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Název práce: Rozvrhováńı v distribuovaných systémech
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Chapter 1

Introduction

This chapter introduces the task scheduling problem in heterogeneous dis-
tributed systems studied in the present work, main objectives of the thesis and
chapters organization for better orientation.

1.1 Overview

Heterogeneous distributed system is a computing platform in which a number
of machines with different parameters (such as processor performance) are intercon-
nected with a network, where the network speed between each couple of machines
can differ. These platforms are mostly utilized to execute computationally intensive
applications. Single parallel architecture or homogeneous distributed system can be
used to execute this kind of applications, too. But in some cases, distributed system
have been shown to produce higher performance for lower cost than a single large
machine. On the other hand, homogeneous distributed system needn’t correspond
with a real situation because the computing system generally consists of different
machines interconnected with networks working on different speeds.

So homogeneous distributed system is a special case of more general hetero-
geneous distributed system. However [7], the performance of a parallel application
on distributed system is highly dependent on scheduling of application tasks to ma-
chines of which the system consists. Scheduling can be qualified as crucial issue in
distributed systems. The main objective of the scheduling algorithm is to assign
tasks to machines and order their executions so that precedence requirements are
satisfied and minimum overall completion time is achieved. When the structure of
the parallel application (its task execution times, task dependencies and size of com-
municated data) is known a priori, the application can be represented by the directed
acyclic graph (DAG) in which the nodes represent application tasks and the edges
represent inter-task data dependencies. Each node is labeled by the computation
cost of the task and each edge is labeled by the communication cost. In this case
scheduling can be accomplished during the compile-time, so compile-time (also called
static) scheduling algorithms are used. Otherwise, real-time (also called dynamic)
scheduling methods must be applied.
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Finding an optimal solution for the scheduling problem has been proven to
be NP-complete, so heuristics are used to find a sub-optimal schedule rather than
parsing all possible schedules. Because of the key importance to get high performance
and low complexity, various heuristics were proposed in the literature.

1.2 Objectives

In this thesis studying the scheduling problem in heterogeneous distributed
systems there are three main objectives:

• Analyze mechanisms applied to optimal task scheduling in heterogeneous dis-
tributed systems.

• Develop one or more methods which respect given time limits in multiple tasks
systems (i.e., needn’t require schedule length minimalization) and those tasks
distribution (i.e., processors functional and performance abilities) or location
(i.e., given entry task and exit task) restrictions.

• Compare proposed methods with some other methods that mostly do not re-
quire additional time limits and configuration restrictions.

1.3 Organization

The thesis is organized as follows: the second chapter presents basic definitions
and theorems related to the problem of compile-time scheduling in heterogeneous
distributed systems. In the background of scheduling there is found not only the
scheduling theory itself but also the graph theory and the computational complexity
theory. The application model and the computation model are introduced. The
compile-time task scheduling problem is characterized, its complexity for optimal
solution is explained and heuristics as sub-optimal solution are mentioned.

The third chapter presents compile-time scheduling algorithms, where the ap-
plication can be represented by the directed acyclic graph (DAG). These algorithms
are rather heuristics because they give a sub-optimal solution for the scheduling
problem. Finding an optimal solution for the scheduling problem has been proven to
be NP-complete (see the second chapter), so they can be used to find a sub-optimal
schedule rather than parsing all possible schedules. They are classified in the begin-
ning of the chapter. Finally, their performance and complexity characteristics are
introduced and commented.

The fourth chapter presents real-time scheduling basics and real-time schedul-
ing algorithms classification.

The fifth chapter presents evaluation method and comparison metrics which
are used to compare performance of heterogeneous scheduling algorithms.

The sixth and seventh chapter presents the developed methods as given in the
previous section and compare it with some other methods that mostly do not require
additional time limits and configuration restrictions.
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Chapter 2

Theoretical basics

This chapter presents basic definitions and theorems related to the problem
of compile-time scheduling in heterogeneous distributed systems. In the background
of scheduling there is found not only the scheduling theory itself but also the graph
theory and the computational complexity theory. The application model and the
computation model are introduced. The compile-time task scheduling problem is
characterized, its complexity for optimal solution is explained and heuristics as sub-
optimal solution are mentioned. Following sections involve basics of scheduling the-
oretical background.

2.1 Application model

This section presents the application model. Also some basic definitions from
the graph theory are introduced. These are graph, graph model and task graph
definitions [15]. Finally an entry and exit task definition is cited [16].

Definition 2.1 (Graph) A graph is a pair (V, E), where V and E are finite sets.
An element v of V is called vertex and an element e of E is called edge. An edge is
a pair of vertices (u, v), u, v ∈ V , and by convention the notation eu,v is used for an
edge between the vertices u and v.
In a directed graph, an edge eu,v has a distinguished direction, from vertex u to vertex
v, hence eu,v 6= ev,u, and such an edge shall be referred to as a directed edge.

Definition 2.2 (Graph model) In a graph theoretic abstraction, a program con-
sists of two kinds of activity – computation and communication. The computation is
associated with the vertices of a graph and the communication with its edges. A vertex
is called node and the computation associated with it task. A task can range from an
atomic instruction/operation (i.e., an instruction that cannot be divided into smaller
instructions) to threads or compound statements such as loops, basic blocks, and se-
quences of these. All instructions or operations of one task are executed in sequential
order; there is no parallelism within a task. A node is at any time involved in only
one-activity – computation or communication.
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Figure 2.1 The task graph for a fictitious program [15]. Nodes are named by letters a-k;
node and edge weights are noted beside them.

Definition 2.3 (Task graph (DAG)) A task graph (see Figure 2.1 for example)
is a directed acyclic graph G = (V, E, w, c) representing a program P according to
Definition 2.2. The nodes in V represent the tasks of P and the edges in E the
communications between the tasks. An edge ei,j ∈ E from node ni to nj, ni, nj ∈ V ,
represents the communication from node ni to node nj. The positive weight w(n)
associated with node n ∈ V represents its computation cost and the nonnegative
weight c(e) associated with edge e ∈ E represents its communication cost.

The application model can be defined as shown in Figure 2.2 [7]. The appli-
cation is represented by a directed acyclic graph G = (V, E, w, c), where:

• V is the set of nodes. Each node vi ∈ V represents an application task, which is
a sequence of instructions that must be executed serially on the same machine.

• E is the set of communication edges. The directed edge ei,j joins vi and vj,
where vi is called the parent and vj is called the child. This also implies that
vj cannot start until vi finishes and sends its data to vj.

• w is the computation cost function of the node n ∈ V . It can be represented
by a v × p computation costs matrix W in which

Wi,q = ti · dq,

where ti is the time to execute task vi on machine p0 (unit machine) and dq is
the constant multiplier reflecting how machine pq differs from p0.

• c is the communication cost function of the edge e ∈ E. It can be represented
by the set of communication costs C, where ci,j ∈ C is the communication cost
carried by edge ei,j.
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Definition 2.4 (Entry and exit task) In a given task graph, a task without any
parent is called an entry task and a task without any child is called an exit task.
Some of the task scheduling algorithms may require single-entry and single-exit task
graphs. If there is more than one entry (exit) task, they are connected to a zero-cost
pseudo entry (exit) task edges, which does not affect the schedule.

2.2 Computing model

This section presents the computing model. Some basic definitions from the
scheduling theory are introduced. These are fully connected network, target parallel
system with heterogeneous processors, execution time, computation and communi-
cation costs, path length and critical path definitions [15].

Figure 2.2 Application model and computation model matrices of heterogeneous comput-
ing systems [7].

Definition 2.5 (Fully connected network) A static network in which every pro-
cessor has a direct link to any other processor is called fully connected. It has the
nice property that it is nonblocking; that is, the communication of two processors
does not block the connection of any other two processors in the network.

Definition 2.6 (Target parallel system – heterogeneous processors) A tar-
get parallel system Mhetero = (P, ω) consists of a set of processors P , whose het-
erogeneity, in terms of processing speed, is described by the execution time function
ω. The processors are connected by a communication network. This system has the
following properties:

1. Dedicated System. The parallel system is dedicated to the execution of the
scheduled task graph. No other program or task is executed on the system while
the scheduled task graph is executed.
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2. Dedicated Processor. A processor pq ∈ P can execute only one task at a time
and the execution is not preemptive.

3. Cost-Free Local Communication. The cost of communication between tasks
executed on the same processor, local communication, is negligible and therefore
considered zero. This assumption is based on the observation that for many
parallel systems remote communication (i.e., interprocessor communication)
is one or more orders of magnitude more expensive than local communication
(i.e., intraprocessor communication).

4. Communication Subsystem. Interprocessor communication is performed by
a dedicated communication subsystem. The processors are not involved in com-
munication.

5. Concurrent Communication. Interprocessor communication in the system is
performed concurrently; there is no contention for communication resources.

6. Fully Connected. The communication network is fully connected. Every proces-
sor can communicate directly with every other processor via a dedicated com-
munication link.

Definition 2.7 (Execution time) Let G = (V, E, w, c) be a task graph and Mhetero

= (P, ω) a heterogeneous parallel system. The execution time of n ∈ V is the function
ω : V × P → Q+.

Definition 2.8 (Computation and communication costs) Mhetero = (P, ω) is
a heterogeneous parallel system. The computation and communication costs of a task
graph G = (V, E, w, c) expressed as weights of the nodes and edges, respectively, are
defined as follows:

• w : V → Q+ is the computation cost function of the node n ∈ V . The computa-
tion cost w(n) of node n is the average time the task represented by n occupies
a processor of P for its execution.

