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Abstract: The Large Hadron Collider (LHC) located at CERN, Geneva
has finally been put in production, generating unprecedented amount of
data. These data are distributed across many computing centers all over
the world that form the Worldwide LHC Computing Grid (WLCG). One
of the main issues since the beginning of the WLCG project is an effec-
tive file access on the site level in order to fully exploit huge computing
farms. The aim of this thesis is to explore existing data distribution work
flows, standards, methods and protocols. An integral part of the work is
the analysis of jobs of physicists to understand input/output workloads
and to discover possible inefficiencies. Then, new upcoming solutions are
evaluated in terms of performance, sustainability and integration into
existing frameworks. It is expected that these solutions will be based on
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Abstrakt: Velký hadronový urychlovač (Large Hadron Collider - LHC)
vybudovaný v CERNu v Ženevě byl konečně spuštěn a začal generovat
obrovské množstv́ı dat. Tato data jsou distribuována mezi výpočetńı
centra po celém světě, která tvoř́ı Worldwide LHC Computing Grid
(WLCG). Jeden z největš́ıch problémů již od začátku tohoto projektu je
efektivńı př́ıstup k dat̊um v jednotlivých centrech tak, aby se plně využily
obrovské výpočetńı prostředky. Ćılem práce je prozkoumat, jakým zp̊usobem
se distribuuj́ı data, jaké jsou použité standardy, metody a protokoly.
Důležitou část́ı práce je dále analýza př́ıstup̊u k disk̊um spuštěnými
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tribuovaných souborových systémech jako je NFS4.+, Lustre nebo HDSF.
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Introduction

The Large Hadron Collider(LHC)[16] at CERN1, situated both in Switzer-
land and France, is with its 27km of length currently the biggest particle
accelerator in the world. There are four major experiments at the LHC:
ALICE [2], ATLAS[3], CMS[7] and LHCb[17]. Although the LHC is not
yet operating at full energy and luminosity, it already produces 15PB
of raw data a year. In other words, it forms one thousandth of all data
produced all over the world.

All these raw data from the detectors need to be archived, converted
to a suitable format for a physical analysis (reconstructed) and finally
processed by the analysis software itself. These data are not kept cen-
trally at CERN but they are distributed to many computing sites that
form the Worldwide LHC Computing Grid (WLCG)[33]. It is the largest
grid infrastructure in operation today, comprising of more than 200 sites
spread over 34 countries on 5 continents. Moreover, most sites also par-
ticipate in other international as well as national grids. Because of dif-
ferent requirements of the experiments, computing power available for
the experiments differs significantly. A typical computing site consists of
thousand of CPU cores and several hundred of terabytes of disk space.
In the Czech Republic there is also a member of WLCG, the Institute of
Physics of the Academy of Science (FZU)[30].

The ultimate goal of the WLCG is to enable physicists to perform
their analysis as fast as possible. In order to do so, the aim is to exploit
computing power fully by minimizing IO waiting time of the jobs. Cur-
rent CPU efficiency measured as a fraction of CPU time and wall time
typically ranges from 50-70%.

The aim of the thesis is to explore current approaches and solutions in
the field of data access. Using this knowledge and further detailed analy-
sis, the goal is to find inefficiencies in how applications access their data
and to evaluate and benchmark new solutions of storing and accessing

1European Organization for Nuclear Research, www.cern.ch
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the data in a form of distributed file systems.
Naturally, there are several layers on which data are transfered and

handled. The whole picture of the problem is given in chapter 1. The
chapter describes the current WLCG data models, all its layers from
data acquisition to the actual data analysis and highlights important
differences in experiment implementations.

Chapter 2 describes a common structure of the jobs of all four exper-
iments and recent improvements in data handling of the shared frame-
work.

In chapter 3 several means of IO profiling are described. In chapter
4 a specialized IO profiling application is introduced that was developed
to IO profile the jobs.

Chapter 5 investigates the access pattern of typical jobs which is a
crucial task for understanding requirements on the underlying file systems
and observing possible inefficiencies of data access.

Chapters 6 and 7 describe how to use the newly developed tools based
on a trace and replay mechanism for benchmarking. Various storage sys-
tems that are foreseen to come are then benchmarked and evaluated in
terms of stability, life-cycle management, backing up and support avail-
able.

Chapter 8 list related works and the last chapter 9 summarizes the
results.
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Chapter 1

WLCG Data Management

Whole book would have to be written to cover all the aspects of data
management in WLCG and experiment specific data management ser-
vices. It would involve describing hierarchy of computing sites, types of
data used, services and protocols to transfer and access data, various
catalogs to keep track of data, as well as associated metadata, logical
grouping of the files to datasets etc., and also the security model as this
is an essential part of the Grid.

To keep the extent of the chapter within reasonable boundaries, only
the overview of the whole problem is given in this chapter, omitting the
authentication part and putting emphasis on data access as this is the
topic of the thesis.

1.1 The Tiers Model

To aid in handling the huge amount of data, the WLCG infrastructure
has been divided into Tiers. At the highest level is the Tier-0 at CERN,
where the experiments record their data and perform a first-pass recon-
struction over it. These data are then distributed to Tier-1 centers which
are responsible for its long-term curation and reprocessing to derived
formats. The 11 Tier-1s (10 for ATLAS, 7 for ALICE, 7 for CMS and
7 for LHCb) are large computing centers in Europe, the USA, Canada
and Taiwan, all connected to CERN through dedicated network links of
at least 10Gbps. Most of the centers support more than one experiment.
Their role slightly differs across experiments according to their comput-
ing model [1] [40] [38] [37], but they are usually responsible for long-time
storing of the data on tapes. The difference is mainly in the type of jobs
being run at the Tier-1s and also in whether they store a full copy of the
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RAW data or just a portion of them. ATLAS, for example, uses Tier-1s
to run reconstruction jobs that produce files more suitable for physical
analysis.

Reconstructed data files are then distributed to about 100 Tier-2s,
where they are being analyzed. Again, a typical Tier-2 center supports
2-3 LHC experiments. The Tier 2 facilities are where most of the users
make contact with the data, that are housed on disks. Another important
role of Tier-2 centers is a computer simulation of the detectors response as
the experiments require for data analysis comparable amount of relevant
simulated data. To complicate matters further, CERN also acts as a
Tier-1 center and any Tier-1 center can also act as a Tier-2 site.

The exact description goes beyond the scope of the thesis. Please refer
to the computing models mention above for further information.

The figure 1.1 shows the computing model of the ATLAS experiment
with description of the type of jobs being run in each Tier.

Figure 1.1: ATLAS tier structure, taken from [43]
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1.2 Terms Definition

In order to understand following sections, some terminology must be
given in advance.

• Storage Element - SE - A service that provides uniform access to
storage resources within the Grid. Each site has at least one Stor-
age Element that can shield many disk servers or a Mass Storage
System (MSS). The SE acts as a storage door to the site.

• Storage Resource Manager - SRM - A protocol used to do
storage resource management, but not any transfer. It is used to
ask an MSS to make a file ready for transfer, or to create space in
a disk cache to which a file can be uploaded. It provides authenti-
cation, space management, file pinning, SURL to TURL resolving
(see below) and shields different implementations of Storage Ele-
ments, that provide SRM interface.

• Grid Unique Identifiers - GUID - Unique name of the file on
the Grid. One file has only one GUID.
Example: guid:3a69a819-2023-4400-a2a1-f581ab942044

• Logical File Name - LFN - A human readable name of the file.
One file can have more LFNs.
Example: lfn:/grid/ATLAS/horky/Dataset.dat

• Physical File Name - PFN - A path to the file in a Storage
Element. Also called Storage URL. It points to actual server having
the data. The path after the hostname represents only logical path
on the SE.
Example: srm://gol100.farm.cz/atlas/VJ_F08.aq.root

• Storage URL - SURL - The same as the PFN.

• Transfer URL - TURL - A valid URI with the necessary infor-
mation to access a file in a SE. It has the following form:
<protocol>://<path>, where protocol must be a valid protocol
(supported by the SE) to access the contents of the file.
Example: rfio://tbed01.cern.ch//dteam/gen/file3e86f-c40

• File transfer service - FTS - A service used to schedule and
manage transfers of data between sites.
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• Logical file catalog - LFC - A service which provides mappings
between LFNs, GUIDs and Storage URLs SURLs and keeps track
of file replicas in the system.

1.3 Data Distribution

As described above in section 1.1, the data are distributed from top
(Tier-0) to the bottom (Tier-2s) via Tier-1s. Each site has one or more
Storage Elements, that acts as a door to a site and implements well-
defined interface, the SRM protocol. The data are transfered between
sites using the File Transfer Service (FTS) that aims to reliably copy
one Storage URL from one Storage Element to another. It uses a grid-
security-enabled FTP client/server (GridFTP[12]) to achieve this and
the FTS retries the transfer if it fails. It also schedules copies along pre-
defined network channels to ensure that bandwidth is properly used. It
should be mentioned that FTS is not the only tool used to transfer files.

Several other experiment-specific components above FTS are needed
to interact with logical file catalogs (LFCs) of the experiments and to
actually initialize the transfers. The Logical File Catalogue is a ser-
vice which provides mappings between Logical File Names (LFN), Grid
Unique IDentifiers (GUID) and Storage URLs (SURLs) and keeps track
of file replicas in the system.

To transfer a file from one site to another, one has to obtain its LFN
using experiment’s metadata databases. Once having LFN, the SURL
to one of its replicas is obtained using LFC (or an experiment’s service
built above it). The SURL point to a particular site’s Storage Element.
To actually transfer a file, the File Transfer Service must obtain the
Transfer URL by communicating with the SE using SRM protocol. The
TURL points to actual disk server within the site that stores the file.
The file does not go through SE, but it is transfered directly from the
disk server.

An overview showing how the different components described in this
chapter connect is shown in the figure 1.2.

The same mechanism of resolving TURL is used in every file transfer
within the Grid, not just using FTS. Users, for example, can download
files for analysis to their desktops once authenticated.

12



Figure 1.2: The overview of data distribution within the WLCG, taken
from [49]

1.4 Storage Elements

Storage Elements play a crucial role in the data management. The main
role of SE is to provide a single data entry point to a site from the outside
perspective, thus hiding all details of actual data network in the site. A
Storage Element provides an SRM interface that shields different imple-
mentation of the SEs that have emerged since the start of the WLCG
project. The SRM interface can become a bottleneck[36], as multiple re-
quests has to be made for one transfer. The achievable SRM request
frequency lies around 100Hz [36]. One Storage Element usually consists
of many servers and connected disk arrays. There is always a main server
which is visible to the outside world and which manages site’s names-
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pace. We remark, that one of the task of the SE is to translate SURLs
to TURLs which means locating the file on the disk nodes. The SE also
authenticates users and checks their privileges.

The list of Storage Element’s implementations in production with a
short description of each is given. We provide a more detailed description
of Disk pool manager (DPM) system as it is the most popular solution
deployed in the WLCG in Tier-2s, see table 1.11.

• DPM - Disk Pool Manager[9] - DPM is a light-weight storage
manager developed at CERN. In a typical installation, it consists
of one so-called head-node, which provides the SRM interface and
manages the namespace and of pool-nodes that store the data and
can use any conventional file system such as ext3 or xfs. The DPM
uses MySQL[22] database for namespace management and requests
tracking, as the SRM protocol is asynchronous. An user contacts a
DPM head-node with a request to download a file and with a list
of his supported access protocols. The DPM consults the database
and finds one or more replicas of the file, forming the TURLs ac-
cording to the protocols supported by the DPM system that match
the user’s request. The user then uses the resulting TURL to con-
tact the data server which has the file using appropriate protocol.
The DPM does not support any hierarchal storage management,
so it can not be used with tape libraries. It also does not support
intelligent replication of hot files (this must be done manually).
The DPM is the most popular SE implementation on Tier-2 sites
mainly because of its ease of use.

• dCache[8] - dCache is a more complex Grid storage solution mainly
deployed at Tier-1 or big Tier-2 centers. It was developed as a joint
venture among DESY2, FNALFermi National Accelerator Labora-
tory(www.fnal.gov) and NDGF3. As opposed to DPM, it supports
mass storage systems and various tertiary storage managers. It also
supports hot file replication and automatic load balancing. Besides
other data access protocols, dCache provides its own native proto-
col (dCap, or its secured variant gsidCap) to support regular file
access functionality. It also exports metadata information of all files

1The numbers were obtained by querying each SE listed in the Grid Information
service, the BDII, on 14th July, 2010

2Deutsches Elektronen-Synchrotron(www.desy.de)
3Nordic Data Grid Facility(www.ndgf.org)
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stored in the system via pnfs4(pretty normal file system), so users
actually see the files in their file system.

