustomer":=
<xs:attribute name="customer-no" type="xs:string"
use="required” /=
< fxscomplexTypes

<¥5:complexType name="Deliveryaddress™
<¥5Isequence:
=x5:group ref="DeliveryAddress-c" />
< [¥5:5equUences
< fxs:complexTypes

<¥5:aroup name="Deliveryaddress-c™=
<¥Sisequences
<x5:element name="street” type="xs:string" />
<%5:element name="postcode”
type="xs:string" =
<¥5:element name="dty" type="xs:string” /=
< f¥5:5e0qUence:
< f¥5:group=

<¥s:complexType name="Billaddress"=
<HSI5egUEnCE
<xs:group ref="Deliveryfddress-c" /=
=[¥5iseqUences
< fxsicomplexType:=

<xs:complexType name="Ttem">
<X5:SeqUEnce>
<xs:aroup ref="Product-c” /=
<¥s:element name="amount” type="ys:int" /=
< [¥s:sequence:
<xs:attributeGroup ref="Product-a" /=
< fxsicomplexTypes

<¥5:aroup name="Product-c"=
<X5:SeqUEnce>
=x5:element name="title" type="xs:string" />
< [¥sisequences
< f¥s:group=

<¥s:attributeGroup name="Product-a"=
<xs:attribute name="code" type="xs:string"
use="required" /=
< f¥s:attributeGroup:=
=[%s:5chema=

Figure 3.1: Sample Basic Algorithm Result, Purchase Request

15

XSEM-ER model allows defining generalizations using special constructs
called IS-A hierarchies. The XML Schema language has adequate constructions
to allow translations of such relationships. Let U be a node specialized by V7,

. Vo

If U has an element label, it’s translated to a complex type definition. If U
is abstract, the complex type definition has the parameter abstract set to true.
Then, each V; is translated to a complex type definition containing xs:complexContent
and zs:extension constructs. The wxs:ertension has its base set to the name of
complex type definition translated from U and contains both a translation of V;
content and a translation of V; attributes.

If U does not have an element label, it’s translated to a model group and
attribute group. If V; does not have an element label as well, it is translated to
a model group and attribute group.

Figure 3.1 illustrates an XML schema resulting from basic translation of the
XSEM-H view from Figure 2.4.

As you can see, nodes Purchase, NewCustomer, RegCustomer, DeliveryAd-
dress, BillAddress and Item have element labels and therefore they are translated
into complex type declarations.

BillAddress is a structural representative of DeliveryAddress, therefore the
DeliveryAddress is translated not only into the complex type declaration, but
into the model group DeliveryAddress-c as well.

Thanks to that, the content of DeliveryAddress can be referenced from Bil-
[Address complex type, using a reference to the model group.

There are four attribute containers in the XSEM-H view. Their translations
can be found easily, e.g. translation of the attribute container with name and
mail attributes is included in a declaration of the complex type NewCustomer.

Content container item list results in a local declaration of element item-list

with local and nameless complex type declaration. Content choice between New-
Customer and RegCustomer is translated into a xs:choice construct, as expected.

3.2 Input and Output Definition

From Section 3.1 we know how the basic translation algorithm works. Now, we
try to clear up how its regular output may and may not look like. We create a

16

graphical notion, that will help us in next chapters with description of limita-
tions and proposed improvements of the algorithm.

Also, using PSM diagrams we describe an XML schema against which all the
possible outputs of the basic translation algorithm are valid. We refer to these
diagrams at least from Chapter 5, where we are looking for types of redundancy
that can occur in an arbitrary output of the basic translation algorithm.

Generally, an input of the algorithm is an XSEM-H view. An output is an
XML schema expressed in the XML Schema language. When working with an
output of the algorithm, we often use terms from the world of XML.

Therefore, if we say that something is a parent or a child of something else,
we refer to their relationship in an XML structure of an XSD document.

3.2.1 Space of All XML Schemas

Let us imagine a space of all existing XML schemas and let our image be very
abstracted. That means, in our imagination items of the space are not expressed
in any XML schema language nor displayed in any model, like XSEM.

Definition 1 XD s a set of all XML documents. XS is a set of all XML
schemas. Let xd,, € XD and xs,, € XS. Then xd,, < xs, denotes the fact that
an XML document xd,, is valid against an XML schema xs,.

For every XML schema language, a set of all XML schemas expressible in
the language is a subset of X.S. Now, we want to know how intersections of all
these subsets look like.

Because of both input and output of the algorithm are XML schemas, also, we
want to know how sets of all inputs and outputs look like in X'S. In the following
text we present a graphical idea of how approximately XS is organized.

17

Ex)g":L Schema

XD

-
=D
Schematron

Schematron
EXEJ.

Figure 3.2: The Most Widely Used XML Schema Languages

Definition 2 Let L be an XML schema language. Then XS is a set of all
XML schemas expressible in L. Further, ¥V xs; € XS

o ifrs; € XSy, EXfSZ, is a set of all possible expressions of xs; in L

o ifws; ¢ XSy, EXL is an empty set

Figure 3.2 demonstrates Definitions 1 and 2. It shows XS, a space of all
existing XML schemas. According to Definition 2, each subset of XS has a
name of a particular XML schema language as its subscript and consists of all
XML schemas expressible in that language.

We consider only the most widely used languages for XML schema descrip-
tion, i.e. XML Schema [2], RELAX NG [3], DTD [1] and Schematron [17]. For
convenience, in Figure 3.2, the subsets are distinguished by color.

Let sy, ..., xs, be particular XML schemas. Two of them, xs; and zs; are
depicted in Figure 3.2. The dashed line is directed from an XML schema to
a set of all expressions of the schema in a specified language. The dotted line
from X D towards the schema represents a fact that the schema describes a set
of XML documents, from which the arrow heads.

YV xd,, € S1: xd,, <xs;

18

In the following text we consider the XML Schema language (the red one)
only, because the basic algorithm cannot give an output in another language.
The other languages are shown in Figure 3.2 just for giving the reader the right
context. Therefore, you won’t see them in next figures. For the XML Schema
language let us define a synonym XSch. Thanks to the synonym next formulas
and figures are more transparent.

XML Schema ~ XSch

We already know which XML schemas are expressible in the XML Schema
language - simply those within the red area. That means, the basic algorithm
cannot give as its output an XML schema, that doesn’t belong to the red area.

Now we wonder where an area of XML schemas, expressible in the conceptual
model XSEM-H, lies. That means, we are looking for graphical expression of a
set of all the possible inputs of the algorithm. We call the set with a symbol
X Sxseym and we mark it with a green color in next figures.

Important fact to realize is that translation algorithm can work correctly
only for XML schemas belonging into both the areas, i.e. for XML schemas
from XSXSch N XSXSEM

If XSxseym was a subset of X Sxgen, the algorithm would be perfect, because
for every input XSEM-H view there would be no loss of information during the
translation. Unfortunately, this is not true, because some constructions of the
XSEM-H model cannot be converted into the XML Schema language.

For example, in XSEM-H view we can model the situation that element of
an XML document can have either attribute A or attribute B. Such a choice
between attributes cannot be expressed in the XML Schema language.

The X Sxspy area must certainly lie within XS, which is the space of all
XML schemas. The X Sxgsgay area must also be at least partly involved within
the X Sxscn, which means that translation algorithm gives an output for at least
one XSEM-H view. This is obvious from the very definition of the algorithm.

At the same time the X Sxsgps region acts outside the X Sx g, because not
all XSEM-H models can be converted to the XML Schema language without
losing an information, as said already.

Figure 3.3 provides a graphical representation of the XSxggy area. It is
divided into subareas A and B. All XML schemas, expressible both in XSEM-H

19

Exﬁ:l' Schema

Figure 3.3: XML Schemas Expressible in XSEM-H Model

model and XML Schema language, reside in A. Those which cannot be expressed
in the XML Schema language can be found in B.

3.2.2 Algorithm Illustration

The algorithm performing the translation from XSEM-H model into the XML
Schema language is a function, assigning exactly one item of EXx)gffh to each
item of EXXSFM where xs; is any item of X Sxgpy and xs,, is an item of A.
For better illustration, let us introduce some examples.

We want to describe a structure of a certain set of XML documents, that
means we need to create an XML schema, against which all documents from
the set are valid. Let us suppose that zs; from Figure 3.4 is the required XML
schema. Using a conceptual modeling we create an XSEM-H view of zs;. In
Figure 3.4 the view is represented by one of four rectangles in £X 5;5 EM

When we run the basic algorithm, the XSEM-H view is converted to an item
of EX;,°". Such an item is an XML schema expressed in the XML Schema

language. In Figure 3.4 this conversion is expressed with blue arrow.

As a second example, we want to perform the translation of XML schema zs,,.

20

%Sch
ExXee

Figure 3.4: Basic Translation Algorithm Process

The problem is that no expression of xs, exists in the XML Schema language,
as it doesn’t belong to the red circle. If translation of xs, shall be performed
anyway, some loss of information will be neccessary. In that case, the algorithm
changes the XML schema automatically before the whole translation process
starts, and then XML Schema output corresponds to the XML schema xs,,, that
describes a slightly different structure of XML documents than xs,.

3.2.3 XML Schema of Output

For each XML schema xs; from X Sxg., N X Sxsey the algorithm translates its
XSEM-H expression to an expression in the XML Schema language. However,
it doesn’t use all existing constructions of that language. In this section we de-
scribe which parts of the XML Schema language the algorithm uses.

We want to find out not only which XML Schema elements the algorithm
uses. Also, we want to know how those elements can be arranged in an XML
structure of an output of the algorithm.

In other words, we are looking for a schema against which an output of the
algorithm is valid, regardless of which input the algorithm gets. We call it xsopr
in this text.

21

Obviously, zsoyr € XS because each XML schema expression in the XML
Schema language is a set of XML documents, interconnected by import and in-
clude XML Schema constructions. Formally

Vaxs; € XSxsen V exy € EXi;SCh cex, € XD

Note: Moreover, if the XML Schema expression ex) of an XML schema was created by
the basic translation algorithm, then ex; € X D. That’s because the basic algorithm always

generates only one XML document. It doesn’t use import and include constructions.

We express zsopr in a form of PSM diagrams, created in the XCase tool.
The diagrams are depicted in Figures 3.5 - 3.8.

Furthermore, we bring short comparison of zsoyr to the XML Schema of the
whole XML Schema language called xsxgsq,. Thanks to the comparison, we can
see which constructions of the language are not used by the basic translation
algorithm.

The XML schema xsxgcqn, describing the whole XML Schema language, de-
clares 42 XML elements. They are listed below. Those, that are declared in
rsour as well, are written in blue.

schema, element, group, attribute, attributeGroup, sequence,
complexContent, extension, complexType, choice, anyAttribute,
simpleType, restriction, simpleContent, all, annotation, include,
redefine, import, selector, field, unique, key, keyref, notation,
appinfo, documentation, list, union, minExclusive, minInclusive,
maxExclusive, maxInclusive, totalDigits, fractionDigits, length,
minlLength, maxLength, enumeration, whiteSpace, pattern, any

The conceptual model XSEM has no constructions to express user defined
simple datatypes, therefore, xspoyr cannot define XML elements for description
of new simple types, as rsxse, does. That’s why simpleContent, restriction and
simple Type elements and elements from list to pattern (including both) cannot
be written in blue.

An output of the basic translation algorithm has always schema as its root
XML element. As illustrated in Figure 3.5 there can be any number of XML

22

schema

schema

xmilns : string

targetMamespace : string

elementFarmDefault : string [qualified]

0.”

2N

complexType group attriouteGroup element
toplLevelComplexType namedGroup namedAttrGroup toplLevelElement
name : string id : string | id : string name : string

abstract : boolean [false] {0.1}

| complexTypeModel

segQuUence

explicitGroup

0.r

type : string

Figure 3.5: Translation Result XML Schema, Top Part

23

particle

1 1 1
element choice group
localElement explicitGroup groupRef
name : string minCeccurs : integer [1] {0..1} ref : string
type : string {0..1} maxOccurs : integer [1] {0..1} minOceurs : integer [1] {0..1}
minQOccurs @ integer [1] {0..1} maxOccurs @ integer [1] {0..1}
maxOccurs @ integer [1] {0..1} 0.
0.1]
particle
localElementModel

Figure 3.6: Translation Result XML Schema, Particle

complexTypeModel

complexContent

‘ complexContent
J/ 1 .= 0.*
extension attributeGroup
extensionType explicitGroup namedAttrGroup ‘ attrDecl |
base : string id : string
0.1 0.*
1 0.*
group
sequence namedGroup | particle |
‘ explicitGroup | attrDecl | id : string |
0.*

Figure 3.7: Translation Result XML Schema, Complex Type

24

| localElementModel |

:

complexType

) / \ 1 localComplexType
mixed : string [false] {0..1}

attribute attributeGroup
attribute attributeGroupRef 1 0.”
name : string ref : string sequence attributeGroup
type : string ‘ explicitGroup attributeGroupRef
use : string [opticnal] {0..1} T
default : string {0..1} 0.* J/ .

