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Abstract
We study some aspects of the superconductivity in disordered systems

- namely the superconductivity in a boron-doped diamond. We also apply
theoretical methods originally developed in the field of the disordered
systems to the theory of superconductivity.

In the case of the boron-doped diamond we focus on the question of the
dependence of the critical temperature Tc on boron doping. We discuss the
impact of the boron distribution correlations on the Tc as well. First, we
evaluate the density of states at the Fermi energy N0 within the dynamical
cluster approximation. We discuss the Tc as a function of N0 within the
BCS, the McMillan and the Belitz theory. In the case of 100 samples,
the simplified Belitz theory gives the best agreement with experimental
data. For 111 samples the McMillan theory is sufficient. We also show
that the difference of 100 and 111 samples in the N0 dependence of Tc can
be explained as given by attractive correlations in the boron distribution.

Applying the concept of the coherent potential approximation, we re-
move a self-interaction from the Galitskii-Feynman T-matrix approxima-
tion. This correction has no effect in the normal state but makes the
theory applicable to the superconducting state. Our correction does not
violate the two-particle symmetry of the T-matrix, therefore the present
theory is conserving in the Baym-Kadanoff sense. The theory is developed
for retarded interactions leading to the Eliashberg theory in the approx-
imation of a single pairing channel. We also show that contrary to the
Kadanoff-Martin approximation this theory describes a condensate, which
is stable against excitations of noncondensed Cooper pairs.
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Published work

As an outcome of last four years work several papers have been published. The

Chapters 4.1, 5.1, 6.1, and 7.1 present work devoted to the study of a dependence of

the critical temperature on boron doping that appeared in

“Model for the boron-doping dependence of the critical temperature of
superconducting boron-doped diamond”, B. Šoṕık, New J. Phys. 11,
103026 (2009).

The new T-matrix theory of superconductivity from the Chapter 10 was proposed in

“Conserving T-matrix theory of superconductivity”, B. Šoṕık, P. Lipavský,
M. Männel, and K. Morawetz, submitted to New J. Phys., arXiv:0906.3677v2.

The study of the stability of the condensate against noncondensed Cooper pair exci-

tations – also in Chapter 10 – was published in

“Microscopic mechanism of symmetry breaking in superconductivity”, P.
Lipavský, B. Šoṕık, M. Männel, and K. Morawetz, submitted to New J.
Phys.

Some work already presented in this thesis has not been published yet. This in-

cludes the study of the impact of the boron distribution correlations on the critical

temperature – Chapters 4.2.3, 6.2, and 7.2 – extension of the DCA to Matsubara fre-

quencies in Chapter 5.2, and the concept of higher order approximations of selfenergy

in the DCA in Chapter 5.3.
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Chapter 1

Foreword

The topic of this Ph.D. thesis is “Superconductivity in disordered systems”. Later

experience has shown that the name could be more precise, e.g., ”Role of avoiding

selfinteraction in theory of superconductivity in disordered systems“. Indeed, the idea

that avoiding of selfinteraction is physically very relevant and can provide significant

improvement of a theory pops up in this thesis repeatedly.

In the first part of the thesis we study the superconductivity in a boron-doped

diamond. This material is a disordered superconductor close to the metal-insulator

transition. We focus on the question of a dependence of the critical temperature

on the boron doping and also on the role of the boron distribution correlations. To

calculate the density of states at the Fermi level, we employ the coherent potential

approximation and also the dynamical cluster approximation.

It was the coherent potential approximation that in late sixties exceeded its pre-

decessors, because it removed the selfinteraction from the description of disordered

systems. In the disordered crystal the electron wavefunction is given by a superposi-

tion of an initial wave and contributions from all scattering centers. The observation

that the wave acting on the scattering center should not contain the contribution

from that center, caused important improvement of the theory.

In the second part of the thesis we study a many-body T-matrix approximation

and its ability to describe the superconductivity. It is known fact that the so called

Galitskii-Feynman approximation is very successful in the normal state but does not

1



2 Chapter 1: Foreword

describe the superconducting gap.

Here we observe that the Galitskii-Feynman approximation includes selfinterac-

tion processes. In the normal state these processes form a negligible contribution,

but when the superconducting condensate appears this contribution becomes singu-

lar. We conclude that it is right this contribution what blocks the formation of the

superconducting gap.

On a basis of that we form a new T-matrix approximation which is free of this

selfinteraction. These selfinteraction processes are removed in a way, which is similar

to the coherent potential approximation. It turns out that this new T-matrix theory

describes the superconducting state, which is stable not only against fermionic type

of excitations but against excitations of noncondensed Cooper pair as well.

The idea that removing of selfinteraction could be responsible for important results

is very old. Its application can be found, e.g., in a problem of an electric field in a

cavity in dielectric medium from late 19th century. Here we show that this very

physical idea is still of general importance.



Part I

Superconductivity in boron-doped

diamond
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Chapter 2

Introduction

The superconductivity is an outstanding example of a coherent quantum state of

macroscopic size. The interest in new materials and the search for higher critical tem-

peratures for a long time motivates the study of disordered superconductors. The idea

that semiconductors doped beyond the metal-insulator transition point (MIT) could

become superconducting was already being discussed in the 1960’s. But, probably

because of the low critical temperatures, the interest in superconducting doped semi-

conductors did not last until the recent discovery of superconductivity in boron-doped

diamond triggered a renewed excitement especially about semiconductors based on

group IV elements.

2.1 Boron-doped diamond

Diamond is an electrical insulator with band gap of ∼ 5.5 eV well known for

its exceptional physical properties – outstanding hardness and thermal conductivity.

With these physical properties, it is very attractive for electronic applications. Of

course, it is necessary to introduce charge carriers. One of very suitable dopants is a

boron. It has one less electron than carbon and is relatively easily incorporated into

dense diamond lattice due to its small atomic radius,

There has been a large experimental interest in the boron-doped diamond giving a

good knowledge about its properties. Samples are prepared using High Pressure High

5



6 Chapter 2: Introduction

Temperature (HPHT) method as well as Microwave Plasma-assisted Chemical Vapour

Deposition (MPCVD). It is known that boron dopes holes into a shallow acceptor

level close to the top of the valence band. At low boron concentrations lower than

≈ 0.01 per cent material is a semiconductor with an activation energy of ∼ 0.35

eV. Increasing the concentration gradually decreases the activation energy and for

concentrations higher than ≈ 0.1 per cent the electrical conductivity reaches metallic-

like behaviour near room temperature that signals a metal-insulator transition.

In 2004 Ekimov et al published in Nature their discovery of superconducting state

in boron-doped diamond [ESB+04]. The sample was prepared using HPHT and had

Tc = 2.3 K at doping of 2.6 per cent. It was found that material is type-II supercon-

ductor with upper critical field estimated to Hc2(0) = 3.4 T at T = 0 K.

This discovery was a big surprise which immediately started a rich discussion es-

pecially about the possible band structure [YNM+05] and superconductivity driving

mechanism. Many ab-initio computations have been done using Virtual Crystal (VC)

[LP04, BKA04, MTC+05] or Super Cell (SC) [BAC04, XLY+04, GYS+07] method.

Majority of theoreticians believe that electrons are mostly coupled by localized vibra-

tional modes on the boron atoms in an optic spectra. However other theories based

on possible presence of weak localisation were discussed as well [MNH+07, MHNK07].

Experimental data on boron-doped diamond are controversial. Majority of sam-

ples have been prepared in thin layers and their properties strongly depend on crys-

tallographic orientation of the surface. There are two widely studied types with 100

and 111 orientation, see Refs. [KAK+07] and [TNT+05], respectively. Both referred

groups have used the MPCVD method though under different growth conditions.

Their samples differ in many characteristics including the Tc. As can be seen in

Figure 2.1, the 111 samples have higher Tc in general. The 100 samples reveal a Tc

comparable with bulk samples prepared using the HPHT method.

There can be several reasons for the difference in Tc of samples. Mukuda et al

[MTH+07] made NMR study of various kinds of samples. From the spectra it was

found that boron can form B+H molecules with hydrogen or occupy interstitial sites as

well, thus effectively lowering the number of charge carriers. However such complexes

are not the only possible boron passivating structure. Recently it was suggested that
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Figure 2.1: Figure shows the dependence of Tc on boron doping concentration x.
Open symbols represent the 111 MPCVD data, full symbols the 100 MPCVD data
and crosses the HPHT data. The 111 films in general present higher Tc than the 100
and HPHT samples.

boron atoms in boron-doped diamond form also correlated multi-boron complexes

mostly dimers [BBA+06, LDG+08]. Stability of such boron clusters and its impact

on Tc is still a matter of discussion.

With the discovery of superconductivity in boron-doped diamond, the attention

was focused on a superconductivity of group IV elements [BBC+09]. The very activity

of research on this field illustrate the discovery of superconductivity in doped silli-

con [BMA+06] and recent discovery of superconductivity in boron-doped germanium

[HHI+09].

2.2 Disordered superconductors

Since the boron-doped diamond is a superconductor close to the metal-insulator

transition (MIT) point, theoretical description of its properties is very appealing. So

far superconductors in this region are not fully understood and microscopical theory

is still missing.

First theories based on the microscopical approach trying to describe the disor-
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dered superconductors came right after the BCS and were focused mainly on super-

conducting alloys. There is a strong experimental evidence that even small concentra-

tion of magnetic impurities destroys the superconductivity. The interest is therefore

usually focused on the study of nonmagnetic ones. The basic illustration of these ma-

terials was nicely given in a book of Abrikosov, Gorkov and Dzyaloshinski [AGD63]:

In an alloy, the electrons are scattered by the impurities, and since this
scattering takes place randomly at arbitrary angles and the scattered elec-
trons have very small wavelengths, the correlation between the electrons
is very sensitive to the scattering processes. This means that impurity
scattering must decrease the spatial coherence between the electrons.

For very low concentrations, the role of the impurities is small, but an
increase in the concentration leads to a decrease in the coherence distance
of the electrons in the superconductor. For sufficiently high concentra-
tions, the role of the coherence distance ξ0 is taken over by the mean free
path of the electron, and for such concentrations we have a right to expect
new characteristic properties of the superconductor to appear.

The point is that for large impurity concentrations, we are essentially
dealing with a new substance, whose properties have nothing in common
with the original superconductor.

The change of the coherence length affects mainly magnetic properties of the alloy,

but it is obvious that we can expect change in Tc as well. Indeed, search for high Tc

materials was one of the main motivations to study the disordered superconductors. It

was found however that in the case of superconducting alloys, Tc is usually suppressed

by the disorder. To explain this Anderson [And59] proposed theorem, which states

that in the case of weak coupling BCS superconductors the nonmagnetic impurities

influence the critical temperature Tc mainly through the change of the density of

states on the Fermi energy level N0.

In general to successfully describe the disorder in superconductor one has to com-

bine the standard treatment of superconductivity with an adequate description of the

disorder. It is therefore no surprise that next improvement in the theory of disordered

superconductors followed after the development of the coherent potential approxima-

tion (CPA) in late sixties. The CPA was a milestone in studies of disordered systems

and there was a lot of effort to combine the CPA with the BCS theory using a Nambu-

Gorkov formalism afterwards [Lus73, KB74, WZ74, WZ75, BKK80, KKB81]. These
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Figure 2.2: Figure illustrates achievements of the CPA and BCS combination [WZ74]
in description of alloys of weak coupling superconductors. The solid line represents
theory and dots experimental data.

theories managed to explain alloying of weak coupling superconductors that can sig-

nificantly differ from simple interpolation between components as demonstrated in

Figure 2.2.

Later the interest moved to strong coupling superconductors described by Eliash-

berg equations which distinguish electron-electron and electron-phonon coupling and

their influence on the formation of the condensed state. The fusion of Eliashberg

equations with the CPA was proposed by Wysokiński [WK83, Wys87]. For strong

coupling materials Anderson theorem does not hold and impurities can have a big

influence on electron-electron or electron-phonon coupling. There were even studied

cases, for which influence of disorder on interactions was taken as the only relevant

part of the problem [KS76, EWGW86]. Finally, based on the approach given by

Keck and Schmid [KS76] Belitz has developed one of the most complex theories for

disordered superconducting alloys [Bel87a, Bel87b, Bel87c], which was capable of suc-

cessful description of the Tc suppression in strong coupling superconductors. This is

illustrated in Figure 2.3.

Doped semiconductors are too distinct from metallic alloys, however. The first

theory capable to explain properties of the disordered superconductors close to the
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Figure 2.3: Figure shows suppression of Tc in strong coupling superconductors. The
disorder is measured by resistivity ρ300K. Dots are experimental data and solid lines
represent the theory [Bel87b].

MIT appeared at the beginning of the new century [OSC+01, OSC+02]. Osofsky and

his coworkers made the observation that close to the MIT doped superconductors

often present strong enhancement of Tc as reveals Figure 2.4. By rescaling the pa-

rameters in the BCS they created a heuristical theory which describes this peculiar

behaviour. Their scaling ideas were then put together with microscopic theories to

get a more firm ground [SOC03]. Nevertheless, this theory has to be understood

as a phenomenological description rather inspired by than based on microscopical

approach.

It is important to stress that the boron-doped diamond differs from the materials

studied by the group of Osofsky et al. They have studied materials superconducting in

the clean limit, which were doped to reach the vicinity of the MIT. As was mentioned

already, diamond itself is the insulator and all its superconducting properties are

given by the boron doping. This makes any expansion around the clean limit solution

inapplicable.

To summarize the discovery of superconductivity of boron-doped diamond was

a big surprise and it became very intensively studied material [Bus06] with many

promising properties. From theoretical point of view, it is very appealing as well,
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Figure 2.4: Figure shows the critical temperature T/Tc max versus a parameter r
describing the distance from MIT for many disordered superconductors, which were
studied by Osofsky et al [OSC+01]. Solid line is a theoretical prediction for LBCO.

because it belongs to the group of superconductors close to MIT, which is still not

fully understood.

A structure of this part is following. Chapter 3 gives introduction in two questions

we have paid special attention to – namely a dependence of the critical temperature

on boron doping and an impact of the boron distribution correlations on the critical

temperature. Necessary theory is explained in Chapter 4 and several improvements of

numerical methods is discussed in Chapter 5. Chapter 6 brings results and Chapter

7 final conclusion.



Chapter 3

Motivation

There are many questions connected with the study of the boron-doped diamond.

In this chapter we would like to introduce two of them, which we have paid spe-

cial attention to – namely explaining of the peculiar dependence of Tc on dopant

concentration and possible influence of correlated boron clusters on Tc.

3.1 Dependence of the critical temperature on boron

doping

As was said in the introduction, the experimental data on boron-doped diamond

are controversial. When we compare 100 and bulk HTHP samples we realize that they

reveal comparable Tc. [KAK+07] However 111 samples have significantly higher Tc

than the others. [MTH+07] The dependence of Tc on doping for all samples reminds

other superconducting materials close to the MIT, where the Tc is enhanced very

steeply close to MIT and then further from MIT saturates and eventually falls down.

This behaviour is successfully described by the heuristical theory of Osofsky et al.

On the other hand Shirakawa et al [SHOF07] have applied microscopical treatment

and shown that the dependence of Tc measured in boron-doped diamond cannot be

reproduced by the BCS theory in which the disorder is described on the level of the

CPA [VKE68]. This conclusion clarifies the Figure 3.1. Since their theory yields too

12
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Figure 3.1: Figure shows Tc in Kelvins versus boron doping cB for several strengths
of BCS potential V obtained by Shirakawa et al [SHOF07]. One can observe that the
predicted Tc values are too small and that the Tc trends do not match experimental
results.

low values of Tc, they proposed that disorder effects beyond the CPA are responsible

for this disagreement. We will show that corrections beyond the CPA do increase Tc,

however in the extent which is not sufficient to cover discrepancies in question.

In the present work we compute the density of states at the Fermi energy level

for boron-doped diamond within the dynamical cluster approximation (DCA) [JK01].

While the CPA assumes a single atom embed ed in the effective medium, the DCA

generalises this idea by embedding a cluster. The cluster allows us to describe splitting

of closely located impurity bound states which contributes to the shape of the impurity

band. With respect to the superconductivity it is essential that the density of states

at the Fermi level computed within the DCA is higher than the CPA value.

Apparently, the density of states at Fermi level is much lower in the impurity

band than in ordinary metals. Since values of Tc are comparable, the boron-doped

diamond belongs to the family of the strong coupling materials. One can expect large

discrepancies from the BCS theory and we will show that this is indeed the case.

Here we employ the Belitz theory [Bel87a], generalising the McMillan formula to

disordered superconductors. We will simplify it so that it will depend on the density
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of states exclusively. This simplified Belitz theory will be sufficient to reproduce the

experimental Tc data.

3.2 Impact of the boron distribution correlations

on the critical temperature

As we have mentioned already, recently it was suggested that boron atoms in

boron-doped diamond form correlated multi-boron complexes mostly dimers [BBA+06].

These complexes together with B+H molecules or interstitial impurities reduce the

possible density of charge carriers in material, which have an impact on a critical

temperature. During the following discussions, three main questions appeared.

The first question is: (i) Are these multi-boron complexes thermodynamically stable

or not? Ab initio investigation has shown that nearest neighbour dimer is energet-

ically the most favourable of all two-boron configurations.[BBA+06] There is still

some uncertainty, whether larger boron clusters are more favourable than separated

dimers.[LDG+08, NZH+09]

The second question is: (ii)What impact have these B-B dimers on the DOS near

the Fermi energy level? Again, ab initio investigations have shown that contrary

to some suggestions, B-B dimers create deep inactive acceptor levels in the valence-

conducting band gap.[GB06] This is in correspondence with widely accepted opinion

that B-B dimer related states do not contribute to N0. [BBA+06, BBC+09]

The last question is: (iii) In what kind of samples do these correlations preferably

appear? This question is difficult to answer, because dimerisation of boron is not

the only boron passivating structure. The SIMS measurement of boron content is

not able to distinguish between active and passive fraction. Mukuda et al [MTH+07]

made NMR study of various kinds of samples which can be seen in Figure 3.2. In

the spectra, there was always found a sharp peak corresponding to single boron sites

and broader spectra, which was identified with these lower symmetric B sites, such as

B-H molecules, interstitial boron sites, B+B dimers, etc. Among those possible lower

symmetric B sites the B+H complex was considered as the most likely. Another
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Figure 3.2: The NMR spectrum of 111 and 100 boron-doped was obtained by
Mukuda et al [MTH+07]. Both spectra show sharp peak, which corresponds to single
boron sites, and also a broader structure that is identified with lower symmetric boron
sites, mainly B+H complexes. The SIMS measurement of the boron content is not
able to distinguish between these two fractions.

experimental evidence is that among the samples prepared by the nonequilibrium

MPCVD method those with 111 orientation have in general higher Tc than 100 films.

As has been told the Tc of 100 films is comparable with quasi-equilibrium HTHP

samples.

Here we will comment the questions (ii) and (iii). Using the DCA we will on a

simple model show the difference in the density of states near the Fermi energy level

when the boron correlations are present. With the help of the theory presented in

Chapter 4 we will then compare the experimental Tc data and propose a possible

explanation of preferable appearance of boron correlations.



Chapter 4

Theory

In this chapter we introduce theoretical concepts used in the following work. The

chapter is divided into three parts. In first one we introduce the Belitz theory of

disordered superconductors and its modification to the studied system. In the second

part we explain some advanced methods of computing the electron band structure in

disordered materials. These two theories will be used to construct the model of the

critical temperature Tc dependence on the boron doping x. At the end of the chapter

we explain the way we treat the correlated disorder. This method will be employed

to study the effect of boron distribution correlations on the critical temperature.

4.1 Belitz theory

As was already mentioned the theory of Belitz is a very successful theory of super-

conducting alloys. It generalises the Eliashberg equations and the McMillan formula

for Tc as well. Since our task is to describe the concentration dependence of the criti-

cal temperature, we introduce here only the Belitz formula for Tc and its modification

to the studied system. Brief review of the Belitz theory can be found in the Appendix

B.

16
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4.1.1 Belitz formula

In the absence of currents, the Eliashberg selfenergy has three terms

Σ(ω, ε) = (1− Z(ω, ε))ω τ0 + Y (ω, ε) τ3 +W (ω, ε) τ1 , (4.1)

where ε is the kinetic energy, ω is the Matsubara frequency and τi Pauli matrices. For

pure superconductors W renormalized by Z gives a gap function ∆. The dependence

of Y on the kinetic energy can be omitted close to the Fermi energy. Thus Y is a scalar

that only shifts the chemical potential having no effect on the critical temperature.

In disordered superconductors the ε dependence of the Y parameter has to be kept,

however. Belitz has shown that its energy derivative at Fermi energy

Y ′ =
d

d ε
Y (ε, ω)

∣∣
ε=0

, (4.2)

modifies the McMillan formula as

Tc =
ωD

1.45
exp

[
− 1.04 (1 + λ+ Y ′)

λ− µ∗
(
1 + 0.62λ/(1 + Y ′)

)] . (4.3)

Here λ describes an electron-phonon coupling and

µ∗ = µ

[
1 +

µ

1 + Y ′
ln

ωC

0.62ωD

]−1

(4.4)

is the screened pseudopotential, in which µ characterises a strength of the Coulomb

interaction, ωC is its effective range and ωD is the Debye frequency. Setting Y ′ = 0

one recovers the McMillan formula.

4.1.2 Modification to boron-doped diamond

The Belitz theory was developed for systems that are in the clean limit good

metals, where λ and µ∗ is well defined. It is expected that impurities do not change

the density of states at the Fermi level N0 and the disorder corrections of the clean

limit are present only in renormalisations of interaction vertex through the change of

resistivity. Boron-doped diamond is in the clean limit an insulator, however. All the

metal properties of the system are induced by the impurities and therefore the concept
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of the disorder caused renormalisation of the clean limit values loses its meaning.

Moreover since the system is close to the metal-insulator transition the density of

states at the Fermi energy N0 is expected to be strongly dependent on the disorder.

We therefore drop the concept of clean limit renormalisations and express the λ, µ

and Y ′ in a way that they are influenced by the disorder exclusively through N0.

The pseudopotential µ reads [VIK82]

µ = VcN0

[
1 +

VcN0

1 + Y ′
ln
EF

ωC

]−1

, (4.5)

where Vc is the strength of the Coulomb interaction. Since we have found no mea-

surement of Vc in the literature, we have to treat it as a parameter which is set from

experimental data. Because in the boron-doped diamond the Fermi energy level is

localised very close to the top of the valence band, the band edge is a natural cutoff

for the Coulomb interaction. Thus we associate EF ≈ ωC. The equation (4.5) then

has a simple form

µ = VcN0 . (4.6)

We take λ from ab-initio computations. Since the published results cover only few

concentrations – see Appendix A – we evaluate λ in the spirit of Morel and Anderson

formula [MA62a]

λ =
UN0

1 +QN0

. (4.7)

Here U represents a phonon-electron coupling strength and 1 + QN0 describes a

screening.

The term Y ′ contains disorder induced contributions from both electron-phonon

and electron-electron interaction. From (B.31) and (B.37) we for Y ′ write

Y ′ = 2λ− µ . (4.8)

Using equations (4.3), (4.4), (4.6), (4.7) and (4.8) we obtain Tc as a function of boron

concentration x, having three interaction parameters Vc, U and Q.
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4.2 Density of states

Now we establish the bare density of states at the Fermi energy N0 as a function

of the boron concentration x. This single particle quantity is not the physical density

of states observed e.g. in the heat capacity, but a theoretical value independent of

the electron-electron interaction, would it be the Coulomb repulsion or the phonon-

mediated pairing potential. We thus want to evaluate the electron density of states

given by a Hamiltonian

Ĥ = Ĥ0 + V̂ , (4.9)

with Ĥ0 being a Hamiltonian of the valence band in diamond and V̂ a random po-

tential of boron impurities

V̂ =
∑
i

ηi δ â
†
i âi . (4.10)

Here ηi = 1 at impurity sites and zero elsewhere, and δ is the potential amplitude.

We note that this single-site s-type potential does not cover the triple degeneracy of

impurity state of boron. We adopt this Hamiltonian already studied by Shirakawa et

al [SHOF07] to make a link between their and present results. As a model of Ĥ0 we

take a tight-binding hamiltonian

Ĥ0 =

∫
dk

(2π)3
ε(k) â†(k) â(k) =

= −t
∫

dk

(2π)3
(cos(kx) + cos(ky) + cos(kz)) â

†(k) â(k) , (4.11)

parametrized by a bandwidth W = 6t.

The density of states is defined as the imaginary part of propagator local matrix

element at energy slightly above the real axis

ρ(E) = − 1

π
ImGii(E + i0) . (4.12)

For the N0 we thus write N0 = − 1
π

ImGii(EF + i0). The propagator is given by the

expression

Ĝ(z) =

〈[
zÎ − Ĥ0 − V̂

]−1
〉

av

. (4.13)

Here angle brackets mean an average over all possible realizations of the disorder V̂ .
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Without the disorder the propagator (4.13) simplifies to

Ĝ0(z) = [zÎ − Ĥ0]−1 . (4.14)

This is diagonal in the momentum representation and we can write

G0(z,k) =
1

z − ε(k)
. (4.15)

The G0
ii(z) then has an explicit form

G0
ii(z) =

∫
dk

(2π)3

1

z − ε(k)
, (4.16)

and thus from (4.12) we have

ρ0(E) =

∫
dk

(2π)3
δ(E − ε(k)) . (4.17)

We solve the disorder problem within the CPA and the DCA on a cluster of

2× 2× 2 atoms on a cubic lattice. The CPA can be viewed as the DCA for a single

site, i.e., the 1 × 1 × 1 cluster. We only briefly introduce these two methods here,

the reader can find all details about the CPA and DCA in references [Sov67, VKE68]

and [JK01, MJPH05], respectively.

4.2.1 Coherent potential approximation

It is well known fact that in a perfect crystal lattice the electron wavefunction

is periodical and electron propagation is non dissipative. If in the crystal impuri-

ties are present, they form scattering centers. The electron wavefunction is then a

superposition of the initial wave and all the scattered ones.

The success of the CPA is given by the fact that it distinguishes the electron

wavefunction from the wave acting on a scattering center. This is because the ongoing

wave does not contain a contribution of the wave scattered on the center. Absence

of a selfinteraction is a rather old idea and can be illustrated on example of electric

field in a cavity.

Let us assume a crystal exposed to a light with an external electric field E0. A

total field inside the sample is microscopically given by a sum of contributions from



Chapter 4: Theory 21

the propagating wave E0 and scattered waves from all the crystal sites

E(r) = E0(r) +
∑
j

Ej(r) = (1 + χ)E0 . (4.18)

This would be seen by an ideal observer.

A different result is obtained, if we ask, what field acts on one particular atom on

site i. Indeed the atom on site i is not influenced by its own electric field. Therefore

the field that acts on this atom equals a sum of contributions from the external wave

E0 and scattered waves from all the sites except the site i,

Eatom(ri) = E0(ri) +
∑
j 6=i

Ej(ri) . (4.19)

To calculate Eatom, Lorenz and Lorentz have introduced a similar problem of a cavity

in dielectric medium. The field in the spherical cavity

Ecav = (1 +
χ

3
)E0 (4.20)

turned out to be the best among simple approximations of the field acting on single

atom, Eatom ≈ Ecav.

Important observation here is that the total field in the medium and electric field

acting on a particular site are not the same. Field acting on the site is only partly

selfconsistent.

In order to derive the CPA we will follow the original derivation of Soven [Sov67].

He obtained the CPA using rather different approach of variational coherent poten-

tial Σ(z) forming an effective medium. The potential Σ(z) is determined so that the

quasiparticle propagating through the medium does not undergo any scatterings. Af-

ter deriving of the CPA using the Soven’s approach, we will show that it is equivalent

to avoiding the selfinteraction.

The derivation proceeds as follows. At every site in the lattice we place an as

yet unknown frequency dependent potential, which we denote by Σ(z). The true

potentials Vi at each site have values either δ or 0, see (4.10). Let R̂(z) be the formal

Green’s function for the lattice of potentials Σ(z)

R̂(z) = Ĝ0(z) + Ĝ0(z) Σ(z)Î R̂(z) . (4.21)
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The R̂(z) determines the propagation through the as yet undetermined medium.

Relative to the medium, the actual system consists of perturbing potentials δ − Σ(z)

and −Σ(z). The T-matrix t̂(z) describes scattering of an electron on these potentials

and from the definition includes all possible sequences of collisions. For electron prop-

agating according to R̂(z) and scattering on a single site on the perturbing potential

Vi − Σ(z) the local T-matrix element ti(z) is defined as

ti(z) = (Vi − Σ(z)) + (Vi − Σ(z))Rii(z) ti(z) . (4.22)

The equations (4.21) and (4.22) may be combined to yield an expression for the actual

Green’s function

G̃nm(z) = Rnm(z) +
∑
i

Rni(z) ti(z)Rim(z) +

+
∑
i

∑
j 6=i

Rni(z) ti(z)Rij(z) tj(z)Rjm(z) + · · · . (4.23)

This equation is exact rearrangement of the infinite series (4.13) for one realisation

of disordered potentials V̂ − Σ(z)Î.

To obtain the required propagator Ĝ(z) which is averaged over all possible reali-

sations of the disorder, we average the equation (4.23) and write

Gnm(z) = 〈G̃nm(z)〉av = Rnm(z) +
∑
i

Rni(z) 〈ti(z)〉av Rim(z) +

+
∑
i

∑
j 6=i

Rni(z) 〈ti(z)Rij(z) tj(z)〉av Rjm(z) + · · · . (4.24)

In equation (4.24) the Σ(z) is an arbitrary parameter. Soven proposed to define it by

the requirement that on the average there is no further scattering from the single-site

perturbing potentials, i.e.,

〈ti(z)〉av = 0 . (4.25)

For the binary alloy with a concentration x for the potential δ and 1− x for the zero

potential using (4.22) we obtain

0 = x
δ − Σ(z)

1− (δ − Σ(z))Rii(z)
+ (1− x)

−Σ(z)

1 + Σ(z)Rii(z)
. (4.26)
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Figure 4.1: Figure illustrates the Soven’s idea of effective medium in the case of a
binary disorder with probabilities x and 1 − x for potentials δ − Σ(z) and −Σ(z).
For the selected site i embedded in the medium the propagator average of on site
impurity scattering effects restores the medium value.

Neglecting correlations between higher order corrections to R̂(z) and decoupling av-

erages of these higher orders to independent averages of t-matrices at individual sites

in (4.24) we find the approximation

Ĝ(z) ≈ R̂(z) . (4.27)

The Σ(z) is given by the equation (4.26). We need one more equation to determine

the Gii(z). For this we use a formula for a local propagator element

Gii(z) =

∫
dE

ρ0(E)

z − E − Σ(z)
, (4.28)

where ρ0(E) is a density of states of a pure material. Equation (4.28) can be also

written as

Gii(z) = G0
ii(z − Σ(z)) . (4.29)

Equations (4.26) and (4.28) together form a set known as the Coherent potential

approximation.

To illustrate the idea of avoiding the selfinteraction we first rewrite the equation

(4.26) in a form

Gii(z) =

〈
1

1/G(z)− Vi

〉
av

, (4.30)

where we define the curly propagator G(z) as

1/G(z) = 1/Gii(z) + Σ(z) . (4.31)

The Gii(z) is evaluated as the average over amplitudes that describes a scattering on

a one site potential Vi. To evaluate the amplitude properly, one has to subtract the
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Figure 4.2: Figure from Ref. [AHJ03] illustrates the division of the Brillouin zone
into subzones according to K and k̃ on the easy example of a cubic lattice. The
division of the Brillouin zone into subzones creates clusters in the lattice mapped by
R with periodicity on a scale r̃.

effect of this scattering from the wave acting on the site i. Thus the G(z) defined

by (4.31) is used and so the selfinteraction is avoided. The Soven’s idea of impurity

embedded in the effective medium is illustrated in Figure 4.1.

4.2.2 Dynamical cluster approximation

There have been many attempts to formulate nonlocal corrections to the CPA.

The main motivation for that was to include short-range correlations into the theory.

Contrary to the CPA [MH73], however, these theories often turned out to be acausal

[NB73].

One of the most sophisticated extensions is the travelling cluster approximation

(TCA) [MR78, KLGD80]. It is designed to be causal. But it is nonsystematic in that

the terms that are retained may be just as important as those dropped. Furthermore

the TCA is very hard to implement numerically. So far, the best extension is arguably

the dynamical cluster approximation. It is analytical, becomes exact in limit of large

clusters and recovers the CPA for cluster of size 1.
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The crucial problem of all previous cluster extensions of the CPA was in a fact

that dividing into clusters violated initial translation invariance of the lattice, making

thus the Brillouin zone much smaller. As a result it was not clear, what is a value

of selfenergy matrix elements across cluster borders. At the end it was shown that

breaking of the initial translation invariance of lattice leads to acausal selfenergy.

The DCA overcomes these difficulties approximating the selfenergy momentum

dependence by a step function in the Brillouin zone. The selfenergy is then obtained

solving the Soven equation on a small periodical cluster with a period of a cluster size.

The Dyson equation is however solved on the initial lattice. The DCA thus can be

seen as solving the Soven and Dyson equation on different lattices using convenient

transformations between them.

To explain the DCA we first introduce a new mapping of space and momentum

coordinates. As figure 4.2 reveals, we decompose the position of a site to intercluster

part R and intracluster part r̃. Since the vector R is on the cluster periodical, the

Brillouin zone is according to lattice symmetries divided into subzones with base

vectors K and k̃. Naturally, the size of the cluster corresponds to the number of

subzones as shown in figure 4.2.

To be able to generalize the Soven equation to the cluster of Nc atoms, we have

to find some mapping of G(z,k) to G(z,K), respectively G(z,R). A convenient

transformation is the mean value

G(z,K) =
Nc

N

∑
k̃

G(z,K + k̃) . (4.32)

The G(z,R) is obtained by the discrete Fourier transformation.

Having the periodical G(z,R) we can generalise the Soven equation (4.30) to a

matrix equation in space coordinates

Ḡ(z) =
〈[
Ḡ−1(z)− V̄

]−1
〉

av
, (4.33)

where

Ḡ−1(z) = Ḡ−1(z) + Σ̄(z) , (4.34)

and the bar signals a matrix Nc×Nc. In (4.33) the average is taken over all impurity

realisations of V (R) and is illustrated in figure 4.3. During the iteration, we first
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Figure 4.3: Figure shows how the Soven’s idea is in the DCA generalised to clusters
embedded in the effective medium. In the matrix equation (4.33) the propagator is
averaged over all possible configurations I of the potential V (I) with a probability
p(I).

calculate (4.34) and (4.33). Then we substitute the new Ḡ(z) back to (4.34) to

obtain a new Σ̄(z).

Now we come to a calculation of G(z,k) from the Dyson equation. Therefore

we need to construct Σ(z,k) from Σ(z,K). The original DCA uses the simplest

approximation keeping Σ(z,k) constant in each subzone

Σ(z,K + k̃) = Σ(z,K) . (4.35)

The Dyson equation thus reads

G(z,k) =
1

z − ε(K + k̃)− Σ(z,K)
. (4.36)

Equations (4.32), (4.33), (4.34), (4.35) and (4.36) together form a closed set of

equations. The local propagator element (4.12) is given by

G(z,0) =
1

Nc

∑
K

G(z,K) . (4.37)

The DCA can be viewed as a scheme that systematically restores the selfenergy

momentum dependence. In the CPA the selfenergy has no momentum dependence at

all. Closer look at the DCA iterative procedure can be found in the next Chapter 5.

4.2.3 Boron distribution correlations

Unlike the CPA the DCA can be employed to study the impact of impurity distri-

bution correlations on the band structure. This can be seen from the equation (4.33)
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where the summation runs over all realizations of the disorder on the cluster and each

is weighted by its distribution function.

Although it is very likely that boron atoms are in the diamond correlated, exact

form of the attractive “interaction” between them is still a matter of discussion. Since

we study the band structure using the cubic lattice, we describe the attractive boron

correlations using a simple model, which includes only nearest neighbours.

Let I be a realization of n(I) boron atoms on N sites, then the Soven equation

(4.33) reads

Ḡ(z) =
∑
I

p(I;x, θ)
[
Ḡ−1(z)− V̄ (I)

]−1
, (4.38)

where p(I;x, θ) is a probability of the configuration V (I). For the probability

p(I;x, θ) we write

p(I;x, θ) =
e−βH(I;x, θ)∑
I e
−βH(I;x, θ)

, (4.39)

where effective Hamiltonian βH is

βH(I;x, θ) = n(I) ln

(
1

x

)
+ (N − n(I)) ln

(
1

1− x

)
− q ln(1 + θ) . (4.40)

Here x ∈ 〈0, 1〉, θ ∈ 〈0,∞) are parameters of the distribution and q is a number

of neighbour boron-boron pairs in configuration I. Last term represents a binding

energy of the dimer ε∆/kBT = − ln(1 + θ).

From (4.39) and (4.40) one can write the distribution

p(I;x, θ) =
1

Z(x, θ)
xn(I) (1− x)N−n(I) (1 + θ)q , (4.41)

where Z(x, θ) =
∑
I e
−βH(I;x, θ) is a normalisation. We see that for θ 6= 0 the param-

eter x does not play a role of the concentration anymore. Thus we have to calculate

the boron density nB from a definition

nB =
∑
I

n(I) p(I;x, θ) . (4.42)

One can easily see that for θ = 0 is Z(x, θ) = 1 and nB = x.



Chapter 5

Numerical methods

In this chapter we will discuss numerical methods and their improvements. A

results oriented reader can skip this chapter and continue the reading from the next

Chapter 6.

We will present here our results which improve and extend its applicability of the

DCA. First we will discuss an effective implementation of the DCA scheme, which was

already used in our numerics of density of states. Further we will study extension of

the DCA to imaginary time – Matsubara frequencies. Finally we will propose higher

order approximations of the selfenergy in the coarse graining step of the DCA scheme.

5.1 Effectivity of the DCA

The DCA method can be numerically very demanding even in the case of a cluster

of 2× 2× 2 sites. It is therefore appealing to search for an effective iteration scheme.

The one we present here systematically approximates the density of states so that the

summation over the Brillouin zone can be expressed in a simple analytical form.

The crystal lattice has infinite periodicity and is discrete, therefore its Fourier

transform has a continuous Brillouin zone of a finite volume. It is then convenient to

approximate a continuous selfenergy Σ(ωn,k) by a step function in the momentum

space Σ(ωn,K + k̃) = Σ(ωn,K).

28
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5.1.1 Iteration scheme

In the presence of Born-Karman periodic condition, which makes the original

continuous Brillouin zone discrete, one may describe the standard DCA iterative

procedure in this way:

1. Make some projection of the full lattice/Brillouin zone G(ωn,k) to the simplified

one G(ωn,K) with smaller Born-Karman periodic condition. This can be done

by averaging over the subzone

G(ωn,K) =
Nc

N

∑
k̃∈Nc

G(ωn,K + k̃) . (5.1)

2. Find a full solution of the manybody problem on the smaller periodic lattice or

use some convenient approximation – FLEX, QMC, DMFT – to obtain a new

selfenergy Σ(ωn,K).

3. Use a backward construction to obtain Σ(ωn,k). In our case we take

Σ(ωn,K + k̃) = Σ(ωn,K) . (5.2)

4. Get a new G(ωn,k) from the Dyson equation

G(ωn,k) =
1

iωn − ξ(k)− Σ(ωn,k)
. (5.3)

This procedure is illustrated in Fig. 5.1.

5.1.2 Decomposition of the density of states

Let us observe at this point that since we solve the many-body problem on the

small cluster, we can limit the periodicity of the original lattice to infinity, if we send

N →∞ while the Nc is fixed. Summation over k̃ momenta in (5.1) is then replaced

by integration over the subzone density of states

G(ωn,K) = Nc

∫
ρ0
K(E)

iωn − E − Σ(ωn,K)
dE , (5.4)
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Figure 5.1: Figure illustrating the momentum DCA. Due to the step function charac-
ter of the selfenergy in the momentum representation new smaller scale Born-Karman
periodic conditions of Σ(R) appear in the spatial dimension.

where the density of states is decomposed according to the subzones of the Brillouin

zone

ρ0(E) =
∑
K

ρ0
K(E) =

∑
K

1

N

∑
k̃

δ(E − ε(K + k̃)) . (5.5)

The density of states ρ0
K(E) in each K subzone can be approximated by the

semielliptical function

ρ
(0)
K (E) =

1

Nc

2

π uK

√
1−

(
E − vK
uK

)2

, (5.6)

where

uK =
1

2

(
Emax

K − Emin
K

)
, (5.7)

vK =
1

2

(
Emax

K + Emin
K

)
, (5.8)

reproduce the maximum Emax
K and minimum Emin

K energy in the subzone K.

With the density of states of such form the integral in (5.4) can be done analyti-

cally. The final expression for the propagator is

G(ωn,K) =
2

uK

[
iωn − Σ(ωn,K)− vK

uK

−

√(
iωn − Σ(ωn,K)− vK

uK

)2

− 1

]
. (5.9)

This formula significantly reduces numerical demands.

It’s worth to mention here that the systematical decomposition and approxima-

tion of the subzone density of states ρ0
K(E) by any reasonable analytical function

approaches the original density of states ρ0(E) in the limit of high Nc.
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The density of states (5.5) by definition maintains the width of the valence band.

Accidentally, this approximation also yields a correct curvature at the edge, i.e., it

correctly reproduces an effective mass of holes near the band edge. This feature is

vital for a realistic description of the relatively shallow impurity state.

The number of subzones used to evaluate the density of states can be higher than

the number of subzones given by a cluster size. Briefly, we can divide the cluster

subzone into smaller subzones to obtain more realistic density of states. In this sense

we employ the model valence band (5.5) in the CPA as well. Using the same density

of states allows us to clearly identify features given by scattering on two or more

impurities.

5.1.3 Selfenergy in space representation

Selfenergy projected on the smaller lattice is periodical and translationally invari-

ant. Let us ask, how does the Σ(ωn, r) look like. From the definition of the Fourier

transform we directly obtain

Σ(ωn, r) =
1

N

∑
k

Σ(ωn,K) ei k·r =
1

Nc

∑
K

Σ(ωn,K) ei K·r Nc

N

∑
k̃

ei k̃·r =

=
1

Nc

∑
K

Σ(ωn,K) ei K·(R+r̃) Nc

N

∑
k̃

ei k̃·(R+r̃) . (5.10)

We observe that r̃ is a periodicity vector for K

ei K·̃r = 1 . (5.11)

In a limit of infinite Born-Kamran periodic condition the summation over k̃ becomes

the integration

Σ(ωn, r) =
1

Nc

∑
K

Σ(ωn,K) ei K·R Nc

N

∑
k̃

ei k̃·(R+r̃) ≈ Σ(ωn,R)

∫ 1
2

∆K

− 1
2

∆K

dk̃

2π
ei k̃·(R+r̃) ,

(5.12)

and one finally obtains

Σ(ωn, r) = Σ(ωn,R)
sin(1

2
∆K · r)

1
2
∆K · r

. (5.13)
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This expression has two limits. First, in a limit of clusters of a very large size

Σ(ωn, r) = Σ(ωn,R)
sin
(

1
2
∆K · (R + r̃)

)
1
2
∆K · (R + r̃)

(5.14)

= Σ(ωn,R) ;
Nc

N
→ 1, ∆K→ 0 , (5.15)

one recovers the complete selfenergy. This limit cannot be achieved in practise, it

merely shows that the DCA procedure is a systematical approximation. The opposite

case is a limit of clusters with a size of one site. In this limit the sine in (5.14) equals

zero and the selfenergy thus reads

Σ(ωn, r) = Σ(ωn,0) δ(r̃) ; Nc = 1, R ≡ 0 . (5.16)

This is the familiar mean-field solution or the CPA, if we solve the disorder problem.

5.2 DCA for imaginary time – Matsubara frequen-

cies

The DCA is a very successful method suitable for solving of many-body problems.

[MJPH05] Its basic idea how to link clusters in crystal lattice with coarse graining

of continuous momenta seems to be quite general and applicable to various similar

problems. Already Aryanpour et al discussed its application to Matsubara frequen-

cies. [AHJ03] Their straightforward implementation however violated the analytical

properties and thus causality. Here we modify the DCA for the Matsubara frequen-

cies in a way which guarantees the causality. It allows us to form a unified DCA,

which covers both momenta and frequencies.

The main idea of the DCA – which we would like to generalize here – is that it

approximates the selfenergy by a step function on continuous intervals. This reduces

a complexity of the problem to finite number of degrees of freedom. Selfenergy and

propagator are then mapped to a simple Brillouin zone which makes the problem

solvable.

We use this idea in the case of the imaginary time dimension. Here the symmetries

are opposite to the situation of the momenta. Imaginary time axis is continuous and
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has a finite periodicity. Its Fourier transform is discrete and range of Matsubara

frequencies is infinite. Natural extension of the DCA to this dimension is therefore to

approximate the continuous selfenergy Σ(τ,k) by the step function on the imaginary

time axis

Σ(τ,k) = Σ(T + τ̃ ,k) = Σ(T ,k) . (5.17)

A complication that emerges here is that the Dyson equation is convolutive in time

and diagonal in frequencies. It is therefore convenient to work in the frequency

representation.

5.2.1 Iteration scheme

In the Matsubara DCA scheme we iteratively solve two equations - equation for

the selfenergy and the Dyson equation for the propagator. Each equation we however

solve on a different set of Matsubara frequencies. The Dyson equation is solved on

the unrestricted infinite set of frequencies. But the numerically unavoidable coarse

graining of the imaginary time interval to finite set of points implies a periodicity

of solution in Matsubara frequencies. The equation for selfenergy is thus solved on

some finite set of frequency points. The Matsubara DCA scheme inherently includes

transformations of functions between these two sets.

The iterative scheme of the Matsubara frequency DCA is similar to the standard

case with slight differences given by Fourier transformations:

1. The full propagator G(τ,k) is projected to the time grid G(T ,k). Contrary to

the momentum DCA, where we project to the smaller grid via the average, the

natural transformation in this case is simply a point projection of G(τ,k) in T .

Comparing with (5.1) we express this trivially using a δ-function

G(T ,k) =
1

∆T

∫ T + 1
2

∆T

T − 1
2

∆T
G(τ,k) δ(τ − T ) dτ . (5.18)

From the G(T ,k) we get G(Ωl,k) via the discrete Fourier transformation.

The projection of G(τ,k) to G(T ,k) is equal to the projection of G(ωn,k) from

the infinite set of Matsubara frequencies to the finite periodical set of frequency

points G(Ωl,k).
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2. On the finite set of frequencies the many-body problem is solved and the new

periodical selfenergy Σ(Ωl,k) resp. Σ(T ,k) is found.

3. A new selfenergy Σ(τ,k) resp. Σ(ωn,k) is constructed via inverse transforma-

tion of the periodical Σ(Ωl,k) from the finite set of frequency points back to

the frequencies on the imaginary axis.

4. A new propagator G(ωn,k) is found using the Dyson equation. Propagator is

transformed back to the imaginary time G(τ,k).

This procedure is illustrated in the Fig 5.2.

5.2.2 Frequency dependent selfenergy

As was noticed already, the coarse graining of the imaginary time interval implies

the periodicity of the selfenergy Σ(Ωl,k). The selfenergy should (except the constant

Hartree field) decay with frequency as ∼ 1/ iωn. Here we show that the transformed

Σ(ωn,k) has the correct asymptotics for the large iωn.

From the definition we write

Σ(ωn,k) =

∫ β

0

eiωnτ Σ(τ,k) dτ =
∑
T

Σ(T ,k)

∫ T +
1
2

∆T

T −1
2

∆T
eiωnτ dτ =

=
∑
T

Σ(T ,k) eiωnT i sin(1
2
∆T ωn)

1
2

iωn
. (5.19)

We parametrize frequencies as

iωn = i Ωl + im∆Ω , m ∈ Z , (5.20)

where

∆Ωl =
2π

β
NΩl

, (5.21)

and for i Ωl we write

i Ωl = i
π

β
(2l + 1) , l ∈ [NΩ/2, . . . , 0, . . . , NΩ/2− 1] . (5.22)
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Figure 5.2: Figure illustrating the Matsubara frequency DCA scheme. The suitable
representation for the selfenergy step function approximation is the imaginary time
axis. The Dyson equation is solved on the infinite set of Matsubara frequencies on
the complex plane. The selfenergy equation is solved on the finite set of frequencies.
Other steps of the scheme are transformations of quantities between these two sets
of Matsubara frequencies.

Observing ∆T = β/NΩ and eim∆Ω T = 1 we get the final form for Σ(ωn,k)

Σ(ωn,k) =
β

NΩ

∑
T

Σ(T ,k) ei ΩlT i sin(1
2
∆T ωn)

i 1
2
∆T ωn

= Σ(Ωl,k)
sin(1

2
∆T Ωl)

1
2
∆T ωn

, (5.23)

which reminds (5.13). From this expression one easily sees that Σ(ωn,k) naturally

has ∼ 1/ iωn asymptotic behaviour and is defined for all Matsubara frequencies.

5.2.3 Propagator formula

When applying the DCA to the many-body problem it is convenient to merge to-

gether all the steps following in the procedure from the new selfenergy estimate to the

propagator (namely steps 3., 4. and 1.) as it is done in the momentum DCA in (5.9).

Here one uses a new estimate of Σ(ωn,K) and information about the environment

ρ0
K(E) to obtain the G(ωn,K) in one integral equation. Similar compact expression

is of course convenient in the frequency DCA as well.
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Derivation of the formula

From a definition of the Fourier transform the projected propagator reads

G(T ,k) =
1

β

∑
ωn

G(ωn,k) e− iωnT . (5.24)

Using the frequency parametrisation (5.20) we can decompose the summation over

Matsubara frequencies,

G(T ,k) =
1

β

∑
Ωl

∑
m

e− i Ωl T

G−1
0 (Ωl +m∆Ω,k)− Σ(Ωl,k)

sin( 1
2

∆T Ωl)
1
2

∆T (Ωl+m∆Ω)

. (5.25)

For G(T ,k) we can write

G(T ,k) =
1

β

∑
Ωl

G(Ωl,k) e− i Ωl T . (5.26)

From (5.25) and (5.26) it follows

G(Ωl,k) =
∑
m

G(Ωl +m∆Ω,k) =

=
∑
m

1

G−1
0 (Ωl +m∆Ω,k)− Σ(Ωl,k)

sin( 1
2

∆T Ωl)
1
2

∆T (Ωl+m∆Ω)

, (5.27)

which is the searched expression for G(Ωl,k).

Summation over frequencies

The summation in (5.27) is infinite. Since it is very difficult to find any analytical

expression for it, it is problematic to evaluate this summation numerically. We should

therefore look for some approximation. It could be convenient to replace in the

summation from some point M/2 the full propagator by a bare one. The summation

then reads

G(Ωl,k) =

M/2∑
m′=−M/2

G(Ωl +m′∆Ω,k)−G0(Ωl +m′∆Ω,k) +

+
∑
m

G0(Ωl +m∆Ω,k) . (5.28)
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Our task is now to evaluate

G0(Ωl,k) =
∑
m

G0(Ωl +m∆Ω,k) =
∑
m

1

i Ωl +m i ∆Ω− ξ(k)
. (5.29)

We will do this using the standard procedure of integration in the complex plane∮
g(z)

z − ξ(k)
dz = 0 , (5.30)

where function g(z) reads

g(z) =
1

1 + e−βz
= 1− f(βz) . (5.31)

To have the poles of g(z) in the correct Matsubara frequencies, we introduce the phase

shift iφ(Ωl)

β

NΩ

(i ω̃n + iφ(Ωl)) = i π(1 + 2m) , m ∈ Z , (5.32)

iφ(Ωl) = i
π

β
NΩ − i Ωl . (5.33)

After the summation over the poles we obtain

0 =
NΩ

β

∑
m

1

i Ωl +m i ∆Ω− ξ(k)
+ 1− f

(
β
NΩ

(ξ(k) + iφ(Ωl))
)
, (5.34)

so we finally for the bare propagator write

G0(Ωl,k) = − β
NΩ

[
1− f

(
β
NΩ

(ξ(k) + iφ(Ωl))
)]

. (5.35)

The equation (5.28) thus reads

G(Ωl,k) =

M/2∑
m′=−M/2

G(Ωl +m′∆Ω,k)−G0(Ωl +m′∆Ω,k) +

− β
NΩ

[
1− f

(
β
NΩ

(ξ(k) + iφ(Ωl))
)]

, (5.36)

which is the searched approximation of the propagator formula (5.27).
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Figure 5.3: Figure illustrates analytical properties of Σ(Z,k) and Σ(z,k). The
Σ(Z,k) is a periodical function along the imaginary axis and a sign of Im Σ(Z,k)
changes as shown. The Σ(z,k) is defined by (5.39) and due to the convenient sign
properties of sin(1

2
∆T ImZ)/(1

2
∆T Im z) the imaginary part Im Σ(z,k) has the cor-

rect sign in upper and lower half-plane.

5.2.4 Causality

Here we discuss the causality of the Matsubara DCA. The iteration scheme consists

of four steps (see Fig. 5.2) which we will comment step by step. We find it convenient

to start from the step two:

2. We assume that the selfenergy approximation is causal, i.e., it produces causal

Σ(Ωl,k) if the input G(Ωl,k) is causal as well. The solution is periodical in the

Matsubara frequencies with a period ∆Ω. By causality we mean here that the

analytically continued Σ(Z,k) has a property

Im Σ(Z,k) < 0, ImZ ∈ (0, i ∆Ω
2

) +m i ∆Ω, m ∈ Z, (5.37)

Im Σ(Z,k) > 0, ImZ ∈ (− i ∆Ω
2
, 0) +m i ∆Ω, m ∈ Z, (5.38)

which reveals Fig. 5.3.

3. The periodical selfenergy Σ(Ωl,k) is transformed from the finite set of Matsub-

ara frequencies to the Σ(ωn,k) on the imaginary axis using the formula (5.23).
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This is equivalent to the continuation of the selfenergy Σ(Ti,k) from the discrete

points to its ∆T neighborhood. For the analytical continuation we write

Σ(z,k) = Σ(Z,k)
sin(1

2
∆T ImZ)

1
2
∆T Im z

. (5.39)

Here we demand Im Σ(z) ≷ 0 for Im z ≶ 0. This is trivially fulfilled, be-

cause the sign of sin(1
2
∆T ImZ)/(1

2
∆T Im z) periodically changes together

with Im Σ(Z,k), so the sign of a product keeps correct as is illustrated in Fig. 5.3.

4. This step is the Dyson equation solved on infinite set of Matsubara frequencies

in the complex plane. There is no violation of the causality from the definition.

1. In this step we project G(ωn,k) back to the finite set of the Matsubara frequen-

cies G(Ωl,k) using the formula (5.18). At this point we demand a periodical

property

ImG(Z,k) < 0, ImZ ∈ (0, i ∆Ω
2

) +m i ∆Ω, m ∈ Z, (5.40)

ImG(Z,k) > 0, ImZ ∈ (− i ∆Ω
2
, 0) +m i ∆Ω, m ∈ Z. (5.41)

Let us show this for a bare propagator first. For G0(Z,k) we can write

G0(Z,k) =
∑
m

1

i ∆Ω
2

2m− (ε(k)− ReZ − i ImZ)
. (5.42)

Performing the summation over frequencies i ∆Ω
2

2m as in equation (5.35) we

come to the expression

G0(Z,k) =
β

NΩ

[
exp

(
− β
NΩ

(ε(k)− ReZ)
)

cos( β
NΩ

ImZ)− 1 +

+ i exp
(
− β
NΩ

(ε(k)− ReZ)
)

sin( β
NΩ

ImZ)
]−1

. (5.43)

As one can see G0(Z,k) has the desired property. Along the imaginary axis

the sign of the imaginary part is changing in proper way with zero values at

ImZ = 0 and ∆Ω/2.

For the full propagator we have

G(Z,k) =
∑
m

1

i ∆Ω
2

2m+ Z − ε(k)− Σ(Z)
sin( 1

2
∆T ImZ)

1
2

∆T Im z

. (5.44)
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Closer observation confirms the former properties of G0(Z,k) without the ex-

act calculation. The imaginary part Im Σ(z,k) supports the Im z for ∀Z and

sin(1
2
∆T ImZ)/(1

2
∆T Im z) vanishes at Im z = 0 and ∆Ω/2.

With this we finish the discussion and conclude that the Matsubara DCA does not

violate causality in any step of the iteration scheme.

5.2.5 Unified DCA

By a unified DCA we mean a many-body problem solving procedure, which is a

union of the proposed momentum and frequency DCA procedures. Making a combina-

tion of expressions (5.9) and (5.27) we get the resulting set of equations for estimating

a new G(Ωl,K) from Σ(Ωl,K) using parameters temperature β and density of states

ρ0
K(E).

The resulting set of equations is very simple and reads

Σ(Ωl +m∆Ω,K + k̃) = Σ(Ωl,K)
sin(1

2
∆T Ωl)

1
2
∆T (Ωl +m∆Ω)

, (5.45)

G(Ωl +m∆Ω,K) =
2

uK

[
ξ − vK
uK

−

√(
ξ − vK
uK

)2

− 1

]
, (5.46)

where we for ξ write

ξ = i(Ωl +m∆Ω)− Σ(Ωl +m∆Ω,K + k̃) . (5.47)

Finally the propagator is

G(Ωl,K) =
∑
m

G(Ωl +m∆Ω,K) , (5.48)

which can be approximated in a similar way as (5.36).



Chapter 5: Numerical methods 41

5.3 Higher order approximations of the selfenergy

in the DCA

The DCA is based on the idea of approximating the selfenergy by a step function

on a continuous interval. Apparently, this is the first of a whole series of approxi-

mations based on the difference expansion. Here we propose a method, how to use

higher order difference expansions on subintervals to approximate the selfenergy in

the DCA. This could be a convenient improvement of the scheme.

The section is organised in a following way. First we will introduce the basic ideas

and illustrate them on the example of the momentum DCA. Then we will discusses

the case of a frequency DCA. Finally application of this concept to a unified DCA

will be proposed.

5.3.1 Momentum DCA

In the standard momentum DCA, the selfenergy is in the Brillouin zone approx-

imated by a constant function on subintervals labeled by K. The momentum k is

then decomposed as k = K + k̃ and the selfenergy reads

Σ(ωn,k) = Σ(ωn,K + k̃) = Σ(ωn,K) . (5.49)

The most important observation here is that the approximation (5.49) can be inter-

preted as a zeroth order difference selfenergy expansion in momentum. First order

expansion is then

Σ(ωn,k) = Σ(ωn,K) + Σ′(ωn,K) · k̃ , (5.50)

where matrix elements of the vector Σ′ are defined as the difference

Σ′i(ωn,K) =
Σ(ωn,K + ∆Ki)− Σ(ωn,K−∆Ki)

2|∆K|
. (5.51)

If the system is isotropic it is of course convenient to use an energetical represen-

tation. Let εK be a set of ε(K) energies ordered according to its value. One can to

the first order write

Σ(ωn, E) = Σ(ωn, εK) + Σ′(ωn, εK) (E − εK) , (5.52)
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with scalar coefficients

Σ′(ωn, εK) =
Σ(ωn, εK+1)− Σ(ωn, εK−1)

εK+1 − εK−1

. (5.53)

This approximation of the selfenergy is used to construct a new G(ωn,K). Let

us show now that for a semielliptical density of states the integration can be done

analytically even when we use the first order approximation of the selfenergy. We

start from the definition

G(ωn,K) = Nc

∫
ρ0
K(E) dE

iωn − E − Σ(ωn, εK)− Σ′(ωn, εK)(E − εK)
. (5.54)

After the rearrangement

G(ωn,K) =
Nc

1 + Σ′(ωn, εK)

∫
ρ0
K(E)

iωn−Σ(ωn,εK)+Σ′(ωn,εK)εK
1+Σ′(ωn,εK)

− E
dE , (5.55)

which we can write in a general form

G(ωn,K) =
1

1 + Σ′(ωn, εK)
G0(α(ωn,K),K) . (5.56)

Here

α(ωn,K) =
iωn − Σ(ωn, εK) + Σ′(ωn, εK)εK

1 + Σ′(ωn, εK)
. (5.57)

We can readily use the semielliptical density of states (5.6) to get the final expres-

sion for the propagator

G(ωn,K) =
1

1 + Σ′(ωn, εK)

2

u(K)

[
α(ωn,K)− v(K)

u(K)
+

−

√(
α(ωn,K)− v(K)

u(K)

)2

− 1

]
. (5.58)

In general it can be quite difficult to find analytical formula for the propagator, when

using higher order approximations. On the other hand there is no dramatical enhance-

ment of complexity of the numerical integration if the higher order approximation is

used.
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5.3.2 Frequency DCA

In the case of the frequency DCA the selfenergy can be to the second order in

time subinterval approximated in a similar way

Σ(τ,k) = Σ(T ,k) + Σ′(T ,k)(τ − T ) +
1

2
Σ′′(T ,k)(τ − T )2 , (5.59)

with coefficients

Σ′(T ,k) =
Σ(T + ∆T ,k)− Σ(T −∆T ,k)

2∆T
, (5.60)

and

Σ′′(T ,k) =
1

∆T 2

(
Σ(T + ∆T ,k)− 2Σ(T ,k) + Σ(T −∆T ,k)

)
. (5.61)

The Fourier transform of the selfenergy is

Σ(ωn) = ∆T
∑
T

∫ T + 1
2

∆T

T − 1
2

∆T
Σ(τ) eiωnτ dτ . (5.62)

Transforming (5.59) we obtain

Σ(ωn,k) = ∆T
∑
T

Σ(T ,k) eiωnT 1

∆T

∫ + 1
2

∆T

− 1
2

∆T
eiωnτ dτ +

+ ∆T
∑
T

Σ′(T ,k) eiωnT 1

∆T

∫ + 1
2

∆T

− 1
2

∆T
τ eiωnτ dτ +

+
1

2
∆T

∑
T

Σ′′(T ,k) eiωnT 1

∆T

∫ + 1
2

∆T

− 1
2

∆T
τ 2 eiωnτ dτ . (5.63)

The integrals equal to

1

∆T

∫ + 1
2

∆T

− 1
2

∆T
eiωnτ dτ =

sin(1
2
∆T ωn)

1
2
∆T ωn

= W
(

1
2
∆T ωn

)
, (5.64)

1

∆T

∫ + 1
2

∆T

− 1
2

∆T
τ eiωnτ dτ =

i

ωn

(
W (1

2
∆T ωn)− cos(1

2
∆T ωn)

)
=

i

ωn
Y
(

1
2
∆T ωn

)
,

(5.65)
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and

1

∆T

∫ + 1
2

∆T

− 1
2

∆T
τ 2 eiωnτ dτ =

2

ω2
n

Y (1
2
∆T ωn)− (1

2
∆T )2W (1

2
∆T ωn) . (5.66)

One can observe that W (1
2
∆T ωn) and Y (1

2
∆T ωn) have correct limits

W (1
2
∆T ωn)→ 1, Y (1

2
∆T ωn)→ 0, for ∆T → 0 . (5.67)

For Fourier transform of differences we write

∆T
∑
T

Σ(m)(T ,k) ei ΩlT = (− i Ωl)
m Σ(Ωl,k) . (5.68)

Using these results the final form for selfenergy to the second order reads

Σ(ωn,k) = Σ(Ωl,k)
{
W (1

2
∆T ωn) + Ωl

ωn
Y (1

2
∆T ωn) +

− 1
2
Ω2
l

(
2
ω2

n
Y (1

2
∆T ωn)− (1

2
∆T )2W (1

2
∆T ωn)

)}
, (5.69)

where we have used the decomposition iωn = i Ωl +m i ∆Ω.

In this chapter we have proposed theoretical improvements of the DCA concept.

Some of them were used in our numerics. In the next chapter we will discuss results

of the study of the boron-doped diamond.
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Results

In this chapter we are going to present our results of the study of the two proposed

topics. In the first part of the chapter the dependence of the Tc on the boron doping

is discussed. Its conclusions are then used in the second part, where we pay attention

to the impact of the boron distribution correlations on the Tc

6.1 Dependence of the critical temperature on boron

doping

Since we focus ourselves only on the impact of the disorder on the Tc through

the change of the N0, we can divide the studied problem into two. First we will pay

attention to the computation of the band structure, mainly the N0 as a function of

the boron concentration x. Then we will use the obtained N0(x) to reproduce the

experimental data of the superconducting transition.

6.1.1 Density of states

Now we establish the density of states at the Fermi energy N0 as a function of the

boron concentration x. The process of metallization in the boron-doped diamond was

in the literature already discussed both experimentally and theoretically. [YNM+05,

PL05] Pogorelov and Loktev [PL05] have focused on the fact that the diamond band

45
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structure is at the top of the valence band triply degenerate. They have studied the

possible changes of the impurity band if the boron was hybridized only to one or to

all three valence bands. Despite to these effects given by the triple degeneracy of

the top of the valence band, we employ here the proposed one-band tight-binding

Hamiltonian (4.9), since we believe it reflects the basic physical properties of the

studied system.

The parameters of the hamiltonian (4.9) are fitted according to the facts that the

valence band is 22 eV wide and the single impurity bound state appears at energy

0.37 eV above the valence one. Using the local Green function corresponding to the

density of states (5.5), we come to δ = 8.91 eV.

We determine the Fermi energy level from a condition for a local averaged density

of electrons at zero temperature nσ =
∫∞
µ
ρ(E) dE = x/2. We are aware that a

measured number of charge carriers can differ significantly from a number deduced

from the concentration of boron atoms in the sample. As has recently been pointed

out by Mukuda et al [MTH+07] quite a large fraction of boron atoms can form the

neutral B-H complexes, reducing the concentration of charge carriers. On the other

hand Klein et al [KAK+07] found that the effective number of carriers deduced from

Hall-effect measurements was much larger than the number of boron atoms in samples.

Since the charge carrier concentrations for all samples are not accessible we assume

for simplicity the films to be doped ideally.

We have evaluated N0 within the DCA for clusters of 2× 2× 2 atoms on a cubic

lattice. Compared to the CPA density of states employed by Shirakawa et al , our

cluster density of states includes nontrivial corrections given by bonding and anti-

bonding states at neighbour impurity sites. Difference between the CPA and DCA

density of states in the impurity band is illustrated in figure 6.1 for 5% of boron

doping.

Within the CPA (dashed line) the impurity band yields rather featureless density

of states having a slightly skewed semielliptic shape. The valence band starts approx-

imately at an energy of −1.5 eV and ends at −23 eV. We focus on the impurity band

because the Fermi energy, E = 0, lies there. Since boron is an acceptor, its bound

states have higher energy than extended states in a valence band.
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Figure 6.1: Impurity band of the density of states N as a function of energy E
computed at x = 0.05 doping using the CPA and the DCA on the cluster of 2× 2× 2
atoms.

Figure 6.2: Density of states at the Fermi energy N0 as a function of boron concen-
tration x computed using the CPA method and the DCA on the cluster of 2× 2× 2
atoms. The figure includes dashed curves NCPA

0 ≈ 0.59x0.568 × 1023 cm−3eV−1 ap-
proximating CPA and NDCA

0 ≈ 0.59x0.523× 1023 cm−3eV−1 for DCA. In most regions
approximations are indistinguishable from computed results within the linewidths.
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In the DCA (solid line) one can distinguish additional contributions of two and

three boron clusters. Clusters of four to eight borons are also included, but their

contributions are invisible for the given concentration. The main part of the impurity

band density of states is formed by a bound state on a single boron. A shoulder

on the right side of the impurity band results from a symmetric bound state of two

neighbouring borons. The nonsymmetric state is not bounded but forms a resonant

state visible in the valence band. The tree boron bound state is splited off at an energy

2.8 eV. Higher states of the three boron clusters make a negligible contribution.

With respect to superconductivity the Fermi energy region is the most important.

As one can see the density of states at E = 0 is dominated by the single boron states.

This is a reason why the CPA and DCA give comparable N0.

The resulting density of states at the Fermi level N0 is presented in figure 6.2.

For comparison we also show the CPA result. One can see that the DCA density of

states is higher than the CPA value at all impurity concentrations. Both resulting

densities with a good accuracy obey power-law, NDCA
0 ≈ 0.59x0.568 × 1023 cm−3eV−1

and NCPA
0 ≈ 0.59x0.523 × 1023 cm−3eV−1 . A very good approximation by power-law

also holds for the distance of the Fermi level from the top of the impurity band,

ωC ≈ 45.5N0
1.18 eV for the DCA.

6.1.2 Critical temperature

In this subsection we discuss the concentration dependence of the critical tem-

perature Tc. Since there are significant differences in Tc between type 111 and 100

samples (see Figure 2.1) we discuss them separately. Let us first focus on the 100

together with HPHT samples.

To be able to implement the Belitz theory we need the coupling strength λ and

the pseudopotential µ as functions of N0. The coupling strength λ we deduce from

ab initio computations. In literature one finds the studies within the virtual crystal

approximation and the supercell method. These data are summarized in the Table

A.1 in Appendix A. In figure 4.3 we show fit of ab initio results by formula (4.7).

We found that parameters U = 13.61 × 10−23 cm3eV and Q = 17.58 × 10−23 cm3eV
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Figure 6.3: Electron-phonon coupling λ as a function of boron concentra-
tion x. The ploted data represent results of ab initio computations using su-
per cell method [BAC04, GYS+07, XLY+04] and virtual crystal computations
[BKA04, LP04, MTC+05]. Solid line is the Morel-Anderson formula (4.7) with
U = 13.61 × 10−23 cm3eV and Q = 17.58 × 10−23 cm3eV. Densities of states have
been associated to individual computations via DCA results shown in figure 6.1.

yield a reasonable fit of rather scattered computed values. In the fit we have ignored

the virtual crystal approximation values which are less accurate than the supercell

results.

It remains to establish the pseudopotential µ. According to formula (4.6) we have

to find a single parameter Vc, which determines µ for all concentrations. Dots in

figure 6.4 show values of µ deduced from the Belitz theory and experimental values

of Tc. One can see that all dots stay close to a line given by formula (4.6) with

Vc = 0.83× 10−23cm3eV. The parameter Vc holds for all concentrations and it is the

only material parameter fitted to experimental values of Tc in the present theory.

Now all relations and parameters are ready for predictions of the critical temper-

ature. The concentration dependence of Tc of 100 and HPHT samples given by the

Belitz formula (4.3) and power-law approximation of the DCA value of N0 is shown in

figure 6.5. As one can see, the theory describes a steep increase of Tc with doping at

the region of small concentrations. At higher concentrations the critical temperature
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Figure 6.4: Coulomb pseudopotential µ as a function of density of states N0 of boron-
doped diamond. Full (empty) symbols are values of µ deduced by Belitz (McMillan)
formula from 100 and HPHT experimental data – see the figure 2.1. The full symbols
fall close to the solid line of the theoretical pseudopotential (4.6) with the Coulomb
strength Vc = 0.83 × 10−23 cm3eV and the empty symbols are well reproduced with
Vc = 3.85× 10−23 cm3eV.

saturates at about 3 K. This saturation reminds trends described by the theory of

Osofsky et al [OSC+01] based on a heuristic rescaling of the BCS parameters.

For comparison we also show the value predicted by the Belitz theory for the CPA

density of states. As one expects from the lower density of states, the CPA leads to

lower values of Tc, namely in the region of small concentrations. Our results thus

confirm a trend predicted by Shirakawa et al that corrections beyond the CPA will

lead to higher Tc.

We would like to emphasis that the disorder corrections by Belitz are necessary for

a good agreement between experimental data and theory. It can be seen from attempt

to the fit Tc with the McMillan formula as shown in figure 6.5. In the comparison

we have not used the pseudopotential µ fitted within the Belitz theory, but made a

separate fit directly from the McMillan formula, see figure 6.4.

Finally we show that the boron-doped diamond has to be treated as a strong

coupling superconductor. In figure 6.6 we show 100 experimental Tc data and its
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Figure 6.5: Critical temperature Tc of 100 and HPHT samples as a function of boron
concentration x. Symbols are data as in figure 2.1. Thick (thin) solid line is a result
given by the Belitz theory using the DCA (CPA) density of states. Results of the
McMillan theory are in dashed lines.

description with the BCS formula Tc = 1.14 exp (−1/N0VBCS) , where VBCS = 1.30×
10−23 cm3eV is the BCS interaction. Apparently, the BCS theory yields an incor-

rect concentration dependence. It is noteworthy how much the corrections beyond

the CPA increase Tc within the BCS theory. In the strong coupling theory these

corrections are smaller by an order of magnitude.

In the case of 111 samples we fit the λ as U = 14.5 × 10−23 cm3eV and Q =

23.15 × 10−23 cm3eV. We obtain Vc = −0.25 × 10−23 cm3eV for the Belitz formula,

respectively Vc = 1.99× 10−23 cm3eV for the formula of McMillan. As one can see, in

the case of 111 samples the Belitz theory fails, giving negative Vc, and the McMillan

formula produces quite high Vc with µ∗ = 0.15 at x = 0.1. Reason for the failure of the

Belitz theory is a too big strength of the correction Y ′. This shows difficulties of the

extension of the theory for alloys to doped semiconductors. As was said already, all

the superconducting properties of the material are given by the disorder. Therefore it

turns out to be problematic to calculate the correct magnitude of the Y ′ term, since

it originally represents only corrections to the clean limit.

If we according to Morel and Anderson [MA62b] estimate the value of µ? in the
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Figure 6.6: Failure of the BCS approach to the boron-doped diamond. While experi-
mental data (symbols) show decreasing slope of Tc as a function of boron concentration
x, the BCS theory (dashed lines) predicts steeply increasing slope. The parameter
VBCS = 1.30×10−23 cm3eV was fitted within the DCA N0 computations. Thick (thin)
line is given by the DCA (CPA) N0 results.

limit of well developed band at x = 0.1 to be µ? = 0.12, we can set the strength of

the Y ′ as a free parameter α

Y ′ = α(2λ− µ) . (6.1)

Using the equation (6.1) we then obtain Vc = 1.59× 10−23 cm3eV and α = 0.14. The

comparison of these results with the McMillan formula reveals figure 6.7.

6.2 Impact of the boron distribution correlations

on the critical temperature

At the beginning of the discussion we specify the used model. We take Tc to be

dependent on the disorder via N0 in the λ and µ. Therefore the correlations of boron

distribution influence the Tc as well only through the changes in the band structure.

For the description of boron correlations we use the distribution function (4.41) that

has two parameters x and θ. The parameter θ ∈ 〈0,∞) increases the probability of



Chapter 6: Results 53

Figure 6.7: Figure shows the Tc concentration dependence of 111 samples. Solid
line reproduces the data using the Belitz formula with Y ′ corrected according to
(6.1) and µ? asymptotically set to µ? = 0.12. Using U = 14.5 × 10−23 cm3eV and
Q = 23.15 × 10−23 cm3eV we obtain Vc = 1.59 × 10−23 cm3eV with α = 0.14. For
comparison we plot the McMillan formula represented by the dashed line where Vc =
1.99× 10−23 cm3eV.

boron dimers, which are in the literature considered as a stable configuration.

Figures 6.8 a) and b) illustrate the impact of boron correlations on the band

structure. In both cases we have nB = 0.05 and we have employed the DCA on the

cluster of 2×2×2 sites. The figure 6.8 a) reveals the DOS of weakly correlated boron

distribution with θ = 4. The lower figure 6.8 b) shows the impurity band structure

of strongly correlated distribution for θ = 34. In both cases the thick line represents

the density of states and thin lines its decomposition into contributions according

to number of boron atoms in cluster configurations. The noncorrelated distribution

density of states was discussed in the figure 6.1 already. Thus we pay attention only

to changes caused by the attractive boron correlation here.

Comparison of the weakly correlated DOS and the non-correlated one shows that

increasing of the boron correlation enhances number of states associated with bonding

and antibonding states on boron dimers. Since the main part of the impurity band

density of states is formed by a bound state on a single boron, with enhancing of
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attractive correlations theN0 decreases. For strong correlations larger clusters become

the most frequent boron configuration, see figure 6.8 b), and the N0 trends can get

more complicated. The N0 as a function of x for some values of θ reveals figure 6.9.

Having obtained the N0(x) for correlated distributions with arbitrary θ we can

study the impact on the Tc. Let us first clarify the model again. From the NMR study

of boron-doped diamond films it follows that 111 films tend to have smaller fraction of

passive boron complexes than 100. [MTH+07] From ab initio computations it seems

to be very likely that at least boron dimers are energetically more favourable than

single borons and sample prepared by an equilibrium method should contain a large

fraction of them. Noting this, we can in simple first-step model divide the present Tc

experimental data into two groups – 111 films and 100 + quasi-equilibrium HPHT

samples – approximating the 111 films as the case with noncorrelated boron sites and

100 + HPHT samples as containing correlated boron complexes.

As noted already we assume parameters U , Q, Vc in λ and µ to be correlation

independent. Thus we can reproduce the trends of the concentration dependence

of Tc of 111 and 100 + HPHT data for one set of parameters obtaining the N0(x)

dependence in noncorrelated and correlated (θ = 34) case. To obtain the Tc we use

the McMillan formula. The figure 6.7 reveals that the McMillan formula is sufficient

for the description of the 111 samples and absence of the disorder corrections allows

to study just the impact of correlations. Results are shown in figure 6.10, where

U = 21.6, Q = 53.9 and Vc = 1.0. From the figure one can see that for small

boron densities the model reproduces the experimental Tc data well and thus suggests

that the presence of the correlations in boron distribution could be the important

parameter responsible for different Tc of distinct types of samples.
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Figure 6.8: The density of states for correlated boron distribution with nB = 0.05 and
θ = 4, respectively θ = 34 in figure a), respectively b). The thick line represents the
DOS and thin lines its decomposition into contributions according to number of boron
atoms in cluster configurations. In the case of weakly correlated distribution the most
frequent boron configurations are single-boron and boron dimer configuration. In the
case of strongly correlated distribution it is the configuration with single-boron and
eight-boron cluster.
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Figure 6.9: The N0 as a function of boron concentration nB for several correlation
strengths θ. For weak correlations the presence of states associated with boron dimers
always lowers the N0. In the strongly correlated cases larger clusters of boron atoms
become frequent and the N0 dependence can get more complicated.

Figure 6.10: Figure illustrates the impact of boron distribution correlations on the Tc.
The solid line is the McMillan formula with U = 21.6, Q = 53.9 and Vc = 1.0 using
a noncorrelated N0. The dashed line was obtained using the same parameters but
correlated N0 with θ = 34. As one can see, for small boron concentrations the trends
follow the experimental data, suggesting that the boron distribution correlations could
be the reason for the difference of the Tc in distinct types of samples.



Chapter 7

Conclusion

In this chapter we make the final conclusions. We divide them into two sections

according to the studied problem. First we conclude the study of the dependence of

the Tc on boron doping and then the study of the impact of the boron distribution

correlations on the Tc.

7.1 Dependence of the critical temperature on boron

doping

We have discussed corrections beyond the CPA to the density of states in diamond

doped with boron. From numerical studies of the DCA with cluster of 2×2×2 atoms,

it follows that these corrections increase the density of states at the Fermi level,

see figure 6.2. This causes an increase of the critical temperature as predicted by

Shirakawa et al [SHOF07], however in the extent, which is not sufficient to reproduce

the experimental data. This shows figure 6.6.

Comparing different approximations we have shown that the strong coupling the-

ory is necessary to predict the realistic critical temperature. It is shown that the

disorder corrections of Belitz improve agreement with 100 and HPHT experimental

data – see figure 6.5 – reproducing trends observed by Osofsky et al [OSC+01]. In

the case of the 111 samples the Belitz corrections calculated by the proposed method
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turn out to be too strong and the McMillan formula is found to be sufficient for

reproducing the experimental data as is shown in figure 6.7.

7.2 Impact of the boron distribution correlations

on the critical temperature

We have studied, how boron distribution correlations influence the density of

states of boron-doped diamond. For the numerical studies we have again used the

DCA with cluster of 2× 2× 2 atoms. From the results shown in figure 6.8 it follows

that the weak attractive boron correlations lower the N0. This is in agreement with

the ab initio studies, claiming that the boron dimers create inactive levels that do not

contribute to N0. For stronger correlations larger boron complexes become frequent

and states associated with them can influence the N0 as well. This reveals figure 6.9.

Figure 6.10 shows that using the McMillan formula, we can for one set of inter-

action parameters reproduce the Tc trends of both 111 and 100 + HPHT samples

using N0 of noncorrelated and correlated density of states. This suggests that the

boron distribution correlations could be the explanation for the difference of the Tc

in distinct types of samples.



Part II

Conserving T-matrix theory of

superconductivity
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Chapter 8

Introduction

Many problems of contemporary condensed-matter physics are so complex that

it is believed, their full solution cannot be found. Among such problems one counts

systems with multiple collisions would they be with impurities in disordered material

of a particles in many-body systems. In these cases one looks for some approximative

theory capable of a sufficient description. Frequently used and successful concept is

a T-matrix approximation.

In a case of alloys the basic question concerns propagation of a particle through

a disordered medium. The T-matrix is defined as an amplitude containing a sum of

all possible successive interactions of a wave with some impurity atom. Interaction

of the wave with the whole crystal is then described by T-matrix elements from all

impurities. Many successful theories were based on the analysis of the T-matrix

faithfully describing properties of alloys [VKE68].

The problem of many-body interacting systems exceeds by its complexity the

problem of impurity scattering in alloys, nevertheless the concept of T-matrix can

be employed also to the case of two-particle interaction. In this field a formalism of

many-body Green’s functions is widely used and T-matrix plays a role of an object

describing the two-particle correlations [BK61]. This approximation is justified for

dilute systems, but it is used for dense systems too.

In literature one finds various approximations based on the T-matrix. They differ

in the Pauli blocking, in the relation between the T-matrix and the single-particle
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spectrum and the level of selfconsistency. The approach we have in mind is known as

the Galitskii-Feynman (GF) approximation. The Galitskii-Feynman theory is widely

used in a nuclear physics for both equilibrium [KM93, Bdz99] and non-equilibrium

[LMŠ01] problems, in the theory of dilute gases, liquid 3He [GBS76], and in studies

of electron-electron correlations in molecules and solids [Tou70, GKSB99].

In spite of many achievements in other fields the Galitskii-Feynman approximation

isn’t able to describe the superconducting phase. Although it becomes unstable at

the critical temperature [BSI75] and the T-matrix diverges there, the GF selfenergy

constructed from the T-matrix fails to describe the superconducting gap. For this

purpose a simplified version of T-matrix approximation was proposed by Kadanoff

and Martin [KM61]. In the Kadanoff-Martin (KM) approach the interacting particles

of the pair in the T-matrix ladder are not described on the same footing. This in

the Green’s functions formalism means that one particle is treated selfconsistently

and other non selfconsistently. Kadanoff-Martin approximation is used exclusively

in the theory of superconductivity [JML97, MJL99, CCHL07]. In other fields its

non-symmetry is viewed as unjustified and unacceptable.

The paradox that the worse approximation (KM) works well while the better one

(GF) fails was first noticed by Prange [Pra60] and Wild [Wil60] prior to the work

of Kadanoff and Martin. The origin of this paradox lies in the fact that the GF

approximation includes processes which block a formation of the gap, while the KM

is free of them. Apparently GF should be revised with respect to this observation.

We will show that processes which in the GF block the creation of the gap represent

nonphysical processes inherently present in the theory. On the basis of this knowledge

we will propose a new T-matrix approximation, which from the GF subtracts just

these nonphysical processes. The nonphysical processes form a vanishingly small

fraction in the normal phase. Therefore, in the normal state the present theory differs

from the GF theory by negligible terms. When the condensate appears however, they

play an important role and their subtraction enables formation of the superconducting

gap in the selfenergy. The revised T-matrix approximation is therefore a unified

theory describing both normal and superconducting phase, from which nontrivial

conclusions about the nature of the superconducting state can be derived.



Chapter 8: Introduction 63

Like for the Bose-Einstein condensate a very important property of the super-

conducting condensate is its stability. According to Landau the stability demands

blocking of a creation of fluctuations that would dissipate an energy. This is caused

by specific dispersion relation of excitations above the condensate, which significantly

differs from a general dependence quadratic in momenta.

In a case of the superconducting condensate there are two possible kinds of exci-

tations. The well known and thoroughly studied are fermionic quasiparticles, which

appear in pair and are associated with breaking of the Cooper pair. Much less is

known about excitations of the Cooper pair out of the condensate.

The fermionic type of excitations is restricted by the energy gap ∆. The question

is, what restricts the non-condensed Cooper pairs. The BCS theory gives no answer to

this, because non-condensed pairs are not assumed at all. In the KM approximation

the non-condensed pairs appear, but their excitation spectrum is parabolic like in

non-interacting Bose gas. The KM approximation thus in fact does not describe the

superconductivity since the condensate is unstable. [LCCH10]

We will show that contrary to the KM approximation the reformulated T-matrix

theory not only describes the gap ∆ but also produces another energy gap in the

spectra of Cooper pairs. We can therefore conclude that the reformulated T-matrix

theory describes a stable superconducting condensate.

In the following Chapter 9 we will introduce the Galitskii-Feynman and Kadanoff-

Martin approximation. In Chapter 10 we discuss the nonphysical processes present

in the GF and then propose a new T-matrix theory. Chapter 11 includes results and

conclusion.



Chapter 9

Review of T-matrix theories

In this chapter we are going to review two T-matrix theories, namely the Galitskii-

Feynman approximation and Kadanoff-Martin approximation. We will observe that

both of them fail in description of the rigid superconducting condensate. To introduce

the concept of T-matrix, first we will derive it as an approximate solution of equations

of motion.

9.1 Equations of motion

Let us consider a many-particle system, which is governed by the hamiltonian

Ĥ(τ1) =
1

Ω

∑
σ=↑, ↓

∑
k1

k2
1

2m
â†σ(τ1,k1) âσ(τ1,k1) +

+
1

Ω2

∑
k1,k2

∫ β

0

dτ2 â
†
↑(τ1,k1) â†↓(τ2,k2)×

× V(|τ1 − τ2|, |k1 − k2|) â↓(τ2,k2) â↑(τ1,k1) , (9.1)

where potential V is translationally invariant in time and space and Ω is a quantized

volume. We define the one-particle Green’s function G↓(τ1,k1; τ2,k2) as

G↓(τ1,k1; τ2,k2) = −

〈
T {â↓(τ1,k1) â†↓(τ2,k2) σ̂(β)}

〉
〈σ̂(β)〉

, (9.2)
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Here 〈. . .〉 is the symbol of grandcanonical averaging and σ̂(β) stands for the evolution

operator – see (B.1) and (B.15) in Appendix B. By derivation of the one-particle

Green’s function with respect to τ1 one obtains an equation of motion [KB62]

G0−1
↓ (τ1,k1)G↓(τ1,k1; τ2,k2) = δ(τ1 − τ2) δ(k1 − k2) +

+
1

Ω

∑
k3

∫ β

0

dτ3 V(|τ1 − τ3|, |k1 − k3|)G2 ↓↑(τ1,k1; τ−3 ,k3; τ2,k2; τ+
3 ,k3) , (9.3)

where for the free propagator G0 is

G0−1
↓ (τ1,k1) =

∂

∂τ1

− k2
1

2m
+ µ , (9.4)

and a two-particle propagator G2 reads

G2 ↓↑(τ1,k1; τ2,k2; τ3,k3; τ4,k4) =

= −

〈
T {â↓(τ1,k1) â↑(τ2,k2) â†↓(τ3,k3) â†↑(τ4,k4) σ̂(β)}

〉
〈σ̂(β)〉

. (9.5)

For the two-particle Green’s function one can derive a similar equation of motion,

where a three-particle propagator G3 appears. Apparently (9.3) is a first of a whole

infinite hierarchy of equations coupling higher and higher orders of propagators.

9.2 Galitskii-Feynman approximation

It is, in general, impossible to solve the hierarchy exactly. It is therefore usually cut

at the second order [MS59, BK61] and the two-particle propagator G2 is approximated

by some simplified equation of motion.

9.2.1 Derivation of the GF theory

The two-particle propagator G2 describes a propagation of two particles that may

be correlated by collisions. To describe these correlations to an infinite order in



66 Chapter 9: Review of T-matrix theories

potential we approximate the G2 by a solution of the Bethe-Goldstone equation

G2 ↓↑(τ1,k1; τ2,k2; τ3,k3; τ4,k4) = G↓(τ1,k1; τ3,k3)G↑(τ2,k2; τ4,k4) +

+
1

Ω2

∑
k5,k6

∫ β

0

dτ5 dτ6G↓(τ1,k1; τ5,k5)G↑(τ2,k2; τ6,k6)×

× V(|τ5 − τ6|, |k5 − k6|)G2 ↓↑(τ5,k5; τ6,k6; τ3,k3; τ4,k4) . (9.6)

Here, the correlation between particles is given by the “ladder” of interactions.

Let us combine the equations (9.3) and (9.6). If we transform these equations

from imaginary time to Matsubara frequencies, write k = (iωn,k), and shorten the

propagator notation, we arrive at the following set of equations, where the Dyson

equation is

G↑(k) = G0
↑(k) +G0

↑(k) Σ↑(k)G↑(k) (9.7)

formula for the selfenergy is

Σ↑(k) =
1

β Ω

∑
q

T↑↓(k, q − k; k, q − k)G↓(q − k) , (9.8)

and T-matrix reads

T↑↓(k, q − k; p, q − p) = V(k, q − k; p, q − p)− 1

βΩ

∑
k′

V(k, q − k; k′, q − k′)×

× G↑(k
′)G↓(q − k′) T↑↓(k′, q − k′; p, q − p) . (9.9)

We have used a translation symmetry due to which G(k, k′) = G(k) δ(k − k′) and

similarly to the selfenergy. The equations (9.7)-(9.9) are in diagrammatic form shown

in Fig 9.1.

As the interaction potential V(k, q − k; p, q − p) we use the BCS interaction

V(k, q − k; p, q − p) = V θ(k) θ(q − k) θ(p) θ(q − p) , (9.10)

where V < 0 and θ(k) are cutoff factors,

θ(k) =

1 for |ε(k)− EF| < ωD ,

0 for |ε(k)− EF| > ωD .
(9.11)
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Figure 9.1: Diagrammatic reformulation of Galitskii-Feynman approximation. Thin
(thick) line represents a bare (full) propagator. The GF approximation is thermody-
namically conserving, however it does not describe the superconductivity.

The presence of cutoffs means that only electrons with energies in a narrow range of

width 2ωD near the Fermi surface (ωD � EF) participate in the interaction.

The T-matrix then yields a form

T↑↓(k, q − k; p, q − p) = T↑↓(q) θ(k) θ(q − k) θ(p) θ(q − p) . (9.12)

For simplicity we omit writing of the θ-functions in T-matrix and interaction potential.

The equation (9.9) we then rewrite as

T↑↓(q) = V − V
βΩ

∑
k′

′
G↑(k

′)G↓(q − k′) T↑↓(q) . (9.13)

Here the prime signals restriction of the summation by the cutoff.

9.2.2 Two-particle symmetry and conservation laws

A very desirable property of every many-body theory is conservation of particle

number N , total momentum P, angular momentum L , and energy E. Baym and

Kadanoff [BK61, Bay62] studied methods, how to construct such conserving theories.

They came with two conditions on G2. The approximate G satisfies all conservation

laws, if:
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(A) the two-particle Green’s function G2 satisfies equation

1

Ω2

∑
k2,k3

∫ β

0

dτ2 dτ3G(τ1,k1; τ2,k2)V(|τ2 − τ3|, |k2 − k3|)×

× G2(τ2,k2; τ−3 ,k3; τ4,k4; τ+
3 ,k3) =

=
1

Ω2

∑
k2,k3

∫ β

0

dτ2 dτ3G2(τ1,k1; τ−3 ,k3; τ2,k2; τ+
3 ,k3)×

× V(|τ3 − τ2|, |k3 − k2|)G(τ2,k2; τ4,k4) , (9.14)

(B) the two-particle Green’s function G2 is symmetric with respect to interchange

of the upper and lower lines

G2(τ1,k1; τ2,k2; τ3,k3; τ4,k4) = G2(τ2,k2; τ1,k1; τ4,k4; τ3,k3) . (9.15)

By inspection of the diagrammatic form of equations in Fig one can easily verify

that the Galitskii-Feynman satisfies both conditions and therefore is a thermodynam-

ically conserving theory.

9.2.3 Failure in description of the superconductivity

As was mentioned already, the GF approximation is not able to describe the

superconductivity. Let us show this shortcoming.

The T-matrix (9.9) can be decomposed into channels according to the total four-

momenta q of interacting pair of particles. Below the critical temperature particles

form bound states of the Cooper pairs in one of these channels. In the absence of

currents and in equilibrium it is the channel q = (0,0). Its T-matrix T↑↓(k,−k; p,−p)
thus becomes singular being proportional to the volume Ω. This is because the T-

matrix obeys a Bose statistics which is singular right at q = 0, giving finite occupation

of the lowest state like in the Bose-Einstein condensation. For the T-matrix we thus

write

− 1

βΩ
T↑↓(k,−k; p,−p) = ∆2 . (9.16)
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Due to its singular character, the element T↑↓(k,−k; k,−k) gives an important

contribution to the selfenergy – for details see Appendix C. Neglecting the regular

part of the selfenergy we obtain

Σ↑(k) ≈ 1

βΩ
T↑↓(k,−k; k,−k)G↓(−k) = −∆2G↓(−k) . (9.17)

The full G↑(k) propagator then reads

G↑(k) =
1

iωn − ε(k) + ∆2G↓(−k)
, (9.18)

and together with a similar equation for G↓(−k) leads to the quadratic equation with

solution

G↑(k) = −− iω − ε(k)

2∆2
± 1

∆

√
(− iω − ε(−k))2

4∆2
+
− iω − ε(−k)

iω − ε(k)
, (9.19)

Apparently, this propagator does not possess a pole in a form of the BCS dispersion.

This observation was made by Prange [Pra60] and Wild [Wil60].

9.3 Kadanoff-Martin approximation

In his study of the GF approximation, Prange noticed that closing the loop in

selfenergy by the bare propagator line arrives at the BCS gap. This construction is

now known as the Kadanoff-Martin theory, since these authors analysed its properties

in detail [KM61].

A structure of the KM theory is the same as of the GF approximation. The only

difference is that in the KM approximation we construct the two-particle Green’s

function in nonsymmetric way and one of the propagator lines is made nonselfconsis-

tent (or described on the level of the Hartree-Fock approximation).

As a result the Dyson equation reads

G↑(k) = G0
↑(k) +G0

↑(k) Σ↑(k)G↑(k) , (9.20)

Σ↑(k) =
1

β Ω

∑
q

T↑↓(k, q − k; k, q − k)G0
↓(q − k) , (9.21)
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Figure 9.2: Diagrammatic reformulation of Kadanoff-Martin approximation. Thin
(thick) line represents a bare (full) propagator. The KM theory is not thermodynam-
ically conserving. It describes the superconducting gap, but the condensate is not
rigid.

and for the T-matrix we write

T↑↓(k, q − k; p, q − p) = V − V
βΩ

∑
k′

′
G↑(k

′)G0
↓(q − k′)×

× T↑↓(k′, q − k′; p, q − p) . (9.22)

A diagrammatic reformulation of equations reveals Fig 9.2 One cas easily observe

that in the case of KM approximation the conservation conditions (A) and (B) are

not fulfilled.

9.3.1 Gap in the single-particle spectrum

Let us study a solution of equations (9.20)-(9.22) below the temperature of Cooper

pair formation. First we show that the singular T-matrix develops a clear pole in the

single-particle spectral function and that there is a gap in the energy spectrum. Then

we derive the equation for the gap and discuss the rigidity of the condensate.

Propagator

Similarly as in the case of the GF (9.17) we approximate the selfenergy by the

singular contribution

Σ↑(k) ≈ −∆2G0
↓(−k) . (9.23)

In the KM approximation the Green’s function closing the loop in the selfenergy

is bare. Therefore from the Dyson equation we obtain a full propagator in a form
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identical to the BCS theory

G↑(iωn,k) =
1

iωn − ε(k) + ∆2

− iωn−ε(−k)

=
− iωn − ε(−k)

(iωn − ε(k))(− iωn − ε(−k)) + ∆2
.

(9.24)

This propagator has two poles at energies ±E(k) given by

E(k) =
√
ε2(k) + ∆2 . (9.25)

The KM approach thus yields experimentally confirmed single-particle spectrum.

Gap equation

From (9.22) we can derive an equation for the gap. For the T↑↓(k, q − k; k, q − k)

we write
1

T↑↓(q)
=

1

V
+

1

β Ω

∑
k′

′
G↑(k

′)G0
↓(q − k′) . (9.26)

In the thermodynamical limit Ω → ∞, the T-matrix of the condensation mode di-

verges, i.e., 1/T (q)→ 0. Equation then simplifies to

0 =
1

V
+

1

β Ω

∑
k′

′
G↑(k

′)G0
↓(q − k′) , (9.27)

which is for q = 0 easily rewritten in a form

1

|V|
=

1

β Ω

∑
iω′

n,k
′

′ 1

(iω′n − ε(k′))(− iω′n − ε(−k′)) + ∆2
. (9.28)

This is the familiar BCS gap equation.

9.3.2 Stability of the condensate with respect to noncon-

densed Cooper pairs

We have seen that within the KM theory one obtains the superconducting gap.

Now we can ask, whether the condensate described by the KM is rigid.

Rigidity of the condensate follows from the dispersion relation of the excitations.

[KCKL00] To stabilize the condensate the dispersion has to include restrictions which
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prevent the system from the dissipation of energy through the excitations. In the

superconducting condensate we distinguish two types of excitations - fermionic quasi-

particles and noncondensed Cooper pairs.

Excitation of the fermion is connected with breaking of the Cooper pair and is

restricted by the gap 2∆ in the one-particle spectrum. As we have seen above, this

gap appears so that the condensate resulting from the KM approximation is stable

in this point.

We thus focus on the dispersion of the Cooper pairs we obtain from the inversion of

the T-matrix element (9.26). We will benefit from results of Gor’kov who analyzed the

equation (9.27) close to the critical temperature Tc, where the gap is small. Keeping

terms to the quadratic order in ∆ he has shown that it leads to

0 =
q2

2m∗
− A+B|∆|2 , (9.29)

where m∗ is a mass of the Cooper pair, B = 3/(2EF ) and A = 6π2k2
BTc(Tc −

T )/(7ζ|3|EF ).

The condensed Cooper pairs have four-momentum q. Now we assume a noncon-

densed mode q′ = (0,q′). Its inverse T-matrix can be written in a similar way

C

T (q′)
=

q′2

2m∗
− A+B|∆|2 , (9.30)

with C = 8π2k2
BT

2
c /(7ζ|3|n) and n being the electron density. The right hand side of

equation (9.30) represents an energy of the noncondensed Cooper pair of momentum

q′. Combining (9.29) and (9.30) we obtain

C

T (q′)
=

q′2

2m∗
− q2

2m∗
. (9.31)

In the frame moving with the condensate q = 0 and one finds that noncondensed

Cooper pairs obey a dispersion of free particles.

Apparently, in the KM approximation the condensate is not rigid, because con-

densation in competitive modes is not excluded and the gapless quadratic excitation

energy allows for excitation of noncondensed Cooper pairs by any slow perturbation.

From this we conclude that even the KM is not sufficient for the description of the

superconductivity and one has to search for some more accurate theory.



Chapter 10

New T-matrix theory

As was already shown, both the GF and KM approximation at some level fail

in description of the superconductivity. In this chapter we propose a new T-matrix

theory, which is conserving in the Kadanoff-Baym sense and describes a rigid super-

conducting condensate.

10.1 Nonphysical processes in the Galitskii-Feynman

approximation

We have observed a striking paradox that the worse (KM) approximation works

quite well while the better one (GF) fails. Apparently, the GF approximation includes

diagrams which block formation of the gap, while the KM approximation is free of

them. One of such contributions is sketched in Fig 10.1. The diagram shows a

nonphysical self-interaction which is enhanced when particles are bounded in the

momentum space as it is in the case of Cooper pairs. This indirect self-interaction

becomes crucial when the superconducting condensate appears.

Originally is the self-interaction in Feynman’s diagrammatic expansion cancelled

by corresponding exchange diagrams, which restore the antisymmetry of the propagat-

ing wave function. Such compensating exchange diagrams are beyond the T-matrix

approximation and it is not clear how many and how complicated diagrams ought

73



74 Chapter 10: New T-matrix theory

Figure 10.1: a) Schematic picture of three interacting particles of initial quantum
states (k, ↑), (p, ↓), (q, ↑). Due to the Pauli principle all particles are in different
states, so q 6= k. b) Corresponding Feynman diagrams for the Green function of
the particle k, the other lines are closed into loops and momenta p, q are summed
over with no restriction. For q = k the diagram yields a self-interaction. In the
superconducting state collisions are enhanced for p = −k. Similarly, the enhanced
processes couple q with p = −q, which leads to q = −p = k. This indirect resonant
self-interaction blocks the formation of the gap. The q-loop is included in the GF
approximation while it is absent in the KM approximation.

to be included. The cancellation can be demonstrated on the simpler self-interaction

present in the Hartree field. As one can see in Fig 10.2, this self-interaction is can-

celled by the Fock selfenergy – one step more complicated theory. Apparently, the

original simple problem is cured only on cost of an increase of complexity of theory.

One can eliminate the self-interaction by restriction of sums in the diagrams as

well. Such correction is not equivalent to the inclusion of antisymmetrising diagrams,

but it removes the biggest mistakes. This approach of sum restrictions we will follow

here.

10.2 Derivation and properties

Let us on the basis of the former discussion propose a new T-matrix theory, which

is free of the terms blocking the gap formation. To eliminate these terms we will

restrict some of the sums over the frequency and momenta.
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Figure 10.2: Diagrams of Hartree-Fock approximation with spin independent inter-
action. In the Hartree term, a particle of four-momenta k collides with a particle p.
Since p is summed over with no restriction, the diagram contains a self-interaction
p = k for parallel spins. This self-interaction is cancelled by the Fock term for
k − p = 0. The Fock term is the only diagram needed to fully antisymmetrize the
Hartree approximation. In contrast to cancel the self-interaction and restore the wave
antisymmetry in the case of the T-matrix approximation, one would need to include
infinite number of diagrams with exchanged lines.

10.2.1 Closed set of equations

When a pair of particles interact in stationary and homogeneous systems, its total

frequency and momentum q conserve. Dressing of a particle (k, ↑) of four-momentum

k and spin ↑ is given by the selfenergy Σ↑(k) which can be decomposed into a sum

over interacting pairs

Σ↑(k) =
∑
q

σq ↑(k) . (10.1)

In the spirit of the multiple scattering expansion [JQ74] we introduce a reduced

propagator

G6 q↓(p) = G0
↓(p) +G0

↓(p)
∑
q′ 6=q

σq′ ↓(p)G6 q↓(p) . (10.2)

The reduced propagator G6 q↓(p) is dressed by all binary interactions except for the

one in which the total four-momentum of the interacting pair equals q. By this we

exclude the interaction of the particle (q − p, ↑) with (p, ↓).

The contribution of a collision of pair with four-momentum q to the selfenergy

reads

σq↑(k) =
1

βΩ
T↑↓(k, q − k; k, q − k)G6 q↓(q − k) . (10.3)

We will call it a q-channel of selfenergy for brevity. The dressed propagator G is given
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by the Dyson equation with the unrestricted sum over channels

G↑(k) = G0
↑(k) +G0

↑(k)
∑
q

σq↑(k)G↑(k) . (10.4)

To avoid the self-interaction in (10.3) we use the reduced propagator G6 q↓(q − k) to

close the loop. To guarantee conservation laws, all propagators in the loop have to

be in the same approximation. Accordingly, the T-matrix has to be constructed as

T↑↓(k, q − k; p, q − p) = V − V
βΩ

∑
k′

′
G↑(k

′)G6 q↓(q − k′)×

× T↑↓(k′, q − k′; p, q − p) . (10.5)

The set of equations (10.2)-(10.5) is closed. These equations do not have diagram-

matic representation in the strict sense. It is because the Feynman diagrammatic

rules are based on unrestricted sums over states.

10.2.2 Two particle symmetry

Now we show that the present theory is conserving in the Baym-Kadanoff sense,

i.e., that it satisfies conditions (A) and (B) from Ref. [BK61]. For the present

approximation the condition (A) is satisfied easily, since the T-matrix relates to the

two-particle Green function G2 as

G2 ↑↓(k, q − k; p, q − p) = G↑(k)G6 q↓(q − k) δ(k − p) +

− G↑(k)G6 q↓(q − k) T↑↓(k, q − k; p, q − p)G↑(p)G6 q↓(q − p) . (10.6)

The condition (B), which demands that the two-particle Green function is symmetric

with respect to interchange of the upper and lower line, is however from (10.6) not

obvious.

First we show that the T-matrix (10.5) is symmetric with respect to the inter-

change of the upper and lower line

T↑↓(k, q − k; p, q − p) = T↓↑(p, q − p; k, q − k) , (10.7)
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in spite of the selfconsistency restricted only in the upper line. Apparently, symmetry

(10.7) is satisfied for the lowest order T ≈ V .

Now we assume that the T-matrix is symmetric in the n-th order and show that

the symmetry of (n + 1)-th order follows. For a general order obtained by iteration

of equation (10.5) it is sufficient to show that

G6 q↑(k)G↓(q − k) = G↑(k)G6 q↓(q − k) . (10.8)

In the iteration process we assume n-th order in the selfenergy of Green functions

G6 qG. From equation (10.3) we then have

σq↑(k)G6 q↑(k) = T↑↓(k, q − k; k, q − k)G6 q↓(q − k)G6 q↑(k)

= T↓↑(q − k, k; q − k, k)G6 q↓(q − k)G6 q↑(k)

= G6 q↓(q − k)σq↓(k) , (10.9)

where we have used symmetry of the n-th order. Now we are ready to prove (10.8),

G6 q↑(k)G↓(q − k) =G↑(k) (1− σq↑(k)G6 q↑(k))×

× (1 +G↓(q − k)σq↓(q − k))G6 q↓(q − k)

=G↑(k)G6 q↓(q − k) (1− σq↓(q − k)G6 q↓(q − k))×

× (1 +G↓(q − k)σq↓(q − k)) . (10.10)

In the first step we have used

G↓(q − k) = G6 q↓(q − k) +G↓(q − k)σq↓(q − k)G6 q↓(q − k) , (10.11)

which follows from (10.2) and (10.4), and a similar relation for G6 q↑(k). In the second

step we have substituted (10.9). From equation (10.11) it follows that the product of

the two brackets in (10.10) equals to unity. Therefore, the relation (10.8) is proved

and the symmetry (10.7) of the T-matrix is proved as well.

From the symmetry of the T-matrix (10.7) and relation (10.8) follows the sym-

metry of the two-particle Green function

G2↑↓(k, q − k; p, q − p) = G2↓↑(q − k, k; q − p, p) . (10.12)

We can conclude that the present theory also satisfies the condition (B) and is con-

serving in the Baym-Kadanoff sense.
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10.2.3 Multiple scattering approach

The nonphysical resonant self-interaction is naturally avoided in the Fadeev-

Watson-Lovelace multiple scattering expansion [Wat53, GW64, Fad61, Lov64]. In

Ref. [Lip08] the method of the multiple scattering theory was implemented to the

theory of superconductivity following a rather different approach. It was argued that

the GF approximation includes nonphysical contributions in which two particles in-

teract again after they have accomplished a collision. Indeed, the T-matrix sums the

interaction potential to the infinite order so that the next interaction is possible only

with a next particle. When one eliminates such repeated collisions from the GF ap-

proximation, the resulting theory goes to the GF approximation in the normal state

while it yields the gap in the superconducting state. Here we show that the present

approach and the approach of Ref. [Lip08] modified to four-momentum yield identical

results.

The nonphysical repeated collisions can be eliminated with the help of Soven’s

concept of effective medium modified for binary collisions. In this spirit one selects a

q-channel which will be described explicitly while all other channels are described by

the effective medium represented by the selfenergy. We thus eliminate the q-channel

from the selfenergy of the particle (k; ↑). This channel is included explicitly into the

full propagator with a single collision being allowed,

G↑(k) = G6 q↑(k) +G6 q↑(k)
1

βΩ
T↑↓(k, q−k; k, q−k)G↓(q−k)G6 q↑(k) . (10.13)

Note that the loop is closed by the full Green function. This is because we have

eliminated σq↑ which does not enter G↓ in the loop.

The scattering equation (10.13) defines the selfenergy indirectly. Comparing

(10.13) with G↑(k) = G6 q↑(k) + G6 q↑(k)σq↑(k)G↑(k) we find that q-channel selfen-

ergy is given by

σq↑(k)

1− σq↑(k)G6 q↑(k)
=

1

βΩ
T↑↓(k, q−k; k, q−k)G↓(q−k) . (10.14)

This relation complicates a straightforward implementation of the theory obtained

from Soven’s scheme. Fortunately, it can be simplified to the set (10.2)-(10.5).



Chapter 10: New T-matrix theory 79

Using the symmetry (10.8) one can readily see that equation (10.13) is equiva-

lent to the approximation introduced in this paper. Alternatively, one can multiply

Eq. (10.14) by the denominator of the left hand side and use Eq. (10.9) to turn re-

lation (10.14) into Eq. (10.3). Finally, we have to take into account that inside the

T-matrix the reduced propagator appears for spin ