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Abstrakt: V předložené práci studujeme metody odstranění rozmazání pomocí 
dvou snímků stejné předlohy s různou dobou expozicie, přičemž se soustřeďujeme 
na dvě hlavní kategorie těchto metod, tzv. dekonvoluční a nedekonvoluční. U obou 
kategorií rozebíráme jejich teoretické základy a zkoumáme jejich výhody a ome-
zení. Samostatnou kapitolu věnujeme vyhodnocení a srovnání kategorií metod na 
testovacích datech (obrázky), k testování používáme metody implementovány v 
jazyku MATLAB. Účinnost zkoumaných metod srovnáváme i s vybraným 
odšumovacím algoritmem pracujícíms jedním vstupním obrázkem. Nesoustředíme 
se na výpočetní složitost srovnávaných algoritmů a pracujeme pouze s jedno-
kanálovými obrázky. 
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Abstract: In the presented work we study the methods of image deblurring using 
two images of the same scene with different exposure times, focusing on two main 
approach categories, so called deconvolution and non-deconvolution methods. We 
present theoretical backgrounds on both categories and evaluate their limitations 
and advantages. We dedicate one section to compare both method categories on 
test data (images) for which we our MATLAB implementation of the methods. We 
also compare the effectiveness of said methods against the results of a selected 
single-image de-noising algorithm. We do not focus at computational efficiency of 
algorithms and work with single-channel images only. 
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2 Introduction 

Image restoration1 techniques have always been a subject of great interest with-
in the domain of digital image processing. Their significance increases as digital 
photography undergoes rapid development with many digital imaging devices be-
coming readily available in countless forms, such as cell-phones, cameras and vid-
eo cameras, to name a few.  

We know from experience that it is quite difficult to obtain a quality image es-
pecially in insufficient lighting conditions requiring longer exposure times. In other 
words, taking “bad images” is easy. One of the most prevalent image degrading fac-
tors in photography is motion blur, caused either by motion in the photographed 
scene, the camera itself, or both. Suppression or complete removal of motion blur 
is highly desirable especially in hand-held devices.  

According to (1), there are essentially two categories of approaches to deal with 
motion blur, the so-called in-process and post-process. The former focus at improv-
ing the conditions at which the image is being taken, usually by hardware means 
(image stabilizers, CMOS cameras), while the latter aim to correct the effects of 
motion blur after the image was taken. Widespread deployment of in-process-
capable devices is however limited due to their high prices and as a result, the 
need for effective post-process algorithms arises.  

In image processing, motion blur is modeled by convolution. If a point-spread 

function or PSF of motion blur is known (this applies to camera motion as local 
blurring caused by movement of objects in the scene tend to lead to PSF that is 
location-dependent - which is beyond the scope of this paper; however, some of 
the methods to be mentioned below are capable of handling space-variant blurring 
naturally) the original image can be recovered by a deconvolution algorithm, such 
as Lucy-Richardson (2). In most cases, there is little or no prior information on 
blur PSF which requires us to employ a blind deconvolution algorithm. First, a PSF 
is estimated from a given image or a set of images and subsequently, an existing 
non-blind deconvolution algorithm is used. 

In case there is only one image available, results rarely prove satisfactory. This 
is given by the under-determined nature of the problem. We have to rely on gene-
ralized models of motion blur which are usually not capable of capturing complex 
PSF shapes. Unsatisfying estimates of blur PSF then lead to even more unsatisfying 
estimates of the original image due to iterative nature of most deconvolution algo-
rithms.  

Additional information obtained from multiple images of the same scene subject 
to varying degrees of degradation (blur, noise) can improve overall results. In this 
paper, we focus at the situation where we obtain two images of the same scene 
using different exposure times. The first image is taken using a long exposure time 
resulting in proper level of lighting but degraded by motion blur caused by camera 
shake, whereas the second image is taken using a short exposure time and is not 

                                                        
1 Image restoration aims to reconstruct the original pre-degradation image as faithfully as poss-

ible as opposed to image enhancement, which aims to make desired features more visible 



6 
 

affected by motion blur, but is darker.  Both images are affected by noise, which is 
directly proportional to the ISO sensitivity setting of the digital camera; we elabo-
rate on this in greater detail in chapter 2.1.  

There are several approaches how to restore the original image from the short 
and long exposure image pairs. These broadly fall in two categories – the non-

deconvolution and deconvolution algorithms. The former do not perform deconvo-
lution at any stage and try to utilize the image information in other ways as op-
posed to the latter, where deconvolution is performed at some point. Both catego-
ries feature methods with varying complexity, computational cost and efficiency, 
some of which will be described below.  

The aim of this work is to analyze selected methods and evaluate their degree of 
suitability in various circumstances in terms of exposure times, signal-to-noise 
ratio improvements and other indicators based on experimental results. The me-
thods are compared against themselves and a chosen single-image denoising algo-
rithm to evaluate the benefits of additional image information in the form of im-
proved quality of the restored image. We do not attempt to implement computa-
tionally effective algorithms at all costs nor do we provide an exhaustive list of all 
available methods. We abandon physical camera experiments in favor of simulated 
data to achieve the best degree of control over the experiment. Single-channel 
(grayscale) images are assumed. 

2.1 ISO and image noise 

In conventional photography, the photographic material’s sensitivity to light is 
determined by the size of silver halide grains embedded in its emulsion. The larger 
a grain is, the more photons can it capture increasing the probability of exposure. 
Upon illumination, grains develop in an all-or-nothing fashion meaning that a grain 
decomposes into silver completely or not at all.  This produces the characteristic 
“film grain” that is especially present in highly sensitive material used to shoot 
fast-moving scenes with very short shutter times.  

Several systems were used to designate film sensitivity in the past. Among the 
most common were ASA, DIN and GOST. The ASA and DIN scales were incorpo-
rated into the new ISO standard published in 1987 (ISO 5800:1987) as the ISO 
arithmetic scale and logarithmic scale, respectively. The ISO logarithmic scale 
gradually fell out of use in favor of the ISO arithmetic scale.  

The process of capturing an image in a digital camera is somewhat different. 
Photographic material is replaced by an electronic image sensor which consists of 
an array of individual cells capable of converting light into electrical signals. This 
signal is then amplified, digitized and stored. Known types of image sensors in-
clude the CCD (charge-coupled devices) or CMOS (complementary metal-oxide 
semiconductors). CCD cells store captured light as an electrical charge until they 
are read (one at a time) whereas circuitry attached to each CMOS cell converts 
light energy into voltage directly. Neither technology has a clear advantage; CMOS 
sensors are however cheaper to manufacture. 

Digital cameras typically allow the user to select from several ISO settings. This 
is made possible by varying the amplification factor affecting the signal leaving the 
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image sensor.  Since no image sensor is completely free of noise, amplification of 
the signal also amplifies noise, resulting in a lowered signal-to-noise ratio. Foi in 
(3) demonstrated that it is possible to model digital camera noise as two indepen-
dent Gaussian (accounting for electrical and thermal noise) and Poissonian (ac-
counting for the photon capturing process) components as follows:  

 
 ���� � ���� �  	
������ �  	���� [1]  

 
where � is the pixel coordinate,  ���� is the original signal, ���� is the observed 
signal and  	
 and 	� are Poissonian and Gaussian noise components, respectively. 
In terms of distributions, the equation becomes 

 
 ������ �  

�������~ ��������


����~ ��0, ��  [2]  

 
where � � 0 and � � 0 are real scalar parameters and �and � denote normal (i.e. 
Gaussian) and Poissonian distributions, respectively. Using ��� for the expected 
value and ����� for the variance of a random variable, we obtain 

 
 �������� �  

�������� � ���������� �  

�������� � ����� [3]  

 
from the properties of the Poisson distribution. Since  

 
 �������� �  

�������� � ����� �  ���

������� [4]  
and 

 
 
 

������

������� � ����� 
[5]  

it follows that   
 

 ��

������� � 0 and ����

������� � ���� �⁄     [6]  
 

The Poissonian 	
 thus has variable variance that depends on the value of ����, 
����	
������� � ����� where � � �!". The Gaussian component 	� has constant 
variance equal to �. As a consequence, the total variance of the expression [1] can 
be expressed as 

 
 #������� � ����� � �   [7]  

 
Poissonian distribution can be approximated by normal distribution to a sufficient 
degree of accuracy 

 
 ��$� % ��$, $�    [8]  
 
which combined with [6] and [7] yields  
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������ �  	���� ~ ��0, ����� � �� [9]  
 

The relationship between the ISO setting of a particular camera and parameters � 
and � are explored in (4) and adopted for use in this paper to generate experimen-
tal data. 

2.2 Model 

For the purpose of deblurring algorithms, we present a mathematical model of 
the short and long exposure image pair as mentioned above. Let ���� be the image 
function of the original, discrete, non-degraded grayscale image N pixels in size. Let 
&���� be the image function of the original image subject to blurring and additive 
noise2 and finally let &"��� be the image function of the underexposed image sub-
ject to additive noise only. According to Tico (4) we have: 

 
 '&"��� � ���� � 
"���

&���� � ���� ( )��� � 
���� [10]  

 
where � � �*, +� are pixel coordinates, )��� is the point-spread function de-

scribing motion blur, α is the change in brightness as a result of shorter exposure 
(clearly ' , 1), ( denotes the convolution operation and 
", 
� are noise terms. We 
assume additive Gaussian noise with μ" � μ� � 0 and #"� / #�� (where 01 and #1� 
are the mean and variance respectively).  

                                                        
2 Noise is present in every imaging device 
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3 Non-deconvolution methods 

In this category we include methods that do not use deconvolution or minimiza-
tion of an objective function to achieve the deblurring goal. Due to the fact that the 
experimental setup can be modified to produce the blurred and noisy image pair of 
nearly the same overall brightness (the ratio of shutter times would have be equal 
to the inverse ratio of ISO settings) we deem it unnecessary to explore the image 
statistics-based fusion such as the work of Razligh (5). 

3.1 Tico’s method (2009) 

Tico (6) presents a relatively simple wavelet-based approach to blurred and 
noisy image fusion. The images are first decomposed into their respective wavelet 
coefficients. Then, multi-level coefficient blending is performed. Finally, inverse 
wavelet transform is performed yielding the result image. 

We observe that the absolute difference between the blurred and noisy images 
is due to presence of noise in the short-exposed image and blurring in the other. 
We therefore aim for an estimator that emphasizes the short-exposed image where 
the absolute difference between the two images is larger and the long-exposed 
image otherwise. To achieve better separation between the signal and noise an 
image estimator is derived in the wavelet domain. The edge locations (i.e., large 
values in the difference signal), are emphasized at some scales whereas the noise 
variance is evenly distributed across the scale space. Considering an orthonormal 
wavelet transform of the two images, denoting by 21�3�, the 3-th wavelet trans-
form and assuming the same overall brightness of both images, we have  

 
 2"�3� � 4�3� � 5"�3�

2��3� � 46�3� � 5��3� [11]  

 
Where 46 denotes the blurred image as a whole since the nature of blurring is 

not important in this case. Using the observation #"� / #�� we neglect the noisy 
coefficients 5"�3� and the term 5��3� becomes 5�3�.   

We can now fuse the images together using different weights at different scales.  
Taking advantage of the de-correlation in the wavelet domain, we propose a mini-
mum mean square error diagonal estimator of the original image in the form of a 
linear combination between the wavelet coefficients of the two images 

 
 47�3� � 2"�3� �  8�3�9�3� [12]  

 
where 4:�3� stands for the wavelet coefficients of the restored image, 9�3� �
2��3� ; 2"�3� denotes the difference signal between the wavelet coefficients of 
the two observed images, and 8�3� are weight coefficients.  We can estimate the 
best weight 8�3� for each wavelet coefficient by minimizing the mean squared 
error 



10 
 

 
 �<=47�3� ;  4�3�=>�� � �<=2"�3� ;  4�3� �  8�3�9�3�=>�� [13]  

 
whose derivative with respect to 8�3� equated with zero yields 

 
 8�3��<=9�3�=�> � �<9�3�5�3�>  [14]  

 
The computation of the weight 8�3� requires an estimate of the noise variance 

in the short-exposed image, and an estimate of the term �<=9�3�=�>.  In order to 
estimate noise variance in the short-exposed image the approach presented by 
Mallat in (7) where noise variance is calculated from the median of the finest-scale 
wavelet coefficients ?@ as #A % ?@ 0.6745⁄   is used. Given the fact that in practice 
noise is spatially variant over the image, we apply the wavelet-based noise esti-
mate in the pixel neighborhood (e.g. 7 G 7). Finally, the �<=9�3�=�> is approx-
imated with max�#��3�, ��&�|9�3�|��� where avg denotes local spatial average 
and #��3� is the noise variance at the spatial location that corresponds to the 3-th 
wavelet coefficient.  

As a consequence, the weight 8�3� emphasizes the short exposed image in 
areas of image transitions (edges etc.) whereas the blurred image is emphasized in 
smooth regions.  
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4 Deconvolution methods 

In contrast to section 3 this category contains methods which first try to esti-
mate the blur PSF from the blurred and noisy images and then perform deconvolu-
tion on the blurred image. We also include methods that use minimization of an 
objective function to achieve the same task.  

4.1 Tico-Vehvilainen method (2006) 

4.1.1 Point-spread function estimation 
The method of PSF estimation, described in (4) is built upon the model de-

scribed above and tries to express the PSF in terms of posterior probability. Based 
on the known images &" and &� can we write   

 
 K�)|&", &�� � K�&�|&", )�K�)�K�&"�

K�&", &��  [15]  

 
where, retaining the terms that depend on d, the objective function to be mini-

mized by the maximum a posteriori estimate of the PSF can be written as 
 

 L�), '� �  ;log K�&�|&", )� ;  log K�)� [16]  

 
As a consequence of the model which assumes Gaussian noises of variances 

#"� / #��, the conditional probability density function K�&2|&1, )�  is a multivariate 
Gaussian with mean '&" ( ) and a non-diagonal covariance matrix. For tractability 
of the solution, only the diagonal elements of the covariance matrix are considered 
which are given by 

 
 #��)� �  #�� � #"� Q )����

@ RS
 [17]  

 
from which we obtain the following simplified model of the conditional proba-

bility density function  
 

 ; log K�&�|&", )� ~ 1
2#��)� Q 
���� � 5

2 log #��)�
� RΩ

 [18]  

 
where 5 is the number of image pixels and 

 
 
��� � &���� ;  '&"��� ( )��� [19]  

 
The second term in the equation [15] describes the model of the blur PSF. If we 

assume that the camera only undergoes translational motion during the exposure 
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time, we may consider the PSF to be space invariant and regard it as a projection of 
the camera’s spatial motion onto the image plane, where it assumes the typical 
curved “ridge” shape. This ridge appearance is imposed on the PSF by defining the 
prior probability density function as 

 
 ; log K�)�~ $

2 Q <1 ; U���>)����
� RS

 [20]  

 
where U��� denotes the indicator function, which equals 1 if � belongs to the 

PSF ridge and 0 otherwise.  
As a result of the physical constraints on the camera motion speed and accelera-

tion, the PSF ridge can be assumed continuous and differentiable. Consequently, in 
most of its points �, the direction V��� tangent to the ridge path is well defined. 
Based on this observation and aiming for the ridge-like shape of the blur PSF, we 
define the ridge function as equal to 1 if d��� � )�W� for any + R 5��� and 0 oth-
erwise. 5��� denotes the local neighborhood of the point � selected in the direc-
tion of  V��� which is orthogonal to the local ridge orientation.  

In practice, it is not possible to calculate U directly, since we do not know the 
blur PSF. We can apply the same approach onto on an intermediate estimate of the 
blur PSF, where the local ridge orientation at each � R Ψ is calculated by the tex-
ture orientation estimator from (8).   

