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 Summary (CZE) 

V této dizertační práci jsme se zaměřili na objasnění molekulárních mechanismů 

radiosensibilizace leukemické buněčné linie MOLT-4 specifickou inhibicí kináz z rodiny 

fosfatidylinositol-3-kináza příbuzných kináz (PIKKs). Byly testovány dva vysoce účinné a 

selektivní inhibitory VE-821 (inhibitor ATR) a KU55933 (inhibitor ATM) pro jejich 

účinky na proliferaci, viabilitu a buněčný cyklus neozářených a ozářených buněk MOLT-4. 

Aplikace obou inhibitorů způsobila radiosensibilizaci MOLT-4 buněk a 10 µM VE-821 

navíc působil jako silné antiproliferativní agens i v neozářených MOLT-4 buňkách. 

K dalšímu popisu mechanismů, které jsou zodpovědné za radiosensibilizaci 

MOLT-4 buněk VE-821 inhibitorem, byly použity metody využívající hmotnostní 

spektrometrii. Pomocí metod kvantitativní proteomiky jsme identifikovali a kvantifikovali 

změny v proteomu a fosfoproteomu (tj. změny na úrovni fosforylace proteinů) buněk, které 

byly způsobeny účinkem inhibitoru v ozářených buňkách. Protože detekce a kvantifikace 

fosforylovaných peptidů v komplexních vzorcích je komplikována mimo jiné jejich 

relativně nízkým zastoupením, zaměřili jsme se nejprve na výběr optimální metody pro 

jejich selektivní izolaci ze směsi s nemodifikovanými peptidy. Optimalizovaný protokol 

byl pak dále využit ke studiu změn v buňkách radiosensibilizovaných VE-821. Dle 

očekávání inhibitor hodinu po ozáření nevyvolal žádné změny na úrovni proteomu. Při 

studiu fosfoproteomu jsme ale nalezli 623 signifikantně změněných fosforylačních míst, 

z nichž většina (431) byla zvýšeně fosforylována. Pomocí bioinformatických nástrojů jsme 

identifikovali změny v signálních drahách a aktivitách kináz přímo odpovídajících na 

poškození DNA, ale také v signálních drahách a kinázách primárně souvisejících s regulací 

buněčného metabolismu. Detekovali jsme snížení v aktivitě mTOR kinázy, které bylo 

nejspíše způsobené nespecifickým působením inhibitoru v 10 µM koncentraci. Tato 

snížená aktivita může pravděpodobně přispívat k zástavě proliferace buněk po podání 

vysoké dávky inhibitoru. Vliv VE-821 na metabolismus ozářených buněk byl dále 

zkoumán pomocí cílené metabolomické analýzy. V této analýze bylo kvantifikováno 206 

intermediárních metabolitů. Při následné analýze dat bylo zjištěno, že VE-821 potencuje 

rozvrat energetického metabolismu a může ovlivňovat odpověď na oxidační stres 

způsobený ozářením. Dále jsme ukázali, že obnova poškozených deoxynukleotidů 

by mohla být negativně regulována VE-821.  

V této práci jsme tedy komplexně popsali, jaké signální a metabolické dráhy 

by mohly být závislé na ATR nebo spuštěny ATR inhibicí VE-821 v ozářených MOLT-4 

buňkách. Výsledky této práce mohou být dále použity jako zdroj informací pro další 

navazující studie.   
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 Summary (ENG)  

In the presented doctoral thesis, we aimed to elucidate molecular mechanisms 

underlying radiosensitization of MOLT-4 cell line (T-ALL) by specific inhibition 

of kinases from the phosphatidylinositol-3 kinase-related kinases (PIKKs) family. We 

tested two highly potent inhibitors of ATR and ATM, VE-821 and KU55933, respectively, 

for their effects on proliferation, viability, and cell cycle of sham-irradiated and irradiated 

MOLT-4 cells. Both inhibitors proved to radiosensitize MOLT-4 cells and furthermore, 

10 µM VE-821 was shown to act as a strong antiproliferative agent in sham-irradiated 

MOLT-4 cells. 

To further describe cellular mechanisms underlying the VE-821-mediated 

radiosensitization of MOLT-4 cells, we employed high-resolution mass spectrometry 

to identify and quantify changes in proteome and phosphoproteome of irradiated VE-821-

treated cells. As the detection and quantification of phosphorylated peptides in complex 

biological samples is challenging due to their low stoichiometry, we first compiled and 

optimized protocol for their enrichment. The protocol was then applied to study changes 

in radiosensitized MOLT-4 cells. In concordance with our expectations, VE-821 did not 

cause any significant changes on the proteome level one hour after irradiation. However, 

we detected 623 differentially regulated phosphorylation sites; most of them (431) were 

upregulated in response to VE-821 treatment. Using bioinformatic tools, we revealed 

changes in DDR related pathways and kinases, but also pathways and kinases involved 

in maintaining cellular metabolism. Notably, we found downregulation of mTOR, the main 

regulator of cellular metabolism, which was most likely caused by an off-target effect 

of the inhibitor, and we proposed that mTOR inhibition could be one of the factors 

contributing to the phenotype observed after treating MOLT-4 cells with 10 µM VE-821. 

To investigate the potential modulation of cellular metabolism, we performed a targeted 

metabolomic analysis of irradiated MOLT-4 cells pre-treated by 10 µM VE-821. In this 

analysis, 206 intermediary metabolites were quantified. Subsequent data analysis showed 

that VE-821 potentiated metabolic disruption induced by IR and affected response to IR-

induced oxidative stress. Our data indicated that upon IR, recovery of damaged 

deoxynucleotides might be affected by VE-821, hampering DNA repair by their 

insufficiency. 

Thus, in this thesis we described a complex scenario of cellular events that might 

be dependent on ATR or triggered by ATR inhibition by VE-821 in irradiated MOLT-4 

cells. Importantly, data presented in this work might serve as a resource for follow-up 

studies and provide a platform for future work with other kinase inhibitors.  
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 Preface 

DNA damage induction by either radio- or chemo-therapy has been the most widely 

used approach in oncology exploiting one of the hallmarks of cancer: genomic instability. 

However, these therapies are very unspecific and often accompanied by collateral damage 

to healthy tissues. In recent years, much effort has been put on discovery and development 

of tumour specific treatment, which would specifically target cancer cells and not affect the 

normal tissues. A promising approach that has been developed recently is to take advantage 

of tumour specific abnormalities in DDR. Most of the cancer cells possess defects in one 

or more DDR pathways and suffer from elevated levels of replication stress due 

to dysregulated oncogenic signalling and increased levels of endogenous DNA damage. 

Importantly, given the vast number of the DDR genes mutated in cancers, it has been 

emphasized that to effectively exploit the DDR targets in cancer treatment, the therapy 

should be individually tailored to patients lacking specific DDR functions based on the 

synthetic lethality principle. 

Two promising examples of such treatment strategies are targeting the S and G2/M 

DNA damage checkpoints in G1/S DNA damage checkpoint-deficient cells and specific 

targeting of proteins and protein kinases involved in replication stress response. Inhibition 

of the ATR/Chk1 pathway has been shown to be synthetically lethal in both above 

mentioned scenarios. In several studies, it has been shown that inhibiting this pathway is 

selectively toxic in cells with high levels of oncogene-induced replication stress (1–7). On 

the other hand, there have been several papers published, in which the authors emphasized 

the efficiency of ATR inhibition in combination with genotoxic therapy in p53- or ATM-

deficient cells (8–12). Therefore, selective targeting of the ATR/Chk1 pathway offers a 

promising therapeutic approach for cancer treatment in a broad range of tumours in both 

monotherapy and for selectively sensitizing cancer cells towards current genotoxic 

treatment. 

In order to reveal molecular mechanisms involved in such therapeutic approach, we 

decided to describe changes in phosphoproteome in a given cellular model. Our efforts 

were driven by the fact that protein phosphorylation is a transient, reversible PTM 

with dynamic nature enabling it to be the major steering force of most of the cellular 

processes which require rapid and tightly regulated signalling. These processes include 

cellular signalling and communication, proliferation, differentiation, metabolism, 

transcriptional and translational regulation, degradation of proteins, and cell survival (13). 
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The presence of phosphorylation in specific regions of a protein molecule is believed 

to induce conformational changes in the target protein, which influence its behaviour 

within a cell. Such conformational changes can modulate activity of an enzyme (such as 

phosphorylation in an activation loop in a protein kinase), subcellular localization of a 

protein, or its stability (14). Phosphorylation is mediated by protein kinases, which 

compose one of the largest enzyme superfamilies in higher eukaryotes. The reverse 

reaction, dephosphorylation, is mediated by protein phosphatases. Tight cooperation 

of protein kinases and protein phosphatases is essential for regulation of biological 

processes in a cell, and dysregulation of these processes has been described to contribute 

to multiple diseases including cancer (15). Technological advances in the recent past led 

to development of phosphoproteomic approaches that allow researchers to identify 

aberrantly activated signalling pathways in a particular disease state, and establish 

appropriate therapeutic targets that can be exploited as specific targets for small molecule 

inhibitors (16).  

In this thesis, we aimed to elucidate molecular mechanisms underlying 

radiosensitization of MOLT-4 cell line (T-ALL) by specific inhibition of kinases from the 

phosphatidylinositol-3 kinase-related kinases (PIKKs) family using two highly potent and 

selective inhibitors of ATR and ATM, VE-821 and KU55933, respectively. To do so, we 

decided to combine multiple approaches: cell biology techniques to investigate the 

inhibitor-induced phenotypes, phosphoproteomics to study protein phosphorylation 

triggered by irradiation and its modulation by kinase inhibitors, and metabolomics to reveal 

drug-induced changes in metabolome of irradiated cells. Since the detection and 

quantification of phosphorylated peptides in complex biological samples is challenging due 

to their low stoichiometry, we also dedicated a part of this doctoral thesis to selection of an 

optimal method for phosphopeptide enrichment.  

That said, we present here different data of various nature, and thus the Results and 

Discussion sections are organized into several blocks. Furthermore, the nature of “omic” 

data implies a complicated data analysis and implementation of multiple bioinformatic 

tools and database searches in order to interpret the data. Therefore, the Results section 

differs from the theses based on the approach of “classical” biochemistry or biology and it 

comprises of a brief overview of the acquired results, and their detailed description is given 

in the Discussion section where they are discussed in context of all data presented in this 

thesis and recent literature.  
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1. Introduction 

1.1. Characterization of DNA damage induced 

by ionizing radiation 

The term ionizing radiation (IR) describes a radiation that has enough energy 

to liberate an atomic particle from an originally electrically neutral atom or molecule, 

ionizing it. The ionization can occur either directly or indirectly. The direct ionization is 

mediated by any charged massive particle that carries sufficient kinetic energy (e.g. alpha 

and beta particles) to ionize atoms or molecules. On the other side, gamma rays, X-rays, 

and neutrons are referred to as the indirectly ionizing radiation. Since they have no 

charge, their effects are induced secondary by liberation of directly ionizing particles. 

When cells are exposed to IR, cellular structures can be damaged by ionization 

directly by deposition of energy (this mechanism dominates in cells with a low water 

content), but also indirectly by ionization of water molecules in cells with a high water 

content – by a mechanism called water radiolysis. Such ionization leads to generation 

of highly reactive oxygen species (ROS), which secondary attack DNA and other 

biomolecules (reviewed in (17,18)). 

There is a wide range of DNA lesions typically occurring in response to IR. It has 

been previously estimated that the irradiation of a mammalian cell by a dose of 1 Gy results 

in approximately 1000-2000 damaged bases, 800-1600 damaged deoxyriboses, 500-

1000 single-strand breaks (SSBs), and most importantly, 20-40 double-strand breaks 

(DSBs), which are the most deleterious damage to the mammalian DNA, and thus they 

represent the biggest threat to genomic integrity amongst all types of DNA lesions (19).  

DSBs are assumed to be the most lethal class of DNA damage since a failure 

to repair just a single DSB can result in cell death (20) implying the importance of DSB 

repair for cell viability. Moreover, both repair and misrepair of DSBs can lead to mutations 

and chromosomal rearrangements, potentially resulting in cancer development. Since 

genetic alterations have such a significant impact on cell survival and viability, cells have 

evolved robust, but finely regulated molecular mechanisms that include detection of DNA 

lesions, signalling of their presence, promoting their repair, and activation of cell cycle 
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checkpoints. Altogether, these mechanisms are summarized under the term DNA damage 

response (DDR). 

The key components of DDR, which trigger cellular response to detected DNA 

lesions, are protein kinases that belong to phosphatidylinositol 3-kinase (PI3K) family 

class IV, better known as phosphatidylinositol-3 kinase-related kinases (PIKKs; 

reviewed in (21)). 

1.2. Phosphatidylinositol-3 kinase-related kinase 

family 

The PIKK family comprises 6 proteins with most of the members possessing 

serine/threonine kinase activity: ataxia telangiectasia mutated kinase (ATM), ataxia 

telangiectasia and Rad3 related kinase (ATR), DNA-dependent protein kinase catalytic 

subunit (DNA-PKcs), mammalian target of rapamycin (mTOR), suppressor 

with morphological effect on genitalia family member (SMG-1), and 

transactivation/transformation-domain-associated protein (TRRAP). All 6 members of the 

PIKKs family show considerable similarities in their domain architecture and extensive 

sequence homology, particularly in their C-terminal kinase domains FAT (FRAP-ATM-

TRAP) and FATC (FAT- C-terminal), both of them particularly important for their kinase 

activity and its regulation (22,23). On the contrary, the N-terminal region is poorly 

conserved and thus believed to be responsible for regulation of interactions 

with differential substrates and adaptor proteins (24).  

Among the PIKKs, ATM, ATR, and DNA-PK act as the main regulators 

of cellular response to DNA damage and DNA replication stress. They share the same 

phosphorylation motif (as shown in figure 1, they predominantly phosphorylate their 

targets on serine and threonine residues followed by Gln (25)) and many substrates such as 

the histone variant H2AX (26–28); however, they are activated by different types of DNA 

lesions and act in distinct pathways, which are partially overlapping, but non-redundant - 

the crosstalk between the pathways often occurs as a consequence of the inter-conversion 

of the activating lesions. A large scale proteomic study investigating proteins that are 

inducibly phosphorylated on a consensus site recognized by ATM and ATR after exposure 

to IR identified 900 phosphorylation sites in 700 proteins, demonstrating for the first time 

how extraordinarily broad is the landscape of ATM/ATR substrates phosphorylated 
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in response to DNA damage (29). The distinct roles of each of ATM and ATR will be 

further discussed. 

The importance of DNA-PK mainly derives from its essential role in non-

homologous end joining (NHEJ), which is considered to be the major DSB repair pathway. 

A detailed description of DNA-PK, its role in NHEJ, and its potential as a drug target 

for the support of radiotherapy is beyond the extent of this dissertation thesis; more details 

are given in our publication (30).  

 

Figure 1: Overview of the visualised phosphorylation motifs of the PIKKs members. 
Sequence logo for each one of the PIKKs was generated using manually curated 

phosphorylation sites from the PhosphoSitePlus database (June 2016) with known 

experimentally assessed kinase responsible for their phosphorylation. The sequence motifs 

(STY ± 7 AA) for ATM, ATR, DNA-PK, and mTOR are depicted together with the number 

of their substrates annotated in the database. 

The protein kinase mTOR is the principle regulator of cellular metabolism 

promoting anabolic processes and inhibiting catabolic processes such as autophagy. It 

integrates signals from different upstream pathways triggered by a wide variety of signals 

including nutrients, hormones, growth factors, and also cellular stresses to regulate cell 

growth, metabolism, cell survival, protein synthesis, and transcription (reviewed in (31)). 

Although mostly known for its metabolism-regulating functions, mTOR is also an integral 

member of DDR playing an important role in the determination of cell faith after DNA 

damage induction (reviewed in (32)). A direct link has been shown between DNA damage 

induced ATM activation and mTOR inhibition – the crosstalk between these two kinases 
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is mediated by ATM-activated AMP-activated protein kinase (AMPK), which in turn both 

directly and indirectly inhibits mTOR (reviewed in (33)). Indeed, mTOR inhibition has 

been also shown to affect radiosensitivity and DDR in irradiated cells (34,35).  

TRRAP has been shown to have an important role in embryonic development, cell-

cycle progression, and mitotic control (36). Interestingly, it is the only member of this 

family that lacks serine/threonine kinase activity. SMG-1 is the newest member of the 

PIKKs family. It plays a critical role in the mRNA quality control system, termed nonsense-

mediated mRNA decay, which protects cells from an accumulation of aberrant mRNAs 

(37).  

1.2.1. Ataxia-telangiectasia mutated kinase (ATM)  

ATM is the best known as the chief mobilizer of the vigorous cellular response 

to DSBs; however, recent studies have indicated that ATM is also involved in signalling 

pathways maintaining cellular homeostasis in response to hypoxia, oxidative stress, and 

regulation of cellular metabolism (reviewed in (38)). 

The ATM gene was originally identified in ataxia-telangiectasia (A-T), a human 

genome instability disorder inherited in an autosomal recessive manner. All A-T patients 

carry mutations in the ATM gene which encodes the ATM protein (39). The hallmarks 

of this disease include progressive cerebellar degeneration that develops into severe 

neuromotor dysfunction (ataxia), telangiectasia (dilation of blood vessels observed 

primarily in the eyes), immunodeficiency, hypersensitivity to ionizing radiation, and 

increased incidence of malignancies, mostly lymphoreticular (40). On the cellular level, 

A-T is characterized by increased chromosomal instability, premature senescence 

of cultured primary fibroblasts, and hypersensitivity to DNA damaging agents. The disease 

phenotype can be attributed to the abrogation of the cellular response to DSBs.  

Activation of ATM is one of the first steps in response to DSBs caused by the 

exposure to ionizing radiation (40). In undamaged cells, inactive ATM exists in a form of a 

homodimer, which dissociates into active monomers after activation. The activation is  

associated with autophosphorylation at Ser1981 (41), which is a marker of activated 

ATM. However, there are more post-translational modifications (PTMs) accompanied 

with ATM in its catalytically active state; to date, three additional autophosphorylation 

sites (42–44) and one acetylation site (Lysine 3016; (45,46)) have been identified in fully 

activated ATM.  
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The full and timely activation of ATM is dependent on the Mre11/Rad50/Nbs1 

(MRN) complex, an evolutionary conserved protein complex composed of Mre11, 

Rad50, and Nbs1 proteins (47). Mutations of each one of the genes coding these three 

proteins result in genetic disorders characterized by symptoms similar to A-T (48–50). The 

indispensability of this complex to cells is affirmed by the fact that null mutation of either 

one of the three genes causes embryonic lethality in mice (51). MRN is one of the first 

complexes recruited to DNA DSBs, where it functions as a damage sensor and a physical 

bridge spanning the DSB ends (52). In addition to ATM recruitment and retention at the 

DSB sites, it is also required for both NHEJ and homology-directed recombination (HDR) 

repair of DSBs - the DSB-end resection mediated by MRE11 nuclease activity is one of the 

first steps in HDR. Moreover, MRN is also phosphorylated by ATM, which is important 

for activation of different DDR pathways and may create a positive feedback loop that 

maintains ATM activity (reviewed in (38)). In addition to MRN complex, there are other 

proteins important for timely ATM activation, such as mediator of DNA damage 

checkpoint protein 1 (MDC1), which interacts with both ATM and phosphorylated H2AX 

(γH2AX) and facilitates the phosphorylation of additional H2AX by ATM, creating 

another positive feedback loop (53).  

A vast functional network of proteins is precisely orchestrated by ATM-mediated 

phosphorylation. In this network, the proteins often undergo direct phosphorylation 

mediated by ATM as well as phosphorylation by other kinases whose activity is ATM-

dependent. Frequently, these proteins phosphorylated by ATM are targeted by other PTMs, 

such as ubiquitylation or sumoylation, and together, these PTMs contribute to the 

regulation of ATM-dependent DDR signalling pathways (54). Nowadays, the map of ATM 

targets contains hundreds of proteins, some of them have been extensively studied and 

validated in multiple studies; however, many of them were discovered by proteomic and 

phosphoproteomic screenings and need further evaluation (29,42,55–57). In June 2016, the 

largest phosphorylation sites database PhosphoSitePlus® (58) contained 240 manually 

curated substrates of ATM (as can be also seen in figure 1 as a number of input sequences 

for sequence motif visualization). Figure 2A depicts a map of ATM interactors 

downloaded from STRING v10.0 database (June 2016; STRING interaction score > 0.9); 

selected statistically overrepresented KEGG pathways in which the proteins from are 

involved are also given (figure 2B). Predictably, many of the interactors are proteins 

involved in DDR pathways (such as HDR, NHEJ, or p53 signalling pathway); however, 
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there are also pathways usually more referred in the context with cellular metabolism (such 

as PI3K-Akt, AMPK, or mTOR signalling pathways), demonstrating the aforementioned 

overlap between the DDR- and cellular metabolism- regulating functions of ATM. 

One of the most important examples of ATM phosphorylated and regulated proteins 

involved in DDR is the tumour suppressor protein p53. Under normal conditions, p53 is 

present in a latent form with low affinity to specific sequences of DNA; however, 

following DSBs formation, its transcriptional activity increases substantially, and this 

increase is to a great extent ATM-dependent. p53 is regulated by ATM in a multi-layered 

manner – both direct phosphorylation by ATM and indirect, but ATM-dependent 

phosphorylation, contribute to the rapid activation and stabilization of p53 in response 

to DNA damage (59). ATM directly phosphorylates p53 on serine (Ser) 15 (60), but the 

Ser 20 located on the same (transactivation) domain is phosphorylated by activated 

checkpoint kinase 2 (Chk2 ; (61,62)), a key downstream target of ATM (63). This 

phosphorylation events stabilize p53 by preventing its murine double minute protein-2 

(Mdm2)-mediated ubiquitylation and degradation (64,65). Moreover, ATM also 

phosphorylates Mdm2 on Ser 166 and Ser 395 (66,67), which further contribute to the 

accumulation of p53.  

The ATM-dependent activation and stabilization of p53 are central to the 

modulation of the cellular transcriptome following IR-induced DSBs formation. The 

activated p53 directly drives the expression of many genes, including the cell cycle 

regulating cyclin dependent kinases (CDKs) inhibitor  p21 (68,69) and pro-apoptotic 

proteins BAX, PUMA, and NOXA (70). Additionally, p53 also indirectly negatively 

regulates transcription of a number of genes, including those encoding anti-apoptotic 

proteins BCL-2 and MCL-1 (71). Thus, p53 is a crucial ATM target, regulating cell cycle 

progression (mostly the G1/S checkpoint) and cell death after genotoxic stress. 

Besides p53, ATM also regulates other transcription factors such as NF-κB (72)), 

protein kinases (e.g. Chk2 (73), DNA-PK (74), protein kinase B (AKT ; (75))), and a large 

number of other proteins and members of protein complexes involved in DSBs repair 

(e.g. H2AX , Artemis (76), CtBP-interacting protein  (CtIP ; (77)), or the members the 

MRN complex (78–81)). 

Chk2 is a serine/threonine protein kinase, which is a downstream effector of ATM 

orchestrating the cell cycle arrest after DSBs induction (63). It regulates the cell cycle 

through phosphorylation of CDC25A, CDC25B, and CDC25C phosphatases, inhibiting 
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their activity and promoting their degradation (82). Consequently, these phosphatases 

cannot remove inhibitory phosphorylation on CDK-cyclin complexes and thus promote 

the cell cycle arrest (reviewed in (83)).  

 

Figure 2: ATM-interacting network. Proteins interacting with ATM were downloaded 

from the STRING database v10.0 (June 2016). Only those interactions with STRING score 

> 0.9 (i.e. high confident interactions) are depicted (A). Proteins depicted in the network 

were subjected to functional annotation over-representation analysis. Selected over-

represented KEGG pathways are depicted (B). 
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1.2.2. ATM-Rad3 related kinase (ATR) 

While activation of ATM is triggered by DSBs and is active throughout the cell 

cycle, ATR responds to single stranded DNA (ssDNA) structures and acts primarily in S 

and G2 phases. It is the central kinase responding to replication stress, which cells undergo 

during DNA replication as well as after exposure to genotoxic events. DNA damage 

induced by IR, UV, chemotherapeutic drugs, or inhibitors of DNA replication causes the 

DNA-polymerases to stall at DNA lesions while the replicative helicases continue 

to unwind the DNA helix ahead of the replication fork leading to generation of long ssDNA 

stretches. Additionally, ssDNA structures can be formed at DSB sites after 5’ to 3’ 

nucleolytic degradation of one of the chains, a step required for DSBs repair 

by homologous recombination (reviewed in (9,84)). ATR is an essential protein; 

homozygous mutation of ATR caused peri-implantation embryonic lethality in mice 

(85,86), and no living human completely lacking ATR has been identified. Nevertheless, a 

hypomorphic ATR mutation is responsible for the Seckel syndrome – a recessive 

autosomal hereditary disorder characterized by microcephaly and mental- and growth- 

retardation (87). 

Similar to ATM, which is recruited to DSB indirectly via MRN complex, ATR 

requires specific protein complexes for its localization to ssDNA and subsequent 

activation. Cortez et al. identified ATR-interacting protein (ATRIP; (88)), which 

interacts with the N-terminus of ATR to form a protein complex. ATRIP is responsible 

for localization of the ATR/ATRIP complex at ssDNA sites via its interaction with a 

heterotrimeric protein complex - Replication protein A (RPA), which coats most forms 

of ssDNA in cells including the ssDNA that is formed during DNA replication and damage 

(89). After the recruitment of ATR/ATRIP to ssDNA stretches, ATR needs to be activated, 

and this activation is dependent on co-localization of the ATR/ATRIP complex with the 9-

1-1 complex (RAD9/RAD1/HUS1), a heterotrimeric ring-shaped molecule that serves as 

a docking site of DNA topoisomerase II-binding protein-1 (TOPBP1). The co-

localization of these two complexes is mediated by Rad17-containing, RFC-like ‘clamp 

loader’ that recognizes the RPA-ssDNA and dsDNA junctions and loads the 9-1-1 complex 

to DNA (90,91). TOPBP1 contains an ATR activation domain, which has been confirmed 

to be the actual activator of ATR kinase (90,92–94). As in other the case of other PIKKs, 

ATR is transformed into a hyperphosphorylated state upon activation; however, only Thr 

1989 has been identified to be essential for robust ATR activation. The Threonine (Thr) 
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1989 autophosphorylation is the crucial step in ATR activation; it enables the binding 

to the ATR activation domain of TOPBP1 and ATR activation (95).  

As in the case of other PIKKs, ATR phosphorylates many substrates bearing the 

typical S/TQ motif (figure 1). As visualized in the network in figure 3A, the list of direct 

ATR-interacting proteins downloaded from STRING database v10.0 (June 2016, STRING 

score > 0.9) contained 105 proteins. The structure of the network is in concordance 

with known biological roles of ATR; many of the interactors are organized into densely 

interconnected clusters as they form ATR-regulated protein complexes essential for DNA 

replication and response to DNA replication stress (i.e. Replication factor A, Replication 

factor C, Minichromosome maintenance complex, Origin recognition complex). Besides 

these complexes, there are also proteins involved in DDR pathways such Fanconi anaemia 

pathway, Homologous recombination, Mismatch repair, and other KEGG pathways listed 

in figure 3B.  

Checkpoint kinase 1 (Chk1) is often described as the primary target and main 

downstream effector of activated ATR. However, it has been repeatedly reported that ATR- 

and Chk1- inhibition provided different outcomes when combined with genotoxic stress 

in cancer cells (96,97) suggesting that despite being the main effector, Chk1 is not 

responsible for all downstream signalling of activated ATR.  

To fully activate Chk1, several ATR-driven steps are necessary. First, Rad17 is 

phosphorylated by ATR, which promotes its association with Claspin (98). Claspin is 

subsequently also phosphorylated by ATR, which enables its interaction with Chk1. 

Finally, Chk1 brought to the proximity of the activated ATR is phosphorylated in its kinase 

activation loop region, which in turn leads to its activation (99). Two Chk1 sites have been 

described to be ATR-phosphorylated during this activation step – Ser 345 and Ser 317; 

however, only Ser 345 is considered and often monitored as a specific marker of ATR 

activation, and it is also the essential phosphorylation site required for Chk1 function while 

the latter is considered to be rather contributory (10,100,101). Chk1 is then 

autophosphorylated at Ser 296 and released from chromatin to trigger cell cycle 

checkpoints signalling, which is of a great importance for damaged cells as it allows time 

for repair to occur.  

Two downstream protein phosphatases cdc25a and cdc25c are the two main Chk1 

targets responsible for S and G2/M arrests, which occur after their inactivation by Chk1 

(102). Under unperturbed conditions, these phosphatases remove inactivating phosphates 
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from CDKs/cyclin complexes to maintain normal cell cycle progression. When inactivated, 

the activity of CDKs decreases to slow down cell cycle progression. Another Chk1 target 

that contributes to CDKs inhibition, and thus cell cycle arrest after ATR activation, is the 

Wee1 protein kinase, which is stabilized by Chk1-mediated phosphorylation. 

 

Figure 3: ATR-interacting network. Proteins interacting with ATR were downloaded 

from the STRING database v10.0 (June 2016). Only those interactions with STRING score 

> 0.9 (i.e. high confident interactions) are depicted (A). Proteins depicted in the network 

were subjected to over-representation analysis of functional annotation. Selected over-

represented KEGG pathways are depicted (B). 
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 As in the case of its upstream kinase, the list of known Chk1 targets is relatively 

long, comprising 192 manually curated substrates (as listed in the PhosphoSitePlus® 

database, June 2016). In addition to its DNA damage checkpoint functions mentioned 

above, Chk1 has been shown to regulate the mitotic spindle checkpoint, contribute 

to several DNA damage repair pathways (HDR, Fanconi anaemia pathway), and repression 

of transcription after DNA damage induction (reviewed in (103)).  

1.3. Targeting DDR as a promising strategy 

in oncology 

DNA damage induction by either radio- or chemo- therapy has been the most 

widely used approach in oncology exploiting one of the hallmarks of cancer: genomic 

instability. However, such treatment is very unspecific and often accompanied by collateral 

damage to healthy tissues. In recent years, much effort has been put on discovery and 

development of tumour specific treatment, which would only specifically target cancer 

cells and not affect the normal tissues. A promising approach that has been developed 

recently is to take advantage of the tumour specific abnormalities in DDR.  

In a current study (104), manually curated data stored in signalling pathways and 

protein-protein interactions databases were analysed to compile a list of 450 human DDR 

genes, which were further examined in terms of their association with individual cancer 

types to identify deregulated components of the DDR, discover novel therapeutic targets 

within the DDR network, and predict their druggability. Given the vast number of the DDR 

genes mutated in cancers, the authors of the study emphasized that to effectively exploit 

the DDR targets in cancer treatment, the therapy should be individually tailored to patients 

lacking specific DDR functions based on the synthetic lethality principle. This principle 

was originally presented in Drosophila, and it describes two genetic loss-of-function events 

- each one of them still compatible with cell viability; however, they are lethal when both 

of them occur in the same cell (105). In the context of cancer treatment using DDR proteins 

inhibitors, one of the two events is cancer-specific and cannot be found in normal cells; the 

second one is achieved pharmacologically by the targeted inhibitor treatment. A clinically 

validated example of a successful use of this approach is the application of poly(ADP-

ribose) polymerase (PARP) inhibitors (olaparib) in BRCA-deficient cancer cells (106,107).  

Moreover, the synthetic lethality term can be also used more loosely to describe 

strategies in which the tumour-specific defects only causes increased sensitivity to a 
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combination of therapeutic agent (such as chemo- or radio- therapy) and DDR-targeting 

compound – i.e. the DDR inhibitor can be used for a specific radio- or chemo- 

sensitisation of the cancer cells. The key differences in DDR between cancer cells and 

normal cells that can be exploited to develop a specific therapy comprise following aspects: 

most of the cancer cells have defects in one or more DDR pathways, suffer from elevated 

levels of replication stress due to dysregulated oncogenic signalling and increased levels 

of endogenous DNA damage (caused for instance by increased intrinsic ROS generation 

(108); reviewed in (109)) .  

A promising example of such a strategy is targeting the S and G2/M DNA 

damage checkpoints in G1/S DNA damage checkpoint deficient cells (110). A recent 

study investigated mutational profiles in 3,281 tumours across 12 tumour types, identified 

127 significantly mutated genes, and categorized them based on cellular processes they are 

involved in (111). The TP53 tumour suppressor gene was affected by mutations in 42.0 % 

of cancer cells sequenced in this study, and thus it was the most frequently mutated gene 

in cancer genome. The list of the 127 significantly mutated genes in cancer also contained 

other members of the ATM/Chk2/p53 pathway - ATM and Chk2 kinases were found to be 

targeted by mutations in 3.3 % and 0.9 % of cancer cells analysed, respectively. As this 

pathway is essential for maintaining the G1/S DNA damage checkpoint after IR, the results 

of this study suggested that targeting the remaining DNA damage checkpoints might be a 

promising strategy in a considerable portion of solid tumours conventionally treated using 

radiotherapy (111).  

Another promising strategy is to target proteins and protein kinases involved 

in replication stress response (7). Elevated level of DNA replication stress has been 

recently proposed as a hallmark of cancer because it is present in almost all cancers 

from the earliest stages (112). The mutations in genes controlling cellular growth and 

proliferation are responsible for this phenomenon – cancer cells deficient in G1/S 

checkpoint or with mutations deregulating replication origin firing suffer from premature 

entry into S-phase, and thus DNA replication can start before the necessary resources have 

been generated, which leads to triggering the replication stress response. Examples of such 

mutations that are common in cancers are RB1 deficiency, CDKN2A deletion, Cyclin D1 

or Cyclin E amplifications, KRAS mutations, or MYC amplifications (111,112).  