• CASTOR - CERN Advanced STORage manager[5] - CAS-
TOR is the most heavy-weight, yet the most powerful storage solu-
tion in production in WLCG. Even though there are just few sites
using CASTOR, it manages the biggest portion of data in the Grid.
Note that each CASTOR instance provides more SRM entrypoints,
so the number of its instances (see table 1.1) is higher. According
to its homepage, the CASTOR manages more than 181 million files
representing more than 28PB of data as of Aug 3, 2010.

• StoRM - Storage Resource Manager[25] - StoRM is another
SE implementation developed at INFN5. Its main goal is to provide
SRM interface to POSIX file systems that supports Access Control
Lists (ACLs), such as Lustre[19] or GPFS[10] and thus enable these
technologies to the Grid. It does not manage the namespace, as it
completely relies on the underlying file system.

• BeStMan - Berkley Storage Manager[4] - BeStMan is simi-
lar to StoRM in its aims, as it provides SRM interface above dis-
tributed POSIX file systems as well. BestMan has been developed
by LBNL6.

SE implementation # sites
DPM 187
dCache 80
StoRM 41
CASTOR 18
BeSTMan 15
Total 445

Table 1.1: Number of SRM doors of different types of Storage Elements
in production

The performance evaluation of different SE implementation has been
published [36].

4not to be mistaken with pNFS(Parralel Network file system), a part of NFS4.1
5The National Institute of Nuclear Physics , collaboration of one Tier-1 center and

several Tier-2 centers in Italy (http://www.infn.it/indexen.php)
6Lawrence Berkeley National Laboratory, California (http://www.lbl.gov/)
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1.5 Data Access Protocols

Data access protocols are used by jobs running on site’s worker nodes
to read the data available on the site’s SE. Typically, this is done using
specific, non-standards protocols but the task is similar to accessing the
data using a site-global distributed file system such as Lustre or GPFS.

When talking about the data access protocols, the term “protocol
zoo” becomes spelled quite often. There is a large variety of protocols,
making support and certification process of a new software a difficult
task.

• RFIO - Remote File IO protocol has been developed at CERN and
it has been in production since 1990. It implements almost all of IO
POSIX calls (read, write, seek etc.). There are two versions of RFIO
protocol, secured (supporting GSI7 authentication) and unsecured
one. RFIO is still widely used for example for the ATLAS analysis.

• dCap - DCache Access Protocol is a native protocol implemented
within dCache. Similarly to RFIO, there is also a security-enhanced
version of the protocol. dCap supports POSIX I/O abstraction us-
ing LD_PRELOAD mechanism - an user can then use pre-installed
commands like cp, ls or mv to work with files.

• GridFTP - GridFTP protocol is mainly used for data transfers
between SEs, but it can also be used for data access. In that case,
files are first transfered to a local worker node to the scratch area
and then accessed locally. This is one of the most commonly used
access methods.

• File protocol - When using distributed file-systems, or other mech-
anism providing file-system abstraction, files can be accessed using
POSIX IO calls as if they were stored locally.

• xRootd - is data access as well as data distribution protocol. The
ALICE experiment uses this protocol exclusively to access the data.
It is described in more details in 1.6.1.

1.6 ALICE Data Model

The ALICE experiment quite differs from other experiments from the
data management perspective. The ALICE experiment does not use the

7Grid Security Infrastructure
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concept of Storage Elements (and thus it does not use the SRM protocol)
but it uses only one data access protocol exclusively. The xRootd procotol
is used for both the data distribution and data access. That is why it is
more correct to speak about xRootd as a data access system. The main
idea of the protocol completely differs from other protocols mentioned
above. A detailed description is given in the next section.

1.6.1 xRootd

The xRootd protocol, often referred to as the Scalla suite was developed
at SLAC8 in 2003 and then has been continuously improving until now.
The main aspects of the system are:

• No file database - xRootd does not keep a record of where the
files are, a file is discovered when it’s requested

• No SRM interface - the system does not use the SRM interface
as only one protocol is used for both, data transfers and data access

• Scalability - the system is capable of managing thousands of stor-
age servers

• Fault tolerant - if the transfer from one source server fails, it could
still be recovered using other server that has the file

• Load balancing - when multiple clients access the same file, the
system can spread the requests among multiple storage servers

• Multistreaming - A great effort has been put into efficient WAN9

transfers with high round-trip times. One file can be transfered
using multiple streams.

• Simple configuration - configuration of xrootd servers consists
of setting a single file with few lines only

• Modular architecture - the whole system is highly modular

The figure 1.3 denotes the architecture of the xrootd system. All the
servers form B-64 tree with a special server called redirector as a root.
Clients that want to open a file need to know only the address of the
redirector server. The redirector asks all underlying servers if they store

8Stanford Linear Accelerator Center, a research center in San Francisco, USA
9Wide area network
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the file. If the asked server is a supervisor, it forwards the request deeper
in the tree. When the redirector collects all locations of the file, it chooses
the best server according to the load (if the load balancing module is
enabled) and it answers the client. It also caches the locations of the file
(the supervisors cache it as well).

In case of a server failure, the client contacts the redirector node with
a request for another location of the file being accessed. The redirector
can then invalidate its cache by issuing another request to its underly-
ing servers. This data server outage is invisible to the application itself
(besides the slow down of the operation).

The redirector server may look as a single point of failure, but it is
not, as it can be configured as a cluster.

Redirector

Data server Supervisor

Data server Data server

64

4096

Arbitrary depth

Figure 1.3: xRootd system architecture

As an example of the deployment of the xrootd system, access to the
ALICE condition database (a database that every analysis job within the
grid must access) can be given. These data are distributed only on five
servers located centrally at CERN and accessed exclusively using xrootd
protocol.

For further information about the xrootd system, please refer to
xrootd homepage[31] and materials linked therein.
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1.7 Distributed File Systems usage

As one of the objectives of the thesis is to evaluate new storage solutions,
namely distributed file systems, an overview of current usage is given.

There are quite a lot of advantages connected with the usage of stan-
dard distributed file systems such as Lustre or GPFS. First it has a
large user base, and thus a lot of problems are already understood, there
is better support, documentation etc. Secondly, from the performance
point of view, these file systems usually benefit from using page cache of
underlying Linux kernel, i.e. almost all unused memory is used to cache
data. This is a great advantage when reading the same data twice (e.g.
backward seeking) as well as when kernel predicts data that will be read
next.

Currently, there are two Storage Elements suitable for the use with
e a distributed file system, the StoRM and the BeStMan. Their primary
role is to provide an SRM interface and authentication to the Grid.

Chapter 7 describes and evaluates the usage of GPFS, Lustre, Hadoop
and NFS4.1.

1.8 NFS v4.1

NFS 4.1 [23] is a recently standardized protocol for accessing data on
a distributed system. It is described in details in chapter 7.6, but we
provide a brief introduction here too.

The minor version 1 of the NFS protocol brings supports for sessions
(and thus minimizing traffic needed for individual requests) but most
importantly it introduces the pNFS10 protocol, the protocol to access
files distributed on many disk servers. The pNFS cluster consists of a
name server, data servers storing actual data and clients. We refer to the
name server and data servers as the server part of a pNFS system.

Even though the in-kernel implementation of the protocol is not yet
considered stable, the protocol itself is of great interest not only in the
high energy physics (HEP) community.

The current model for its usage is, however, not through the in-kernel
server implementation (SPNFSD), but rather through implementing the
server side in user space as a part of most commonly used Storage Ele-
ments, the DPM and dCache. The in-kernel implementation of clients is
then used on clients to benefit from the operating system’s page caching.

10parallel NFS
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See [47] and [45] for more information about deploying NFS4.1 in DPM
and dCache.

1.9 Conclusion

The brief introduction of the data management in WLCG was given,
ranging from the data distribution and data transfers to data access.

Even though there are number of different components and technolo-
gies used, there is one unifying factor: almost complete lack of any stan-
dardized technology.

It is understood that having many access protocols is sub-optimal,
but it is not yet clear which of the protocols will survive and which will
not. Nowadays, it seems a lot of work is being invested into NFS4.1 [23]
(see chapter 7.6).

The author’s vision is that the POSIX-like file abstraction is the so-
lution to be chosen. The idea would be to provide a file system, possibly
using FUSE11 that would hide the underlying access protocols. All of the
access protocols more or less support this but the files are still accessed
using specialized calls of the given protocol.

11File system in user-space, http://fuse.sourceforge.net/
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Chapter 2

Jobs’ Structure

All the four main LHC experiments use the same data analysis frame-
work, ROOT [39]. Usage of the same access layer in the form of ROOT
means that every experiment can benefit from improvements in ROOT
data handling. We describe the structure of the jobs, how data are or-
ganized in files (and thus how they are read back) as well as recent
improvements in ROOT data access that very significantly improved the
way data are stored and read back.

Starting from 2.3, we supplement the description with our own perfor-
mance measurements and visualization of the changes in the data format.

2.1 Common Structure

A common structure of an analysis application is shown in the figure 2.1.
The top part of a job consists of an experiment specific code. For analysis
itself, it uses ROOT, that in turn for data access uses its class TFile.
This class has then different subclassed providing many different plugins
to access inputs files. Among others, TXNetFile (for xRootd protocol),
TFile (POSIX file system), THDFSFile (Hadoop), TRFIOFile (rfio pro-
tocol) and TGFALFile (possibility to use LFN, GUID or SURL, see 1.2
for more information) should be mentioned. At the time of writing, there
were twenty different plugins for data access.

Usage of the same access layer in the form of ROOT means that ev-
ery experiment can benefit from improvements in ROOT data handling.
The important change in ROOT happened in December 2009, when the
way data are stored changed significantly, which is described in following
sections.
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Application

Root

TFile

TFile ....TXnetFile

Figure 2.1: Basic structure of the applications

2.2 ROOT Data Files

The ROOT data files are self-describing, they include both data and
their description. Although there are several ways how to store the data,
most ROOT files use so-called Trees, generic containers that can contain
arbitrary data. One Tree (class TTree) usually stores instances of one
C++ class. Trees are optimized for storing multiple (million) of instances
of the class by saving data description (a header) only once and then
having just a pointer to all instances, saving space by omitting multiple
class definitions.

The tree consists of branches, each branch usually represents one
variable of the class (it can be a simple type variable such as integer,
an array, a structure or an object), but it can also represent more than
one variable, depending on the choice of a designer. Each branch has a
branch buffer (basket) that is used to collect the values corresponding to
the variable represented by the branch. Once the buffer is full, it is written
to the file. All variables of the same branch of all instances are physically
stored together on a disk in the baskets. This allows to quickly read a
variable (or more coupled variables) of all instances without extensive
seeking in the file. Whether the whole branch is stored in one place in
the file, or is spread across the file, depends on the size of a basket buffer.

As an example, lets assume that class Event describes one collision of
particles and it consist of one hundred variables, float x and y among
them. If one wants to histogram function of x and y, within all Events
saved in a file, he only needs to access 2/100 of the file. If, however, the
instances were saved one by one in a file, it would need to seek through
whole file, which would be inefficient.

22



The data files could be (and most of them are) compressed using gzip
compression.

2.3 Improvements in ROOT File Handling

In December 2009, new production release v5.26/00 of ROOT was re-
leased. It has introduced many important improvements in IO handling
that are described below. In fact, these changes were so dramatic that
it almost invalidated any benchmark performed on previous production
version v5.22/00.

The most imporant change is, however, missing. The new ROOT ver-
sion has not yet been adopted by all the LHC experiments.

2.3.1 Buffer Size Optimization
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Figure 2.2: Distribution of branches in an unoptimized file

As described above, a buffer size of a given branch influences when
data are actually written to the disk. The figure 2.2 illustrates this fact
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by showing a map of physical positions of branches in a test file. Two
(yellow and green colors) out of twenty branches were colored in the sam-
ple 14MB ROOT file containing one Tree representing Event class. Black
color represents data of other branches, white color represents free space
and blue color represent headers. The file contains 400 instances of the
class. As can be seen, the branches are spread all over the file, the yel-
low branch distributed to 40 baskets, the green one into 25 baskets. The
basket size was set only to 16kB for each branch.
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Figure 2.3: Distribution of branches in an optimized file

Since ROOT v5.26/00, basket size for each branch are optimized tak-
ing into account the population in each branch, all branches are also
flushed to the file together, when one of them reaches its size limit. As
an immediate effect, this highly reduces the number of seeks required to
read a branch. This is illustrated in the figure 2.3 showing the file from
the previous example rewritten with the optimization enabled (maximum
size of a branch was set to 10MB1). Only three baskets of both branches
are now used, with sizes of 234kB for the yellow basket and 145kB for

1This buffer is probably too large for real life scenarios, where trees contain several
thousand of branches
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(a) Unoptimized baskets (b) Optimized baskets

Figure 2.4: Influence of basket size optimization during read

the green one. The reason why there is not only one, or maximally two
baskets (the file has only 14MB) is that the file is compressed and the
biggest branch in the file holds 30MB of uncompressed data. So for that
particular branch, at least three baskets had to be used, which triggered
saving of other branches’ baskets as well. Because the branches are al-
ways flushed together, data of one instance of a class are always saved
physically close together.
The interval (in megabytes) at which the baskets were flushed on the
disk is also saved in the header to help reading the file back efficiently
(see 2.3.2).