• c : E → Q+
0 is the communication cost function of the edge e ∈ E. The

communication cost c(e) of edge e is the time the communication represented
by e takes from an origin processor in P until it completely arrives at a different
destination processor in P . In other words, c(e) is the communication delay
between sending the first data item until receiving the last.

The heterogeneous computing model as shown in Figure 2.2 [7] is a set P
of p machines with different capabilities (heterogeneous processors) connected in
a fully connected topology. As given below, this assumption is only for simulation
simplicity and the communication costs can be simple modified to take into account
the network topology. It is also assumed that:

• Any machine (processor) can execute the task and communicate with other
machines at the same time.
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• Once a machine (processor) has started task execution, it continues without
interruption and on completing the execution it immediately sends the output
data to all children tasks in parallel.

The communication costs per transferred byte between any two machines
are stored in matrix R of size p × p. The communication startup costs between
any two machines (for each line separately) are given in matrix S of size p × p.
The communication cost of edge ei,j for transferring µ bytes of data from task vi

(scheduled on pm) to task vj (scheduled on pn) is defined as

ci,j = Sm,n + Rm,n · µi,j,

where:

• Sm,n is pm to pn communication startup cost (in seconds),

• µi,j is the amount of data transmitted from task vi to task vj (in bytes),

• Rm,n is the communication cost per transferred byte from pm to pn (in seconds
per byte).

As written in [8], the assumption of fully connected machines is only for
simulation simplicity. If the network topology will be taking into account, the com-
munication cost given above can be simple modified to take into account the network
topology.

Definition 2.9 (Path length) Let G = (V, E, w, c) be a task graph. The length of
a path L in G is the sum of the weights of its nodes and edges:

len(L) =
∑

n∈L,V

w(n) +
∑

e∈L,E

c(e).

Definition 2.10 (Critical path) Let G = (V, E, w, c) be a task graph. A critical
path CP of G is a longest path in G (from the entry task to the exit task):

len(CP ) = max
L∈G

{len(L)}.

Clearly, there might be more than one critical path as several paths can have
the same maximum length. The critical path tasks are all tasks of the critical path
CP and they are also called Critical tasks. In order to be able to compute the
attributes needed to find the critical tasks the average computation and communica-
tion costs are utilized. The average computation cost and the average communication
cost can be computed as

wi =

p∑
j=1

wi,j

p
, ci,j = S + R · µi,j,
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where S is the average communication startup cost over all machines computed as

S =

p∑
q=1

Sq

p

and R is the average communication cost per transferred byte over all machines
computed as

R =

p∑
i=1

p∑
j=1

Ri,j

(p(p− 1))
.

2.3 Scheduling problem

This section presents the scheduling problem. Some more definitions from the
scheduling theory and a theorem build on NP-completeness theoretical knowledge
are introduced. These are processor allocation, schedule, node finish time, schedule
length and scheduling problem definitions. Finally the NP-completeness theorem is
cited and commented [15].

Definition 2.11 (Processor allocation) Processor allocation A of the task graph
G = (V, E, w, c) on a finite set P of processors is the processor allocation function
proc: V → P of the nodes of G to the processors of P .

Figure 2.3 (a) Scheduling of Figure 2.2 application graph on three processors preserving
communication heterogeneity (makespan = 94) [8]; (b) the Gantt chart of a schedule for
the task graph of Figure 2.1 on three processors [15].

13



Definition 2.12 (Schedule) A schedule S of the task graph G = (V, E, w, c) on
a finite set P of processors is the function pair (ts, proc), where

• ts : V → Q+
0 is the start time function of the nodes of G. It can be computed

recursively by traversing the task graph downward, starting from the entry task
nentry, as follows [7]:

ts(ni) = max
nj∈pred(ni)

{ts(nj) + wj + cj,i},

where pred(ni) is the set of immediate predecessors of task ni. For the entry
task nentry, the start time function value is equal to ts(nentry) = 0.

• proc: V → P is the processor allocation function of the nodes of G to the
processors of P.

The node n ∈ V is scheduled to start execution at ts(n) on processor proc(n) =
pq, pq ∈ P , which is denoted by ts(n, pq); hence,

ts(n, pq) ⇔ ts(n), proc(n) = pq, pq ∈ P.

Definition 2.13 (Node finish time) Let S be a schedule for task graph G = (V, E,
w, c) on a heterogeneous parallel system Mhetero = (P, ω). The finish time of node n
on processor pq ∈ P is

tf (n, pq) = ts(n, pq) + ω(n, pq).

Definition 2.14 (Schedule length – called makespan) Let S be a schedule for
task graph G = (V, E, w, c) on a heterogeneous parallel system Mhetero = (P, ω).
The schedule length of S is

sl(S) = max
n∈V, pq∈P

{tf (n, pq)} − min
n∈V, pq∈P

{ts(n, pq)}.

Definition 2.15 (Scheduling problem) Let G = (V, E, w, c) be a task graph and
Mhetero = (P, ω) a heterogeneous parallel system. The scheduling problem is to de-
termine a feasible schedule S of minimal length sl for G on P .

Theorem 2.16 (NP-completeness) Let G = (V, E, w, c) be a task graph and
Mhetero = (P, ω) a heterogeneous parallel system. The decision problem H−Sched(G,
Mhetero) associated with the scheduling problem is as follows. Is there a schedule S for
G on Mhetero with length sl(S) ≤ T, T ∈ Q+? H−Sched(G, Mhetero) is NP-complete.

So as given in the theorem above, finding an optimal solution for the scheduling
problem has been proven to be NP-complete. Therefore, heuristics can be used to find
a sub-optimal schedule rather than parsing all possible schedules. These heuristics
are classified in next two chapters and some of them are presented simultaneously
as compile-time and real-time scheduling algorithms.
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Chapter 3

Compile-time scheduling

This chapter presents some of well-known compile-time heterogeneous schedul-
ing algorithms, where the application can be represented by the directed acyclic
graph (DAG). Finding an optimal solution for the scheduling problem has been
proven to be NP-complete (see the second chapter). These algorithms are therefore
rather heuristics because they can be used to find a sub-optimal schedule rather than
parsing all possible schedules. Static scheduling heuristics are classified in the be-
ginning of the chapter. Performance and complexity characteristics are commented
for each of these heuristics.

3.1 Algorithms classification

This section classifies static scheduling algorithms and brings a short descrip-
tion of each of their groups. According to [16], compile-time scheduling algorithms
can be classified into two main groups, heuristic based algorithms and guided random
search based algorithms. The former can be further classified into three subgroups:
list scheduling heuristics, clustering heuristics and task duplication heuristics (see
Figure 3.1). Following subsections present them more closely.

Figure 3.1 Classification of compile-time scheduling algorithms.

From [7], static scheduling algorithms basically try to select a task (called
a ready task) to be ready for machine assignment in each scheduling step. The task
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can be selected according to certain priority attributes. These priority attributes can
be computed for all tasks before starting the machine assignment (static) or they
can be recomputed to select the next ready task after assigning the current task
to a machine (dynamic). Three different ways are used for machine assignment for
a ready task: non-insertion based, where the first machine that is ready to execute
the current ready task is selected, insertion based, where the idle time slots left by
the previous scheduled tasks are examined in addition to the machines ready time,
and duplication based, where certain or all parents are redundantly executed on some
selected machines to minimize the start time of the current ready task.

3.1.1 List scheduling

Figure 3.2 Example of simple list scheduling with start time minimization for the task
graph of Figure 2.1: (a) to (c) are snapshots of partial schedules; (d) shows the final
schedule [15].

As written in [16], a list scheduling heuristic (see Figure 3.2) maintains a list
of all tasks of a given graph according to their priorities. It has two phases: the task
prioritizing (or task selection) phase for selecting the highest priority ready task
and the processor selection phase for selecting a suitable processor that minimizes
a predefined cost function (which can be the execution start time). Some of the
examples are heterogeneous earliest finish time (HEFT) [16], critical path on a pro-
cessor (CPOP) [16], fast load balance (FLB) [13], dynamic level scheduling (DLS)
[14], mapping heuristic (MH) [5] or levelized-min time (LMT) [6]. Most of the list
scheduling algorithms are for a bounded number of fully connected processors. List
scheduling heuristics are generally more practical and provide better performance
results at a lower scheduling time than the other groups.

Node priorities

Static priorities [15] are based on the characteristics of the task graph. In
the simplest case, the priority metric itself establishes a precedence order among
the nodes. It is then sufficient to order the nodes according to their priorities with

16



any sort algorithm, for example Mergesort, which has a complexity of O(V × logV ).
Figure 3.3 shows the algorithm to create node list.

Assign a priority to each n ∈ V .
Put source nodes n ∈ V : pred(n) = 0 into priority queue Q.
while Q 6= 0 do // Q only contains free nodes

Let n be the node of Q with highest priority; remove n from Q.
Append n to list L.
Put {ni ∈ succ(n): pred(ni) ⊆ L} into Q.

endwhile

Figure 3.3 Create node list algorithm.

Level or critical path based priority schemes turn into dynamic priorities [15]
when they are recalculated in each scheduling step based on the current partial
schedule. In general, recalculating the levels or the critical path in each step of
scheduling multiplies the costs for the level or critical path determination by a factor
of |V |. However, an efficient implementation might only update the levels for those
nodes that are affected by the scheduling of a node.

Graph attributes

Except the earliest start time (EST ) and the earliest finish time (EFT ) defined
in previous chapter as ts and tf , the upward rank or the downward rank are used
in heterogeneous list scheduling algorithms [16] as priority attributes. The upward
rank of a task ni is recursively defined by

ranku(ni) = wi + max
nj∈succ(ni)

(ci,j + ranku(nj)),

where succ(ni) is the set of immediate successors of task ni, ci,j is the average com-
munication cost of edge (i, j) and wi is the average computation cost of task ni.
Since the rank is computed recursively by traversing the task graph upward, starting
from the exit task, it is called upward rank. For the exit task nexit, the upward rank
value is equal to

ranku(nexit) = wexit.

Basically, ranku(ni) is the length of the critical path from task ni to the exit task,
including the computation cost of task ni. There are algorithms in the literature
which compute the rank value using computation costs only, which is called static
upward rank (ranks

u). Similarly, the downward rank of a task ni is recursively defined
by

rankd(ni) = max
nj∈pred(ni)

{rankd(nj) + wj + cj,i},

where pred(ni) is the set of immediate predecessors of task ni. The downward ranks
are computed recursively by traversing the task graph downward starting from the
entry task of the graph. For the entry task nentry, the downward rank value is equal
to zero. Basically, rankd(ni) is the longest distance from the entry task to task ni,
excluding the computation cost of the task itself.
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3.1.2 Clustering

Figure 3.4 Clustering of a simple task graph: (a) simple task graph for clustering al-
gorithms; (b) initial clustering; (c) clustering after clusters of nodes a and b have been
merged; (d) clustering with only two clusters [15].

According to [16], an algorithm in this group maps the task in a given graph
to an unlimited number of clusters (see Figure 3.4 and Figure 3.5). At each step,
the selected tasks for clustering can be any task, not necessarily a ready task. Each
iteration refines the previous clustering by merging some clusters. If two tasks are
assigned to the same cluster, they will be executed on the same processor. A cluster-
ing heuristic require additional steps to generate a final schedule: a cluster merging
step for merging the clusters so that the remaining number of clusters equals the
number of processors, a cluster mapping step for mapping the clusters on the avail-
able processors, and a task ordering step for ordering the mapped task within each
processor [10]. More formal definition of clustering as stated in [15] follows.

Figure 3.5 Implicit schedules of (a) the initial clustering as shown in Figure 3.4(b) and
(b) the clustering in Figure 3.4(c) [15].

Definition 3.1 (Clustering) Let G = (V, E, w, c) be a task graph. A clustering C
is a schedule of G on an implicit parallel system P with an ”unlimited” number of
processors; that is, |P | = |V |. The processors p ∈ P are called clusters.
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3.1.3 Task duplication

Figure 3.6 (a), (b) partial and (c), (d) full schedules for the task graph of Figure 2.1; the
schedules of (b), (c) and (d) use task duplication [15].

Figure 3.7 Two examples of chromosomes (top) that encode both processor allocation and
node list for the scheduling of the Figure 2.1 sample task graph on three processors and the
schedules they represent (bottom) [15].

As given in [16], the idea behind duplication based scheduling algorithms (see
Figure 3.6) is to schedule a task graph by mapping some of its tasks redundantly,
which reduces the interprocess communication overhead. Duplication based algo-
rithms differ according to the selection strategy of the tasks for duplication. The
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algorithms in this group are usually for an unbounded number of processors and they
have much higher complexity values than the algorithms in the other groups.

3.1.4 Genetic algorithms

According to [16], guided random search techniques (or randomized search
techniques) use random choice to guide themselves through the problem space, which
is not the same as performing merely random walks as in the random search methods.
These techniques combine the knowledge gained from previous search results with
some randomizing features to generate new results. Genetic algorithms (GAs) are
the most popular and widely used techniques for several flavors of the task scheduling
problem (see Figure 3.7). GAs generate good quality of output schedules; however,
their scheduling times are usually much higher than the heuristic based techniques [1].
Additionally, several control parameters in a genetic algorithm should be determined
appropriately. The optimal set of control parameters used for scheduling a task graph
may not give the best results for another task graph. In addition to GAs, simulated
annealing and local search method are the other methods in this group.

3.2 Scheduling algorithms

This section presents some of well-known compile-time heterogeneous schedul-
ing algorithms, where the application can be represented by the directed acyclic
graph (DAG). Finding an optimal solution for the scheduling problem has been
proven to be NP-complete (see the second chapter). These algorithms are therefore
rather heuristics because they can be used to find a sub-optimal schedule rather than
parsing all possible schedules. Heterogeneous earliest finish time (HEFT) [16], criti-
cal path on a processor (CPOP) [16], fast load balance (FLB) [13] (see Figure 3.11
for example schedules of these three algorithms), dynamic level scheduling (DLS)
[14], mapping heuristic (MH) [5] and levelized-min time (LMT) [6] algorithms are
introduced in the following subsections.

3.2.1 HEFT algorithm

According to [16], the HEFT (Heterogeneous earliest finish time) algorithm
(see Figure 3.8) is an application scheduling algorithm for a bounded number of
heterogeneous processors, which has two major phases: a task prioritizing phase for
computing the priorities of all tasks and a processor selection phase for selecting the
tasks in the order of their priorities and scheduling each selected task on its ”best”
processor, which minimizes the task’s finish time.

Task prioritizing phase

This phase requires the priority of each task to be set with the upward rank
value, ranku, which is based on mean computation and mean communication costs.
The task list is generated by sorting the tasks by decreasing order of ranku, where
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the tie-breaking is done randomly. There can be alternative policies for tie-breaking,
such as selecting the task whose immediate successor task(s) has higher upward
ranks. Since these alternate policies increase the time complexity, we prefer a ran-
dom selection strategy. It can be easily shown that the decreasing order of ranku

values provides a topological order of tasks, which is a linear order that preserve the
precedence constraints.

Set the computation costs of tasks and communication costs of edges with mean values.
Compute ranku for all tasks by traversing graph upward, starting from the exit task.
Sort the tasks in a scheduling list by nonincreasing order of ranku values.
while there are unscheduled tasks in the list do

Select the first task, ni, from the list for scheduling.
for each processor pk in the processor set (pk ∈ Q) do

Compute EFT (ni, pk) value using the insertion based scheduling policy.
Assign task ni to the processor pj that minimizes EFT of task ni.

endwhile

Figure 3.8 The HEFT algorithm [16].

Processor selection phase

For most of the task scheduling algorithms, the earliest available time of a pro-
cessor pj for a task execution is the time when pj completes the execution of its last
assigned task. However, the HEFT algorithm has an insertion based policy which
considers the possible insertion of a task in an earliest idle time slot between two
already scheduled tasks on a processor. The length of an idle time slot, i.e., the
difference between execution start time and finish time of two tasks that were con-
secutively scheduled on the same processor, should be at least capable of computation
cost of the task to be scheduled. Additionally, scheduling on this idle time slot should
preserve precedence constraints.

In the HEFT algorithm, the search of an appropriate idle time slot of a task
ni on a processor pj starts at the time equal to the ready time of ni on pj, i.e., the
time when all input data of ni that were sent by ni’s immediate predecessor tasks
have arrived at processor pj. The search continues until finding the first idle time
slot that is capable of holding the computation cost of task ni. The HEFT algorithm
has an O(e × q) time complexity for e edges and q processors. For a dense graph
when the number of edges is proportional to O(v2), where v is the number of tasks,
the time complexity is on the order of O(v2 × q).

3.2.2 CPOP algorithm

From [16], although the CPOP (Critical path on a processor) algorithm (see
Figure 3.9) has the task prioritizing and processor selection phases as in the HEFT
algorithm, it uses a different attribute for setting the task priorities and a different
strategy for determining the ”best” processor for each selected task.

Task prioritizing phase

In this phase, upward rank (ranku) and downward rank (rankd) values for all
tasks are computed using mean computation and mean communication costs. The

21



CPOP algorithm uses the critical path of a given application graph. The length of
this path, |CP |, is the sum of the computation costs of the tasks on the path and
intertask communication costs along the path. The sum of computation costs on
the critical path of a graph is basically the lower bound for the schedule lengths
generated by the task scheduling algorithm.

The priority of each task is assigned with the summation of upward and down-
ward ranks. The critical path length is equal to the entry task’s priority. Initially,
the entry task is the selected task and marked as a critical path task. An immediate
successor (of the selected task) that has the highest priority value is selected and
it is marked as a critical path task. This process is repeated until the exit node
is reached. For tie-breaking, the first immediate successor which has the highest
priority is selected.

We maintain a priority queue (with the key of ranku + rankd) to contain all
ready tasks at any given instant. A binary heap was used to implement the priority
queue, which has the time complexity of O(logv) for insertion and deletion of a task
and O(1) for retrieving the task with the highest priority. At each step, the task
with the highest ranku + rankd value is selected from the priority queue.

Set the computation costs of tasks and communication costs of edges with mean values.
Compute ranku for all tasks by traversing graph upward, starting from the exit task.
Compute rankd for all tasks by traversing graph downward, starting from the entry task.
Compute priority(ni) = rankd(ni) + ranku(ni) for each task ni in the graph.
|CP | = priority(nentry), where nentry is the entry task.
SETCP = {nentry}, where SETCP is the set of tasks on the critical path.
nk ← nentry .
while nk is not the exit task do

Select nj where ((nj ∈ succ(nk)) and (priority(nj) == |CP |)).
SETCP = SETCP ∪ {nj}.
nk ← nj .

endwhile
Select the critical path processor (pCP ) which minimizes

∑
ni∈SETCP

wi,j , ∀pj ∈ Q.

Initialize the priority queue with the entry task.
while there is an unscheduled task in the priority queue do

Select the highest priority task ni from priority queue.
if ni ∈ SETCP then

Assign the task ni on pCP .
else

Assign the task ni to the processor pj which minimizes the EFT (ni, pj).
Update the priority queue with the successors of ni, if they become ready tasks.

endwhile

Figure 3.9 The CPOP algorithm [16].

Processor selection phase

The critical path processor, pCP , is the one that minimizes the cumulative
computation costs of the tasks on the critical path. If the selected task is on the
critical path, then it is scheduled on the critical path processor; otherwise it is
assigned to a processor which minimizes the earliest execution finish time of the
task. Both cases consider an insertion based scheduling policy. The time complexity
of the CPOP algorithm is equal to O(e×q) for e edges and q processors. For a dense
graph when the number of edges is proportional to O(v2), where v is the number of
tasks, the time complexity is on the order of O(v2 × q).
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3.2.3 FLB algorithm

As given in [7], the early version of the FLB (Fast load balance) algorithm
was presented for homogeneous computing systems. The algorithm is a modified
version of the well-known earliest time first (ETF) algorithm. The latest versions of
the algorithm are modifications to handle heterogeneous computing systems.

Initialize the ready tasks list with the entry task.
while the ready tasks list is not empty do

Compute the minimum task finish time for each task ni in the ready tasks list.
Select the (task ni, machine pj) pair that minimizes the minimum task finish time.
Assign the task ni to the corresponding selected machine pj .
Update the ready tasks list with the tasks, if they become ready tasks.

endwhile

Figure 3.10 The FLB-f algorithm [13].

The FLB algorithm [13] utilizes a list called the ready list, which contains all
ready tasks to be scheduled at each step. A ready task is defined as a task that has
all its parents scheduled. In each step, the minimum task finish time for each ready
task in the ready list is computed in a set of two machines for each ready task and
the (task, machine) pair that minimizes the minimum task finish time is selected.
The machine set for each ready task contains two machines: the first idle machine
and the machine where the last message was received. The presented version of the
FLB algorithm is called FLB-f (see Figure 3.10), where all machines are examined
for each ready task. The complexity of the FLB-f algorithm is O(v3 × q), where v is
the number of tasks and q is the number of processors.

Figure 3.11 Scheduling of the task graph in Figure 2.2 with (a) FLB-f (makespan = 91),
(b) HEFT (makespan = 91) and CPOP (makespan = 97) [8].

3.2.4 Other algorithms

Dynamic level scheduling (DLS)

According to [16], at each step, the dynamic level scheduling (DLS) algorithm
[14] selects the (ready node, available processor) pair that maximizes the value of
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the dynamic level which is equal to DL(ni, pj) = ranks
u(ni) − EST (ni, pj). The

computation cost of a task is the median value of the computation costs of the task
on the processors. In this algorithm, upward rank calculation does not consider
the communication costs. For heterogeneous environments, a new term is added
for the difference between the task’s median execution time on all processors and its
execution time on the current processor. The general DSL algorithm has an O(v3×q)
time complexity, where v is the number of tasks and q is the number of processors.

Mapping heuristic (MH)

From [16], in the mapping heuristic (MH) algorithm [5], the computation cost
of a task on a processor is computed by the number of instructions to be executed
in the task divided by the speed of the processor. However, in setting the computa-
tion costs of tasks and the communication costs of edges before scheduling, similar
processing elements (i.e., homogeneous processors) are assumed; the heterogeneity
comes into the picture during the scheduling process.

This algorithm uses static upward ranks to assign priorities. (The authors
also experimented by adding the communication delay to the rank values.) In this
algorithm, the ready time of a processor for a task is the time when the processor
has finished its last assigned task and is ready to execute a new one. The MH
algorithm does not schedule a task to an idle time slot that is between two tasks
already scheduled. The time complexity, when contention is considered, is equal to
O(v2 × q3) for v tasks and q processors; otherwise, it is equal to O(v2 × q).

Levelized-min time (LMT)

As written in [16], the levelized-min time (LMT) algorithm [6] is a two-phase
algorithm. The first phase groups the tasks that can be executed in parallel using the
level attribute. The second phase assigns each task to the fastest available processor.
A task in a lower level has higher priority than a task in a higher level. Within the
same level, the task with the highest computation cost has the highest priority. Each
task is assigned to a processor that minimizes the sum of the task’s computation
cost and the total communication costs with tasks in the previous levels. For a fully
connected graph, the time complexity is O(v2 × q2) when there are v tasks and q
processors.
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Chapter 4

Real-time scheduling

This chapter presents real-time scheduling basics and methods classification.
According to [2], for uniprocessor systems, the problem of ensuring that deadline
constraints are met has been widely studied, so effective scheduling algorithms that
take into account the many complexities that arise in real systems are well under-
stood. By contrast, understanding the trade-offs involved in scheduling independent,
periodic real-time tasks on multiprocessor systems is still weak.

4.1 Introduction

Research on real-time scheduling has largely focused on the problem of schedul-
ing of recurring processes. The periodic task model of Liu and Layland is the simplest
model of a recurring process [11, 12]. From [2], in this model, a task T is character-
ized by two parameters: a worst-case execution requirement e and a period p. Such
a task is invoked at each non-negative integer multiple of p. Task invocations are
also called job releases or job arrivals. Each invocation requires at most e units of
processor time and must complete its execution within p time units. A collection of
periodic tasks is referred to as a periodic task system and is denoted τ .

We say that a task system τ is schedulable by an algorithm A if A ensures that
the timing constraints of all tasks in τ are met. τ is said to be feasible under a class C
of scheduling algorithms if τ is schedulable by some algorithm A ∈ C. An algorithm
A is said to be optimal with respect to class C if A ∈ C and A correctly schedules
every task system that is feasible under C. When the class C is not specified, it
should be assumed to include all possible scheduling algorithms.

Liu and Layland proved [12] that for a set of n periodic tasks with unique peri-
ods, a feasible schedule that will always meet deadlines exists if the CPU utilization
U is below a specific bound (depending on the number of tasks) which is defined as

U =
n∑

i=1

Ci

Ti

≤ n(
n
√

2− 1),

where Ci is the computation time, Ti is the release period (with deadline one period
later), and n is the number of processes to be scheduled. When the number of
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processes tends towards infinity this expression will tend towards

lim
n→∞

n(
n
√

2− 1) = ln 2.

As written in [3], besides representations of task schedules such as timing
diagrams (see Figure 4.1 (b)) or Gannt charts (see Figure 4.1 (a)), an elegant, dy-
namic representation of tasks exists in a multiprocessor system called the scheduling
game board (see Figure 4.2 and Figure 4.3). This dynamic representation graphically
shows the statuses (remaining computation time and laxity) of each task at a given
instant.

Figure 4.1 (a) Gannt chart, (b) Timing diagram [3].

Figure 4.2 Scheduling game board [3].
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4.2 Algorithms classification

This section presents several views how to classify real-time algorithms on
multiprocessors. As given in [2], traditionally, there have been two approaches for
scheduling periodic task systems on multiprocessors:

• global scheduling (see subsection 4.2.1)

• partitioning (see subsection 4.2.2)

In addition to the above approaches, a new ”middle” approach is considered
in which each job is assigned to a single processor, while a task is allowed to migrate.
In other words, inter-processor task migration is permitted only at job boundaries.
An active job must be defined before another view of algorithms classification will
be stated [2].

Definition 4.1 (Active job) A job is said to be active at time instant t in a given
schedule if (i) it has arrived at or prior to time t, (ii) its deadline occurs after time
t, and (iii) it has not yet completed execution.

Because scheduling algorithms typically execute upon the same processor(s) as
the task system being scheduled, according to [2], it is important for such algorithms
to be relatively simple and efficient. Most known real-time scheduling algorithms
are work-conserving and operate as follows: at each instant, a priority is associated
with each active job, and the highest-priority jobs that are eligible to execute are
selected for execution upon the available processors.

In work-conserving algorithms, a processor is never left idle while an active
job exists (unless migration constraints prevent the task from executing on the idle
processor). Because the runtime overheads of such algorithms tend to be less than
those of non-work-conserving algorithms, scheduling algorithms that make schedul-
ing decisions on-line tend to be work-conserving. A taxonomy is presented that ranks
scheduling schemes along the following two dimensions:

• the complexity of the priority scheme (see subsection 4.2.3)

• the degree of migration allowed (see subsection 4.2.4)

Figure 4.3 Game board showing deadline miss [3].
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4.2.1 Global scheduling

From [2], in global scheduling, all eligible tasks are stored in a single priority-
ordered queue and the global scheduler selects for execution the highest priority
tasks from this queue. Unfortunately, using this approach with optimal uniprocessor
scheduling algorithms, such as RM (Rate monotonic, see Figure 4.4 for schedule ex-
ample) and EDF (Earliest deadline first, see Figure 4.5 for schedule example), may
result in arbitrarily low processor utilization in multiprocessor systems [4]. How-
ever, as given in [2], the research on proportionate fair (Pfair) scheduling has shown
considerable promise in that it has produced the only known optimal method for
scheduling periodic tasks on multiprocessors.

4.2.2 Partitioning

According to [2], in partitioning, each task is assigned to a single processor,
on which each of its jobs will execute, and processors are scheduled independently.
The main advantage of partitioning approaches is that they reduce a multiprocessor
scheduling problem to a set of uniprocessor ones. Unfortunately, partitioning has two
negative consequences. First, finding an optimal assignment of tasks to processors
is a bin-packing problem, which is NP-hard in the strong sense. Therefore, tasks are
usually partitioned using non-optimal heuristics. Second, task systems exist that are
schedulable if and only if tasks are not partitioned.

Figure 4.4 RM schedule [3].

4.2.3 Priority-based classification

As written in [2], in differentiating among scheduling algorithms according to
the complexity of the priority scheme, three categories are considered:

1. Static priorities – A unique priority is associated with each task, and all jobs
generated by a task have the priority associated with that task. Thus, if task
T1 has higher priority than task T2, then whenever both have active jobs, T1’s
job will have priority over T2’s job. An example of a scheduling algorithm in
this class is the RM (Rate monotonic, see Figure 4.4 for schedule example) or
the DM (Deadline monotonic) algorithm.

2. Job-level dynamic priorities (dynamic but fixed within a job) – For every pair
of jobs Ji and Jj , if Ji has higher priority than Jj at some instant in time, then
Ji always has higher priority than Jj. An example of a scheduling algorithm
that is in this class, but not the previous class, is the EDF (Earliest deadline
first, see Figure 4.5 for schedule example) algorithm.
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3. Unrestricted dynamic priorities (fully dynamic) – No restrictions are placed on
the priorities that may be assigned to jobs, and the relative priority of two jobs
may change at any time. An example scheduling algorithm that is in this class,
but not the previous two classes, is the LLF (Least laxity first) algorithm.

Figure 4.5 EDF schedule [3].

4.2.4 Migration-based classification

From [2], interprocessor migration has traditionally been forbidden in real-time
systems for the following reasons:

• In many systems, the cost associated with each migration (i.e., the cost of
transferring a job’s context from one processor to another) can be prohibitive.

• Until recently, traditional real-time scheduling theory lacked the techniques,
tools, and results to permit a detailed analysis of systems that allow migration.
Hence, partitioning has been the preferred approach due largely to the non-
existence of viable alternative approaches.

In differentiating among multiprocessor scheduling algorithms according to the
degree of migration allowed, we consider the following three categories:

1. No migration (i.e., task partitioning) – In partitioned scheduling algorithms,
the set of tasks is partitioned into as many disjoint subsets as there are pro-
cessors available, and each such subset is associated with a unique processor.
All jobs generated by the tasks in a subset must execute only upon the corre-
sponding processor.

2. Restricted migration (migration allowed, but only at job boundaries, i.e., dy-
namic partitioning at the job level) – In this category of scheduling algorithms,
each job must execute entirely upon a single processor. However, different jobs
of the same task may execute upon different processors. Thus, the runtime
context of each job needs to be maintained upon only one processor. However,
the task-level context may be migrated.

3. Full (unrestricted) migration (i.e., jobs are also allowed to migrate) – No re-
strictions are placed upon interprocessor migration.

By definition, unrestricted dynamic-priority algorithms are a generalization of
job-level dynamic-priority algorithms, which are in turn a generalization of static-
priority algorithms. In the multiprocessor systems, unrestricted dynamic-priority
scheduling algorithms are strictly more powerful than job-level dynamic-priority al-
gorithms.
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Chapter 5

Evaluation methods

This chapter presents evaluation methods which are used to compare perfor-
mance of heterogeneous scheduling algorithms. Testing benchmarks and comparison
metrics are introduced from [7] in the following sections.

5.1 Testing benchmarks

This section presents some testing benchmarks for heterogeneous scheduling
algorithms and brings a short description for each of them. It is very convenient to
use random generated graphs in measuring the performance of the tested algorithms.
The graphs are generated randomly with various numbers of tasks, various numbers
of communication edges and various computation and communication costs. Ran-
domly generated graphs can cover a wide range of applications. It is also convenient
to use real application graphs to examine the behavior of the tested algorithms in
some real problems.

Five application graphs are used as a testing benchmark to compare perfor-
mance of heterogeneous scheduling algorithms. These graphs are: random generated
graph with different characteristics, Gaussian elimination, Laplace equation, molec-
ular dynamic code and fork-join. Heterogeneous scheduling algorithms should be
able to deal with each machine capability and the speed of each communication link
in the system. For this reason, the application graph generators are implemented to
generate tasks with different computation and communication costs, depending on
the machine and communication links used.

5.1.1 Random generated graph

In order to be able to generate a random application graph with different
characteristics, a random graph generator is implemented, depending on several input
parameters. These parameters are:

• number of tasks in a graph (v),

• graph levels (GL),
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• computation to communication ratio (CCR), which is defined as the ratio of
the average communication cost to the average computation cost.

The expected execution cost of each task and the expected communication cost are
generated randomly, preserving the CCR. Graphs with a single entry task and a
single exit task are considered.

5.1.2 Gaussian elimination

Gaussian elimination is a well known problem, where the structure of the
graph is predefined as shown in Figure 5.1. The number of tasks v and the number
of graph levels GL depend on the matrix size m. The graph total number of tasks
is equal to:

m2 + m− 2

2
.

The computation cost of each task and the communication costs are generated ran-
domly, preserving the selected CCR.

Figure 5.1 Gaussian elimination application graph [7].

5.1.3 Laplace equation

The Laplace equation is also a well known problem where the structure of the
graph is predefined as shown in Figure 5.2 The number of tasks v is predefined and
the number of graph levels GL depends on the number of tasks v. The computation
cost of each task and the communication costs are generated randomly, preserving
the selected CCR.
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Figure 5.2 Laplace equation application graph [7].

5.1.4 Fork-join

Fork-join is a simple application, where the entry task forks its output to O(v)
tasks and the output of these O(v) tasks are joined to one task, as shown in Figure
5.3. For each v, the number of graph levels GL is selected to preserve the fork and
join structure. The computation cost of each task and the communication costs are
generated randomly, preserving the selected CCR.

Figure 5.3 Fork-join application graph [7].

5.1.5 Molecular dynamic code

Molecular dynamic code is an irregular application, since it has a fixed num-
ber of tasks (v = 41) and a known graph structure, as shown in Figure 5.4. The
computation cost of each task and the communication costs are generated randomly,
preserving the selected CCR.
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Figure 5.4 Molecular dynamic code application graph [7].

5.2 Comparison metrics

This section introduces comparison metrics for heterogeneous scheduling algo-
rithms. According to [7], the performance comparisons can be done based on three
comparison metrics: makespan, average schedule length ratio (SLR) and quality of
schedule. For each application, the performance comparisons are done with respect
to: graph size, number of available machines and computation to communication
ratio (CCR). The average communication cost is utilized for homogeneous commu-
nication to be able to compare the performance with the other algorithms.

5.2.1 Makespan

The makespan (or the schedule length) is the main performance measure and
it is defined as:

makespan = FT (vexit),

where FT (vexit) is the finish time of the scheduled exit task.

5.2.2 Schedule length ratio

The main performance measure is the makespan. Since a large set of appli-
cation graphs with different characteristics is used, it is necessary to normalize the
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schedule length to the lower bound, which is called the schedule length ratio (SLR).
The SLR is defined as:

SLR =
makespan∑

vi∈CT minpj∈P{wi,j}
.

The denominator is the sum of the minimum computation costs of the critical tasks.

5.2.3 Quality of schedule

The percentage number of times that an algorithm produced a better, equal
or worse schedule is compared to some other algorithms. A table of such percentage
comparisons is used in publications as the standard format (see Figure 5.5 for an ex-
ample). Sometimes a standard table isn’t enough for more complicated comparisons.
Some kind of graphs can be used in these cases. See [9] for examples of standard
tables as well as mentioned graphs.

Figure 5.5 Percentage comparisons table - schedule quality of random generated graphs
with respect to graph size [7].

34



Chapter 6

Time restrictions

This chapter brings time restrictions into the scheduling problem. The problem
of time restrictions is described first and it’s also explained what’s respecting of such
kind of restrictions good for and why it’s useful to deal with this problem. After
that, the analysis of possible models and methods to solve the problem follows, so the
reasons for why to extend some existing models and methods, why to develop new
algorithms or which methods should be chosen to extend them are given. Finally,
the method is proposed, analyzed and experimentally tested.

6.1 Problem description

This section describes the problem of time restrictions. Examples are given to
illustrate the usage in real systems.

The only point of view to the scheduling in distributed systems has been for
many years or even for many decades the classical scheduling as presented in the
chapter 3 of this work where graph models are defined, a fully connected topology is
assumed and the main aspect of the schedule quality is mostly its length minimal-
ization. The world is somehow idealized in this approach because it doesn’t respect
any requirements, problems or restrictions of real systems. People researching this
area have used to this approach and some totally different approach could mean
something like a small revolution for them.

However, the reality differs from the classical view and it’s not ideal in many
ways. This difference brings some requirements, problems or restrictions into schedul-
ing systems. Both machines and networks have the real physical characteristics and
they aren’t homogeneous in today’s systems as well as a fully connected network
topology can’t be assumed. Moreover, both machines and networks become quicker,
so it needn’t be necessary to take attributes like communication startup cost into
account because it tends to zero. This attribute will be discussed further in the next
section.

Time restrictions, i.e. intervals when one or more machines are temporarily
unavailable, should be something like one step from many possible ways how to bring
scheduling in distributed systems closer to the reality. It should represent some kind
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of real-time characteristics of the system. Time restrictions can be useful to bring
into the system the possibility of expressing for example a planned outage, a system
maintenance or a situation when intervals of processor time are allocated to active
users to make the whole machine available for the particular user.

Although there are used many criteria in the classical scheduling to optimize
the resulting schedule, the minimalization of the schedule length is required most
often. But in the real system there are some requirements, problems or restrictions,
derivable from their real characteristics, which must be respected. It’s the most
important thing to take them into account in today’s systems, so the other criteria
become less important than in the classical scheduling and their priority is getting
lower off the reality as described before.

6.2 Problem analysis

This section analyzes possible models and methods to solve the problem of
time restrictions.

The graph models defined in the chapter 3 as an abstraction of the scheduling
problem generalize algorithms which are solving scheduling in distributed systems.
These models represent the scheduled application and the scheduling system, so it’s
useful to define similar models which take conditions in the real today’s systems
into account. The question is, whether new models should be developed or existing
models should be extended.

As written in the previous text, described models contain some elements which
could potentially loose their importance in today’s systems, e.g., both machines
and networks become quicker, so it needn’t be necessary to take communication
startup cost into account because it tends to zero. On the other side, there are still
some slower systems, where this information save its value. Moreover, this attribute
should nowadays express an amount of initialization work or a distance between
processors rather than some connection cost to begin the communication, so the
meaning of communication startup cost is shifted somewhere else and purposes of
its usage are quite different than defined in the past. However, if new models are
developed to respect some additional conditions, they will be proposed very similarly
to the existing models because except for the additional information they must still
represent the scheduled application and the scheduling system.

Regarding these thoughts, it seems to be more convenient to extend existing
models than developing new models. Some elements to represent time restrictions
will be probably added into current models to take time restrictions into account.
According to extended models, an algorithm respecting time restrictions will be
proposed. There is again the question similar to the previous one, whether a new
algorithm should be developed or it’s more convenient to extend some existing one
and if the second possibility will be selected, it’s necessary to choose an algorithm
to extend it.

The answer isn’t so clear in this case as it was before because it’s actually not
so easy to find some algorithm which will be possible to extend. The extension should
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be relatively simple, furthermore, the algorithm must have a good time complexity,
behave reasonably regardless of the input data and give acceptable results. Oth-
erwise, it’s better to develop a new algorithm according to extended models. This
algorithm could be similar to some existing one but it must satisfy characteristics
described above.

Searching an algorithm convenient to extend it indicated the HEFT algorithm
as a good choice. This algorithm is used in many publications as a referential al-
gorithm, which are almost all newly developed algorithms, trying to be a bit better
in some sense, compared to. If the attempt to extend the HEFT algorithm went
wrong and it was necessary to propose a new algorithm, a similar approach as in the
HEFT algorithm would be probably selected to solve the problem of respecting time
restrictions in scheduling because of its simplicity and efficiency. The HEFT algo-
rithm have all following characteristics because of which it seems as a good decision
to choose this algorithm and try it to extend:

• It’s relatively simple, so it can be simply implemented or extended, too.

• It has a good time complexity in comparison to other algorithms.

• It behaves reasonably regardless of the input data.

• It gives acceptable results for general graphs.

• It’s used as a referential algorithm in many publications.

6.3 Models extension

This section presents an extension of graph models which are modified to
respect time restrictions.

Before a concrete method can be proposed, models must be modified to take
time restrictions into account. As decided in the previous section, it’s more conve-
nient to extend existing models than developing new models, so some elements to
represent time restrictions must be added into current models.

The application model remain unchanged as defined in the section 2.1 because
it represents the scheduled application which doesn’t contain time restrictions. The
application must only respect time restrictions given in the scheduling system, so
the computing model must be modified to represent them. The computing model is
derived from the computing model as defined in the section 2.2. As shown in Figure
6.1, time restrictions are stored in p matrices Tk of size tk × 3, where:

• tk is the number of time restrictions on machine k,

• Tk is the matrix for machine k,

• the first column of Tk contains the startup time of the time restriction,

• the second column of Tk contains the finish time of the time restriction,
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• the third column of Tk contains the percentage availability of machine k in the
given time interval.

The third column of Tk is always 0 for purposes of time restrictions as defined
before in this chapter. It’s present in the matrix because of reusability of the model
which can be also useful in algorithms taking some maintenance of the system, e.g.,
memory cleaning, into account. Every kind of maintenance needs some resources, so
the system isn’t fully available to run other tasks and it can slow down the scheduled
application in time intervals when the maintenance is executed on the machine. This
is the reason to limit percentage of available resources to make this part of resources
exclusively available for the application.

Figure 6.1 Application model and computation model matrices of heterogeneous comput-
ing systems [7] extended to take time restrictions into account.

6.4 TRHEFT algorithm

This section presents the method proposed to take time restrictions into ac-
count. The pseudo-code of the main part of the proposed algorithm is included to
show how it works with time restrictions and to make it easier to implement the
algorithm.

The TRHEFT (Time restriction heterogeneous earliest finish time) algorithm
is the result of the attempt to extend the HEFT algorithm to take time restrictions
into account. It was necessary to modify only the part of the processor selection
phase, when the EFT (ni, pk) value is computed for each processor pk in the processor
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set using the insertion based scheduling policy, where ni is the currently selected
task. The EFT (ni, pk) value must be computed with respect to time restrictions
(see Figure 6.2 for details).

while there are unscheduled tasks in the list do
Select the first task, ni, from the list for scheduling.
for each processor pk in the processor set (pk ∈ Q) do

Compute EST (ni, pk) value using the insertion based scheduling policy.
Set the index of the actual time restriction rk to the starting index sk.
while rk < tk do

if ni doesn’t finish before rk starts then
Shift EST (ni, pk) after rk finishes.
Increase rk.

else
Break the while cycle.

endwhile
Compute EFT (ni, pk) value using EST (ni, pk) value.
Remember the value to increase sk if the task ni is assigned to the processor pk.

endfor
Assign the task ni to the processor pj that minimizes EFT of the task ni.
Increase the starting index sj for processor pj if necessary using the remembered value.

endwhile

Figure 6.2 The modified part of the processor selection phase in the TRHEFT algorithm.
It’s an extension of the HEFT algorithm [16] to take time restrictions into account (see
Figure 3.8 for pseudo-code of the HEFT algorithm).

6.5 Complexity analysis

According to [16], the HEFT algorithm has an O(e× q) time complexity for e
edges and q processors. For a dense graph when the number of edges is proportional
to O(v2), where v is the number of tasks, the time complexity of the HEFT algorithm
is on the order of O(v2 × q).

Because the TRHEFT algorithm is an extension of the HEFT algorithm, its
time complexity is higher than the time complexity of the HEFT algorithm. If
EFT (ni, pk) value is computed, at most all time restrictions on the selected machine
can be checked, so the TRHEFT algorithm has an O(v× (v+ t)×q) time complexity
for v tasks and q processors, where t is the maximal number of time restrictions on
one machine.

6.6 Experimental work

This section presents an algorithm to generate time restrictions and the per-
formance testing of the TRHEFT algorithm. Randomly generated task graphs rep-
resenting the applications are used as a testing suite and the used testing parameters
are included to make repeating of tests possible. The performance testing is done
based on the average SLR comparison metrics with respect to graph size, number of
available machines and CCR.

The TRHEFT algorithm can’t be compared with any other scheduling algo-
rithm because none of the other algorithms takes time restrictions into account. This
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is the reason why the table of percentage comparisons used in publications as the
standard format can’t be published if time restrictions must be respected. However,
graphs to compare the TRHEFT algorithm with the HEFT algorithm are presented
below for illustration.

6.6.1 Restriction generator

An algorithm to generate random time restrictions is developed and imple-
mented. The input parameters of the algorithm required to generate time restrictions
for a target computing system are the following:

• Average number of time restrictions on a machine, avg rest.

• Maximal deviation of avg rest, max dev.

• Probability that a machine will be unavailable for a longer time after the last
generated time restriction starts, prob total, so this machine can’t compute any
task of the actual application after the beginning of the last generated time
restriction is reached.

• Average restriction length to average task length ratio, arlatlr. Matrix W is
used to compute average task length and its maximal deviation. Then average
restriction length and its maximal deviation can be computed from arlatlr.

For each machine, a number of time restrictions is computed from the average
number of time restrictions and its deviation. Then a number of tasks per restriction
is computed from the number of time restrictions, number of tasks and number of
machines. Finally, time restrictions are generated. For each time restriction, start
time is computed from the number of tasks per restriction, average task length and
its deviation first. Then the end time is computed from the average restriction length
and its deviation. If it’s the last time restriction on a machine, it can be total with
some given probability as explained above.

6.6.2 Testing parameters

Random graph generator described in [16] is used to generate random task
graphs. For all performance evaluation experiments with respect to the number
of available machines, a set num pe = {4, 8, 16, 32} of fully connected machines
with different capabilities is used as a target computing system, otherwise 16 fully
connected machines with different capabilities are used as a target computing sys-
tem (num pe = {16}). For all performance evaluation experiments with respect
to graph size, a set v = {20, 40, 60, 80, 100, 120} of tasks is used, otherwise a set
v = {40, 80, 120} of tasks is used. The other input parameters of the directed acyclic
graph generation algorithm are set with the following values:

• CCR = {0.5, 1.0, 2.0}
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• α = {0.5, 1.0, 2.0}

• out degree = {1, 2, 5, 10, max}

• β = {0.5, 1.0, 2.0}

These input parameters have the meaning as follows (see [16] for more details):

• Communication to computation ratio, CCR, is the ratio of the average com-
munication cost to the average computation cost.

• α is shape parameter of a graph. If α >> 1.0, a dense graph (a shorter graph
with high parallelism) will be generated. A longer graph with a low parallelism
degree can be generated by selecting α << 1.0.

• out degree is output degree of a node.

• Range percentage of computation costs of processors, β, represents the hetero-
geneity factor for processor speeds.

A generator described in the previous section is used to generate time restric-
tions. Input parameters of this algorithm are set with the following values:

• avg rest = 3

• max dev = 2

• prob total = 50.0

• arlatlr = 1.0

For each combination of parameters described above, 100 random task graphs
are generated, so performance evaluation experiments with respect to graph size,
number of available machines and CCR use 27000, 54000 and 13500 random task
graphs respectively as a testing suite.

6.6.3 Performance evaluation

For all experiments in this section, average SLR of random generated task
graphs is always evaluated with respect to one parameter regardless the other pa-
rameters, e.g., if the average SLR of random generated task graphs with respect to
graph size should be figured out for 20 tasks, all results for 20 tasks are averaged
despite the values of other parameters.

The schedule of the TRHEFT algorithm is expected to be longer than the
schedule of the HEFT algorithm because time restrictions take some additional time.
However, the TRHEFT algorithm produced a better schedule in most cases of exper-
iments as shown in the graphs below because it’s shorter than the schedule produced
by the HEFT algorithm. This result is caused by values of parameters in the time
restrictions generation algorithm.
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Figure 6.3 Average SLR of random generated graphs with respect to graph size (arlatlr
set to 1.0).

Figure 6.4 Average SLR of random generated graphs with respect to number of available
machines (arlatlr = 1.0).

If a small number of time restrictions in the target scheduling system is as-
sumed, then arlatlr is the most important parameter because it influences the result
the most. It seems that tasks are scheduled differently because of small delays in the
form of time restrictions and therefore they are scheduled more equally which brings
better usage of machine time in the computing system. It happens because it’s prof-
itable to pay the communication cost and compute the task on another machine to
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make the schedule more optimal. This machine isn’t loaded in the HEFT algorithm
at all or it isn’t loaded as it could be.

Figure 6.5 Average SLR of random generated graphs with respect to CCR (arlatlr = 1.0).

Next tests are done because of these unexpected results to confirm thoughts
and conclusions about the arlatlr parameter. Let’s set the value of arlatlr to 0.1
in the next experiment, which results are presented in the graphs below, so it’s 10
times smaller than before. The other parameters remain unchanged.

Figure 6.6 Average SLR of random generated graphs with respect to graph size (arlatlr
set to 0.1).

43



Figure 6.7 Average SLR of random generated graphs with respect to number of available
machines (arlatlr = 0.1).

Figure 6.8 Average SLR of random generated graphs with respect to CCR (arlatlr = 0.1).

The results confirm that the smaller arlatlr parameter causes the better visi-
bility of the performance difference between the TRHEFT and the HEFT algorithm.

If the arlatlr parameter was too small, it’s possible that the schedule of the
TRHEFT algorithm wouldn’t differ from the schedule of the HEFT algorithm and the
schedule of the TRHEFT algorithm would be longer than the schedule of the HEFT
algorithm because of time restrictions. However, it’s too much time-consuming to
specify closer when the arlatlr parameter is too small, so this problem is out of range
of this work, unfortunately.
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If time restrictions weren’t respected, the TRHEFT algorithm could be used
to solve the scheduling problem as defined in the section 2.3 as well as the HEFT
algorithm and their results could be compared. Then the TRHEFT algorithm uses
small delays to make resulting schedules better. These delays are generated before
the algorithm starts, so their values are fixed. Let’s repeat previous experiment with
the same values of parameters (arlatlr = 0.1). Following tables contain percentage
comparisons of the TRHEFT algorithm with the HEFT algorithm:

HEFT
Better 97.03%

TRHEFT Equal 0.0%
Worse 2.97%

Table 6.1 Schedule quality of random generated graphs with respect to graph size.

HEFT
Better 81.95%

TRHEFT Equal 0.0%
Worse 18.05%

Table 6.2 Schedule quality of random generated graphs with respect to available machines.

HEFT
Better 96.43%

TRHEFT Equal 0.0%
Worse 3.57%

Table 6.3 Schedule quality of random generated graphs with respect to CCR.

Figure 6.9 Average SLR of random generated graphs with respect to graph size (arlatlr
set to 10.0).
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Figure 6.10 Average SLR of random generated graphs with respect to number of available
machines (arlatlr = 10.0).

Figure 6.11 Average SLR of random generated graphs with respect to CCR (arlatlr set
to 10.0).

Let’s set the arlatlr parameter value to 10.0 in the next experiment. This test
should demonstrate that long time restriction intervals lengthen the schedule pro-
duced by the TRHEFT algorithm so much that it’s worse than the schedule produced
by the HEFT algorithm. The results confirm that the greater arlatlr parameter (the
longer time restrictions) causes that the schedule produced by the TRHEFT algo-
rithm isn’t better than the schedule produced by the HEFT algorithm, so some upper
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bounds exist for the arlatlr parameter value in the TRHEFT algorithm to produce
a better schedule than the HEFT algorithm. These bounds differ in most cases for
different computing systems depending on values of parameters.

6.7 Conclusion

The TRHEFT algorithm produced a better schedule than the HEFT algorithm
in some cases as shown in Figures 6.3 – 6.11 which is caused by the value of the
arlatlr parameter. Tasks can be scheduled differently and more equally because of
time restrictions which brings better usage of machine time in the computing system.
If time restrictions needn’t be respected, the TRHEFT algorithm can be compared
with the HEFT algorithm as shown in Tables 6.1 – 6.3. It can be interpreted as
a case when the TRHEFT algorithm uses small delays to produce better schedules
than produces the HEFT algorithm.
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Chapter 7

Available data

This chapter brings available data into the scheduling problem. The structure
of the chapter is very similar to the previous chapter, so the problem of available data
is described first and it’s also explained what’s respecting of such kind of restrictions
good for and why it’s useful to deal with this problem. After that, the analysis
of possible models and methods to solve the problem follows, so the reasons why
to extend some existing models and methods or why to develop new algorithms
are given as well as which methods should be chosen to extend them. Finally, two
methods are proposed, analyzed and experimentally tested.

7.1 Problem description

This section describes the problem of available data. Examples are given to
illustrate the usage in real systems.

The section 6.1 describes, how today’s real systems differ from the classical
scheduling, so there are answered many questions which could be discussed in this
section, too. Excepting time restrictions, available data are another step how to
bring scheduling in distributed systems closer to the reality. It should represent
data which is arising somewhere at some time and it’s needed there or somewhere
else. This approach is more interesting and more useful in real-time than if data are
available at the beginning of the computation as it’s used in the usual model.

Although classical criteria as the minimalization of the schedule length can’t
be ignored in systems where some data is arising, it’s more important than anything
else to take available data into account. Sensor networks must be mentioned as an
example of usage because this term appears more and more.

7.2 Problem analysis

This section should analyze possible models and methods to solve the problem.
However, all these issues are discussed in the previous chapter, so see the section 6.2
for more details. The HEFT algorithm could be probably modified even better to
take available data into account than to respect time restrictions because it seems
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to be easier to add some data into the system than to restrict the availability of the
system itself.

7.3 Models extension

This section presents an extension of graph models which are modified to
respect available data.

Figure 7.1 Application model and computation model matrices of heterogeneous comput-
ing systems [7] extended to take available data into account.

Before a concrete method can be proposed, models must be modified to take
available data into account. Similarly as in case of time restrictions, it’s more con-
venient to extend existing models than developing new models, so some elements to
represent available data must be added into current models.

The application model remain unchanged as defined in the section 2.1 because
it represents the scheduled application which doesn’t contain available data. The
application must only respect available data given in the scheduling system, so the
computing model must be modified to represent them. The computing model is
derived from the computing model as defined in the section 2.2. As shown in Figure
7.1, information about available data are stored in two matrices.

Boolean matrix T of size d × v expresses, if node vj needs data di or not. If
Ti,j is true (1), node vj needs data di. If Ti,j is false (0), node vj doesn’t need data
di. The source machine identification, the size of data and the time when data are
available on the source machine are stored in matrix D of size d× 3, where:

49



• the first column of D contains the source machine identification for data di,

• the second column of D contains the time when data di are available on the
source machine,

• the third column of D contains the size of data di.

7.4 NDAHEFT algorithm

This section presents the first method proposed to take available data into
account. Pseudo-code of the proposed algorithm is included to show how it works
with available data and to make it easier to implement the algorithm.

The NDAHEFT (Naive data available heterogeneous earliest finish time) al-
gorithm is the first result of the attempt to extend the HEFT algorithm to take
available data into account. It wasn’t necessary to modify the HEFT algorithm it-
self, it’s only extended to respect available data (see Figure 7.2 for details). It isn’t
naive in sense of the time complexity but in sense of the schedule length because it’s
waiting to have all needed data available before the application computing starts.

Compute the start time s when all data is available.
Execute the HEFT algorithm.
Recompute the schedule according to s.

Figure 7.2 The NDAHEFT algorithm is an extension of the HEFT algorithm [16] to take
available data into account (see Figure 3.8 for pseudo-code of the HEFT algorithm).

7.5 DAHEFT algorithm

This section presents the second method proposed to take available data into
account. The pseudo-code of the main part of the proposed algorithm is included
to show how it works with available data and to make it easier to implement the
algorithm.

while there are unscheduled tasks in the list do
Select the first task, ni, from the list for scheduling.
Initialize the empty set of data, Di, needed to compute ni.
for each available data dk do

if ni needs dk then
Add dk into Di.

endfor
for each processor pk in the processor set (pk ∈ Q) do

Count the maximal time, mi, when data from Di is available.
Compute EST (ni, pk) value using the insertion based scheduling policy.
if EST (ni, pk) < mi then

EST (ni, pk) = mi

Compute EFT (ni, pk) value using EST (ni, pk) value.
endfor
Assign the task ni to the processor pj that minimizes EFT of the task ni.

endwhile

Figure 7.3 The modified part of the processor selection phase in the DAHEFT algorithm.
It’s an extension of the HEFT algorithm [16] to take available data into account (see Figure
3.8 for pseudo-code of the HEFT algorithm).
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The DAHEFT (Data available heterogeneous earliest finish time) algorithm is
the next result of the attempt to extend the HEFT algorithm to take available data
into account. This method isn’t naive in sense of the schedule length as the previous
one. It was necessary to modify only the part of the processor selection phase, when
the EFT (ni, pk) value is computed for each processor pk in the processor set using
the insertion based scheduling policy, where ni is the currently selected task. The
EFT (ni, pk) value must be computed with respect to available data (see Figure 7.3
for details).

7.6 Complexity analysis

As written in the previous chapter, the HEFT algorithm has according to [16]
an O(e × q) time complexity for e edges and q processors. For a dense graph when
the number of edges is proportional to O(v2), where v is the number of tasks, the
time complexity is on the order of O(v2 × q).

Because the NDAHEFT algorithm calls the HEFT algorithm and its other
work’s time complexity isn’t higher than the time complexity of the HEFT algorithm,
the NDAHEFT algorithm has the time complexity equal to the time complexity of
the HEFT algorithm O(v2 × q).

Because the DAHEFT algorithm is an extension of the HEFT algorithm, its
time complexity is higher than the time complexity of the HEFT algorithm. If
EFT (ni, pk) value is computed, all available data are checked, so the DAHEFT
algorithm has an O(v × (v + d) × q) time complexity for v tasks and q processors,
where d is the number of available data.

7.7 Experimental work

This section presents the available data generation algorithm and the per-
formance comparison of the NDAHEFT algorithm and the DAHEFT algorithm.
Randomly generated task graphs representing the applications are used as a testing
suite. The performance comparison is done based on the average SLR comparison
metrics with respect to graph size, number of available machines and CCR.

Neither the NDAHEFT algorithm nor the DAHEFT algorithm can be com-
pared with any other scheduling algorithm because none of the other algorithms
takes available data into account. This is the reason why the table of percentage
comparisons used in publications as the standard format is published only to com-
pare the NDAHEFT algorithm and DAHEFT algorithm to each other if available
data must be respected. However, graphs to compare NDAHEFT and DAHEFT
algorithms with the HEFT algorithm are presented for illustration.

7.7.1 Data generator

An algorithm to generate random available data is developed and implemented.
The input parameters required to generate the data are the following:
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• Probability that some data are available on a machine, prob machine.

• Average number of tasks which need data available on a machine, avg nodes.

• Maximal deviation of average number of tasks which need data available on a
machine, nodes dev.

• Average size of data in bytes, avg size.

• Maximal deviation of average size of data in bytes, size dev.

• Average time of data availability, avg time.

• Maximal deviation of average time of data availability, time dev.

For each machine, it’s decided first according to some given probability if data
is available on this machine or it isn’t. If data is available on a machine, it’s generated.
For each available data, the time of availability, size of data and number of tasks are
computed from average values and their deviations given as input parameters. Then
tasks are added at random. If some task is already present, it’s not added for second
time but the number of tasks is decreased.

7.7.2 Testing parameters

Similarly to the previous chapter, a random graph generator described in [16]
is used to generate random task graphs. For all performance evaluation experiments
with respect to the number of available machines, a set num pe = {4, 8, 16, 32} of
fully connected machines with different capabilities is used as a target computing
system, otherwise 16 fully connected machines with different capabilities are used
as a target computing system (num pe = {16}). For all performance evaluation
experiments with respect to graph size, a set v = {20, 40, 60, 80, 100, 120} of tasks is
used, otherwise a set v = {40, 80, 120} of tasks is used. The other input parameters
of the directed acyclic graph generation algorithm are set with the following values:

• CCR = {0.5, 1.0, 2.0}

• α = {0.5, 1.0, 2.0}

• out degree = {1, 2, 5, 10, max}

• β = {0.5, 1.0, 2.0}

These input parameters have the meaning as described in the section 6.6.2.
A generator described in the previous section is used to generate available data. The
input parameters of the data generation algorithm are set with the following values:

• prob machine = 25.0

• avg nodes = 2
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• nodes dev = 1

• avg size = 4096

• size dev = 3072

• avg time = 3000.0

• time dev = 2000.0

For each combination of parameters described above, 100 random task graphs
are generated, so performance evaluation experiments with respect to graph size,
number of available machines and CCR use 27000, 54000 and 13500 random task
graphs respectively as a testing suite.

7.7.3 Performance evaluation

For all experiments in this section, average SLR of random generated task
graphs is always evaluated with respect to one parameter regardless the other pa-
rameters (see the section 6.6.3 for an example).

Following table contains percentage comparison of the DAHEFT algorithm
with the NDAHEFT algorithm:

NDAHEFT
Better 95.58%

DAHEFT Equal 0.0%
Worse 4.42%

Table 7.1 Schedule quality of random generated graphs.

Figure 7.4 Average SLR of random generated graphs with respect to graph size.
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Figure 7.5 Average SLR of random generated graphs with respect to number of available
machines.

Figure 7.6 Average SLR of random generated graphs with respect to CCR.

The graphs above compare NDAHEFT and DAHEFT algorithms with the
HEFT algorithm, although the HEFT algorithm doesn’t respect available data.

7.8 Conclusion

The schedule of the NDAHEFT algorithm is expected to be longer than the
schedule of the DAHEFT algorithm which is expected to be longer than the schedule
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of the HEFT algorithm. These expectations are fulfilled in the results of experiments.
High values of the average SLR for the NDAHEFT algorithm and the DAHEFT
algorithm are caused by the fact that it’s necessary to wait until some data needed
to continue the computation are available. It’s clear that the average SLR value
depends on the time when data is arising very strongly.
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Chapter 8

Conclusions

This chapter summarizes the results of the work and the fulfillment of goals
as presented in the section with objectives at the beginning of the thesis. Finally,
improvements and future work plans are described.

Mechanisms applied to optimal task scheduling in heterogeneous distributed
systems are analyzed for both compile-time and real-time cases. Several algorithms
which respect given time limits or tasks location are proposed.

8.1 Time restrictions

The Time restriction heterogeneous earliest finish time (TRHEFT) algorithm
is designed to respect time restrictions which represent intervals when some machine
is temporarily unavailable. Because it’s an extension of the HEFT algorithm, it has
two major phases [16]: a task prioritizing phase and a processor selection phase. The
processor selection phase takes time restrictions into account.

The TRHEFT algorithm has an O(v× (v + t)× q) time complexity for v tasks
and q processors, where t is the maximal number of time restrictions on one machine.
This time complexity can be compared with the O(v2 × q) time complexity of the
HEFT algorithm [16]. The TRHEFT algorithm can’t be compared with any other
scheduling algorithm because none of the other algorithms takes time restrictions
into account. But if the different point of view is selected and it’s not required to
respect time restrictions, then such comparisons are possible. Instead of time restric-
tions there are artificially inserted short delays, so the TRHEFT algorithm can be
compared with the HEFT algorithm. The TRHEFT algorithm uses mentioned short
delays to make schedules better in sense of schedule minimalization and outperforms
the HEFT algorithm in some cases. The schedule quality of the proposed algorithm
is on average as follows:

HEFT
Better 91.8%

TRHEFT Equal 0.0%
Worse 8.2%

Table 8.1 Schedule quality of random generated graphs.
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8.2 Available data

Naive data available heterogeneous earliest finish time (NDAHEFT) and Data
available heterogeneous earliest finish time (DAHEFT) algorithms are designed to
respect available data. Because both algorithms are an extension of the HEFT al-
gorithm, they have two major phases [16]: a task prioritizing phase and a processor
selection phase. After the processor selection phase of the NDAHEFT algorithm, all
resulting start and end times are increased by the minimal starting time. The pro-
cessor selection phase of the DAHEFT algorithm takes available data into account.

The NDAHEFT algorithm has an O(v2 × q) time complexity for v tasks and
q processors which is equal to the time complexity of the HEFT algorithm. The
DAHEFT algorithm has an O(v × (v + d) × q) time complexity for v tasks and q
processors, where d is the number of available data. This time complexity can be
compared with the O(v2 × q) time complexity of the HEFT algorithm [16]. Neither
the NDAHEFT algorithm nor the DAHEFT algorithm can be compared with any
other scheduling algorithm because none of the other algorithms takes available data
into account. Only NDAHEFT and DAHEFT algorithms can be compared to each
other if available data must be respected. The schedule quality of the proposed
algorithms is on average as follows:

NDAHEFT
Better 95.58%

DAHEFT Equal 0.0%
Worse 4.42%

Table 8.2 Schedule quality of random generated graphs.

8.3 Future work

Time restrictions in the TRHEFT algorithm can be improved to contain the
value expressing the percentage availability (or unavailability) of the machine in some
time interval. Furthermore, new methods can be developed which respect following
requirements or restrictions:

• equal load of machines

• given maximal load of machines

• machines have given time distribution of load

• more applications (one is restricted off another)

• given entry and exit task

• more entry and exit tasks
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