Figure 3.8: Translation Result XML Schema, Others

elements complexType, group, attributeGroup and element in the roles of its
children.

We can see clearly, which XML attribute declarations are acceptable here.
Unlike the possibilities of the XML Schema language there can be no simple
type or attribute declaration as a child of the schema element.

Obviously, the group, complexType and extension elements can have a se-
quence element as their child. But they cannot have choice or all elements as
their children, in contrast to the situation in the zsxg.,, XML schema. This
restriction of xsopyr is used later in Section 5.3.

Another difference between zsopr and xsxse, is that in xsopr complexCon-
tent element cannot have XML element restriction among its children.

In Figures 3.5 - 3.8 some nodes are blue. That is meant to express the fact
that content of the node is not declared directly under it, but somewhere else in
the figure, or possibly in one of three other PSM diagrams.

Thanks to that the figures are clearer and declarations of nodes are not re-
peated unnecessarily.

25

3.3 Limitations

An XSEM-H view, as an input of the basic translation algorithm, is used to
describe a structure of a given type of XML documents on the conceptual level.
An XML Schema language, as an output of the basic translation algorithm, is
used for the same purpose on the logical level.

Both these ways of XML schema expression have their specifics and a good
translation algorithm should take advantage of them as much as possible.

In this section, we focus on some limitations and insufficiencies of the basic
translation algorithm. However, their solutions are not proposed here, they are
discussed later in Section 4.2 and Chapter 5.

Note that our target is not to discuss all existing limitations of the basic
translation algorithm. We want to find solutions to just a small subset of them
- only the ones, the solution of which is not easy and makes us to propose some
special algorithms.

The fact, that the translation algorithm cannot be influenced in its run-time
by preset parameters, is not considered to be a limitation. Therefore, we don’t
discuss it here, but later in Section 4.1, which is devoted to proposed improve-
ments.

3.3.1 Design Patterns

As with software design, there are design patterns associated with XML schema
design in the XML Schema language. In this language we have thousands of
ways of constructing an XML schema. Choosing the appropriate pattern is a
critical step. Once we have made a choice, switching the pattern to another one
without specialized GUI tools is inconvenient.

The most popular XML Schema design patterns are Salami Slice, Russian
Doll, Venetian Blind [12][13] and Garden of Eden [13].

The basic translation algorithm generates its output in a design pattern, very
similar to Venetian Blind. This fact can be limiting for advanced users, e.g. for
those who are used to work with XML schemas in Salami Slice design pattern.
The algorithm should be able to generate XML schemas in every well-known de-

26

sign pattern and user should have chance to decide which one is suitable for him.

Let us describe in brief the world’s most widely used XML Schema design
patterns. The description of each design pattern includes a table of its main
advantages and disadvantages.

Salami Slice

All elements in the Salami Slice design are global. No nesting of element dec-
larations is required and we can reuse the declarations throughout the XML
schema.

The fact that all the elements are global means a greater degree of reusabil-
ity than Russian Doll and Venetian Blind design patterns. However, this design
pattern contains many potential root elements.

Advantages Disadvantages
Contains all reusable elements. Exposes the complexity in names-
pace.
Supports reuse of elements from | Renders the root difficult to deter-
other documents. mine.

Russian Doll

The Russian Doll design contains only one single global element. All the other
elements are local. We nest element declarations within a single global declara-
tion.

Since it contains only one single global element, the Russian Doll is the sim-
plest pattern to use by instance developers. However, if its types or elements are
intended for reuse, the Russian Doll design pattern is not suitable for schema
developers.

27

Advantages Disadvantages
Contains only one valid root ele- | Allows reuse for all or no elements.
ment.
Could reduce the complexity of | Supports single-file schemas only.
namespace, depending on the ele-
mentFormDefault attribute of the
schema.

Venetian Blind

The Venetian Blind design pattern contains only one global element. All the
other elements are local. We nest element declarations within a single global
declaration by means of named complex types and element groups. We can
reuse those types and groups throughout the schema.

Venetian Blind is an extension of Russian Doll, in which all the types are
defined globally. Because it has only one single root element and all its types
are reusable, Venetian Blind is suitable for use by both instance developers and
schema developers.

Advantages Disadvantages
Contains only one single root ele- | Limits encapsulation by exposing
ment. types.
Allows reuse for all the types and
the single global element.
Allows multiple files.

Garden of Eden

The Garden of Eden design is a combination of Venetian Blind and Salami Slice
design patterns. We define all the elements and types in the global namespace
and refer to the elements as required.

Because it exposes all its elements and types globally, Garden of Eden, like
Salami Slice, is completely reusable. However, because Garden of Eden exposes
multiple elements as global ones, there are many potential root elements.

28

Advantages Disadvantages
Allows reuse of both elements and | Contains many potential root ele-

types. ments.
Allows multiple files. Limits encapsulation by exposing
types.

Is difficult to read and understand.

3.3.2 No Redundancy Elimination

The conceptual model XSEM, described in Section 2.1, defines constructs for
elimination of redundancy, such as structural representatives or IS-A hierarchies.

However, their use is voluntary and therefore, an arbitrary XSEM-H view
often contains a lot of redundancy. In that case, the basic translation algorithm
simply transmits the redundancy into its output XML schema, expressed in the
XML Schema language.

We want the translation algorithm to be able to eliminate the most common
types of redundancy in its output XML schema. When searching for solution of
this problem, first, we must find out which types of redundancy really exists in
a translation output.

Because we are looking for redundancy on a logical level (XML Schema lan-
guage), we call it a structural redundancy. This is because on the logical level
the semantics of data is not expressed and only its structure is important.

A removal of structural redundancy helps to save space, necessary for the
representation of XML data, and makes the XML schemas more clear.

To illustrate a structural redundancy in an output of the basic translation
algorithm, we choose a very simple example, that is sufficient enough to fully
clarify the problem.

In Figure 3.9 there is an XSEM-H view with two nodes and no edge between
them. Both the nodes are derived from the same entity type Animal, which has
at least three simple attributes.

The first node of the XSEM-H view has its element label set to animal, the
second one to Animal. That means, each XML document, matching an XML

29

animal Animal

Animal Animal
pacies zpacies
name name

age age

Figure 3.9: XSEM-H View, Example of Redundancy

<xs:schema s
<x5:element name="znimal" type="animal" /=
<¥5:element name="Animal" type="Animal2" /=

<¥s:complexType name="Animal":>
<¥5:attributs name="species” type="xs:string" use="required” /=
<xs:attribute name="name" type="xs:string" use="required” /=
<xs:attribute name="age" type="ys:string" use="required" /=

< fes:complexType:

<xs:complexType name="Animal2":
<¥5:attributs name="spacies” type="xs:string" use="required” /=
<¥5:attribute name="name"” type="y¥s:string" use="reguired” /=
<xs:attribute name="age" type="ys:string" use="required" /=
< fxs:complexTypes
<f¥s:5chemas

Figure 3.10: XML Schema, Example of Redundancy

schema represented by this view, must have either animal or Animal as its root
XML element.

At first glance it is obvious that the diagram can be expressed much easier,
perhaps with the use of a structural representative construction. In that case,
the redundancy would be eliminated at the conceptual level.

In Figure 3.10 there is a result of a basic translation of the XSEM-H view.
Obviously, a redundancy was propagated into the XML Schema language level.
We can imagine how the XML schema can be written in the XML Schema
language in much better ways. For example, one complex type can be derived

30

from the other one using XML Schema zs:eztesion construction.
Or, all the three attribute declarations can be included in a separate attribute
group and each complex type can contain a simple references to the attribute

group.

The described type of structural redundancy is just one of many. Because,
we consider this problem to be very large and important, the whole Chapter 5
is dedicated to it.

3.3.3 Model and Attribute Groups Names

In this section we briefly describe a limitation that is not essential for a trans-
lation process. An importance of solving this shortcoming is well below an
importance of solving e.g. limitations described in Section 3.3.2 or Section 3.3.4.

If a node of an XSEM-H view doesn’t have its element label assigned, the
basic translation algorithm places translations of its content into a model group
declaration.

Analogously, translations of attributes of the XSEM-H view node are put
into an attribute group declaration.

A problem is that values of name attributes of model and attribute groups
are generated automatically. The automatically generated name for model group
always contains name of the XSEM-H view node which the model group is de-
rived from and postfix -c. Names of attribute groups begin also with a name of
the XSEM-H view node, but their postfixes are set to -a.

We consider it right that the group names are derived from the corresponding
nodes, but we think the exact form of the names should be determined by user.

Ideally, in each user configuration file there should be a parameter or two,
determining a mask or masks for naming groups.

3.3.4 Grouping Entities

In this section we describe a limitation of the basic translation algorithm that
might arise if we considered the fact that in real world entities are usually under-

31

« " Navigator 0 X |PIM Diagram1/?SM Diagraml

Model Classes
=l Mested Packages

= Customer
=l Package Classes Address
= Address storageld ; integer
. Customer
cpunfr}-ﬂa.-:."e countryCode 1 string
ity - ' " 1 | id:integer
streat s nams : string
housaiio 0 0 phone ; string
[+ Customer
- Nested Packages Supply 0
= Supply id : integer
= *
= Package Classes totalPrice : integer 1.
[+ Supply !
[# Product o Address
Nested Packages -
= Storage 1.* countryCode @ string
= Package Classes dity : string
=/ Address Product postCode : string
storageld .)
counéryCads id @ integer strest @ string
Nested Packages | count : integer [1] houseNo : integer

Figure 3.11: XSEM-ER Model, Example of Context Ignoring

stood in any context. However, such an assumption is not explicitly mentioned
in the description of the XSEM model.

Let us assume that each entity type belongs to some context, e.g. cash desk
and customer are obviously from the context shop or goalkeeper and stadium
are from the context football.

Moreover, each entity type can belong to more than one context (e.g. entity
type stadium to contexts football, rugby, etc.), but that’s not important here, in
the problem description.

We want the translation algorithm to be able to propagate the relationships
between entity types and their contexts into its resulting XML schema.

Consider a simple project for a small company. In XSEM-ER model we have
two entity types with the same name Address, as seen in Figure 3.11.

The first entity type represents a place where a customer can be found and
belongs to a context called Customer. The second is in a context Storage and

32

supply

Supply

id : integer

1 1

totalPrice : integer address customer |’ products }
Address ‘ Customer
*
id @ integer L.

product

storageld : integer 1.* Product
countryCode : string addrass name ; siring id : integer
Address | phane : string count : integar [1]

countryCode : string
city : string
postCode @ string
street : string
houseNo : integer

Figure 3.12: XSEM-H View, Example of Context Ignoring

represents an address of a company storage given by a country code and a stor-
age identifier (unique for a specific country).

Furthermore, to illustrate the problem we have an XSEM-H view containing
nodes, derived from both the Address classes. The view describes a supply of
products which already was or is going to be realized. See Figure 3.12.

Supply contains information on its total price, included products and their
counts, customer name (with contact info) and information on storage to which
products should be delivered. Note that nodes derived from both Address classes
are included. Their element labels are set to address.

If the basic translation algorithm gets the described XSEM-H view as its
input, then its output looks like the one in Figure 3.13.

Obviously, if we want to find out which Address complex type is derived from
entity types, that belongs to context Storage and which one comes from entity
types, belonging to context Customer, we must compare their content properly
(and sometimes recursively). Such an approach is very inefficient and we cannot

33

<¥s:complexType name="Supply™:
<¥SISRqUenCE
<¥5:element name="totalPrice” type="xs:int" />
<¥5:element name="address" type="Address" />
<¥s:element name="customer" type="Customer” /=
<¥5:element name="products™=...</xs:2lement:=
< [¥sisequence:
<x¥5attribute name="id" type="%s:int" use="required" />
< {xs:complexType=

<xs:complexType name="Address">
<¥5152qUenCEs
<¥5:element name="storageld” type="xs:int" /=
<¥s:element name="countryCode" type="xs:string" />
< [¥s:sequence s
< (¥s:complexType>

<xs:complexType name="Customer”:
<X¥Sisaquences
<x5:element name="address" type="Address2" maxOcours="unbounded” /=
<¥5:element name="nams" type="xs:string" /=
<¥s:element name="phone" type="xs:string" /=
< f¥5sequence s
<xs:attribute namea="id" type="xs:int" use="required" /=
< fxs:complexType=

z¥s:complexType name="Address2">
<X5.segUences
<¥5:element name="countryCode" type="xs:string" />
<xs:element name="dty" type="xs:string" />
<¥5:element name="postCode" type="xs:string" />
<¥5:element name="street” type="«s:string" /=
<xs:element name="houseNo" type="xs:int" /=
< f¥s:5equence
< fxs:complexTypes

Figure 3.13: XML Schema, Example of Context Ignoring

34

be sure that it gives us any solution.

As said already, the problem is that relations between the XSEM-H view
nodes and contexts are not reflected in the output of the basic translation algo-
rithm.