The effect is once again shown in the figure 2.4. The plots show the
read pattern when reading all data from a file containing 5000 of the
same events as in previous example. For the unoptimized file, 5967 reads
were performed, whereas only 159 reads were needed for the optimized
one. The number of read requests almost exactly reflects the number of
baskets in the file. The huge difference is also in average speed of reading
the file, the optimized file structure brought 60% improvement.

Please also refer to the section 5.3.1 to see the influence of this change
for a real life ATLAS analysis job.

2.3.2 TreeCache

TreeCache has been in ROOT for several years, but it has been hard to
use until recently when a new interface was introduced. Moreover, new
releases of ROOT include better caching by taking advantage of basket
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flushing as described in section 2.3.1. TreeCache provides a mechanism
to read-ahead branches before they are actually needed. It groups all
blocks from the used branches into one buffer. The blocks are sorted in
ascending order and consecutive blocks merged such that the file is read
sequentially.

The important fact is, that this cache really operates on the branch
level and thus can behave more efficiently in files where branches are
scattered across the file than a conventional read-ahead cache could. The
cache size is always a multiple of a frequency at which baskets were
flushed to the file. The TreeCache also merges individual, possibly non-
consequent, read requests into bigger requests. That means, if there is a
small gap between two reads, only one read is performed reading also the
gap.

2.3.3 Sub-optimal Implementation of TreeCache

Even though the TreeCache brought additional improvement, we iden-
tified some sub-optimal behavior using the strace output and statistic
functionality of the IOreplay application (described in 6.2). The table
2.1 summarizes the number of read and seek system calls performed when
reading an unoptimized 180MB real life ATLAS data with TreeCache first
enabled and then disabled. The input file was cached in the page cache of
the operating system. The data read from the file were silently discarded
(they were not processed).

reads count time(ms) seeks count time(ms)
cache on 5629 1399.5 614461 8843.6
cache off 206601 4778.4 206849 3356.9
cache fixed 5529 780.3 9879 345.0

Table 2.1: Unnecessary seeks with TreeCache

As can be seen, the number of read operations is approximately 36x
lower, while number of seeks increased by the factor of three when using
the TreeCache. We discovered the root of the problem by inspecting the
strace output by hand; there were a lot of consequent seek requests that
were not followed by read or write system calls. The problem was reported
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to ROOT developers and was fixed in three days [48]. As of writing of this
thesis, the fix has not been included in any stable release. The numbers
obtained using the fixed version are also presented.
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Chapter 3

Profiling

Understanding of application’s behavior is essential for being able to
improve its performance. In particular, when speaking of a file access,
one is typically interested in a disk access pattern of the application, i.e.
whether it reads data sequentially or randomly, how big are typical IO
requests, how many of these requests the application does and how many
files does it open per run. Another very important question to answer is
then: how the application buffers data?

We evaluate possible approaches for profiling of the IO behavior of
an application in this chapter.

3.1 Profiling Methods

The idea behind profiling is to catch all IO calls and inspect their count,
offset within a file and duration. There are many options how to do it, but
not all of them are suitable for the purpose of profiling HEP experiments’
applications, given the restrictions listed in the next section.

3.1.1 Requirements

A typical application of an experiment requires very specific and complex
settings of environment and relies on various services. It also needs input
data files of the experiment, which are not available for non-members of
the collaboration. Given this fact, the author had to ask other people to
profile the applications on their production machines, as he has access to
neither the experiments’ applications nor their data (with the exception
of the ATLAS experiment). For that reason, requirements of no OS set-
tings changes and easiness of use were one of the most important factors

28



when deciding the IO profile solution.
The list of requirements on the profiling is provided:

• Being able to reliably trace behavior of HEP applications

• Usage of a distribution kernel

• No changes to the OS settings (i.e. root access not needed)

• No source code modification needed

• Ease of use

Although the first point might seem trivial, it is not. The impor-
tant fact here is that all the profiled HEP applications are possible to
be configured to access input files using file system, instead of network
protocols. Also, none of the applications uses mmap system call, which is
important for profiling on the system call layer.

3.1.2 Profiling Methods

There are many possible solutions of how to track the IO calls, differing
on the layer they operate at (completely in kernel, user-space or combi-
nations of the two), the complexity of its usage, ability to track hidden
IO calls (caused by page faults of memory mapped files) and they also
vary in a performance overhead they introduce. The comparison of pos-
sible profiling methods is given in the table 3.1 and individual methods
are decribed below.

Kernel
changes

SW
instal-
lation

Root
privi-
leges

mmpap
IOs

Overhead Dev.
com-
plexity

Kernel hacks Yes Yes Yes Yes Very Low Very
High

SystemTap No Yes Yes Yes Low Low
Lib. preload-
ing

No Yes No No Low Medium

Strace No No No No High None

Table 3.1: Comparison of the profiling methods

SystemTap[28] is a relatively new and actively developed project for
tracing both kernel and user-space functions and calls. It provides its
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own scripting language for defining actions to perform when given event
occurs. The event could be a kernelfunction call (which is traced using
kprobes), system call as well as a user-space function. Current project
members include Red Hat, IBM, Intel, Hitachi, and Oracle. Tracing by
SystemTap is always system-wide, although it is possible to filter events
by the pid of the process which caused it.

Because of the requirement of no OS setting changes, it was not pos-
sible to use SystemTap, as it needs installation of kernel debug symbols
and root privileges to run. If there were not such requirements, it would
probably be the best tool to use because of its flexibility and low per-
formance impact. With this software, it is also possible to trace memory
mapped IO calls, that are not visible on the system call layer.

Another possible approach would be to use library preloading through
LD_PRELOAD environment variable and thus instruct dynamic linker to
preload our own implementation of IO functions, enabling us to reimple-
ment every such call. We could then inspect every parameter of the call
and then call the original function. However, when using LD_PRELOAD, it
is impossible to track statically linked applications (which is not a prob-
lem for tracing of the selected HEP applications). It also does not work
for setuid programs when the user running the program is not the same
as the owner of the executable. This is because being able to load code
into a privileged executable would be a security flaw. Depending on the
Unix version used, there might be also problems with programs that call
dlopen() explicitly.

As examples of the LD_PRELOAD approach, the PlasticFS [24] and
IOProf[53] can be given.

Another solution is to exploit ptrace(2) system call that interrupts ex-
ecution of a given program whenever a system call is performed. The
solution does not suffer from previously described problems LD_PRELOAD
has. However, usage of this call is rather complex and depends on both
machine architecture and Unix version. Fortunately, there is already a
well-known standard tool using ptrace(2) mechanism, strace [27]. Be-
sides having the expected problem with memory-mapped IO calls, it can
have a significant performance overhead of more than 100% of running
time depending on the number of calls traced. See table 6.1 for detailed
numbers for real-life ATLAS analysis application. It was measured that
approximately 20 thousands of syscalls per seconds cause 1% of overhead
on Intel Xeon E5520 2.27GHz.
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Taking into account the requirements and drawbacks of the various meth-
ods, the author decided to use the strace method mainly because of its
wide availability and ease of use when obtaining profiling information.
The overhead problem that affects exact timing of individual IO calls is
not considered as a big issue, as we are mainly interested in the access
pattern of the applications, which should not be affected. All the physical
applications can be configured to use POSIX-like method (using TFile
class, see chapter 2) for accessing data to enable us spotting all IO system
calls.

3.2 Strace

As stated above, strace is a standard tool for tracking system calls
caused by a given application. It is possible to trace application from the
beginning by executing it from the strace itself as well as to attach to
already running program. The output of the strace is user-friendly; it
prints out names of the parameters instead of the actual integer constant
(O_RDONLY for example). An example of its output is given in listings 3.1.

1765 1279445178.319030 open ( ”/ u s r / b i n / r oo t ” , O RDONLY) = 21 <0.000088>

1765 1279445178.319261 read (21 , ”” . . . , 512) = 512 <0.000081>

1765 1279445178.320078 c l o s e (21) = 0 <0.000078>

1765 1279445178.320284 w r i t e v (1 , [ . . . ] , 1) = 2 <0.000083>

1764 1279445178.320429 < . . . r ead resumed> ”” . . . , 128) = 2 <0.005448>

1765 1279445178.320462 e x i t g r o u p (0 ) = ?

1764 1279445178.320512 read (21 , ”” , 128) = 0 <0.000032>

1764 1279445178.320668 −−− SIGCHLD ( Ch i l d e x i t e d ) @ 0 (0) −−−

Listing 3.1: An example of strace output

3.2.1 A Strace Bug

Even though the strace has been available on virtually every Linux in
production since decades, it has its issues. When tracing complex pro-
grams that involve many processes with complicated process tree, one
probably hits a strace bug: the output gets corrupted, some system calls
are not captured and the parameters of others might be output in un-
usual formats. Because of time constraints, the author didn’t try to fix
the issue but he at least reported it to the developers [50]. Unfortunately,
nobody answered at the time of writing.
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3.3 Conclusion

Several methods of IO tracing were evaluated in the chapter, listing their
advantages as well as drawbacks. Given the aforementioned requirements,
the strace was chosen as a source of the traces for IO profiling.
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Chapter 4

IOprofiler

Because of the shortage of options for IO analyzing of a strace out-
put, a new tool called IOprofiler has been developed. Description of its
architecture and features follows.

4.1 Introduction

The only script that can be found concerning strace outputs and IO
analysis is strace_analyzer [26]. Unfortunately this tool does not han-
dle problems described in 4.2, which makes it of no use when tracing
complex programs that spawn children processes and that are using calls
like dup or socket. It also does not include any easy way of plotting the
data.
For that reasons, our own application called IOprofiler has been devel-
oped. The goal was to provide fast and user friendly way of analysing IO
from a strace output. The idea was to provide a GUI application from
which users could generate access pattern diagrams (individual read-
/writes plotted with file offset and call time as axes) of individual files,
with some statistics in a few clicks. Because the strace output files pro-
duced by long running jobs that process tens of gigabytes of data could
be very big (up to few gigabytes), there was also a need for an option to
convert the text file into a more suitable architecture-independent binary
format, that would be smaller and faster to read, as the text would not
have to be parsed. All these requirements were fulfilled.
Because of a low level nature of IOreplay (see 6.2) that shares part of the
code and logic with the IOprofiler and also because of the requirement
of fast processing, pure C was chosen as the programming language.

The choice of the framework for the GUI part was mainly influenced
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by availability of the plotting frameworks. After evaluation of many so-
lutions, the Matplotlib library [21] has been chosen. The GUI itself is
therefore written in Python using PyQt framework. Because the analysis
application and IOreplay, an application for replaying syscalls described
in chapter 6 both need to parse an input file and handle file descriptors to
file names mapping (see 4.2), it was an obvious choice to have a common
layer for it. All file parsing and file descriptor fd mapping machinery is
done through a compiled python module based on the same C source files
that both applications use.

4.2 File Descriptors Handling

The basic idea of using strace output is to simply go through all read,
write and lseek system calls and plot them with file offset and time as
the axes to see whether a file is accessed sequentially or not. It turns out
that it is quite more complicated.

FD mapping table File 1

My FDOld FD
1 4
2 5
3 -

100 4

File 2

File 3

My FDOld FD
0 -
1 -
2 10
10 11

Process 2

Process 1

4 -

11

std{in,out,err}

pipes

sockets-
Process 3

Figure 4.1: Handling of file descriptor mappings

The issue is that every such system call operates with a file descriptor
instead of a file name, so one has to keep track of the mapping of the file
descriptor to the file name it is referring to, which is surprisingly not a
trivial task. The typical job involves many processes, where a fd mapping
is unique only inside each process. Moreover, not every file descriptor cor-
responds with a regular file, it could also be a pipe or a socket, in which
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we are not interested. Reads and writes to such fds are then ignored,
as we are only interested in requests that hit a hard drive. When a new
process starts, it can clone the file descriptor table of the parent process,
but it also can just share it. That means that every operation performed
by the child process on a fd also affects the corresponding parent’s fd.
Sharing of file descriptors is possible not only on a file descriptors table
layer, but also individual file descriptors can be shared via dup system
call. As the result, 18 different system calls including clone or socket

must be traced and then processed.