Joining [18] and [20] we obtain the final form of the objective function. This can 
be minimized by the gradient descent algorithm imposing the constraints 
∑ )��� � 1� R S  a d��� � 0, � R Ψ.  

The gradient of the objective function is given as  
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 LZ�), '� � [L�), '�
[)  

� ;'&"�;�� ( 
���
#��)�  

� )���#"�#��)� \5 ; ∑ 
�����RΩ#��)� ] 
�$<1 ; U���>)��� 

[21]  

 
and  
 

 L^�), '� � [L�), '�
[' � ∑ <&"��� ( )���>
���@RΩ #��)�  [22]  

 
where Ω _ `� denotes the image support. The parameter ' is estimated at each 

iteration by equating the previous equation with zero: 
 

 ' � ∑ &����<&"��� ( )���>�RΩ∑ <&"��� ( )���>��RΩ  [23]  

 
The initial ' estimate can be obtained as the ratio of the means of the two im-

ages:  
 

 'a � Q &����
�RΩ

/ Q &"���
�RΩ

 [24]  

 
Note that the prior term in [23] is strongly dependent on the current estimate of ). Therefore the initial value of $ is set to zero and then to a high value after sever-

al iterations in order to force ridge-like appearance on the blur PSF.  
The iterative minimization algorithm could start from an arbitrary initial guess 

of the blur PSF. However, in order to speed up the process an initial value can be 
used, which can be obtained by the following algorithm. 

4.1.1.1 Initial PSF estimate 

Based on the model we can write 
 

 &���� � '&"��� ( )��� � 
��� [25]  

 
where 
��� � 
���� ; 
"��� ( )���. Neglecting the non-diagonal terms of the 

covariance matrix of 
��� and by using the property #�� c #"� the Wiener filter es-
timation of the blur PSF 

 
  

 9�d� � '2"e�d�2��d�
'�|2"�d�|� � #"�

 [26]  

 
where capital letters denote the Fourier transforms of their respective signals 

and ' originates in [10]. The initial blur PSF is then obtained by the inverse Fourier 
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transform of 9�d�. A practical implementation is described by the following algo-
rithm. 

Input: Two images &", &�  and an approximate estimate of the PSF support size, 
i.e. f" G f�. 

Output: The initial PSF estimate.  
Algorithm: 

• Select several blocks of size 8" G 8� (8" � f" and 8� � f�) from the 
blurred image &�. Selection is based on the standard deviation of each 
block;  blocks of higher standard deviation are preferred due to greater 
probability of them containing significant details or transitions.  Blocks 
are labeled &�g for 3 � 1. . h where h is the amount of selected blocks. 
The corresponding blocks from the image &" are labeled &"g.  

• We average h estimates given by equation [26] from corresponding 
blocks &"g, &�g . Fourier transforms are calculated by FFT. 

• The final PSF estimate is obtained by selecting the central part (f" G f�) 
from the inverse 8" G 8� Fourier transform of the average computations 
in the previous point.  
 

It is however possible to use the whole images &", &� as the input of equation 
[26] at the cost of lower quality and slower algorithm convergence.  

4.1.2 Blur removal 
Estimated PSF is used to remove blur by using the Lucy-Richardson algorithm, 

which is implemented as function deconvlucy in MATLAB.   

 

4.2 Tico-Vehvilainen method (2007) 

An “upgrade” of the method introduced in chapter 4.1 was published in 2007 by 
Tico and Vehvilainen. Our base model is extended by an additional term i��� 

 
 'i��� ( &"��� � ���� � 
"���

&���� � ���� ( )�*� � 
���� [27]  

 
that denotes the blur PSF of the underexposed image which (as image is not 

subject to motion blur) is identical to the Dirac function j���.  The additional PSF 
was introduced to model the residual blurring between &"��� and intermediate 
estimates of the original image ����  in the algorithm to be described below. The  

" and 
� are Gaussian noise of zero mean and variances #"� and #�� that satisfy 
#� � c  #"�.  