In the XML Schema language all global elements, attributes and types must
be declared with unique names. By ignoring contexts, sometimes, the basic
translation algorithm is forced to make changes to names of some objects.

In our example, the complex type of customer’s address got name Address2,
instead of the expected one: Address. The same problem can be simply shown
for the names of global elements and attributes.

As an improvement, we wish to modify the basic translation algorithm so
that it can meet the following requirements.

e (Clorrectness The translation algorithm is not allowed to solve conflicts of
names and ids of objects, that are derived from entities of different contexts.

e [dentification For each object of the resulting schema we are able to easily
find the entity group of related XSEM-H view node.

o Simplicity The solution is simple and understandable. It doesn’t make the
resulting XML schema much more complex or less transparent.

e Location In the resulting schema, somehow, we are able to see objects, that
are generated from the same entity group, together.

35

Chapter 4

Improving Translation Algorithm

We propose improvements of the basic translation algorithm described in Section
3.1. Most of the improvements refer to limitations of the algorithm that are
introduced in Section 3.3.

In sections dedicated to the most important improvements we describe how
an output of the algorithm changes with their applications. In that cases we refer
to description of an output of the basic translation algorithm, that is introduced
in Section 3.2.

Also, we create a concept of translation process profiling, so that anyone,
who uses a tool implementing the algorithm, could influence the translation
process easily. The concept is based on a configuration. A formal definition of
configuration can be found in Section 4.1, as well as an information on how this
concept can be implemented.

4.1 'Translation Profiling

Designing a concept of translation process profiling is key part of this work. We
want to make everyone (who wants to use the algorithm described in Chapter
3) able to create its own profile for translation and also, make him able to re-use
it.

We already know that a translation of an XSEM view to the XML Schema
language can be done in a big number of different ways - with not the same
but equivalent results. With the ability to profile the translation process, users
always get the results that best suit their needs. They must just use their

36

Figure 4.1: Translation Process Profiling

prepared profiles. In this text instead of " profile” we use the term ” configuration”
or possibly "settings”, which all have the same meaning, intuitively.

Definition 3 A configuration is a set of pairs (k,v) called parameters. k is
a key and must be unique within the configuration. A set of all possible keys is
denoted K. v is the parameter’s value. A set of all values that can be used in a
pair with key k is denoted V. Both keys and values are arbitrary strings.

C={(kov)| ke KAveEV}
\V/ (kl,vl),(k’g,vg) < CZ k?l 7é k’g

For now, let us suppose that we know how sets K and V}, look like. In fact,
all keys and their possible values are defined in Section 4.2 and Chapter 5.

Among common operations performed with a configuration belong to save
it from memory to a persistent storage, to load it again and to get the value
belonging to a given key.

In Section 3.2.2 we show a grafical representation of the basic translation
algorithm. Because the concept of profiling the translation has a significant in-
fluence on the process of the algorithm, it is necessary to show how the graphical
representation of the algorithm changes. This is reflected in Figure 4.1.

A blue arrow represents a way how the original translation algorithm works.
Square with letter C is a user configuration that is used for sample translation.
Green arrows point to new possible outputs. Values of user configuration pa-

37

rameters determine which of the green arrows is used to generate the output.

4.2 Improvement Proposals

Our proposals for improvements are divided into two groups according to their
importance and a scope of their description.

The first group contains the only improvements proposal. Its name is redun-
dancy elimination and it is a very complex task. We describe it in a separate
chapter - Chapter 5. The second group of improvements proposals contains all
the other proposals and they are discussed directly in this section.

If any of the proposals uses the concept of translation profiling introduced in
Section 4.1, we indicate which configuration parameters are important for it.

In some cases, we also show how a graphical representation of the basic trans-
lation algorithm changes with the proposed improvement.

4.2.1 More Design Patterns

We propose improvement of the basic translation algorithm so that it could gen-
erate XML schemas in almost every well-known XML Schema design pattern,
specifically Venetian Blind, Salami Slice, Russian Doll and Garden of Eden de-
sign pattern. This proposal for improvement is intended to solve the problem
described in Section 3.3.1.

The translation algorithm gets an information on which design pattern shall
be used from a user configuration, introduced in Definition 3. A relevant parame-
ter of the configuration has a key design_pattern and possible values salami_slice,
russian_doll, venetian_blind and garden_of_eden.

(design_pattern, v) € C

v € { salami_slice, russian_doll,
venetian_blind, garden_of eden }

38

employes

Employee
1
address fhame : string
Address surname : string

street : string

city = string
zipcode @ string

Figure 4.2: XSEM-H View, Design Patterns Improvement

<¥s:s5chema ...>
<xs:element name="employee™:
{¥s:complexType>
{¥sIsequence’r
¢xsielement name="fname" type="xs:string" />
¢¥sielement name="surname" type="xsistring"/:
<xsielement name="address":
<¥xs:complexTypes:
<¥5isequence’
<us:element name="street” type="xsistring"/:
<uselement name="city" type="xs:string"/ >
<us:element name="zipcode” type="xs:string”/>
</¥sisequence’
</¥s:complexType>
/s relements
</¥Xsisequence>
</¥s5:complexType>
</¥sielement:
<fxs:schema>

Figure 4.3: XML Schema, Translation into Russian Doll Design

39

<¥s:schema ...>»
£¥selement name="fname" type="xs:string"/:
£xselement name="surname"” type="us:string"s>
<usielement name="street" type="xs:string"/ >
<xsielement name="city” type="xs:string"/>

<¥5:element name="zipcode

<xs:element name="address">
Lus:complexTypel
L¥Sisequences
<xsz:element
<x¥s:element
{xs:element r
</¥sisequence’r
</¥s:complexTypes
</xs:element:

ef="street"/>
ef="city"/>
ef="zipcode"/>»

<xs:element name="employes">:
LHs:complexTyper
{XSISequUeEnCes
<¥s:element ref="fname"/:>
<xs:element ref="surname"/>
<xs:element ref="address"/>
</¥s:15equence
£/¥s5:complexType:
<f¥s1element:

Lfxsischema

Figure 4.4: XML Schema, Translation into Salami Slice Design

Regardless of the specified value of the relevant parameter, an improved
translation algorithm runs exactly like the basic translation algorithm, except
that for each object it decides whether to write it to a global or to a local level.

An object is a declaration of an element, attribute, type, group or attribute
group, as defined in the XML Schema language. The algorithm also decides
whether to place references to global objects on the current level, or not.

To illustrate this improvement proposal on Figure 4.1, in C square there
would be a parameter with key design_pattern and also, there would be four
green arrows pointing to four expressions of an XML schema in the XML Schema
language, one each related to one possible value of the parameter.

Let us introduce the proposal with a quite simple example.

40

type="ws:string"/ >

We have an

XSEM-H view representing employees and their addresses. Both the nodes de-
rived from entity types with the same names have just three attributes and
simple element labels. A related XSEM-H view modeled in the XCase tool can
be found in Figure 4.2.

In Figure 4.3 we can see how an output of a translation looks like with
design_pattern parameter set to russian_doll. There is just one global XML
Schema element declaration and everything else hangs below it.

In Figure 4.4 there is an translation output that we would get if we set de-
sign_pattern parameter to salami_slice. In that case, all elements are global and
objects are connected by references.

Analogously, we can show outputs with the parameter set to the remaining
values, but the shown figures are sufficient enough to illustrate the proposal.

4.2.2 Naming Masks for Groups

This proposal for improvement is intended to solve the problem described in
Section 3.3.3. Its solution is very simple.

We propose to add a parameter to the user configuration, determining a
mask for creation of attribute group names. Analogously, we propose a similar
parameter for model group names.

(group_name_mask, v) € C

(attrgroup-name_mask, v) € C

A user can set these parameters to any values that contain exactly one %
character. Each attribute group that is created during the translation process
gets a value of parameter attrgroup_name_mask as its name, only the % sign will
be replaced by a name of processed XSEM-H node.

Again, the same rule can be applied for a translation of model groups and
the configuration parameter group_name_mask.

41

4.2.3 Considering Entity Groups

In Section 3.3.4 we are given a problem, which can occur if we consider a grouping
of real-world entities on the conceptual level of XML schema modeling.

The problem is that from an output of the basic translation algorithm we are
not able to find out, which complex type or model group corresponds to which
group of entity types.

At the conceptual level, the fact that two entities belong to the same group
means, they have something in common. As well we can say that those entities
are defined in the same context. By ignoring the grouping of entities during
translation, we loose a context of all the objects in an output of the translation
algorithm. Such an approach is undesirable.

In this section we solve the problem. We discuss in which ways we can ex-
press the fact that XML Schema object is a member of some object group. We
try to find a solution that meets four requirements, formulated in Section 3.3.4.

First we define a configuration parameter determining whether the transla-
tion algorithm should solve the problem with grouping entities, or not. The
configuration parametr has a key grouping_entities.

(grouping_entities, v) € C

v € { enabled, disabled }

We discuss two ways of giving a context to elements, attributes and types
of the XML Schema language. The first way is quite simple, the second is a
complex solution.

The first way is to compose a name of each object from two parts. The first
part is a name of the entity group, corresponding to the XSEM class from which
the object was created. The second part is an object name that is generated by
the basic translation algorithm.

This approach is called the prefiz design.

An alternative solution is using the well-known concept of XML Namespaces

[14]. This approach also uses prefixes for object names. In addition, each prefix
has its own namespace assigned that is intended to be (world-wide) unique.

42

<¥s:5chema xmlns="http//www.example.org/"
*mlns:xs="http:/ www.w3.org/ 2081,/ XMLSchema" >

<xs:element name="supply-supply™ type="supply-Supply" />

<xs5:complexType
<¥5:sequence’r

{XS:
{XS:
{¥E:
{¥E:
<{J/x5:15equence’r

element
element
element
element

name="supply-Supply">

name="supply-totalPrice” type="xs:int" />
name="storage-address" type="storage-Address" />
name="customer-customer"” type="Customer" />
name="supply-products”»...{/xs:element>

usiattribute name="supply-id" type="xs:int" use="reguired" />
</xsicomplexType>

<xs:complexType name="storage-Address">

{¥Sisequencer
¢us:element name="storage-storageld” type="xs:int" />

¢usielement name="storage-countrylode" type="xs:string" />

{/¥5:5equencer

<fEsicomplexType>

<x5:complexType name="customer-Customer™:
<¥5:sequence’r

IMEL

{¥S:
{¥s:
<Jfx5:15equence’

element

element
element

name="customer-address" type="customer-Address"
maxCccurs="unbounded” /*

name="customer-name"” type="xs:string" />
name="customer-phone” type="xs:string" />

<ws:attribute name="customer-id" tvpe="ws:int" use="required" />
</xsicomplexType>

<xsicomplexType name="customer-Address">»
{¥Sisequence>

{¥S!:
{¥S!:
{¥S!:
{¥S!:
XS
{/x515equence’r

element
element
element
element
element

name="customer-countryCode” type="xs:string” />
name="customer-city" type="us:string" />
name="customer-postCode” type="xs:string" />
name="customer-street” type="xs:string" /:
name="customer-houselo" tyvpe="xs:int" />

<JfxscomplexType>

</¥s:schemar

Figure 4.5: XML Schema, Grouping Using Prefix Design

43

We call this solution the XML Namespace design.

In Figure 4.5, there is an XML schema resulting from a translation of the
XSEM-H view, which was introduced in Figure 3.12. In the translation result
the prefiz design for object names and identifiers is applied.

If we compare the figure to the original XSEM-H view, we can notice that
class Address from entity group (package) Storage resulted in a declaration of
XML element and complex type storage-address. In contrast, the class Address
from package Customer resulted in declaration of an element and a complex
type, both called customer-Address.

In Figures 4.6, 4.7 and 4.8, there are three XML Schema files and again, they
are formed by a translation of the XSEM-H view from Figure 3.12. In contrast
to Figure 4.5 this result implements the XML Namespace design, as a solution
of our problem.

Obviously, for each non-empty XSEM entity group there is one XML Schema
definition file in this solution. Translation of each XSEM-H view node is written
in an appropriate file and those files are interconnected via XML Schema ele-
ments tmport.

Solutions Comparison

Both the proposed solutions satisfy the Correctness and the Identification re-
quirement, introduced in 3.3.4.

The Location requirement says that we should be able to see all objects,
generated from the same entity group, together.

In the XML Namespace design such an overview is ensured by a division of
XML schema into several XML Schema definition files.

In the prefiz design we can also create such a division to satisfy the Location
requirement. In this case, to create links between files, we can use the XML
Schema construction include.