When analyzing a recorded strace file, the application simulates the
run of the original application by taking into account all system calls
that could alter the file descriptors-to-names mapping. For example, the
open call creates a mapping, while dup creates a new file descriptor to
the same file and close deletes the mapping. The same file descriptor
(its number) can belong to different files on the disks during the exe-
cution of a program, as the numbers are being reused. The figure 4.1
shows how recorded (old) file descriptors are mapped to file names when
reconstructing the run of traced programs. The column “My FD” is only
used when replaying the straces files by IOreplay, see chapter 6 for more
information. When simulating, only unique numbers with no relation to
the actual file system are used.

4.2.1 GUI

To enable a user-friendly way of analyzing traced data, a simple GUI writ-
ten in PyQt framework have been developed. It consist of two screens.
The first one (figure 4.2) is showing a list of files read or written by a
traced job with basic statistics for each file (number of reads, summary
of read requests, summary of duration of requests). The list is sortable
and the shown files can be filtered by using regular expression filter in
the bottom of the screen.
The detailed information could be displayed for each file. This triggers
a detail dialog (figure 4.3) with the list of all operations on the left side
and the plot on the right side. There are three types of plots. The default
one, the pattern diagram, shows individual requests performed with a
file offset as x axis and time elapsed from opening the file as y axis. The
other plots are histograms of requests’ size, duration and speed.
Taking advantage of using Matplotlib, the program enable users to zoom
the plots and highlight individual request by either clicking in the pat-
tern diagram, or selecting the requests from the list. The plots could be
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Figure 4.2: IOprofiler - The main window

Figure 4.3: IOprofiler - The detail window
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exported to both vector and scalar graphic formats.
Although rather simple, the GUI makes really fast and efficient anal-

ysis of a job’s access pattern possible.

4.3 Conclusion

IOprofiler, a tool for IO profiling based on strace was introduced in
this chapter. It enables fast and easy-to-use analysis of IO behavior of
applications. The tool is freely available at [42].
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Chapter 5

Experiments’ Access Pattern

In-depth understanding of the access pattern of the jobs is essential for
explaining their behavior on different storage solutions. This is particu-
larly useful when benchmarking using these jobs.

Once we had a tool for IO profiling, the IOprofiler (see chapter 4), we
were able to take a closer look at what the experiments’ jobs actually do
in terms of storage accesses.

This chapter provides IO analysis of representative samples of LHCb,
CMS and ATLAS jobs. For the CSM and LHCb experiments, two types
of jobs were profiled, an analysis and a reconstruction job. These rep-
resents two basic types of workloads. The reconstruction jobs are used
to reprocess raw data format to a format more suitable for user analysis
and thus they read whole data files mostly in a sequential manner. The
analysis jobs, on the other hand, typically picks only parts of the files
that are important from a user’s point of view.

For CMS and LHCb experiments, the author asked members of the
collaborations to provide a strace output of their jobs. The jobs for AT-
LAS were actually run by the author.

Due to the different data model used by the ALICE experiment (ex-
plained in chapter 1.6), no ALICE jobs were traced.

5.1 LHCb

The strace outputs for analysis and reconstruction jobs of LHCb collabo-
ration were provided by Vincenzo Vagnoni and Stefano Perazzini (INFN).
Both types of jobs run on 64-bit version of Scientific Linux CERN v5 and
ROOT v5.26.00b. By looking at the access pattern of the analysis job
(figure 5.2), it is evident that the source files have been written by the
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non-optimized version of ROOT. DaVinci, the LHCb analysis software,
version used was v25r4. The version of Brunel, the LHCb reconstruction
software, used was v37r2.

5.1.1 Reconstruction

The reconstruction job read 788MB raw file. At summary, 495 unique
files were opened (only 34 of them local, the rest was mostly experiment
software accessed remotely). The whole job lasted 4 hours and 3 min-
utes, whereas the raw file was opened for one minute less. As shown in
figure 5.1, the raw data file was read strictly sequentially, with 52101
read calls in. 1.9s in total was spent by reading the file. This indicates
that the file was cached. The average read request size was 15.5Kb, with
standard deviation of 16.9kB and its maximum of 81Kb. From the list of
calls (not presented here), one could see that every bigger read request
(15kB+) is followed by one small request of 0.2kB. The same statistics
for request duration are 37µs± 607µs, maximum 97634µs. Interestingly,
the highest number of calls were performed to the /proc/PID/stat and
/proc/PID/statm system files. These were opened, read and closed more
than 26 thousand times, total of 3.3 seconds was spent in these calls.

Because of the sequential nature of reading the raw file and a very
small fraction of time spent in IO calls, this type of job is not that suitable
for optimizing.

5.1.2 Analysis

The analysis job lasted for ten and a half minutes and opened 501 files in
which it is very similar to the reconstruction job. The input ROOT file
had 875MB and contained 26050 events. It was read with 16739 read calls,
with average size of 49.1kB ± 754kB, maximum request size was 19388kB
(there were tens of such big requests, see figure 5.2a). The source file was
opened for 8 minutes and 55 seconds, which means that initialization of
the job took more than one minute. Once again, the /proc/PID/stat and
/proc/PID/statm files were accessed extensively, 82 times per second,
resulting in 5 seconds ‘wasted’ for memory monitoring.

There were three other interesting files in terms of IO. The 60.5MB big
config.tar (41540 of 8kB reads, so the file was read five times!), and two
SQLite databases DDDB.db and LHCBCOND.db, 50 and 80 megabytes
big, respectively. Around 10MB was read from each database with strictly
1kB big reads.
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Figure 5.1: Read pattern of an LHCb reconstruction job

5.2 CMS

Profiling data for CMS analysis and reconstruction jobs were provided by
Leonardo Sala (CERN) with help of Brian Bockelman (Nebraska Univer-
sity). More versions of the CMS software were tested, but only the latest
production version is presented here. The CMS experiment uses ROOT
v5.22.00d with their own patches for IO subsystem, to cite their author:
“I patched some of the worst sins of 5.22, but there’s still huge, gigantic
changes in the I/O layer in 5.26 to make it even better’. Used version
of CMSSW was 3.7.0. The ROOT’s TreeCache was enabled with a size
of 20 megabytes. All the information were caught using 32-bit Scientific
Linux 5.

5.2.1 Reconstruction

The traced reconstruction job opened 2905 files in total, only 31 out
of them were not libraries or executables of the executed software. The
job was processing 4642MB big RAW source file, but only first part
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(a) Whole picture

(b) Detail

Figure 5.2: Pattern diagram of an LHCb analysis job
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representing 1000 events was read. In numbers, 424MB was read by 5077
calls, average read size 85.7kB with standard deviation of 157.6kB and
maximum read request size was 4893.4kB. The file was opened for 19
minutes whereas the job lasted for half a minute longer. The read pattern
of the job is displayed in figure 5.3, which shows great effect of caching
in a form of almost horizontal lines. Although not visible in the figure,
the job constantly accessed few kBs scattered in around 10MB block in
the end of the file. In the view of rather sequential access pattern and
small fraction of time spent to read it, the CMS reconstruction job could
be again considered as not that suitable for optimization. Because of the
use of the TreeCache (and its bug, see 2.3.3), 91.3% out of 196 thousand
seeks were unnecessary.

Figure 5.3: Read pattern of an CMS reconstruction job

5.2.2 Analysis

The analysis job used 532 files (501 of them located were libraries and
other files needed by the used software area). 1984.1 megabytes were
read out of the source ROOT file (4624MB) that contained 10000 events
using 12655 operations (average read size 157.1 ± 88.0, max. 4893.4kB).
Although the pattern might look similar to reconstruction one at the
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(a) Whole picture

(b) Detail

Figure 5.4: Pattern diagram of an CMS analysis job
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first glance, it is not. Zooming in the plot (figure 5.4b), one can see that
the single reads are not consequent, there is always a small gap between
them. That’s why the figure 5.4a shows reads in offset up to 3800MB,
whereas only half of it was actually read. The source file was opened for
197 seconds and the whole job lasted for 203 seconds. Because of the
use of the TreeCache (and its bug, see 2.3.3), 88.5% out of 112 thousand
seeks were unnecessary.

5.3 ATLAS

The ATLAS experiment is the only experiment of which data the author
has an access to as it is the main supported LHC experiment in the In-
stitute of Physics AS CR (FZU), the current workplace of the author.
As described in 1.1, mainly user analysis and no reconstruction jobs are
being run in Tier-2 centers. Taking advantage of having access to the
actual code of the analysis jobs, it was possible to measure the effect of
various ROOT data format improvements. Moreover, the ATLAS jobs
served as an example for replaying comparison study in the chapter 6.

The author also tried to obtain system call traces from ATLAS jobs
submitted through WLCG to FZU’s computing farm. The client part of
a batch system (Torque[32]) was patched to insert call to strace before
executing the actual script that was submitted on the farm. As the ex-
ecution of jobs involves calling of various wrappers inserted on different
levels in different languages and thus resulting in a quite complicated
chain of processes, the strace bug described in 3.2.1 has been hit. If that
occurred, the outputs were unusable. Only manually executed jobs were
successfully traced.

The analysis application was provided by Oldrich Kepka. The jobs
were run under 64-bit Scientific Linux v5.4, using ROOT 5.26.00 on a
machine with Intel Xeon E5520 @ 2.27GHz with 300GB 15k RPM SAS
hard drive.

Unfortunately, no reconstruction job for ATLAS experiment was traced.
It is believed that it would not differ much from the reconstruction jobs
of CMS and LHCb.

44



# reads time(ms) kBytes
read

avg request
size(kB)

Old, cache off 191209 25895 247203 1.3 ± 16.8
Old, cache on 3205 7927 541572 169 ± 148
New, cache off 14658 5338 212428 14.5 ± 50.4
New, cache on 797 4348 236759 297.1 ± 562

Table 5.1: Comparison of TTreeCache and basket reorganization during
ATLAS analysis

5.3.1 Analysis

Because of the possibility to run an ATLAS analysis job with different set-
tings of TreeCache and also with input files written with different ROOT
version (with basket size optimization), all four combinations are pre-
sented here. The IO access patterns differ significantly. The default one
used by the user was an older, unoptimized file structure with TreeCache
enabled.

The table 5.1 shows number of read request, its average size with
standard deviation and also the time spent reading alone. The ”new“
rows show numbers obtained by running the analysis job over a new
format of ROOT file rewritten using ROOT v5.27. The ”old“ one shows
numbers for input files created in ROOT v5.22. The TreeCache size was
set to 100MB.

The interesting part of the table is the number of bytes really read
from the file. The use of TreeCache brings also some read-extra over-
head, that could bring performance problems when accessing data over
network. The bytes read without using the cache is the minimum number
of bytes needed by the application without any overhead. These differ for
”new“ and ”old“ version, as the files written in ”new“ version are slightly
smaller. The read-extra overhead for the ”old, cache on“ was more than
115%, but it was still much faster then reading half of the data without
the cache. The overhead for the ”new“ version of the input file was only
15%.

Also the access pattern of the four combinations profiled differs a lot.
The figure 5.5 shows pattern diagrams for each case. Note that when
using the cache, all reads are sequential, as the TreeCache reorders the
read requests.

The figure 5.6 shows one part of the whole access pattern of the jobs
in detail to point out the huge difference. Although the access pattern of
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(a) Old, cache off (b) Old, cache on

(c) New, cache off (d) New, cache on

Figure 5.5: Pattern diagram of the ATLAS analysis job with different
settings

the ”Old, cache“ case (figure 5.6b) might seem reasonable, one can see
in a closer look that the line actually consists thousands of small reads,
which is sub-optimal.

5.4 Conclusion

Different types of the typical LHC experiments’ jobs were profiled and
described in the chapter. The access pattern significantly differs across
the experiments, type of a job (reconstruction/analysis) and the ROOT
version used when reading as well writing the data files.

It was shown that the changes in the ROOT data format thoroughly
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(a) Old, cache off (b) Old, cache on

(c) New, cache off (d) New, cache on

Figure 5.6: Details of access pattern of the ATLAS job with different
settings

described in the chapter 2.2 have an important influence on both the
access pattern of the jobs and the overall speed of data reading.