Inhibition of the ATR/Chk1 pathway has been shown to be synthetically lethal 

in both above mentioned scenarios. In several studies, it has been shown that inhibiting this 
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pathway is selectively toxic in cells with high levels of oncogene-induced replication stress 

(1–7). On the other hand, there have been several papers published, in which the authors 

emphasized the efficiency of ATR inhibition in combination with genotoxic therapy 

in p53- or ATM- deficient cells (8–12). Taken together, selective targeting of the 

ATR/Chk1 pathway offers a promising therapeutic approach for cancer treatment in a 

broad range of tumours in both monotherapy and for the purpose of selectively sensitizing 

cancer cells to current genotoxic treatment.   

1.3.1. The preclinical and clinical development of ATR 

inhibitors  

Given their importance in DDR, small molecule kinase inhibitors have been 

synthesised for each one of the kinases from the PIKKs family to investigate their potential 

for development of a cancer-specific treatment. The preclinical and clinical development 

of current inhibitors of DNA-PK, ATM, and ATR has been extensively reviewed in two 

papers we published recently (30,113); therefore, for the purpose of this dissertation thesis, 

we will only discuss the development and use of ATR inhibitors.   

The first ATR inhibitor identified proven to radiosensitize cancer cells was caffeine 

(1,3,7-trimethylxanthin) (114,115). However, caffeine is a low potent and unspecific 

inhibitor of ATM, ATR (IC50 (ATM): 0.2 mM; IC50 (ATR): 1.1 mM), and the rest of the 

PIKKs family. Moreover, the concentration that is required to radiosensitize human cancer 

cells is toxic. Another natural compound that has been identified as an ATR inhibitor is 

schisandrin B (1,2,3,13-tetramethoxy-6,7-dimethyl-5,6,7,8-tetrahydrobenzo[3',4']cyclo-

octa[1',2':4,5]benzo[1,2-d][1,3]dioxole), which was isolated from the mature fruits 

of Schisandra Chinensis, a herb used in Chinese medicine (116,117). Although schisandrin 

B is more ATR-specific than caffeine (IC50 (ATR): 7.25 µM), it is weaker than the newly 

synthesised chemical inhibitors, so its use has been only evaluated in two preclinical 

studies.  

NU6027 (2,6-diamino-4-cyklohexyl-methyloxy-5-nitroso-pyrimidine) was 

originally identified as a CDK2 inhibitor (IC50(CDK2): 10 µM); however, Harrison et al. 

noticed that this inhibitor sensitised cancer cells to cisplatin independently on its CDK2 

inhibitory activity (118). Further study revealed that NU6027 is a more potent inhibitor 

of ATR than of CDK2 (IC50(ATR): 6.7 µM), and it was the ATR inhibition that was 

responsible for radio- and chemo- sensitization of NU6027-treated breast cancer cells (10). 
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Importantly, the results of this breast cancer study indicated that ATR-inhibitor treatment 

could be efficient in cancer cells with XRCC1 polymorphism and thus showing for the first 

time a synthetic lethality of ATR inhibition and a loss of a specific DNA repair protein. 

This XRCC1-ATR inhibition relationship has been further confirmed in another study 

(119); however, further evaluation of NU6027 in in vivo experiments is hampered by its 

poor solubility in water.  

In a cell-based screening of 623 compounds previously reported to have some 

activity towards PI3K (120), Toledo at el. identified two compounds with a marked 

potency against ATR – ETP-46464 (IC50(ATR): 25 nM) and NVP-BEZ235 (IC50(ATR): 

100 nM) (6), but these compounds also presented substantial activity towards ATM, PI3K, 

mTOR, and DNA-PKcs and thus lacked selectivity against ATR. Prior to this screening, 

NVP-BEZ235 had been proposed as a PI3K and mTOR inhibitor (121) and shown 

to radiosensitize Ras-overexpressing tumours (122). However, considering another study 

that had reported cytotoxicity of ATR suppression in cells overexpressing Ras (2), the 

radiosensitization of cells in the aforementioned study was more likely to be dependent 

on the ATR inhibitory activity of NVP-BET235 rather than on PI3K/mTOR inhibition. 

Altogether, these reports confirmed the potential of chemical ATR inhibition in cells 

suffering from elevated levels of replication stress caused by dysregulated oncogenic 

signalling. The more selective compound – ETP-46464 – has been further proven 

to sensitize cancer cells to IR and platinum drugs (123,124). Unfortunately, it has been 

shown to have poor pharmacological properties in mice and thus is not suitable for further 

in vivo evaluation. 

The first potent and selective inhibitors of ATR that may offer a great promise 

in cancer treatment were presented by Vertex Pharmaceuticals in 2011. Charrier et al. 

reported the discovery of selective ATR inhibitors from the series of 3-amino-6-

arylpyrazines (125). In the following studies, two compounds from this series were further 

evaluated – VE-821 and VE-822 (or VX-970).  

VE-821 (3-amino-6-(4-(methyl-sulfonyl)phenyl)-N-phenylpyrazine-2-

carboxamide; IC50(ATR): 26 nM, Ki(ATR): 13 nM, Ki(mTOR) > 1 µM, Ki(DNA-PK): 

2.2 µM, Ki(ATM): 16 µM) has been shown to be able to selectively induce irreversible 

growth arrest in several cancer cell lines that were either p53-deficient or p53-wt, but 

with dysfunctional ATM/Chk2/p53 pathway, while inducing only reversible growth arrest 

in normal cells. Moreover, VE-821 showed synergy with different genotoxic agents 
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including cross-linking drugs, antimetabolites, topoisomerase I and II poisons, and ionizing 

radiation. The dependence on the functionality of ATM signalling for the sensitivity 

to ATR inhibition was confirmed in experiments with A-T primary skin fibroblasts, 

in normal cells treated with ATM inhibitor KU-55933 or with knockdown of p53 

expression (11). These results were confirmed in 2012 by Pires et al., who mostly focused 

on the radiosensitizing effect of ATR inhibition. In this study, the radiosensitization using 

VE-821 was proven in a variety of cell lines from a number of different tumour types 

suggesting that this effect is independent of tumour type. Moreover, VE-821 was shown 

to increase radiation-induced DNA damage and loss of viability of cancer cells under 

hypoxic conditions (126), which is of particular interest, as hypoxic tumours have been 

reported to be more resistant to radiotherapy (127). The ability of VE-821 to sensitize 

pancreatic cancer cell lines to radiotherapy or antimetabolites-based chemotherapy under 

both normoxic and hypoxic conditions was further confirmed by Prevo et al. (128). Since 

then, VE-821 has been consistently shown in several studies to sensitize a variety 

of different tumour types to different genotoxic events (97,129–135). Interestingly, 

Huntoon et al. compared the sensitization of ovarian cancer cells using VE-821 and a Chk1 

inhibitor (MK-8776). Unexpectedly, even though these two kinases are reported as 

members of one ATR/Chk1 signalling pathway, where Chk1 serves as a downstream 

effector of ATR, the inhibition of each one of these kinases provided differential 

sensitization of the cancer cells to commonly used chemotherapy agents.  

In 2012, Fokas et al. presented VE-822, which is a close analogue of VE-821 

with increased potency against the ATR kinase (IC50 (ATR): 19 nM), excellent ATR 

selectivity, and most importantly, good pharmacokinetic properties. In their study, VE-822 

was tested for in vitro and in vivo radiosensitization of pancreatic ductal adenocarcinoma 

cell lines. As in the case of VE-821, VE-822 did not affect the chemo- and radio- sensitivity 

of normal cells. In vivo experiments performed in mice bearing PDAC xenografts proved 

the efficiency of combination of VE-822 and chemo/radiotherapy without affecting normal 

tissue homeostasis (8). Furthermore, VE-822 has been tested in combination with cisplatin 

drugs in a panel of lung cancer cell lines and a panel of xenografts models derived 

from primary human non-small cell lung cancer (NSCLC) samples. Notably, VE-822 

in combination with cisplatin caused tumour growth inhibition even in tumours that were 

originally non-responsive to cisplatin. Experiments performed in the NSCLC cell line 

models also confirmed the previously reported differences between the outcome of ATR 
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and Chk1 inhibition (136). Based on the consistently promising data from the preclinical 

in vitro and in vivo testing and its favourable pharmacokinetic properties, which allow 

intravenous administration of the drug to humans, VE-822 (as VX-970) is currently tested 

in phase I clinical trials to assess its safety and tolerability in combination with cytotoxic 

drugs (ClinicalTrials.gov Identifier: NCT02157792). Several expansion phase I and phase 

II trials are planned and currently recruiting patients to evaluate applications of VX-970 

in different carcinomas and combination with genotoxic treatment (ClinicalTrials.gov 

Identifiers: NCT02595931, NCT02567422, NCT02589522, NCT02595892, 

NCT02627443, NCT02723864, NCT02487095).  

The second series of highly potent and selective ATR inhibitors was developed 

by AstraZeneca. The first compound from the series of sulfonyl-morpholino-pyrimidines 

reported and shown to suppress tumour growth in mice xenografts after oral administration 

of the drug was AZ20 (IC50(ATR): 50 nM, IC50(mTOR): 2.4 µM, IC50(other PIKKs)> 

30 µM; (137).  

An analogue of AZ20, AZD6738 has a significantly improved ATR selectivity 

(IC50 (ATR): 74 nM, IC50 (mTOR): 23 µM, IC50 (ATM, DNA-PK) > 30 µM), solubility, 

and pharmacokinetic properties and thus is more suitable for oral dosing. It has been shown 

to be efficient in monotherapy as well in combination with chemotherapy in NSCLC cell 

lines and xenografts, especially in ATM-deficient cell lines (12) and also proven to be 

synthetically lethal in p53- or ATM- defective chronic lymphocytic leukaemia cells in vitro 

and in vivo (138,139). Due to its oral bioavailability and tolerability proven in in vivo 

xenografts models, AZD6738 is the second ATR inhibitor that has been subjected 

to clinical trials. The initial study testing the safety and tolerability in patients 

with leukaemia has been completed (ClinicalTrials.gov Identifier: NCT01955668), and 

three phase I trials are currently ongoing focused on the combination of AZD6738 

with radio- and chemo- therapy in patients with advanced malignancies (ClinicalTrials.gov 

Identifier: NCT02264678, NCT02630199, NCT02223923).  

1.4. Protein phosphorylation and its role in eukaryotic 

cells 

Several hundred of PTMs of proteins have been described so far; among them, 

protein phosphorylation is one of the most studied as it is one of the most important PTMs 

in nature. Protein phosphorylation is a transient, reversible PTM, and this dynamic nature 
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of phosphorylation enables being the major driving force of most of the cellular processes 

which require rapid and tightly regulated signalling. These processes include cellular 

signalling and communication, proliferation, differentiation, metabolism, transcriptional 

and translational regulation, degradation of proteins, and cell survival (13). It is one of the 

most widespread regulatory mechanisms; it has been originally estimated that more than 

50 % of proteins in mammalian cells are phosphorylated at some point during their life time 

(140). However, in a recent study conducted by Sharma et al., more than 75 % of cellular 

proteins were found to be phosphorylated (141). Cellular protein phosphorylation events 

are site-specific, often occur at multiple sites within a phosphoprotein, and more than 100 

000 phosphorylation sites may exist in the human proteome (142). Some of them are 

always quantitatively phosphorylated whereas the occupancy of many phosphosites is very 

low.  

There are four distinct types of phosphorylation known: O- phosphorylation, which 

occurs on serine, threonine, and tyrosine residues, N- (143), S- (144), and acyl- (145) 

phosphorylation, which are far less common and occur on histidine, lysine, cysteine, 

aspartic, and glutamic residues. In eukaryotic cells, it is the O- phosphorylation on serine, 

threonine, and tyrosine residues, which is considered to be predominant (146). 

Phosphorylation of histidine residues has been also described; it has been estimated that 6 

% of the total phosphorylation in eukaryotes occurs on histidine residues (147). However, 

phosphohistidines are usually not observed in proteins due to rapid hydrolysis of the 

phosphoryl group under acidic conditions (148). The proportions of phosphoserine (pS), 

phosphothreonine (pT), and phosphotyrosine (pY) sites in a phosphoproteome were 

reported for the first time by Hunter and Sefton (1980), who determined them in chicken 

cells as 92.19 %, 7.77 %, and 0.03 %, respectively (149). Since then, several studies have 

been performed reporting similar trends: about 85-90 % of pS, 10-15 % of pT, and 0.5-5 % 

of pY. Substantial differences in the phospho-amino acids proportions are introduced 

by different model organism studied, degree of perturbation of a phosphoproteome 

by treatment conditions used in a particular study, and various methodological approaches 

used for a phosphopeptide enrichment and detection. In a recent label-free 

phosphoproteomic study, an intriguing trend was reported showing that the proportion 

of pY drastically decreases as coverage of the studied phosphoproteome increases, while 

pS and pT saturate only for technical reasons. Moreover, in comparison to pS and pT, 

phosphorylation stoichiometry of pY was maintained at a very low level in the absence 
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of any specific stimuli. Based on these observations, the authors proposed that pY should 

be considered a functionally separate PTM (141).  

The presence of phosphorylation in specific regions of a protein molecule is 

believed to induce conformational changes in the target protein, which influence its 

behaviour within the cell. Such conformational changes can modulate activity of an enzyme 

(such as phosphorylation in an activation loop in a protein kinase), subcellular localization 

of a protein, or its stability (14). Phosphorylation is mediated by protein kinases, which 

compose one of the largest enzyme superfamilies in higher eukaryotes; it has been 

estimated that 2-3 % of all eukaryotic genes are coding protein kinases (150). The reverse 

reaction, dephosphorylation, is mediated by protein phosphatases. Tight cooperation 

of protein kinases and protein phosphatases is essential for regulation of biological 

processes in a cell, and dysregulation of these processes has been described to contribute 

to multiple diseases including cancer (15). Technological advances in the recent past led 

to development of phosphoproteomic approaches that allow researchers to identify 

aberrantly activated signalling pathways in a particular disease state, and establish 

appropriate therapeutic targets that can be exploited as specific targets for small molecule 

inhibitors (16). 

Despite being such a widespread regulatory mechanism, the analysis of protein 

phosphorylation is hampered by several facts: (1) phosphorylated peptides are relatively 

low abundant in comparison to the non-phosphorylated peptides pool in cells; thus, it is not 

feasible to study phosphoproteome from an unfractionated peptide sample; (2) due to its 

dynamic nature, only a subfraction of cellular phosphoproteome is phosphorylated in a 

particular time; (3) techniques used to study protein phosphorylation have a limited 

dynamic range; therefore, it might be difficult to detect phosphopeptides from low 

abundant phosphoproteins; (4) the presence of the modification on the peptide alters its 

behaviour during liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

analysis, which can affect phosphopeptide identification and phosphorylation site 

localization; (5) quantification of phosphorylation might be difficult as it relies only on one 

modified peptide and a phosphopeptide might contain several phosphorylation sites, which 

can be differentially phosphorylated in response to a specific treatment. However, in the 

last decade, numerous techniques have been developed to overcome the aforementioned 

difficulties. To address the low stoichiometric nature and limited dynamic range of the 

detection methods, many one or multi- dimensional fractionation techniques for the 
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enrichment and fractionation of phosphopeptides have been established. New 

fragmentation methods for mass spectrometry analysis have been established to improve 

the phosphopeptide identification and site localization. Quantification techniques have 

been optimized to be suitable for phosphopeptide quantification. Moreover, the 

improvements in identification and quantification software for the interpretation of mass 

spectrometry data and development of specific programs and algorithms 

for phosphorylation site localization and further data interpretation enabled the use 

of phosphoproteomic methods in wide range of biological applications.  

In following chapters, the methods for enrichment of phosphorylated proteins and 

peptides will be discussed as well as the techniques for their detection and quantification.  

1.5. Strategies for the enrichment of phosphorylated 

proteins 

Although in bottom-up proteomics, the enrichment of phosphorylated peptides is 

far more common than the enrichment on the protein level, enrichment of phosphoproteins 

is still adequate in some specific applications. As it was mentioned above, the amount 

of tyrosine phosphorylated peptides in a phosphoproteome is relatively very low 

in comparison to pS and pT. Therefore, in studies specifically focusing on tyrosine 

phosphorylation driven signalling in cells, there is a need to use a method that would 

specifically enrich for phosphorylated tyrosine residues. The current method of choice is 

the immunoprecipitation of tyrosine-phosphorylated proteins using phospho-tyrosine 

specific antibodies (151–154). Although antibodies against specific phosphorylated motifs 

in phospho-threonine and phosphoserine have been also used in some studies (155,156), 

immunoprecipitation is not applicable to a high-throughput enrichment of pS and pT 

containing proteins as there are no pan-pS or pan-pT antibodies available. For such studies, 

the method of choice is the enrichment on peptide level.  

In addition to the antibody based approaches, phospho-proteins can be also 

precipitated using lanthanum ions (157,158) or enriched with affinity chromatography 

using metal oxides as the affinity media. Commercial kits for the enrichment 

of phosphoproteins e.g. Phosphoprotein Purification Kit (QIAGEN, Hilden, 

Germany;(159)) or Thermo Scientific Pierce Phosphoprotein Enrichment Kit (Thermo 

Fischer Scientific, Rockford, IL; (160)) are also available and used for phosphoprotein 

enrichment.  
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There are also methods available to specifically capture protein kinases using 

immobilized low-molecular weight inhibitors, e.g. bisindolylmaleimide compounds (161), 

or to immunopurify their substrates using an antibody raised against their substrate motif 

(162). 

1.6. Overview of fractionation and enrichments 

methods used for the phospho-enrichment 

on peptide level 

Multiple methods for the bottom-up phosphoproteomics have been developed so 

far. Broadly speaking, these methods either exploit the presence of a phosphate group in a 

peptide to chemically introduce an affinity tag (i.e. chemical derivatization methods), the 

affinity of a phosphate group for Lewis’ acids such as metal ions and their compounds (i.e. 

affinity enrichment methods), or physicochemical properties of phosphorylated peptides 

that can be used to more or less specifically fractionate their mixture with unmodified 

peptides (i.e. chromatographic fractionation methods). Nevertheless, none of them 

capable of yielding comprehensive information about the phosphoproteome of a complex 

biological sample. Therefore, the approaches described thereinafter are often combined 

to obtain complete information about the phosphopeptide pool in analysed samples. 

The affinity enrichment and separation methods include IMAC (Immobilized metal 

affinity chromatography), MOAC (Metal oxide affinity chromatography), HAP 

(Hydroxyapatite chromatography), SCX (Strong cation-exchange chromatography) and 

SAX (Strong anion-exchange chromatography), HILIC (Hydrophilic interaction 

chromatography) and ERLIC (Electrostatic repulsion hydrophilic interaction 

chromatography). 

1.6.1. Chemical derivatization methods 

In chemical derivatization techniques, phosphorylated amino acids residues are 

chemically modified by adding a tag that is selectively captured by affinity 

chromatography. Most of the methods take advantage of the lability of phosphate groups 

on serine and threonine residues under alkaline conditions. In the presence of a strong base 

(e.g. NaOH or Ba(OH)2), phosphoserines and phosphothreonines undergo a β-elimination 

reaction to form dehydroalanine or dehydrobutyric acid, respectively, which serve as 
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Michael acceptors. β-elimination is followed by Michael addition reaction with different 

nucleophiles such as ethanedithiol (163–166), dimethylaminoethanethiol (167), or 

mercaptoethylpyridine (168), which can be linked to an affinity tag (e.g. biotin; (165)) or 

immobilizing agent (e.g. dithiopyridine resin; (169)). The major drawbacks of methods 

based on the β-elimination reaction are associated with nonspecific labelling of cysteines 

and O-glycosylated peptides and inability of phosphotyrosines to undergo the 

β-elimination. The nonspecific labelling can, however, be reduced by blocking the 

sulfhydryl group of cysteines by alkylation or oxidation or by performing enzymatic 

deglycosylation in case of O-glycosylated peptides. 

Another covalent chemical derivatization technique is a carbodiimide catalysed 

condensation reaction with excess amine to form phosphoramidate (i.e. phosphate with the 

hydroxyl group replaced by NR2). In comparison with the β-elimination chemistry, 

phosphoramidate chemistry-based approach is also capable of enrichment of tyrosine-

phosphorylated peptides. Zhou et al. (170) for the first time presented this method in a 

multistep approach (six steps), where cystamines attached to phosphate groups by a 

condensation reaction were further reduced to form free sulfhydryl groups, which provided 

the attachment of phosphopeptides to a solid phase by reacting with iodoacetyl groups 

immobilized on glass beads. Although the final yield was only about 20 % due 

to considerable sample loss, this approach was very selective providing contaminant-free 

phosphopeptides. The complicated multistep procedure was further simplified in the 

Aebersold’s lab; the simplified method included the methylation of the carboxyl groups, a 

condensation reaction with a dendrimer (synthetic polyamine) in the presence 

of carbodiimide and imidazole, and finally an acidic hydrolysis of the phosphoramidate 

bonds between phosphopeptides and the dendrimer (171). This method provided higher 

recovery of phosphopeptides than the previous approach, however, wider utilization of it 

was hampered by extremely slow conversion during the carbodiimide catalysed 

condensation step.  

Another approach suitable for phosphorylated serine, threonine, and tyrosine 

peptides that included chemical derivatization was presented in 2004. Carboxylic groups 

were protected by methylation and the peptide mixture was subjected to the reaction 

with αdiazo functionalized resin, which resulted in the formation of a covalent 

phosphopeptide--resin bond, which was cleaved afterwards with an acid hydrolysis (172).  
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1.6.2. Chromatographic fractionation methods used 

in phosphoproteomics - SCX, SAX, HILIC, and ERLIC 

1.6.2.1. Strong Cation Exchange Chromatography (SCX) 

In SCX chromatography, the interaction between positively charged peptides and 

negatively charged column resin is responsible for the retention of the analytes. Under 

acidic conditions, with pH typically lower than three, tryptic peptides become positively 

charged by protonation at the peptide N-termini and side chains of arginine, lysine, and 

histidine residues whereas carboxyl groups and the C-termini become neutrally charged. 

Phosphoryl group stay negatively charged at such pH conditions, and thus peptides 

containing phosphoryl groups exhibit a lower affinity for the negatively charged SCX resin. 

Hence, phosphopeptides are eluted in the early fractions during SCX fractionation (173).  

SCX was originally presented as a component of a multidimensional protein 

identification technology for shotgun proteomics (174,175). In 2004, SCX was for the first 

time described for phosphopeptide enrichment of HeLa cell nuclear phosphoproteins as a 

standalone method resulting in identification of 2002 phosphorylation sites from 967 

proteins (176). Since then, SCX has been frequently used as a fractionation method 

in combination with other phosphopeptide enrichment methods:  IMAC (177–181) or 

titanium dioxide enrichment (182–186), but also as a single method for phosphopeptide 

enrichment after combined cleavage with Lys-N and trypsin (187,188). 

1.6.2.2. Strong Anion Exchange Chromatography (SAX) 

SAX chromatography is the second ion exchange method used for peptide 

fractionation, and as opposed to SCX, the negatively charged peptides are more likely 

to retain on the chromatographic resin during the separation. Dependent on pH of the 

solvents used for the separation, acidic and phosphorylated peptides are retained on the 

chromatographic resin and elute in later fractions, and thus the use of SAX 

for phosphopeptide fractionation typically results in lower loss of phosphopeptides than 

SCX. Another significant advantage of using SAX over SCX for phosphoproteome 

analysis is that SAX has a better ability to fractionate phosphopeptides in multiple fractions 

(189).  

In 2003, Nühse et al. successfully used SAX chromatography with salt gradient 

elution as a prefractionation step prior to IMAC for the identification of plasma membrane 
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phosphoproteins (190). More recently, SCX and SAX fractionation were combined 

for sequential fractionation of samples (flow-through fractions from SCX were further 

subjected to SAX) and the collected fractions were analysed by RPLC-MS/MS. Such 

approach was named yin-yang multidimensional liquid chromatography tandem mass 

spectrometry method (Yin-yang MDLC−MS/MS; (191)), and led to improved 

identification of phosphopeptides than it is common in a proteomic experiment (13 256 

unmodified peptides and 849 phosphopeptides were identified). The yin-yang MDLC-

MS/MS approach in combination with quantification using stable isotope labelling 

with amino acids in cell culture was further successfully used for the quantification 

of phosphoproteome changes during adipocyte differentiation (192).  

SAX has been shown to be complementary with Fe3+-IMAC. However, 

when comparing these two techniques, more peptides, especially monophosphorylated, 

were identified by SAX approach than by Fe3+-IMAC as the monophosphorylated peptides 

were probably lost because of the weaker interaction with Fe3+ IMAC. Enrichment and 

fractionation of phosphopeptides by SAX itself was then applied to phosphoproteomic 

analysis of human liver tissue (189). SAX chromatography has been also compared with a 

method combining SCX and titanium dioxide (TiO2) enrichment. The SAX system 

preferred to identify more acidic and multiphosphorylated peptides than SCX/TiO2, and it 

also covered a more complete series of phosphorylation states of peptides (193). AFET 

(Anion exchange followed by flow-through enrichment with TiO2) is a phosphopeptide 

enrichment and identification strategy, where SAX is used as the first step for the pre-

separation of peptides that are further subjected to TiO2 chromatography and RPLC-

MS/MS detection of the enriched phosphopeptides (194).  

1.6.2.3. Hydrophilic Interaction Chromatography (HILIC) 

HILIC has been more commonly used for small polar solutes (e.g. pharmaceuticals, 

saponins, urea, aminoglycoside antibiotics, glucosinolates, sugars and glycans, folic acid 

and its metabolites, nicotine and its metabolites, and glycoalkaloids) than for peptides 

fractionation. The retention of an analyte is believed to be based on partitioning between a 

water- enriched layer of stagnant eluent which hydrates the polar stationary phase and a 

relatively hydrophobic bulk eluent, with mobile phase usually being 10-40% water 

in acetonitrile. In this settings, the retention of an analyte increases with the increasing 

polarity of the peptide (Alpert, 1990), and thus phosphorylated peptides are retained by the 

polar stationary phase usually more than unmodified peptides (195,196).  Additionally, it 
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has been demonstrated that HILIC has the highest degree of orthogonality to the reversed 

phase liquid chromatography (RPLC) among all commonly used peptides fractionation 

techniques (197).  

McNulty and Annan (2008) used HILIC in 2D separation approach with IMAC 

being the second dimension. Applying this approach, they identified more than 700 novel 

phosphorylation sites in HeLa cells phosphoproteome. Additionally, they revealed that 

HILIC performed prior to the IMAC enrichment (HILIC-IMAC) improved dramatically 

the selectivity of IMAC while HILIC performed after IMAC enrichment (IMAC-HILIC) 

was found to be a less beneficial approach (198). Contrary to this finding, Albuquerque et 

al. (2008) performed IMAC enrichment before HILIC prefractionation followed by RPLC-

MS/MS with acceptable results; thousands of phosphopeptides (8764) from yeast 

phosphoproteome were identified using this settings (199).  

1.6.2.4. Electrostatic Repulsion- Hydrophilic Interaction Chromatography (ERLIC) 

The most novel chromatographic approach that was developed specifically for the 

enrichment and fractionation of phosphopeptides is the electrostatic repulsion- 

hydrophilic interaction chromatography. This approach combines the electrostatic 

attraction with hydrophilic interactions to selectively capture phosphopeptides. At low pH 

(pH < 2) phosphate groups still retain their negative charge whereas carboxyl groups 

of acidic amino acids become neutrally charged and basic amino groups are charged 

positively. Phosphate groups are electrostatically bound to the column; nevertheless, their 

affinity would not be sufficient to overcome electrostatic repulsion from the positively 

charged amino groups from the N-terminus and basic amino acids. Therefore, hydrophilic 

interactions of the phosphate group are to be enhanced by using high concentrations of an 

organic solvent increasing the hydrophobicity of mobile phase (e. g. 70% acetonitrile; 

(200)).  

In a study performed on HeLa cells, SCX, HILIC, and ERLIC based fractionation 

methods were combined for phosphopeptides separation prior to sequencing by RPLC-

MS/MS. A total of 9069 unique phosphopeptides were identified with only 1697 

phosphopeptides (18.7 %) overlap between the phosphopeptides identified by each one 

of the three fractionation methods, which indicated that these three techniques are 

complementary to each other and can be combined for more comprehensive 

phosphoproteome analysis (201). In a phosphoproteomic study investigating Marek’s 

disease virus-infected chicken embryonic fibroblasts, ERLIC was used as a first 
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fractionation step followed by IMAC enrichment of phosphopeptides in the ERLIC 

separated fractions and RPLC-MS/MS identification of enriched peptides (202). 

1.6.3. Immobilized Metal Affinity Chromatography  

IMAC is the oldest affinity chromatography method for phosphopeptide 

enrichment that was originally used for affinity purification of His-tagged proteins (203). 

However, in 1986, the binding of phosphoproteins and phosphorylated amino acids 

to ferric ions immobilized on a iminodiacetate-agarose gel was demonstrated for the first 

time (204), and since then, IMAC technique has been further optimized and widely used 

for enrichment of phosphopeptides prior to MS analysis. 

 IMAC takes advantage of a high affinity of positively charged metal cations (Fe3+, 

Al3+, Ga3+, Zr4+, or Co2+) to negatively charged phosphopeptides. Metal ions are typically 

chelated by nitriloacetic acid or imidoacetic acid coated matrix to form the IMAC material. 

Several kinds of matrices including polymer beads (205), the inner wall of capillaries (206), 

and monoliths (207) have been successfully used for metal ion immobilization. Despite 

being a relatively old method, IMAC is still widely used presumably due to its ease of use 

and availability of well optimized and robust protocols. Nowadays, the most common 

variant is Fe3+-IMAC used for both single step purification or in combination with a 

prefractionation method.  

The most significant drawback of IMAC is a high level of nonspecific binding 

of nonphosphorylated proteins containing multiple acidic amino acid residues, which co-

elute with phosphopeptides during the enrichment of highly complex peptide samples. 

However, this problem can be overcome by extensive optimization as the phospho-

selectivity seems to be dependent on multiple parameters including on the type of metal 

ions, pH value, ionic strength, and organic phase which can be adjusted to develop a robust 

protocol (reviewed in (208)). Another approach to increase the efficiency of IMAC is the 

prefractionation of the peptide samples by various chromatographic methods (described 

therein before). In addition to the low specifity, IMAC has some other disadvantages. It has 

been reported that IMAC favours multiphosphorylated peptides over monophosphorylated 

ones since multiply phosphorylated peptides are more strongly retained on the IMAC resin 

(209). However, this disadvantage can be also taken as an advantage when the enrichment 

of multiply phosphorylated peptides is desired (210). The technique can be also affected 

by various buffers, detergents, and other reagents that are used in biochemical and 
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molecular biology procedures. Therefore, pre-purification steps are necessary prior 

to IMAC enrichment, which might lead to an increased sample loss (208). 

Sequential elution from IMAC (SIMAC) strategy was designed to separate 

monophosphorylated and multiply phosphorylated peptides from complex biological 

samples. Monophosphorylated peptides were eluted from the IMAC resin using acidic 

solution (1% trifluoroacetic acid, 20% acetonitrile) while multiphosphorylated peptides 

were subsequently eluted under basic conditions (NH4OH solution, pH 11.3). The first 

acidic eluent was further enriched using TiO2 chromatography to sequester the pool 

of monophosphorylated peptides from acidic nonphosphorylated peptides (210).  

A similar procedure including TiO2 enrichment of the flow-through fractions 

from IMAC was used for the characterization of human T lymphocytes phosphoproteome 

(211). Other study used a combination of IMAC and TiO2 enrichment to produce a large 

data set with only small degree of overlap between these two methods suggesting the 

complementary nature of these methods (212). Some of the recent phosphoproteomic 

studies employing IMAC for phosphopeptide enrichment were mentioned above since they 

applied two dimensional enrichment settings using pre- or post-fractionation with one 

of the chromatographic methods (177–181,198). Other studies used IMAC enrichment 

without any prefractionation only followed by LC-MS/MS for identification of the 

enriched peptides. For instance, Chen L. et al. studied phosphoproteome of human prostate 

cancer specimens obtained from tissue depository to evaluate feasibility 

of  phosphoproteomics for biomarker discovery from archived tumour specimens (201).  

Recent promising innovation to IMAC technique has been the introduction 

of immobilized titanium ion affinity chromatography (Ti4+-IMAC). A phosphate 

polymer was applied to immobilize Ti4+ through the chelating interaction between 

phosphate groups on the polymer and Ti4+. The resulting Ti4+-IMAC resin was compared 

to other enrichment methods including Fe3+-IMAC, Zr4+-IMAC, TiO2, and ZrO2, and 

demonstrated superior selectivity and efficiency of Ti4+-IMAC for the isolation and 

enrichment of phosphopeptides (213,214). Matheron at al. recently compared performance 

and biases of TiO2 enrichment and Ti4+ IMAC using a very large synthetic library and a 

tryptic digest of a cellular lysate (HeLa cells). Their data revealed that there are no clear 

differences between the two enrichment methods considering biochemical and biophysical 

parameters such as peptide length, sequence surrounding the site, hydrophobicity, and 

nature of the amino acid phosphorylated. Also the abundance of the enriched 
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phosphopeptides was rather similar except for the preferential enrichment of multiply 

phosphorylated peptides by Ti4+-IMAC (215), which was in concordance with previously 

reported tendencies of IMAC resins to efficiently enrich multiply phosphorylated peptides. 

Ti4+-IMAC has been successfully applied for phosphopeptide enrichment 

in phosphoproteomic studies: for instance, in a label-free quantitative phosphoproteomic 

study of Jurkat T-cells stimulated by prostaglandin E2 (216) or a targeted quantitative 

proteomics study of phosphorylation dynamics of the PI3K-mTOR and MAPK signalling 

pathways (217).  

