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Chapter 1

Introduction

Cloud computing is a word that can be heard nowadays all around you. It is a
computing paradigm and its main idea is to provide scalable and often virtualized
resources as a service over a net. It can be compared with an electricity grid; you do
not have to have a generator to make your own electricity, you just use electricity
from the grid and you pay only for what you consume. And now this behavior is
also viable in computer world. Users may pay only for computer’s performance they
need and they do not have to have knowledge of, or control over the technology
infrastructure used in the ‘cloud’. This simplifies the life of the users as they do not
need to buy their own hardware.

Because of the fact that the Cloud computing is becoming more popular these
days it is necessary to have means for developing and launching applications in the
‘cloud’. In application development branch component-based development is very
convenient. Large applications are build from smaller components which can be
utilized also in another applications. SOFA 2 is an advanced hierarchical compo-
nent system offering a distributed run-time environment; therefore, it is a suitable
candidate for use in connection with the Cloud computing.

SOFA 2 system currently lacks support for easy launch of SOFA 2 applications in
the ‘cloud’. In particular deployment of such applications has to be prepared manu-
ally which is not convenient especially with regard to managing available resources
in larger clouds. Thus an automated deployment planning is needed for easy launch
of applications in the cloud.

Purpose of this thesis is to add a support of cloud computing to the SOFA 2 sys-
tem. In particular by adding support for automated generation of deployment plans
of applications based on the current status of the cloud; and by creating appropriate
user tools for these actions.



1.1 Goals and structure of the thesis

Main goal of this thesis is to add support for automated generation of deployment
plans to the SOFA 2 system. This can be achieved by firstly looking for algorithms
that would solve this problem, comparing these algorithms and then selecting the
suitable one. Secondly it is necessary to implement the selected algorithm and to
create relevant supporting tools. Further it is required to simplify connection to
the cloud and to improve and automate launching of SOFA 2 applications via new
system tray application.

The structure of the thesis is as follows: Chapter [2] provides background infor-
mation, Chapter [3| describes the issue of automated deployment planning and its
solution, Chapter [4| mentions SOFA 2 extensions, Chapter [5| shows implemented de-
ployment planning on an example, Chapter [0 focuses on related work and, finally,
Chapter [7| concludes this work.



Chapter 2

Overview

This chapter provides general information that will help the reader to understand
the rest of the thesis.

2.1 Cloud computing

As mentioned in Chapter [1}, Cloud computing is an ubiquitous word. But what does
it really mean? It is a computing paradigm and it can be defined as an updated
version of utility computing, basically virtual servers available over the Internet or
it can also be defined as anything outside your firewall. According to [I5] the cloud
computing consists of various components:

SaaS Software as a Service, a single application is delivered through the browser to
thousands of customers. Example applications: Salesforce.com, Google Apps.

Utility computing storage and virtual servers can be accessed on demand over the
network. Example providers: Amazon.com, IBM, SUN.

Web services in the cloud web service providers offer APIs that enable develop-
ers to exploit functionality over the Internet, rather than delivering full-blown
applications (as it is in SaaS). Example: APIs offered by Google Maps.

Platform as a service the whole development environment is delivered as a service
over the Internet rather than just one application. You can build your own
applications that run on the provider’s infrastructure and are delivered to your
users via the Internet from the provider’s servers. Example: Salesforce.com’s
Force.com, Google App Engine.

MSP Managed Service Providers, a managed service is basically an application
exposed to IT rather than to end-users, such as a virus scanning service for
e-mail. Example provider: SecureWorks, IBM.

All of these components have a single common feature — delivering I'T as a utility
(like electricity).



2.2 Component-based development

The main idea of the component-based development is to develop new applications
from existing components. This assumption has consequences for the entire devel-
opment process of the new application [§]:

e development process of component-based application is separated from devel-
opment process of components. The components should have already been
developed, tested and possibly used in other application at time when the
component-based development process starts.

e new process of searching and validating existing components has to be added
into development life-cycle. Less time is spend on implementation (we already
have some components implemented) but more time has to be spend on proper
selection and especially validation of the potential components.

e design and implementation of components is harder because one of the main
purposes of these components is their possible reuse. Thus the design should be
general enough and the implementation should count with all possible usages
of the component.

Implemented components are usually stored with their metadata[]in a repository,
where these are accessible for further development of new applications.

Advantages of the component-based development stems mainly from reusing the
old components, thus the development is faster and final application has less bugs.
Another advantage of the component-based applications is their easier maintenance
as the components can be easily changed or upgraded if necessary.

2.2.1 Component definition

There are more possibilities how to characterize and define a software component
[3]. Classical definition is from Clementz Szyperski’}

“A software component is a unit of composition with contractually speci-
fied interfaces and explicit context dependencies only. A software compo-
nent can be deployed independently and is subject to composition by third
parties.”

A software component has precisely-defined behavior and interfaces (provided
and required) for communication with other components. It can be seen as a black-
box entity so it can be easily reused in different contexts without need of modifying
internal structure of the component.

ladditional description of the component, e.g. behavioral description, measured results of com-
ponent performance, ...

2The definition was developed in the first Workshop on Component-Oriented Programming
(WCOP’96) at ECOOP’96 in Linz.



As there is no general list of detailed features that the component has to specify,
we should look at the concept of component only in the context of its respective
component model.

2.2.2 Component model

Component model specifies rules and semantics for proper work with components. It
specifies how the components are created, how they could be composed together (this
depends on the model type, whether it is flat or hierarchical), what communication
style is permitted between components or how the assembly and deployment of
components is performed.

Implementation and runtime support for a particular component model is called
component system/platform.

2.3 SOFA 2

SOFA 2 is an advanced hierarchical component system offering a distributed run-
time environment [0, 5, 21]. The component model of SOFA 2 system is specified
as an EMF meta-model [9]. This brings simplification as the EMF technology offers
tools for automated generation of a repository with standardized API for working
with components.

In SOFA 2, a component can communicate with other components only via de-
signed provided and required interfaces. It can be viewed as a black-box and also as
a gray-box entity. Black-box view is performed by a component frame, which defines
the type of the component. It specifies provided and required interfaces and it can
also specify the component’s behavior (e.g., via behavior protocol).

A gray-box view of a component is defined by a component architecture. The
architecture implements particular frame and can be either primitive or composite.
Primitive architecture contains direct implementation of a component (the ‘busi-
ness’ code), whereas composite architecture contains sub-components specified as
frames or architectures. Composite architecture then specifies bindings among its
sub-components. It does not contain any ‘business’ code, it only delegates calls from
its interfaces to interfaces of its sub-components.

A component may be used in different applications in different ways. Therefore,
the component can be specified by additional parameters to ensure generality of the
component. These parameters are set during deployment to tune up the compo-
nent to its specific usage. Parameters can be specified either to a frame or to an
architecture.

In addition to the software components the connectors are also defined as first-
class entities. This enables effective connection of components according to their
distribution. Various communication styles can be specified, such as method invoca-
tion, message passing, streaming or distributed shared memory.
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SOFA 2 also supports advanced management of components’ control functional-
ity. This is based on a micro-component model, simple flat component model that
enables easy construction and extension of the control part of components via micro-
components composition. Composition of micro-components is stated in component
aspects.

There is also a basic support for service-oriented architectures (SOA). Provided
interface can be exported as a service (e.g. via Web Service) and required interface
can be mapped on an externally available service.

2.3.1 Application life-cycle

Application life-cycle consists of these steps:
e component development
e application assembly
e application deployment and execution

All code and metadata produced in each step are stored in a repository. For the
development and management of SOFA 2 applications the command line tool named
Clushion can be used.

Application development

Application development usually consist from composition of ready components.
A new architecture is created for the new application. Then either available sub-
components are used from repository or new components are created.

Application assembly

As application architecture is usually described mainly by frames, particular archi-
tecture for each frame has to be selected in this step. The result (mapping from
application’s components to architectures) is stored in an assembly descriptor.

Application deployment and execution

In order to launch a SOFA application, a deployment plan has to be created. This
plan contains assignment of each component of the application to a particular de-
ployment dock (a place where the component runs). Also additional parameters for
components are specified in the deployment plan.

When the deployment plan is ready, connectors are generated and stored in the
repository. Now the application can be launched.
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2.3.2 Runtime environment

A SOFA 2 runtime environment is called SOFAnode. 1t is a distributed runtime
environment which can comprise a number of computers. It consists of a repository,
a global connector manager, a deployment dock registry and a number of deployment
docks.

The repository is the most important part of a SOFAnode as it contains imple-
mentation and metadata of components. It is used both in the development time
and in the run time.

A deployment dock serves as a container for components. It provides necessary in-
frastructure for component instantiation and runtime management, such as starting,
stopping and updating components. All necessary component’s code and metadata
are retrieved from the repository.

The deployment dock registry registers all running deployment docks in a SO-
FAnode, thus it is used to look for other deployment docks when someone needs to
communicate with them.

The global connector manager is responsible for managing all units of connectors
in a SOFAnode and for interconnection of the units that belong to one connector.
Thus the interconnection of components can work properly.

2.4 Behavior protocol

Behavior protocol serves as a specification describing a behavior of a component
[18]. The specification is similar to regular expressions. It describes activity on
the component’s interfaces. That means all possible sequences of method calls and
returns on provided and required interfaces that the component can perform.

The simplest behavior protocol can be either calling of the method ‘m” on the
required interface ‘itfA’ (written as 'itfA.m), acceptance of the method ‘m’ on the
provided interface ‘itfB’ (written as ?7itfB.m) or the NULL symbol which means empty
trace (no sequence of method calls on interfaces). A more complex behavior protocol
can be constructed using operators specified in Table If there are any actions to
be done during acceptance of a method on a provided interface, they are specified
inside curly braces (e.g. ?7itfB.m{!itfA.m;!itfA.n}).

In SOFA 2 a behavior protocol of a component can be specified to component’s
frame. Its main purpose is a possibility to check whether the component composi-
tion of an application is correct. That means that the methods of each component
are invoked in a correct order and no dead-lock can occur due to an unexpected
communication between components.
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Operator Description

A ; B  sequencing; the set of traces formed by concatenation of
a trace generated by A and a trace generated by B
A + B alternative; the set of traces which are generated either

by A or by B
Ax repetition; equivalent to NULL + A + (A;A) + (A;A;A)
+ ... where A is repeated any finite number of times

A | B and-parallel; an arbitrary interleaving of event tokens of
traces generated by A and B
A || B or-parallel; stands for A + B + (A | B)

Table 2.1: Operators for constructing behavior protocols. A and B stands for a
protocol.
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Chapter 3

Automated deployment planning

As mentioned in Section [I.I} the main goal of this work is to add support for au-
tomated generation of deployment plans to the SOFA 2 system. Currently all as-
signments of components to deployment docks in a deployment plan (see Section
has to be done manually. That is inconvenient especially when the application
consists of many components and a lot of the deployment docks are running in the
SOFAnode.

Following section covers possible approaches how to solve the deployment plan-
ning problem. In Section one algorithm is selected and in Section this algo-
rithm is extended to accomplish our purposes.

3.1 Assumptions and requirements

Although SOFA 2 runtime environment is distributed and therefore it could be used
also in wide-area network, it is assumed that the runtime environment will be used
mainly in local high bandwidth networks. Every machine can run more then one
deployment dock. High bandwidth network ensures that each deployment dock is
connected with every other deployment dock and communication between them is
fast.