The knowledge of IO behavior of the jobs was exploited when bench-
marking distributed file systems in chapter 7.
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Chapter 6

IOreplay

In order to fulfill one of the goals of the thesis, to evaluate distributed file
systems for use in high energy physics community, the right methodol-
ogy and tools have to be chosen for benchmarking the evaluated systems.

There are three approaches one might adopt, based on the trade-off
between complexity of a benchmark setup and fidelity of it. a) Run the
real application on the test system and measure some application metrics;
b) Collect traces from a running application and replay them back on to
the storage systems to be evaluated; or c) Use synthetic benchmarks to
generate workloads and measure the IO system performance for differ-
ent parameters of the synthetic workload. The first method is ideal as
it measures the performance of the system at the point that is the most
interesting: one where the system is actually going to be used. However,
it is also the most difficult to set up because of the cost and complex-
ity involved in setting up real applications. Moreover, this approach is
not always possible. The other two approaches, replaying traces of the
application and using synthetic workloads, though less efficient, are com-
monly used because of the benefits of lower complexity, lower setup costs,
predictable behavior, and better flexibility. Trace replay is particularly
attractive as it eliminates the need of understanding the application in
detail. The main criticism of these approaches is the validity of the ab-
straction, in the case of synthetic workloads, and the validity of the trace
in a modified system, in the case of trace replay.

As already described in chapter 3, execution of an analysis or a recon-
struction job of an experiment requires complex setup of software and
access to the data files. For example, for ATLAS, one needs the right
versions of gcc, python, ROOT, Athena (ATLAS analysis software) and
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several other depending libraries.

Because the author had access only to data and working environment
of the ATLAS, the author decided to simulate the behavior of other
experiments using the trace and replay mechanism.

An application called IOreplay has been developed for this purpose
and is described in detail in this chapter. It was shown that it can be used
for a very accurate benchmarking in regard to the original application.

6.1 Replaying

The idea is to replay every IO operation that was previously recorded
by the strace program. Doing so, the results obtained should be very
similar to running the actual job as all requests that hit the hard drive
are performed in the exactly same order with the same size. The main
difference is in the timing of the calls as strace itself has quite a big
overhead. As described in [35], special care must be taken to overcome
this issue.

It is important not only to replay the read and write requests, but also
the metadata operations like stat and access system calls that are also
very common and can represent a non-trivial part of the IO operations
especially for distributed file systems with a remote metadata server.

6.2 IOreplay

An application that is able to replay every IO-related system call named
IOreplay has been written in the C programming language. It shares
a part of its source code with the analysis application as described in
section 4, mainly the routines for parsing of a strace output and handling
of the file descriptors to file names mapping. Only system calls that hit
the hard drive are replayed. That means that calls like socket or dup

are ignored with the exception of tracking of the file descriptor involved
in such call.

It was decided to make the application single-threaded mainly be-
cause of the complexity of debugging multi-threaded programs and be-
cause of the fact that the physical applications that were straced are
strictly single-threaded even though they involve more than one process.
Naturally, this approach has its drawbacks that are described in section
6.2.1.
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The following sections describe the whole process of replaying in more
details.

6.2.1 Drawbacks

One of the main drawbacks of replaying the traces is the inability to
reliably simulate multi-threaded applications that access a hard drive
simultaneously. The system calls are replayed in a strict order in which
they were recorded. In multi-threaded programs or when tracing more
than one process, some system calls can be interrupted by another call
from other process/thread. The other call(s) can finish before the first
one is resumed. The result is two interleaving calls that can even rely
on each other. When replaying, the interrupted call is performed after
the call that caused the interruption. That is because not all parameters
of the call are written in the strace output, when it is interrupted. For
example (see 6.1), write call in process 11109 was interrupted by a read
call from process 11108 which was again interrupted by the resuming
write call from 11109. Therefore, the order of operations can be broken.
Even worse, the result of the interrupted call could depend on the call(s)
performed during its interruption. It is worth to mention that none such
situation was observed by the author during using the tool so far.

11109 1279734664.748838 w r i t e (1 , ”” . . . , 117 <u n f i n i s h e d . . .>

11108 1279734664.748887 read (25 , <u n f i n i s h e d . . .>

11109 1279734664.748901 < . . . w r i t e resumed> ) = 117 <0.000055>

Listing 6.1: Strace output with interrupted system calls

6.2.2 Preparing the Environment

In order to reliably replay all operations and to obtain the same results as
in the original run of an application, it is important that the environment
in which we replay is the same as it was when we recorded the run. In
other words, every open, unlink. stat and any other system calls that
originally failed should now fail as well, while the calls that succeeded
should succeed.

For that purporse, two mechanism were developed. The first one pro-
vides a means how to define files that should be ignored during replaying
and also enables mapping between original files and files in a new en-
vironment. The second mechanism efficiently checks for problems that
would occur during replaying and suggests changes.
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The first one consists of two lists. First list, the ignore list, is for the
files on which operations should be ignored. The other one is for the
mapping of original file names to new file names. Every operation that
should be performed on the files in ignore list is not performed and every
operation that involves a file in the mapping list is actually made on the
substituted file. The motivation is that it is very common that the file
structure of the original system is completely different from the system
where the replaying is being run. In applications that open thousand
of files that are almost not accessed, the ability to ignore such requests
instead of creating the files could be a big advantage. The program can
be instructed to list names of all files accessed to help creating these lists.

The second measure taken is more sophisticated and also takes the
two lists described above into account. The program enables the user to
run the replaying in a simulation mode to discover whether the environ-
ment is ready or not. It uses a module called “simfs“ for that purpose -
own in-memory directory structure implemented in a form of prefix tree.
It goes through the list of the system calls and consults every syscall
that contains a file name as a parameter with the prefix tree. If the tree
contains it, depending on the call and the original return value, it either
succeeds or triggers an error (e.g. file is in the simfs but the previous
open call failed). If it is not in the prefix tree, it tries to consult underly-
ing file system for the file or directory. In case of different return value,
it outputs its recommendation (e.g. please delete file X, as the previous
open call failed but it would not now). In every case, the result of the
operation as recorded in the source file is reflected to the simfs, so other
calls depending on the failure or success of this one will not be affected.
This way, only the cause of the problem is reported. It also measures
how big the files should be in order to make sure that read operations
succeed.

It is important to stress that the module is not perfect as it only
checks whether the file exists and its size, not taking into account its
permissions at all. It could happen that the traced program running
under non-root account had tried to delete /etc/shadow for which it did
not have permission and thus failed. The simfs, however, always assumes
that the previous call failed because the file had not been there, so if
the replayed application is run under the root user, it suggests deleting
the file /etc/shadow so that it will fail too. This would be fatal for the
system.

On the other hand, the original program could have been run under
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root and had really deleted the file. The simfs would not argue about
it as it would remove it as well if run with appropriate privileges. It is
therefore always wise to list all files that are being access to ensure that
it does not harm the system.

6.2.3 Timing Modes

As stated in [35], it is crucial to keep the delivery of the calls in exact
timing as in the original application. Skew of more than few hundred
microseconds causes significant difference in IO planning. Three different
modes of time keeping are compared in the paper: using usleep() and
select() calls, and spinning with periodic CPU counter reading. The
most accurate by the order of magnitude is using the CPU spinning.
However, it is important to note that using any of the mechanism, it
is impossible to hold exact timing on a modern non-real-time operating
systems as it will be always influenced by OS interrupts and process
scheduling.

Another important point is that calling the gettimeofday() to find
out whether to wait or not is very expensive. It can cause overhead of
tens or hundred of percents for traces with high rates of system calls per
second.

Because of the above mentioned reasons, the spinning with CPU in-
struction counter (representing the count of CPU cycles done since re-
set) approach was chosen. Using of CPU time stamp counter has several
trade-offs that one should be aware of: it shrinks program’s portabil-
ity as not every processor supports such a feature (basically every x86
processor newer than Intel Pentium Pro does). It is also not guaranteed
that the counter is the same on all cores in a multi-core or multi-CPU
environment. That is why we bound our application to one core using
sched_setaffinity system call. It can also be sensitive to power sav-
ing modes on some CPUs, when the clock rate is decreased. On some
processors the register is incremented in the actual clock rate frequency,
while on another it is incremented by the maximum resolved frequency
at which the processor is booted regardless on current clock rate. The
user must ensure that the system he uses is configured to not change the
CPU frequency on such processors. Instructions reordering can also have
marginal impact on the exact instruction counting.

Reading the CPU time stamp register is a very fast way of getting
current time when the frequency of processor is known. The program de-
termines the frequency by calling sleep() for one second and measuring
the actual time and cycle count passed.
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File
version

ROOT
version

Cache
on

time(s) time
strace(s)

overhead

5.22/00 5.26/00 yes 234.6 ± 2.2 563.2 ± 9.9 140.1%
5.22/00 5.27/05 yes 220.2 ± 0.5 224.0 ± 2.4 1.7%
5.27/05 5.27/05 yes 159.3 ± 1.7 160.5 ± 0.4 0.7%

Table 6.1: Strace overhead

The application provides three modes in which it can replay the calls:

• AFAP mode - The calls are performed as fast as possible, ignoring
any delays caused by processing the read data in the original run.

• Exact mode - The calls are made as close as possible to the time
they were previously made (measuring from the start of the appli-
cation). Spinning in the for loop is performed until it is time to
make the call.

• Diff mode - The calls are made with the smallest difference be-
tween them in respect of the previous run as possible. This mode
usually gives the most reasonable results as it holds all think-times
of the original application and the only difference is in the duration
of the system calls. Moreover, the application allows to specify a
multiplier by which the gaps should be shrink/widen. This is handy
for simulating difference in CPU speeds, when the ratio between the
reference system and the tested one is known.

6.2.4 Scaling

In order to mark benchmarking results obtained by replaying as valid,
it must be shown that it behaves similarly to the original job even on
different hardware and under different load of the system. In other words,
that it scales well.

Table 6.1 shows the execution times of running ATLAS analysis job
that processes nine one-gigabyte files with different version of ROOT and
different version of the file format and with and without the strace. All
numbers were obtained by running the job five times. We remark that
ROOT version 5.22/00 is the old one without basket size optimization
(see 2.3.1) and that ROOT version 5.26/00 suffers from the bug with
useless seeking (see 2.3.3), which is fixed in v5.27/05. The huge overhead

53



measured in the first row of the table is caused by the enormous number
of seeks performed - there were more than 5 million of them for 30 thou-
sand reads, while for the later two, only tens of thousand were done.

The job with 5.27/05 file version was used to confirm the scaling of
the replaying. Every job processed nine files of 1GB. Each job has its
own copy of the same data files to avoid influencing the page cache of
the operation system. Moreover, the page cache was flushed after each
run using echo 1 > /proc/sys/vm/drop_caches command to not skew
further runs. The machine used for the comparison study was equipped
with two Intel Xeon E5520 CPU (8 cores total), 16GB RAM and one
300GB SAS drive of 15k RPM on which the input data were stored. The
diff timing mode was used in order to simulate processing of the data
by the application.

Figure 6.1: Scaling of the IOreplay application

The results are shown in the figure 6.1. The figure shows the sum of
time (with standard deviation) spent to run different number of concur-
rent jobs. The absolute numbers and ratio between the IOreplay run and
the real application run are also depicted in the table 6.2. The numbers
are roughly the same up to nine of concurrent jobs. This was expected
because of the way the IOreplay works and number of CPU cores in
the machine. When overloading the node with more than eight jobs, the
bottleneck starts to be the data processing (CPU). Contrariwise, the

54



# Jobs IOreplay(s) Real App(s) Ratio(%)
1 160.4 ± 0.8 161.9 ± 0.4 100.93
2 168.4 ± 2.0 177.9 ± 4.5 105.67
3 188.1 ± 1.9 188.4 ± 4.7 100.21
4 212.7 ± 4.4 223.2 ± 1.3 104.96
5 248.7 ± 1.6 256.5 ± 3.6 103.15
6 294.8 ± 3.9 297.9 ± 1.5 101.04
7 345.3 ± 3.2 348.0 ± 3.5 100.78
8 390.2 ± 2.1 398.9 ± 6.3 102.25
9 433.9 ± 2.2 447.1 ± 3.6 103.03

10 485.4 ± 2.2 516.6 ± 12.7 106.42
11 536.3 ± 1.3 782.7 ± 54.5 145.95
12 590.6 ± 5.5 1251.3 ± 39.6 211.85

Table 6.2: Scaling of IOreplay application

IOreplay still tries to keep the time difference between the calls, so it
just do less cycles in the spinning and thus runs faster than the original
application.