1.6.4. Metal Oxide/hydroxide Affinity Chromatography 

MOAC is one of the most powerful and promising approaches for phosphopeptide 

enrichment. Metal oxides have been shown to have affinity for phosphate ions at acidic pH; 

the mechanism of phosphate-metal oxide interaction is described as ion-exchange, where 

metal oxide acts as a Lewis acid, and the phosphate group behaves as a Lewis base (218–

220). 

The mechanism of this interaction implicates that phosphopeptides are most 

effectively enriched under low pH conditions. It has been established that especially 

nonphosphorylated- peptides containing greater proportions of aspartic and glutamic acid 

bind non-specifically (221). Therefore, various additives have been tested to increase 

binding specifity to selectively capture phosphorylated peptides. Namely, trifluoroacetic 

acid (TFA) or formic acid (FA) have been used to establish low pH (typically in a range 

of 2-3); relatively high acetonitrile concentrations (50-70%) have been used in the 

“buffers” to prevent hydrophobic interactions with the sorbent, and different 

monocarboxylic or dicarboxylic acids have been tested as “buffer” additives to compete 

for binding sites with non-phosphorylated peptides but to not decrease the binding affinity 

of phosphopeptides. The first one presented was 2,5-dihydroxybenzoic acid (DHB; (222)); 

nevertheless, lactic acid (LA; (223)), glutamic acid (Glu; (192)), or ammonium glutamate 

(224) have also been reported to increase the selectivity of MOAC. Naturally, the 

concentration of these additives might have a strong influence on the nature 

of phosphopeptides that are enriched. Using high concentration during the binding step 

may improve specifity, but more weakly bound mono-phosphorylated phosphopeptides 

could be lost. A variety of pH conditions during the binding or the elution step have been 

also employed to optimize the protocol (225,226). An alternative approach described 
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to minimize the level of nonspecifically bound peptides is chemical derivatization before 

the enrichment, e. g. methyl esterification of peptides (209,226).  

Two different settings have been used to enrich phosphopeptides using MOAC. The 

most common experimental approach is the use of MOAC beads in an off-line strategy. 

Metal oxide particles can be embedded in pipette tips or mixed and incubated with peptides 

in a microtube, and the enrichment protocol proceeds through multiple steps performed 

manually. The second is an on-line strategy, which does not allow so much flexibility in the 

protocol in comparison with the off-line strategy, but it has other undeniable advantages 

such as automation, higher sensitivity, and repeatability. In the on-line strategy, the metal 

oxides are integrated into the LC-MS/MS system in the form of pre-columns prior to the 

RPLC-MS/MS (e.g. (227,228)). 

A variety of metal oxides have been used for phosphopeptide enrichment so far 

comprising aluminium hydroxide (229), gallium oxide (230), iron oxide (183), niobium 

pentoxide (231), tin dioxide (232,233), hafnium oxide (234), tantalum oxide (235), 

zirconium dioxide (236),  and titanium dioxide (227); among them the last two have been 

the most commonly used in phosphoproteomic studies.  

1.6.4.1. Titanium dioxide enrichment 

Titanium dioxide enrichment (in text referred as TiO2 enrichment) was the first 

MOAC method discovered (227), and even though there were many other metal oxides 

in different forms proven to have affinity for phosphopeptides, it became the most popular 

metal oxide resin used for phosphopeptide enrichment presumably due to its favourable 

enrichment behaviour, chemical stability, and commercial availability. TiO2 is highly 

selective to preferentially bind phosphopeptides under optimal conditions during sample 

loading, washing, and peptide elution steps. One of the advantages of TiO2 enrichment is 

that TiO2 is more robust and tolerant towards many reagents normally used in biochemistry 

and cellular biology than conventional IMAC, which is sensitive to common buffers or 

detergents - various detergents have been actually demonstrated to enhance the efficiency 

of TiO2 enrichment (237).  

TiO2 enrichment was introduced already more than a decade ago, in 2004, as a novel 

promising strategy for selective phosphopeptide enrichment prior to RPLC-ESI-MS/MS 

(227). In this setup, TiO2 was used in a form of an on-line TiO2 pre-column coupled to a 

reversed phase capillary column; loading solution contained 0.1 M acetic acid, and the 

elution was performed with ammonium bicarbonate (pH 9.0). Phosphorylated peptides 
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were successfully enriched; nevertheless, the selectivity of the enrichment was not 

sufficient and needed further optimization. 

Larsen et al. examined the effect of different loading “buffer” composition 

on phospho-selectivity of TiO2 packed in home-made microcolumns. Different aromatic 

and aliphatic carboxylic acids were added to the loading buffer and the selectivity of the 

enrichment was evaluated using MALDI-TOF MS (matrix-assisted laser 

desorption/ionization-time of flight mass spectrometry). DHB and other substituted 

aromatic carboxylic acids (salicylic acid, phthalic acid) showed the best efficacy 

in inhibition of adsorption of nonphosphorylated peptides followed by monofunctional 

carboxylic aromatic and aliphatic acids (benzoic acid, cyclohexanecarboxylic acid, 

phosphoric acid, trifluoroacetic, and acetic acid) (222). DHB was also found to be the most 

potent additive in a study performed by Yu et al. minimizing the inference 

from nonphosphorylated peptides. (238). These results indicated the importance of a 

hydroxyl group in ortho- position of a benzene ring that is probably more relevant 

for reducing the nonspecific peptide binding than a hydroxyl group in meta- position; 

presumably because the interactions between substituted aromatic carboxylic acid and TiO2 

surface are based on a coordination bond that forms a chelating bidentate (239). 

On the other hand, DHB has been shown to cause problems when analysing the 

samples using an RPLC-ESI-MS/MS system, reducing the number of identified 

phosphopeptides and affecting the performance of the LC-MS/MS system. When 

comparing the effect of hydroxy acids (DHB, glycolic acid, lactic acid, malic acid, tartaric 

acid, and hydroxypropanoic acid) on the phosphopeptide enrichment with various MOAC 

tips, lactic acid and hydroxypropanoic acid were the most effective for both TiO2 and ZrO2 

enrichment. Furthermore, aliphatic hydroxy acids are hydrophilic enough to be removed 

during the desalting step, and thus they did not appear to affect the LC-MS/MS system as 

it was described in the case of DHB (223). 

Jensen and Larsen also compared the effect of hydroxy acids, namely phthalic, 

glycolic, oxalic, lactic, gallic, and citric acid. In their comparison, 1 M glycolic acid was 

shown to be the most beneficial for the minimization of nonspecific absorption of acidic 

nonphosphorylated peptides without any effect on the binding of phosphopeptides to TiO2 

(237).  Contrary to their report, Aryal and Ross revealed that the addition of glycolic acid 

to the loading solution reduced the specifity towards phosphopeptides (240). A possible 

explanation of this discordance is variability in properties of TiO2 used in different studies. 
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There are many commercial products available provided by different companies, which 

might vary because of different technology used for their production. For instance, it has 

been shown that structure and retention properties of titania are strongly dependent on the 

calcination temperature of the beads (241).  

The optimized protocol for the TiO2 enrichment presented by Wu et al. included the 

addition of glutamic acid in the sample loading buffer as an effective nonphosphopeptide 

excluding agent (186). Other investigations showed that loading buffer consisting of a 

combination of high concentrations of 1-octanesulfonic acid and low concentrations 

of DHB also improved the selectivity for phosphopeptides without affecting the LC-MS 

system as it was observed also when DHB was used as nonphosphopeptide excluding 

additive alone in a high concentration (242). This protocol was further optimized with the 

addition of heptafluorobutyric acid (243).   

Peptide-to-TiO2 ratio has been also investigated as a substantial factor for the 

selectivity of the phosphopeptide enrichment. The optimum ratio for HeLa cell lysate was 

from 1:2 to 1:8 (mass/mass); less or more TiO2 beads used for the enrichment decreased 

the selectivity. Interestingly, multiple phosphorylated peptides were identified by deficient 

TiO2 beads while with the increasing beads dosage, the monophosphorylated peptides 

became dominant (244). Similar findings were obtained for acute myeloid leukaemia cell 

line P31 in a quantitative label-free phosphoproteomic study (245). 

The TiO2 enrichment method has been further improved by developing various 

nanoparticles, nanocomposites, and microspheres. For instance, nano-titanium dioxide 

composites were synthesized from TiO2 nanoparticles via photopolymerization in the 

presence of a diacrylate cross-linker.  The enrichment efficacy of these nanocomposites 

was evaluated to be up to five times larger compared to 5µm TiO2 particles. Moreover, the 

cross-linking of the TiO2 nanoparticles helps to prevent loss of the particles from the 

packed cartridges during washing procedures (246). Lin and co-workers deposited a thin 

TiO2 layer onto the inner surface of capillary column by liquid phase deposition technique. 

This TiO2 nanoparticle-deposited capillary column was then used in an off-line setup 

with MALDI-TOF MS or on-line with ESI-QTOF MS and nano-LC-ESI-MS/MS, and a 

good capability for enriching of phosphopeptides was demonstrated, i.e. phosphopeptides 

from α-casein were detected in a mixture of tryptic peptides from α-casein and BSA at the 

femtomole level (247). Mesoporous nanostructured TiO2 clusters were also employed 

for selective separation of phosphopeptides. TiO2 nanocrystals were first self-assembled 
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and then further modified to form submicrometer clusters with relatively uniform 

mesoscale pores and hydrophilic and negatively charged surface that enhanced the water 

dispersibility of the clusters. The incorporation of various components that further 

facilitated the separation of phosphopeptides, e. g. superparamagnetic nanocrystals, was 

demonstrated to be feasible because of the self-assembly process (248). The affinity 

material particles can also be immobilized on MALDI plates. The on-plate enrichment 

for subsequent MALDI-MS analysis has been shown to have some advantages 

in comparison with the conventional resin-based techniques such as minimal sample 

handling and thus lower sample loss (e.g. (249–251)). 

1.6.4.2. Zirconium dioxide enrichment 

The application of zirconium dioxide (ZrO2) enrichment for phosphopeptide 

isolation prior to MS analysis was first demonstrated by Kweon and Håkansson in 2006. 

Phosphoselectivities of ZrO2 and TiO2 were compared; both materials were highly specific 

for phosphopeptides. Nonetheless, ZrO2 provided more selective enrichment 

for monophosphorylated peptides whereas TiO2 was more selective 

for multiphosphorylated peptides (236). The observed difference in binding selectivity 

between ZrO2 and TiO2 was explained by the fact that under acidic conditions, ZrO2 is a 

stronger Lewis acid than TiO2, together with different coordination numbers of zirconia 

and TiO2 in crystalline forms (7 and 6, respectively; (236)).  

As in the case of TiO2, the ZrO2 enrichment method has been further improved 

by using various loading, washing, and elution conditions in the enrichment protocols, and 

by preparing different ZrO2 containing microspheres, nanoparticles, or nanocomposites. 

For instance, in the study published by Sugiyama and his co-workers, previously 

mentioned in context with TiO2 enrichment, β-hydroxypropanoic acid was shown to be the 

most effective non-phosphopeptide excluder for zirconium dioxide chromatography among 

all the hydroxy acids tested (223). Lo et al. presented iron oxide nanocomposites 

of magnetic particles coated with zirconia with high surface-to-volume ratio improving the 

trapping capacity and reducing the time required for enrichment; phosphopeptides could be 

enriched by pipetting the sample with the particles for only 30 seconds. Moreover, 

magnetic property enabled easy isolation by application of an external magnetic field 

(252). Li et al. prepared Fe3O4/ ZrO2 core-shell microspheres with well-defined core-shell 

structure and higher selectivity than ZrO2 coated magnetic particles (with no core-shell 

structure) described before. Furthermore, Fe3O4/ZrO2 core-shell microspheres were more 
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selective in comparison with commercially available IMAC material (PHOSselect- iron 

affinity beads, Sigma; (253)). In 2009, mesoporous ZrO2 nanomaterial with very large 

surface areas and many surface sites that provide higher loading capacity for binding 

of phosphate groups than micro- and nano- particles was first applied for phosphopeptide 

enrichment (254). However, mesoporous ZrO2 had some disadvantages including its 

thermal instability and hence mesoporous silica microspheres coated with zirconia layer 

were synthesized with improved thermal stability. Due to the interactions of metal oxide 

and silica support, the physicochemical properties of metal oxide differed greatly to the 

bulk crystalline metal oxides and enabled high phosphopeptide recovery, especially 

for multi-phosphorylated peptides, which was shown to be even higher than that of the 

widely used commercial TiO2 microparticles (GL Sciences, Tokyo, Japan; (255)). 

1.7. Detection of phosphorylation 

Mass spectrometry is a current method of choice to detect dynamic changes 

in protein phosphorylation. However, a direct MS analysis of phosphorylation 

from unfractionated peptide samples is still not feasible because of relatively low 

abundance of phosphorylated proteins in eukaryotic cells. Also, the ionization efficiency 

used to be frequently reported as a reason for difficulties in phosphopeptide identification. 

It was suggested that ionization efficiencies and thence, signals of phosphopeptides in MS, 

are lower compared with their nonphosphorylated analogues (256,257). Contrary to these 

reports, in a more recent study, Steen et al. tested the ionization/detection efficiencies of the 

synthetic peptide/phosphopeptide pairs by using online LC-ESI-MS/MS. In this study, it 

was shown that the statement about lower ionization efficiency is not valid in general, and 

it is highly dependent on the MS instrumentation used in the particular study. Based 

on their results, the authors concluded that phosphopeptides are difficult to identify 

in protein digests because of the substoichiometric nature of phosphorylation, not because 

of their low ionization efficiencies (258). Nonetheless, it is of a great importance to choose 

an appropriate “phosphate-friendly” fragmentation method to preserve phosphorylation 

during peptide fragmentation. It has been shown that during that the most common 

fragmentation method used in proteomics, collision-induced dissociation (CID) operated 

in positive-ion mode, the phospho-amino acid containing peptides will typically undergo 

β-elimination of phosphoester bond resulting in a loss of the phosphate group and limited 

fragmentation across the peptide backbone. Application of an alternative fragmentation 
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method such as high-energy CID (HCD; (259)), electron capture dissociation (ECD; 

(260)), or electron transfer dissociation (ETD; (261)) leads to more efficient fragmentation 

without the cleavage of the phosphoester bond and thus allows more confident peptide 

identification and localization of the modification. More details on the appropriate 

selection of fragmentation method for a phosphoproteomic analysis are given in our 

publication (262). 

1.8. Quantification techniques for phosphoproteomics 

Quantitation in proteomics has become very robust in recent years; there are 

multiple well established quantitation techniques that provide very precise and accurate 

quantification of proteins in samples and allow comparison of samples coming 

from different origin. Quantification of PTMs has also become relatively feasible – but it 

is important to consider that the quantification of modifications is more difficult than and 

not as straightforward as quantification of whole proteins. The quantification of PTMs 

usually rely on one modified peptide, contrary to proteins with more peptides available 

(and usually required). Additionally, a modified peptide can bear multiple modifications 

with different degree of regulation, further complicating the analysis. In this chapter, a brief 

overview of the most popular quantification techniques for phosphoproteomics is provided.  

1.8.1. Label-free quantification  

As the name of the quantification approach implies, label-free quantification is the 

“simplest” quantification method that does not require any labelling step in the 

experimental workflow and only relies on spectral counting or MS1 intensity of the 

quantified feature. The unnecessity to use any isotopic label provides this method several 

attractive benefits: the implementation costs are low; there are no additional steps in the 

workflow that may introduce undesirable biases into the analysis, and the number 

of treatment conditions and replicates is basically unrestrained allowing relative flexibility 

in the experimental designs. On the other hand, the absence of multiplexing increases the 

total number of samples to be measured, and thus longer acquisition time costs must be 

considered when choosing this strategy.  

The most of the challenges occur within the post-acquisition analysis of the 

recorded data. A common problem in shotgun proteomics are missing values. The data-

dependent acquisition method, which is used in shotgun proteomics, is based on scanning 
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peptide ions and choosing the most intense peptides for subsequent fragmentation. This 

stochastic sampling approach then leads to a high number of missing values, which might 

hamper subsequent data analysis. In fact, missing values can be imputed using various 

imputation methods (reviewed in (263)). However, label-free quantitation software has 

been improved in recent years, for instance MaxQuant (MaxLFQ algorithm (264,265)); 

these developments increased the robustness of label-free quantitation workflows and 

provided tools that can salvage many quantitative values from the unidentified spectral 

features, so the imputation is usually still used, but it is required for a lower number 

of missing values. 

Although labelling-dependent quantitation approaches provide more confident 

quantification and multiplexing, label-free approaches have become popular too and have 

been used in several phosphoproteomic studies. Especially, the largest phosphoproteomic 

studies identifying up to 50,000 of phosphorylation sites were conducted using this 

quantitation technique. However, it is important to point out that quantification of label free 

phosphoproteomics data is still challenging as the quantification of a phosphorylation site 

is usually dependent on one peptide (common issue in phosphoproteome quantification) 

and the normalization of acquired data is not as straightforward as in the case of label-based 

proteomics. Furthermore, to conduct a label-free phosphoproteomic experiment, it is 

essential to have a robust and reproducible phospho-enrichment protocol to avoid possible 

biases introduced in the sample preparation step.  

In 2010, Huttlin et al. published a large phosphoproteomic study of difference 

between 9 mouse tissues to identify common and tissue-specific phosphorylation. In this 

study, 6296 phosphoproteins harbouring nearly 36,000 phosphorylation sites were 

identified (266). In the largest phosphoproteomic study conducted so far, more than 50,000 

distinct phosphorylation sites were detected in HeLa cell line with more than 75 % 

of cellular proteins revealed to be phosphorylated. Importantly, this study provided an 

intriguing insight into differences between pS/pT and pY signalling, and presented a large-

scale quantification of site occupancies using label-free data in MaxQuant (141). The 

unnecessity of additional steps within the workflow makes label-free quantitation very 

attractive to use in high-throughput automated sample preparation workflows. EasyPhos 

was designed to allow rapid quantification of phosphoproteomes in cells and tissues at a 

depth of more than 10,000 phosphorylation sites per analysis without the need of any pre-

fractionation prior to phospho-enrichment, analysing the samples in one LC-MS/MS run 
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(267). In a recent study, a multi-protease based approach was presented for protein 

digestion markedly increasing the coverage of the studied phosphoproteome. The authors 

pointed out that there is a bias in phosphopeptides detected in phosphoproteomic studies 

caused by the fact that trypsin is usually used for sample digestion providing the same set 

of tryptic peptides (268).  

1.8.2. Metabolic labelling 

In metabolic labelling, the labels are incorporated into every protein during cell 

growth and division. Consequently, the isotopic label is introduced in the earliest possible 

step of the experiment, thereby eliminating systematic errors that could arise from sample 

handling. The most widely used metabolic labelling method in both proteomics and 

phosphoproteomics – stable isotope labelling with amino acids in cell culture (SILAC) 

was introduced in 2002 (269).  

In classical SILAC, isotopically labelled lysine and arginine (containing 13C or 15N) 

are typically used as a component of cell culture media, in which the cell are cultivated 

for at least six cell doublings to ensure a complete incorporation of labels into the proteins 

of growing cells (270). As the most common protease in proteomics is trypsin alone or 

in combination with Lys-C, the digestion of cellular proteins in the ideal case leads 

to generation of peptides that contain one lysine or arginine and thus contain one isotopic 

label. Relative quantification is then achieved on MS1 level by comparing the intensities 

of two co-eluting isotopic clusters (i.e. labelling pair) which are distinguished by their m/z 

value. The disadvantages of SILAC are limited multiplexing (only 2 or 3 samples are 

maximally combined in a typical SILAC experiment) and the increase of complexity 

of MS1 spectra, which can in turn limit sampling depth. Another problem might be caused 

by metabolic turnover of labelled amino acids – typically arginine, which can be converted 

to proline – but this issue can be avoided by careful optimization of the arginine and lysine 

concentration in cell culture media, choosing an appropriate experimental design and 

arginine isotope (271), or adding high amounts of proline to limit the metabolic conversion 

of arginine by a negative feedback loop (272).  

The first phosphoproteomic studies that employed SILAC as a quantification 

technique were conducted in Mann’s lab. Blagoev et al. studied phosphotyrosine-mediated 

signalling events in epidermal growth factor (EGF) stimulated cells using an antibody-

based approach to enrich for phosphotyrosine containing proteins. When combining two 
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triple-labelling states experiments (i.e. double-triple SILAC), an activation profile of 81 

signalling proteins early after EGF receptor (EGFR) stimulation was obtained, and thus it 

was for the first time demonstrated that SILAC can be employed to study cellular signalling 

in a high-throughput phosphoproteomic study (151). In a complementary study using the 

same labelling approach (i.e. double-triple SILAC) to generate five-time-points profiles 

for the detected phosphorylation sites and the same stimulation using EGF, Olsen et al. 

for the first time demonstrated that SILAC could be used to study pS and pT mediated 

signalling pathways. Using a two dimensional chromatographic approach including SCX 

as a prefractionation technique prior to TiO2 enrichment, 6,600 phosphorylation sites 

on 2,244 proteins were detected (273). In these initial studies, stringency criteria for only 

accepting 1.5 fold changed sites as regulated were set (151) and classification 

of phosphorylation sites based on their localization probability calculated by MaxQuant 

was developed with only accepting class I sites (i.e. localization probability > 0.75) 

for downstream bioinformatic analysis (273); both of these criteria are still widely used 

in current phosphoproteomic studies. Since then, classical SILAC has been used 

for quantification in many phosphoproteomic studies mainly because of the high precision 

and accuracy of quantification achieved by this technique as well as the early introduction 

of the labelling into the experiment.  

Furthermore, Mann’s lab has developed new techniques based on the classical 

SILAC labelling that further expanded experimental designs that are applicable 

to quantitative proteomics and phosphoproteomics using SILAC. In a so-called pulsed 

SILAC, all experimental groups are cultivated in a SILAC “light” cell culture medium (i.e. 

a medium that contains non-labelled versions of amino acids) and the “heavy” isotopes are 

only added for a certain period of time to pulse-label the newly synthesized proteins. As a 

consequence, protein turnover can be estimated from the obtained SILAC rations (274). To 

be able to analyse primary tissues and compare a higher number of samples than in the 

classical SILAC approach, spike-in SILAC (sometimes referred as super-SILAC) was 

developed. The idea of spike-in SILAC is to produce a representative super-SILAC 

mixture of different SILAC-labelled cell lines to develop an internal standard for a 

subsequent comparison of multiple samples (275,276). Further development also enabled 

the use of SILAC for the purpose of in vivo studies by introducing SILAC labelled model 

organisms such as SILAC mouse (277,278).  
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These modifications of the classical SILAC approach have been also used 

in quantitative phosphoproteomics. Phosphoproteomes of insulin treated and untreated 

mice liver were compared using the spike-in method. In this study, the super-SILAC mix 

was composed of a mixture of peptides prepared by tryptic digestion of six mouse liver cell 

lines treated or untreated with insulin. Using this mixture as an internal standard, 10,000 

of phosphorylation sites were compared in response to insulin treatment, which provided a 

considerable deep insight into cellular signalling in an in vivo system (279). In addition 

to in vivo phosphoproteomic studies, spike-in SILAC also enabled a quantitative 

comparison of tumour samples obtained from different donors. Schweppe et al. established 

a super-SILAC internal standard derived from NSCLC cell lines, which was further used 

to relatively quantify phosphopeptides from two tumours to determine pathways that differ 

between the two tumours (280). The SILAC mouse technology was used to investigate 

cancer progression through distinct stages of skin cancer providing a detailed insight into 

molecular pathways altered during skin carcinogenesis obtained in an in vivo system (281).  

1.8.3. Chemical labelling 

In chemical labelling approach, the isotopic labels are incorporated into the proteins 

later in the experimental workflow – either on the protein level (possible, but not widely 

used), or much more often on the peptide level. In principle, any reactive group within the 

amino acid residues might be used to chemically attach a label to a peptide; however, most 

of the current labelling techniques take advantage of the reactivity of primary amines and 

target either peptide N-terminus or ε-amino group of lysine. The later incorporation of the 

label might introduce a systematic bias into the experiment; on the other hand, chemical 

labelling is feasible also in cases when the labelling on the growing culture level is not 

possible (e.g. in primary cells, human, animal, or plant tissues, and biological fluids) or not 

applicable to a desired experimental design (e.g. when a higher level of multiplexing is 

desired). The relative (or absolute) quantification using the chemical labelling approach 

can be conducted either on the MS1 level by comparing intensities of the differentially 

labelled peptides or on the MS2 level via comparing differentially isotope encoded reporter 

ions in the peptide fragmentation spectra.   
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1.8.3.1. MS2 quantitation 

The MS2 quantitation methods are based on chemical labelling using isobaric tags. 

That means that peptides labelled with different labels have the same mass, and thus they 

co-elute from the LC system, cannot be distinguished based on their m/z on the MS1 level, 

and co-fragment during MS/MS. The quantification of the peptides in samples is then 

achieved by comparing the intensities of reporter ions that are recorded in the lower mass 

range of the MS/MS spectra.  The fact that including multiple labelling states does not 

increase complexity of the samples provides a considerable advantage of this approach – it 

enables parallel quantification of more than two or three samples that are usually combined 

in MS1 labelling based experiments (up to ten samples). Furthermore, the quantification 

using chemical labelling and MS/MS detection of the tags is usually very precise; 

nonetheless, there is a possible bias in accuracy that has to be considered when using these 

approaches – the fold changes measured in highly complex samples are often smaller than 

the “real” fold changes. This phenomenon, called as ratio compression effect, happens 

due to the co-isolation of peptide ions during the MS2 precursor selection. As most of the 

proteome/phosphoproteome usually remains unperturbed by applied treatment, the ratios 

of co-isolated reporter ions are most likely to be close to 1, and thus they might “dilute” the 

real differences between the regulated peptides. However, there are already methods 

available that have been designed to overcome this issue enabling more confident use 

of these techniques for proteome quantification (282,283).  

The most common isobaric labelling techniques used in quantitative proteomics and 

phosphoproteomics are tandem mass tags (TMT; (284)) and isobaric tag for relative and 

absolute quantitation (iTRAQ; (285,286)). In phosphoproteomics, prefractionation and 

enrichment steps are typically included into the experimental design as additional steps that 

might potentially introduce systematic errors into the analysis; therefore, including the 

labelling in the earliest possible step of the experiment is desired, ideally immediately after 

the cells are harvested (or samples collected - in case of samples of different than cell 

culture origin). On the other hand, the low abundance of phosphorylated peptides 

implicates the necessity of higher amount of starting material ranging from hundreds 

of micrograms to several milligrams, which might be costly, especially when replicate 

experiments are conducted. Therefore, labelling of isolated phosphopeptides might be an 

alternative; however, the enrichment and fractionation steps must be highly efficient and 

reproducible. 
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Zhang et al. used pre-enrichment iTRAQ labelling as a relative quantification 

method in a time-course study using the EGFR model system. Tryptic peptides from four 

different EGFR stimulation time points were labelled with four isoforms of the iTRAQ 

reagent, and after mixing of the samples, tyrosine-phosphorylated peptides were 

immunoprecipitated with an anti-phosphotyrosine antibody and further enriched by IMAC 

before LC-MS/MS analysis. The analysis led to the identification of 78 tyrosine 

phosphorylation sites on 58 proteins from a single analysis (287). Another instance of a 

study that also used iTRAQ labelling of peptides prior to application of phospho-

enrichment (TiO2) was a phosphoproteomic analysis of porcine hearth mitochondria 

to study pyruvatdehydrogenase (PDH) phosphorylation (288). In 2010, Wu et al. 

demonstrated that post-enrichment iTRAQ labelling of phosphopeptides was possible 

to achieve confident identification and quantification of phosphopeptides in HeLa-S3 cells 

tryptic digest. In their workflow, phosphopeptides were reproducibly enriched using a 

chromatographic column packed with TiO2 beads (289). 

Another application of iTRAQ to phosphoproteome investigation developed 

recently is the use of isobaric labelling to study phosphorylation stoichiometry and absolute 

quantification of phosphopeptides. In Phospho-iTRAQ, peptide samples are split in two 

identical parts and differentially labelled prior to phosphatase treatment of one of the parts. 

After de-phosphorylation, the samples are pooled together and analysed by LC-MS/MS. 

The reporter ions intensities are then used to calculate phosphorylation stoichiometries 

of detected phosphopeptides, and due multiplexing, this method also allows multiple 

samples comparison and relative quantification of unmodified peptides in the same run. 

However, additional confirmation of the identified phosphopeptides with complementary 

techniques remains necessary, since using this approach, it is not possible to exactly 

localize the phosphorylation site when there are multiple STYs in a peptide available (in a 

non-phospho-enriched mixture, only the non-phosphorylated counterparts are usually 

fragmented providing no information about the site localization; (290,291)). Multiplex 

Absolute Regressed Quantification with Internal Standards (MARQUIS) is a different 

method employing iTRAQ for absolute quantification of phosphorylated peptides. In this 

approach, isobaric tags are combined with synthetic heavy-labelled standard peptides 

to construct internal standard curves for phospho-peptides of interest. The standard labelled 

heavy peptides are added to biological samples – cell lysates – in a different concentration 

per sample and after iTRAQ labelling, the samples are pooled together and analysed using 
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MS/MS. The fragmentation of the heavy-labelled peptides then provides an internal 

standard curve, which serves as a reference for the reporter ions produced by fragmentation 

of the endogenous (non-labelled) counterpart of the heavy peptide and thus enables 

absolute quantification of a particular phospho-peptide across different conditions (292).  

TMT has been also used for both absolute quantification of phosphorylation 

stoichiometries (293) and in studies that required a higher level of multiplexing such as a 

phosphoproteomic study of genistein treated triple-negative breast cancer cell line MDA-

MB-231 (294), a study investigating changes in brain-phosphoproteome of VX (neurotoxic 

agent) treated rats (295), or a study that provided an insight into molecular pathways 

triggered by nicotinic acetylcholine receptor ligands in pancreatic cells (296). 