The assessment of compliance with Simplicity requirement is very subjective.
Someone may say that the prefix design doesn’t satisfy it at all, someone else
can be satisfied with the clarity of prefix design solutions. In any case, it is clear
that the XML Namespace design meets the requirement much better, because

44

<xs:s5chema targetNamespace="http//www.example.org/customer” ...»
<xs:element name="customer” type="Customer"/>

n

<xs:complexType name="Customer">
{¥5sequences
<xs:element name="address" type="Address" maxOccurs="unbounded™ />
¢xs:element name="name" type="xs:string" />
¢wsielement name="phone” type="ws:string” />
</¥s:sequence’
¢usiattribute name="id" type="xs:int" use="reguired" />
</HsicomplexType>

<¥s:complexType name="Address">
{X5:sequence’
<ws:ielement name="countryCode” type="xs:string” />
¢xs:element name="city" type="xs:string" s>
¢xs:element name="postlode" type="ws:string" />
¢xs:element name="street" type="ws:string" />
¢xs:element name="houselo” type="®s:int" 7>
</¥5:sequencer
</xs:complexTypes
£Jfxs:schemaz

Figure 4.6: XML Schema, Grouping Using XML Namespaces, Customer

object names are shorter and simpler.

Actually, for the prefix design there are two conflicting requirements.

First, the prefix name should be representative, so that there was no problem
to work with XML Schema objects, translated from hundreds or thousands of
entities groups. Therefore, prefixes must be very long.

Second, each prefix should be short, because it’s necessary to repeat it for
many objects of XML schema and that is very space-consuming.

Also, the prefiz design brings a complication, if we want translation results
to be automatically processed by specialized applications (XML parsers). An
application for work with XML don’t expect information on contexts to be hid-
den in XML schema objects names. Moreover, they have no rule to extract such
information (exact context prefix length, delimiter of context prefix and object
name, or something like that).

In contrast, all libraries to work with XML can perfectly work with XML
Namespaces.

45

<¥s:s5chema targetMamespace="http//www.example.org/storage” ...>»
<¥s:element name="address" type="Address"/>»

<xs:complexType name="Address"»
{¥s1sequencer
<¥s:element name="storageld" type="xs:int"/>
<¥s:element name="countryCode" type="xs:string"/>»
£ /¥siseguencer
Lfxs:complexType
</xs:schemar>

Figure 4.7: XML Schema, Grouping Using XML Namespaces, Storage

<xs5:schema targetNamespace="http/ /www.example.org/supply”
¥mlns:stor="http://waw.example.org/storage>
¥mlns:cust="http://wew.example.org/customer ...>

<¥5:import namespace="http://www.example.org/storage”
schemalocation="storage.xsd" />

<¥5:import namespace="http://www.example.org/customer"
schemalocation="customer.xsd" />

<xs:element name="supply™ type="Supply"/>

<xs:complexType name="Supply">
X5 ISequUence’r
¢xs:element name="totalPrice™ type="xs:int"/»
<¥s:element ref="stor:address"/>
<¥s:element ref="cust:customer"/>
<xs:element name="products">
<xsicomplexType>
{¥5i15equence’
<xs5:element name="product”™ type="Product”
maxbccurs="unbounded"” />
</¥sisequence’
</xs:complexType>
<f¥sielement>
<{/¥5:5equences
<us:attribute name="id" type="xs:int" use="required"/»
</Hs:complexTypes

<xs:complexType name="Product™:
<us:attribute name="id" type="®s:int" use="reguired" />
¢us:attribute name="count™ type="xs:int" use="required” />
</Hs:complexTypes
< fxsischema>

Figure 4.8: XML Schema, Grouping Using XML Namespaces, Supply

46

An XML schema implementing the prefiz design may be a complication for
instance developers, because each XML document must have contexts in names
of all elements to be valid against the XML schema. On the other hand, the
XML Namespace design force the instance developers to deal with XML Names-
paces.

Obviously, the prefiz design is useful for small XML schemas only. In general,
the XML Namespaces design is a better solution of the problem with grouping
entities.

Proposed Solution

The algorithm uses the concept of XML Namespaces. There is one namespace
to every entity group that has its representative in translated XSEM-H view.
Each namespace has its own XML Schema definition file.

There is one extra XSD file, that imports definitions of the XSEM-H view
root elements from their namespaces. All instances of the XML schema are
validated against this extra XSD file. Filenames of XSD files are derived from
corresponding target namespace names.

The namespace URIs are in URL form, they are absolute and derived from
a name of the XSEM-H view (it there is any) and the names of corresponding
entity groups.

Each global declarations of an element, a complex type, a model group or

an attribute group is located in XSD with target namespace corresponding to
entity group of the class, it was derived from.

47

Chapter 5

Redundancy Elimination

In Section 3.3.2 we describe the problem of lack of structural redundancy elim-
ination in an output of the basic translation algorithm. In this chapter, we
introduce a solution to this problem. We discuss most common types of redun-
dancy that may occur in an instance of xsoyr and propose algorithms for their
discovery and removal.

In some cases, users have different opinions on which constructions are re-
dundant. We should be able to eliminate a redundancy completely or to perform
the elimination to a level specified by the user in his or her profile. Therefore,
proposed algorithms for redundancy elimination are based on the concept of
translation profiling, introduced in Section 4.1.

In this work, we deal with three types of structural redundancy. The first
type is redundancy in declarations of attributes. The second type is redundancy
in declarations of elements. And finally, the third type is redundancy in nestings
of XML Schema choice constructions.

For the first type, we create a formal model. We propose two algorithms to
eliminate a redundancy in attribute declarations. To deal with the second type,
we show how it can be simply transform to the first type of redundancy, if some
conditions are satisfied. To eliminate the third type, we propose an algorithm
and, of course, introduce it on an explanatory example.

48

5.1 Redundancy in Attribute Declarations

Both the XML schemas xsxg., and xsopr introduced in Section 3.2.3 define
some attribute and attribute group declarations, as well as referencies to them.
In this section we analyze where such declarations and references can be found,
how exactly do they look like and which ones are mutually equivalent. We define
a new term attribute part (AP). Then, we show how to eliminate redundancies
both in attributes and APs.

As seen in Figure 3.8, an attribute is declared by an XML element attribute.
In its name attribute we have a name of the declared attribute, type is expressed
by a value of its type attribute. A default value of the declared attribute can be
specified through an XML attribute default. In a value of an optional attribute
use we can specify whether the attribute is optional, required or prohibited.

Unlike the zsxgcn, the XML schema xsopr doesn’t allow an attribute dec-
laration in the basic translation output to have a form, fized or id attribute.
Moreover, type of an attribute can not be expressed by a content of XML ele-
ment attribute, as usual in the XML Schema language. And also, in an output of
the basic translation algorithm references to attribute declarations can not occur.

As seen in Figure 3.5, in a basic translation output attribute group dec-
larations are formed by an XML element attributeGroup with the only XML
attribute called name. References to the attribute groups are formed by the
same element, but instead of name, there is an XML attribute called ref. That
can be seen in Figure 3.8.

Let us explore Figures 3.5 - 3.8 to find out where attribute and attribute group
declarations (references respectively) can be expected. Obviously, attributes
can be declared under declarations of attribute groups, complex types and in
extension constructs.

Attribute group declarations can be expected only under a declaration of the
whole schema. References to attribute groups can be found under declarations
of complex types, another attribute groups or in extension constructs.

49

<xs:schema ..»
<¥5:element name="Person” type="Person” [=

<ws:complexType name="Person"=
<H5ISRgUences
<¥5:element name="birth_date" type="xs:date" [
< ¥5:sequence:
I <xs:attribute name="first_name" type="xs:string” use="required" /=
<ys:attribute name="surname" type="xs:string"” use="raquired” /=
= ¥5complexType:>

zws:complexType name="Employee”>
<xs:complexContent:
<¥5:extension base="Person” =
I <xs:attribute name="salary" type="xs:int" use="required” /=
<x5:attributeGroup ref="Address-a" />
< [¥5:extension:>
< xs:complexContent>
= xs:complexType:>

<¥s5:attributeGroup name="Address-a">
<xs:attribute name="strest” type="xs:string” use="required” /=
I <xs:attribute name="postcode™ type="y¥s:int" use="required" [=
= %5 attributeGroup:
< (x5:schema=

Figure 5.1: APs Ilustration

50

Definition 4 Attribute part, denoted AP, is a set of all attribute declarations
and references to attribute groups that have the same parent element in an XML
structure of a basic translation output such that

- JAP": AP' O AP
SAP is a set of all nonempty APs in an XML schema.

In Figure 5.1 there is a sample instance of xsoyr, i.e. an output of the basic
translation algorithm. According to Definition 4, four APs can be found in it.

A parent of the green AP is an attribute group declaration. The green
AP contains two attribute declarations (street and post_code). The blue AP is
under a complex type declaration and contains declarations of two attributes
(first_-name and surname).

The red AP hangs under an eztension contruct and one attribute called
salary is declared in it. Moreover, one attribute group is referenced from the red
AP. The yellow AP is empty.

According to Definition 4, SAP consists of all non-empty APs, i.e. the blue,
red and green one.

As already mentioned, an AP can contain some references to attribute groups.
Because each of these groups is parent of another AP, we define some relation-
ships between APs.

Definition 5 AP, € SAP is directly dependent on AP; € SAP, denoted
AP; — AP;, when it contains a reference to a parent attribute group of AP;.
AP; is dependent on AP;, denoted AP, — AP;, if there is a sequence p =
p(1),p(2),...,p(n) of indices from SAP such that

AP, — APp(l) VAN APp(l) — APp(g) VAN APp(n) — APJ

Obviously, AP, — AP,, implies AP, — AP,,. Figure 5.2 illustrates depen-
dencies between APs from Figure 5.1. The red AP is directly dependent on both
the green one (AP,eq — APycen) and the blue AP.

Theoretically, we could also define the relationship between AP with an

extension construct as a parent and AP, whose parent is given by a value of
base attribute (of the extension construct).

51

SAP

AP — AP

AP

Figure 5.2: APs Relations

In Figure 5.1, such a relationship is between AP,.q and APyye.
However, we do not define it, because we don’t want to affect ancestor-
descendant relationships of complex types at all.

Definition 6 Let AP € SAP. AD,p is a set of all attribute declarations from
AP. ARap denotes a set of all attribute declarations from both AP and those
APs, that are dependent on AP.

From Definition 6 we derive a relationship between the two sets. AR set of
each AP is equal to a unification of its AD set and AR sets of all APs that
directly depends on AP. This can be written as follows.

ARAP = ADAP U {ARBJ|AP — B]} (51)

In Figure 5.2, the APs and their direct dependencies together form a graph.
We create a formal definition of such a graph.

Definition 7 The graph of APs is a directed graph GAP = (V,E), where V =
SAP is a set of vertices and E = {(vi,v2) | vl, v2 € VA vl — v2} is a set of
edges.

92

5.1.1 Definition of Equivalence

Before searching for redundancy in SAP we need to have the equivalence of APs
defined formally. Since each AP can contain some declarations of attributes, we
need to define equivalence of attribute declarations, as well.

Definition 8 In an arbitrary output of the basic translation algorithm two at-
tribute declarations x, y are equivalent, denoted x = vy, if their name, use, de-
fault and type attributes have the same values. AP;, AP; € SAP are equivalent,
denoted AP; = AP;, if the following formulas are true:

\V/ZL‘GARApiHyGARAPjZI‘Ey
Vy€ARap, 30 € ARyp, 1y ==

Imagine we have an attribute group, like the one in Figure 5.3. Its name is
Person. The AP, which can be found in Person, contains three attribute dec-
larations. To illustrate Definition 8, in Figure 5.4, we show some APs that are
equivalent to the Person’s one. In Figure 5.5, there are sample APs that are
not equivalent to it.

<wsattributeGroup nams="Person":
<us:attribute name="first_name"” type="xs:string"/>
<usrattribute name="surname” type="xs:string"/>
<us:attribute name="birth_date” type="xs:string"/
< fxsattributeGroups>

Figure 5.3: Sample AP

Let’s have a look on the equivalent APs in Figure 5.4. In Figure 5.4 (a),
a parent of green AP is an extension construct. The AP has one attribute
declaration in its AD 4p set, the other two attributes are declared in AP hanging
under attribute group Name, which the green AP depends on.

In Figure 5.4 (b), the green AP contains all the three attribute declarations
and a reference to attribute group Info. The green AP is equivalent to the one
in Figure 5.3 because attribute group Info is empty.