The study clearly shows that the IOreplay can scale within a few
percent of difference in comparison with the original application provided
the recording of the traces had reasonable overhead and that we do not
overload the node.

6.3 Conclusion

IOreplay, the application for benchmarking using a trace and replay
mechanism, was introduced in this chapter. Several features as well as
drawbacks of the tool were described. Most importantly, it was shown
that it can be used for a very accurate benchmarking in comparison with
running the original application. The tool is freely available at [42].
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Chapter 7

Distributed File Systems

Once we have a detailed understanding of the workload (described in
chapter 5) and having the desired tool for benchmarking, the IOreplay
(described in chapter 6), we can finally evaluate selected distributed file
systems. We have chosen Lustre, GPFS, Hadoop as they are the most
used systems in high performance computing and NFS4.1 as it is a very
interesting, emerging a promising protocol not only within the HEP com-
munity.

This chapter includes general guidelines for benchmarking that we try
to follow as well as a description of the used testbed and benchmarking
methodology. Then, individual file systems are described and evaluated.

7.1 Benchmarking Is Hard

Prior to describing testing environment and test results, it is important
to point out that benchmarking file systems is a hard task. A great study
summarizing nine years of file system and storage benchmarking [51] has
been recently published. The authors had taken more than one hundred
papers and looked for the common mistakes people do when evaluat-
ing storage systems. Surprisingly, almost all of them suffered from not
following the well justified guidelines (see below) depicted in the paper.

The list of the most important reasons why the storage benchmarking
is demanding follows.

• Multi-variate space

• Moving target

• Easy to take results out of context
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• Hard to make tests comparable

• Extremely complex system

We cite the benchmarking guidelines for benchmarking as provided
in the aforementioned paper.

• Explain What Was Done in as Much Detail as Possible - For exam-
ple, if one decides to create one’s own benchmark, the paper should
detail what was done. If replaying traces, one should describe where
they came from, how they were captured, and how they were re-
played (what tool? what speed?). This can help others understand
and validate the results.

• In Addition to Saying What Was Done, Say Why It Was Done
That Way - For example, while it is important to note that one
is using ext2 as a baseline for the analysis, it is just as important
(or perhaps even more so) to discuss why it is a fair comparison.
Similarly, it is useful for readers to know why one ran that random-
read benchmark so that they know what conclusions to draw from
the results.

Among the two important but rather generic advice, one should also
honor following recommendations.

• Choose right benchmark - The chosen benchmark should be repeat-
able, ie. testing the same operations as in previous runs and should
be I/O bound1. The workloads should also be well understood and
correspond with the metric one wants to measure.

• Have the state of the system under control - Major factors that
can affect results are cache state, ZCAV2 effects, file system aging,
and nonessential processes running during the benchmark as well
as other computers sharing the network equipment in case of dis-
tributed systems. Keeping the desired state of caches is crucial, as
it could have huge effect on the results.

1Interestingly, not all of them are. For example, as shown in the [51], a popular
compile test was run against the file system that was intentionally slowed down by
the factor of 32, which resulted in a wall-clock slowdown of only 3%-5%.

2Zoned Constant Angular Velocity, a technology that stores more sectors per track
on outer tracks than on inner tracks of a hard drive. That causes faster speeds when
accessing outer tracks than the inner ones.
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• Use multiple runs - This is significant to identify errors in bench-
mark setups and also recognize how confident one can be about
the results (see next point). One has to ensure that the runs are
identical.

• Make tests comparable - For example, if testing different file sys-
tems, one should test it under the exactly the same conditions.

• Provide statistical information - They can help readers to see how
stable the tests were.

• Use scripts - A lot of mistakes associated with manual repetitive
tasks could be prevented this way.

• Make tests repeatable - One can than validate the results. There
is always someone who doubt the correctness of the test. It also
concerns the next point.

• Provide as much information as you can - It includes software and
hardware used, its parameters, how the tests were run.

We tried to follow these guidelines, to ensure the results obtained are
valid.

7.2 Testbed

The testbed consisted of twenty servers with identical configuration:
Hewlett-Packard Proliant DL 140, 32bit Intel Xeon CPU 3.06GHz, 2GB
RAM, 80GB Seagate Barracuda 7200.10 HDD. In each test, one of them
was used as a metadata server. With an exception of Hadoop where all
nodes besides the metadata server were used as both data server and
clients, there were always nine data servers and ten clients, where tests
were run. All servers shared one network switch that was connected with
1Gbps line to each server. The architecture of the testbed is depicted in
the figure 7.1. Prior to any tests, all nodes were re-installed with Scientific
Linux v5.4, that comes with 2.6.18-164.11.1 version of kernel.

7.2.1 Evaluating the Testbed

In order to understand the results obtained from benchmarking dis-
tributed systems and to predict the limits of the system, performance
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Figure 7.1: Testbed architecture

tests of individual servers have been done. This is also important to en-
sure that tests are not biased by a particular server which is significantly
faster or slower than the others.

The figure 7.2 shows performance (axis y, kB/s) of individual storage
servers (numbers in legend) when using sequential mode of IOZone [15]
benchmark with different number of parallel threads (axis x). Every test
wrote 2GB of data in summary (i.e. 500MB per thread for the 4-thread
test). One gigabyte of RAM was by used by a small application to ensure
leaving another one for the page cache of the operating system. This was
done to ensure that the tests hit the disk while still measuring influence
of RAM access speed. Except for the one thread test, where two nodes
appeared to be faster than others, all of the nodes performed similarly.

The network performance of the servers were also measured using the
iperf tool. All nodes proved to be able to fully saturate its gigabit link.
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Figure 7.2: Testbed evaluation

7.2.2 Testing Methodology

Six different tests were run on the system. These tests correspond to
analysis and reconstruction jobs of LHCb and CMS experiments, and
two types of ATLAS analysis job, that were described in chapter 5. We
provide a brief description of each test. Please refer to 5 for more details.

• AtlasOld - 9x 250MB out of 1GB files read, a lot of useless seeks
(not followed by read or write calls). The effective seeks were usually
within few megabytes.

• AtlasNew - 9x 250MB out of 1GB files read, no useless seeks.
Strictly sequential with caching.

• CMSAn - 1984MB read from a 4GB file. Strictly sequential, caching,
small gaps between individual calls.

• CMSReco - 424MB read from a 4GB file (only beginning of the
file). Strictly sequential, some backward seeking usually within 20
megabytes. Almost 3 thousand files opened in total.
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• LHCbAn - whole 875MB file was read with approximately 50
thousands of read requests. There were seeks back and forth in
the file with distances of hundreds of megabytes.

• LHCbReco - 788MB out of 788MB file was read, strictly sequen-
tial in small requests (15kB) resulting in approximately 52 thou-
sands reads. No effective seeking in the file.

The traces were replayed using the IOreplay application (see 6.2) with
different time modes for different tests. Although we had access to real
life jobs of the ATLAS experiment, it was not possible to used them in
our testbed, because the ATLAS software is 64-bit only and the nodes
were only 32-bit. The time modes used per test are listed in the table 7.1.
The reason for not using the same time mode is that the reconstruction
jobs lasted for a long time and were generally CPU and not IO bound.
Differences in results using diff mode would be minimal, and thus AFAP
mode was used. Moreover, for AtlasOld test, the scaling factor of 0.4 for
think-times was used to compensate for the overhead when recording the
traces.

Test Time mode Scaling
AtlasOld Diff 0.4
AtlasNew Diff -
CMSAn Diff -
CMSReco AFAP -
LHCbAn Diff -
LHCbReco AFAP -

Table 7.1: Testing methodology: different replaying time modes

Each test was run three times to spot any errors and also to get
information of the test stability. The manner in which tests were run is
provided in listings 7.1.

f o r Count i n 1 2 4 8 10 20 ; do #number o f c on cu r r e n t j o b s

f o r run i n 1 2 3 ; do # run each t e s t t h r e e t imes

f o r Test i n a t l a snew a t l a s o l d l h c b r e c o l h c b a n a l cmsreco cmsanal ; do

RunTest $Test $Count $run

done

done

done

Listing 7.1: Test Methodology
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It is important to note that the inner-most loop was changing the
test case, which ensured that caches on both, client and server side, were
rewritten before repeating the same test again. We intentionally did not
flush the caches manually to also benchmark their behavior. The only
tests that were influenced by not flushing the caches were the 1-job tests
of the ATLAS experiment, where the second and third runs were faster
than the first one as part of the data files stayed in the cache of data
servers.

The average execution time of one job for the six tested workloads
and different number of concurrent jobs was measured. Each job accessed
its own copy of the data files, but shared all other files (such as libraries).
The horizontal lines on each bar in the following plots display standard
deviation of the measurement.

We also measured amount of data transfered to and from clients.
Outbound traffic is shown only for Hadoop where it is significant, but
not for the other systems as it was negligible. Inbound traffic per one
host is shown for each system.

The numbers in legends mean count of concurrent jobs. For network
plots, zero means data transfered from a disk by running the job on a
local node.

7.2.3 Other Metrics

The performance of a file system is clearly not the only parameter by
which one decides which file system to use. Other, maybe even more im-
portant factors are its stability, redundancy options, maintenance, avail-
ability of monitoring tools, life cycle management, disaster recovery op-
tions and availability of documentation and support. The stability of a
system was hard to evaluate due to the limited testbed size, but at least
the behavior of a data server loss was tested. The other aspects were
evaluated from documentation and technical reports available.

7.3 Lustre

Lustre is the most commonly used open-source distributed file system in
HPC3 environments. It is very popular because of its performance.

The following section evaluates Lustre v1.8.4.

3High Performance Computing
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7.3.1 Architecture
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Figure 7.3: Lustre architecture

Lustre file system consists of two types of servers, the Metadata
servers (MDSs) and Object Storage Servers (OSSs), see 7.3. The MDS is
connected to a MetaData Target (MDT), which is typically a storage de-
vice that actually stores the metadata of the Lustre system. If the MDS
fails, the service can failover to second MDS server that is connected to
the same MDT. The same concept is used with OSS servers. OSS servers
are connected to one, or many Object Storage Targets (OSTs) which are
the storage devices that store the files in the system. The OSTs can be
reconnected to other OSSs, if it is physically possible.

One of the main factors leading to the high performance of Lustre
file systems is the ability to stripe data over multiple OSTs. The stripe
count can be set on a file system, directory, or file level.

On the other hand, file replicating is not possible in the Lustre and
thus loss of an OST results in an immediate data loss. That is why it
is recommended to run at least RAID-5 or, preferably, RAID-6 on the
storage servers. Sudden nonavailability of the MDT is fatal for the whole
file system, and that is why it is critical to run this service on reliable
hardware with regular backups.

63



(a) Average job duration

(b) Data transferred per one job

Figure 7.4: Performance of the Lustre file system

7.3.2 Performance

Our instance of the Lustre file system has been configured to stripe every
file to 100MB chunks to maximally three servers.

The performance plots (see 7.2.2 for description of the tests) are de-
picted in figure 7.4.

The plots show expected behavior for ATLAS and LHCb jobs. Both
types of LHCb jobs show unexpected pattern, when running more jobs in
parallel results in faster average job execution. The network usage plot
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confirms that, showing a lot of data transfered for 1, 2, 4 and partly
also for 8 instances. We first believed that there was an error in the test
scripts but this reason was ruled out by results of benchmarking other
systems. A temporary dysfunction of the network or other hardware was
also ruled out by re-running the same tests more times.

The phenomenon has not been entirely understood, but one of the
possible explanations is probably an effect of client caching together with
a quite large stripe size of 100MB. The LHCb jobs involved usage of
several thousand of files, one data source file and two condition databases
that were accessed randomly in the first and last minute of the job. These
are shared for all jobs, so accesses to them for second and later jobs were
cached by the system. It could also happen that the clients’ kernel learned
from the previous runs that this data are likely to be accessed so it kept
them cached.

The effect is more visible for the LHCb analysis job as it accessed the
data file in a random fashion.

It would be interesting to see whether shrinking the stripe size would
improve the behavior and performance as there seems to be indication
that choosing smaller stripe size could help. Unfortunately, these tests
were not performed due to time constraints.

The detailed comparison with other file systems can found in section
7.7.

7.3.3 Maintenance

Following sections were written with help of the official manual [18] and
the report of Lustre evaluation at CERN [52] which provides a neutral
view of Lustre as a general purpose file system.