The joint posterior probability density function of the original image ��*� 
and both PSFs can be expressed as  

 
 K��, ), i|&�, &"� ~ K�&�|�, )�K�&"|�, i�K���K�), i� [28]  
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from where leaving out the terms that do not depend on f, d or i we obtain the 
maximum a posteriori (MAP) objective function 

   
 k��, ), i� � ; log K�&�|�, )� ; log K�&"|�, i� ; log K��� ; log K�), i� [29]  

 
The first two terms of the previous equation can be derived from the model [10] 
 

 ; log K�&�|�, )�~�$�/2� Q<&���� ;  ���� ( )���>�
�RΩ

  

; log K�&"|�, i� ~�$"/2� Q<'&"��� ( i��� ; ����>�
�RΩ

 
[30]  

 
where $1 � #1!� for l � 1,2 and Ω denotes the PSF support. To avoid over-

smoothing the image we adopt a discrete form of the total variation (TV) prior 
 

 ; log K���~m Q |n��*�|
@RΩ

 [31]  

 
where n denotes the spatial gradient operator a m is the prior weight balances 

the confidence between the prior and observations. The gamma distribution is as-
sumed, i.e. m ~ Γ�m|�, ��. The parameter m is updated at each iteration based on the 
current estimate of the original image�.  

The model used for both PSFs was chosen by the authors to optimized when i 
becomes identical to Dirac delta function, that is 

 
 ; log K�), i� ~ p"

2 Q<)��� ( i��� ; )���>�  �  p�
2�RΩ

Q<i��� ; j���>�
�RΩ

 [32]  

 
where p" and p� are positive values weighing the importance of the PSF prior. 

Joining the previous three equations we obtain the final form of the objective func-
tion whose optimization is achieved by the following algorithm. 

  
Input: Images &",  &� and an estimate of the size of the PSF support.  
Output: The image f.  
Initialization: 3 � 0, �g � &", qg � ∞.  
Iteration:  

1. Minimize with fixed �: )t, î v ��&Ul
Z,wk���g�, ), i� 
2. Update PSF: )�g���� � )t���  ( î��� 
3. Enhance )g by removing noise and normalization 
4. Minimize with fixed d: ��gx"� v ��&Ul
yk��, )�g�, j� by iterating from 

the initial estimate � � &� 
5. Calculate qgx" � z��gx"� ( ) ; &"z 
6. If qgx" � qg, return � � ��g� 
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In the first step of the algorithm the objective function is minimized with re-
spect to ) and i. This can be achieved by solving the system of equations obtained 
when equating with zero the gradients of k with respect to ) and i.  

The third step of the algorithm aims to improve the representation of )g by 
canceling its noisy coefficients. To distinguish the real PSF coefficients from the 
noisy ones the PSF signal is analyzed at multiple levels of smoothness obtained by 
iterative low-pass filtering. A threshold based on standard deviation at a given lev-
el is established and all coefficients below that threshold are cancelled. Finally, we 
cancel in )g all coefficients that have been cancelled at any of the levels. The re-
maining coefficients in )g are then normalized to sum up to 1, i.e. ∑ )��� � 1.  

The fourth step of the algorithm minimizes the objective function with respect 
to f for the given PSF. The gradient of the objective function with respect to f yields 

 
 nyk � $�<���� ( )�g���� ; ����> ( )�g��;�� 

�$"<���� ; '&"���> � mn<{���n����> 
[33]  

 

where {��� � "
|ny���| is the diffusive coefficient. The objective function is mini-

mized by conjugate gradient method while the diffusive coefficient is lagged one 
iteration behind. Convergence is relatively fast due to conjugate gradient iteration 
properties and is stopped when the relative change in the objective function be-
tween two iterations becomes less than a given threshold. It is important to stress 
that the m parameter is updated in each iteration based on the current estimate of 
the image f and at iteration l we have 

 
 m1 � � ; 1

� � |15} ∑ |n�1���|�RΩ
 [34]  

 
where 5 denotes the number of pixels in the image and  � and � are parameters 

of the Γ-distribution imposed on the weight m.  
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5 Results 

5.1 Experimental setup 

5.2 Evaluation 
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6 Conclusion 

6.1 Possible future improvements 
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