1.8.3.2. MS1 quantitation  

MS1 quantitation using chemical labelling is an alternative to SILAC labelling 

in cases when SILAC is not applicable (as listed above), or it is too expensive. The most 

widely used MS1 chemical labelling quantitation methods in proteomics are mTRAQ and 

stable-isotope dimethyl labelling.  

mTRAQ is basically a non-isobaric variant of iTRAQ. Thus, it uses the same 

chemistry, but the differentially labelled peptides are already distinguishable in MS1 

spectra as in the case of SILAC labelling. Initially, mTRAQ was used to label standard 

peptides for multiple reaction monitoring to quantify potential markers for endometrial 

cancer (297); however, studies applying mTRAQ to study phosphorylation dynamics also 

emerged more recently. Mertins et al. compared iTRAQ- and mTRAQ-based quantification 

and revealed that iTRAQ quantified almost threefold more phosphopeptides than mTRAQ 

(12,129 versus 4,448, respectively). Furthermore, iTRAQ was shown to be less variable 

and had an additive effect on precursor intensities. The loss of accuracy caused by co-

fragmentation of peptides in the same isolation window and ratio compression was 

observed in iTRAQ; however, the authors suggested that since logarithmic iTRAQ and 

mTRAQ ratios were linearly correlated, the iTRAQ ratios could be corrected by an average 

compression factor to achieve more accurate results (298). Oppermann et al. compared two 

MS1 quantification methods – metabolic labelling by SILAC and chemical labelling 

by mTRAQ. They reported that mTRAQ was a comparable alternative to SILAC that 

enabled quantification of almost as many significant changes in phosphorylation after a 

kinase inhibitor treatment, although mTRAQ was shown to be slightly less precise than 

SILAC (299).  
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Stable isotope labelling of primary amino-groups using deuterium-labelled-

formaldehyde in combination with reduction of the initially formed Schiff base 

with deuterium-labelled-cyanoborohydride – stable-isotope dimethyl labelling - is 

another labelling technique attractive enough to be widely used in many studies (300–302); 

the method is relatively cheap, fast, and robust. The main limitation of this technique is the 

use of deuterium as a heavy part of the label, which can lead to retention time shifts of the 

heavy labelled peptides in LC-MS/MS, and thus the labelling pair might not co-elute 

precisely. Since 2006, when it was for the first time used in combination with IMAC 

to study uteri of pregnant rats (303), reductive dimethylation has been used in multiple 

phosphoproteomic studies. Dimethyl labelling has been used in combination 

with immunoaffinity purification of tyrosine-phosphorylated peptides to study tyrosine 

phosphorylation in EGF treated HeLa cells   (304). In TiSH, three different phospho-

fractionation methods were employed to maximally increase the coverage of a studied 

phosphoproteome: TiO2, SIMAC, and HILIC. In this three dimensional fractionation, 

dimethyl labelling was applied after the first TiO2 enrichment step (305). Wilson-Grady 

at al. presented a modified lower-pH dimethylation protocol as a quantification technique 

that can be used for quantitative proteomics and phosphoproteomics in animal tissues 

(306). Dimethyl labelling has been also employed, as well as other approaches, 

for calculation of phosphorylation stoichiometries. Combined with kinase reaction, the 

published protocol has been also designed to enrich for specific substrates of particular 

kinases (307). 
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2. Aims 

2.1. Optimization of experimental workflow for the enrichment, detection, and 

quantification of phosphorylated peptides using mass spectrometry:   

 Selection of MOAC resin and protocol for enrichment of phosphorylated 

peptides using standard peptide mixtures 

 Application of the best performing protocols to the enrichment 

of phosphorylated peptides from a real complex sample and to the analysis 

of the selected model system (irradiated SILAC-labelled MOLT-4 cells) 

2.2. Characterization of cellular mechanisms underlying the VE-821-mediated 

radiosensitization of MOLT-4 cells on three levels:  

 Characterization of the response of MOLT-4 cells to VE-821 and its 

combination with IR using cell biology methods 

 Application of the optimized phospho-enrichment workflow to analyse 

phosphorylation response of irradiated MOLT-4 cells and its modulation 

by VE-821 

- Detection of phosphorylation sites responsive to VE-821 treatment 

- Functional annotation of regulated phosphorylation sites and 

identification of potentially perturbed signalling pathways and 

biological processes 

- Analysis of phosphorylation motifs surrounding detected 

phosphorylation sites and identification of activated/inhibited protein 

kinases 

 Description of VE-821-induced metabolome alterations in irradiated 

MOLT-4 cells using targeted metabolome analysis 

- Identification of metabolites with abundance changes induced 

by VE-821 treatment in irradiated MOLT-4 cells 

- Functional characterization of regulated metabolites, detection 

of modulated metabolic pathways 

 Integration of the acquired data and validation using database and literature 

search
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3. Materials and Methods 

3.1. Materials and Instrumentation 

3.1.1. Cell lines  

HeLa (American Type Culture Collection (University Blvd., Manassas, USA)) 

MOLT-4 (European Collection of Animal Cells Cultures (Porton Down, Salisbury, UK)) 

3.1.2. Kinase inhibitors 

VE-821 – ATR inhibitor, 3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-

carboxamide (APIs Chemical Co., Ltd., Shanghai, China) 

KU55933 – ATM inhibitor, 2morpholin4yl6thianthrene1ylpyran4-one (Merck KGaA, 

Darmstadt, Germany) 

3.1.3. Cell culture media, chemicals and solvents 

Acetic acid (no. 49199, Sigma-Aldrich, St. Louis, MO, USA) 

Acetone for HPLC (no. 270725, Sigma-Aldrich, St. Louis, MO, USA) 

Acetonitrile LiChrosolv® hypergrade for LC-MS (no. 100029, Merck KGaA, 

Darmstadt, Germany) 

Acetonitrile CHROMASOLV® Plus (Acn; no. 34998, Sigma-Aldrich, St. Louis, MO, 

USA) 

Acetonitrile CHROMASOLV® gradient grade for HPLC (no. 34851, Sigma-Aldrich, 

St. Louis, MO, USA) 

Acrylamide, minimum 99 % (no. A5667, Sigma- Aldrich, St. Louis, MO, USA) 

Albumin, from bovine serum (BSA; no. A2153, Sigma-Aldrich, St. Louis, MO, USA) 

Albumin, from bovine serum (BSA; no. A8022, Sigma-Aldrich, St. Louis, MO, USA) 

Ammonium bicarbonate (ABC; no. 09830, Sigma-Aldrich, St. Louis, MO, USA) 

Ammonium hydroxide solution ≥99.99% (no. 338818, Sigma-Aldrich, St. Louis, MO, 

USA) 

L-Arginine (R0; no. A8094, Sigma-Aldrich, St. Louis, MO, USA) 

L-13C6-arginine (R6; no. 643440, Sigma-Aldrich, St. Louis, MO, USA) 
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Asialofetuin, from foetal calf serum (no. A4781, Sigma-Aldrich, St. Louis, MO, USA) 

Bensonase® Nuclease (no. E1014, Sigma-Aldrich, St. Louis, MO, USA) 

Blotting-Grade Blocker (no. 170-6404, BIO-RAD) 

α-Casein, from bovine milk (no. C6780, Sigma-Aldrich, St. Louis, MO, USA) 

CHCA Matrix (CHCA; α-cyano-4-hydroxycinnamic acid recrystallized, no. M101, 

Laserbio Labs) 

Complete™ Mini, EDTA-free Protease inhibitor cocktail (no. 11836170001, Roche, 

Manheim, Germany) 

DHB Matrix (2,5-dihydroxybenzoic acid recrystallized, no. M103, Laserbio Labs) 

2,5-dihydroxybenzoic acid (DHB; no. 149357, Sigma-Aldrich, St. Louis, MO, USA) 

Dimethyl sulfoxide ≥ 99.5% (DMSO; no. D5879, Sigma-Aldrich, St. Louis, MO, USA) 

DL-Dithiothreitol BioXtra ≥99.0% (DTT; no. 5545, Sigma-Aldrich, St. Louis, MO, 

USA) 

Dodecylsulfate. Na-salt (SDS; no. 20760, SERVA) 

Dulbecco’s modified eagle medium, high glucose, L-glutamine (DMEM; no. 11965-

092, Gibco® by Life technologies™, Thermo Fisher Scientific) 

Ethanol absolute p.a. (no. 603-002-00-5, PENTA s.r.o., Prague, Czech Republic) 

Ethyl acetate for HPLC (no. 439169, Sigma-Aldrich, St. Louis, MO, USA) 

Foetal bovine serum (FBS; no. 10270-106, Gibco® by Life technologies™, Thermo 

Fisher Scientific) 

Foetal bovine serum, dialyzed by ultrafiltration (no. F0392, Sigma-Aldrich, St. Louis, 

MO, USA) 

Formic acid, eluent additive for LC-MS (FA; no. 56302 FLUKA, Sigma-Aldrich, St. 

Louis, MO, USA) 

L-Glutamic acid (Glu; no. 49449, Sigma-Aldrich, St. Louis, MO, USA) 

L-Glutamine solution, 200 mM (no. G7513, Sigma-Aldrich, St. Louis, MO, USA) 

Glycerol Ultrapure, MB grade (no.16374, USB Corporation, Cleveland, OH, USA) 

Iodoacetamide (IAA; no. I6125, Sigma-Aldrich, St. Louis, MO, USA) 

Iscove’s modified Dulbecco’s media without L-glutamine (no. E15-018, PAA 

Laboratories GmbH, Pashing, Austria)  

Iscove’s modified Dulbecco’s media (IMDM; no. 12440-053, Gibco® by Life 

technologies™, Thermo Fisher Scientific) 

Iscove’s modified Dulbecco’s media for SILAC (no. 88423, Thermo Fisher Scientific) 
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Lactic acid solution (LA; no. L1875, Sigma-Aldrich, St. Louis, MO, USA) 

L-Lysine (K0; no. L5501, Sigma-Aldrich, St. Louis, MO, USA) 

L-13C6-Lysine (K6; no. 608041, Sigma-Aldrich, St. Louis, MO, USA) 

Magnesium chloride anhydrous ≥ 98 % (no. M8266, Sigma-Aldrich, St. Louis, MO, 

USA) 

Methanol LC-MS CHROMASOLV® (no. 34966, Sigma-Aldrich, St. Louis, MO, USA) 

Methanol LiChrosolv® hypergrade for LC-MS (no. 106035, Merck KGaA, Darmstadt, 

Germany) 

N, N’-Methylenebisacrylamide (no. 66667, Sigma-Aldrich, St. Louis, MO, USA) 

Myoglobin from equine heart (no. M1882, Sigma-Aldrich, St. Louis, MO, USA) 

N-Octyl-β-D-glucopyranoside, BioXtra, ≥ 98% (no. O9882, Sigma-Aldrich, St. Louis, 

MO, USA) 

Orthophosphoric acid solution, 85 wt % in H2O (no. W290017, Sigma-Aldrich, St. 

Louis, MO, USA) 

Penicillin-Streptomycin for cell culture (no. P0781, Sigma-Aldrich, St. Louis, MO, 

USA) 

Phosphatase inhibitor cocktail 2 (no. P726, Sigma-Aldrich, St. Louis, MO, USA) 

Phosphatase inhibitor cocktail 3 (no. P044, Sigma-Aldrich, St. Louis, MO, USA) 

Phosphate buffer saline, pH 7.4 (no. 10010015, Gibco™, Thermo Fisher Scientific) 

Precision Plus Protein™ Standards Kaleidoscope (no. 161-0375, BIO-RAD) 

L-proline (no. P5607, Sigma-Aldrich, St. Louis, MO, USA) 

Propidium iodide (PI; no. 81845, Sigma-Aldrich, St. Louis, MO, USA) 

Ribonuclease A, from bovine pancreas (no. R6513, Sigma-Aldrich, St. Louis, MO, USA) 

Sequencing grade modified trypsin, frozen (no. V5113, Promega Corporation, Madison, 

WI, USA) 

Sequencing grade modified trypsin, lyophilized (no. V5111, Promega Corporation, 

Madison, WI, USA) 

Sodium chloride, for molecular biology (NaCl; no. S3014, Sigma-Aldrich, St. Louis, 

MO, USA) 

Sodium deoxycholate (no. 30970, Sigma-Aldrich, St. Louis, MO, USA) 

Sodium fluoride, BioXtra, ≥ 99% (NaF; no. S7920, Sigma-Aldrich, St. Louis, MO, USA) 

Sodium orthovanadate, 99.98%, trace metal basis (Na3VO4; no. 450243, Sigma-

Aldrich, St. Louis, MO, USA) 
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Trifluoroacetic acid LC-MS grade (TFA; no. 85183, Thermo Scientific) 

Trifluoroacetic acid ≥99% (TFA; no. 299537, Sigma-Aldrich, St. Louis, MO, USA) 

Trizma® base (no. T6066, Sigma-Aldrich, St. Louis, MO, USA)  

Trizma® hydrochloride (Tris-HCl; no. T5941, Sigma-Aldrich, St. Louis, MO, USA) 

Triton® X-100 for molecular biology (no. T8787, Sigma-Aldrich, St. Louis, MO, USA) 

Trypan blue (no. T6146, Sigma-Aldrich, St. Louis, MO, USA) 

Trypsin-EDTA 0.25% (no. 25200-072, Gibco® by Life technologies™) 

Tween® 20 (no. P1379, Sigma-Aldrich, St. Louis, MO, USA) 

Water LiChrosolv® LC-MS Grade (no. 115333, Merck KGaA, Darmstadt, Germany) 

Westran® S (no. 10413096, GE Healthcare Life Sciences Whatman™) 

3.1.4. Antibodies 

3.1.4.1. Primary antibodies: 

Monoclonal Mouse Anti-β-actin Antibody (no. A5316, Sigma-Aldrich, St. Louis, MO, 

USA) 

Monoclonal Mouse Anti-Chk1 Antibody (no. 2360, Cell signalling Technology®) 

Monoclonal Rabbit Anti-Phospho-Chk1 (Ser245) Antibody (no. 2348, Cell signalling 

Technology®) 

Polyclonal Rabbit Anti-Chk2 Antibody (no. 2662, Cell signalling Technology®) 

Monoclonal Rabbit Anti-Phospho-Chk2 (Thr68) Antibody (no. 2197, Cell signalling 

Technology®) 

Monoclonal Rabbit Anti-p70 S6 Kinase Antibody (no. 2708, Cell signalling 

Technology®) 

Monoclonal Rabbit Anti-p70 S6 Kinase Antibody (no. 9234, Cell signalling 

Technology®) 

3.1.4.2. Secondary antibodies:  

Polyclonal Goat Anti-Mouse Immunoglobulins/HRP (no. P0447, Dako, Glostrup, 

Denmark) 

Polyclonal Swine Anti-Rabbit Immunoglobulins/HRP (no. P039901, Dako, Glostrup, 

Denmark) 
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3.1.5.  Commercial kits and assays 

Apoptest™-FITC kit (no. K2350, DakoCytomation, Copenhagen, Denmark) 

QuantiPro™ BCA Assay Kit (no. QPBCA, Sigma-Aldrich, St. Louis, MO, USA) 
BM Chemiluminescence Western Blotting Kit (no. 11500708001, BM 

Chemiluminescence-POD, Roche) 

Cell Proliferation Reagent WST-1 (no. 11644807001, Roche Diagnostics, Mannheim, 

Germany) 

3.1.6.  Chromatographic material 

3M EmporeTM C18 Extraction disk (no. 66883, Supelco®, Bellefonte, PA, USA) 

3M EmporeTM C18-SD 4 mm/1 ml Extraction disk cartridge (no. 66871-U, Supelco®, 

Bellefonte, PA, USA) 

3M EmporeTM C18-SD 7 mm/3 ml Extraction disk cartridge (no. 66872-U, Supelco®, 

Bellefonte, PA, USA) 

C18 PepMap100, 3 µm, 100 A, 0.075 × 20 mm capillary trap column (Dionex, Thermo 

Scientific™, Bremen, Germany) 

C18 PepMap RSLC, 2 µm, 100 A, 0.075 × 150 mm capillary separation column 

(Dionex, Thermo Scientific™, Bremen, Germany) 

NuTip® (TiO2/ZrO2 1:1) (no. NT2TIZR, Glygen, Columbia, MD, USA) 

Oasis® HLB SPE cartridges (Waters, Manchester, UK) 

Oligo™ R3 reversed-phase material (no. 1133903, Applied Biosystems™, Foster City, 

CA) 

Supelco C18 SPE cartridges 500 mg (Supelco Analyticals, Bellefonte, PA, USA) 

Titansphere® 5 μm particles (no. 5020-75000, GL Sciences, Japan) 

TopTip® (TiO2, TiO2/ZrO2 1:1, and ZrO2) (Glygen, Columbia, MD, USA) 

TSKgel® Amide-80 HR 5 μm 4.6 × 25 cm separation column (Tosoh Biosciences, 

Stuttgart, Germany) 

TSKgel® Amide-80 HR 5 μm 4.6 × 1 cm guard column (Tosoh Biosciences, Stuttgart, 

Germany) 

3.1.7.  Instrumentation 

60Co gamma-ray source (VF, Černá Hora, Czech Republic) 

ABI 4800 mass spectrometer (Applied Biosystems, USA) 
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FACS analyser CyAn DakoCytomation (Beckman Coulter, USA) 

PARADIGM™ Detection Platform (Beckman Coulter, Brea, CA, USA) 

Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer (Thermo 

Scientific™, Bremen, Germany) 

Thermo Scientific™ Dionex Ultimate™ 3000 RSLCnano system (Thermo Scientific™, 

Bremen, Germany) 

Waters® Alliance Separations Module e2695 (Waters, Milford, MA, USA) 

3.1.8.  Commercial software 

Summit v4.3 software (Beckman Coulter, Miami, FL, USA) 

GPS Explorer TM Software vision v3.6 (Applied Biosystems, USA) 

3.2. Optimization of Metal Oxide Affinity Enrichment 

of Phosphorylated Peptides from Standard Peptide 

Mixtures 

3.2.1. Model proteins and peptide mixtures 

α-casein, asialofetuin, BSA, and myoglobin were dissolved in 50 mM ABC buffer 

(pH 7.8), reduced with 10 mM DTT, alkylated with 20 mM IAA, and subjected to trypsin 

digestion at an enzyme to protein ratio 1:50 at 37 °C overnight. Digested samples were 

desalted using Oasis® HLB SPE cartridges.  

Peptide mixture A contained tryptic peptides originating from α-casein, 

asialofetuin, BSA, myoglobin in a molar ratio of 1:1:5:5 (i.e. 40 pmol of each 

phosphorylated protein α-casein and asialofetuin and 200 pmol of each non-phosphorylated 

protein BSA and myoglobin)  

Peptide mixture B contained tryptic peptides originating from α-casein, 

asialofetuin, BSA, myoglobin in a molar ratio of 1:1:50:50 (i.e. 40 pmol of each 

phosphorylated protein α-casein and asialofetuin and 2 nmol of each non-phosphorylated 

protein BSA and myoglobin). 
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3.2.2.  Standard HeLa sample preparation 

HeLa cells were cultured in DMEM supplemented with 10% FCS, 100 UI/ml 

penicillin, and 0.1 mg/ml streptomycin at 37 °C under controlled 5% CO2 and humidified 

atmosphere. The cells were harvested at about 80 % density. Whole cell extracts were 

prepared using an ice-cold lysis buffer containing 137 mM NaCl, 10% glycerol, 1% n-

octyl-β-glucopyranoside, 50 mM NaF, 20 mM Tris-HCl, (pH=8), and 1 mM Na3VO4, 

followed by centrifugation at 14 000 g for 30 min at 4 °C. 0.5 mg of extracted proteins were 

diluted with 50 mM NH4HCO3 to a final concentration of 2 mg/ml, reduced with 10 mM 

DTT, alkylated with 20 mM IAA, and subjected to trypsin digestion at an enzyme 

to protein ratio 1:50 at 37 °C overnight. Peptides were desalted using Oasis HLB SPE 

cartridges (30 mg sorbent per cartridge). Enriched phosphopeptides were desalted using 

3M EmporeTM C18-SD 4 mm/1 ml Extraction disk cartridges.  

3.2.3.  MOLT-4 sample preparation 

MOLT-4 cells well cultured in IMDM for SILAC containing 20% dialyzed foetal 

bovine serum. Media were further supplemented with either unlabelled L-lysine (100 mg/l, 

K0) and L-arginine (84 mg/L, R0) or equimolar amounts of L-13C6-lysine (K6) and L-13C6-

arginine (R6). L-proline (300 mg/L) was added to cell culture media avoid metabolic 

conversion of arginine to proline (272). For complete incorporation of labelled amino 

acids, cells were cultured for at least six cell doublings (308). The “heavy” cells (K6/R6) 

were irradiated by a dose of 1.5 Gy using a 60Co gamma-ray source; the “light” cells 

(K0/R0) served as sham-irradiated controls. After irradiation, the flasks were placed into 

an incubator and the cells were harvested one hour after irradiation. Whole cell extracts 

were prepared using an ice-cold lysis buffer containing 137 mM NaCl, 10% glycerol, 1% 

n-octyl-β-glucopyranoside, 50 mM NaF, 20 mM Tris-HCl, (pH=8), and 1 mM Na3VO4, 

followed by centrifugation at 14 000 g for 30 min at 4 °C. 1 mg of extracted proteins (0.5 

mg of “light” + 0.5 mg of “heavy” pooled together) were precipitated using acetone 

precipitation O/N (100 % acetone pre-cooled at -20 °C and added to the samples at 4:1 

acetone: sample volume ratio), resolubilized in 8 M Urea/ 50 mM ABC, reduced 

with 10 mM DTT, alkylated with 20 mM IAA, and after dilution with 50 mM ABC 

subjected to trypsin digestion at an enzyme to protein ratio 1:50 at 37 °C overnight. Tryptic 

peptides were desalted using 3M EmporeTM C18-SD 7 mm/3 ml Extraction disk cartridges. 

For phosphopeptide enrichment, 1 mg of the desalted peptide sample was used. Enriched 
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phosphopeptides were desalted using 3M EmporeTM C18-SD 4 mm/1 ml Extraction disk 

cartridges. 

3.2.4. Phosphopeptide enrichment protocols 

3.2.4.1. NuTip® enrichment 

10- to 200-μl TiO2/ZrO2 NuTip® (Glygen, Columbia, MD, USA) was washed 

with 100 μl of loading buffer (LB). Phosphopeptides were enriched by repetitive pipetting 

(20x) of 10 μl aliquots of sample dissolved in 100 μl of LB. The Tip was then washed twice 

with 200 μl of LB, three times with 200 μl of washing buffer 1 (WB 1) and three times 

with 200 μl of washing buffer 2 (WB 2). Phosphopeptides were then eluted five times 

with 10 μl aliquots of elution buffer (EB) by repetitive pipetting (20x) and the eluted 

fraction was then acidified with a mixture of 100% FA and 10% TFA (to final pH < 2).  

3.2.4.2. TopTip® enrichment 

10- to 200- μl TopTips® (Glygen, Columbia, MD, USA) packed with TiO2, ZrO2, 

or a mixture of both TiO2 and ZrO2 were tested for their phosphopeptide enrichment 

efficiency. The packed beads were washed with 200 μl of LB. The sample was dissolved 

in 200 μl of LB and loaded on the column two times. The washing procedure included two 

consecutive washes with 200 μl of LB, two washes with 200 μl of WB 1, and two washes 

with 200 μl of WB 2. Phosphopeptides were eluted with 200 μl of EB and the eluted 

fraction was then acidified with a mixture of 100% FA and 10% TFA (to final pH < 2). 

3.2.4.3. Titanium dioxide enrichment using Titansphere® TiO2 particles 

Titansphere® TiO2 particles (5 μm diameter; GL Sciences, Torrance, CA) were 

used for phosphopeptide enrichment using a “microtube approach”. The sample was 

dissolved in 200 μl of LB and incubated with TiO2 particles (peptide-to-TiO2 ratio 1:8; 

mass/mass) on a shaker for 20 minutes. TiO2 beads were then washed with 200 μl of LB, 

200 μl of WB 1, and twice with 100 μl of WB 2. Phosphopeptides were eluted with 50 μl 

of EB and the eluted fraction was acidified with a mixture of 100% FA and 10% TFA (to 

final pH < 2). 
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3.2.5. Buffer conditions 

Each of the chromatographic resins mentioned above: commercial tips NuTip 

packed with TiO2/ZrO2 (1:1), TopTips packed with TiO2, TiO2/ZrO2 (1:1) or ZrO2, and 

TiO2 particles (Titansphere 5 μm) were employed for the enrichment of phosphopeptides 

under different buffer conditions following four published protocols with some minor 

modifications. LA, DHB, and Glu were used as the buffer additives to enhance the specifity 

of metal oxides towards phosphorylated peptides.  

Every procedure for each peptide mixture, buffer condition, and phosphopeptide 

enrichment media was performed in 3 replicates.  

3.2.5.1. Buffer conditions 1 – 5% TFA 

Peptides were loaded onto commercial columns/mixed with TiO2 particles in 80% 

acetonitrile and 5% TFA (LB). The columns/TiO2 particles were then washed with 80% 

acetonitrile/ 1% TFA (WB 1) and then with 20% acetonitrile and 0.5% TFA. Peptides were 

eluted with NH4OH pH 11 (EB).  

3.2.5.2. Buffer conditions 2 – 1M LA 

Peptides were loaded onto commercial columns/mixed with TiO2 particles in 80% 

Acn/5% TFA/1 M LA (LB). The columns/TiO2 particles were then washed with 80% 

Acn/ 1% TFA (WB 1) and then with 20% Acn/0.5% TFA (WB 2). Peptides were eluted 

with NH4OH pH 11 (EB).  

3.2.5.3. Buffer conditions 3 – 350 mg/ml DHB 

Peptides were loaded onto commercial columns/mixed with TiO2 particles in 65% 

Acn/2% TFA/350 mg/ml DHB (LB) according to Larsen’s lab (222). The columns/TiO2 

particles were then washed with 65% Acn/ 2% TFA (WB 1) and then with 20% Acn/0.5% 

TFA (WB 2). Peptides were eluted with NH4OH pH 11 (EB). 

3.2.5.4. Buffer conditions 4 – 100 mM Glu 

Peptides were loaded onto commercial columns/mixed with TiO2 particles in 65% 

Acn/2% TFA/0.1 M glutamic acid (LB) according to Wu et al. (309).The columns/TiO2 

particles were then washed with 65% Acn/ 0.5% TFA (WB 1) and then with 65% 

Acn/0.1% TFA (WB 2). Peptides were eluted with NH4OH pH 11 (EB). 
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3.2.6.  Purification and concentration of eluted peptides 

Eluted fractions were concentrated and desalted prior to MALDI analysis using 

custom made microcolumns prepared from Geloader tips packed with 3M EMPORE C18 

disc and Poros Oligo R3 reversed phase material.  

Acidified eluates from the columns/TiO2 particles were loaded onto desalting 

columns. The columns were then washed twice with 50 μl of 0.1% TFA. Peptides were 

eluted with 10 μl of 60% Acn/ 0.1% TFA. 

3.2.7.  Chromatography and mass spectrometry 

MALDI-TOF-MS/MS analysis was performed using an ABI 4800 mass 

spectrometer. Spectra were recorded in positive MS and MS/MS reflector mode. Acquired 

raw data files were processed using GPS Explorer TM Software vision v3.6 connected 

to MASCOT server v.2.1. CHCA matrix (5 mg/ml) in 60% Acn/0.1% TFA or DHB matrix 

(5 mg/ml) in 30% Acn/0.1% TFA and 1% phosphoric acid were used as MALDI matrices. 

Phosphoric acid was used as a matrix additive to improve phosphopeptides mass resolution 

(310).  

UV-VIS chromatography: Peptides were separated by reversed phase 

chromatography using Dionex Ultimate 3000. Peptides were loaded in solvent A (2% Acn, 

0.1% TFA) onto a capillary column (C18 PepMap RSLC, 2 µm, 100 Å, 0.075 × 150 mm) 

followed by 115-min multi-step gradient to 95% solvent B (80% Acn, 0.1% TFA) and 

detected using Dionex Ultimate 3000 Variable Wavelength detector. 

RPLC-ESI-MS/MS analysis of the complex samples (HeLa cells lysate, SILAC 

labelled irradiated MOLT-4 cells) was performed on Thermo Scientific Dionex Ultimate™ 

3000 RSLCnano system coupled through Nanospray Flex ion source with Q Exactive mass 

spectrometer. TiO2-enriched peptide sample was dissolved in 20 μl of 2% Acn/0.05% TFA 

and 3-8 μl according to estimated peptide sample concentration were injected into 

RSLCnano system. Peptides were loaded on capillary trap column (C18 PepMap100, 3 µm, 

100 Å, 0.075 × 20 mm) by 2% Acn/0.05% TFA mobile phase at flow rate 5 µL/min for 5 

min and then eluted and separated on capillary column (C18 PepMap RSLC, 2 µm, 100 Å, 

0.075 × 150 mm). Elution was carried out by step linear gradient of mobile phase B (80% 

Acn/0.1% FA) over mobile phase A (0.1% FA); from 4% to 36% B in 19 min and 

from 36% to 55% B in 6 min at flow rate 300 nl/min. Temperature of the column was 40 

°C and eluent was monitored at 215 nm during the separation. Spraying voltage was 1.7 



  

66 

 

kV and heated capillary temperature was 220 °C. The mass spectrometer was operated 

in the positive ion mode performing survey MS (range 300 to 1800 m/z) and data-

dependent MS/MS scans performed on the six most intense precursors with dynamic 

exclusion window of 40 s. MS scans were acquired with 70,000 resolutions at 200 m/z 

from 1 × 106 accumulated charges (maximum fill time was 100 ms). The lock mass at m/z 

445.12003 ([(C2H6SiO)6 + H]+) was used for internal calibration of mass spectra. Intensity 

threshold for triggering MS/MS was set at 1 × 105 for ions with z ≥ 2 with a 3 Da isolation 

window. Precursor ions were accumulated with AGC of 1 × 105 (maximum fill time was 

100 ms) and normalized collisional energy for HCD fragmentation was 27 units. MS/MS 

spectra were acquired with 17,500 resolution (at 200 m/z). Raw files were processed 

with MaxQuant v1.3.0.5 using Andromeda as a search engine. 
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3.3. Radiosensitization of MOLT-4 cells 

3.3.1.  Cell culture and cell culture conditions 

MOLT-4 cells were cultured in IMDM containing 20% foetal bovine serum, 2 mM 

glutamine, 100 UI/mL penicillin, and 0.1 mg/mL streptomycin at 37 °C under controlled 

5% CO2 and humidified atmosphere. The cultures were split every other day by dilution 

to a concentration of 2x105 cells/ml. Cell counts were assessed by a haemocytometer, and 

cell membrane integrity was assessed by the Trypan Blue exclusion technique.  

For the quantitative proteomic and phosphoproteomic experiments, MOLT-4 cells 

well cultured in IMDM for SILAC containing 20% dialyzed foetal bovine serum. Media 

were further supplemented with either unlabelled L-lysine (100 mg/l, K0) and L-arginine 

(84 mg/L, R0) or equimolar amounts of L-13C6-lysine (K6) and L-13C6-arginine (R6). 

L-proline (300 mg/L) was added to cell culture media avoid metabolic conversion 

of arginine to proline (272). For complete incorporation of labelled amino acids, cells were 

cultured for more than six cell doublings, usually 10 (308). 

3.3.2.  Cell treatment (kinase inhibition and gamma-

irradiation) 

A selective inhibitor of ATR kinase, 3-amino-6-(4-(methylsulfonyl)phenyl)-N-

phenylpyrazine-2-carboxamide (VE-821), and a selective inhibitor of ATM kinase, 

2-morpholin-4-yl-6-thianthrene-1-yl-pyran-4-one (KU55933), were dissolved in dimethyl 

sulfoxide (DMSO) to a concentration of 10 mM, and the aliquots were stored at −20 °C. 

Additional dilutions (1 mM, 2 mM, 5 mM, and inhibitor combinations as indicated) were 

also prepared in DMSO to maintain the same concentration of DMSO in all inhibitor-

treated samples. In all experiments presented in this study, the inhibitors were added to cell 

culture 30 minutes prior to gamma irradiation. The inhibitors were washed out after one 

hour or 24 hours when indicated. Cells were irradiated using a 60Co gamma-ray source 

with a dose rate of 0.5-0.45 Gy/min. Since MOLT-4 cells are relatively sensitive to gamma 

irradiation, the doses of irradiation were carefully chosen based on our previous 

publications (311–313) to only induce either cytostatic or sub-lethal damage. 
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3.3.3. Electrophoresis and western blotting 

Cells were pre-treated by different concentrations of inhibitors or DMSO (control) 

and irradiated by an indicated dose of IR. One or six hours after irradiation, cells were 

washed with cold phosphate buffer saline (PBS), and whole cell extracts were prepared 

by lysis in 500 µL of lysis buffer per 1x107 cells (137 mM NaCl; 10% glycerol; 50 mM 

NaF; 20 mM Tris-HCl, pH = 8; 1% n-octyl-β-glucopyranoside; 1 tablet of protease 

inhibitors Complete™ Mini/ 10 ml, 1:100 Phosphatase inhibitor cocktail 2 and 3). The 

lysate was clarified by centrifugation, and protein concentration was measured by a 

bicinchoninic acid protein assay. The lysates containing equal amount of protein (30 µg) 

were loaded onto a 12% SDS polyacrylamide gel. After electrophoresis, proteins were 

transferred to a polyvinylidene difluoride membrane and hybridized with an appropriate 

antibody: anti-Chk1 (1:500), anti-phospho-Chk1 (Ser345, 1:500), anti-Chk2 (1:250), anti-

phospho-Chk2 (Thr68, 1: 250), anti-p70s6k (1:1000), anti-phospho p70s6k (Thr389; 

1:1000) and beta actin (1: 20,000). After washing, the membranes were incubated 

with secondary peroxidase-conjugated antibody, and the signal was developed using a BM 

Chemiluminescence Western Blotting Kit. 

3.3.4. Cell proliferation/viability WST-1 assay 

Proliferation of MOLT-4 cells was evaluated by WST-1 (4-[3-(4-iodophenyl)-2-(4-

nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulphonate) colorimetric assay (Roche 

Diagnostics, Mannheim, Germany). The assay is based on cleavage of WST-1 

by mitochondrial dehydrogenases, and the absorbance of the cleavage product correlates 

with the number of viable cells. Prior to treatment, MOLT-4 cells were placed in 96-well 

microplates; the number of cells plated into each well were 3x104, 1x104, and 2.5x103 

for 24, 72, and 144 hours long experiments, respectively. After the addition of inhibitors 

and subsequent irradiation, the microplates were placed in an incubator and cultivated at 37 

°C. Finally, WST-1 was added, and the plates were incubated for three hours at 37 °C. 

Absorbance of samples was then measured at 440 nm using a PARADIGM™ Detection 

Platform. Controls were normalized to 100 % for each assay, and all values were expressed 

as a percentage of the normalized controls.  
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3.3.5. Cell cycle analysis and apoptosis detection by flow 

cytometry  

 For cell cycle analysis, cells were collected 24 hours after irradiation by a dose of 3 

Gy (± inhibitor pre-treatment), washed with ice-cold PBS, and fixed with ice-cold 70% 

ethanol. Prior to flow cytometry, cells were washed with ice-cold PBS, and DNA was 

stained using Vindelov’s solution (10 mM Tris-HCl pH=7.6, 0.6 mg/ml NaCl, 0.01 mg/ml 

Ribonuclease A, 0.05 mg/ml PI).  

For apoptosis detection, an Apoptest-FITC kit was used. The kit contains Annexin 

V, which binds to phosphatidylserine at the surface of apoptotic cells, and PI to detect cells 

with increased cell membrane permeability. Cells were pre-treated by the inhibitors and 

irradiated by a dose of 1 Gy. The proportion of apoptotic cells in each condition was 

measured 24 hours and 72 hours after IR according to the manufacturer’s instructions.  

Flow cytometric analysis was performed on a FACS analyser CyAn 

DakoCytomation. At least 20,000 cells were analysed per sample. Listmode data were 

analysed using Summit v4.3 software.  

3.3.6. Sample preparation for quantitative proteomic and 

phosphoproteomic experiment 

MOLT-4 cells well cultured in IMDM for stable SILAC containing 20 % 

of dialyzed foetal calf serum for at least six cell doublings as described above (308). Thirty 

minutes before irradiation, VE-821 was added to the “heavy” cells (K6/R6) at a 

concentration of 10 μM; the “light” cells (K0/R0) were mock treated with DMSO, whose 

final concentration in culture was lower than 0.1 %. Both groups were irradiated using a 

60Co gamma-ray source by a dose of 1.5 Gy. After irradiation, the flasks were placed into 

an incubator. Three biological replicates were analysed. 

One hour after irradiation, the cells were washed with ice-cold PBS and lysed as 

was published (314) with minor modifications. Briefly, the cells were thoroughly 

resuspended in 2 ml ice-cold lysis buffer/1x107 cells (50 mM ammonium bicarbonate, 1% 

sodium deoxycholate, 1:100 Phosphatase inhibitor cocktail 2 and 3). The lysate was 

immediately placed into boiling water bath, and after 5 min incubation, the samples were 

cooled down to room temperature on ice. To cleave nucleic acids and decrease the viscosity 

of the lysate, bensonase nuclease (2.5 U/μl) and MgCl2 (1.5 mM) were added to the 



  

70 

 

samples. The lysate was then clarified by centrifugation at 14,000 rpm, and protein 

concentration was measured by bicinchoninic acid assay. Sample volumes corresponding 

to 2 mg of “light” proteins and 2 mg of “heavy” proteins were pooled together to make a 

1:1 protein sample.  