An interface of a component can be marked with tag local-communication. This
means that all components that are connected via this interface have to be deployed
on one deployment dock.

Requirements on the deployment planning algorithm are following:

1. generate deployment plans that maximize performance of deployed applications
2. perform the deployment planning reasonably fast
3. support hierarchical components

4. support local-communication feature at interface specification

14



3.2 Possible approaches

In order to implement an automated deployment planning, suitable algorithm has
to be found first. Possible approaches are described in the following sections.

3.2.1 Al planning techniques

Artificial Intelligence (Al) is a popular field in computer science. Therefore, planning
problems in Al have been studied for a long time and thus their results could be used
also in deployment planning. This idea was studied at New York University and the
result of their investigation is a planner called Sekitei [13].

They propose a general planning model called as the Component Placement Prob-
lem (CPP) which is solved by the planner using Al planning algorithms. The com-
ponent placement problem is defined by the following elements [13]:

Network topology The network topology is described by a set of nodes and links,
each of them can have associated static and dynamic properties. The dynamic
properties are non-negative real values, the static properties might be repre-
sented by Boolean values or real intervals.

Application framework The application is defined by sets of interface types and
component types. Each component type specifies sets of provided and required
interfaces. In addition, each interface is characterized by a set of component-
specific properties that are defined as functions of other properties and have
no semantics attached to them.

Component deployment behavior A component is deployed on a node only if
the required interfaces are provided by other components on the node and if
the node and link resources are sufficient. After deployment, the provided
interfaces of the component become available on the node and the dynamic
properties of the node are updated.

Link crossing behavior The link crossing behavior is described by interface spe-
cific functions. These functions describe how the interface properties are af-
fected by the link properties when crossing the link, and how dynamic proper-
ties of the link are changed as a result of this operation.

Goal of the CPP In the simplest case, the goal is to put a component of a given
type onto a given node. Other goals can include e.g. delivering a particular set
of interfaces to a given node.

Solving the CPP problem with the Sekitei planner would be as follows: transform
a framework-specific representation of the CPP into an Al-style planning problem;
solve the problem with improved Al planning algorithm; convert the Al-style solution
into a framework specific deployment plan.
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In order to overcome scalability restrictions of the AI planning techniques some
specific characteristics of CPP are exploited. The planning algorithm combines mul-
tiple Al planning techniques. It consists of four steps: regression phase, progression
phase, plan extraction phase and symbolic execution. Each phase helps to reduce
the search space. If a phase fails, the searching is returned to the previous phase.
The first three phases guarantee correctness of the logical part of the plan whereas
the fourth phase serves for checking resource conditions. Any arbitrary monotonic
functions in resource preconditions are supported.

Inconvenient input for the planner is following: very strict resource constraints,
multiple component types implementing the same interface, highly connected net-
works. With this input the planning can take a lot of time.

In [I4] the CPP model was extended with cost functions and resource levels
to target two goals: allowing the planner to find solutions in resource constrained
situations and specifying preferences over possible plans.

Using resource levels, which have to be specified by a domain expert (possibly
based on profiling results), the planner can find a solution also in resource constrained
situations, because it does not allocate ‘worst-case’ network resources (considering
the maximum possible utilization of the resource) but only minimal resources that
will be needed. Thus the overall resource consumption is minimized. This function-
ality depends greatly on the actual specification of levels. Using multiple levels for
each resource increases the size of the problem and negatively affects performance of
the planner. However, it also permits identification of some resource conflicts at an
earlier (and cheaper) phase of the search.

3.2.2 Graph based approach

In [11] authors construct a deployment planner for a composition of Web services
as software components. The composition of Web services is done by Reo circuits
[1], thus the specification of the Web application consists of the Web services, their
requirements and constraints, and the Reo circuit used among them.

A specification of the distributed environment is given by a description of hosts
and their capabilities. These capabilities are meant to be software capabilities (like
which different implementations of Reo channels the host can support). Hardware
parameters such as CPU and disk speed, memory size, etc. are regarded as not
important due to the fact that they wish to focus on software abstraction and not
hardware abstraction.

The deployment planning is defined as a constraint satisfaction problem. Re-
sources available at different hosts should be optimally allocated and the require-
ments and constraints of the application should be accommodated. Moreover some
quality of service (QoS) requirements of the resulting deployment plan are also con-
sidered.

The deployment problem is solved by a graph-based approach. There are made
two graphs for this purpose: an Application Graph, which models a component-
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based application as a graph of components connected by different channel types,
and a Target Environment Graph, which describes the distributed environment as
a graph of hosts connected by different channel types that can exist between every
two hosts. The deployment planning of an application is then defined as a mapping
of its application graph to its target environment graph, subject to maximizing the
desired QoS requirements.

Currently only one QoS requirement is supported. Suppose that a charge applies
for a usage of a particular host (when a component is deployed on this host). Then
a deployment plan with a minimal cost has to be found. Such a deployment problem
is regarded to be equivalent to the Minimum Set Cover problem in graph theory [11].

Definition 1 (Minimum Set Cover Problem). Given a finite set U of n elements, a
collection of subsets of U, S = {s1, $2, ..., 8} such that every element of U belongs
to at least one s;, and a cost function ¢ : S — R, the problem is to find a minimum
cost sub-collection of S that covers all elements of U.

According to [11], the cost-effective deployment problem is converted to the min-
imum set cover problem in the following way:

e set U ={C4,C,,...,C,}, ie., the components of the application are set as the
elements of the universe

e set S ={CSy,,CSy,,...,CSy,,} in which each C'Sy, corresponds to the host
H;, and it represents the set of components of the application that can be run
on the host H;

e define ¢: S — R such that it returns the cost of each host

The minimum set cover problem is a NP-hard problem so it cannot be solved in
polynomial time. But there exist some greedy approximation algorithms that can
find reasonably good answers in polynomial time. So the solution presented in [11]
consists of these steps: first the cost-effective deployment problem is converted to
the minimum set cover problem, then the minimum set cover problem is solved by
using existing algorithms and finally the result is converted back to the deployment
plan.

3.2.3 Heuristic based approach

In [20] the goal of their research is to find a deployment of software components
that maximize performance of the application. Their solution is heuristic-based and
incorporates the software architecture, component resource requirements, and the
hardware specifications of the system.

The formal description of the deployment problem is following. Let Cy,Cy, ..., C,
be n software components. Each component C; is described by its per visit resource
requirements: cpu;, which denotes the component’s average CPU processing time,
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and disk;, which denotes the average disk 1/O requirements per visit of the compo-
nent Cj.

Target environment consists of m machines M, M,, ..., M,,. Each machine M; is
described by speed ratings of its CPU (r.;) and disk (rg4). These ratings express the
multiplicative factors by which these devices are faster than those used to measure
the per visit demands of the components.

The deployment problem involves finding an assignment of all components to
particular machines such that the overall performance is maximized.

For the purpose of this study it is assumed that the machines are interconnected
by high bandwidth network and that the communication time is small compared to
the CPU and disk I/O times for each component visit. Therefore, the CPU and disk
are considered as primary resources in the system.

An approach for deploying components is to pick one component at a time and
deploy it on a particular machine. Deciding which machine the component should
be deployed on is based on the resource utilizations of the machines and the resource
demands of the component. Although the components are described by per visit
resource demands, the total resource demands per user request or per job of each
component have to be computed. A software component may be executed more than
once or even less than once on an average for servicing a job. This depends on the
software architecture. For calculating the visit counts of components, the software
architecture can be modeled by discrete-time Markov chain (see Section [3.5.1)).

The effectiveness of the final deployment depends on the order in which the
components are selected for deployment as well as on how the deployment is actually
done. Therefore, the problem of deploying components for maximizing performance
is divided into two sub-problems:

e decide the best deployment for the components presented in given order
e select the order in which the components should be presented for deployment

Both sub-problems are solved by heuristics. Before explaining the heuristics,
following terms are introduced:

component makespan makec is the value of component’s CPU or disk demands
per job, whichever is greater

machine makespan make,, is the value of machine’s total CPU or disk execution
times (depends on the deployed components), whichever is greater

system makespan makeg is the maximum value of makey; from among all the
machines in the system at the time of evaluation

The heuristics for deploying software components in the given ordering deploy the
components one by one. Each component is processed only once, no backtracking is
involved. First the heuristics tries to ‘mock-deploy’ a component on each machine
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Algorithm 1: Deployment of components in the given ordering.

Input: List of components in the given ordering
Result: All components are deployed

foreach Component C; do
foreach Machine M; do
Mock-deploy the component C; on the machine Mj;
Note the value of makeys < max{CPU exec. time, Disk I1/O time};
Cancel the mock-deployment;
end
Choose the machine M with the minimum value of make;
Deploy the component C; on the machine M and update the system;
end

and records the resulting value of make,;. Then it picks the machine with the least
value of make,; and the component is deployed on that machine (see Algorithm .

Because of the fact that the first heuristics does not use backtracking, the order
in which components will be deployed will affect the overall performance of the
application. Thus an appropriate ordering of components for deployment is needed.

This is solved by the second heuristics which is dynamic in nature. It uses
information from intermediate steps in the deployment process to select components
and thus results in an on-the-fly ordering of components. The next component
to deploy is selected based on the resource having the highest system makespan.
Specifically the next selected component is the one having the highest demand per
job in the dimension of the current system makespan resource.

Unfortunately there is a problem of choosing the first component. This is solved
by letting the heuristic start with each of the components as the first component
and thus generating n different orderings in total. At the end the best ordering is
chosen (the ordering which results in the least system makespan). Details are shown
in Algorithm

Based on the exhaustive testing the combination of these two heuristics perform
very good results, outputting the best possible deployment or a deployment close
to the best in more than 96% cases [20]. It is assumed that the component-based
systems which need to be deployed are synchronous in nature. The performance
impact of middleware or virtual machines were not considered.

3.3 Selection of the algorithm

In the previous section three possible approaches for solving automated deployment
planning were presented. Here the approaches are compared and one algorithm is
selected.
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Algorithm 2: Selecting the ordering of components for deployment.
Input: Set of components
Output: Ordering of the components

foreach Component Cyypry do

Ccurrent — Cstart;

while exists a component that is not deployed do
Deploy Clyrrent using Algorithm ;
Find the most loaded resource (CPU or Disk I/O) in the system;
Ceurrent < Component with the highest demand in the dimension of
the most loaded resource;

end

Save the ordering along with the resulting system makespan;

Reset the deployment;

end
Output the ordering which results in the least system makespan;

The Sekitei system using Al planning techniques solves in fact more general prob-
lem than it is needed for SOFA 2. During the deployment of an application it decides
on a particular set of components (from compatible ones) that will be deployed. De-
pending on the network and capabilities of the nodes/links the planner may introduce
some auxiliary components for fulfilling application constraints, or already available
components could be reused. The planner also works well in wide-area environments
as it counts with the capabilities specified at links. Due to its generality and possi-
bility of finding deployments also in resource constrained environments the planner
could suffer from performance issues.

On the other hand the second approach is quite specific in its purpose. The
hosts may specify only software capabilities (e.g., whether a software is available on
the host) and no other types of capabilities or resource requirements are supported.
That is quite limiting. Also the possibility of getting a deployment, which results
in the lowest cost (when some amount has to be paid for the host usage), is not so
interesting in SOFA 2 environment, as it is expected that the SOFA 2 environment
will run mainly on local networks.

Finally the third approach is interesting as it allows finding a deployment that
optimize the overall performance. It assumes that the host machines are connected
with high bandwidth network and that the communication times between compo-
nents are adequately small, because no constraints can be specified to the links.
Using heuristics can suggest better performance when finding the deployment, un-
fortunately the found deployment may not be the best one.

The main purpose, why the automated deployment planning should be imple-
mented into SOFA 2 environment, is to simplify the process of launching SOFA 2
applications, which are specified by assembly descriptors. The assembly descriptor
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has strictly defined set of components that has to be deployed, thus such a gener-
ality of the first approach is not needed. The planning process should be also fast
as the user usually does not want to wait for a long time before the application is
actually launched. It is also assumed that the SOFA 2 environment will mainly run
in private local high bandwidth networks. Thus the third approach, the heuristic
based approach, has been chosen to implement the automated deployment planning
in SOFA 2.

3.4 Proposed algorithm

Proposed solution of the deployment planning algorithm exploits the heuristic based
algorithm (see Section [3.2.3). This algorithm does not cover all requirements speci-
fied in Section [3.1] and thus it has been extended in the following ways:

e added support for hierarchical software components

e added support for local-communication feature at interface specification

The original algorithm is intended for flat component systems, as it does not
differentiate between primitive and composite components. In SOFA 2 a composite
component does not contain any ‘business’ code, it only delegates method calls from
its interfaces to interfaces of its sub-components. This delegation will consume more
resources if the sub-components are not located on the same dock as the composite
component. Thus, it is convenient to decide deployment of a composite compo-
nent when all deployments of its sub-components are known. If it is possible the
composite component should be deployed on a deployment dock, where some of its
sub-components are deployed.

For the purpose of handling local-communication feature at interface specification
new term deployment unit has been introduced. A deployment unit represents indi-
visible unit of deployment and it is represented by one of the following possibilities:

e a primitive component
e a composite component (without its sub-components)

e a group of primitive components that are interconnected via interfaces with
local-communication feature together with a group of composite components
that participate on delegation of method calls from those interfaces

In the original algorithm the description of a component’s resource demands
is quite simplified. Resource demands of a component are specified as ‘per visit’
of the component. But the component can be ‘visited’ via different methods on
provided interfaces and each method can be called different number of times in
different component applications; thus, the general ‘per visit’ resource demands are
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hard to obtain. Therefore, the resource demands are specified for each method call
from the component’s provided interfaces to get more precise results (see Section
B.4.1). But for the purpose of deployment planning algorithm we need to know the
total resource demands of each component per user request or per servicing a job.
How these total resource demands are computed is described in Section [3.5

Also the original algorithm does not cope with other component’s requirements
or machine’s capabilities. It is assumed that each component can be launched on
every machine and there are no upper bounds of available resources on the ma-
chines. But primitive components could require also some software requirements
(e.g., a component may require some services to be available on a deployment dock);
therefore, general specification of components’ requirements and deployment docks’
capabilities had to be included (see Section . A component can be deployed on
a deployment dock only if the deployment dock has sufficient capabilities to serve
component’s requirements.

The process of automated deployment planning is shown in Algorithm The
algorithm assumes that each component is already described with total resource
demands.

Algorithm 3: Deployment planning.

Input: Set of components
Result: All components are deployed

deplUnits <— GetDeploymentUnits (input set of components);
compositeComponents <— ExtractCompositeComponents (deplUnits);
orderedDeplUnits <— Get order of deplUnits using Algorithm
Deploy orderedDeplUnits using Algorithm ;

Order compositeComponents according to a nesting level such that
components with higher nesting level are put ahead;

Deploy compositeComponents using Algorithm @;

First, the deployment units are created from all input components (function
GetDeploymentUnits()). This function analyzes interconnections between compo-
nents and according to the attribute local-communication it creates a set of deploy-
ment units. Requirements and resource demands of a deployment unit are deduced
from requirements of all components that the deployment unit represents.

Further, it is necessary to divide the deployment units into two groups: the first
group will contain deployment units representing only composite components and the
second group that will contain the rest of deployment units, meaning the deployment
units that represent only primitive components or group of components. This is
done by the function ExtractCompositeComponents(); the first group is stored into
compositeComponents list, the second group remains in deplUnits structure.

Next step covers deploying of deployment units in deplUnits. Firstly, the order of
the deployment units is selected by Algorithm [5] and secondly the deployment units
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are deployed in the given order using Algorithm [4]

At the end the composite components in compositeComponents list are ordered
according to a nesting level such that the components with higher nesting levels are
put ahead and then they are deployed using Algorithm [6] The order of composite
components ensures that when a composite component is selected to be deployed all
of its sub-components have been already deployed.

An expected result of the Algorithm |3|is that all components are deployed (in
case that no error occurs).

Algorithms [] and [5] are directly derived from Algorithms [I] and 2| Instead of
deploying components on machines the deployment units are deployed on deployment

docks.

Algorithm 4: Deployment of deployment units in the given ordering.
Input: List of deployment units in the given ordering
Result: All deployment units are deployed

foreach Deployment unit U; do
foreach Deployment dock D; do

Mock-deploy the deployment unit U; on the dock Dj;

Note the value of makep;

Cancel the mock-deployment;
end
Choose the deployment dock D with the minimum value of makep;
Deploy the deployment unit U; on the dock D and update the system;
end

It should be noted that deployment of a deployment unit on a dock may fail
due to insufficient capabilities of the deployment dock. In such case no order of
deployment units may be found in Algorithm [5| even if a valid order may exists.

Finally the Algorithm [6] describes how the composite components should be de-
ployed. It is assumed that when the composite component is going to be deployed
all of its sub-components have already been deployed. In the first step a set of de-
ployment docks where the sub-components should be deployed is obtained. We are
particularly interested in deployment docks of such sub-components that use dele-
gation or subsumption of method calls with the composite component. Then the
composite component is tried to be deployed on each deployment dock from the set
until the deployment is successful. If the composite component fails to be deployed
on any of the docks from the set then Algorithm {4|is used to deploy it.

3.4.1 Resource demands of a component

For the purpose of deployment planning it is important to know how long will the ex-
ecution of component’s code last. For that reason every primitive component has to
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Algorithm 5: Selecting the ordering of deployment units for deployment.

Input: Set of deployment units
Output: Ordering of the deployment units

foreach Deployment unit Ugyqry do
Ucurrent — Ustart;
while exists a deployment unit that is not deployed do
Deploy U.yrren: using Algorithm ;
Find the most loaded resource in the system;
Ucurrent < Deployment unit with the highest demand in the dimension
of the most loaded resource;
end
Save the ordering along with the resulting system makespan;
Reset the deployment;

end
Output the ordering which results in the least system makespan;

Algorithm 6: Deployment of composite components in the given ordering.

Input: List of composite components in the given ordering
Result: All composite components are deployed

foreach Composite component C; do
deplDocks < Get set of deployment docks where sub-components of C;

should be deployed;

foreach Deployment dock D; in deplDocks do
Deploy the composite component C; on the dock D; and update the

system,;
if the deployment is successful then
‘ break;
end
end
f the composite component C; is NOT yet deployed then
U < Create a deployment unit from the composite component C;;
Deploy U using Algorithm ;
end

o

end

24



be described with resource demands — how much resources does the component con-
sume during its execution. There are more possibilities where the resource demands
may be specified:

e at a component as a whole
e at each method from provided interfaces of a component

Assignment of resource demands directly to a component is not desirable because
it would be necessary to make assumptions on how the component would be used.
That is not known if the component is intended for general use in more applications.
Instead, every part of the component which causes resource consumptions should be
described. There are two types of primitive components that have to be considered:

active component A thread is running inside the component which may constantly
consume resources and may call methods from required interfaces of the com-
ponent.

passive component This component itself does not consume any resources. Re-
sources are consumed only when a method from provided interfaces is called.
As a reaction to a method call other methods from required interfaces may be
called.

That is why the resource demands should be specified to every method in com-
ponent’s provided interfaces and to every running thread in the component.

The question is how the resource demands should be specified. In [2] they concen-
trate on performance prediction of component based applications. For this purpose
they use detailed specification of components and their behavior. To each method
in provided interface (it is called ‘provided service’) they add so-called ServiceEf-
fectSpecification which describes how the provided services call methods from the
required interfaces. This is an abstraction of the control flow through the compo-
nents. For the purpose of performance analysis they extended the ServiceEffectSpec-
ification into ResourceDemandingSEFF. This specification contains resource usage,
transition probabilities, loop iteration numbers and also parameter dependencies
to allow accurate performance predictions. ResourceDemandingSEFF contains Re-
sourceDemandingActions that can place loads on the resources, which the component
is using (e.g., CPU, hard disk, network connection, etc.). Demands can be specified
as distribution functions, their unit has to be specified (e.g., CPU operations, hard
disk accesses, etc.). In fact they do not describe the provided service as a whole,
they add resource demands description to each action in the service. Units of the
resource demands are specified generally. When the actual hardware is known, on
which the component is going to be deployed, the time for executing the service
can be computed. For example if the general unit is ‘CPU operation’ then the time
for executing the service can be computed if the execution time for a single CPU
operation is specified.
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Also in [2] they distinguish active and passive resources. Active resources process
jobs on their own (e.g., a CPU processes jobs or a hard disk processes read/write
requests). On the other hand the passive resources do not process jobs on their
own, but their possession is important as they are limited (e.g., a component needs
a database connection). They also support parametric dependencies in resource
demand specification, because the resource demand may vary depending on input
parameters (e.g., uploading larger files with a component service produces a higher
demand on hard disk and network).

In this work we differentiate between active and passive resources — demands on
active resources are specified by ‘resource demands’; demands on passive resources
are specified by ‘component’s requirements’ (see Section .

Resource demands are specified per whole methods/threads, therefore some av-
erage values have to be used. Because of the fact that the resource demands may
depend on input parameters of a method or on a parametric setting of a component
(e.g., an average size of an input parameter can be set via component’s parame-
ter), the value of the resource demand may be specified as an expression containing
component’s parameters.

The main purpose of the resource demands is to specify how long will the execu-
tion of the component’s code last. Thus, it may be intuitive to specify these values in
time units directly. However, this approach would not work correctly in the scenario
where different machines with various hardware would be used in the system because
the execution time of each component may vary depending on the machine where
the component is deployed. Thus, it is convenient to specify the resource demands
using general units.

There are more possibilities which units may be used for the resource demand
specification. However, then the deployment docks would have to transform the gen-
erally specified resource demands into time values. Therefore, proper transformation
rules have to be defined for each unit.

Possible specifications of CPU demands are shown in Table 3.1} The only dif-
ference between all the specifications is in the accuracy of the resulting time values.
For example, proper characterization of CPU demands is more complicated due to
different hardware platforms where the component may run. Performance of modern
CPUs does not depend only on the clock frequency but on the entire architecture
of the CPU. Although it may be easier to specify CPU demands of a block of code
as a number of CPU operations, it is not as easy to specify how many of CPU
operations can a CPU process per second. The time for processing one CPU op-
eration has to be specified as an average time of processing all the CPU operation
types. Big difference is for example in processing a floating point operation and an
integer operation. Therefore, performance of modern computers are characterized
by FLOPY and MIPS? For that reason better results can be achieved when more

!FLoating point OPerations per Second
2Million Instructions Per Second
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detailed characteristics of resource demands are used.

Specification of resource demands Deployment dock’s specification
I  #CPU operations #CPU operations per second
II  #floating point operations & #integer FLOPS & MIPS
operations
I[II an average time on a testing system performance ratio to the testing
system

IV an average time on a testing system & parameters of the target system
parameters of the testing system (e.g., (e.g., CPU benchmark points)
CPU benchmark points)

Table 3.1: Possible specifications of CPU demands with needed specifications of
deployment docks in order to get resulting execution times.

3.4.2 Component’s requirements and deployment dock’s ca-
pabilities

Section [3.4.1] describes demands on active resources. These demands have been
specified at each method from component’s provided interface. The character of the
demands is that if a method with resource demands is called more times, then also
more resources will be consumed by the component.

However, components may require also static resources or available services on
deployment docks in order to be deployed on such deployment docks. This is achieved
by component’s requirements — they are specified to a component as a whole, not
to each method as it is at resource demands. All requirements have to be met by
deployment dock’s capabilities at time when a component is being deployed on the
deployment dock. The component has to require static resources for the worst-case
scenario as it cannot require more resources during runtime. All allocated resources
are released when the component finishes its execution and it is deallocated from the
deployment dock.

Specification of requirements and capabilities is done according to the OMG
Deployment and Configuration (D&C) specification [I7]. Every requirement and
capability have the following basic attributes: name, value and kind. The kind
classifies the requirement/capability and has implications on the type of the value
and the rules how requirements are matched against capabilities. According to the
OMG D&C specification following kinds of requirements/capabilities are supported:

attribute The value of the property is of a type that supports equality comparison.
To match the requirement, the value of the requirement has to be equal to
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the value of the capability. Example: OS type, library version, java runtime
environment version, etc.

maximum The property describes a capability with an upper bound. The value of
the property is of a type that supports ordering. To match the requirement,
the value of the requirement has to be equal or lesser than the value of the
capability. Example: CPU speed — e.g., the capability has 7T00MHz, and there
is a requirement on at least 500MHz.

minimum The property describes a capability with a lower bound. The value of
the property is of a type that supports ordering. To match the requirement,
the value of the requirement has to equal or exceed the value of the capability.
Example: latency — e.g., the resource can guarantee 30ms latency, and there is
a requirement at least 40ms.

capacity This property has a certain capacity that can be consumed. The value of
the property is of a numerical type. The value of the requirement is subtracted
from the value of the capability. To match the requirement, the capability has
to have a value that equals or exceeds the value of the requirement. Example:
memory size, number of database connections, etc.

In order to deploy a component on a deployment dock, all the component’s re-
quirements have to be satisfied by the dock’s capabilities:

e for each requirement there has to exist a capability such that the name and
the kind of the capability match the name and the kind of the requirement

e the value of the requirement has to match against the value of the capability
according to the rules that depend on the kind of the capability

Because of the fact that also component’s requirements may depend on compo-
nent’s parameters, the values of requirements may be specified as expressions that
contains component’s parameters. Therefore, the total requirements have to be
computed at the start of the deployment planning (e.g., maximal memory for the
component, maximal number of connections, etc.).

3.5 Total resource demands of components

Total resource demands of a primitive component depend on a component usage in
the application. If a component is used in one application more often then in the
other, it consumes more resources and therefore more resources have to be allocated
in advance.

Although SOFA 2 supports various communication styles that can be specified
at connectors (e.g., method invocation, message passing, streaming, shared memory),
only method invocation is used for counting total resource demands of components.
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This communication style has strict rules as to how interfaces may be bound together
— only provided/required interfaces may be bound together, not required/required
or provided/provided as it is possible in other communication styles. In addition,
method invocation represents synchronous execution of code. When a method from
required interface is called, execution of current component is blocked and the com-
ponent waits for the result of the method call. The transfer of control between
components is obvious and that simplifies the process of counting total resource
demands.

Each component (in fact each method from component’s provided interfaces) is
already specified by resource demands (see Section . In order to compute total
resource demands of a component we need to know how many times is each method
from provided interfaces called per processing a job or a user request. Then the total
resource demands are computed as a sum of methods’ resource demands multiplied
by the total methods’ call counts.

In order to count all method calls, the application may be modeled by discrete-
time Markov chains (see Section or following algorithm may be used.

The algorithm assumes that the behavior of the application is known. Particu-
larly we need to know the behavior of each primitive component — which methods
from required interfaces are called and how many times they are called as a result of
processing an incoming call through a provided interface. If the component is active
then also every thread of the component has to be specified by a list of all methods
from required interfaces that the thread calls. This list serves as an entry point to
the calculation of all method calls. Details are shown in Algorithm (7} these terms
are used in the algorithm description:

ComponentMethod uniquely represents one method from a component’s provided
interface among all components in the application. It has an attribute total-
CallCount which denotes how many times is the method called per processing
a job. Because of the fact that the algorithm counts method calls step by step,
it also has an auxiliary attribute callCount which represents a number of yet
unprocessed method calls by the algorithm (in the end of the algorithm this
attribute should be zero at all ComponentMethods).

ComponentMethod is associated with a list of MethodCalls that are called in
response to the call of the ComponentMethod.

MethodCall represents one method from a component’s required interface. It has
an attribute callCount which denotes how many times is the method called per
processing an incoming method call.

First, function ProcessMethodCall (methodCall, callCount) finds mapping from
the methodCall to a corresponding ComponentMethod. This mapping depends on
actual interconnection of primitive components. Then the attribute callCount of the
ComponentMethod is increased by the value of callCount. Finally the Component-
Method is inserted into the queue if it is not there yet.
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Algorithm 7: Counting ComponentMethod calls per processing a job.

Input: Set of all primitive components
Output: Set of ComponentMethods together with their total call counts

componentMethodSet < Get a set of ComponentMethods from all primitive
components and initialize their callCount and totalCallCount attributes to 0;
queue < InitQueue0fUnprocessedComponentMethods();
while queue is not empty do
componentMethod < Get a ComponentMethod from queue;
methodCallCount < componentMethod.callCount;
Reset value of componentMethod.callCount;
Add methodCallCount to totalCallCount attribute of componentMethod;
methodCallList <— Get list of MethodCalls for componentMethod;
foreach methodCall in methodCallList do
callCount < methodCall.callCount * methodCallCount;
ProcessMethodCall (methodCall, callCount);
end

end
Output componentMethodSet together with their total call counts;

Function InitQueueOfUnprocessedComponentMethods () iterates through all ac-
tive primitive components. For each component it gets a list of threads that are
specified at the component and for each thread it gets a list of MethodCalls that
the thread calls. Each MethodCall in the list is finally processed with the function
ProcessMethodCall (); therefore, the queue is at the end initialized.

However, we need to know the behavior of each primitive component. Behavior
protocol (see Section describes activity on component’s interfaces, but it does
not contain information about method call counts. To overcome this issue an ex-
tension of behavior protocol specification has been proposed (see Section . This
extension adds probabilities to alternatives and average number of cycles to repe-
titions. Therefore, it is possible to get number of method calls per processing an
incoming call through a provided interface.

If the behavior protocols for primitive components are not specified then all the
needed information may be received from an automated observation of the applica-
tion behavior (see Section [3.5.2).

3.5.1 Discrete-time Markov chains

A discrete-time Markov chain (DTMC) [23] is a stochastic process with discrete
state space (finite or countably infinite) and discrete parameter space whose dynamic
behavior is such that probability distributions for its future development depend only
on the present state and not on how the process arrived in that state. A DTMC
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is characterized by its states and a transition probability matrix P = [p;;| which
contains transition probabilities among the states.

In [20] they use DTMC to model the software architecture in order to get visit
counts of all components per processing a job. They model each component by a
single state or a set of states such that each state represents a software component
in execution at any point in time. Transitions between states represent transfer
of control between components. Appropriate probabilities have to be assigned to
transitions according to the behavior of the system.

A state 7 is said to be transient if and only if there is a positive probability that
the process will not return to this state. A state 7 is said to be an absorbing state if
and only if p; = 1. That means that once the process enters such a state, it remains
there forever. Reaching an absorbing state indicates the successful completion of a
job.

The DTMC can be used to calculate the number of visits to each of the states.
Let Xj; be the number of visits to the state i, starting at j. Then according to [23]
it can be shown that

ElX;] = iopji(n)’

where pj;(n) is the probability that the process will move from state j to state i in
exactly n steps. It follows that if the state i is a transient state, then >7° pj;;(n) is
finite for all j; hence pj;(n) approaches 0 as n approaches infinity.

As it is shown, the expected total number of visits of a state per job can be
calculated using the transition probability matrix of the DTMC. Therefore, if each
provided method of each primitive component would be modeled by a single state or
a set of states, then it would be possible to count total method calls per processing
a job.

3.5.2 Automated observation of an application behavior

In order to count total resource demands of primitive components, behavior of the
application has to be known. This can be ensured by specifying behavior protocols
to all primitive components in the application. However, if the behavior protocols
are not specified, then the behavior of the application can be observed automatically.

For this purpose we need to track each running thread in the application and
log which methods of which components it calls. The idea is that the application
may be run in a so-called ‘logging mode’” when all important events on components
interfaces would be logged. It is necessary to use the application in this mode as if it
would be used normally because the usage of the application may influence obtained
results. After this stage the log would be processed and general behavior of each
component would be found out.

SOFA 2 supports advanced management of components’ control functionality
via component aspects [16]. Aspects are specified to a deployment plan and they
can extend the control part of every component in the application. Therefore, it is
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possible to create a logging aspect that would log activities on components’ interfaces
without need of modifying ‘business’ code of the components. The goal is to observe
an average behavior of each primitive component — which methods from required
interfaces are called and how many times on average they are called per processing
an incoming call through a provided interface. In addition, it is convenient to detect
active components and note down a list of methods they call. For this purpose we
need to log these items:

e An identification of a component, an interface name and a method name, where
the event occurred.

e Type of the event: CALL —the method is being called; RETURN — the method
finished the call and it has just returned.

e Point of view of the event: CALLER — the event is observed from a component
that initiated calling of the method; CALLEE — the event is observed from a
component that is serving an incoming method call.

e An unique identification of a running thread among all deployment docks.
This is necessary for distinguishing different method calls of different threads
running in one component concurrently.

e Time when the event triggered.

The algorithm of the acquiring components’ behavior is straightforward; the log
is processed sequentially according to the time, when the event was triggered. Log
entries are bound to specific components; how the statistics about the usage of each
component are processed is shown in Algorithm [

When the whole log is processed, final statistics are examined and the behavior
of each component is obtained. For every called method from component’s provided
interface we have a list of methods from required interfaces that are called in order to
process the incoming call. Method call counts are taken in the ratio to one incoming
call. Therefore, these methods’ call counts are average values in general application
usage.

In addition active threads of active components are detected. For each active
thread the list of methods that the thread calls is obtained. An active thread usually
has an infinite loop, where it generates new jobs or user requests that are performed
by the application. It is not easy to detect which method calls are part of one job.
Therefore, there are more possibilities how to handle call counts of the methods in
the list. Either each method call from the active thread may be regarded to be the
start of one job; then each method in the list would have call count equal to one.
Alternatively, the whole bunch of methods can be considered to be part of one job;
then the call count of each method should be set proportionally to the whole number
of observed method calls of the thread.
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Algorithm 8: Processing one log entry corresponding to one component.

Input: A log entry corresponding to one component
Result: Statistics of the component are updated

if is CALL event then

if is CALLEFE event view then

// thread is entering the component via provided method
Increase call count of the method;

Mark that the thread entered the component via this method;
else

// CALLER event view

if the thread entered the component earlier via some method then
M <+ Get the method through which the thread entered the

component;

Add method call to M,

else

// thread is probably in an active component
Add method call to component’s active thread;

end

end
Ise // RETURN event

if is CALLEFE event view then
Mark that the thread is leaving the component that previously entered

via this method;

@

end

end
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Problems may arise when a component would use new threads to handle an in-
coming method call. Then the detection of the fact that some methods are called
in response to an incoming call fails, because the algorithm would mistakenly mark
the component as active. It would consequently assume that the method calls are
initiated by the component’s own thread. If a new ‘working’ thread is created during
processing of the incoming method call and this thread ends its execution before the
end of processing the incoming call, that means that the ‘working’ thread will never
call any methods from the required interfaces after the incoming call is served. Fur-
ther, it would be possible automatically detect these threads and assign their method
calls correctly to the list of method calls associated with the provided method. This
would be possible because in SOFA 2 the thread ID of the newly created thread is
deduced from the thread ID of its parent; therefore, we would know that the thread
which entered the component via a provided method created some ‘worker’ threads
to perform the action.

However, a more significant issue is that the component may use a thread pool
instead of creating new ‘working’ threads all the time. That would be hard to detect
by processing the log, because the threads in the thread pool are created only once
and are reused later. Thus, behavior of such components is better specified manually.
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Chapter 4

SOFA 2 extensions

Previous chapter covered the problem of automated deployment planning and its
possible solution. This chapter describes the implementation issues of the automated
deployment planning in the SOFA 2 environment.

Sections and describe extensions of the component and deployment dock
descriptions. Section introduces a behavior protocol extension. Section de-
scribes implementation of the deployment planning algorithm; Section covers
implemented tools and finally Section describes the Cloud Gate application.

4.1 Component description

As mentioned in Section 2.3, a SOFA 2 component is defined by a frame which
denotes the type of the component, and it is implemented by an architecture. The
component frame and the component architecture are represented by Frame and
Architecture meta-classes in the meta-model. The deployment planning algorithm
assumes that each primitive component is specified by resource demands and also
that each primitive component has a behavior specification. Therefore, the repository
meta-model had to be extended appropriately to include new information.

4.1.1 Frame meta-class

A component frame serves as a black-box view of the component. It is defined by
a Frame meta-class in the repository meta-model. This meta-class has to contain
information about component behavior — specifically which methods from required
interfaces are called and how many times they are called as a result of processing an
incoming call through a provided interface, or which methods from required interfaces
are called from active threads of the component. This information could be get from
the behavior attribute of the Frame, especially if the extended form of behavior
protocol is used (see Section . However, it is convenient to have this information
explicitly specified in the Frame meta-class, because then the behavior protocol does
not need to be parsed every time when the information is needed, or because the
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behavior protocol is not specified at all and the information is obtained automatically
(see Section [3.5.2]). Therefore, following attributes have been added to the Frame
meta-class:

methodDescription contains a list of method descriptions specified by MethodDe-
scription meta-class. Every method from component’s provided interfaces is
specified by the MethodDescription meta-class and it is in this list.

activeMethodDescription contains a list of active method descriptions specified
by MethodDescription meta-class. Every component’s active thread that calls
any methods from required interfaces is specified by the MethodDescription
meta-class and it is in this list.

The extension of the Frame meta-class together with auxiliary meta-classes is
shown in Figure [4.1}

Frame NamedEntity

+name: String

' | A

MethodDescription

+met hodDescri ption

*

+acti veMet hodDescri ption

*

MethodCall

+net hodCal |

*

+cal | Count: String

Figure 4.1: Frame meta-class extension

The new frame’s attributes do not have to be specified manually; instead, they
may be filled to the repository via the new tool sofa-update-frames (see Section
4.6.3)).

MethodDescription meta-class

A MethodDescription meta-class is an extension of the NamedEntity meta-class;
therefore, it has a name attribute. This attribute contains either the name of a
component’s active thread (e.g., thread_1), or it contains the name of a method from
component’s provided interface together with the name of the provided interface
separated by dot (e.g., provinterfaceA.methodA). Further, it contains the following
attribute:
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methodCall This attribute contains a list of all methods from required interfaces
that are called in response to the processing of the provided method call or
as a result of processing one job by the active thread. These method calls are
specified by MethodCall meta-class.

MethodCall meta-class

A MethodCall meta-class is an extension of the NamedFEntity meta-class; therefore, it
has a name attribute. This attribute contains the name of the method from a compo-
nent’s required interface together with the name of the required interface separated
by dot (e.g., reqInterfaceA.methodA). Further, it contains the following attribute:

callCount This attribute is of type String; it determines the average number of
times the method is called. If the method call counts are get from processing
a behavior protocol (particularly the extended form of the behavior protocol,
see Section , then this value may depend on the Properties defined at the
Frame. Therefore, it should be possible to specify this value as an expression
containing names of Properties defined at the Frame.

4.1.2 Architecture meta-class

A component architecture serves as a gray-box view of the component. It represents
an implementation of the component and it is defined by an Architecture meta-
class in the repository meta-model. This meta-class has to contain information
about resource demands of all methods that the component provides. Also, resource
demands can be specified to all threads of the component in case the component
is active. Due to this reasons these attributes have been added to the Architecture
meta-class:

active This attribute is of type Boolean. Its value is true if the component is active;
false otherwise. Default value is false.

resourceDemandDescription This attribute contains a list of resource demand de-
scriptions that are specified by ResourceDemandDescription meta-class. These
descriptions are referenced from specifications of resource demands that are as-
sociated to MethodResourceDemand meta-class. The idea is that components
may be developed by different developers or even by different companies and
everyone of them may use different specification of resource demands; therefore,
these resource demands descriptions are specified directly to the Architecture.

methodResourceDemand This attribute contains a list of method resource demands
specified by MethodResourceDemand meta-class. Every method from compo-
nent’s provided interfaces that consumes some resources when the method is
called is specified by the MethodResourceDemand meta-class and it is in this
list.
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activeMethodResourceDemand This attribute contains a list of method resource
demands specified by MethodResourceDemand meta-class. Every component’s
active thread that consumes some resources during its execution is specified by
the MethodResourceDemand meta-class and it is in this list.

All these attributes have proper meaning only for primitive components. Com-
posite components do not have any ‘business’ code; therefore, they cannot be active
as they cannot have any active threads. Further, it is not needed to specify resource
demands to methods from composite components’ provided interfaces as all method
calls are delegated to their subcomponents.

The extension of the Architecture meta-class together with auxiliary meta-classes
is shown in Figure 4.2]

Architecture NamedEntity

+active: Bool ean +name: String

+r esour ceDemandDescri ption
*

ResourceDemandDescription

+resourceType: String
+unit: String

hodResour ceDenmand

*

—

e MethodResourceDemand

+act i yeMet hodResour ceDemand
* ’
\LH esour ceDemand

*

ResourceDemand

+r esour ceDemandDescri ption: String
+demand: String

Figure 4.2: Architecture meta-class extension

The active attribute can be specified via adl.zml file of the architecture. The
rest of the new attributes are specified via method-info.xml file associated with the
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architecture. This file may be generated using cushion tool with the action method-

info (see Section 4.6.1)).

ResourceDemandDescription meta-class

A ResourceDemandDescription meta-class is an extension of the NamedFEntity meta-
class; therefore, it has a name attribute which uniquely identifies resource demand
descriptions that are specified at one Architecture. Further, it contains the following
attributes:

resourceType This attribute is of type String; its value determines the type of the
resource (e.g., CPU, disk).

unit This attribute is also of type String; its value specifies the units in which the
resource demands are counted (e.g., operations for CPU resource type, bytes
for disk resource type).

MethodResourceDemand meta-class

A MethodResourceDemand meta-class is an extension of the NamedEntity meta-
class; therefore, it has a name attribute. This attribute contains either the name of a
component’s active thread (e.g., thread_1), or it contains the name of a method from
component’s provided interface together with the name of the provided interface and
with the name of the frame, where the provided interface is defined. An architecture
may theoretically implement more than one frame; thus, the triplet frame name,
provided interface name and method name uniquely identifies the provided method.
The names are separated by dots (e.g., frameA.provinterfaceA.methodA). The name
of the frame may contain dots, but the name of the interface and the method’s name
cannot. Therefore, any original name is retrievable from the name attribute. Another
attribute of the MethodResource Demand meta-class is:

resourceDemand This attribute contains a list of resource demands specified by Re-
sourceDemand meta-class. Resource demands are associated with a particular
resource type (e.g., CPU, disk). The same resource demands (corresponding to
one resource type) may be specified several times using different units; there-
fore, more equivalent specifications of the resource demands can be in the list.

ResourceDemand meta-class

A ResourceDemand meta-class contains following attributes:

resourceDemandDescription This attribute is of type String and it contains the
name of the ResourceDemandDescription, which has to be defined in the Ar-
chitecture. Thus, this attribute determines the type of the resource and the
units in which the demand attribute is specified.
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demand This attribute is also of type String; it specifies the average amount of the
resource demand. According to the proposed solution described in Section
it should be possible to specify this value as an expression containing
names of Properties defined at the Architecture.

4.2 Deployment dock description

The deployment planning algorithm (as it is proposed in Section [3.4)) introduces new
requirements on deployment docks:

e A component may be deployed on a deployment dock only if the dock has
sufficient capabilities that satisfy the component’s requirements. This requires
a management of deployment dock’s capabilities (see Section |4.2.1]).

e A so-called dock makespan is needed from the docK'} This is the value of the
most loaded resource on the dock; it is either the dock’s total CPU execution
time or disk I/O time, whichever is greater. In order to get the dock makespan,
the deployment dock has to keep track of the total execution times associated
with the resources. These values are represented by resource usages (see Section

12.9).

e Component’s resource demands are specified using general units but the man-
agement of resource usages on the dock requires time units. Therefore, the
component’s resource demands have to be converted into time values on the

dock (see Section |4.2.3)).

A deployment dock is remotely accessible via the DeploymentDock interface.
Therefore, if any new functionality is needed to be remotely accessible on the dock
then this interface have to be extended.

4.2.1 Management of deployment dock’s capabilities

A capability on a deployment dock is defined by the class Capability. It has
attributes name, value and kind. Meaning of these attributes are the same as it
is described in the Section [3.4.2] The value attribute is of type String; according
to the proposed solution the type of the value attribute should depend on the
capability kind. Therefore, the value of the capability is converted into appropriate
type according to the capability kind when it is needed.

In order to simplify the process of matching component’s requirements against
the dock’s capabilities, the CapabilityManagementHelper class has been created.
The class has two methods:

'In the deployment planning algorithm it is marked as makep, see Algorithm
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allocate() This method matches component’s requirements against dock’s capa-
bilities according to the rules specified in the Section [3.4.2] If there are any
requirements with capacity kind then proper capabilities are modified (their
values are diminished by the values of requirements). The method returns a
list of capability allocations. CapabilityAllocation class has two attributes:
name, which denotes the capability name and value, which represents the al-
located value. If the matching fails, an exception is thrown.

revertAllocation() This method takes a list of capability allocations as an argu-
ment and reverts the values of previously allocated capabilities.

Dock’s capabilities are accessible via the DeploymentDock interface through the
method getCapabilities(). The method returns a list of capabilities with values
corresponding to the time of the method call.

Capabilities are initialized during the dock startup. New capabilities may be
specified via system property sofa.dock.capabilities. The value of this property con-
tains a list of capabilities (they are separated by colon) and each capability may be
specified using this pattern: <name>|<value>|<kind>.

4.2.2 Management of resource usages

The resource usage represents an aggregated average value of the components execu-
tion times associated with the resource (e.g., it may represent either CPU execution
time for the CPU resource, or disk I1/O time for the disk resource). It is counted as
a sum of resource usages that are get from deployed components on the dock (see
Section how to get appropriate resource usages for a component). Therefore,
the value of the resource usage is zero when no component is deployed on the dock,
and it is increased when new components are deployed on the dock.

The deployment planning algorithm chooses a deployment dock which is the least
utilized. From the algorithm point of view, the values of the resource usages may
increase unlimitedly. But it is convenient to limit the upper bound of resource usages
to prevent possible overloading of the whole system; thus, an upper bound of resource
usages has to be specified.

There are two possibilities how the resource usages may be accessible on a de-
ployment dock:

e via the DeploymentDock interface — the interface may be extended with a new
method that would return a list of resource usages (e.g., a method named
getResourceUsages()).

e via dock’s capabilities — resource usages may be specified as capabilities with
capacity kind; capabilities are already accessible via the DeploymentDock in-
terface.
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In the first approach, it would also be necessary to use additional capabilities
that would specify the upper bounds of the resource usages. The second approach
uses capabilities directly and the existing interface does not need to be extended.

The second approach has been chosen; therefore, the resource usages are managed
as capabilities with capacity kind. In order to distinguish them from other dock’s
capabilities, they are named in the following way: system.resource.<resource
name>. The initial value of the capability represents an upper bound of the aggre-
gated component’s execution time specified in microseconds. Thus, every deploy-
ment dock that runs on a machine with CPU and disk should have defined these
capabilities: system.resource.cpu and system.resource.disk, with capacity kind.

Unfortunately, the problem is that the value of a resource usage may be get
from the capability only if the original value of the capability is known. Therefore,
the Capability class has been extended with an attribute originalValue of type
String, which keeps the original value of the capability. Thus, the value of a resource
usage can be computed.

4.2.3 Conversion of component’s resource demands

Component’s resource demands are specified in general units (see Section. But
deployment docks need to know the processing time of each component, specifically
of each resource that the component uses. Therefore, the demands that are specified
in general units have to be converted into time values.

Total execution time of a component depends on the hardware of the machine
where the deployment dock runs. For that reason, the deployment dock has to
be specified by parameters that will be used in the conversion. Examples of such
parameters were shown in Table [3.1]

In order to perform deployment planning it is suitable to count time values re-
motely by a deployment planner (see Section [4.4)). Therefore, the deployment dock
has to provide means for converting components’ resource demands specified in gen-
eral units into time values. There are more possibilities what the dock may provide:

e parameters that are needed to perform the conversion. This is not a flexible
solution. There may be a lot of parameters (different parameters for differ-
ent general units specifications) and the planner would have to know all the
conversion rules to get correct results.

e a method in the DeploymentDock interface that will do the conversion. This is
a much better approach as the conversion is performed by the dock itself; the
planner does not need to care about the conversion rules. This approach may
be little inefficient for the deployment dock as there may be a lot of requests
on the conversions and the deployment dock would have to serve them.

e an object — converter — that is responsible for the conversion. This solution
eliminates disadvantages of the previous approach because the planner gets the
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converter from the dock and then it can do the conversions by itself.

The third solution has been chosen. The DeploymentDock interface has been
extended by a method getResourceUsageConverter () which returns the converter.
The converter implements interface ResourceUsageConverter. This interface has
only one method convert (), which takes as a parameter a collection of generally
specified component’s resource demands and returns a collection of environment-
specific resource usages of type ResourceUsage. ResourceUsage has two attributes:
resourceType of type String that contains the name of the resource (e.g., CPU,
disk) and timeConsumption of type long that denotes the time consumption of the
specified resource in microseconds. The resulting time consumptions depends on the
settings of the converter; therefore, the values are usually different for converters
from different deployment docks.

A simple resource usage converter has been created; it is represented by the
ResourceUsageConverterImpl class. This converter has built in conversion rules
that supports cpu and disk resource types. The cpu resource demands may be
specified using operations units, and the disk resource demands using bytes units.
To be able to use the converter, following parameters have to be specified first:

cpu operations per second A number of abstract CPU operations that the ma-
chine (where the deployment dock is running) can perform per second.

disk megabytes per second A number of megabytes that the machine (where the
deployment dock is running) can read from/write to a disk per second.

The converter is initialized during the deployment dock startup. Necessary pa-
rameters are acquired from system properties: machine.property.cpu-operations-per-
second and machine.property.disk-megabytes-per-second. Both parameters may be
specified as floating point values.

It is important to consider how many deployment docks will run on one machine
and set the converters’ parameters appropriately in order to get anticipated result.

4.3 Behavior protocol extension

Main goal of the behavior protocol extension is to get another relevant information
out of the behavior specification. Currently we can get a list of methods that are
called during acceptance of a method on a provided interface, and we can get a list of
methods that an active components calls. However, we are interested also in method
call counts for the purpose of counting total resource demands of components (see

Section [3.5]). This can be easily done by these extensions:
e adding probability to alternative

e adding mean value of repetitions to finite repetitions
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Operator Description

A[P4] + B[Pg] alternative; the set of traces which are generated either
by A (with probability P4) or by B (with probability
Pg), P+ Pg =1
Ax[r] repetition; equivalent to NULL + A + (A;A) + (A;A;A)
+ ... where A is repeated any finite number of times,
but in average r times

Table 4.1: Extended operators for constructing behavior protocols. A and B stands
for a protocol, P4 and Pg are probabilities; therefore, P4, Pg € [0, 1].

Extended operators are shown in Table [4.1]

To provide backward compatibility with the original behavior protocol specifi-
cation, probabilities at alternatives and mean values of repetitions can be omitted.
The notation of the operators would be the same as in the original behavior protocol
(see Table , but the meaning would be extended in the following way:

e alternatives have equal probabilities (e.g., if there is a protocol A + B + C,
then it is perceived like A[P4] + B[Pl + C[Pc], where Py + Pg + Pc =1
andPA:Pszc)

e mean value of repetitions is equal to 1 (e.g., if there is a protocol A*, then it is
perceived like A*[1])

Moreover, it is convenient to specify only some probabilities to alternatives. Then
the unspecified probabilities of all alternatives have equal value (e.g., if there is a
protocol A + B[Pg] + C, then it is perceived like A[P4] + B[Pl + C[FP-], where
PA+PB+P0:1and PA:PC).

Behavior protocols are specified to frames; therefore, they should be general
enough. Sometimes it could be inconvenient to specify precise values of probabilities
or precise numbers of repetitions. Thus, it would be suitable to specify these values
as expressions with frame’s parameters.

4.4 Deployment planning

The process of preparing a deployment plan of a SOFA 2 application manually con-
sists of the following steps:

1. User uses the cushion tool with the deplplan action; he/she specifies an assem-
bly to which he/she would like to generate the deployment plan. This action
creates a new deployment descriptor in the repository and it generates an ADL
file for the deployment plan.
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2. User edits the generated ADL file — he/she fills in the names of deployment
docks where each component should be deployed and he/she fills in values of
components’ properties.

3. User runs cushion with the action deploy. This action is implemented by
the Deploy class in sofa-tools-api. It parses the ADL file and updates the
deployment plan in the repository — it fills in the names of the deployment
docks and the values of properties. At the end it calls the deploy() method
on the deployment plan. This runs a process of generating connectors between
components. If it succeeds then the deployment plan is ready to use and the
application can be launched according to it.

The Deploy class has been extended such that it counts total resource demands
for each primitive component and stores the results into the deployment plan. It is
essential to have this information in the deployment plan because components’ total
resource demands are needed during the application launching.

First, the deployment plan is analyzed using the static method processDeploy-
mentPlan() of the class DeploymentInfo. This method retrieves information about
component interconnections and counts method calls of all primitive components
according to the Algorithm [7] It returns a DeploymentInfo object that contains the
method call counts. Second, the total resource demands of each primitive component
are computed (see Section and stored to the deployment plan.

Because of the fact that values of component’s environment assumptions] may
be specified as expressions containing names of component’s properties, it is useful
to count the values in this stage and to store them also to the deployment plan.

A deployment plan is in the meta-model represented by the DeploymentPlan
meta-class. Fach application’s component is in the DeploymentPlan specified by
the InstanceDeploymentDescription meta-class. This meta-class has the resource
attribute that contains a list of instances of ResourceDeploymentDescription meta-
class. The attribute is used for storing computed values of component’s total resource
demands and environment assumptions into the deployment plan.

The ResourceDeploymentDescription meta-class has following attributes:

resourceName contains a name of the component’s EnvironmentAssumption or
ResourceDemandDescription. In order to distinguish between the two possi-
bilities, the name is specified in the following way: ea:<name> when the name
corresponds to the EnvironmentAssumption; rdd:<name> when the name cor-
responds to the ResourceDemandDescription.

resourceValue contains a total value of the component’s environment assumption
or resource demand.

2Component’s requirements are in the meta-model called environment assumptions.
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Further, the Deploy class has been extended to support the automated deploy-
ment planning. The process of preparing a deployment plan using the automated
deployment planning modifies following steps:

e User may omit the specification of deployment docks in the step [2|
e User runs cushion with the action autodeploy in the step [3

The action autodeploy is also implemented by the Deploy class, but the de-
ployment process is run with parameters indicating that the automated deployment
planning should be used; therefore, the names of deployment docks do not need to
be specified in the ADL file.

The automated deployment planning is done by the class AutoDeployHelper.
The planning process runs on a local machine and it consists of the following steps:

1. A resource manager represented by the class TargetManager is initialized — it
gets a list of all running deployment docks from the dock registry and from each
dock it obtains a list of capabilities and a resource usage converter. A snapshot
of all available resources among all running deployment docks is made.

2. The deployment planning is performed according to the Algorithm 3} All com-
ponent deployments are simulated locally using the resource manager. Actually
no component is physically deployed on any dock.

3. If the algorithm succeeds and a valid deployment of all components is found
then the deployment plan is updated with the names of respective deployment
docks.

Usage of the autodeploy action is described in Section [4.6.4]

The planning process is separated from the launching process of the application;
deployment plans may be prepared in advance and stored in the repository with-
out immediate launching of the applications. Therefore, there is no reservation of
resources on the docks during the planning process. Thus, even if the deployment
planning succeeds and the deployment plan is ready to use, launch of the application
according to the plan may fail due to insufficient capabilities on a dock (e.g., another
application that required the resources has been launched).

4.5 Application launch and termination

Introducing the component’s resource demands and the management of deployment
dock’s capabilities require modifications of the launch and termination processes of
SOFA 2 applications.

A SOFA 2 application is launched using the tool sofa-launch; a deployment plan is
specified as a parameter. Application’s components are instantiated on deployment
docks according to the deployment plan. During the component instantiation the
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component’s requirements and resource demands are matched against the dock’s
capabilities using the CapabilityManagementHelper class (see Section [£.2.1). If
the dock has sufficient capabilities then the needed resources are assigned to the
component. If not, then the launching process fails and all acquired resources are
released.

If the launching process succeeds then the application runs. The application can
terminate itself or it may be terminated using the tool sofa-shut; an application ID is
specified as a parameter. Then all components of the running application are stopped
and they are released from docks. Further, all component’s acquired resources are
released.

4.6 Implemented tools

This section describes auxiliary tools that have been created to support the auto-
mated deployment planning in the SOFA 2 environment. It also describes the usage
of the tools.

Some of the tools are accessible via new actions for the cushion command like tool.
The cushion tool is used for development and management of SOFA 2 applications;
how it works and how it is used is described in the SOFA 2 documentation [21].

Section describes the tool that simplifies specification of resource demands
to architectures. Sections |4.6.2] and [4.6.3| describe tools for observing and analyzing
an application behavior and for updating the information in corresponding frames.
Finally, Section describes the tool for creating deployment plans using the
automated deployment planning algorithm.

4.6.1 Cushion methodinfo

The methodinfo action of the cushion tool simplifies specification of resource demands
to primitive components. It generates a method-info.zml file for a particular primitive
architecture. The usage is following:

cushion methodinfo [architecture name]

If the name of the architecture is not specified then it generates method-info files
for all primitive architectures in the workspace.

The action is implemented by the PrepareMethodInfo class in sofa-tools-api.
It retrieves all provided interfaces from frames that the architecture implements.
From each interface it obtains names of methods that are defined in the inter-
face; this is done using the CodeProcessor interface. For each method it gener-
ates an instance of the MethodResourceDemand meta-class and inserts it into the
methodResourceDemand attribute of the architecture.

If the architecture is marked as active then also one instance of the Method-
ResourceDemand meta-class is generated and inserted into the activeMethodRe-
sourceDemand attribute of the architecture.
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Finally, the method-info.xml file is generated according to the data in the archi-
tecture.

When the method-info file is created then the resource demands of each method
may be specified into it. The file is uploaded into the repository when the action
commit of the tool cushion is called on the corresponding architecture.

4.6.2 Logging aspect

For the purpose of logging method calls the MethodCallLog aspect has been created.
It is based on the example aspect LogAspect that monitors method calls between
components and output the information to the console. It has been extended to
output all the necessary information (see Section into a file.

The MethodCallLog aspect uses the InterceptorGenerator class (a microcom-
ponent generator) to create new microcomponents to each interface of each compo-
nent in the application. The generated microcomponents notify method calls on the
interfaces — they specify the name of the method that is being called or that has just
returned. The notifications are received by the microcomponent MLogTransceiver
which sends log messages to the MLogger microcomponent.

In Section is described a list of items that are needed to be logged. All the
items are accessible by the aspect except the name of the ‘business’ interface that the
method belongs to. This was solved such that the InterceptorGenerator has been
modified. It generates microcomponents that return the ‘business’ interface names
together with the method names in the method call notifications (the interface name
and the method name are separated by dot).

The microcomponent MLogger receives logging messages and writes them into a
file. There is just one logger per Java virtual machine through which the log messages
are written to the file. The name of the log file is set via the parameter output-file
of the MLogger. Its initial value is set to method-log-file $dock-name$.tmp; the
string $dock-name$ is replaced by the name of the dock during the aspect initial-
ization. Therefore, if more docks run on one machine then more log files will be
created.

In order to run an application in the ‘logging’ mode the MethodCallLog aspect
has to be specified in the deployment plan. When the application is launched the
log files are created and the communication between components is logged.

The obtained log files can be processed with the tool sofa-update-frames (see

Section 4.6.3)).

4.6.3 Tool sofa-update-frames

Previous section describes possibilities to log method calls between components.
The result of that process are log files containing all method calls observed from
components’ interfaces.
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The log files may be processed by the tool sofa-update-frames. It analyzes the
log files and it updates corresponding frames in the repository. Usage of the tool is
following:

sofa-update-frames. (bat|sh) <log-file> [log-file ...]

The tool is implemented by the UpdateFrameStats class. Log files are processed
one by one as it is described in Section [3.5.2] For each frame that is identified in
the log, statistics about method calls are held. When the log files are processed then
all the identified frames are updated in the repository — content of the attributes
methodDescription and activeMethodDescription is newly generated according
to the observed statistics.

If more active threads are observed in one component then statistics from all
threads are merged into one active thread. Although the component could have
more active threads, this is just a prevention against possible usage of a thread pool
by the component (see Section .

4.6.4 Cushion autodeploy

The autodeploy action of the cushion tool automatically assigns deployment docks
to components, commits the deployment plan to the repository and prepares it to
be used for the application launch. Usage of the action is following:

cushion autodeploy [online|offline] [unset|erroneous|all] \
<deployment plan name>

The first parameter specifies which values of capabilities from all running deploy-
ment docks are used in the planning process:

online Current values are used; this is default behavior.

offline Original values are used. This behavior simulates a state as if no application
is running on any of the docks.

Some components in the deployment plan may have specified names of docks
where they should be deployed. The second parameter determines how to cope with
the components, whether they should be deployed on the specified docks or if the
docks should be selected by the deployment planning algorithm. There are following
options:

unset [t assigns deployment docks to components with unspecified dock names.
This is default behavior.

erroneous It assigns deployment docks to components with unspecified dock names
and to all components where the deployment on the specified dock would cause
an error (e.g., the dock is not available or it has insufficient capabilities).

all It assigns deployment docks to all components even if the components had the
docks specified in the deployment plan.
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4.7 Cloud Gate application

The Cloud Gate application is a new application that serves as an entry point to
the ‘cloud’ represented by the SOFA 2 runtime environment. It simplifies access to
the SOFAnode and enables easier management of SOFA 2 applications. Its main
features are:

e possibility to run its own deployment dock

e launching SOFA 2 applications according to a deployment plan or even accord-
ing to an assembly

e listing running SOFA 2 applications with option to stop them

In order to use the Cloud Gate application the SOFAnode has to be running.
The application is launched using the following script:

sofa-cloud-gate. (bat|sh)

During the startup of the application the settings of the Cloud Gate application
is loaded from the cloudgate.properties file located in the current directory. If the
settings file does not exists, default settings is used.

After the startup a sofa icon emerges in the system tray. It makes accessible a
menu through which the Cloud Gate application is operated. The menu consists of
the following items:

Settings shows the Settings form that contains settings of the whole application.
It has three sections:

e In General settings section it is possible to specify whether the deployment
dock should be launched immediately after the Cloud Gate startup.

e Deployment dock section contains the name of the deployment dock and
a list of capabilities that will be available on the dock. The capabilities
may be edited or new capabilities may be added.

e Machine properties section contains description of the machine where the
Cloud Gate application runs. The values specified in this section will be
used for initialization of the deployment dock’s converter.

Settings in the sections Deployment dock and Machine properties have to be
set before the start of the deployment dock.

Run deployment dock starts the deployment dock with the settings specified on
the Settings form. Output of the dock is written to the console.
The option is available only if the deployment dock is not running yet.

Stop deployment dock stops the deployment dock. The option is available only
if the deployment dock is running.
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Launch sofa application allows launching a SOFA 2 application according to a
selected deployment plan. First, a dialog with a list of all available deployment
plans in the repository is shown. The list may be filtered according to the
substrings in the name. When the deployment plan is selected a dialog with
all versions is shown in the case that more versions are available. The versions
are sorted according to the creation time such that the newest version come
first.

After the deployment plan with proper version is selected then the Deployment
preview dialog is shown. It shows the tree structure of the application together
with associated deployment docks to components. The names of the docks are
highlighted — green color means that the dock is online; red color means that
the dock is unavailable (see Figure . If all the deployment docks are online
then the application may be launched.

Quick launch allows to launch a SOFA 2 application according to a selected as-
sembly without a specific deployment plan. This is useful in the case that the
user just needs to launch the application and he/she is not interested in the
actual components deployment.

First, a dialog with a list of all available assemblies in the repository is shown.
The list may be filtered according to the substrings in the name. After the
selection of the assembly a dialog with all versions is show in the case that
more versions are available. The versions are sorted according to the creation
time such that the newest version come first.

When the assembly with a proper version is selected the process of automated
generation of the deployment plan is launched (see Section[4.7.1)). If the deploy-
ment plan generation succeeds then the Deployment preview dialog is shown. It
shows the tree structure of the application together with associated deployment
docks to components. The names of the docks are highlighted in green color
(the automated deployment planning works only with docks that are online).
Only if a dock becomes unavailable during the generation of the deployment
plan then the dock’s name is highlighted in red color. If all the docks are online
then the application may be launched.

Although the menu item is named as ‘quick launch’; the ‘quick’ word refers
to the fact that the deployment plan does not need to exists and the SOFA 2
application is launched directly using only the assembly. But the generation of
the deployment plan itself may last longer due to the generation of connectors
between components.

Running applications shows a dialog with all running SOFA 2 applications in the
SOFAnode. The dialog allows to terminate the applications.

Console shows a Console form containing output of the Cloud Gate application. It
contains the same output as the original console; it is useful when the Cloud
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Gate application is run in the background.

Exit stops the deployment dock if it is running and closes the Cloud Gate applica-
tion. It also saves the settings into the cloudgate.properties file in the current
directory.

i B
| £| Deployment preview- u

Deployment plan: ashop.deployment Local1Store1Cashdesk_example

Version: d14e54p5658640050190282da%c45e1469041d35

=11 [serverB]
¢ CJ inventory [serverB]
¢ ] database [serverB] I

D objectStorage
D transactionManager
D stockLister -
D saleRegistrator
D productsLister
D orderRegistrator
D dataExchangeClient
D reportServer -
¢ ] cashdesk [serverB]
[ cui [cashdeska]
[} togic [serverB]
D ReceiptPrinter
D storeClient -
o~ ] enterprise [serverB]

| Launch H Cancel |
L

Figure 4.3: Deployment preview dialog. It shows a tree structure of the application
with associated deployment docks. The names of the docks are highlighted — green
color means that the dock is online; red color means that the dock is unavailable.

The Cloud Gate application is implemented by the CloudGate class in sofa-j-
cloudgate meta-project. The deployment dock and SOFA 2 applications are launched
in separate processes; this is done by the class Launcher.

4.7.1 Automated generation of a deployment plan

The possibility to launch a SOFA 2 application directly from a specified assembly is
one of the main feature of the Cloud Gate application.

First, new deployment plan has to be created according to the assembly and
stored into the repository. The name of the deployment plan is based on the assembly
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name; it is set to: <assembly name>.autodeplplan. If a deployment plan with this
name already exists then new version of the plan is generated.

The generated plan does not have set any components’ properties; it is used
directly in the automated deployment process. If the process succeeds then the
deployment plan is ready to be used.
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Chapter 5

Example SOFA 2 application

The following chapter describes the process how the automated deployment planning
may be used with the implemented tools on an example application SOFAShop.
The SOFAShop [22] is a SOFA 2 application developed according to the use cases
of the CoCoME[|model [7]. It represents a simplified environment for managing an
enterprise with shops and stores. The main goal of the SOFAShop is to model the
complex architecture in the SOFA 2 environment.
The application is separated into three basic parts [22]:

shop is represented by cashDesk components. Each cashDesk consists of the fol-
lowing components: GUI (simple graphical user interface for managing sales),
logic and receiptPrinter.

store is represented by an inventory component (store server) and storeClient com-
ponent that provides simple GUI for managing orders and observing sales. The
inventory consists of the following components: database (objectStorage and
transactionManager), stockLister, saleRegistrator, productLister, orderRegis-
trator, dataEzchangeClient and reportServer.

enterprise server is represented by an enterprise component; it provides informa-
tion about products and suppliers. It consists of the following components:
dataFEzxchangeServer and database (objectStorage and transactionManager).