Figure 5.4 (c) is very similar to (a), except for the fact that declarations
of the three attributes are divided into three APs and the fact that the green

53

<xs:complexType name="Person">» fl)
<usrcomplexContent
<xs:extension base="Belng"»
<¥srattribute name="birth_date" type="ws:string"/>
<¥s:attributeGroup ref="MName"/>
<fusextensions
£/xscomplexContents
</xs:complexTypes:

<u5:attributeGroup nams="Name™ >
¢usrattribute name="first_name" type="xsz:string"/>
<usrattribute name="surname” type="xs:string"/:
</¥s:attributeGroup>

£¥5:attributeGroup nams="Person"» l})
<ws:attribute name="birth_date” type="xs:string"/>
¢usrattribute name="first_name" type="xsz:string"/>
<usrattribute name="surname” type="xs:string"/:
<usigttributeGroup ref="Info"/»

£/ws:attributeGroup>

£¥5attributeGroup nams="Info" />

<¥s:complexType name="Person"» ‘:)
¢uwsrattribute name="birth_date" type="xsz:string"/>
<wsrattributeGroup ref="HName">

</xs:complexType>

£¥5:attributeGroup nams="MName™:
<usrattribute name="surname” type="xs:string"/:
<ws:attributeGroup ref="whole_name"/>
£/ws:attributeGroup>

£¥5:attributeGroup namse="whole_name">
<wsiattribute name="first_name" type="wxs:string"/>
< /usattributeGroup:>

Figure 5.4: Equivalent APs

54

<¥s:attributeGroup name="Person":

{¥siattribute name="first_name" type="xs:string"/: El)
<us:attribute name="surname" type="xs:string"/:
¢us:attributeGroup ref="Info"/>

<fxs:attributeGroup>

<¥s:attributeGroup nams="Info">

<us:attribute name="birth_date" type="xs:string"/ >
<us:attribute name="birth_place" type="xs:string"/:

<fxs:attributeGroup>

<¥s:attributeGroup name="Person": l])

<us:attribute name="first_name" type="xs:string"/>
<xs:attribute name="surname" type="xs:string"/ >
<us:attribute name="birth_date" type="xs:date"/»

<fxs:attributeGroup>

<xs:complexType name="Person"> C)

{¥5:sequencer
¢xs:element name="birth_date"/ >
<{/¥5:15equence’>
<us:attribute name="first_name" type="xs:string"/>
<¥siattribute name="surname" type="®s:string"/:

<¥5:complexType:

<N

s:attributeGroup name="Person™: (l)
<us:attribute name="first_name® type="xs:string"/>
<us:attribute name="surname" type="xs:string" use="required” ;>
¢us:attribute name="birth_date” type="xs:string"/>

<f¥s:attributeGroups>

Note that
tribute declar
which the ori
AR p sets of

In Figure
In Figure
have, because

Figure 5.5: Non-Equivalent APs

AP is under a complex type declaration instead of under an extension construct.

equivalence of two APs is affected neither by order in which at-
ations are written, nor by the fact they are declared in another AP
ginal AP depends on. The only important aspect is a content of

given APs.

5.5 none of four green APs is equivalent to the one in Figure 5.3.
5.5 (a), AR4p set of a green AP has more items than it should
a declaration of an attribute birth_place doesn’t have its equivalent
in an AR sp set of the original AP.

55

A green AP from Figure 5.5 (b) declares attribute birth_date with different
data type than expected.

Figure 5.5 (c¢) contains a green AP, in which the attribute surname is de-
clared as required. Again, that’s in contrast to the original AP from Figure 5.3.

5.1.2 Redundant Attribute Parts

In this section we introduce an algorithm for removal of redundant APs from an
arbitrary output of the basic translation algorithm, i.e. from an instance of xs,;.

First of all, we construct a division of all attribute declarations into equiva-
lence classes. According to Definition 8, the fact that an attribute declarations
belongs to a given equivalence class can be verified by examining the values of
its name, type, use and default attributes.

As a second step of the algorithm, SAP is divided into sets of mutually
equivalent items. Because the equivalence of APs is given by contents of their
AR 4p sets (see Definition 8) and AR4p sets are often too large to compare,
first, we apply a perfect hash function on AR 4p sets and compare only the hash
codes.

We work with a perfect hash function on a theoretical level only. In an imple-
mentation of a proposed algorithm, we use non-perfect hash function, instead,
as explained in Algorithm Analysis at the end of this section.

Two APs are equivalent, if hash codes of their AR p sets are equal.

When we have a division of SAP into equivalence classes, we try to replace
each equivalence class by a single AP, which leads to removal of a redundancy
between the APs. This is because no two of them stay mutually equivalent.

A replacement of an equivalence class with a single node is a contraction of
G AP according to its subgraph, as said in Definition 9.

56

Definition 9 Contraction G.T is a graph that arises from G, if a subgraph T
s replaced with a single node t. In addition, node t is connected with all nodes
of G, which don’t belong to T and which are adjacent to at least one node of the
subgraph T.

When performing a contraction with GAP as a graph, and its equivalence
class as a subgraph, the resulting node ¢ is an AP with an attribute group as its
parent. We call it a representative of the equivalence class.

As a limitation, a contraction of the whole equivalence class is not always
possible. It can be done with all equivalent APs that have an attribute groups
as their parents. If an AP has a complex type or an extension construct as
its parent, we don’t remove it from GAP. Instead, its content is changed to a
reference to the representative.

If there is no AP with an attribute group as its parent in an equivalence
class, then one such an AP is created and considered to be the representative.
Again, contents of all other APs from the same equivalence class are replaced
with a reference to the representative.

If there is an AP € Vgap directly dependent on any AP from the contracted
equivalence class, the edge £ € Egap going from it is redirected to the repre-
sentative.

In Algorithm 1, the proposed algorithm for elimination of redundant APs is
written in pseudocode. For clarity, in the pseudocode we don’t describe how a
structure of input XML schema document changes. Only, we describe all the
modifications of GAP and assume that the structure of the document adapts
automatically to a new form of the graph.

For example, when we add a new edge (AP;, AP;) into a set of GAP’s edges,
we assume that a reference on parent of AP; is added automatically to the con-
tent of AP;. Where it is not clear how exactly a structure of XML schema
document is modified, we explain the situation additionally.

At line 2 a function getSEC() is called. Its purpose is to find a set of equiv-
alence classes of GAP’s vertices. The set is found using a perfect hash function
of the AR p. Each equivalence class is a set of GAP’s vertices.

Then we process the equivalence classes one by one. At lines 4-6 we stop

57

N =

10
11
12

13
14

15
16
17
18

19
20
21

22
23
24
25
26

Input: GAP
Output: GAP'

GAP' + GAP
SEC + getSEC(GAP")

foreach EC ¢ SEC do

if |FC| < K then
‘ goto 3
end

APyest < best(EC)
APrep — APbest

AP, < new(APpes)
Veap < Voap U AP,
end

Y « EC\ X

if X # () then
V. X\ AR,

Vaap < Vaap \ V-
Eqap < Egap \ E_ U E,
end

foreach AP €Y do
clear(AP)

end
end

Algorithm 1: Removal of Redundant APs

if parent(APys) # 7 AG” then

X« { AP € EC | parent(AP) ="AG” }

E_+ { (AP, AP)) | AP,c V_V AP, € V_}
E, + { (AP, AP,,) | 3AP; € V_: (AP, AP}) € Egap' }

Eaap < Egap U (AP, Aprep)

58

processing of equivalence classes that have less than K items. K is a number
determined by a value of a special parameter from a user configuration.

(min_apec_size ,v) € C

vef{2...x}

At line 10 there is a function best(). It gives an AP, the content of which
is the best one for representing the equivalence class. The word best may be
interpreted in many ways. For example, the function may return such an AP,
which has the smallest cardinality of AD4p.

However, the function mustn’t give an AP, which depends on another AP
from the same equivalence class. That’s because we want the result of best() to
become a representative of the equivalence class after a contraction.

If the best AP doesn’t have an attribute group as its parent, it cannot be
used as a representative of EC', because it cannot be referenced, but its content
is still the best one.

In that case, we create a new AP and a new attribute group as its parent.
Then, we copy the content of AP, into the new one. We add the new AP into
the graph and assign it to AFP,¢,. See lines 9-12.

AP, is a representative of the processed EC.

At line 13 we assign a set of all APs with attribute groups as their parents
to X. Function parent() returns a string ’AG’ if a parent of a given parameter
is an attribute group. It returns 'EX’ if it is an eztension contruct and 'CT" if
a parent is an complex type declaration. In contrast, Y is a set of all APs that
doesn’t have attribute group as their parents.

A contraction of a graph is performed at lines 19 and 20. It uses the sets,
prepared previously at lines 16-18. When removing an edge from GAP' the
algorithm should always verify that the edge is not the only one pointing to the
target AP.

If it is and the target AP has an attribute group as its parent, the whole AP
must be removed from GAP’, as well as the attribute group must be removed
from a structure of XML schema document.

59

cale

Sale

datetime : dateTime

S N

(I) employes itern

/ \ Employee ‘ Item
1 1 surname : string id 1 integer

customer customer count : integer
Customer Customer |
calesman
1 - 1 Salesman
Name BirthInfo Namelnfo | 1 \l/
first_name : string birth_date : date surname : string
surname : string birth_place : string ExtNamelnfo
1
ExtNamelnfo

first_name : string

Figure 5.6: XSEM-H View, Redundant APs Elimination Input

60

At lines 22-25, first, a content of each AP € Y is removed. Then, a new
edge pointing from AP to the representative is added into GAP’, so AP gets a
reference to the parent attribute group of AP,,.

We illustrate Algorithm 1 on an example. Figure 5.6 shows an XSEM-H
view representing structure of XML documents, used for evidence of sales. For
each sale we store information about a time when it was made, on salesman, on
items sold and on customer, of course. The XSEM-H view could be simpler, but
our objective here is to produce as much attribute redundancy as possible on
relatively small sample.

In Figure 5.7 there is an XML schema, expressed in XML Schema language,
resulting from translation of the XSEM-H view. Eleven APs can be found in it
and again we identify them by color.

For now, let us suppose that attribute declarations are represented by values
of their name attributes. In this example, this is possible because no two at-
tribute declarations with the same values of name attributes differ in values of
type, use and default attributes. Then obviously,

ARap,,,, = {datetime}

ARup.,, = { first_-name, surname}
ARAPy oo, = 1first name, surname}
ARAP, .., = {birth_date, birth_place, surname, first name}
ARap,,., = {birth_date, birth_place}

ARap,,,. = {surname, first_name}

ARup,
ARap,,.
ARap,,,,, = {first_-name}
ARap,,,. = {first_.name}

ARap,,.., = {id, count}

= { first_name}

iolet

= {surname}

From Definition 8 it’s clear that dark green, red and dark blue APs are
equivalent. At the same time, light blue and violet APs are equivalent.

61

{¥sischema...>
<x5:element name="sale" type="5ale” />
<¥s:complexType name="Sale">
<X5:sequencer ... </Xs:5equence’r
| <xs:attribute name="datetime" type="xs:dateTime" use="required" />
/X5 complexType>

<x5:complexType name="Customer">
| <xs:attributeGroup ref="Nams-a" />
/x5 complexType>

<xs:attributeGroup name="MName-a":
<xs:attribute name="first_name" type="xs:string" use="required" />
¢us:attribute name="surname” type="xs:string" use="required" />
</xs:attributeGroup>

<x5:complexType name="Customer2":
¢us:attributeGroup ref="BirthInfo-a" /»
<x¥s:attributeGroup ref="NameInfo-a" />
/x5 complexType>

<xs:attributeGroup name="BirthInfo-a"»
<xs:attribute name="birth_date" type="ws:date” use="required" />
<us:attribute name="birth_place" type="ws:string" use="reguired" ;>
</xs:attributeGroup>

<xs:attributeGroup name="NameInfo-a">»

¢us:attribute name="surname” type="xs:string" use="required" />
I<xs:attributeﬁroup ref="ExtlameInfo-a" />
</#s:attributeGroup>

<xs:attributeGroup name="ExtNameInfo-a"»
| <xs:attribute name="first_name® type="xs:string" use="required" />
</xs:attributeGroup>

<xs:complexType name="Employee" abstract="true">»
<us:attribute name="surname” type="xs:string" use="required" />
</xsicomplexTypes

<x5:complexType name="Salesman">
<xs:complexContent>
{ws:extension base="Employee":
| <xs:attributeGroup ref="ExtNameInfoZ-a" />
¢/xsiextension:
</x5:complexContent>
< /x5 complexType>

<xs:attributeGroup name="ExtNameInfoZ-a"»
<xs:attributeGroup ref="ExtMameInfo-a® />
</xs:attributeGroup>

<¥s:complexType name="Item">
<ws:attribute name="1id" type="xs:int" use="reguired" />
<xs:attribute name="count™ type="xs:int" use="required” />
/X5 complexType>
<Jxs:schema>»

Figure 5.7: XML Schema, Redundant APs Elimination Input

62

APy — J|I:"*F'\tzigreer'l

T > APdblue

Aphla:k Apvinlet S — Apbrcv..'n

Figure 5.8: Before Redundant APs Elimination

Therefore, seven equivalence classes of APs exist in this example. We il-
lustrate them in Figure 5.8 with grey borders. Also, we show all existing direct
dependencies between APs.

The algorithm processes equivalence classes (grey rectangles), one by one.
Let us suppose that in a user configuration the parameter with key min_apec_size
is set to 2. Then, processing of rectangles with fewer than 2 items ends at line
3 of Algorithm 1, because the condition is not satisfied.