The protein samples for phosphoproteomic analyses were diluted in lysis buffer and 

reduced with 10 mM DTT, alkylated with 20 mM IAA, and digested O/N with trypsin at an 

enzyme-to-substrate ratio of 1:60 (sequence grade modified trypsin). Sodium deoxycholate 

was then extracted by ethyl acetate as described earlier (315); tryptic peptides were desalted 

via 500 mg Supelco C18 SPE cartridges according to the manufacturer’s instructions and 

dried using SpeedVac. 

Sample preparation for the proteome analysis followed the protocol described 

above with minor modifications to adjust the volume and concentration of chemicals to a 

smaller sample amount (10+10 μg of the “heavy” and “light” samples).  

3.3.7. Hydrophilic interaction liquid chromatography 

fractionation 

Dried peptide samples were fractionated by HILIC according to a protocol that has 

been published previously (198) using the 4.6 × 25 cm TSKgel® Amide-80 HR 5 μm 

particle column with the TSKgel® Amide-80 HR 5 μm 4.6 × 1 cm guard column operated 

with Waters Separations Module 2695 at 0.5 mL/min. Briefly, 3.5 mg of evaporated 

samples were reconstituted in 80% B and loaded onto the HILIC column. Peptides were 

then separated by a gradient of A over B from 80% to 60% B in 40 min and from 60% 

to 0% B in 5 min. Across the gradient, 22 fractions were collected (2 × 2 and 20 × 1 mL) 

from each replicate. Mobile phase B consisted of 98% Acn/0.1% TFA; mobile phase A 

consisted of 2% Acn/0.1% TFA.  

3.3.8. Phosphopeptide enrichment 

Each HILIC fraction was enriched for phosphopeptides using titanium dioxide 

chromatography (222) using a protocol optimized in previous experiments. At first, each 

fraction was supplemented with TFA and glutamic acid to reach final concentrations of 2% 

TFA and 100 mM glutamic acid. Titanium dioxide particles (Titansphere® 5 μm particles) 

were suspended in loading solution (65% Acn, 2% TFA, 100 mM glutamic acid), and a 

volume of titanium dioxide suspension depending on an expected proportion of peptides 



  

71 

 

and phosphopeptides in a particular fraction (based on previous experiments) was added 

to each sample. Microparticles with bound phosphopeptides were washed with 200 μl 

of loading solution, 200 μl of washing solution 1 (65% Acn/0.5% TFA), 200 μl of washing 

solution 2 (65% Acn/ 0.1% TFA) and 100 μl of washing solution 2. Phosphopetides were 

eluted by 150 μl of elution solution (20% Acn/NH4OH, pH 11.5) in two sequential 

elutions. Late fractions were subjected to the second enrichment. Eluates from the first and 

second enrichment were pooled together, acidified with 100% formic acid, and placed in a 

SpeedVac until all crystals of ammonium formate were evaporated.  

3.3.9. Mass spectrometric analysis 

LC-MS/MS analyses were performed on Thermo Scientific Dionex Ultimate™ 

3000 RSLCnano system (Thermo Scientific, Bremen, Germany) coupled through 

Nanospray Flex ion source with Q Exactive mass spectrometer (Thermo Scientific, 

Bremen, Germany). TiO2-enriched HILIC fractions were dissolved in 18 μl of 2% 

Acn/0.05% TFA and 3-8 μl according to estimated peptide sample concentration were 

injected into RSLCnano system. Peptides were loaded on capillary trap column (C18 

PepMap100, 3 µm, 100 Å, 0.075 × 20 mm) by 2% Acn/0.05% TFA mobile phase at flow 

rate 5 µL/min for 5 min and then eluted and separated on capillary column (C18 PepMap 

RSLC, 2 µm, 100 Å, 0.075 × 150 mm). Elution was performed by step linear gradient 

of mobile phase B (80% Acn/0.1% FA) over mobile phase A (0.1% FA) from 4% to 34% 

B in 48 min and from 34% to 55% B in 15 min at a flow rate 300 nl/min. Temperature 

of the column was 40 °C and eluent was monitored at 215 nm during the separation. 

Spraying voltage was 1.7 kV and heated capillary temperature was 250 °C. The mass 

spectrometer was operated in the positive ion mode performing survey MS (range 300 

to 1800 m/z) and data-dependent MS/MS scans performed on the six most intense 

precursors with dynamic exclusion window of 40 s. MS scans were acquired with 70,000 

resolutions at 200 m/z from 1 × 106 accumulated charges (maximum fill time was 100 ms). 

Intensity threshold for triggering MS/MS was set at 5 × 104 for ions with z ≥ 2 with a 1.6 

Da isolation window. Precursor ions were accumulated with AGC of 1 × 105 (maximum 

fill time was 100 ms) and normalized collisional energy for HCD fragmentation was 27 

units. MS/MS spectra were acquired with 17,500 resolution (at 200 m/z). 
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3.3.10. Mass spectrometry data processing and bioinformatic 

analysis 

3.3.10.1. Raw data processing 

Raw data files acquired by LC-MS/MS were processed with MaxQuant v1.5.2.8 

(316). Peak lists were searched against the human SwissProt database (November 2015) 

using Andromeda search engine (317). Minimum peptide length was set to seven amino 

acids, and two missed cleavages were allowed. Carbamidomethylation of cysteine was set 

as a fixed modification while oxidation of methionine, protein N-terminal acetylation, and 

phosphorylation of serine, threonine, and tyrosine residues were used as variable 

modifications. Additionally, appropriate SILAC labels were selected (R6, K6), and the 

labelled amino acid filtering was disabled. Mass tolerances of 10 and 20 ppm were allowed 

for MS and MS2 peaks, respectively. Only proteins, peptides, and phosphorylation sites 

with false discovery rate (FDR) lower than 0.01 were accepted. For modified peptides, a 

minimal score (40) and minimal delta score (6) were set as additional cut-offs. For protein 

quantification, only unmodified peptides, peptides oxidized at methionine residues, or 

acetylated at N-terminus were accepted; both razor and unique peptides were used 

for calculation of protein H/L ratios. The Re-quantify function was disabled whereas Match 

between runs was enabled during the search.  

3.3.10.2. MaxQuant output data filtering and identification of significantly changed 

phosphorylation sites 

Potential contaminants and hits from the reversed database were removed before 

further data processing, and data were further manually inspected to look for possible 

misquantifications caused by the labelling status (K6/R6) and disabled “Filter labelled 

amino acids” option in MaxQuant. Global rank test (GRT) was used to find differentially 

regulated phosphorylation sites. Only phosphorylation sites quantified in all three 

replicates were subjected to GRT, and FDR was estimated non-parametrically as described 

by Zhou et al. (318). The significance cut-off for differentially regulated sites was set 

to FDR < 0.005. 

3.3.10.3. Gene ontology and signalling pathways over-representation analyses 

Gene ontology (GO) and signalling pathways over-representation analyses were 

performed using ConsensusPathDB over-representation analysis web tool (319,320). For 
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the GO terms over-representation, proteins containing differentially regulated 

phosphorylation sites (both up- and down-) were tested against a custom background 

reference set comprising all phosphoproteins with at least one quantified phosphorylation 

site that was subjected to GRT (i.e. all phosphoproteins with at least one phosphorylation 

site quantified in all three biological replicates). Statistical significance of the over-

representation analysis was estimated using hypergeometric testing with Benjamini-

Hochberg FDR correction of calculated p-values, and the cut-off was set to FDR < 0.05. 

For the signalling pathways over-representation analysis, phosphoproteins with at least one 

regulated phosphorylation site were mapped to signalling pathways from three different 

databases: KEGG (321,322), REACTOME (323), and PID (324). Pathway-coverage was 

calculated for overrepresented pathways (FDR < 0.05, tested against a default background 

reference set comprising all Uniprot proteins included in at least one signalling pathway 

from a corresponding database).  

3.3.10.4. Network analysis 

Log2 transformed SILAC H/L ratios of phosphorylation sites quantified in all three 

biological replicates were normalized (z-score calculation) and subjected to SubExtractor 

algorithm (325). Human protein-protein interactions with STRING score above 900 were 

used as the second input for the algorithm, and regulated subnetworks were extracted 

(FDR = 0.005, α = 0.2, σ = 4). Extracted networks were visualized using Cytoscape v3.2.1 

(326).  

3.3.10.5. Sequence motif analyses 

To analyse and visualize sequence motifs surrounding phosphorylation sites 

identified and quantified in our study, we employed iceLogo tool (327) and motif-x 

algorithm (328). In both motif analyses, amino acid sequences (± 7 residues) surrounding 

either significantly up- or down-regulated phosphorylation sites were tested against a 

background reference set composed of sequences surrounding non-regulated 

phosphorylation sites detected in our study (as evaluated using GRT) that reached a 

minimal localization probability of 0.75 (i.e., “class I phosphosites” (273)). Motif-x was 

employed to extract significantly enriched linear motifs. Search parameters were set 

to at least 10 occurrences of a motif, and the significance level to p < 0.00003 (which 

approximately corresponds to a q-value of 0.01 after Bonferroni correction for multiple 

hypothesis testing). 
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3.3.10.6. Identification of protein kinases responsible for the observed protein 

phosphorylations and evaluation of global changes in their activities 

Class I phosphorylation sites quantified in all three biological replicates were 

annotated with previously known kinase-substrate relationships downloaded from the 

PhosphoSitePlus database (58). To increase the number of annotated phosphorylation sites, 

two kinase predictors were employed: NetworKIN 3 (329) and iGPS v1.0 (330). Both 

predictors combine motif scoring with contextual information (i.e. protein-protein 

interaction scoring downloaded from the STRING database (331)). The kinase predictions 

were further filtered to reach NetworKIN score > 3 or “medium” significance threshold 

in iGPS (i.e. FDR of 6 % for S/T kinases and FDR of 9 % for Y kinases). The significance 

of global changes in kinase activities were evaluated using “1D annotation enrichment” 

tool available in Perseus software v1.5.2.6 (332).  

To further facilitate the interpretation of the results we also downloaded the 

“Regulatory sites” dataset from the PhosphoSitePlus database, which summarizes the 

current up-to-date knowledge about the known functions of specific phosphorylation sites. 

In text, these sites are referred as “regulatory” sites. 

3.3.11. Targeted metabolomic analysis 

3.3.11.1. Sample preparation  

For the quantitative targeted metabolomic analysis, MOLT-4 cells were pre-treated 

either by VE-821 (10 μM) or DMSO (control groups) 30 minutes prior to IR (1.5 Gy). Six 

and twelve hours after irradiation, the cells were counted using a haemocytometer, and a 

cell suspension volume containing 2x106 of cells was pipetted into five sample volumes 

of a pre-cooled (-40 °C) quenching solution (60% methanol, 0.85% ABC, pH 7.4) as 

described previously (333). The samples were gently mixed, and the cells were pelleted 

by centrifugation (1,000 g, 3 minutes). After the centrifugation, supernatant was removed, 

and the cells were resuspended in 150 μl of pre-cooled (-80 °C) methanol, transferred to a 

lyophilisation vial, and lyophilised. Three replicates were prepared for each condition. The 

lyophilisates were dissolved in 100 µl of 80% methanol and centrifuged (14,000 g for 10 

min); a small volume of the sample (10 µl) was collected for quality control (QC) sample 

and the rest was transferred to vial and analysed. 
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QC sample was prepared by pooling equal volumes of cell extract sample. QC was 

analysed randomly throughout the run to provide a measurement not only of the system’s 

stability and performance but also of the reproducibility of the sample preparation. 

3.3.11.2. Instrumentation 

The metabolite profiling of cell extracts and the QC samples performed by high-

performance liquid chromatography tandem mass spectrometry enabled the analysis of 354 

intermediary metabolites (acylcarnitines, amino acids, organic acids, saccharides, etc.). 

For separation, an LC system UltiMate 3000 RS (Dionex, Sunnyvale, CA, USA) 

was used. The separation was performed with a LUNA NH2 column 3.0 µm, 2 x 100 mm, 

protected by a guard column, 4 x 2 mm ID, of the same material (Phenomenex, Torrance, 

USA) in normal aqueous phase mode. Mobile phase A consisted of 20 mM ammonium 

acetate at pH 9.75, and mobile phase B consisted of Acn. The gradient program was set as 

follows: 0-7 min: 95% → 10% B; 7-13 min: 10% B; 13-14 min: 10% → 95% B; 14-17 

min: 95% B. The column was maintained at 35 °C, and the flow rate was 0.3 ml/min. 

Detection was performed using a Triple Quad 6500 tandem mass spectrometer (AB Sciex, 

Foster City, CA, USA) fitted with electrospray ionisation in both positive and negative 

mode. To enhance sensitivity, the targeted metabolites were scanned in scheduled multiple 

reaction monitoring mode with prolonged dwell times. Both quadrupoles were set at unit 

resolution. The parameters of the IonDriveTM Turbo V source and gases were as follows: 

curtain gas, 40 psi; collision gas, 8 psi; ion spray voltages, 5500 V/- 4500 V; both ion source 

gases, 40 psi and source temperature, 400 °C. Compound parameters such as the 

declustering potential, entrance potential, collision energy, and collision cell exit potential 

were previously optimized to standards. The instrument was controlled using the Analyst 

v1.6.2 software. 

3.3.11.3. Data processing 

The analytes were detected and identified according to the multiple reaction 

monitoring transitions and retention times in the MultiQuant v3.0 software (AB Sciex, 

Foster City, CA, USA). The peak areas were extracted, and the corresponding peak areas 

were taken to create the final dataset. 
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3.3.11.4. Data treatment and statistical analysis 

The data were treated and statistically processed in the R program language v3.1.2 

using basic statistical packages (e.g. Biobase, stats, graphics; (334)), the special packages 

XCMS (335–337) and robCompositions (338). The quality control-based robust local 

regression signal correction method was applied to the data (339). The coefficients 

of variation (CV) of the quality control samples were evaluated and features with a CV 

higher than 30% were excluded from the analysis. Zero values were imputed by two-thirds 

of the minimum metabolite value for the appropriate group of samples. The data were 

analysed as compositional using centred logratio transformation (340) and mean centring. 

The p-value for each metabolite was calculated by means of a t-test, and Bonferroni 

correction was applied. Finally, the data were evaluated by means of unsupervised 

(principal component analysis – PCA) and supervised (orthogonal partial least squares 

discriminant analysis – OPLS-DA) multivariate analysis. For clustering analysis, only 

ANOVA significant (permutation-based FDR < 0.05) metabolites were selected and 

subjected to hierarchical clustering using Euclidean distances. 
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4. Results 

4.1. Optimization of metal oxide affinity enrichment 

of phosphopeptides from a standard tryptic peptide 

mixture 

4.1.1. Summary of phosphopeptides detected in the 

optimization experiments 

Commercially available α-casein that we used as the main phosphorylated 

component of our standard peptide mixtures is a mixture of two naturally occurring 

variants, the S1 variant (major component) and the S2 variant (minor component), and the 

preparations are usually contaminated with small amounts of β-casein. The S1 variant has 

nine known phosphorylation sites; the S2 variant has twelve known phosphorylation sites, 

and β-casein has five known phosphorylation sites. Asialofetuin, which we used as the 

second phosphorylated component of our mixture, has six known phosphorylation sites 

previously identified. Phosphopeptides originating from these proteins detected in our 

work are summarized in table 1. In summary, we detected 18 phosphopeptides originating 

from these phosphoproteins; eight of them were detected also in their oxidized form.  

Table 1: Overview of detected phosphopeptides from α-casein, β-casein, and asialofetuin 
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4.1.2. Comparison of enrichment efficiency of different metal 

oxide chromatographic resins 

The evaluation of enrichment efficiency for phosphorylated peptides of different 

chromatographic resins under different buffer conditions was performed by comparing the 

maximal numbers of detected phosphopeptides and repeatability (i.e. repeated detection 

of the same phosphopeptides in three independent experiments).  

Summarized results of the comparison are depicted in figure 4 showing the results 

from the phospho-enrichment of mixture A and B. As shown in the figures, Titansphere® 

particles and NuTips® clearly outperformed the TopTips®. All three kinds of TopTips® 

tested in our experiments provided lower number of detected phosphopeptides than 

Titansphere® particles and NuTips® columns.  

The addition of three different displacers of nonphosphorylated peptides improved 

the enrichment efficiency of TopTips®, but the obtained results were still not fully 

comparable with the NuTips® and Titansphere® enrichment. Whereas the maximal 

numbers of phosphopeptides detected after the phosphoenrichment from mixture A 

by NuTips® and Titansphere® particles ranged between 15 and 17 under the most 

phospho-efficient buffer conditions, TopTips® enrichment led to the detection of only 9 

phosphopeptides under the best buffer/resin conditions. The same trend was observed in the 

enrichment of phosphopeptides from the mixture B. From the three TopTips® 

microcolumns tested, mixed TiO2/ZrO2 TopTips® provided the best enrichment results. 

The most phosphopeptides (17) were detected using NuTips® under the buffer conditions 

4 (figure 6A). 

Figure 5 shows the enrichment efficiency and repeatability for singly- and 

multiply- phosphorylated peptides. While the maximal numbers of mono-phosphorylated 

peptides did not differ substantially when comparing different resins, the only multiply 

phosphorylated peptide detected using TopTips® enrichment was a doubly-phosphorylated 

peptide 1927.69 from α-casein. Other multiply phosphorylated peptides were not detected. 

On the other hand, using NuTips® and Titansphere® particles, we detected several 

multiphosphorylated peptides (with up to 5 modifications; see table 1). Interestingly, 350 

mg/ml DHB had a negative impact on the enrichment of monophosphorylated peptides 

in NuTips® and Titansphere® enrichment. Additionally, in the case of NuTips®, the 

addition of DHB caused a high level of noise in the low m/z region of MALDI-TOF spectra 

(figure 6C).  
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Figure 4: Comparison of enrichment efficiency (average number of detected phosphopeptides 

with standard deviation and total sum of phosphopeptides obtained in 3 enrichments) and 

repeatability (number of phosphopeptides repeatedly detected in each of 3 enrichments) of 

phosphopeptide enrichment from peptide mixture A (A) and B (B) using different media and 

protocols. NT, NuTip; TT, TopTip; Ti, TiO2; Zr, ZrO2. 
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Figure 5: Comparison of efficiency (total sum of phosphopeptides obtained in 3 

enrichments) and repeatability (number of phosphopeptides repeatedly detected in each 

of 3 enrichments) of mono-phosphorylated peptides (A) and multiply phosphorylated 

peptides (B) enrichment using different media and applied protocols (see Methods) 

on mixture A (1:1:5:5). NT, NuTip; TT, TopTip; Ti, TiO2; Zr, ZrO2. 
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Figure 6: Representative MALDI-TOF MS spectra of peptides obtained by the enrichment 

of phosphopeptides from the peptide mixture A (A) and B (B) using NuTips® under buffer 

conditions 4 (using 65% Acn, 2% TFA and 0.1 M glutamic acid as loading buffer). (C) 

Representative MALDI-TOF MS spectra of peptides obtained by the enrichment 

of phosphopeptides from the peptide mixture B using NuTips® under buffer conditions 3 

(using 65% Acn, 2% TFA and 350 mg/ml DHB as loading buffer). Phosphopeptides are 

marked with arrows 
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4.1.3. Evaluation of binding selectivity for phosphorylated 

peptides under different buffer conditions 

The binding selectivity for phosphorylated peptides was evaluated by comparing 

relative intensities of phosphorylated peptides with those of nonphosphorylated peptides 

in spectra recorded by MALDI-TOF mass spectrometry. The two most intensive 

nonphosphorylated peptides in the representative spectra shown in figure 7 were 1749.66 

(ECCHGDLLECADDR) and 2458.18 (DAIPENLPPLTADFAEDKDVCK) from BSA. 

These two peptides were the most intensive signals originating from nonphosphorylated 

peptides in most of the experiments; therefore, their presence in the spectra served as an 

indicator of enrichment selectivity of a particular resin under particular buffer conditions. 

As shown in the spectra, the intensity of these two unmodified peptides decreased in the 

following order: 5% TFA < 1 M LA < 0.1 M Glu < 350 mg/ml DHB, and thus the 

phosphoenrichment was the most selective when DHB was added into the loading buffer. 

The spectra presented in figure 7 were obtained by analysing the enriched fraction from the 

Titansphere® enrichment; however, the same trend was observed for all chromatographic 

materials tested. The binding selectivity of NuTips® was comparable to the selectivity 

of Titansphere® beads. On the other hand, the spectra resulting from TopTips® enrichment 

of mixture B usually contained high level of nonspecifically bound peptides even under the 

most efficient buffer conditions tested (figure 8).  
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Figure 7: Representative MALDI-TOF MS spectra of peptides obtained by the enrichment 

of phosphopeptides from both peptide mixtures using Titansphere® under indicated buffer 

conditions. Phosphopeptides are marked by arrows. The two most intensive non-

phosphorylated peptides in the spectrum- m/z 1749.66 and m/z 2458.18 from BSA are 

indicated by black triangles. 
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Figure 8: Representative MALDI-TOF MS spectra of peptides obtained by the enrichment 

of phosphopeptides from both peptide mixtures using TopTips® under buffer conditions 4. 

Phosphopeptides are indicated by arrows. TT Ti – TopTips® TiO2, TT Zr – TopTips® ZrO2, 

TT TiZr – TopTips® TiO2/ZrO2  
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Figure 9: Comparison of UV-VIS chromatograms obtained after application 

of Titansphere® (panel A) and NuTips® (panel B) along with glutamic acid protocol 

on the “real “- complex samples for enrichment of phosphopeptides from whole-cell lysate 

of HeLa cells. Peptides were separated by reversed phase chromatography using Dionex 

Ultimate 3000 (Thermo Scientific). Peptides were loaded in solvent A (2% Acn, 0.1% TFA) 

followed by 115-min multi-step gradient to 95% solvent B (80% Acn, 0.1% TFA) and 

detected using Dionex Ultimate 3000 Variable Wavelength detector (Thermo Scientific). 
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4.1.4. Application of the two best performing protocols to a real 

sample analysis 

The two best performing protocols were tested in a real complex sample analysis. 

The samples were prepared by digesting 1 mg of HeLa cells lysate using trypsin and 

enriched for phosphopeptides using either NuTips® or Titansphere® particles under buffer 

conditions 4.  

The amount of material in the enriched fractions was estimated using UV-VIS 

chromatography (figure 9). We repeatedly observed that NuTips® were not an adequate 

enrichment media for such a high amount of a complex mixture since the amount 

of material in the eluates was extremely low in comparison to the fractions originating 

from Titansphere® enrichment. Finally, the eluate from Titansphere® particles was 

analysed using RPLC-ESI-MS/MS system, which yielded 898 phosphopeptides passing the 

0.01 false discovery rate cut-off after processing the raw data with MaxQuant. 

4.1.5. Application of the selected protocol to study 

phosphorylation response of irradiated MOLT-4 cells  

A pilot quantitative (SILAC) phosphoproteomic study was performed to evaluate 

the performance of the chosen protocol (i.e. Titansphere® beads under buffer conditions 4) 

in the system of interest (i.e. irradiated MOLT-4 cells). The LC-MS/MS analysis of the 

enriched sample led to identification of 632 phosphorylation sites from 489 peptides 

originating from 335 phosphoproteins. 429 class I sites (localization probability > 0.75) 

were successfully quantified. Among them, 31 sites were upregulated and 32 were 

downregulated one hour after the irradiation by a dose of 1.5 Gy (1.5-fold change). More 

detailed overview and interpretation of the obtained data will be given in discussion 

section.  
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4.2. Radiosensitization of MOLT-4 cells by selective 

ATR and ATM inhibitors VE-821 and KU55933 

4.2.1.  Proliferation/ Viability assays 

Two different proliferation assays were employed to assess the effect of specific 

inhibition of ATM and ATR on proliferation of MOLT-4 cells: WST-1 assay and viable 

cell counting using Trypan Blue exclusion technique. 

4.2.1.1. Single-inhibitor treatment 

A potent and specific inhibitor of ATM by KU55933 was well tolerated 

in concentrations up to 10 µM even when the inhibitor was present in the cell culture media 

for 7 days (figure 10A-G). Unexpectedly, 5 µM KU55933 significantly increased viability 

of MOLT-4 cells in both assays. On the other hand, inhibitor of ATR, VE-821, repeatedly 

inhibited the growth and viability of MOLT-4 cells in a dose dependent manner already 

at lower concentrations than KU55933 (figure 10D-G); a significant growth inhibition was 

achieved by application of 1 µM VE-821 when detected after six days of treatment using 

WST proliferation assay.  

4.2.1.2. Inhibitor combinations and combinations with ionizing radiation 

In WST-1 assays, the irradiation of MOLT-4 cells by a dose of 1 Gy led to growth 

inhibition which resulted in markedly decreased number of viable (metabolically active) 

cells 72 and 144 hours after irradiation (figure 11A-C). The addition of VE-821 in both 1 

µM and 2 µM concentrations further significantly enhanced the antiproliferative effect 

of IR – the number of viable cells was below the limit of detection of the assay in the case 

of VE-821 2 µM and IR combination. Consistently with the single-inhibitor proliferation 

assays, lower concentrations of KU55933 (up to 5 µM) showed a positive effect on cellular 

proliferation, and moreover, they increased the number of viable cells in combination 

with irradiation. Notably, when applied in combination, KU55933 also diminished the 

antiproliferative effects of VE-821 72 hours after IR (figure 11A).  
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Figure 10: Characterization of VE-821 and KU55933 treatment effects on proliferation 

of MOLT-4 cells. (A, B, C) Effects of different KU55933 concentrations. Number of viable 

cells and viability (defined as number of viable cells/total number of cells) were assessed 

by a haemocytometer using trypan blue exclusion technique 1, 4, and 7 days after the 

addition of the inhibitor with subsequent dilution to a concentration of 2x105 cells/ml. 

Mean values ± SD from three measurements are presented. (D, E, F) Effects of different 

KU55933 and VE-821 concentrations. Number of viable cells and viability (defined as 

number of viable cells/total number of cells) were assessed by a haemocytometer using 

trypan blue exclusion technique 1, 3, and 6 days after the addition of the inhibitor 

with subsequent dilution to a concentration of 2x105 cells/ml. Mean values ± SD from three 

measurements are presented. (G) Effect of different KU55933 and VE-821 concentrations. 

Viability was examined by WST-1 assay after 24, 72, and 144 hours of continuous inhibitor 

treatment. Data are expressed as percentage of viability of controls for each time interval. 

Mean values ± SD from at least five measurements are presented. *p ≤ 0.01 vs. 

corresponding controls. 
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Additionally, in a cell counting-based proliferation assay, VE-821 significantly 

sensitized cells to IR in 2 μM and 10 μM concentrations even when the inhibitor was 

present in cell culture media only transiently, for the first 24 hours of the treatment (figure 

11D). In contrast to continuous treatment, VE-821 2 μM did not significantly affect the 

proliferation of sham-irradiated cells when washed out after 24 hours; however, it still 

increased the sensitivity of cells to ionizing radiation (1.5 Gy).  

 

 

Figure 11: Radio-sensitization of MOLT-4 cells using ATM and ATR inhibitors. Cells 

were irradiated by the indicated dose. Viability (proportional to number of metabolically 

active cells) was examined by WST-1 assay after 72 hours (A) and 144 hours (B) 

of continuous inhibitor treatment. (C) Table shows an irradiated group/sham-irradiated 

group ratio for each treatment condition depicted in figures C and D. (D) VE-821/DMSO 

were washed out 24 hours after irradiation and the number of viable cells was assessed 

by a haemocytometer 2, 5, and 8 days after irradiation with subsequent dilution to a 

concentration of 2x105 cells/ml. Mean values ± SD from five measurements are presented. 

In (A-D), * indicates statistical significance (p < 0.01) of comparison to non-irradiated 

control; # indicates statistical significance (p < 0.01) of comparison to irradiated control 

group. P-values were calculated using two-sided t-test. In all experiments, the cells were 

pre-treated with inhibitors at indicated concentrations or DMSO in control groups (C) 30 

minutes prior to IR. 
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4.2.2.  Immunoblotting-based detection of ATM and ATR 

activation and inhibition 

To detect activation of both ATM and ATR kinases upon irradiation and their 

specific inhibition by VE-821 and KU55933 pre-treatment, Chk1 Ser 345 and Chk2 Thr 68 

phosphorylation was assessed using immunoblotting one hour after 3 Gy of IR (figure 12). 

Chk2 Thr 68 phosphorylation (marker of activated ATM) was not detected in sham-

irradiated cells; however, it was strongly induced by irradiation. The treatment 

with KU55933 markedly decreased Chk2 phosphorylation in irradiated cells. Chk1 Ser 

345 phosphorylation (marker of activated ATR) was also detected in sham-irradiated cells, 

and upon irradiation, it was slightly upregulated. VE-821 abrogated this phosphorylation 

in a concentration dependent manner. Neither of both inhibitors influenced the expression 

level of Chk1 or Chk2 under given treatment conditions. 

 

Figure 12: Effect of KU55933 and VE-821 on activation of ATM and ATR kinases 

by gamma-irradiation. Cells were collected 1 hour after IR (3 Gy). Activation of both 

kinases and its suppression in the presence of inhibitors was monitored via the detection 

of their specific phosphorylations targets (Chk2 pT68 and Chk1 pS345, ATM and ATR 

respectively). The expression state of Chk1 and Chk2 was also evaluated. The 

representative blots from three independent experiments are shown. β-actin expression was 

analysed as a loading control. 

4.2.3.  DNA content analysis 

To investigate cell cycle effects of ATM and ATR inhibition, DNA content analysis 

was performed using propidium iodide (PI) staining and flow cytometric detection of PI 

fluorescence. The potential perturbation of the cell cycle by either one of the compounds 

or their combinations was examined 24 hours after irradiation (3 Gy). 
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As depicted in Figure 13A and 13B, in sham-irradiated cells, none of the conditions 

induced significant cell cycle perturbation except for VE-821 10 μM, which caused a 

significant increase in number of G1 cells (p < 0.01). The irradiation by a dose of 3 Gy led 

to a significant G2/M arrest in MOLT-4 cells. The pre-incubation with VE-821 in both 

concentrations and its combinations with KU55933 disrupted the IR induced G2/M 

checkpoint. On the other hand, KU55933 further increased the accumulation of cells 

in G2/M.  

4.2.4.  Apoptosis assay 

To assess the impact of different inhibitor concentrations on viability of MOLT-4 

cells and IR induced cell death we applied flow-cytometric detection of nonviable cells 

using the Apoptest-FITC kit. The proportions of cells stained either by Annexin V (early 

apoptosis) or Annexin V and PI (late apoptosis and necrosis) were measured 24 and 72 

hours after irradiation by a dose of 1 Gy. The cells were released into inhibitor-free media 

after 24 hours of treatment.   

As shown in figure 13C and 13E, 10 μM VE-821 significantly affected viability 

of MOLT-4 cells 24 hours after the addition of the treatment and/or irradiation. The effect 

induced by 10 μM VE-821 was comparable to 1 Gy of IR; almost 40 % of PI positive cells 

were detected under both treatment conditions. When combined with IR, VE-821 in both 

concentrations significantly increased the IR-induced cell death. Viability was not 

significantly affected in any of the KU55933- and combination- treated groups. 

72 hours after irradiation, further accumulation of nonviable cells was detected 

in VE-821 treated groups (2 and 10 μM, combination with 10 μM KU55933; figure 13D). 

Both inhibitors and their combinations increased IR-induced cell death. The most 

detrimental effect was observed when cells were treated by VE-821 10 μM and by the 

combination of both inhibitors (10 μM +10 μM). Application of these conditions led 

to more than 90% decrease in viability of MOLT-4 cells after 72 hours.  
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Figure 13: Flow cytometric analysis of MOLT-4 cells radiosensitization using VE-821 

and KU55933: (A, B) Cell cycle effects of ATM and ATR inhibition in irradiated MOLT-4 

cells: Cell cycle perturbation was examined using propidium iodide staining of DNA 

detected by flow cytometry 24 hours after IR (3 Gy). (A) Data are expressed as relative 

proportion of viable cells in different phases of cell cycle. Mean values ± SD from three 

measurements are presented. (B) Representative histograms for each one of the conditions 

are shown. (C, D, E) Apoptosis induction in ATM and ATR inhibitors treated irradiated 

MOLT-4 cells: Cell death was detected by Annexin V/PI staining 24 (C) and 72 hours (D) 

after IR (1 Gy). Mean values ± SD from three measurements are presented. (E) 

Representative dot plots for each one of the conditions from the first measurement (24 

hours after IR) are shown. Approximately 20 000 cells were analysed in each sample. In 

(A, C, D), * indicates statistical significance (p < 0.01) of comparison to non-irradiated 

control; # indicates statistical significance (p < 0.01) of comparison to irradiated control 

group. P-values were calculated using two-sided t-test. In all experiments, cells were pre-

treated with inhibitors at indicated concentrations or DMSO in control groups (C) 30 

minutes prior to IR. 
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4.3. “Dual-omic” analysis of VE-821 treated MOLT-4 

cells 

To describe cellular mechanisms underlying the VE-821-mediated 

radiosensitization of MOLT-4 cells, we employed high-resolution MS to identify and 

quantify changes in proteome, phosphoproteome, and metabolome of irradiated VE-

821-treated cells (figure 14). The metabolomic analysis was done in collaboration 

with Hana Janečková and David Friedecký from the Laboratory for Inherited Metabolic 

Disorders at the University Hospital Olomouc, who performed HPLC-MS/MS analysis 

of our samples and subsequent data processing including data normalization, statistical 

analysis, and KEGG pathways analysis.  