Requirements

Lustre can be installed on any Linux system, but it requires a special
kernel on servers and at least kernel-modules on clients. None of Linux
distributions the author is aware of provides the patched kernels in their
repositories, so it is up to administrators of a cluster to maintain it and
keep it up to date. Kernels for some distributions are provided on Lustre
official web pages, and the guidelines for building a new kernel from
source code are provided in the Lustre manual.
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Documentation

The Lustre is provided with an excellent manual. The comprehensive
manual describes both architecture of the system and administrator’s
guide on almost six hundred pages. Basically everything is included: from
installation and configuration to disaster recovering, tuning, backing up
and debugging. There was no need to consult any other information
sources when installing and configuring the system. Lustre also comes
with its active mailing list.

Redundancy

There are two types of redundancy to care of, for data and metadata.
The metadata server is by default a single point of failure and Lustre

itself does not provide any mechanism to solve this issue. However, the
manual describes a way how to use a second passive instance of MDS
and a heartbeat service that would enable failover of the MDS server.
However, the storage of metadata, the MDT, must not ever go down.

Lustre does not provide any redundancy for data. That is why the use
of RAID-5, or preferably RAID-6 arrays is recommended in the manual.
Because of the stripping of the stored files, outage of a storage server can
cause unavailability of more files than expected.

Lustre can be configured in two failover modes for data servers (OSTs).
Clients can either block until an OST is available again, which is the de-
fault option, or immediately receive an EIO error after timeout.

Backup and Recovery

Again, there are two types of data that one needs to backup. The meta-
data and the data itself.

Backing up metadata is crucial, as their loss results in the whole file
system crash. The manual proposes to use LVM4 as a storage device for
metadata. This enables usage of snapshots for regular backups with a
cost of partial performance hit.

Because the Lustre file system looks like a local file system from a
client’s point of view, the data can be backed up using any standard
software such as Networker or Tivoli Storage Manager.

As noted in [52], the fact that these two kind of backups are decoupled
can (and probably always will) cause inconsistency between metadata
and data itself. This problem can be solved using file system checks, but

4Logical Volume Manager
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it can result in a lost of some files if there is not any information about
them on metadata server. Synchronization between MDS ans OSSs is not
possible.

Life Cycle Management

From a perspective of life cycle management, one main problem arises.
It is impossible to retire a storage server (OST) without any disruption
of the service. The OST must be marked as read-only, all files on the
OST must be copied to the new location (which triggers creation of new
objects in the system) and then renamed to its original name. Finally, the
OST is removed from the system. The clients with opened file descriptors
will be impacted at some point of the procedure as the original files stop
to exist.h

The monitoring of the system is also covered in the manual. There are
several options to monitor a Lustre system: the built-in SNMP5 module,
collectl[6] and LMT2[20], which stands for Lustre Monitoring Tool.

Security

The Lustre supports distributed Access Control Lists (ACLs) and stan-
dard Linux user rights, but support for strong authentication using Ker-
beros is under development.

7.4 GPFS

GPFS is another file system used mainly in HPC environments. It has a
slightly different architecture to Lustre, because it stores metadata and
data on the same servers. It also generally has more features. Its main
drawback is that it is not free - it is licensed by IBM, the company that
developed the system. The licenses for these tests were kindly provided
by Petr Plodik, an IBM employee.

GPFS v3.4.0.2 is described in this section.

7.4.1 Architecture

GPFS is often compared to Lustre as they both focus on the same seg-
ment. Their architecture is slightly different because GPFS stores meta-

5Simple Network Management Protocol, a protocol used mostly in network man-
agement systems to monitor network-attached devices for conditions that warrant
administrative attention
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data and data on the same servers.
A vast variety of configurations is possible using GPFS. It can stripe,

replicate (max two copies) both data and metadata and distribute meta-
data over selected set of data servers. It also supports storage pools and
policies (e.g. place files bigger than 8GB to storage pool SATA). GPFS
deploys its own caching in GPFS daemon (not in-kernel).

7.4.2 Performance

The same testbed was used as with in the Lustre benchmark. Our system
used 256K blocks with 2 metadata replicas and only 1 replica of data.

As opposed to Lustre, the GPFS runs proved to be much more stable.
There is no unexpected behavior and the network usage seems to be
stable throughout the tests. This could be probably explained by smaller
block size and better caching prediction.

The comparison with other systems with further comments is pro-
vided in the section 7.7.

7.4.3 Maintenance

Following sections were written with help of the official manual [11].

Requirements

GPFS system can be run on almost every Linux systems that uses sup-
ported kernel as a kernel module must be compiled and installed. Offi-
cially, only SUSE and Red Hat are supported, but we managed to in-
stalled on Scientific Linux v5.4 as well, as it basically does not differ
much. GPFS is also supported on AIX platforms.

Documentation

Documentation of GPFS is on very high level and is freely available at
[10]. There are also support forums that seems to be active.

Redundancy

GPFS can be configured as redundant solution. It is possible to have two
copies (maximum) of data as well as metadata. Similarly to Lustre, it is
also possible to define more storage servers that has access to one disk
array. GPFS also uses a similar concept of rack-awareness as in Hadoop,
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(a) Average job duration

(b) Data transferred per one job

Figure 7.5: Performance of the GPFS file system

which is here called failure groups. During data duplication, GPFS makes
sure that copies are distributed to different failure groups.

Backup and Recovery

GPFS provides mmbackup tool to ease backups. It supports full as well
as incremental backups. It takes advantage of snapshot function of the
GPFS system, so the backup can be resumed. Standard backup software
can also be used.
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Life cycle management

The data servers in the GPFS systems can be retired without any dis-
ruption to the service using mmdeldisk command.

Monitoring of GPFS cluster can be done using SNMP6 protocol. It
supports periodic polling for performance metrics as well as triggering er-
rors. GPFS also comes with integrated mmpmon command that can moni-
tor node on which it is run as well as other nodes. Advanced information
as read block size or latency histograms can be displayed.

Generic tools like Ganglia or Nagios can also be used.

Security

GPFS supports standard Linux user/group permission model as well as
ACLs. Strong authentication using Kerberos is not supported.

7.5 HDFS

The HDFS system is a part of the Hadoop system that is being devel-
oped by Apache community [29]. Furthermore Hadoop is also constituted
of another part called MapReduce which is a system for distributing
(mapping) jobs to the nodes where data are located. However, the terms
Hadoop and HDFS are often used interchangeably and we decided to not
break this convention. When using word ’Hadoop’ in this chapter, we
only mean the HDFS part of it. The typical installation of Hadoop thus
consists of hundrend of worker nodes, each one equipped with a couple
of hard drives.

The system is freely available at [29].
Because of different philosophy of the system, different testbed has

been used. Please refer to 7.5.2 for details.
The following section evaluates HDFS v0.21.

7.5.1 Architecture

Hadoop has a different philosophy in comparison with other file systems
described in this thesis. The outage of a server in a Hadoop system is
regarded as a part of normal operations and not as an exceptional state.
The system uses file replication for achieving stability and redundancy

6Simple Network Management Protocol
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which enables usage of commodity hardware servers without any RAID
setups.

The Hadoop system consists of one and only one name server that is
single point of failure of the system. To scale with possibly high number of
data servers and clients, system’s metadata are kept entirely in memory
during operation.

Unlike the other distributed file systems presented that are more or
less POSIX-like7, HDFS only supports reading from existing files, cre-
ating new files and appending to the existing files. Changing files is not
possible. This is to ease the complexity of keeping all replicas up to date.
Fortunately, this is not an issue for HEP experiments, as the data files
are never modified.

All files are split to 128 megabytes blocks by default. A block forms a
basic unit of data in the system. Each block is than replicated to defined
number of servers (can be defined per file, directory or whole system),
there seems to be no limit in the number of replicas in the system. The
HDFS is rack-aware which means that it ensures that replicas are scat-
tered across different racks. It also uses the information when retrieving
the closest replica of a requested block.

A heartbeat service for all servers with a default period of three sec-
onds is put in place to enable the NameNode (metadata server) to spot
a failed data node quickly. It then immediately triggers replication of
under-replicated blocks.

The Hadoop is written completely in Java and can only be mounted
as a normal file system through FUSE.

It was recently announced that Cloudera, a provider of Hadoop-based
data management software, will invest 25 million dollars into develop-
ment of Hadoop.

7.5.2 Performance

We used a slightly different architecture of the testbed when benchmark-
ing Hadoop. One server acted as a metadata node, whereas all the re-
maining servers stored the data. The number of clients (ten), that we ran
jobs on, remained unchanged.

All the files in the system had replication factor of two.
It should be noted that we used FUSE in order to use the system

as a regular Linux file system. Usage of FUSE is known to have quite

7There are very few distributed file systems that honors the POSIX file semantics
completely. Only GPFS of the the presented systems is fully POSIX complaint. Exact
details are beyond the scope of the thesis.
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(a) Average job duration

(b) Inbound traffic per one job

(c) Outbound traffic per one job

Figure 7.6: Performance of the Hadoop file system
72



a big impact on the performance. We have seen very high (up to 80%)
utilization of CPUs on client machines during the tests.

It is important to realize that the ROOT framework has a plugin for
HDFS system, so usage of FUSE is not necessary in real life environments.

The question is how much the tests were influenced by the usage of
the FUSE module. We believe that the tests that were run in diff time
mode were not biased much as they still waited the right amount of time
(if the system was fast enough). The AFAP mode was clearly influenced
much more. From another point of view, the necessity of using FUSE can
be regarded as an inseparable part of the Hadoop system when using it
as a regular file system (i.e. mounting it).

The overall instability (large values of standard deviations) is caused
be the randomness of placing the data - some jobs happened to have
majority of their data locally on the client nodes whereas others had to
transfer the data first.

Despite the above mentioned issues, the results seem to be reasonable
in general.

Almost zero usage of inbound network for one instance of LHCb re-
construction and analysis jobs is due to co-location of the data files where
the source data were placed on the client node that the job has been run
on.

The detailed comparison with other file systems can found in section
7.7.

7.5.3 Maintenance

Requirements

Basically any operating system with a Java Virtual machine in at least
required version (1.5.0 now) can be used for running HDFS.

Documentation

The HDFS does not come with an all-in-one manual, but the documen-
tation is placed on the official web page of the project[29]. The author
found the documentation clear and sufficient even though some of the
procedures were a bit outdated. There are also plenty of blogs and mail-
ing lists about Hadoop.

Redundancy

There are two types of redundancy to care of, data and metadata.
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The HDFS file system is basically based on a redundancy of data.
Every block (see above) is replicated to the predefined number of servers.
The lost of a data node is registered within seconds and the automatic
replication of under-replicated blocks is triggered within minutes. This
makes a use of commodity hardware without any safety measures such
as RAID setups possible.

The metadata, on the other hand, must be kept on a very stable
hardware, as they reside on just one metadata server. Moreover, HDFS
keeps all the information both on disk and in-memory for speed reasons.
There are two files that store the Metadata. The FSImage that actually
hold the data and Editlog that serves as a journal. It is possible to specify
multiple locations to which the metadata are written (duplicated). It is
therefore possible for example to save the metadata to a remote NFS
server.

Backup and Recovery

Data itself are somehow backed-up for free as there are always at least
two (or more) replicas of the file in the system. The true backups can
however be done during normal operations with the advantage that the
data can not be changed by design during the backup (only appends are
possible).

Backing up metadata means to retrieve a FSImage and EditLog files
from NameNode by either copying replica files or downloading it through
web interface.

If the FSImage nad Editlog files are lost, it is not possible to recover
the NameNode from Dataservers.

Life Cycle Management

Retiring a data node is just as easy as shutting it down. The data are
automatically replicated somewhere else. In a case of decommissioning of
many servers from the cluster, chance that all replicas of some files are
on these servers increases. That is why Hadoop offers a command that
can automate decommissioning of multiple nodes.

Change of the NameNode requires downtime of a whole cluster.

Monitoring of the system can be done through standard tools such
as Nagios, Ganglia or Munin. There are specific plugins already available
on the Internet. Hadoop installation also includes a web page on which
one can see an overview of the system status.

74



Security

Security in Hadoop is, as of version 0.21, very weak. Hadoop supports
Unix-like users, groups and permissions, but the problem is in how it
determines current users - it executes whoami and bash -c group com-
mands. One can write his own scripts and put it into PATH to fool the
system. Moreover, DataNodes do not authenticate users at all, so one
can read or write any block he wants provided he knows the right block
ID.

This problem should be address in v0.22 release where Kerberos sup-
port is planned.

7.6 NFS4.1

NFS 4.1[23] is a recently standardized protocol for accessing data on a
distributed system.