When processing a rectangle with light blue, brown and violet APs, obvi-
ously, the light blue AP and brown AP cannot be representatives, because they
are directly dependent on an AP from the same equivalence class. Therefore,
AP, ioler 1s assigned to AP,

The light blue AP and the violet AP are assigned to X at line 13. During
a contraction at lines 19-20, the APy, is completely removed from GAP’ and
one new edge is added. The new edge leads from the brown AP to the violet one.

When processing the rectangle with three APs, function best() gives dark
blue AP. Therefore, the dark blue AP is called AP,.,. The dark blue and dark
green are assigned to X, because their parents are attribute group declarations.
The third AP (the red one) is assigned to variable Y.

During contraction of X dark green AP is removed from the graph and
the edge leading to it is redirected to AFP,.,. Finally, a content of red AP is
replaced by reference to a parent attribute group of AP,,.

63

Apred

J

T > APdblue

Aphla:k Apvinlet — Apbrown

Figure 5.9: After Redundant APs Elimination

Figure 5.9 illustrates how the Figure 5.8 changes after running the algo-
rithm for elimination of redundant APs. Figure 5.10 shows the result of basic
translation after running the algorithm (compare with Figure 5.7).

Obviously, the algorithm for elimination of redundancies in APs doesn’t
remove all redundancies that can occur in attribute declarations.

For example, an attribute declaration with name surname, type zs:string
and use set to required is included both in pink and dark blue AP. Ideally, the
attribute would be declared only once and its declaration would be referenced
from the pink and dark blue APs.

A solution of this problem is proposed in Section 5.1.3.

Algorithm Analysis

First, we show that a termination is ensured for every possible input.

In each instance of xsoyr there is a finite number of APs and attribute
declarations. For each AP we construct a finite set of some attribute declara-
tions, called AR p. Based on the AR4p, we divide APs into finite number of
equivalence classes.

We process the equivalence classes one by one. In each step we can remove
some APs from the graph and/or add exactly one AP into it. Always, the new

64

{¥sischema...>
<x5:element name="sale" type="5ale” />
<¥5:complexType name="5ale">
4MEISeqUences ... £ /K5I SegUeEncer
| <xs:attribute name="datetime" type="xs:dateTime" use="required" />
</xsicomplexTypes

<x5:complexType name="Customer">
| <xs:attributeGroup ref="MNameInfo-a" /»
</xs5:complexTypes>

<x5:complexType name="Customer2":
<x¥s:attributeGroup ref="BirthInfo-a" />
<us:attributeGroup ref="NameInfo-a" />
</xsicomplexTypes

<xs:attributeGroup name="BirthInfo-a"»
¢us:attribute name="birth_date” type="xs:date" use="reguired" />
<us:attribute name="birth_place" type="ws:string" use="reguired" ;>
</%s:attributeGroup>

<xs:attributeGroup name="NameInfo-a">»

<xs:attribute name="surname" type="xs:string" use="required" />
I<xs:attributeﬁroup ref="ExtNameInfo-a" /:
</xs:attributeGroup>

<xs:attributeGroup name="ExtNameInfo-a"»
| <xs:attribute name="first_name" type="xs:string" use="reguired" />
< f¥z:attributeGroup>

<x5:complexType name="Employee" abstract="trues":
{¥s:attribute name="surname" type="xs:string" use="required” />
/x5 complexTypes

<x5:complexType name="Salesman">
<xs:complexContent>
ws:extension base="Employee":
| <xs:attributeGroup ref="ExtNameInfo-a" />
</fxsiextension:
<fx5:complexContent>
</xsicomplexTypes

<¥s:complexType name="Item">
<us:attribute name="id" type="®s:int" use="reguired" />
<xs:attribute name="count™ type="xs:int" use="required” />
</xs5:complexTypes>
<fxs:schema>

Figure 5.10: XML Schema, Redundant APs Elimination Output

65

AP belongs to the equivalence class, that is currently processed. That means,
the number of equivalence classes cannot be changed by processing any one of
them.

A correctness of the algorithm comes from the following facts.

After each class of equivalence is processed, it contains exactly one AP
with attribute group as its parent. We call it a representative. In other words,
no redundant AP with such a parent left in the XML schema.

All the other APs from EC' are still mutually equivalent, but content of
each of them is a simple reference to the representative. Therefore, such APs
are not considered redundant.

The algorithm is correct because the processing of one specific equivalence
class cannot make an AP from an equivalence class, which has been already
processed, redundant.

For a time analysis, let us suppose that we have a DOM [19] structure
of XML Schema document, as a result of the translation algorithm. Also, let
us suppose that m denotes a number of APs in DOM and n is a number of
attribute declarations in DOM.

First, the algorithm looks for a division of APs into equivalence classes. For
each AP it must construct its AR4p. It must collect the attribute declarations
from the AP and all the APs, it depends on. In the worst case, a construction
of the AR 4ps of every APs would require m * n steps.

Fortunatelly, we don’t need to go through the whole document especially
for this purpose. We can create a list of APs and their AR sps directly during
the translation of an XSEM-H view into the DOM structure.

A structure representing AR4p is organized as a binary heap. Items of
AR p are not attribute declarations, but equivalence classes of attribute decla-
rations. Again, an equivalence class of each attribute declaration is found during
the creation of the DOM structure.

For each AR 4p structure, we call min and deletemin methods iteratively
and concatenate returned values into a string. This require m * log(n) steps.
The string is then used as an input of a hash function.

In the formal description of the algorithm, we assumed a perfect hash func-
tion. In fact, we uses MD5, SHA-1 [20] or any other well-known hash function,

66

instead. A result of the hash function represents an equivalence class for the
processed AP. Because used hash functions are not perfect, always, we must
made an additionally comparison of ARsps to be sure, that AP really belongs
to the proposed equivalence class.

When we have a division of SAP into the classes of equivalence, we pro-
cess these classes one by one. For each equivalence class, we simply need to go
through its items to perform all the required modifications.

5.1.3 Redundant Attribute Declarations

In this section we introduce an algorithm for removal of redundant attribute
declarations from an arbitrary output of the basic translation.

We propose an algorithm that operates with AD 4p sets (see Definition 6)
of all APs in an XML schema. Its purpose is to make those AD4p mutually
disjoint, so that no two AF;, AP; € SAP contain the same attribute declaration.

Definition 10 SAP is without redundant attribute declarations iff for every
AP;, AP; € SAP where AP, # AP;, sets of attribute declarations contained in
them directly are disjoint, i.e. ADp, N ADap, = 0).

The algorithm runs in steps until all redundancies from attribute decla-
rations are removed. In each step, it gets a subset of SAP and calculates an
intersection of AD 4 p of all the subset’s APs.

Then, attribute declarations from the intersection are excluded into a new
separate attribute group declaration. In place of the attribute declarations, each
participating AP gets an reference to the new attribute group.

Thus, the algorithm adds new nodes into GAP and changes a set of its
edges, repeatedly.

We must define a rule for selecting SAPs subsets in each step of the algo-
rithm. Note that an output of the algorithm can vary for different rules applied.
In this algorithm, as the subset of SAP, we always select two APs that have the
largest intersections of AD,p sets.

67

In other words, we select AP;, AP; € SAP that satisfy Equation 5.2. If
two and more pairs of APs satisfy it, we can select any pair of them.

- ElAPm,APn € SAP: |ADApm N ADAP” | > |ADAP1- N ADAP]- | (52)

In Algorithm 2, the proposed algorithm is written in pseudocode. Let us
describe its most important parts.

At lines 2-12, for each pair of APs an information on their intersection is
added into a structure called S. Each record of an intersection consists of a set
of shared attribute declarations (X) and indexes of both APs that share it.

The algorithm assumes that S keeps records ordered by size of X, in de-
scending order. S should be some kind of a priority queue, e.g. binary heap.
If S is not organized as a priority queue, then at line 14, repeated selection of
items with the biggest X is very inefficient.

At lines 13-26, items are extracted from S successively. In each step, new
AP is created from the intersection X (line 15) and inserted into GAP’, as seen
at lines 22-23. Contents of both the APs sharing the X are changed, according
to the formulas proposed at lines 24-25.

Now, it seems that everything is finished. But that’s not true at all. The
algorithm have passed through all the intersections, found at the very beginning
while exploring Vgapr = SAP. The problem is that Vgap changes during a
process of the algorithm and therefore, a recalculation of S is neccessary after
each step of a while cycle (13-26). Well, let us propose a solution to the problem.

68

Input: GAP

Output: GAP’
1 GAP' + GAP
2 foreach AP, € Vgap do
3 foreach AP; € Vgap do
4 if j <i then
5 ‘ goto 3
6 end
7 X(—ADAPZ.QADAPJ,
8 if X # () then
9 ‘ S.add(X, i, j)
10 end
11 end

12 end

13 while S # () do
14 (X, i, j) < S.getmax()
15 AP, ey < new(X)

16 foreach AP, € Vgap do

17 Y + ADAPi N ADAPj
18 if Y # () then

19 | S.add(Y, k, new)
20 end

21 end

22 VgAP/ — VGAP’ U APnew
23 EGAP’ — EGAP’ U (APu APnew) U (A‘Pj7 APnew)

24 AP, + AP, \ X Uref(AP,ew)
25 AP+ AP; \ X Uref(AP,ew)

26 end

Algorithm 2: Removal of Redundant Attribute Declarations

69

AP,

Figure 5.11: Relationships of Intersections

Ensuring Consistency

At the very beginning of the algorithm, we create and fill structure S, so that
it represents intersections of AD,p sets of each pair from Vgap. Then, we get
items of S one-by-one and in each step we change some vertices and edges of
GAP'.

The problem is that such an approach isn’t correct, because after each
change of GAP' the set S is no more consistent and its recalculation is necces-
sary.

Because the recalculation of S in each step of the algorithm would be
very time-consuming approach, here, we propose an easier way. We define rules
determining how to change S after a change of GAP’, to ensure data consistency.

The rules must be applied in the getmaz() function at line 14. Moreover,
because in each step of the while cycle we create one new AP, we must add some
new intersections into Vg4pr, as seen at line 19.

Figure 5.11 illustrates a space of attribute declarations and attribute group
references of an arbitrary output of the basic translation algorithm. Five APs
are in the space. They are identified by numbers and Figure 5.11 clearly illus-
trates their intersections. Obviously

70

VgAP == SAP = {APl,APQ,AP3,AP4,AP5}

Let us suppose that at lines 13-26 of Algorithm 2 we work with the red
intersection of ADsp, and ADp, called X, ie. ¢ =2 and j = 3.

We want to create a new AP from X and exclude X from both the APs.
We are interested in how intersections of pairs of the other APs can be affected
with those actions, i.e. how S can be damaged.

There are six types of intersections according to their relationships to the
intersection X. The first type is intersection, the participants of which are com-
pletely different then participants of X. The exclusion of X from S doesn’t affect
intersections of the first type at all.

The five other types are listed in Table 5.1. Both in Figure 5.11 and the
table, the types are distinguished by color.

In Table 5.1, there are characteristic formulas for the types. In each for-
mula, Y denotes an instance of the appropriate type. In column Figure 5.11
Example there is a sample value of Y, taken from Figure 5.11.

Table 5.1: Types of Intersections according to their Relations to X

Type Characteristic Formula Figure 5.11 Example

Tyreen | VY € Tpreen: ¥ D X AD ap, N AD ap,
Tred VY e Tgreen: Y=X ADAP2 N ADAP3
Thive VY € Tgreen: YcX ADAP2 N ADAP4

Tiotet VY € Tgreen: YNX= @ ADAp2 N ADAP5
Tyetiow | VY € Tyreen: YN X # 0 A ADpp, N AD 4p,
X\YADAY\NX#D

A green type Tyen includes those intersections from S that represent a

71

superset of X. In fact, no intersection of green type can exist, because the rule
for selection of X (see Equation 5.2) says that X is always the biggest intersec-
tion. Thus, from now, we don’t consider green intersections at all.

Tuwe (a blue type) contains intersections that represent a subset of X.

If an intersection of AD4p sets of two APs shares some items with X and
doesn’t belong to Tie nor Tyeepn, then it belongs to a yellow type Tyeiow-

Thioler Tepresents all intersections that don’t intersect with X at all.

A red type is for intersections that have the same items like X.

An exclusion of X from AP, and AP; into a new AP, realized in one step
of the Algorithm 2, doesn’t affect intersections from T;,.:. Therefore, in get-
max() function the intersections from T,y in S are not modified.

A content of intersections of the blue type is not changed at all, but one
participant of each intersection must be changed to the new AP.

Let us illustrate the situation in Figure 5.11. When new AP is created
from X, then AD4p, and AD 4p, sets are reduced to AD4p, \ X and ADp, \ X.
So the blue type intersection can no longer be equal to ADsp, N AD sp,. It must
be modified to ADapy pw N ADap,.

In fact, we don’t need to do such a modification, because in each step,
the Algorithm 2 automatically adds intersections of the new AP into S. Thus,
because ADapy ., N AD4p, is added into S at line 19, each Y € Tje can be
simply removed from S.