4.3.1. Proteomic and phosphoproteomic analysis of VE-821 

treated MOLT-4 cells 

The quantification on both proteome and phosphoproteome levels was based 

on stable isotope labelling in cell culture ((270)). To specifically enrich for peptides 

modified by phosphorylation, desalted tryptic peptide samples were fractionated using 

hydrophilic interaction liquid chromatography followed by phosphopeptide enrichment 

using titanium dioxide chromatography (222), RPLC-MS/MS detection, and peptide 

identification and quantification using MaxQuant v.1.5.2.8 (316) (figure 14B; figure 14E 

provides details on HILIC separation of phosphorylated peptides and enrichment efficacy 

over the fractions). 

In summary, on a site false discovery rate level of 0.01, we identified 9285 

phosphorylation sites from 3090 protein groups, among them 4504 were quantified in all 

three biological replicates (nearly 63 % of the data set). The phosphosite ratios correlated 

very strongly between the replicates (Pearson correlation coefficient was between 0.8 and 

0.9, figure 15C). Only those sites quantified in all replicates were subjected to a non-

parametric version of a global rank test ((318)) to identify sites with significantly up- or 

down- regulated phosphorylation consistently regulated in all three biological replicates. In 

GRT, we identified 623 regulated phosphorylation sites (455 phosphoproteins); most 

of them were upregulated (431).  
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Figure 14: Identification and quantification of the VE-821-regulated phosphoproteome 

and metabolome in irradiated MOLT-4 cells using tandem mass spectrometry: (A) 

Overview of time intervals used for both phosphoproteomic and metabolomic analyses 

of VE-821 perturbed cellular response to ionizing radiation (IR). (B) Overview 

of experimental design and workflow used for quantitative SILAC-based 

phosphoproteomics. (C) Summary of the identified and quantified phosphoproteome. (D) 

Overview of experimental design and workflow used for targeted metabolomics screening. 

(E) Distribution of phosphorylated peptides over the HILIC gradient. Numbers and 

percentage of non-, singly-, doubly-, and triply- phosphorylated peptides in each 

phosphoenriched HILIC fraction. 
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The analysis of the whole proteome samples prepared using the same treatment and 

time interval resulted in quantification of the unmodified fraction of the proteome 

(phosphorylated peptides were not considered for proteome quantification). The analysis 

confirmed our expectations that there would be no significant changes of proteome one 

hour after irradiation combined with VE-821 treatment. As depicted in figure 15A, the 

distribution of normalized log2 SILAC H/L ratios corresponding to quantification 

of unmodified proteins was very narrow, with most values distributed close to zero. 

Moreover, Pearson correlation between the replicates was weak (R 0.24 – 0.387; figure 

15B), which is more likely caused by non-existing trends in an unperturbed system rather 

than by an irreproducibility of the analysis.  

Pearson correlation between normalized log2 SILAC H/L ratios of phosphopeptides 

and log2 normalized SILAC H/L ratios of corresponding proteins was also calculated (the 

calculation was based on 2738 phosphorylation sites which represent almost 30 % of the 

data set), and the low correlation coefficient value (R was -0.013) further confirmed that 

the observed changes on the phosphoproteome level were not dependent on changes of the 

abundance of corresponding proteins (figure 15A).  

The nature of further data analyses implementing multiple bioinformatic tools and 

databases search implies their presentation in the section Discussion. 
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Figure 15: Comparison and correlation of changes on proteome and phosphoproteome 

level, and their quantitative reproducibility. (A) Violin plots depict log2 transformed 

SILAC H/L ratios distribution in all proteome and phosphoproteome biological replicates. 

(B) Pearson correlation between phosphosite and protein ratios. H/L ratios of 2738 

phosphorylation sites (29 % percent of the identified phosphorylation sites) were plotted 

against H/L ratios of corresponding proteins and the Pearson correlation value (R) was 

calculated. (C) Pearson correlation (R) between biological replicates of both proteome and 

phosphoproteome experiment. 

  



  

97 

 

4.3.2. Targeted metabolomic analysis of VE-821 treated 

MOLT-4 cells 

Metabolite profiling was performed by a label-free targeted analysis of cellular 

extracts collected 6 and 12 hours after the treatment starting point (figure 14A). A method 

combining high-performance liquid chromatography using aminopropyl stationary phase 

and detection of the metabolites by Triple Quad 6500 tandem mass spectrometer enabled a 

quantitative analysis of 206 intermediary metabolites (figure 14D).  

Hierarchical clustering (figure 17A) and multivariate analyses such as principal 

component analysis (PCA; figure 16A), PLS discriminant analysis (PLS-DA; figure 16B), 

and orthogonal PLS discriminant analysis (OPLS-DA; figure 16C) revealed that both 

treatment groups were clearly separated from each other based on the measured 

quantitative values for the metabolites. Based on sample localization in PCA and PLS-DA 

score plot (figure 16A and 16B), it is obvious that the inhibitor had a more significant 

impact on the group clustering than the incubation time. An overlap of QC samples in the 

PCA score plot showed the repeatability of the measurements (figure 16A).  

Further clustering analysis of ANOVA significant metabolites (126 metabolites 

on 5% permutation-based FDR level) revealed three main clusters showing distinct 

behaviour across the four conditions measured (figure 17):  

 Upregulated in VE-821 treated groups and showing an increasing trend between 

the time intervals in both groups (figure 17B; cluster 1): this group comprised 

metabolites that were accumulated over time in both groups; the inhibitor 

potentiated the effect of IR. Lactate is an example of a metabolite belonging 

to this cluster (figure 17C).  

 Upregulated in VE-821 treated groups with no significant trend between the two 

time intervals (figure 17B; cluster 2): this group comprised metabolites, which 

were altered by VE-821 in irradiated MOLT-4 cells. Glucose (and other hexoses) 

is an example of a metabolite belonging to this cluster (figure 17C). 

 Downregulated in VE-821 treated groups and showing a decreasing trend 

between the time intervals in both groups (figure 17B; cluster 5): this group 

comprises metabolites that were depleted over time in both groups; the inhibitor 

potentiated the effect of IR. ATP is an example of a compound belonging to this 

cluster (figure 17C). 
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Figure 16: Targeted metabolomic analysis of VE-821 induced metabolome changes 

in irradiated MOLT-4 cells. Statistical analysis of the results was performed using 

multivariate analyses such as PCA (A), PLS-DA (B), and OPLS-DA (C). DMSO – 

irradiated groups pre-treated with DMSO, VE – irradiated groups pre-treated with 10 µM 

VE-821 

Thus, there were two classes of changes observed in metabolome of irradiated cells 

after VE-821 treatment. First, changes that were observed in both treatment groups and 

showed the same, either decreasing or increasing, trend over time. In such cases, we 

assumed that the inhibitor caused potentiation of metabolism-altering effects of IR. 

Second, changes that showed no trend over time in irradiated control group. We interpreted 

these as alterations in metabolome of irradiated cells caused by VE-821. 

The main significant changes in the metabolome of MOLT-4 cell line occurred 

in group of metabolites involved in cellular antioxidant system; intermediates of glucose 

metabolism and citrate cycle; nucleosides, nucleotides, and deoxynucleotides; free 

amino acids, N-acetylated amino acids, and acylcarnitines. The results will be further 

described and interpreted in the Discussion section in the context of other results obtained 

in this work.  
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Figure 17: Hierarchical clustering of significantly changed metabolites: ANOVA 

significant metabolites were clustered (A), and three main row clusters of metabolites were 

identified (B). Examples of metabolites for each cluster are given; distribution 

of quantitative values for a metabolite in each experiment is depicted using boxplots (C).  
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5. Discussion 

5.1. Selection of the protocol for phosphopeptide 

enrichment from a standard and a complex 

biological sample 

Since the discovery of the affinity of metal oxides for phosphorylated peptides 

(227), there have been many protocols for a selective phosphopeptide enrichment 

developed. Moreover, there are also many commercial products available that declare high 

selectivity towards phosphorylated peptides and applicability for the enrichment 

of phosphopeptides from complex biological matrices. However, these products are often 

not comparable and might differ in several parameters such as the metal oxide used, the 

amount of chromatographic material (in the case of pre-packed microcolumns), and the 

size and porosity of the chromatographic beads. All of these parameters can affect 

phosphopeptide binding capacity and selectivity.  

To choose the most suitable protocol and chromatographic resin from the plethora 

of protocols and products commercially available, we first performed a series 

of optimization experiments. For these initial experiments, we used two mixtures of tryptic 

peptides originating from two phosphorylated (α-casein and asialofetuin) and 

nonphosphorylated proteins (BSA and myoglobin) in two different molar ratios (1:1:5:5 

and 1:1:50:50), which simulated the relatively low abundance of phosphorylated proteins 

in a biological sample. To detect the peptides resulting from the enrichment step, we used 

MALDI-TOF MS analysis using an ABI 4800 mass spectrometer as it was the only mass 

spectrometer available in our lab in 2011 and 2012 when these initial optimization 

experiments were performed. To test the applicability of the chosen methods to enrich 

phosphopeptides from a complex mixture, we further performed a real complex sample 

enrichment (HeLa cells lysate) and detected the resulting peptides using an LC-MS/MS 

system. The final selected protocol was then used in a pilot quantitative SILAC-based 

phosphoproteomic study of irradiated MOLT-4 cells. 

From the previously published protocols, we selected four different buffer 

conditions (detailed composition of the buffers can be found in the Methods part), which 
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mainly differed in the composition of the loading solution (or loading “buffer”) including 

different acidic additives previously reported to enhance the phosphopeptide selectivity 

of the metal oxides. The first protocol involved only 5 % TFA to establish a low pH during 

the loading step, since in the initial MOAC studies it was shown that strongly acidic 

conditions were beneficial for the specificity of phosphopeptide enrichment (222). Three 

further protocols were based on addition of one of the previously reported efficient 

“nonphosphopeptide excluders” – 1 M lactic acid (223), 350 mg/ml DHB (222), or 0.1 M 

glutamic acid (186).  

In the next step, we applied these buffer conditions in order to test 5 different 

commercially available chromatographic resins: Titansphere® 5 μm particles (GL 

Sciences, Torrance, CA, USA), which we used to enrich for phosphopeptides in a 

“microtube format”; TopTips® (TiO2, TiO2/ZrO2 1:1, and ZrO2; Glygen, Columbia, MD, 

USA), which are pre-filled micro-spin columns that can be used for phospho-enrichment 

in a “column format” using either centrifugal force or air pressure to ensure the flow of the 

loading and washing solvents through the beads; and NuTips® (TiO2/ZrO2 1:1) (Glygen, 

Columbia, MD, USA), which are pre-filled “pipette-tips” that can be used for phospho-

enrichment via repetitive pipetting of a peptide solution through the bottom part of the tip 

containing embedded chromatographic resin. The undeniable advantage of using the 

Titansphere® beads in the microtube format or alternatively, in the form of in-house 

columns (which we also tested, but the data are not presented in this thesis), is the fact that 

their amount can be optimized for a specific application while the pre-packed tips are only 

available in two or three different sizes. The effect of a peptide-to-TiO2 ratio has been 

investigated in several studies as an important parameter affecting the specifity of the 

enrichment (244,245). Based on our data (not shown) we decided to use a ratio of 1:8 

for our optimization experiments. 

5.1.1. Titansphere® particles and NuTips® provided markedly 

more efficient phosphopeptide enrichment than the 

TopTips®. 

The evaluation of enrichment efficiency revealed that in our experiments, 

Titansphere® particles and NuTips® clearly outperformed the TopTips® in terms of the 

total and average numbers of phosphopeptides detectable by MALDI-TOF MS in the 

eluted fractions. The most apparent difference was observed when phosphopeptides 
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from mixture A were enriched; application of the best protocol for each of the 

chromatographic resins led to detection of 17 phosphopeptides by NuTips®, 15 

phosphopeptides by Titansphere®, but only 9 phosphopeptides by TopTips®. In mixture 

B enrichment, NuTips® provided a total number of 10 phosphopeptides, Titansphere® led 

to the detection of 8 phosphopeptides, and TopTips® provided 7 phosphopeptides in total 

(figure 4).  

Further analysis of the nature of peptides detected by different protocols showed 

that the main differences in numbers of phosphorylated sites detected between the two well 

performing products and TopTips® were caused by lower detectability of multiply-

phosphorylated peptides while the enrichment efficiency for monophosphorylated peptides 

was comparable across the resins and buffer conditions (figure 5). Doubly- phosphorylated 

peptide 1927.69 [M+H]+ from α-S1-casein was observed in most of the enrichments; 

however, multiply phosphorylated peptides were more challenging to detect. These 

peptides were typically observed as low intensity peptide ions in the higher m/z range of the 

MALDI-TOF MS spectra, and were only detected in the low complex mixture A using the 

most specific enrichment protocols.  

TopTips® enrichment usually yielded a high number of nonspecifically bound non-

phosphorylated peptides even under the most efficient buffer conditions tested, which 

might explain the low detectability of multiply phosphorylated peptides in the spectra as 

their ionization/signals were suppressed by the high amount of the nonphosphorylated 

peptides (figure 8).  

5.1.2. 2,5-dihydroxybenzoic acid was the most potent non-

phosphopeptide excluding additive.  

As for one of the goals of this initial optimization study, we aimed to compare how 

binding specificity was modulated by buffer composition. The binding specifity was 

monitored by relative intensity of the most intensive non-phosphorylated peptides 

originating from BSA, 1749.66 [M+H]+ (ECCHGDLLECADDR) and 2458.18 [M+H]+  

(DAIPENLPPLTADFAEDKDVCK), in recorded MALDI-TOF MS spectra. Both 

nonspecifically enriched peptides contained a relatively high number of acidic amino acids 

(as underscored in the sequences), which is in concordance with previously reported fact 

that especially nonphosphorylated peptides containing greater proportions of aspartic and 

glutamic acid bind nonspecifically to phosphopeptide enrichment resins (221).  
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In the first protocol used for phosphopeptide enrichment, i.e. buffer conditions 1, 

the loading buffer consisted of 80% Acn that prevented hydrophobic interactions between 

peptides and a sorbent, and 5% TFA to establish a low pH (typically < 2), which should 

minimize the binding of nonphosphorylated peptides by neutralizing negative charges 

of potentially dissociated acidic amino acids. However, as indicated in the recorded 

MALDI-TOF MS spectra, 5% TFA was not strong enough to prevent the nonspecific 

binding of acidic BSA peptides resulting in relatively highly intensive signals of the 

nonphosphorylated peptides (figure 7A and 7B). 

To improve the specifity of the enrichment by preventing nonspecific binding 

of peptides containing greater proportions of acidic amino acids, three different 

“nonphosphopeptides excluders” reported previously in literature were employed. In the 

second protocol, i.e. buffer conditions 2, the loading solution included 1 M lactic acid 

(LA), which was evaluated to be the most efficient additive for phosphopeptide enrichment 

from a panel of hydroxy acids tested in a previous study (223). The level of nonspecific 

binding was notably decreased compared to the first protocol (figure 7C). However, LA as 

an excluder was still not very efficient for more complex peptide mixture B (figure 7D). 

The improved efficacy for excluding nonphosphorylated peptides allowed detection 

of more multiply phosphorylated peptides but with a poor reproducibility. Therefore, in our 

study, 1 M LA did not seem efficient enough to prevent unspecific binding of non-

phosphorylated peptides. We also tested a higher concentration of LA than it was originally 

recommended (i.e. 2 M), however the increase in LA concentration did not lead to any 

significant improvement in the performance of the second protocol (data not shown).  

The third enrichment protocol, i.e. buffer conditions 3, included the addition 

of glutamic acid (Glu) in the sample loading buffer as an effective nonphosphorylated 

peptides-excluding agent (figure 7G and 7H). Glu has been reported previously as an 

efficient loading buffer additive (186); its potency for enhancing specifity of MOAC is 

caused by its competition with Glu residues of peptides. In our setting, the addition of 0.1 

M Glu was more effective than the addition of LA, and it led to improved efficiency and 

reproducibility of the enrichment, but it was still surpassed by the effect of DHB.  

In 2005, Larsen and his co-workers investigated the effect of different aromatic 

carboxylic acids and aliphatic carboxylic acids added into loading buffer 

for phosphopeptide enrichment. DHB and other substituted aromatic carboxylic acids 

(salicylic acid, phthalic acid) showed the best efficacy in inhibition of adsorption 
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of nonphosphorylated peptides (222). DHB was also found to be the most potent additive 

in another study (224). In the fourth protocol, buffer conditions 4, DHB was added to the 

loading buffer in a concentration of 350 mg/ml (close to a saturated solution) for complex 

mixtures of peptides according to the recommendation in Larsen’s protocol. We observed 

that DHB was the most potent excluder for nonphosphorylated peptides when added during 

phosphopeptide enrichment using Titansphere® particles and TopTips® since the relative 

intensities of nonphosphorylated peptides were very low (figure 7E and 7F). Additionally, 

multiply phosphorylated peptides were more clearly detected than in other MALDI-TOF 

MS spectra obtained by different phosphopeptide enrichment protocols probably because 

of lowered ion suppression, which is normally affecting the signals of multiply 

phosphorylated peptides during MALDI-TOF MS. On the other hand, 

monophosphorylated peptides were slightly less reproducibly enriched when DHB was 

used, which might indicate that weaker bound monophosphorylated peptides could be also 

displaced from metal oxide surface by this potent “excluder” (figure 5A).  

Thus, the non-phosphopeptide excluding efficiency of the additives increased in the 

following order: 5% TFA < 1 M LA < 0.1 M Glu < 350 mg/ml DHB.  

5.1.3. The addition of glutamic acid into the loading buffer 

provided the best phospho-enrichment efficiency. 

Even though DHB was shown to provide the highest non-phosphopeptide exclusion 

efficiency among the additives tested, it was actually 0.1 M Glu that enabled the detection 

of the most phosphorylated peptides. Although the signals of multiply phosphorylated 

peptides were not as clear as in the case of the DHB protocol, glutamic acid MOAC 

chromatography seemed to have the highest enrichment efficiency within the four 

protocols tested. The addition of glutamic acid led to detection of 17 and 15 

phosphopeptides in total in NuTip® and Titansphere® enrichment, respectively, which 

were the highest numbers of detected phosphopeptides in our optimization study. 

Additionally, the protocol that included Titansphere® particles and glutamic acid reached 

the best repeatability among all the protocols tested with 15 phosphopeptides repeatedly 

detected in all three independent enrichments.  

The lower yields of phosphopeptides detected in DHB enriched eluates were mostly 

caused by aforementioned lower recovery of monophosphorylated peptides in the presence 

of 350 mg/ml DHB. In addition to the negative effect on the detection of mono-
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phosphorylated peptides, we also observed a high level of noise in the low m/z region 

of MALDI-TOF MS spectra recorded from the samples enriched using NuTips® and DHB 

as an additive. This observation has been already reported in a previous study that also 

evaluated the performance of NuTips® for phosphopeptide enrichment (341). We are 

aware of the fact that this issue could have been further addressed by testing lower 

concentrations of DHB; however, such investigation was far beyond our interests.  

Moreover, it has been reported previously (223) that DHB added to loading buffer 

decreased the number of nonspecifically bound nonphosphorylated peptides but also the 

number of identified phosphopeptides because it caused problems in the RPLC-ESI-

MS/MS system used in the study. Therefore, it might be risky to use DHB in cases when 

the samples are supposed to be injected into an LC-MS/MS system. On the contrary, Glu 

is a compound that does not have such a strong affinity for hydrophobic reversed phase, 

and thus its use in such system is more feasible. Therefore, we selected the glutamic acid 

including protocol for further studies. 

5.1.4.  Titansphere® particles outperformed NuTips® in the 

real sample analysis. 

We further tested the two best performing protocols in an analysis of a real complex 

sample. The real peptide samples were prepared by digesting 500 µg of HeLa cells lysate 

using trypsin, and the samples were enriched for phosphopeptides using either NuTips® or 

Titansphere® particles and the Glu containing protocol (i.e. buffer conditions 4). Enriched 

fractions resulting from these enrichments were analysed using an RPLC-ESI-MS/MS 

system. 

Surprisingly, we repeatedly observed that NuTips® were not an adequate 

enrichment media for such a high amount of a complex mixture since the amount 

of material in the eluates was extremely low in comparison to the fractions obtained 

by Titansphere® enrichment. According to the description provided by the manufacturer, 

ZrO2/TiO2 NuTips® 10-200 μl have a binding capacity of 2.5 μg which in our opinion 

should be sufficient for the enrichment of phosphopeptides from 500 µg of unfractionated 

whole cell lysate. We also tried to use multiple tips for sequential enrichment of the same 

sample (i.e. the flow-throughs were re-loaded onto the column), but this modification did 

not bring any improvement observable in the UV-VIS chromatography spectra (data not 

shown). However, the results were rather disappointing with only several peaks detected 
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in UV-VIS chromatography. NuTip® might have an excellent selectivity and outperform 

Titansphere® in the analysis of low complex samples, but in the analysis of a highly 

complex mixture of peptides, the amount of the beads embedded into the tips is probably 

not sufficient to robustly enrich phosphorylated peptides.    

On the contrary, Titansphere® particles, which can be easily adjusted for any 

sample volume and amount of starting material, yielded 898 phosphopeptides passing the 

0.01 false discovery rate cut-off. Thus, in our hands, Titansphere®, proved as the most 

efficient media for analysis of a highly complex real sample.  

5.1.5.  Application of the optimized protocol to study 

phosphorylation response of irradiated MOLT-4 cells led 

to identification of more than 600 hundred 

phosphorylation sites.  

To further evaluate the performance of the chosen protocol for phosphopeptide 

enrichment in the system of interest, i.e. irradiated leukemic cells, we performed a pilot 

study investigating the phosphorylation response in MOLT-4 cells that were irradiated by a 

dose of 1.5 Gy chosen on the basis of our previous work (342). In the presented experiment, 

the quantification of phosphorylation changes between the irradiated and control cells was 

achieved using SILAC labelling. After mixing the samples 1:1, tryptic digestion of the 

protein mixture and phosphopeptide enrichment using the Titansphere® particles at a 

peptide-to-TiO2 ratio 1:8 under buffer conditions 4 (100 mM glutamic acid as an additive), 

and a LC-MS/MS analysis of the resulting fraction, we identified 632 phosphorylation sites 

from 489 peptides originating from 335 phosphoproteins (summary of the results is given 

in figure 18).  

Among the identified sites, 476 were classified as class I phosphosites (based on the 

localization confidence defined by localization probability calculated by MaxQuant; figure 

18A). The total number of successfully quantified class I sites was 429; the relative 

distribution of phosphorylated S, T, and Y were similar to values reported in previous 

studies (figure 18B; (201,273)). Applying the previously reported 1.5 and 0.5 heavy/light 

ratio cut-offs (normalized SILAC H/L ratios without any log transformation; (343)), we 

assessed that 31 sites were upregulated and 32 were downregulated one hour after the 

irradiation (figure 18C). As shown in figure 18D and 18E, when analysing this first data 
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set we were able to find statistically over-represented signalling pathways (figure 18D) and 

kinases that were up- and downregulated in response to IR (figure 18E).  

-  

Figure 18: Summary of the results obtained in the pilot study of irradiated MOLT-4 

cells: (A) Classification of the phosphorylation sites based on their localization 

probability. (B) The relative distribution of pS, pT, and pY in the quantified class I sites 
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subset. (C) Pie chart depicting proportion of up- and down-regulated phosphorylation sites 

in the quantified class I sites subset. (D) Signalling pathways overrepresentation analysis. 

Up- (green) or down- (blue) regulated sites were annotated by the pathways membership 

using ConsensusPathDB and statistically evaluated (hypergeometric testing, default 

background). (E) Kinase activity analysis. Kinases phosphorylating the 429 quantified 

class I sites were predicted using Networkin 2.0; statistical analysis and visualization was 

conducted using PhosphoSiteAnalyzer; colour code indicates statistical significance of a 

finding – low p-values are depicted with dark purple. (F) Chk2 Ser 379 and Ser 260 were 

found in the upregulated dataset. Using PhosphoSitePlus database, we confirmed the 

biological relevance of these phosphorylation events in the context of irradiation. 

 

As for the over-represented signalling pathways, most of them were pathways 

involved in DDR – for instance activation of ATM- and p53 signalling pathways, cell death 

by apoptosis, and activation of cell cycle checkpoints. In the kinase activity analysis, we 

found ATM_ATR group significant among the upregulated kinases and CDKs among the 

downregulated kinases, which is in concordance with the well-known roles of ATM/Chk2 

and ATR/Chk1 in regulation of cell cycle checkpoints in response to genotoxic stress. 

Two examples of significantly upregulated phosphorylation sites are given 

in figure 18F. Two strongly upregulated (11-fold) phosphorylation sites were observed 

in Chk2 after IR. Data mining using the most comprehensive phosphorylation database 

PhosphoSitePlus (58) revealed that these two phosphorylation sites were localized in the 

kinase activation loop of Chk2 (344,345), and Ser 379 phosphorylation has been previously 

shown to be IR-triggered (346). 

As these results were fully in concordance with known facts about the IR-triggered 

cellular response, we could conclude that our workflow was capable of identification and 

quantification of phosphorylation changes in irradiated leukemic cells. It also proved that 

it enabled further analysis of the acquired data using bioinformatic tools to describe 

biological significance of the measured changes. 
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5.2. Radiosensitization of MOLT-4 cells by selective 

ATR and ATM inhibitors, VE-821 and KU55933 

To investigate the radiosensitizing potential of ATR inhibitor, VE-821, and 

compare it to the effects of ATM inhibitor, KU55933, the MOLT-4 cell line was chosen. 

MOLT-4 is a T-cell acute lymphoblastic leukaemia (T-ALL) cell line. The effects of IR 

and other DNA damage inducing agents in this cell line have been extensively studied, 

especially at our department and the collaborating Department of Radiobiology at the 

Faculty of Military Health Sciences (347–350,342,351–357). In these studies, it has been 

shown that MOLT-4 cells are relatively radiosensitive cells with D0 value (dose reducing 

survival to 37 %) of 0.87 Gy, and the cells express wild-type p53 and possess a functional 

ATM/p53 pathway, which is triggered in a dose-dependent manner (342,347,353). After 

irradiation, the cells have been shown to die by both pre- and post-mitotic apoptosis 

(348,358). Notably, it has been suggested that MOLT-4 cells could have some defect 

in DNA repair pathways promoting their radiosensitivity (a possible defect in Nbs1 

phosphorylation have been discussed previously (351)). The cells have been also already 

used to study radiosensitizing effects of several kinase inhibitors such as caffeine (low 

potent ATM/ATR inhibitor; (354,359)), U0126 (MEK1/2 inhibitor; (359), and DNA-PK 

inhibitors NU7026 and NU7441 (355,357) in leukemic cell lines, where MOLT-4 cells 

were chosen to represent a p53 wt model cell line. 

To get an overview of MOLT-4 cell line genetic background, we extracted MOLT-

4 relevant data from the COSMIC (Catalogue of somatic mutations in cancer) database, 

which is the most comprehensive database of somatic mutations in human cancer (360). 

The database search revealed 1476 entries; among them, 56 were mutations in census genes 

(i.e. genes known to be involved in cancer). Importantly, MOLT-4 cells suffer 

from mutations of signal transduction pathways which are known to be frequently mutated 

in T-ALL leukaemia such as NOTCH1, IL7R-JAK-STAT, RAS-MEK-ERK, and 

(PTEN)-PI3K-AKT pathways (reviewed in (361)). The only census gene that was 

detected with homozygous deletion was the Phosphatase and tensin homolog PTEN, which 

is a tumour suppressor gene commonly mutated in a wide range of cancers (362). It acts as 

an important negative regulator of the PI3K-AKT-mTOR pathway, which is responsible 

for regulation of cellular metabolism, proliferation and survival. Therefore, the inactivation 

of PTEN triggers overactivation of the pathway and uncontrolled cellular proliferation, 
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ultimately leading to cancer (reviewed in (363). Furthermore, MOLT-4 cells suffer 

from multiple heterozygous mutations in several DDR genes such as ATM, BRCA1, 

FANCA, and TP53. Together, these data indicated that the PI3K-AKT pathway might be 

dysregulated, and the DNA repair capacity might be impaired in MOLT-4 cells. 

5.2.1.  Both VE-821 and KU55933 treatment abrogated the 

radiation-induced phosphorylation of corresponding 

checkpoint kinases. 

To confirm the inhibitory effect of VE-821 and KU55933 on ATR and ATM 

kinases, respectively, we assessed phosphorylation of two downstream effector kinases: 

Checkpoint kinase-1 (Chk1) Ser 345 and Checkpoint kinase-2 (Chk2) Thr 68. As 

expected, both phosphorylation sites were upregulated upon irradiation (3 Gy, one hour 

after irradiation). Chk2 phosphorylation, which is a marker of DNA DSBs-activated ATM, 

was markedly decreased with increasing concentration of KU55933. Accordingly, the 

status of Chk1 Ser 345 phosphorylation site, which is a widely-accepted marker of ATR 

activation, was proportionally inhibited by increasing concentration of VE-821. Therefore, 

we confirmed that in our cell line model the pre-incubation with VE-821 and KU55933 

specifically inhibited ATR and ATM kinase, respectively, without any off-target effect 

towards the other kinase. Such observation was not surprising, as the IC50(ATR) 

of KU55933 was assessed to be 100 μM (364), and the Ki(ATM) of VE-821 is 16 µM 

(IC50 has not been assessed; (11)). Additionally, the selectivity of VE-821 towards ATR 

has been confirmed in previous studies (11,134). 

5.2.2.  KU55933 treatment was not toxic for sham-irradiated 

cells and enhanced the IR induced growth inhibition and 

cell death of MOLT-4 cells. 

KU55933 was the first potent and selective ATM inhibitor with IC50 of 13 nM 

(364). As well as its more recent analogues, it has been shown to sensitize cells to IR and 

DSB-inducing drugs without sensitizing cells derived from A-T patients (364–366). 

Radiosensitization using KU55933 and its derivatives is not specifically targeting cancer 

cells; however, ATM inhibition alone has been shown to be nontoxic for normal tissues 

outside the radiation field (366). The p53-dependency was investigated, but the results are 

too contradictory to make any conclusion (365,366). In the presented data, KU55933 was 
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well tolerated by the p53-wt expressing MOLT-4 cells in concentrations up to 10 μM; 

to induce a significant perturbation of cell growth, it was necessary to apply at least 20 μM 

KU55933. Interestingly, 5 μM KU55933 significantly increased the number of viable 

metabolically active cells six days after the start of the treatment in two independent 

proliferation assays (figure 10) without affecting the number of nonviable cells and the cell 

cycle (figure 13) confirming that KU55933 was not toxic for sham-irradiated MOLT-4 

cells in concentrations up to 10 μM.  

Since MOLT-4 cells express a wild-type p53 and possess a functional ATM/p53 

pathway (342,347,353), and cellular response to DNA DSBs is to a great extent ATM/p53 

pathway dependent, we expected that ATM inhibition would sensitize MOLT-4 cells to IR. 

In concordance with our expectation, 10 μM KU55933 caused a significant decrease 

in MOLT-4 cells proliferation when combined with IR and detected 6 days after irradiation 

(figure 11) and increased the IR-induced cell death 3 days after irradiation (figure 13). 

KU55933 showed no effect on the G2/M cell cycle arrest triggered by IR, which was 

in concordance with the known fact that the intra-S and G2/M DNA damage checkpoints 

are mainly directed by the ATR/Chk1 pathway (reviewed in(110).  

5.2.3. VE-821 is a more potent inhibitor of MOLT-4 cells 

growth than KU55933 in both single treatment and 

combination with irradiation. 

While ATM mainly responds to severe DNA lesions, ATR is an indispensable 

regulator of cellular proliferation as it responds to stress that cells undergo during normal 

replication of DNA as well as replicative stress caused by exposure to genotoxic agents. It 

has been shown to be essential for viability; homozygous mutation of ATR caused peri-

implantation embryonic lethality in mice (85,86). However, transient inhibition of ATR 

by VE-821 has been proven to cause mere reversible growth arrest in normal cells, which 

was abrogated when the inhibitor was removed from the cultivation media (11). 

Importantly, the newest highly potent and specific ATR inhibitors have been shown 

to directly eradicate or sensitize cancer cells to a variety of genotoxic agents without 

affecting normal, non-tumour, cells (8,11,12,138,139). The sensitivity of cancer cells 

to ATR inhibitors has been already explained by several cancer-specific defects such as 

loss of functional ATM/p53 pathway (8–12) and elevated levels of replication stress 

induced by increased oncogenic signalling (1–7).  
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In the presented study, VE-821 significantly inhibited proliferation of p53-wt 

MOLT-4 cells already at 1 μM concentration although such concentration caused only a 

partial ATR inhibition when detected as a Chk1 Ser 345 phosphorylation using western 

blotting (figure 12). This effect was further accented in correlation with increasing 

inhibitor concentration (figure 10). Thus, in MOLT-4 cells, continuous inhibition of ATR 

by VE-821 has a significantly stronger effect on proliferation than the inhibition of ATM.  

In combination with IR, VE-821 significantly abated the number of viable cells 

in both irradiated groups already 72 hours after irradiation. As both concentrations used 

in our experiments directly affected the proliferation of sham-irradiated cells, we further 

calculated a ratio between irradiated and sham-irradiated group for each inhibitor treated 

condition to resolve if the combination of irradiation and the inhibitor has a more profound 

effect on proliferation than the inhibitor itself (figure 11). Whereas the irradiation caused 

nearly 50 % decrease of control cells viability after 72 hours of treatment, the irradiation 

of pre-treated cells (2 μM VE-821) led to almost 75 % loss of viability in comparison 

to inhibitor treated cells, suggesting an additive effect of VE-821 and IR combination. 