Following section describes how the specification of components has been ex-
tended in order to support automated deployment planning. Finally, the planning
process is shown on the example application.

5.1 Adding new information to components

The components of the SOFAShop application were not specified by resource de-
mands and they did not have any behavior description. In order to allow the auto-

!Common Component Modelling Example
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mated deployment planning for the application, following tasks had to be done:
e mark active components
e add specification of resource demands to primitive architectures
e run the SOFAShop application with the MethodCallLog aspect
e analyze obtained log file and update corresponding frames

At the first point it is necessary to mark active components. In the SOFAShop
application all the events are triggered by users via GUI components. Therefore,
the architectures of the GUI component (from the cashDesk component) and the
storeClient component were marked as active; then they were committed into the
repository using the commit action of the cushion tool.

Second, method-info files were generated for each primitive architecture using
the methodinfo action of the cushion tool (see Section [£.6.1)). The files were edited
— the resource demands descriptions were filled in. The specified demands were
estimated in regard to the architecture of the SOFAShop application. Majority of
the components just delegate the method calls to other components; therefore, the
demands are quite low. All components have demands on the cpu resource specified
in operations; but only the objectStorage component has also demands on the disk
resource specified in bytes. At the end all the primitive architectures were committed
into the repository using the commit action of the cushion tool.

Next, new deployment plan for one store and one cash desk was created using the
deplplan action of the cushion tool. The MethodCallLog aspect was specified to the
deployment plan and all the deployment docks were set to the dock ‘nodeA’. Then
the plan was committed into the repository using the deploy action of the cushion
tool. The application was launched according to the plan and it was used as if in
general operation. This process generated the log file method-log-file_nodeA.tmp.

Finally, the tool sofa-update-frames was used on the generated log file. This
tool processed the file and updated all respective frames in the repository (see Sec-
tion . Now it is possible to use the automated deployment planning for the
SOFAShop application.

5.2 Test of the automated deployment planning

The test of the automated deployment planning is shown on the SOFAShop ap-
plication with one store and one cash desk. The testing environment consists of
four running deployment docks: cashdeskA, storeA, serverA, serverB. Capabilities
and hardware parameters of the docks are shown in Table [5.1] The cashdeskA and
storeA have set intentionally lower values of hardware parameters as we do not wish
to deploy there many components. The serverA has faster hard disk then serverB;
therefore, it is appropriate for components with higher disk demands.
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Deployment docks

Parameters cashdeskA  storeA  serverA  serverB
system.resource.cpu 1000000 1000000 1000000 1000000
system.resource.disk 1000000 1000000 1000000 1000000
cpu-operations-per-second le6 le6 1e9 1e9
disk-megabytes-per-second 20 20 80 40

Table 5.1: Capabilities and hardware parameters of the deployment docks.

A new deployment plan has been created using the deplplan action of the cushion
tool. Deployment docks were set at components GUI and receiptPrinter to the
value ‘cashdeskA’” and at the component storeClient to ‘storeA’. These components
have GUI interfaces; therefore, they should run where we expect. It would be also
convenient to specify deployment docks to the components objectStorage of the two
databases as they require specific files located on the disk. This was omitted because
the result of the automated deployment planning would not be so interesting. Finally,
the deployment plan was committed into the repository using the autodeploy action
of the cushion tool (see Section [4.6.4).

Total resource demands of the components were computed (they can be seen in
Table and deployment docks were assigned to the components. Output of the
automated deployment planning is following:

Processing deployment plan...

Start of the automated deployment planning.
Deploying components with specified dock name:
[/storeClient]: storeA ... OK
[/cashdesk/ReceiptPrinter]: cashdeskA ... 0K
[/cashdesk/GUI]: cashdeskA ... OK

Creating order of components for deploying... OK
Deploying components in the specified order:
[/inventory/reportServer] : serverB
[/inventory/database/objectStoragel] : serverA
[/inventory/database/transactionManager]: serverB
[/cashdesk/logic]: serverB
[/inventory/productsLister]: serverB
[/inventory/dataExchangeClient] : serverB
[/enterprise/database/objectStorage]: serverB
[/enterprise/database/transactionManager]: serverB
[/inventory/saleRegistrator]: serverB
[/inventory/orderRegistrator]: serverB
[/enterprise/dataExchangeServer]: serverB
[/inventory/stockLister]: serverB
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Deploying composite components:
[/enterprise/database] : serverB
[/inventory/database] : serverB
[/inventory] : serverB
[/cashdesk] : serverB
[/enterprise]: serverB

[]: serverB

The components GUI, receiptPrinter and storeClient were deployed on the spec-
ified docks. The most resource demanding component objectStorage from the inven-
tory database was put on the dock serverA as it has the fastest hard disk. The rest
of the components were put on the dock serverB as their demands are quite low.

Resource demands
Component

cpu disk
/inventory/database/objectStorage 295952 172756
/inventory/database/transactionManager 16365
/inventory/stockLister 203
/inventory/saleRegistrator 254
/inventory /productsLister 1200
/inventory /orderRegistrator 500
/inventory /dataExchangeClient 1200
/inventory /reportServer 1340
/cashdesk/GUI 3000
/cashdesk/logic 9958
/cashdesk/ReceiptPrinter 1695
/storeClient 1000
/enterprise/dataExchangeServer 240
/enterprise/database/objectStorage 460 200
/enterprise/database/transactionManager 40

Table 5.2: Counted total resource demands of components. Demands for cpu are
specified in operations units; demands for disk are specified in bytes. Values are
rounded.
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Chapter 6

Related work

In addition to the SOFA 2 there are also other academic component models providing
rich set of features. However, they typically have insufficient runtime environment
as they are oriented mainly on design. Fractal [4] is a component model with similar
capabilities as SOFA 2. It has a number of implementations; one of them is Julia.
Their approach to the deployment problem is mentioned in Section

Section have introduced possible approaches to the automated deployment
planning. As far as we know only one of them was embodied into a real planner and
that is the Sekitei planner (see Section [6.2)).

The deployment problem is solved in solutions interested in grid and cloud com-
puting. One of the solution is ProActive (see Section [6.3)).

As far as we know there is no real implementation of the automated deployment
planning for hierarchical component systems.

6.1 Julia

Julia [4] is the reference implementation of the Fractal [4] component model. It
does not solve the deployment problem itself but it can use the Fractal Deployment
Framework (FDF) [10]. The FDF provides means to facilitate the deployment of
distributed applications and middleware on networked systems. It introduces a high
level deployment description language and provides a set of end-user tools. The
distributed system has to be described by a FDF configuration and then it can be
deployed by the user via the auxiliary tool. However, the FDF does not provide any
automated deployment planning.

6.2 Sekitel

The Sekitei planner has been described in Section [3.2.1] It solves the Compo-
nent Placement Problem and it is implemented in Java as a pluggable module for
component-based frameworks. It is used in the framework Smock [12] that serves as a
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run-time environment of the Partitionable Services Framework [12]. The framework
“enables services to be flexibly assembled from multiple components, and facilitates
transparent migration and replication of these components at locations closer to the
client while still appearing as a single monolithic service” [12].

In comparison to our solution, their approach solves more general problem. The
planner decides on a particular set of components that will be deployed and may also
introduce some auxiliary components during the deployment for fulfilling application
constraints. It finds deployments also in resource constrained environments. Due to
the generality of the problem the deployment planning may suffer from performance
issues.

6.3 ProActive

ProActive Parallel Suite [19] is open source solution for parallel, distributed, grid
and cloud computing. It contains tools for scaling up demanding applications. The
suit is divided into three parts:

Programming is done by Java Parallel Toolkit. It is a framework that provides
Java API for easy developing parallel and distributed applications.

Scheduling is provided by multi-platform Job Scheduler. It manages a user-defined
pool of resources and parallel execution of tasks using the resources.

Resourcing provides smart and adaptive engine for application deployment.

ProActive Scheduling provides a framework for job definition and submission.
The input for the scheduling are submitted jobs (e.g., Java or native applications,
scripts, ProActive Programming applications) and descriptions of the task flow con-
struction. Each job contains one or more tasks. It is possible to specify temporal and
data dependencies, sequences of tasks; the specification is done via Java API, XML
file of flat file. The Job Scheduler permits dynamic changes in the resource pool (hot
plug and unplug of resources) and it automatically discovers new resources. This al-
lows an increased resource utilization and a flexible infrastructure. It offers different
scheduling policies of the jobs (e.g., first-come-first-served, priorities, planning).

The ProActive Resourcing is supported by ProActive Agents. The agent runs
on a host computer and registers the resource at the resource manager when it is
available (e.g., the last processing task is done or the host computer is not used —
screen saver is on). It provides monitoring and controlling the computing resources
and it manages deploying of applications.

The scheduling algorithm simply deploy tasks of a job one by one on available
resources provided by the resource manager. One resource may process only one
task at a time; until the task is processed the resource is unavailable. This differs
from our approach where more components may run on a dock concurrently.
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Chapter 7

Conclusion and future work

The goal of the thesis was to add support of cloud computing to the SOFA 2 system.
In particular it was meant to make the access to the SOFA 2 system easier and to
simplify launching of SOFA 2 applications, especially when preparing deployment
plans of the applications. The issue related to the automated generation of deploy-
ment plans based on the current status of the SOFA 2 environment. To solve the
problem, an analysis of available solutions had to be made. However, no approach of
automated deployment planning dealt with hierarchical component systems. There-
fore, one suitable algorithm has been chosen and it has been extended to support
hierarchical component systems.

The problem of the automated deployment planning has been analyzed theoret-
ically and the proposed algorithm has been described in general; thus, the solution
can be used in any hierarchical component systems. It covers utilization of resources
in the system and demands of components to find efficient deployment of the appli-
cation.

The algorithm has been implemented in the SOFA 2 component system. All
necessary changes to the SOFA 2 model have been described and auxiliary tools
have been created. Finally, the Cloud Gate application has been created in order to
simplify access to the SOFA 2 system and to simplify the management of applications,
especially the launching of the applications.

To fully utilize the proposed deployment planning, precise values of components’
resource demands are needed. Currently they have to be specified by user manually;
therefore, it would be convenient to create a profiling tool that would measure re-
source demands of each component automatically. Also the total resource demands
of components are currently computed based on the automated observation of the
application behavior. In order to get more accurate results an extension of the behav-
ior protocol has been proposed. However, auxiliary tools for processing the extended
behavior protocol were left for future work on this topic.
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Appendix A
Contents of the CD-ROM

The enclosed CD-ROM is organized as follows:

readme.txt A description of the contents of the enclosed CD-ROM and instructions
for using it.

master-thesis.pdf This thesis in PDF format.
src/ Source code of the implementation.

bin/sofa-j/ Binary distribution of the SOFA 2 system with example applications
in the repository.

bin/cushion/ Binary distribution of the Cushion tool.
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