An intersection Y € Tyejio, must be modified to Y \ AD4p, ., . Moreover,
one new intersection must be added into S, but that operation has nothing to
do with ensuring consistency of S. The operation is performed at line 19.

We illustrate Algorithm 2 on an example. In Figure 5.12 a) there are four
APs and some equivalence classes of attribute declarations. The equivalence
classes are represented by letters of the alphabet. If an AP, contains a letter L,
the attribute declaration represented by equivalence class of L belongs to AD 4p,.

In the first phase of the algorithm we fill the structure S. Records of S are
always kept ordereb by size of set X.

72

AP,

Figure 5.12: Redundant Attribute Declarations Elimination, Part 1

So={ {d,e, f},1,4),({/,9,h},2,4), {h,1},2,3), {f}, 1,2), ({h},3,4) }

In its second phase the algorithm runs in steps, as said already. In each
step the function getmaz() gives the first item of S and perform some modifica-
tions of its other items to ensure consistency of S.

Well, getmaz() gives ({d,e, f},1,4). In Figure 5.12 a) we can see which
item of S belongs to which type according to their relationship to X = {d,e, f}.

Following the rules, we remove the blue intersection from S and reduce the
yellow intersection from ({f, g, h},2,4) to ({g,h},2,4),.

And of course, no intersection of violet type is modified.

The next steps of the algorithm are analogous. Figure 5.13 illustrates how

the situation changes, and here, we propose the values of structure S for each
step of the algorithm.

73

Figure 5.13: Redundant Attribute Declarations Elimination, Part 2

{9,h},2,4), ({h,4},2,3), ({f},2,5), ({h},3,4) }
{1},2,3), ({h},3,6), ({1},2,5) }

{h},3,6), {f},2,5) }

{/}1,2,5) }

{
{
{
{

—~ o~ o~~~

S
S
S3
Sy

Algorithm Analysis

The algorithm terminates for every possible input. That’s because in its first
phase we examine pairs of APs and obviously, the number of APs is finite. In
the second phase, we get items of structure S one by one. We finish, when S
is empty. The fact that in each step we add new items into S complicates the
situation a little.

However, a termination of the second phase of the algorithm is ensured by
the fact, that in each step for at least one equivalence class of attribute declara-
tions the number of AD 4ps, in which it is contained, decreases.

74

A correctness of the algorithm is guaranteed by an existence of the rules
for ensuring consistency in structure S. Thanks to the rules, after each step S is
modified to a state, to which it can be set by a re-start of the whole first phase
of the algorithm.

For a time analysis let us suppose that m denotes a number of APs in a
DOM structure and n is a number of attribute declarations in DOM.

The first phase of the algorithm requires m? comparisons of two AD 4p
sets. Theoretically, an ADp set can contain all the attribute declarations in
the XML schema. Therefore, the whole first phase requires m? * n comparisons
of attribute declarations (resp. their equivalence classes).

In the second phase, the most important thing is, that the algorithm for
ensuring consistency of S is linear.

5.2 Redundancy in Element Declarations

Another type of redundancy in an output of the basic translation algorithm is a
redundancy in element declarations. In this section, we describe where exactly
such declarations can be found and how do they look like. We explain what can
be considered redundant in element declarations and how we can deal with such
a redundancy.

However, in this part of the work, we don’t create a formal model like in
Section 5.1. Instead, we explain how the problem, or at least a part of it, can
be converted to the one in Section 5.1.

As seen in Figures 3.5 - 3.8, in an instance of zspyr, a declaration of an
XML element can occur on a global level (under the zs:schema element), as well
as under a sequence or a choice constructions.

An XML element is always declared by an zs:element element. The dec-
laration contains a name attribute, specifying a name of the declared XML
element, and a type attribute that specifies its type.

If the type attribute is not presented, then type of the declared element is
given by a complex type, which is declared directly under the element declara-
tion.

1)

purchass

date : date customer
place : string ‘ Goods | Customer

I 1.*
(‘info \ ‘ \
(ko e O
1 / \ Product
total_price id : integer
| SpecialOffer | items_count | email : string | | phone : string |

spedaloffer

Figure 5.14: XSEM-H View, Redundancy in Element Declarations

When the XML element is declared under a choice or a sequence construc-
tion, moreover, it can contain attributes specifying the minimal and maximal
allowed number of occurences of the declared XML element.

Figure 5.14 shows a sample XSEM-H view and in Figure 5.15, we can find
a translation of the view into the XML Schema language.

We distinguish two types of element declarations, both the types are illus-
trated in Figure 5.15. The types are identified by a value of type attributes. If
the value is a primitive datatype of the XML Schema language [21] (zs:string,
zs:date,...), then the element declaration is of the first type.

Otherwise, the value of the type attribute refers to an existing complex
type or the type is not presented at all. In such cases, the element declarations
is considered to be of the second type.

Each element declaration of the first type is created by a translation of
an attribute container’s item. In other words, such an element declaration is
derived from an attribute, which is declared on a conceptual level.

If we declare the same attribute directly in a node of an XSEM-H view, not
in the attribute container, then, it is translated into an XML Schema attribute
declaration and its redundancy (if any) is solved in Section 5.1.

Therefore, we can solve a redundancy of an element declaration of the first

76

<wsischema... =
<¥5:element namae="purchase" type="Purchase" /=
<x5:complexType name="SpecialOffer" [=

zxs:complexType name="Purchasa">
<XSIsequences
<xs:element name="date" type="xs:date" />
<x5:element name="place” type="xs:string" />
<xs:group ref="Goods-c" /=
<xs:element name="customer" type="Customer” /=
< [¥5:5equences
< fxs:complexTypes

<¥5:group name="Goods-C">
<¥S5i5equencas
<xs:element name="info"=
<xs:complexType:
<X5isequUences
<xs:element name="specialoffer” type="SpedalOffer” /=
<¥s:element name="total_price" type="xs:string” /=
<x5:element name="tems_count" type="x¥s:string” /=
< [¥s:5equences
<fxs:complexType:
< f¥5:element
=xs:element name="product” type="Product" maxOccurs="unbounded"/ =
< [¥5:58quUences
< f¥s:group>

<x5:complexType name="Customer":
<X 5eqUences
| <xs:element name="nama" type="xs:string" /=
«<x¥s:choice=
<xsielement name="email" type="xs:string" /=
<xs:element name="phone" type="xs:string” />
= f¥s:choice=
< [45:5equences
< fxs:complexTypes

<x5:complexType name="Product™=
<xs:attribute name="id" type="xs:int" use="required" /=
< fxs:complexTypes
< ¥s:5chemas

Figure 5.15: XML Schema, Redundancy in Element Declarations

7

type using methods very similar to the ones, described in Section 5.1.

Finding a redundancy in element declarations of the second type is much
more complicated task. We don’t deal with the task here, it is out of the scope
of this work. To illustrate the problem we use Figure 5.14.

Obviously, each attribute container in the XSEM-H view is a leaf. This is
true for all existing XSEM-H views. In other words, the element declarations of
the first type cannot be created from inner nodes of the XSEM-H view. There-
fore, the element declarations created from the inner nodes are always of the
second type.

To check an equivalency of two inner nodes (or element declarations created
from them) we must compare their subtrees properly (or we must compare the
XML Schema objects that were created by translation of the subtrees). That’s
not easy at all and is out of the scope of this work.

In Section 5.1 we define a term AP. We can create a similar definition for
element declarations of the first type, but we must take into account at least two
specifics of element declarations.

First, we must work with sequences of element declaration, not with sets
like in the case of attribute declarations. Second, we must consider minQOccurs
and mazOccurs attributes.

Definition 11 FElement part, denoted EP, is a sequence of adjacent declara-
tions of elements with primitive types and without minOccurs and maxQOccurs
attributes, that have the same parent element in an XML structure of a basic
translation output such that

- dEP": EP' D EP
Figure 5.15 illustrates Definition 11. Each red line on the left side of the
XML schema represents one EC'.
With Definition 11, we are able to modify the algorithm from Section 5.1.3

to be applicable on the problem of redundancy in element declarations of the
first type.

78

The modified algorithm must take into account the order of element dec-
larations in EC'. The intersections of EC's are excluded into model groups, in
contrast to the instersections of attribute declarations, that are excluded into
attribute groups in the original algorithm.

5.3 Nestings of Choices

The XML schema xsoyr defines a choice construction, as illustrated in Figures
3.5 - 3.8. In this section we analyze where in an arbitrary output of the basic
translation algorithm such a construction can be found, how exactly it looks like
and what type of redundancy it can produce.

The basic translation algorithm creates a choice construction from two
constructs of the XSEM-H model: Content choices and node choices. The main
difference between translations of these types of constructs is that a choice XML
element translated from a node choice can have its minOccurs and mazOccurs
attributes set.

The XML schema zsopr allows a choice construct to occur either under a
sequence contruct or under another choice contruct. That means, in an arbitrary
output of the basic translation algorithm, choice constructions can be mutually
nested indefinitely.

The only limitation in such nestings is that if choice contruct is created
from an XSEM-H node choice, it is not allowed to have another choice construct
as its child.

Definition 12 The graph of choices is a directed graph GC = (V,E), where V
is a set of all choice constructions with minOccurs and maxOccurs attributes
set to their default values from an output of the basic translation algorithm and
E = {(vi,v2)| v1, v2 € V A vl is parent of v2 }. A nesting of choices, denoted
NC, is a connected component of GC.

Obviously, each NC'is a tree. The fact comes from an XML structure of
a given output of the basic translation algorithm.

79

Class5

Class5
2.8

‘o
. D / \(D. o / N

Classl
| Class7 | Classl
1 1 / \1
. $
Class2 Classt (D Class4
| Class2 | Classé | / \3__5 Class4 / .
L
Class3 (D Class8
Class3 1 / \1 Class8
Clazzh Classg Classs

Class6 ‘ Class8 | Class5
Figure 5.16: XSEM-H View, Redundancy in Nestings of Choices

Let us illustrate Definition 12 in Figure 5.16. There is a sample XSEM-H
view. A result of a translation of the XSEM-H view can be found in Figure 5.17.
For clarity, empty complex types and attributes of zs:schema element are not
included.

In the XSEM-H view, each content choice is displayed as a circle with one
vertical line in it. Node choices are represented by circles with crosses.

A GC graph of the presented XML schema consists of six vertices, in the
figures they are marked with a red, blue, violet, yellow, brown and green dot.
The graph has two connected components, i.e. two NCs.

VGC = { Ured, Ublues Vgreens Vviolets Vbrowns Vyellow }
EGC = { (Ured>vviolet)7 (Uredvvblue)> (Ublueavgreen>7 (Uyellowa vbrown) }
NCl - { Ured, Ublue; VUgreens Uviolet }

NC2 - { Uyellow, Vbrown }

Obviously, both the NC's from Figure 5.17 can be written in easier ways,

80

<{¥s:schema. ..>»
<xs:element name="Class5" type="Class5" />
<¥s:complexType name="{lass5">
XS5 :sequencer
@ <us:cholcer
i <xs:choicer
{xs5:element name="Class2" type="(lass2" />
{¥xs5:element name="Classe" type="Classe" />
¢fusrcholces
i <xs:choice>
i <xs:choice:
<xs:element name="Class3" type="Class3" />
«xs:choice minOccurs="3" maxOccurs="5">»
<xs:element name="Classd" type="Class62"/>
£fws:choices
£/ws:choicer
<xs:element name="Class4" type="Class4"™ />
£/xs:choice>
</xsichoices
¢¥s:cholce minOccurs="2" maxOccurs="3">
{xsielement name="Class7" type="Class?" />
{xs:ielement name="Class1l" type="Classl" />
¢/¥s:choices
</¥5:s5equences
</xs:complexTypes

<¥s:complexType name="{lass7">
{XSisequencer
¢¥s:cholce»
#§ <xs:choice>
<¥s:element name="Class&" type="(Class3" />
<x¥s:element name="Class5" type="Class52" />
¢fus:choices»
<xs:element name="Class8" type="Class82" J=»
¢/¥s:choices
</¥5:s5equences:
</xsicomplexTyper

£JSxs:schema>»

Figure 5.17: XML Schema, Redundancy in Nestings of Choices

81

{¥s:schema...>»

<¥s:element name="Class5" type="Classi" />

<¥s:complexType name="{lass5">
<¥s:isequences
@ <xs:choice>

<¥sielement name="{lass4"
<¥sielement name="{lassi"
<xs:element name="Class3"
{¥xs:element name="Classe"

L |

ype="Class4" [
ype="Class2™ />
ype="Class3" /:
ype="Classg" [

¢¥s:choice minOccurs="3" maxOccurs="5"3>
<¥s:element name="(Class&" type="Classb2"

¢/us:choices>
¢<fus:choices

¢¥s:choice minQccurs="2" maxOccurs="38"»
<xs:element name="Classl" type="Classl™ />

<xs:element name="Class7"
¢<fus:choices
</¥s1sequences
</xs:complexType>

<¥s:complexType name="{lass7">
<XS:sequence»
¢¥s:choices
<¥sielement name="{lass5"
<¥sielement name="{lass8"
<xs:element name="Class8"
</us:choice:
L/¥s515equences
<f/¥s:complexType»

Lfusrschema:

82

L |

=--mn

type="Class?" />

ype="Class52" /=»
ype="Classd" />
ype="Class82" />

i

Figure 5.18: XML Schema, Redundancy in Nestings of Choices Output

so that the XML schema still describes the same set of XML documents. An
example of an XML schema with optimalized NC's is illustrated in Figure 5.18.

Both the figures, illustrating the XSD documents, represent the same XML
schema, althought in Figure 5.18 there are only two choice constructions without
minOccurs and mazOccurs attributes - the red one and the yellow one.

The other choice constructs from Figure 5.17 don’t add new information to
the XML schema, because they are included in another choice constructs with
the same meaning. Therefore, we consider the violet, blue, green and brown
choice construction redundant.

We propose an algorithm for simplification of NC's, i.e. for elimination
of redundant choice constructions from an output of the basic translation algo-
rithm.

Let us suppose that we have a function, called root(), that gets any C € GC
and gives R € GC', which is the root of the nesting, which item C belongs to.

Then, an idea of the algorithm is very simple.

We get items of GC' one by one and for each of them we get a collection
of its children, which don’t belong to GC (i.e. non-choice children). Then, we
put the whole collection of nodes under the appropriate root element.

After processing of all the items of GC', we remove the non-root items from
GC, as well as from the XML schema document.

Algorithm Analysis

The algorithm terminates for every input. This is obvious, because both find-
ing roots and processing nodes of GC' are very simple tasks.

A correctness comes from the fact, that for each item of an XML schema
the algorithm either decreases a number of choice constructions, in which it is
included, or it let the item’s position unchanged.

83

Chapter 6

Conclusions and Future Work

In this thesis, we focused on a conceptual modeling for XML, on its purpose
and specifics, and listed some of the most popular conceptual models. Then, in
brief we described a conceptual model XSEM that was introduced in [4]. We
said which items XSEM typically contains and introduced a conceptual model-
ing tool that implements it called XCase.

We described an algorithm for a translation of an XML schema from an
XSEM model into the XML Schema language that was introduced in [4]. We
called it the basic translation algorithm and discussed some of its limitations.
Our observations led to the conclusion that the algorithm has a few significant
and a number of less important limitations.

As an important limitation we introduced the fact that the basic transla-
tion algorithm didn’t use well-known design patterns of the XML Schema lan-
guage. Another significant limitation was ignoring grouping of entities that can
possibly occur in the XSEM model. The last important limitation that was dis-
cussed refered to the fact that the basic translation algorithm produced output
with lots of structural redundancies.

To be able to improve the algorithm, we defined formally how its output
looks like. A set of all possible outputs has been precisely defined by an XML
schema, that was presented usign platform-specific models of the XCase tool.

Motivated by the discovered limitations of the algorithm, we analyzed their
possible solutions. Moreover, we proposed a concept of a translation profiling
that helps users to influence a process of the algorithm through a special set of
parameters.

84

An entire chapter of this thesis was devoted to a proposed solution of
the problem with structural redundancies in an output of the basic translation
algorithm. In the chapter we solved three most common types of redundancies.

We define a term AP and showed which APs can be redundant and how
to deal with them. Also, we proposed an algorithm for elimination of redundant
attribute declaration and for simplification of nestings of choices and sequences.

Currently, we are working on an implementation of the proposed improve-

ments. We are trying to include new functionalities, based on our ideas, into the
XCase tool.

85

Bibliography

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau.
Extensible Markup Language (XML) 1.0 (Fourth Edition). W3C, September
2006. http:///www.w3.org/TR/REC-xml/.

2] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML
Schema Part 1: Structures (Second Edition). W3C, October 2004.
http://www.w3.org/ TR /xmlschema-1/.

[3] J. Clark and M. Makoto. RELAX NG Specification. Oasis, December 2001.
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html.

[4] M. Necasky. Conceptual Modeling for XML. Ph.D. thesis,
2008. Department of Software Engineering, Charles University.
http://www.necasky.net /thesis.pdf.

[5] B. Thalheim. Entity-Relationship Modeling: Foundations of Database Tech-
nology. Springer Verlag, 2000, Berlin, Germany. ISBN: 3-540-65470-4

(6] A. Badia. Conceptual Modeling for Semistructured Data. In Proceedings of
the 3rd International Conference on Web Information Systems Engineering
Workshops (WISE 2002 Workshops), p. 170-177. Singapore, December 2002.

[7] M. Mani. EReX: A Conceptual Model for XML. In Proceedings of the Sec-
ond International XML Database Symposium (XSym 2004), p. 128-142.
Toronto, Canada, August 2004.

[8] M. Mani, D. Lee, R. R. Muntz. Semantic Data Modeling Using XML
Schemas. In Proceedings of the 20th International Conference on Concep-
tual Modeling (ER 2001), p. 149-163. Yokohama, Japan, November 2001.

86

9] A. Sengupta, S. Mohan, R. Doshi. XER - Extensible Entity Relationship
Modeling. In Proceedings of the XML 2003 Conference, p. 140-154. Philadel-
phia, USA, December 2003.

[10] J. Klimek, L. Kopenec, P. Loupal, J. Maly. XCase - A Tool for Concep-
tual XML Data Modeling. In Lecture Notes In Computer Science, Vol.
5968/2010, Advances in Databases and Information Systems, pp. 96-103,
March 2010. ISBN 978-3-642-12081-7

[11] J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management
Group, 2003. http://www.omg.org/docs/omg/03-06-01.pdf.

[12] R. L. Costello. XML Schemas: Best Practices, 2003.
http://www.xfront.com/GlobalVersusLocal.pdf

[13] A. Khan and M. Sum. Introducing Design Patterns in XML Schemas. Sun
Developer Network Article, 2006.

[14] T. Bray, D. Hollander, A. Layman, R. Tobin, H. S. Thompson.
Namespaces in XML 1.0 (Third Edition). W3C, December 2009.
http://www.w3.org/TR/REC-xml-names/

[15] Universal Financial Industry Message Scheme (ISO 20022).
http://www.is020022.0rg/ .

[16] C. K. Liu and D. Booth. Web Services Description Language (WSDL) Ver-
sion 2.0 Part 0: Primer. W3C, June 2007. http://www.w3.org/ TR /wsd120-
primer/.

[17] R. Jelliffe. Schematron. May 2000. http://www.ascc.net /xml/resource/schematron/

[18] D. Lee and W. W. Chu. Comparative Analysis of Six XML Schema Lan-
guages. ACM SIGMOD Record, v.29 n.3, p.76-87, September 2000

[19] V. Apparao, S. Byrne, M. Champion, S. Isaacs. Document Ob-
ject Model (DOM) Level 1 Specification. W3C, October 1998.
http://www.w3.org/TR/REC-DOM-Level-1/

[20] B. Preneel. Analysis and Design of Cryptographic Hash Functions. February
2003.

[21] P. V. Biron, A. Malhotra. XML Schema Part 2: Datatypes (Second Edition).
W3C, October 2004. http://www.w3.org/TR/xmlschema-2/.

87

Appendix A

XML Schema Translations of
XSEM-H Constructs

This appendix present a table of all XSEM-H model constructs proposed in Sec-
tion 2.1.2. For each modeling construct there is its corresponding representation
in the XML Schema language as described in Section 3.1.

In the following table U denotes a node of an XSEM-H view, A is an at-
tribute of U and C' is a component from the content of U, i.e. C' is an edge,
attribute container, content container or content choice.

T Ny denotes a unique name assigned to U, called type name. XS4 is the
translation of an attribute A and X S¢ is the translation of C.

If C is an edge E from the content of U going to a node V without an
element label, X Séfref is a reference to the attribute group translated from V.
Otherwise, X Séimf is empty.

88

XSEM-H construct

XML Schema representation

(1) Node with an element label

Iy
u
- Ay
-Am
o G

<xs:complexType name="TNp">
<X§:sequence>
XSc, ... X8,
</xs:sequence>
X8a4,...X8a4,
A—ref A—ref
XSe, ™ XS5
</xs:complexType>
if U is a root then

<xs:element name="I;/" type="TNp">

(2) Node without an element label

<xs:group id="TNpy-c">
<¥s:sequence>
XS0, ... X5q,
</xs:sequence>
</xs:group>
<xs:attributeGroup id="TNp-a">
X84,... X5,
xXsiel L xsAred
<I':-:s:a'c'c-ribu'ceGroup>

(3) Aftribute (N 4, domy) of a node

U
=A

<xs:attribute name="N_,"
type="doma" />

(4) Attribute (Na.doma) in an

attribute container

.
I

<xs:element name="/N,"
type="dom," />

(5) Fdge going to a node with an el-
ement label

<xs:element name="Iy" type="TNy"

minOccurs="m" maxOccurs="n"

/>

89

XSEM-H construct XML Schema representation

(6) Edge going to a node without an
element label

<xs:group ref="TNy-c"
minOccurs="m" maxOccurs="n" />

<xs:choice minOccurs="m'
maxlccurs="n">
-YSJ{-ZH [-YSJ{[\'" |

</xs:choice>

if Vi has an element label v, XSgo,, is
W, |-- -| v, | <xs:element name="ly," type="TNy," />

if Vi does not have an element label, X Sg iy,
is <xs:group ref="TNy," />

<xs5:choice>
XS, ... X5,

</xs:choice>

Cy Cn

(9) Content container

<xs:element name="[">
<xs:complexType>
U <XS:Sequence>

XSc,...XSe,

[] </xs:sequence>
A—ref A—ref
.. X5, " XS e
Cy Cn </xs:complexType>

</xs:element>

_"f._q_g-_ e -Ys.tm

90

XSEM-H construct

XML Schema representation

(11) Attribute container with an at-

iribute (Na.doma) and a connected edge E

<xs:element name="N,">
<xs:complexType mixed="trus">
<XS:sequence>
XS
</xs:sequence>
</xs:complexType>
</xs:element>
where X Sg is the translation of E
according to (5-6).

(12) Structural representative with
an element label

<xs:complexType name="TNp">
<X5:sequence>
<xs:group ref="TNy, -c">

<xs:group ref="TNy, -c">
XS5, ...X 58,
</Xs:sequence>
<xs:attributeGroup ref="TNy,-a">

<xs:attributeGroup ref="T Ny, -a">
XS4y, ... X8,
A—ref A—ref
XSo ™ XS,
</xs:complexType>

(13) Structural representative with-
out an element label

<xs:group id="T'Np-c">
<¥s:sequence>
<xs:group ref="TNy, -c">

<xs:group ref="T Ny, -c">
XSe, ... X5q,
</x5:sequence>
</x5:group>
<xs:attributeGroup id="TNp-a">
<xs:attributeGroup ref="TNy,-a">

<xs:attributeGroup ref="TNy, -a">
XS4, ...XSa,,
xsprl L xsid

</xs:attributeGroup>

91

XSEM-H construct

XML Schema representation

(14) Specialization V' of a node U
where U has an element label

Iy
W
-y
=Am
4 Ch

<xs:complexType name="TN) ">
<xs:complexContent>
<xs:extension base="TNp">
<I5:Sequence>
XS, ... X8,
</xs:sequence>
XS84,... X854,
xsarel L xsiet
</Xs:extension>
</xs:complexContent>

</x8:complexType>

if U is a root and V' has a different element
label from V' then

<xs:element name="[y" type="TNy ">

(15) Specialization V' of a node U
where U does not have an element
label and V' does

%
Ay
=By
cy Ch

<xs:complexType name="T N ">
<xs:sequence>
<xs:group id="TNpj-c" />
XS5¢q ...X 85z,
</Xs:sequence>
<xs:attributeGroup id="TNp-a" />
ASq,... X84,
XSAh L xsired
</xs:complexType>

if U is a root and V' has a different element
label from V then
<xs:element name="Iy" type="TN ">

92

XSEM-H construct

XML Schema representation

(16) Specialization V' of a node U
where U and V' does not have an el-
ement label

W

,Q,I

“Am
U
£y Cy

<xs:group id="TNy-c">
<¥S:sequence>
<xs:group id="TNpi-c" />
XSy ... X5¢,
</xs:sequence>

</xs:group>

<xs:attributeGroup id="TNy-a">
<xs:attributeGroup id="TNp-a" />
XS4, ... XS4,
xXspeh xSt

</xs:attributeGroup>

(17) An edge E going to a specialized
node

<xs:choice minOccurs="m"
maxlccurs="n">
XS X.S;,_-,\.-__) - XS’;,_-H.-k)

</zs:choice>

If U does not have an element label and is
abstract, X Sp ts empty. Otherwise, X Sp

is the translation of E according to (5-6).

If Vi has an element label, X Sg v, is

<xs:element name="Iy," type="TNy," />

If V; does not have an element label, X Sgiv)

il

is <xs:group ref="TNy,-c" />

93