Additionally, we also observed that VE-821 in 2 μM and 10 μM concentrations modulated 

the proliferation of irradiated MOLT-4 cells when the inhibitor was present in cell culture 

media only transiently, for the first 24 hours of the treatment, and then it was washed out 

(figure 11D). In contrast to continuous treatment, 2 μM VE-821 did not significantly affect 

the proliferation of sham-irradiated cells when washed out after 24 hours; however, it still 

enhanced the antiproliferative effects of IR. Taken together, these data showed that VE-

821 strongly affected proliferation of p53-wt MOLT-4 cells, and in combination with IR, 

the proliferation was influenced even when the inhibitor was present only transiently.  

5.2.4. Both KU55933 and VE-821 increased the ionizing 

radiation-induced cell death in MOLT-4 cells. 

As mentioned above, KU55933 did not induce any significant changes in viability 

of both sham-irradiated cells and irradiated cells after 24 hours (figure 13); however, 

VE-821 affected the viability of the cells significantly. Strikingly, the combination of both 

inhibitors diminished this detrimental effect of VE-821. This is consistent with the results 

of proliferation experiments, in which we observed similar trend. When applying three 

different inhibitor combinations, we observed that KU55933 suppressed the VE-821 

induced decrease in MOLT-4 cells proliferation in both irradiated and sham-irradiated 
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groups. However, in contrast with WST-1 assay, which does not distinguish between the 

changes of viable cells numbers caused by cell cycle effects, changes in metabolic activity, 

or cell death inducing effects of a tested compound, these results indicated that in our short-

term incubation experiments, KU55933 prevented VE-821 induced cell death. Similar 

observations were reported in a study investigating the effect of caffeine, a low potent and 

unspecific ATM inhibitor, on mitoxantrone induced cell death in MOLT-4 cells. 

Incubation with caffeine temporarily protected the cells by delaying the onset of cell death, 

most likely by the inhibition of p53-dependent apoptosis (359).  

Three days after irradiation, in the VE-821 treated groups, the percentage of cells 

with compromised viability further decreased despite the absence of the inhibitor 

in cultivation media (figure 13). On the contrary, we did not notice the “protective” effect 

of KU55933 that we observed 24 hours after irradiation when the inhibitor was not present. 

Such finding further confirms that ATM inhibition only delayed the onset of cell death. 

Importantly, both inhibitors and their combinations increased sensitivity of MOLT-4 cells 

to IR. The most detrimental effect was observed when cells were treated by 10 μM VE-821 

and by the combination of both inhibitors (10 μM +10 μM). Application of these conditions 

led to more than 90% decrease in viability of MOLT-4 cells 72 hours after irradiation. In 

conclusion, both inhibitors led to increased cell death when combined with IR in an 

appropriate experimental design (i.e. appropriate dose and incubation time) and thus 

radiosensitized MOLT-4 cells. 

5.2.5. VE-821, but not KU55933 disrupted ionizing radiation-

induced G2/M arrest in MOLT-4 cells. 

As one of the proposed mechanism of radiosensitization using ATR inhibitors is the 

disruption of the G2/M checkpoint in G1 checkpoint-deficient cells (11), we investigated 

modulation of the cell cycle by ATR and ATM inhibition (figure 13). None of the 

conditions we applied affected the cell cycle in sham-irradiated cells except for 10 μM VE-

821 and its combination with KU55933, which repeatedly caused a significant increase 

in number of cells in G1. In concordance with our previous results (367), irradiation by the 

dose of 3 Gy led to a significant G2/M arrest in viable MOLT-4 cells 24 hours after 

irradiation. The pre-incubation with VE-821 and with the inhibitor combinations led to a 

significant disruption of G2/M checkpoint in the viable fraction of cells. On the other hand, 

the inhibition of ATM by KU55933 further increased the proportion of cells in G2/M 
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together with corresponding significant decrease in the number of cells in G1. The 

abrogation of the G2/M checkpoint by VE-821 10 μM was also achieved when a lower 

dose of irradiation was applied (1.5 Gy; data not shown). As it has been reported 

previously, caffeine disrupted mitoxantrone induced G2/M arrest in MOLT-4 cells(359) . 

After examining the effects of specific ATM and ATR inhibition, we suggest that the G2/M 

block disruption was rather caused by “non-specific” ATR-inhibiting effects of caffeine, 

which was originally proposed as an ATM inhibitor; however, it has been shown that it 

also inhibits ATR, although with a lower potency (IC50(ATM): 0.2 mM; IC50(ATR): 1.1 

mM). Altogether, these results confirmed that ATR is the main kinase controlling the 

G2/M- cell cycle checkpoints after irradiation in MOLT-4 cells.   
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5.3. Phosphoproteomic analysis of VE-821 treated 

MOLT-4 cells 

5.3.1. Selection of the experimental design 

for phosphoproteomic and metabolomic inhibitor studies 

As described in the previous chapter, both VE-821 and KU55933 increased MOLT-

4 cells sensitivity to IR. However, there were several reasons why we selected 

to preferentially use ATR inhibition by10 µM VE-821 for further experiments: 

1) ATM/p53 pathway is the key mechanism in cellular response to IR-induced 

DSBs, and therefore, its inhibition was assumed to cause radiosensitization 

in wt-p53 expressing cell line. On the contrary, ATR is mostly known 

to respond to “milder” types of stress and it is not dominant in response to IR. 

Even though it has been already described to sensitize cells towards IR, the 

mechanism is not deeply understood, and it is mostly described as S- and G2/M 

checkpoints dysregulation in ATM/p53 deficient or higher levels of replication 

stress-suffering cells. In our opinion this explanation was too simplistic and 

needed further investigation.  

2) As described in the Introduction section (chapter 1.3.1), ATR inhibitors offer a 

great promise in oncology. Two of the most recent potent and selective ATR 

inhibitors are currently being tested in phase I clinical trials. Better 

understanding of the mechanism of action might be beneficial for future use 

of the drugs in clinics. For instance, if a novel pathway affected by the inhibitor 

treatment is identified, such knowledge can help to predict potential synthetic 

lethality in tumours with specific genetic background and therefore, increase the 

range of tumours which might be treated using the inhibitors of ATR.  

3) Moreover, we detected two distinct phenotypes caused by VE-821: the first was 

observed after 2 µM VE-821 treatment and was mostly characterized 

by enhancing of the IR-induced cell viability and growth inhibition – disrupting 

the IR-triggered G2/M checkpoint and increasing the IR-induced cell death. In 

experiments with shorter incubation times (i.e. 24 hours) and inhibitor-only 

treatment, this concentration was not proven to significantly affect viability 

of MOLT-4 cells. Moreover, 2 µM VE-821 itself did not cause any significant 
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perturbation of the cell cycle. The second phenotype was induced by 10 µM 

VE-821 and characterized by marked proliferation inhibition and decreased 

viability of MOLT-4 cells in both single inhibitor treatment and its combination 

with IR, which led to more than a 90 % decrease of viability in 3 days. This 

inhibitor concentration also affected the cell cycle of treated cells inducing a 

slight, but significant, accumulation of cells in the G1 phase. Hence, using the 

combination of two high-throughput -omic techniques we aimed to provide a 

deep insight into underlying molecular mechanisms of the potent 

antiproliferative activity of 10 µM VE-821 in MOLT-4 cells.  

5.3.2. Phosphoproteomic analysis of VE-821-modulated 

cellular response to ionizing radiation identified and 

quantified thousands of phosphorylation sites.  

To describe cellular mechanisms underlying the VE-821-mediated 

radiosensitization of MOLT-4 cells, we employed high-resolution MS to identify and 

quantify changes in proteome, phosphoproteome, and metabolome of irradiated VE-821-

treated cells (figure 14). The quantification on both proteomic levels was based on SILAC 

(270)). To specifically enrich for peptides modified by phosphorylation, desalted tryptic 

peptide samples were fractionated using HILIC followed by phosphopeptide enrichment 

using titanium dioxide chromatography (222), RPLC-MS/MS detection, and peptide 

identification and quantification using MaxQuant v.1.5.2.8 (316). Using this approach, we 

identified 9285 phosphorylation sites from 3090 protein groups at a site FDR level of 0.01, 

among them 4504 were quantified in all three biological replicates (nearly 63 % of the data 

set). In GRT, we identified 623 regulated phosphorylation sites (455 phosphoproteins); 

among them the majority were upregulated (431). As discussed previously (133), the higher 

number of phosphorylation sites upregulated than downregulated in response to a kinase 

inhibitor treatment was probably caused by the length of the treatment (one hour), which 

was chosen to rather identify signalling pathways rewired by ATR inhibition in irradiated 

cells than phosphorylations that are directly dependent on ATR kinase activity in response 

to IR.  

In the analysis of the whole proteome samples prepared using the same treatment 

and time interval we detected no significant changes on the proteomic level (figure 15). 

Taken together, we showed that VE-821 co-treatment significantly affected the 
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phosphorylation response in cells treated with IR, and that the observed changes were not 

induced by the changes on the proteome level – since the proteome remained unperturbed. 

5.3.3.   Gene ontology enrichment analysis of regulated 

phosphoproteins provided a general description of VE-821 

modulated phosphoproteome. 

To functionally classify phosphoproteins identified and quantified in our study and 

statistically evaluate enriched categories, we performed a functional annotation and over-

representation analysis using ConsensusPathDB over-representation analysis web tool 

(319,320). By this tool, proteins were annotated using GO terms level 4 and the over-

representation was evaluated using hypergeometric testing.  

At first, we analysed all phosphoproteins identified in our study against a default 

background reference set to characterize the phosphoproteome detectable using our 

experimental design. While the over-representation of nuclear and cytosolic proteins and 

under-representation of membrane proteins was probably caused by sample preparation 

and better detectability of soluble proteins, over-representation of GO terms related to cell 

cycle (especially mitosis), DNA repair and replication, and gene expression confirmed the 

essential role of phosphorylation in regulation of these processes (data not shown).  

Then, a list of 455 phosphoproteins containing VE-821-regulated sites was tested 

against a custom background reference set derived from our data comprising all 

phosphoproteins with at least one phosphorylation site quantified in all three biological 

replicates. In this analysis, we identified over-represented biological processes (BP), 

cellular compartments (CC), and molecular functions (MF). As shown in figure 19A, 

regulated phosphoproteins were over-represented in nucleus, specifically in chromosomes, 

mitotic spindle, and replication fork and involved in chromatin organization, DNA repair 

and metabolism, cell cycle, and regulation of transcription factors.  

5.3.4. Signalling pathways annotation and over-representation 

analysis revealed several pathways possibly dysregulated 

by VE-821 treatment. 

Using the ConsensusPathDB tool, we also mapped regulated phosphoproteins 

to signalling pathways from three different pathways databases: KEGG (321,322), 

REACTOME (323), and PID (324) and pathway coverage was calculated for each pathway 
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(figure 19B). The list of pathways containing proteins with VE-821-regulated 

phosphorylation sites, and thus pathways potentially modulated by VE-821 treatment 

contained pathways involved in DNA repair, replication, and telomeres synthesis (e.g. 

“DNA replication”, “Fanconi anaemia pathway”, “BARD1 signalling events”, “ATM/ATR 

pathway”, “DNA double strand breaks response”, “DNA strand elongation”, and 

“Extension of telomeres”), apoptosis (e.g. “Caspase Cascade in Apoptosis or “Apoptotic 

execution phase”), regulation of mitosis (“Aurora A/B and signalling”, “PLK1 signalling 

events”, “Mitotic metaphase and anaphase”, and “Kinesins”), transcription factors 

regulation (“ATF-2 transcription factor network”, “Activation of AP-1 family 

of transcription factors”, and “Regulation of cytoplasmic and nuclear SMAD2/3 

signalling”), chromatin regulation via histones modification (“Signalling events 

mediated by HDAC class I”), but also pathways primarily related to cellular metabolism 

(“AMPK signalling pathway” and “mTOR signalling).  

 

Figure 19: Selected results from Gene Ontology level 4 terms and signalling pathways 

overrepresentation analysis. Functional annotation of proteins with phosphorylation sites 

significantly affected by VE-821 treatment and over-representation analysis were done 

using ConsensusPathDB overrepresentation-analysis online tool. (A) Overrepresented GO 

terms (FDR < 0.05, all proteins quantified in our study were used as a statistical 

background). (B) Regulated phosphoproteins were mapped to signalling pathways from 3 

different databases (KEGG, REACTOME, and PID) and pathway-coverage was calculated 

for overrepresented pathways (FDR < 0.05, all proteins comprised in detected pathways 

were used as a statistical background). 

5.3.5. Network analysis revealed the complexity of cellular 

response and multiple functionally related clusters affected 

by VE-821. 

Using the SubExtractor algorithm (325), we extracted multiple subnetworks 

of interconnected nodes with the most prominent changes in phosphorylation after VE-821 
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treatment. The largest subnetwork is depicted in figure 20. For each group 

of interconnected nodes, we further performed functional annotation enrichment analysis 

to better understand its functions. To simplify the interpretation, the clusters were divided 

into two groups.  

The first one can be concisely described as a multi-level stress induced regulation 

of gene expression: regulation of RNA biogenesis, its modification and stability, and 

translation. Namely, SubExtractor extracted a cluster that contains chromatin modifying 

enzymes (mostly histone acetylation and methylation) and thus contributes to regulation 

of gene expression. Furthermore, transcription initiation and elongation complexes were 

also extracted. The largest module centred around Protein mago nashi homolog 

(MAGOH) comprises many proteins from the mRNA splicing machinery. And finally, 

VE-821 treatment also affected phosphorylation of ribosomal proteins suggesting that it 

might also alter protein synthesis. The ribosomal cluster is further tightly linked to a cluster 

that mostly contains members of the mTOR pathway indicating that this pathway might be 

dysregulated by VE-821 treatment, and consequently, result in affected cell growth and 

proliferation. 

The second group is mostly related to already known functions of ATR; it contains 

clusters corresponding to DNA damage response including both DNA damage repair 

proteins and proteins involved in stress-induced cell cycle regulation. As shown in figure 

20 we detected a densely interconnected cluster composed of members 

of minichromosome maintenance complex (MCMs), origin recognition complex subunits 

(ORCs), and DNA polymerases; this cluster also includes several known ATR-interacting 

proteins and corresponds to the regulation of origin firing and S-phase progression by ATR 

in response to stress. Further hubs in the extracted network comprised four cell cycle 

regulating kinases – cyclin dependent kinase 1 (CDK1), cyclin dependent kinase 1 

(CDK2), Serine/threonine kinase PLK1 (PLK1), and Aurora kinase A (AURKA) - and 

their regulated substrates extracted as their interactors. These kinases refer to the disruption 

of IR induced DNA damage cell cycle checkpoints and dysregulation of mitosis and cell 

division by VE-821 treatment as detected by the DNA content analysis. Unexpectedly, the 

algorithm also extracted a small cluster containing enzymes from the de novo pyrimidine 

synthesis metabolic pathway connected to the DNA repair cluster suggesting that 

metabolism of nucleotides might be also affected by ATR inhibition. 
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Figure 20: Protein network extracted using SubExtractor algorithm and visualized 

in Cytoscape. Protein-protein interactions with STRING score above 900 were used as an 

input for the algorithm and regulated subnetworks were extracted (FDR < 0.005). Proteins 

in rectangles were identified and quantified in our study; proteins in ellipses were added 

to the network by the algorithm. Proteins with downregulated phosphorylation are 

depicted in blue; proteins with upregulated phosphorylations are depicted in pink. The 

colour intensity corresponds to the degree of regulation (combined z-score). 

 

The complexity of the extracted network containing multiple cellular mechanism 

pointed out the multi-layered nature of cellular response to stress affected by VE-821 

treatment. Moreover, we identified multiple protein kinases in the centres of extracted 

modules indicating a possible dysregulation of these kinases by the treatment. This was not 

unexpected; inhibition of one protein kinase in a cell naturally leads to dysregulation of its 

dependent downstream cellular signalling mediated by other protein kinases. To investigate 
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kinome dysregulation induced by VE-821 treatment, we performed sequence motif 

analysis and kinase activity analysis together with statistical evaluation of the possible 

changes, and the results of these analyses are presented below.  

5.3.6.  Sequence motifs analysis identified global trends in VE-

821 induced phosphorylation changes. 

To characterize the detected phosphorylation sites, we first calculated the 

distribution of phosphorylated serines (pS), threonines (pT), and tyrosines (pY) identified 

and quantified in all three biological replicates. As depicted in figure 21A, the distribution 

was very similar to values reported previously, in studies employing comparable phospho-

enrichment strategies and sample analysis (i.e. 87.6 % of pS, 11.8 % of pT, 0.6 % of pY). 

Interestingly, when we calculated the same distribution ratio for sites that were significantly 

regulated after VE-821 treatment, we found that pT were over-represented in the regulated 

data set (19.3 % of all regulated sites, enrichment factor of 1.65, FDR of 9.97x10-10 

calculated using Fisher exact test). We observed the same trend in our previous data (133), 

and the over-representation of pT has been also reported in another study investigating 

genistein induced phosphorylation changes in breast cancer cell line, which mostly affected 

cell cycle regulation and DDR (294). Since in the sequence logos of CDK1 and CDK2 

generated using their known substrates (PhosphoSitePlus database) it is apparent that pT is 

overrepresented in comparison to the regular distribution of pT usually detected 

in phosphoproteomes (figure 22A), we assume that in our case, the over-representation 

of pTs might be caused by a high number of regulated sites phosphorylated by these 

kinases - they were predicted to phosphorylate between 27 – 37 % of the regulated dataset, 

and about 40 % of these sites are phosphorylated threonines (figure 22B). 

Next, we analysed and visualized sequence motifs using iceLogo tool (327) and 

motif-x algorithm (328). When analysing all class I sites identified in our study 

with SwissProt average amino acid frequencies as a background reference set, we found a 

significant bias of our data towards proline-directed motifs (figure 21B). Furthermore, 

basic and acidic amino acids (R, K, and E) were slightly overrepresented, and hydrophobic 

amino acids were slightly underrepresented (L). The slight bias towards the hydrophilic 

residues and underrepresentation of hydrophobic ones might be caused 

by chromatographic methods used for peptide fractionation, phosphopeptide enrichment, 

and LC-MS/MS analysis, together with the aforementioned high proportion of CDK1 and 
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CDK2 substrates in our data, which both contain basic amino acids in their sequence motifs 

(figure 22). In the upregulated dataset, proline-directed motifs followed by basic amino 

acids were significantly over-represented, which corresponds well to the known sequence 

logo of CDK 1 and 2 (figure 22A). On the other hand, from the sequences surrounding 

downregulated sites, SQ motif was extracted using motif-x providing a confirmation of the 

downregulation of DNA repair kinases-mediated phosphorylation as this motif is typical 

for PI3K-related kinases ATM, ATR, and DNA-PK (figure 1).  

Taken together, sequence motifs analyses identified global trends in VE-821 

induced phosphoproteome changes with dominant representation of upregulated CDKs and 

downregulated PIKKs.  
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Figure 21: Sequence motif and kinase activity analyses: (A) Pie charts depict proportions 

of STY phosphorylations in the whole class I (localization probability > 0.75) dataset and 

in the regulated fraction. (B) Sequence motif analysis was performed using IceLogo and 

motif-x. Amino acid sequences of differentially up- or down- regulated phosphorylation 

sites were analysed against a statistical background comprising all class I sites quantified 

in our study. Depicted motifs were found enriched at indicated significance levels. In 

IceLogo analysis, amino acids that were more frequently observed in the proximity of a 

regulated phosphorylation site are indicated over the middle line, whereas the amino acids 

with lower frequency are indicated below the line; phosphorylated amino acid is located 

at position 0 (C) Kinase activity analysis. Phosphorylation sites were annotated with their 

known kinases using PhosphoSitePlus database if available. iGPS v1.0 and Networkin 3 

were used to predict kinases for all class I sites, and the predictions were filtered as 
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indicated. Venn diagram shows the overlap between phosphorylation sites annotated 

by each method and applying desired filtering criteria. Boxplots depict SILAC H/L ratios 

distribution of phosphorylation sites assigned to each kinase/group. The distribution, 

median, and/or outlier-shifts to positive values indicate a possible upregulation of kinase 

activity; trends toward negative ratio values show a possible downregulation of kinase 

activity. Statistical analysis was performed using 1D enrichment analysis in Perseus (v 

1.5.2.6), and the test FDR value for each kinase/group was used to rank the boxplots 

in ascending order. The higher color intensity corresponds to the lower 1D enrichment 

FDR value and vice versa. 

 

 

Figure 22: Characterization of sequences phosphorylated by CDK1 and CDK2. (A) 

Sequence logos for CDK1 and CDK2 were downloaded from the PhosphoSitePlus 

database. (B) Sequence logos were generated in IceLogo for sequences that were either 

known CDK1/2 substrates or predicted by iGPS or Networkin 3, and the percentage 

of these sequences in the regulated dataset was calculated.  
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5.3.7.  Kinase activity analysis confirmed the downregulation 

of PIKKs substrates after VE-821 treatment. 

5.3.7.1. VE-821 specifically inhibited ATR kinase and did not affect the IR-triggered 

ATM signalling. 

In addition to SQ/TQ motifs enriched among downregulated sites in both sequence 

motif analyses, 1D enrichment analysis of known and predicted kinase motifs repeatedly 

indicated that the SILAC H/L ratio distribution of the ATM/ATR group substrates shows 

a significant declining trend (figure 21C). From these ratio shifts, the activity 

of ATM/ATR group might be inferred as downregulated. Even though both kinases share 

the same phosphorylation motif, both prediction algorithms clearly favour ATM over ATR. 

This bias is probably introduced by a better annotation of ATM substrates and protein-

protein interactions in the databases.  

Nevertheless, using an antibody against Chk2 Thr 68 phosphorylation, which is a 

widely-used marker of ATM kinase activation in response to ATM activating stress, we 

showed that 10 µM VE-821 did not inhibit ATM signalling in our experiments (figure 12). 

Furthermore, we found additional pieces of evidence of unaffected ATM signalling in our 

phosphoproteomic data: ATM Ser 2996 autophosphorylation site, which has been 

previously shown to be rapidly induced by IR (43), was not affected by the treatment. 

Similarly, two IR-induced  autophosphorylation sites of a downstream ATM target Chk2, 

Ser 260 and Ser 379 (344,345), were also not significantly changed. 

On the contrary, known ATR targets located within the Chk1 regulatory domain 

were observed to be downregulated upon VE-821 treatment: Ser 345 phosphorylation was 

detected by western blotting (figure 12), and Ser 317 phosphorylation was quantified in our 

phosphoproteomic experiment. An important marker of Chk1 activity, the 

autophosphorylation site Ser 296, was not detected in our study. Chk1 itself was evaluated 

as significantly downregulated in the 1D enrichment analysis of the known substrates, 

providing further evidence of downregulated ATR/Ckh1 pathway. Considering the high 

selectivity of VE-821 towards ATR kinase (IC50 (ATR): 26 nM, Ki (ATR): 13 nM, Ki 

(DNA-PK): 2.2 µM, Ki (ATM): 16 µM), we can assume that significant changes within 

SQ/TQ phosphorylations motifs assigned to ATM_ATR group can be explained 

by specifically inhibited ATR kinase activity.  
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DNA-PK, which is also known to share the glutamine directed phosphorylation 

motif (figure 1), was evaluated to be significantly downregulated using the iGPS 

predictions. However, we did not find any known site of DNA-PK that would be 

downregulated in our study (the only known DNA-PK phosphorylation site was Ser 430 

on Vimentin, which was unchanged). Moreover, 10 µM VE-821 was proven to leave DNA-

PK signalling unaffected in a cell-based assay (11), and thence, we assume that the DNA-

PK inhibition is rather unlikely.  

In all three experimental replicates, we identified and quantified 21 downregulated 

SQ/TQ class I phosphorylation sites; among them eleven were known substrates 

of ATM/ATR kinases or predicted by iGPS or Networkin 3. Most of the downregulated 

sites were located on proteins with confirmed roles in DDR; however, potential functions 

of some of them have not been elucidated yet.  

5.3.7.2. VE-821 treatment altered phosphorylation of MRN and BRCA1-

BRCT/Abraxas complexes and several other proteins with known role in DNA 

damage response. 

On the list of regulated ATM/ATR targets, we found two VE-821 responsive 

phosphorylation sites on MRN complex, the major sensor of DNA DSBs and ATM kinase 

activator, which has been also shown to be required for ATR activation after IR (368). 

Double-strand break repair protein MRE11A (MRE11) Ser 678 is a known ATM 

substrate essential for homology directed repair (369);  Ser 397 phosphorylation of Nibrin 

(NBS1) has been previously detected, but the phosphorylation of this site does not have 

any known function. Furthermore, phosphorylation of BRCA1-BRCT/Abraxas complex 

was also shown to be altered by ATR inhibition; we detected two downregulated 

phosphorylation sites on Breast cancer type 1 susceptibility protein (BRCA1) - Ser 1239 

and Ser 1524 - the latter one has been shown to be important for cellular response to DSBs 

(370) and phosphorylated by either ATM or ATR depending on the source of the stress 

(371). In addition to BRCA1,  BRCA1-A complex subunit Abraxas (FAM17A) Thr 365 

was also found to be dephosphorylated after ATR inhibition – this phosphorylation 

of FAM17A does not have any known function; however, phosphorylation has been shown 

to be essential for Abraxas regulation very recently (372).  

Another instances of VE-821-regulated phosphorylations, and thus potential ATR 

targets, are Ser 319 of an important member of Fanconi Anaemia pathway Fanconi 

anaemia group D2 protein (FANCD2) and Ser 368 of E3 ubiquitin-protein ligase 
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RAD18 (RAD18), an important E3 ubiquitin ligase responsible for monoubiquitination 

of Proliferating cell nuclear antigen (PCNA) in response to stress (373). Moreover, we 

also found a markedly downregulated SQ site in RAD51-associated protein 1 

(RAD51AP1) (Ser 120), which has been detected and validated in another very recent 

phosphoproteomic study using ATR inhibitors in combination with replication stress 

induced by hydroxyurea (135). 

5.3.8.  Dysregulation of cyclin-dependent kinases and aurora 

kinases was responsible for the disruption of G2/M 

checkpoint and faster progression through mitosis. 

In the DNA content analysis, we showed that VE-821 disrupted IR-induced G2/M 

arrest in MOLT-4 cells. Cells treated with ATR inhibitor were not able to activate the 

G2/M checkpoint, which in turn led to faster progression into mitosis with unrepaired IR-

induced DNA damage. Such progression has been shown to cause mitotic catastrophe and 

apoptotic cell death in haematological malignant cell lines (134,313,374). Using 

phosphoproteomics, we aimed to elucidate, which kinases were dysregulated by ATR 

inhibition and thus may contribute to the G2/M checkpoint disruption. As depicted 

in figure 21C, the combination of kinase annotation and 1D enrichment analysis revealed 

a possible upregulation of G2/M checkpoint controlling CDK1 kinase, mitotic kinases 

Aurora A and B, and kinases from the NEK family, particularly Serine/threonine protein 

kinase NEK2 (NEK2) kinase.  

5.3.8.1. VE-821 caused CDK1 upregulation and increased phosphorylation of many 

known CDK1 targets involved in G2/M transition and mitosis in irradiated 

MOLT-4 cells. 

Sequence motif analysis showed overrepresentation of phosphorylated amino acids 

followed by proline and basic amino acids – a well-known motif of cyclin dependent 

kinases. And indeed, the kinase activity analysis confirmed a significant upregulation 

of cyclin dependent kinases, predominantly CDK1 (or CDC2), with a median ratio only 

slightly deviated to positive values, but many outliers strongly upregulated after VE-821 

pre-treatment (figure 21C). Many of these outliers were classified as so-called “regulatory” 

sites (i.e. sites with previously discovered and experimentally validated effects on the 

modified protein) with a known function in mitosis, or their function has not been 
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elucidated yet, but the corresponding phosphoproteins have been shown to have important 

roles in the onset of mitosis and mitotic progression. Examples of the most interesting 

CDK1-phosphorylated sites and their functions are given.  

Seven phosphorylation sites were detected on Stathmin (STMN1); three of them 

were upregulated in our study (Ser 16, Ser 25, and Ser 63). There are multiple kinases 

known or predicted to phosphorylate the upregulated sites; CDK1 dysregulation might be 

responsible for elevated Ser 25 phosphorylation. These STMN1 sites have been shown 

to be phosphorylated in a cell cycle specific manner and essential for G2/M transition and 

proper spindle formation (375). Nevertheless, increased Ser 16 and Ser 63 phosphorylation 

have been also observed after apoptosis induction (376). Protein regulator of cytokinesis 

1 (PRC1) is a key regulator of cytokinesis shown to be phosphorylated by CDK1 in early 

mitosis. Increased phosphorylation of a “regulatory” Thr 481 site was detected, previously 

described to regulate PRC1 interaction with another mitotic kinase, Polo-like kinase 1 

(PLK1) (377). Thr 926 phosphorylation of Kinesin-like protein KIF11 (KIF11)  is a 

mitosis-specific phosphorylation conducted by CDK1 which regulates KIF11 interaction 

with mitotic spindle and thus regulates mitosis (378). Another example of an elevated 

mitosis-specific phosphorylation detected in our study is Ser 1213 phosphorylation 

of DNA topoisomerase 2-alpha (TOP2A). Ser 1213 has been shown to be phosphorylated 

by proline-directed kinases (CDK1 or ERKs) inducing the localization of  TOP2A 

to mitotic chromosomes (379). Sororin (CDCA5) is CDK1-phosphorylated in mitosis (Ser 

75 and Ser 79), and this modification causes its release from chromatin while affecting 

sister chromatid cohesion (380). 

Protein phosphorylation of N-terminal domain of Nucleolin (NCL)  has been 

shown to be essential for normal proliferation (381); Thr 121 detected in our study has been 

already detected as a substrate of CDK1 in high-throughput phosphoproteomic screen 

for CDK1 substrates (382). Nuclear ubiquitous casein and cyclin-dependent kinase 

substrate 1 (NUCKS1) - Ser 181 phosphorylation – is another example of a CDK1 

substrate identified in a high-throughput experiment (382). Furthermore, Bensimon et al. 

showed that phosphorylation of NUCKS1 Ser 181 after neocarzinostatin (NCS) treatment 

was ATM-dependent (42), and it has been shown recently that NUCKS1 plays a role 

in homology directed repair of damaged DNA (383). Lamina-associated polypeptide 2, 

isoform alpha (TMPO) has been shown to be phosphorylated in a mitosis-specific manner 
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and might be important for post-mitotic nuclear assembly (384). However, Ser 424 

upregulated in our study does not have any known function.  

Components of nuclear lamina are known to be hyper-phosphorylated to induce 

reversible disintegration of nuclear envelope. We detected four upregulated 

phosphorylation sites of nuclear lamins: Lamin-B1 (LMNB1; Ser 23, Thr 20, and Thr 5) 

and Lamin-B2 (LMNB2; Ser 37) induced by VE-821 pre-treatment of irradiated cells. 

Additionally, unscheduled CDK1 activity in G1 phase has been shown to trigger 

apoptosis in X-irradiated MOLT-4 cells (385). In our data, VE-821 significantly affected 

viability of MOLT-4 cells itself and in combination with IR and increased the number 

of early- and late- apoptotic cells. It is possible that in addition to G2/M checkpoint 

disruption and induction of post-mitotic cell death, the dysregulation of CDK1 by ATR 

inhibition contributes to the increased rate of apoptosis in MOLT-4 cells. 

5.3.8.2. VE-821 upregulated Aurora A and B kinases further contributing 

to dysregulation of mitosis. 

Kinases from the Aurora kinases family - Aurora kinases A and B - are master 

regulators of mitosis progression and onset of cytokinesis, whose activities require tight 

spatial and temporal regulation, and their dysregulation might cause errors in mitosis, faster 

progression through abscission checkpoint, and affect postmitotic genome surveillance. In 

our analysis, we found that the activities of these two kinases might be upregulated by VE-

821 treatment (figure 21C). As in the case of CDKs, examples of the most interesting 

phosphorylation sites are given. 

Targeting protein for Xklp2 (TPX2) is a spindle assembly factor, whose activity 

is tightly interconnected with Aurora kinase A activity. TPX2 contributes to Aurora A 

activation (386), and the other hand, Aurora A has been shown to phosphorylate TPX2 

on Ser 121 and Ser 125 to regulate mitotic spindle length and control microtubule flux 

(387). In addition to these two known “regulatory” sites we detected three more 

upregulated phosphorylation sites on this protein that were predicted to be possible 

substrates of Aurora A (Ser 486, Thr 369, and Ser 738).  

Kinesin-like protein KIF2C (KIF2C) Ser 115 has been shown to be 

phosphorylated by Aurora B previously, and this phosphorylation regulates KIF2C 

interaction with centromeres and kinetochores and its microtubule depolymerisation 

activity. Thus, it regulates the turnover of microtubules at the kinetochore and chromosome 

segregation during mitosis (388). Another known Aurora B substrate found upregulated 
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in our study was Chromobox protein homolog 5 (CBX5) that has been previously shown 

to be hyper-phosphorylated during mitosis (389).  

Notably, we found hyper-phosphorylation of Antigen KI-67 (MKI67) (from 22 

sites detected, 12 upregulated in GRT), with most of the sites predicted to be substrates 

of Aurora A, CDK1, or NEK kinases by Networkin 3. MKI67 is a protein essential 

for normal cellular proliferation (390) and has been shown to interact with known mitotic 

proteins (391).  