The minor version 1 of the NFS protocol brings supports for sessions
(and thus minimizing traffic needed for individual requests) but most
importantly it introduces the pNFS, parallel NFS protocol, the protocol
to access files distributed on many disk servers. The pNFS cluster consists
of a name server, data servers storing actual data and clients.

We were interested in in-kernel implementation of the protocol, as it
will come for free with Linux kernel. It seems that the current model for
deploying pNFS is to use in-kernel clients that are being ported to main
kernel branch just now (October 2010). On the other hand, the server
part will be initially developed by various storage vendors such BlueArc,
Panasas or EMC. HEP community also started to implement server side
of pNFS in DPM[47] and dCache[45].

Despite the ongoing rapid development, client as well as server part
is still not considered stable.

We tried to evaluate the in-kernel server implementation (SPNFSD)
because both DPM and dCache implementations were not ready at the
time of writing. The same applies for implementations of storage vendors.

Unfortunately, we have not succeeded in evaluating of the NFS4.1
because of below mentioned reasons.

7.6.1 Installation

We first tried to install NFS4.1 kernel (2.6.34pnfs-1) and user-space tools
to existing Scientific Linux v5.4 systems. Unfortunately, it turned out
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that due to several file collisions between distinct packages and their
certain versions, this would be a really hard task.

Then, we decided to install Fedora Core 13 Linux (kernel
2.6.34.7-58.pnfs35.2010.09.14.fc13), which already has the required user-
space packages available. The installation was successful but the first
tests showed very strange behavior of the pNFS cluster. It seemed that
data are transfered through the Metadata server, which caused very poor
performance. We have not managed to fix this issue as nobody answered
on the pnfs mailing list. We consider this problem to be caused by the
fact that the development is still on-going.

We have decided not to benchmark the solution.

7.7 Conclusion

Three different storage solutions had been benchmarked using the IOre-
play(see 6.2) tool and evaluated by other non-performance metrics. It is
clear that choosing one system rather then another always depends on
the given usage, workload, budget and also personal preferences. We tried
to focus on the typical workload in the HEP community to help deciding
among presented file systems. Unfortunately, we did not manage to get
the in-kernel NFS 4.1 implementation working.

Summary plots that compare file systems performance (figure 7.7)
and network usage (figure 7.8) in the different test cases follow.

Generally, it seems that GPFS is the most stable and fastest solution.
The main exception is the ATLASOld test case, where Hadoop shows very
high performance. We remark, that this test case performed extremely
high number of useless seeks. It is believed that the dominance of Hadoop
was caused by two reasons - a) due to a diff time mode used, so the
FUSE overhead was not reflected and b) real seeking within few tens of
megabytes, which hit the block size of the Hadoop system.

Not considering the LHCbAn and LHCbReco test cases, Lustre shown to
be capable to perform very similarly to the GPFS system. It is possible
that if changing the stripe size in the Lustre system, it could prevent the
system from this misbehaving.

Taking a look in to the future, it is probably best to look at the
ATLASNew and CMSReco use cases, where the new file format is used in
the first case and not much could be improved in the latter case, which
is strictly sequential (see figure 5.3). Caching was used in both the use
cases. For the ATLASNew, all three solutions seems to perform similarly
with exception of Lustre for twenty concurrent jobs.
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(a) ATLASNew (b) ATLASOld

(c) CMSAn (d) CMSReco

(e) LHCbAn (f) LHCbReco

Figure 7.7: Performance comparison of various distributed file systems
(lower is better)

On contrary, Hadoop has a problem with the CMSReco case, whereas
the other two file systems seems to perform within 10% of difference.
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(a) ATLASNew (b) ATLASOld

(c) CMSAn (d) CMSReco

(e) LHCbAn (f) LHCbReco

Figure 7.8: Network usage of distributed file systems (lower is better)
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From the point of network usage, GPFS seems to be the less demand-
ing solution, whereas Hadoop requires in some cases order of magnitude
more of the network usage to perform the job.

Comparing non-performance metrics is a bit tricky as the systems use
different philosophy and are typically used for different purposes. More-
over, absence of one feature can be a show-stopper for somebody and
negligible thing for somebody else.

It seems that the GPFS file system is the most mature and feature-
full one from the list. It supports a vast number of configuration option.
For example, one can decide whether replicate data/metadata or not,
which is not possible in the Lustre. The main reason why not to choose
GPFS is its price. The list price for 10 storage servers and 250 clients,
all 8 cores machines, is around 90 000e.

Hadoop, on the other hand, does not support striping as opposed to
the other two systems. It is also true that Hadoop will generally requires
more hard drives to store the same amount of data, which could have
negative impact on TCO8 when also counting power consumption. On
the other hand, it can be used on cheap commodity hardware so this
effect is probably negligible.

If one had to choose between Hadoop and Lustre, the decision would
probably be also based on a type of hardware he uses. In case of reliable
storage hardware, one can go for Lustre system. In case of non-reliable,
cheap storage and hard drives located in worker nodes, Hadoop could be
an option.

Even though it is always hard to generalize the results into some “rules
of thumbs”, we try to provide general observations:

• Hadoop can be a very efficient solution if the workload uses a lot
of seeks within the distance of Hadoop block size (AtlasOld case).
On the other hand, it is very inefficient when there are seeks out
of the distance of Hadoop block size (CMSReco and LHCbAn).

• Hadoop seems to use much more network bandwidth than other
solutions.

• Even though that GPFS and Lustre performance seems to be simi-
lar, GPFS is slower than Lustre when using just few jobs, but scales

8Total Cost of Ownership
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better than Lustre. However, this could be caused by different con-
figured block sizes of the two systems.

• None of the solutions seems to be affected by useless seeking that
is not followed by read or write requests.
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Chapter 8

Related Work

8.1 IO profiling

Interestingly, it seems there are not many tools for user-space IO profiling
of applications. We have to mention StraceAnalyzerNg[26] that use the
same approach as IOprofiler but lacks several features. IBM has a tool
for this task as well called HPCT I/O[14] but it is a commercial product.

8.2 IO replaying

The idea of of trace and replay mechanism is not new at all. There are
many tools to accommodate this task in general. Unfortunately, there
was always a good reason to not use is as it was recording/replaying on a
different system layer than required or not freely available. The following
list is certainly not exhaustive.

• Buttress[35], a toolkit for flexible and high fidelity IO benchmark-
ing. It is a commercially licensed product.

• Tracefs and Replayfs[44], tracing and replaying at Linux VFS level.
While very accurate, it would require code revision because of ker-
nel changes since the paper was published (five years ago). More-
over, it requires kernel changes at the host where traces are recorded.

• blktrace, btrecord and btreplay, block-layer IO tracing and replay-
ing tools at Linux. Given the block level nature of the tools, record-
ing of traces is is always per whole node, and replaying traces is
generally destructive (it writes directly to the block device, bypass-
ing the file system layer, so it very likely rewrites some existing
data and/or file system structures).
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8.3 Benchmarking in HEP environment

There are quite a lot of benchmarks of various storage solutions done in
HEP community. The common problem is the scope of the tests - they
are usually run with just one type of job and the impact of access pattern
is more guessed than understood.

Among others, several presentations of the HEPIX Storage Group[13]
should be cited. The group uses ATLAS analysis and recently also CMS
analysis jobs to benchmark distributed systems such as Lustre, GPFS,
xRootd protocol or AFS with extensions that are installed on a testbed
consisting of ten of up-to-date worker nodes and three storage servers. It
seems that some effort is now being put in understanding and standard-
ization of the workload, so it really represents jobs used nowadays.

There are also some tests performed at CERN: testing and evaluating
Lustre[52], [46], and also xRootd protocol [34].
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Chapter 9

Conclusions and Future work

9.1 Conclusions

The aim of the thesis was to explore current approaches and solutions in
the field of data access in the WLCG. Using this knowledge and further
analysis, the goal was to find inefficiencies in how applications access
their data and to evaluate and benchmark new solutions of storing and
accessing the data in a form of distributed file systems.

The overview of data flows has been provided in chapter 1. Chapter
2 deals with the data framework common to all four main LHC exper-
iments. We have described how data are stored and what changes have
been made to the framework recently, including their influence on per-
formance.

To fully understand what type of workload HEP applications apply on
a storage system, we decided to develop an IO profiling application. Sev-
eral possible profiling approaches with their advantages and drawbacks
have been described in chapter 3.

Based on requirements and information in chapter 3, we have devel-
oped an IO profiling application, the IOprofiler, described in chapter 4.
The majority of author’s own work begins in this chapter and continues
through chapters 6 and 7 to conclusion.

We have then used IOprofiler to analyze access pattern of ATLAS,
CMS and LHCb jobs. Although it has been developed specifically for this
task, its usage is not limited to LHC experiments by design. Represen-
tative jobs of the three experiments have been profiled and described in
chapter 5. Access pattern is very different across these jobs and some-
times shows quite inefficient behavior.

Because benchmarking using real LHC applications was hard to setup
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and we wanted to present much easier way to reliably benchmark the sys-
tems, we have presented a tool for benchmarking using trace and replay
mechanism, the IOreplay, in chapter 6. We have shown that it is capable
of valid replaying with error within a few percent of the real application,
provided certain requirements are met. Similarly to the IOprofiler, it can
be used for virtually any application.

We have then benchmarked and described three distributed file sys-
tems: Lustre, GPFS and Hadoop, using the recorded workload of the
LHC experiments in chapter 7.

It would be naive to expect this thesis to come with a “silver bullet“,
solution that would fit all the needs of the HEP community for data
analysis. The contribution of the thesis lies in detailed understanding
of the workload of different LHC experiments, discovery of bugs in the
ROOT framework and in a fair comparison of various distributed file
systems under different, well understood workloads. We have summarized
and generalize, where possible, the results in 7.7. This can be a very
valuable guideline when choosing the file system to use.

The IOprofiler and IOreplay tools we have developed to accomplish
these tasks are also significant result of the thesis. IOprofiler can help
any administrator or user to easily understand IO access pattern of their
applications, while IOreplay can be used as a standalone benchmark in a
situation when running the real application is not possible or practical.
These tools are freely available[42].

Part of the thesis has been presented at International Conference on
Computing in High Energy and Nuclear Physics 2010[41] with positive
feedbacks.

9.2 Future work

IOreplay and IOprofile applications could benefit from new features. The
first thing that should be added is support for not complete strace out-
puts, i.e. outputs from strace that was dynamically attached to a process.
Calls like dup and open are missing in such traces, causing both tools to
fail. There are two approaches to follow a) just to add a generic file
name such as ”FILE1“ to those unknown files or b) use information from
/proc/PID/fd system to discover the current fd mapping. Both of these
tools could also benefit from the support of more system calls such as
pread, pwrite, rename or fsync. Fortunately, these were not needed for
analyzing and replaying the selected jobs.

More statistics could also be shown in the IOprofile application based
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on the information it already collected. One such thing should be a time-
line of files accessed during the execution.

A personal wish of the author is to start using the IOreplay as the
benchmark for evaluation of tenders for new hardware at FZU, the cur-
rent workplace of the author, where IOzone is currently used.

Focusing on the benchmarking part, there is always at least one pa-
rameter or option to tune when benchmarking such complex systems as
storage systems are. One of the first things to try would be to change
Lustre block size to a smaller value. Some of the emerging NFS4.1 im-
plementations should be tried again in the near future as well.
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Appendix A

DVD Content

.
|- benchmark - scripts and traces used for benchmarking HDFS system
|
| |-- atlas - traces, mapfiles and ignore files for IOreplay (ATLAS)
| |-- cms - traces, mapfiles and ignore files for IOreplay (CMS)
| |-- lhcb - traces, mapfiles and ignore files for IOreplay (LHCb)
| |
| |-- hdfs.sh - test script used for launching benchmarks for HDFS system
| |-- monnet.sh - script used for monitoring of transfered data on a server
| |-- test.sh - script used to launch selected job on one worker node
| ‘-- README - description of files + manual how to use these script and
| what to change in order to benchmark Lustre and GPFS
|- docu - documentation of ioapps suite, snapshot of web pages
|- ioapps - containts source code of both IOreplay and IOprofiler,
| man pages included
‘- thesis - text of this thesis in PDF format

Figure A.1: Content of the included DVD
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Appendix B

Documentation

Because we have made the ioapps suite (IOprofile and IOreplay) pub-
licly available at http://code.google.com/p/ioapps/, including instal-
lation manual, usage manual and screenshots, we provide a snapshot of
the web pages as the documentation at the included DVD.

It is also important to note, that the applications comes with the
standard Linux manual pages.
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