Taken together, our data indicate that ATR inhibition induced dysregulation of the 

main mitotic kinases. The results are in concordance with previous data, which were 

obtained using similar treatment in a different leukemic cell line HL-60 (133), in which 

dysregulation of CDK1, PLK1, and NEK2 was observed. Data mining in published studies 

confirmed that many of the substrates assigned to each one of these mitotic kinases have 

already been described as the essential players in cell cycle and mitosis control. Moreover, 

we found multiple regulated phosphorylation sites on these proteins, which might be worth 

functional validation in further studies. 

5.3.9. Downregulated mTOR and its downstream p70s6k 

kinase indicate possible impact of VE-821 on cellular 

growth and metabolism. 

5.3.9.1. The key regulator of cellular metabolism, Serine/threonine protein kinase 

mTOR, was inhibited by 10 µM VE-821 treatment, possibly contributing to the 

growth inhibition. 

To our surprise, in the 1D enrichment analysis of kinases assigned to their 

substrates based on known kinase-substrate relationships, we found a significant 

downregulation of the Serine/threonine protein kinase mTOR (mTOR). The protein 

kinase mTOR is the principle regulator of cellular metabolism promoting anabolic 

processes and inhibiting catabolic processes such as autophagy. It integrates signals 

from different upstream pathways triggered by a wide variety of signals including 

nutrients, hormones, growth factors, and also cellular stresses to regulate cell growth, 

metabolism, cell survival, protein synthesis, and transcription (reviewed in (31)). In total, 

we found seven known direct mTOR targets downregulated in our study and several other 

proteins included in “mTOR signalling pathway” from KEGG pathway database (depicted 

in figure 23A and summarized in figure 23B).  
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Four of the mTOR-phosphorylated proteins are involved in transcription and 

translation regulation and thus contribute to regulation of cell growth and proliferation. 

Eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) Ser 65 is a 

known “regulatory” site targeted by mTOR or MAPK-driven pathways. Together 

with phosphorylation of Thr 70, Ser 65 phosphorylation affects translation initiation – 

when hypo-phosphorylated, EIF4EBP1 strongly binds to EIF4E, an essential member 

of the translation initiation EIF4 complex (392). Furthermore, we found four 

downregulated phosphorylation sites on Protein PAT1 homolog 1 (PATL1; Ser 179 and 

Ser 184) and La-related protein 1 (LARP1; Ser 766 and Ser 774); both proteins have been 

described as downstream mTOR targets involved in regulating mRNA stability and 

degradation (393,394). Both of them were also identified as rapamycin sensitive 

phosphorylation sites in a high throughput phosphoproteomic screen for potential mTOR 

substrates (395). Moreover, we also detected downregulation of an mTOR mediated 

phosphorylation of Repressor of RNA polymerase III transcription MAF1 homolog 

(MAF1) a previously described regulator of transcription; Ser 75 phosphorylation has been 

described as a “regulatory” protein modification decreasing RNA polymerase III (Pol III) 

transcription repressing ability of MAF1 (396).  

In addition to proteins involved in translation regulation, we also identified 

significantly changed phosphorylation of two phosphoproteins linked to autophagy, an 

evolutionarily conserved process that enables degradation and recycling of proteins or 

whole organelles to maintain cellular homeostasis under both normal and stress conditions 

(reviewed in (397)). Death-associated protein 1 (DAP1) is a suppressor of autophagy 

in growing cells that is functionally silenced through mTOR dependent phosphorylations 

on Ser 3 (downregulated in our study) and Ser 51. Inactivation of mTOR has been shown 

to rapidly reduce phosphorylation of these sites and activation of the repressor function 

of DAP1 (398). Serine/threonine-protein kinase ULK1 (ULK1) is a protein kinase that 

plays a key role inducing autophagy in response to starvation. Under normal growth 

condition, ULK1 is phosphorylated and negatively regulated by mTOR. Serine 450, 

detected in our study and predicted to be a substrate of mTOR by the iGPS prediction 

algorithm, has been shown to be dephosphorylated upon starvation (399). Unfortunately, 

we did not detect the Ser 638/758 that have been further validated as functional 

phosphorylation sites inhibiting autophagy induction by ULK1 under normal cell growth 

conditions (399). 
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Figure 23: Significant changes in mTOR signalling pathway. Proteins with significantly 

changed phosphorylation sites were mapped onto KEGG signalling pathways (A). 

Summary of all phosphorylation sites comprised in “mTOR signalling pathway” pathway 

in KEGG database and phosphorylation sites that are known mTOR substrates or known 

to be mTOR-dependent (B). Immunoblotting analysis of mTOR activity (C). Cells were 

collected 2 hour after IR (1.5 Gy). Activity of mTOR was monitored via the detection of its 

target pT389 of p70S6K (S6K, RPS6KB1). The expression state of p70S6K was also 

evaluated. β-actin expression was analysed as a loading control. 
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To further validate and investigate the VE-821-mediated mTOR inhibition 

predicted from our SILAC data, we performed a confirmation experiment using an 

antibody detection of a regulatory Ribosomal protein S6 kinase beta-1 (p70s6K) Thr 389 

phosphorylation site that is commonly used to examine the activity of mTOR in molecular 

biology studies. As shown in figure 23C, while irradiation by a dose of 1.5 Gy did not 

affect p70S6K phosphorylation, mTOR-dependent p70S6K phosphorylation was almost 

diminished after 10 µM VE-821 treatment in both irradiated and sham-irradiated cells. On 

the other hand, 2 µM VE-821 did not have any significant effect on Thr 389 

phosphorylation site. 

The mTOR inhibition by 10 µM VE-821 and not 2 µM treatment might correlate 

with the results of our proliferation and DNA analysis experiments and explain the 

difference we observed between the 2 µM and 10 µM VE-821 treated groups. While both 

concentrations of the inhibitor radiosensitized MOLT-4 cells, 10 µM had much stronger 

inhibitory effect on the number of viable (metabolically active) sham-irradiated cells 

(figures 10 and 11). Likewise, while both concentrations caused the disruption of the IR-

induced G2/M arrest, it was only the higher concentration, which caused a significant 

accumulation in G1 phase in sham-irradiated cells (figure 13). These conclusions are 

supported by the fact that mTOR inhibition triggers G1 metabolic checkpoint and inhibits 

cell growth and proliferation (reviewed in (400). The mTOR inhibition by 10 µM VE-821 

might also explain the high sensitivity of MOLT-4 cell line to VE-821 treatment. It has 

been shown that PTEN-deficient tumours were more likely to be sensitive to mTOR 

inhibition (401,402), and as it was mentioned above, MOLT-4 cells suffer 

from homozygous deletion of PTEN.  

5.3.9.2. P70S6K, an important downstream effector of mTOR, was inhibited 

by 10 µM VE-821 treatment and likely contributed to translation inhibition. 

In addition to the downregulation of mTOR, we also observed a significant 

downregulation of the p70S6K (or RPS6KB1) in all kinase activity analyses (figure 21C). 

P70S6K is an important kinase that acts downstream of mTOR to promote protein 

synthesis and cellular proliferation (403,404).  In addition to the western blotting detection 

of changes in Ser 379 phosphorylation (figure 23C) induced by VE-821 treatment, we also 

detected another downregulated mTOR dependent “regulatory” phosphorylation site (Ser 

427) in our phosphoproteomic data. From the known p70s6k substrates, we detected three 

strongly downregulated phosphorylation sites on 40S ribosomal protein S6 (RPS6) – Ser 
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235, Ser 236, and Ser 240. These phosphorylation sites are phosphorylated by ribosomal 

kinases to initiate translation (405), and thus the inhibition of their phosphorylation causes 

inhibition of protein synthesis. Moreover, iGPS and Networkin 3 predicted two more 

members of the translation machinery to be downregulated substrates of RSKs - 

Eukaryotic translation initiation factor 3 subunit A (EIF3A) Ser 584 and Eukaryotic 

translation initiation factor 4B (EIF4B) Ser 119, providing further evidence 

for translation inhibition caused by inhibitor treatment. 

5.3.9.3. The downregulation of dihydroorotase phosphorylation, a substrate 

of p70S6K, showed a possible link to nucleotide synthesis alteration induced 

by VE-821 treatment.  

Surprisingly, on the known/predicted p70S6K substrates list detected in our study, 

we did not find phosphoproteins involved solely in protein synthesis. Dihydroorotase 

(CAD) is an enzyme required for the first steps of de novo pyrimidine synthesis. 

Phosphorylation on Ser 1859 by p70S6K downstream of mTOR stimulates dihydroorotase 

activity of CAD to induce pyrimidine synthesis (406). Ser 1859 was detected to be 

downregulated in our study, suggesting that VE-821 treatment might also hamper synthesis 

of nucleotides, which are necessary for both cellular proliferation and DNA repair after 

DNA damage induction.  

Based on this striking possibility of nucleotide synthesis dysregulation induced 

by VE-821 treatment, we further examined our data to search for regulated 

phosphorylation sites located on enzymes included in nucleotide synthesis pathways. In all 

three replicates, we identified two additional regulated phosphorylation sites on proteins 

from the de novo purine synthesizing pathway: Phosphoribosylglycinamide 

formyltransferase (GART) Tyr 348 and Phosphoribosylaminoimidazole carboxylase 

(PAICS) Ser 27; the latter one has been identified as a potential substrate of CDKs in two 

high-throughput  phosphoproteomic screenings (407,408); however, none of these 

enzymes has been proven to be regulated by phosphorylation, and thus we can only 

speculate whether these two phosphorylation events might have some effect on de novo 

purine synthesis or not. 
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5.4. Metabolomic analysis of VE-821 treated 

MOLT-4 cells 

In the phosphoproteomic analysis of VE-821 treated irradiated cells, changes in the 

mTOR activity were detected via kinases activity analysis and further confirmed 

by western blotting. As mTOR is the principal regulator of cellular metabolism (reviewed 

in (31)), this finding raised an intriguing question – whether the inhibitor treatment 

modulates cellular metabolism after irradiation. We further examined our data and found 

several metabolic enzymes containing phosphorylation sites affected by VE-821.   

The metabolic responses of different cell lines to various doses of IR have been 

investigated in several studies (409–411). Briefly, these studies showed that IR triggered 

production of free oxygen radicals by radiolysis of water induced changes in glutathione 

levels, disturbed energetic metabolism resulting in a rapid decrease of cellular ATP levels, 

and increased levels of free amino acids, choline, and lipids, which are produced 

by degradation of damaged proteins and membranes. However, to our knowledge, no study 

has been published yet investigating the modulation of this response by small molecular 

kinase inhibitor of any of the PIKKs family. Therefore, we performed a metabolomic 

analysis of irradiated MOLT-4 cells, whose response to IR was modulated by ATR (and 

mTOR) inhibition by 10 µM VE-821.  

Hierarchical clustering of the measured metabolomic data revealed two main 

patterns of behaviour induced by VE-821. In the first case, the metabolites showed 

significant either decreasing or increasing trend between the two time intervals (six and 

twelve hours after IR), and this trend was further potentiated by the addition of the 

inhibitor. In the second case, the metabolites showed no significant trend over time 

in irradiated groups and the inhibitor significantly altered the response of MOLT-4 cells 

to IR (figure 17). The main significant changes in the metabolome of MOLT-4 cell line 

occurred in a group of metabolites involved in cellular antioxidant system, intermediates 

of glucose metabolism and citrate cycle, nucleosides, nucleotides, deoxynucleotides, free 

amino acids, and acylcarnitines.  
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5.4.1. Exposure to VE-821 potentiated changes in cellular 

antioxidant defence, degradation of proteins and 

membranes, and damage to mitochondria induced by IR. 

When cells are exposed to IR, cellular structures can be damaged by ionization 

directly by deposition of energy, but also indirectly by water radiolysis and stimulation 

of nitric oxide synthases and NADPH oxidases, which leads to generation of highly 

reactive oxygen and nitrogen species (ROS/RNS) secondarily attacking nucleic acids and 

other biomolecules such as proteins and lipids contained in membranes (reviewed 

in (412)). Reduced glutathione (GSH) is an important cellular antioxidant, and the 

reduced/oxidized glutathione ratio (GSH/GSSG) is a sensitive biomarker of oxidative 

stress (413). It has been reported previously that radiation induced a significant decrease 

in cellular glutathione levels (409,410). In our study, we observed a decrease in GSH over 

incubation time and this decrease was amplified by inhibitor exposure (figure 24A). 

However, GSSG was also depleted as well as important precursors of GSH biosynthesis 

(glutamate and glycine, figure 25A). Therefore, we assume that the overall decrease 

of GSH/GSSH pair was caused by increased turnover of GSH and missing precursors at the 

same time. Additionally, we observed increased levels of allantoin and decreased levels 

of taurine. Allantoin can be formed in the presence of ROS by non-enzymatic reactions, 

and similarly to GSH, it can be used as a marker of oxidative stress (414). Taurine in an 

intermediate in metabolism of methionine and an anti-oxidant, and its decrease might 

indicate its elevated consumption in VE-821 treated cells as a part of preventive 

mechanisms counter-acting oxidative stress. Taken together, our data provide indirect 

evidence that the cellular response to oxidative stress induced by IR might have been 

affected by the pre-incubation with the inhibitor.  

In addition to the changes in cellular redox system, direct effects on proteins and 

membranes were also observed. Increased levels of several amino acids (phenylalanine, 

proline, tryptophan, tyrosine, valine, isoleucine, and methionine) indicate increased 

turnover of proteins which were damaged by ROS/RNS exposure (figure 25). Elevated 

levels of docosahexaenoic acid and choline provided evidence for the increased membrane 

degradation induced by the inhibitor treatment (figure 24B). IR induces autophagy 

by inhibition of mTOR (415) probably via a pathway involving ATM and AMPK (416). 

VE-821 10 µM, but not 2 µM inhibited mTOR in both sham-irradiated and irradiated 

MOLT-4 cells (figure 23C), and we also detected several significantly changed 



  

137 

 

phosphorylations in autophagy-regulating proteins. Thus, we can hypothesize that the 

treatment might have induced degradation of damaged structures (potentially via 

autophagy), resulting in increased accumulation of degradation products in cells. 

 

Figure 24: VE-821 induced changes in cellular response to oxidative stress (A), 

degradation of membranes (B), and acylcarnitine profile (C). GSH – glutathione, GSSG 

– glutathione disulphide (oxidised glutathione), IR – irradiated cells pre-treated 

with DMSO, VE – irradiated cells pre-treated with 10 µM VE-821  

We further observed prominent changes in the acylcarnitine profile (figure 24C), 

which might indicate mitochondrial disturbances induced by VE-821. Increased levels 
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of long-chain acylcarnitines (tetradecanoyl-, palmitoyl-, and stearoyl- carnitine) and 

decreased levels of free carnitine, isovaleryl-/ methyl- butyrylcarnitine, and malonyl-/ 3-

hydroxy- butyrylcarnitine were observed. Acylcarnitine changes have been already 

observed in a study investigating metabolic effects of low dose (20 mGy) X-irradiation 

(411) and in a targeted lipidomic study investigating changes in livers of irradiated mice 

(417). Moreover, it has been shown that L-carnitine acts as a free-radical scavenger 

protecting irradiated mice from oxidative damage in response to IR (418). Our observation 

of the lipid changes in mitochondrial membrane might be explained by lipid peroxidation 

induced by increased ROS generation in VE-821 treated cells, which was evidenced above 

as decreased GSH and altered allantoin and taurine levels. 

 

Figure 25: Changes in free amino acids levels in irradiated and VE-821 treated cells. IR 

– irradiated cells pre-treated with DMSO, VE – irradiated cells pre-treated with 10 µM 

VE-821 
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5.4.2. VE-821 potentiated the energy metabolism disruption 

induced by IR. 

IR has been shown to disturb energetic metabolism demonstrated by a rapid 

decrease of cellular ATP levels in irradiated cells (409,419) and serum ATP levels 

in irradiated mice (420). In our study, we found decreased levels of nucleoside 

triphosphates (NTPs; ATP, GTP, CTP, and UTP), diphosphates (NDPs; ADP and UDP), 

and their derivatives (UDP-hexoses, GDP-hexoses, and UDP-N-acetylglucosamine) and 

on the contrary, increased levels of ribonucleosides (adenosine, guanosine, and 

pseudouridine) and bases (uracil). The overview of changes in purine and pyrimidine 

metabolism induced by VE-821 is given in figures 26 and 27.  

 

Figure 26: Changes in purine metabolism induced by VE-821 in irradiated cells. IR – 

irradiated cells pre-treated with DMSO, VE – irradiated cells pre-treated with 10 µM VE-

821. MAN - mannose 
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Figure 27: Changes in metabolism of pyrimidine induced by VE-821 in irradiated 

MOLT-4 cells. IR – irradiated cells pre-treated with DMSO, VE – irradiated cells pre-

treated with 10 µM VE-821. HEX - hexose 

Decreased levels of high-energetic phosphorylated compounds might indicate 

disruption in energy metabolism induced by exposure to IR. Importantly, VE-821 

amplified the energy depletion caused by IR. It is not clear from our data, whether the 

observed time-dependent decrease is due to increased utilization of NTPs needed as a 

“molecular fuel” for cellular signalling, reparation processes, and programmed cell death 

following DNA damage induction by IR or by their decreased synthesis in damaged 

mitochondria. 

Significant changes were also found in glycolysis (figure 28). Increased glucose 

and decreased intermediates of glycolysis (glucose 6-phosphate, 3-phosphoglycerate, and 

phosphoenolpyruvate) could probably reflect inhibition of hexokinase - the first step 

of glycolysis. The aforementioned insufficiency of ATP for an initial deposit energy into 

the first reaction could be the reason. On the other hand, decreased intermediates 

of glycolysis can be interpreted as preferential utilization of glycolysis. This hypothesis 
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could be supported by pronounced time-dependent increase of lactate in irradiated control 

and VE-821-treated cells. We also detected an activating phosphorylation 

on phosphofructokinase 1 (PFKL) Ser 775 in two experimental replicates of our 

phosphoproteomic analysis, which has been previously shown to be responsive to insulin 

treatment and activating glycolysis (421), suggesting that the metabolic flux through 

glycolysis might be increased one hour after irradiation. However, further metabolomic and 

phosphoproteomic experiments covering multiple time points would be necessary to fully 

understand the temporal regulation of glycolysis upon IR and VE-821 treatment. We also 

observed significant modulation of citric acid cycle metabolites (figure 28). Markedly 

lower levels of aconitate, malate, and citrate/isocitrate were found in VE-821 treated cells; 

moreover, citrate/isocitrate showed a time-dependent decrease in control irradiated-only 

cells. On the contrary, succinate and fumarate were slightly increased in VE-821 treated 

cells. We assume that these intermediates could have been replenished by anaplerotic 

reaction from the amino acids obtained by protein degradation.  
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Figure 28: Selected metabolites included in metabolism of glucose and citric acid cycle. 

IR – irradiated cells pre-treated with DMSO, VE – irradiated cells pre-treated with 10 µM 

VE-821. PEP - phosphoenolpyruvate 

5.4.3. VE-821 affected deoxynucleotide pools in irradiated 

cells. 

Decreased levels of deoxynucleoside diphosphates (dNDPs; dADP and dTDP) and 

triphosphates (dNTPs; dATP, dGTP, and dTTP) were found in VE-821 treated irradiated 

cells. dCTP was also decreased due to VE-821; moreover, time-dependent reduction was 

observed in irradiated control cells. We also found several purine and pyrimidine bases and 

ribosides (xanthine, inosine, cytidine, uridine, and thymidine) elevated in VE-821 treated 

cells; nucleoside monophosphates (AMP and GMP) were slightly reduced (figure 26 and 

27).  

Deoxyribonucleotides arise either via de novo pathways, which involve step-by-

step assembly of purine and pyrimidine rings and formation of deoxyribonucleosides 

diphosphates from their corresponding ribonucleosides diphosphates precursors, or 

by salvage pathways involving reutilization of nucleosides and nucleobases produced 
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by nucleic acid degradation (reviewed in (422)). Thus, in principle, the deoxynucleotide 

levels might have decreased either by downregulation of their de novo synthesis or due 

to their degradation and downregulation of the salvage pathways. Importantly, dNTPs 

damaged by IR and oxidised due to increased levels of ROS in irradiated cells are degraded 

by hydrolysis, largely contributing to dNTPs depletion upon irradiation.  

As discussed above, in our study, we observed a time-dependent decrease in NDPs 

and NTPs, i.e. the precursors of dNDPs and dNTPs in de novo pathways, which was further 

amplified by the inhibitor, supporting the idea that the decrease in dNTPs might have been 

induced by insufficiency of the precursors for their de novo synthesis. Furthermore, we also 

detected a significantly decreased stimulating phosphorylation on CAD Ser 1859, an 

important regulator of de novo pyrimidine synthesis, and two phosphorylations on two 

enzymes involved in de novo purine biosynthesis (GART and PAICS) with unknown 

functions. The salvage pathways could have been also affected by the inhibitor treatment; 

this idea is supported by a recent study showing that activity of deoxycytidine kinase 

(dCK) is ATR-dependent after stress induction (423). dCK catalyses the first and rate 

limiting step of the deoxyribonucleotide salvage pathway (424), and as a consequence of its 

broad substrate specificity (which comprises deoxycytidine, deoxyadenosine, and 

deoxyguanosine), it is the main enzyme in the salvage of deoxyribonucleotides (reviewed 

in (425)). Beyaert et al. investigated the dCK activity dependency on ATM and ATR after 

different stress inducing stimuli. VE-821 significantly reduced upregulation of dCK 

induced by various genotoxic agents. Importantly, after irradiation, dCK activity was 

dependent on ATR only in ATM-deficient cells (423). However, it is necessary to note that 

the authors examined short time intervals after irradiation (two hours), when ATM 

signalling is predominant. It is possible that after longer incubation with the inhibitor, VE-

821 might inhibit dCK even in irradiated cells with functional ATM pathway – since the 

basal activity of dCK has been shown to be significantly downregulated by ATR silencing 

(423). Thus, it is apparent that several mechanisms could contribute to dNTPs depletion 

upon IR in VE-821 treated cells. Further validation experiments would be necessary 

to reveal the exact mechanism. 
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6. Summary of the most important 

findings 

 From the plethora of protocols for selective enrichment of phosphopeptides 

published so far, we selected four, which were applied for phospho-enrichment 

using different chromatographic resins with subsequent detection of enriched 

phosphopeptides by MALDI-TOF MS. After the first tests, where we evaluated 

the selectivity for phosphopeptides and enrichment efficiency from low complex 

samples composed of standard phosphorylated and non-phosphorylated peptides, 

Titansphere® particles and NuTips® were selected for further testing using 

more complex samples. Protocol including 200 mM glutamic acid as a 

selectivity-enhancing additive was selected as the most beneficial.  

 Using HeLa cell line lysate as the more complex sample, Titansphere® particles 

were shown to be more efficient and advantageous than the NuTips®, and hence 

they were selected for further studies investigating the phosphorylation response 

of MOLT-4 cells to the combination of IR and DDR inhibitor treatment.  

 We showed that MOLT-4 cells were radiosensitized by both high potent 

inhibitors of ATM and ATR, KU55933 and VE-821, respectively. While the 

effect of KU55933 was shown to be mostly radiosensitizing without affecting the 

proliferation and viability of sham-irradiated cells, treatment with VE-821 

induced two distinct phenotypes depending on the dose.  

 Treatment with 2 µM VE-821 caused mostly radiosensitization and disruption 

of the G2/M arrest without affecting the viability of sham-irradiated cells. On the 

other hand, 10 µM VE-821 treatment was characterized by marked proliferation 

inhibition (with slight, but significant G1 arrest) and decreased viability 

of MOLT-4 cells in both single inhibitor treatment and its combination with IR. 

 Phosphoproteomic analysis revealed the complexity of the cellular response to IR 

modulated by 10 µM VE-821 treatment. In this analysis, we detected 9285 

phosphorylation sites from 3090 protein groups. By applying GRT, we 

identified 623 differentially regulated phosphorylation sites; most of them were 

upregulated (431). Using bioinformatic tools available, we aimed to describe 
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comprehensively, which protein kinases and signalling pathways might be 

affected by the inhibitor treatment upon irradiation.  

 Gene ontology terms over-representation analysis revealed that proteins 

with regulated phosphorylation sites were significantly over-represented 

in nucleus, specifically in chromosomes, mitotic spindle, and replication fork; 

involved in chromatin organization, DNA repair and metabolism, cell cycle, 

and regulation of transcription factors.  

 Signalling pathways over-representation analysis identified pathways involved 

in DNA repair, replication, telomeres synthesis, apoptosis, regulation of mitosis, 

transcription factors regulation, and chromatin regulation via histones 

modification, but also pathways primarily related to cellular metabolism. 

 Based on kinase activity inference, we detected a decreased activity of ATR, 

which was in concordance with our expectations and antibody-based detection 

of ATR activity using western blotting and thus provided an important 

confirmation of the validity of our data. Among the known and predicted ATR 

substrates detected in our study, several DDR proteins were detected 

with significantly downregulated phosphorylation sites, such as members of the 

MRN complex, BRCA1-BRCT/Abraxas complex, and members of the 

Fanconi anaemia pathway.  

 The activity of several mitotic kinases was modulated by VE-821 treatment, 

which was in concordance with previous knowledge of the dominant role 

of ATR/Chk1 pathway in triggering the S- and G2/M phase checkpoints. In 

addition to CDKs upregulated in the response to VE-821 treatment, we found 

known or predicted substrates of Aurora A, Aurora B, and NEK kinases 

with upregulated phosphorylation. We found multiple regulated phosphorylation 

sites on known “mitotic proteins” such as CBX5, CDCA5, KIF2C, KIF11, 

PRC1, STMN1, TOP2A, and TPX2.  Thus, the inhibitor treatment might affect 

both progression through G2/M checkpoint and mitosis.  

 After irradiation, 10 µM VE-821 was shown to inhibit the main regulator 

of cellular metabolism - mTOR, together with its downstream effectors P70S6K 

and CAD. Their inhibition was inferred from downregulation of several of their 

phosphorylation targets: CAD, EIF3A, EIF4B, EIF4EBP1, LARP1, MAF1, 

PATL1, and RPS6. This fact might contribute to the phenotype observed 
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in proliferation and viability assays and indicate that the inhibitor might cause 

protein and nucleotide synthesis inhibition. Moreover, a possible link 

to autophagy modulation has been found suggested by phosphorylation changes 

on DAP1 and ULK1.   

 In western blotting analysis, the addition of sham-irradiated controls and 

treatment with 2 µM VE-821 showed that the inhibition of mTOR occurred also 

in sham-irradiated cells, and the lower concentration of the inhibitor did not 

induce any mTOR inhibition detectable by western blotting. Therefore, we 

assume that the mTOR inhibition was most likely induced by an off-target 

of the inhibitor. This finding is of the utmost importance as in several studies 

VE-821 has been used in 10 µM concentration, and possible contribution 

of mTOR inhibition to the observed phenotype has not been considered. 

 Importantly, we provide the first metabolomic profile of cells treated with a 

PIKKs family kinase inhibitor. To our knowledge, no such study has been 

published yet providing an insight into metabolic pathways modulated by ATR 

inhibitor in response to DNA damage. In our targeted metabolomic analysis, 206 

intermediary metabolites were quantified, and two trends were observed – 

first, 10 µM VE-821 potentiated the effects of IR and second, 10 µM VE-821 

modulated the metabolism of irradiated cells.  

 VE-821 potentiated the metabolic disruption induced by IR affecting the levels 

of NDPs, NTPs and intermediates of glycolysis (glucose 6-phosphate, 3-

phosphoglycerate, phosphoenolpyruvate), and lactate. IR induced oxidative 

stress might be increased upon the addition of VE-821 as demonstrated 

by changed GSH and allantoin levels. VE-821 also induced changes in citric 

acid cycle intermediates.  

 VE-821 induced decrease in dNDPs and dNTPs levels. As we did not observe 

any time-dependent decrease in irradiated cells, we assumed that the changes 

were probably not caused entirely by the insufficiency of NDPs and NTPs in their 

de novo synthesis. Lately, the enzymatic activity of dCK, which is the main 

regulator of nucleotide salvage pathways, has been proven to be dependent upon 

ATR after DNA damaging stress. Therefore, the downregulation of salvage 

pathways by ATR inhibition might be the main cause of the decrease of dNTPs 

necessary for repair of damaged DNA.  
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7. Conclusion 

DNA damage induction by either radio- or chemo- therapy has been the most 

widely used approach in oncology exploiting one of the hallmarks of cancer: genomic 

instability. However, such treatment is very unspecific and often accompanied by collateral 

damage to healthy tissues. In recent years, much effort has been focused on discovery and 

development of tumour specific treatment, which would only specifically target cancer 

cells and not affect the normal tissues. A promising concept that has been developed 

recently is to take advantage of the tumour specific abnormalities in DDR, and target the 

DDR kinases from the PIKKs family - ATM, ATR, and DNA-PK.  

In the presented doctoral thesis, we aimed to elucidate molecular mechanisms 

underlying radiosensitization of MOLT-4 cell line (T-ALL) by PIKKs inhibitors. To do so, 

we tested two highly potent inhibitors of two kinases from the PIKKs family - ATR and 

ATM, VE-821 and KU55933, respectively for their effects on proliferation, viability, and 

cell cycle of sham-irradiated and irradiated MOLT-4 cells. In these initial tests, both 

inhibitors proved to radiosensitize MOLT-4 cells and furthermore, 10 µM VE-821 was 

shown to act as a strong antiproliferative agent in sham-irradiated MOLT-4 cells. 

To further describe cellular mechanisms underlying the VE-821-mediated 

radiosensitization of MOLT-4 cells, we employed high-resolution MS to identify and 

quantify changes in proteome, phosphoproteome, and metabolome of irradiated 

VE-821-treated cells. As the detection and quantification of phosphorylated peptides 

in complex biological samples is challenging due to their low stoichiometry, first of all we 

optimized protocol for the enrichment of phosphorylated peptides from their mixture 

with their nonphosphorylated counterparts. Several commercially available 

chromatographic materials and published protocols were selected and tested using MALDI-

TOF MS detection of phosphorylated peptides enriched from standard tryptic peptides 

mixtures. The most successful protocols were further evaluated using complex samples, 

such as HeLa cells lysate and SILAC-labelled MOLT-4 cells lysate. Based on the 

optimization part, a protocol including the Titansphere® particles and loading buffer 

containing 200 mM glutamic acid as a specificity and efficiency enhancer was compiled 

for further experiments. 

The optimized protocol was then successfully applied to study VE-821-dependent 

changes in irradiated MOLT-4 cells. In concordance with our expectations, VE-821 did 
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not cause any significant changes on the proteome level. However, we detected 623 

differentially regulated phosphorylation sites; most of them (431) were upregulated 

in response to the inhibitor treatment. Using bioinformatic tools, we described, which 

protein kinases and signalling pathways might be affected by the inhibitor treatment upon 

irradiation. These analyses revealed changes in DDR related pathways and kinases, but 

also pathways and kinases involved in maintaining cellular metabolism. Notably, we 

found a downregulation of mTOR, the main regulator of cellular metabolism, which was 

also confirmed by western blotting. Although there are multiple signalling pathways 

connecting IR-induced DDR and mTOR regulation that might be potentially regulated 

by ATR inhibition, we assumed that in our case the downregulation was most likely caused 

by an off-target effect of VE-821 at 10 µM concentration. We further concluded that 

mTOR inhibition could be one of the factors contributing to the phenotype we observed 

after treating MOLT-4 cells with 10 µM VE-821, which was different from a lower, mTOR 

non-inhibitory, concentration. 

To our best knowledge, no study has been published yet investigating the 

modulation of cellular metabolism by small molecular kinase inhibitor of any of the PIKKs 

family kinases. Therefore, we performed a targeted metabolomic analysis of irradiated 

MOLT-4 cells, whose response to IR was modulated by 10 µM VE-821. In this analysis, 

206 intermediary metabolites were quantified. Subsequent data analysis showed that 

VE-821 potentiated the metabolic disruption induced by IR and increased the IR induced 

oxidative stress. Our data also indicated that in response to IR, recovery of dNTPs might 

be affected by VE-821 possibly hampering the DNA repair by dNTPs insufficiency.  

Thus, in this thesis we described a complex scenario of cellular events that might 

be dependent on ATR or triggered by ATR inhibition in irradiated MOLT-4 cells. This 

thesis raised several research questions.  

 Which of the mitotic kinases are regulated by ATR, in which phase of mitosis, 

and how? Is it only the G2/M checkpoint dysregulated by VE-821 treatment 

in irradiated cells?  

 How exactly does VE-821 regulate the mTOR activity? Is it only the off-target 

effect, or are there also any other pathways contributing to mTOR regulation 

affected? Several upstream kinases are involved in mTOR regulation in response 

to stress, such as AMPK, PI3K/Akt, or p38 MAPK. Is there any link between 

these kinases and ATR? Does VE-821 induce autophagy, and is it a result of the 
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inhibited mTOR? Is the sensitivity of MOLT-4 cells to the mTOR-inhibiting dose 

of VE-821 caused by PTEN deficiency? 

 What is the reason for VE-821-mediated potentiation of metabolic disruption 

induced by IR and increase of oxidative stress? Is it just increased mitochondrial 

stress? 

 Is ATR necessary for dNTPs salvage pathways in irradiated cells? Does ATR 

inhibition affect their de novo synthesis, and is phosphorylation involved 

in regulation of these metabolic pathways?  

 

Unfortunately, addressing these questions is beyond the extent of this doctoral 

thesis. However, data presented in this work might serve as a resource for follow-up studies 

and provide a platform for future work with other (more potent or specific) inhibitors.  

Taken together, we conclude that using ATR inhibitors to radiosensitize cancer cell 

seems to be an effective anti-tumour strategy. Nevertheless, even using a highly specific 

inhibitor might lead to a complex response and similar MS-based studies are suitable 

to reveal additional information on off-target effects and provide insights into other 

possibly non-reported regulatory mechanisms.  
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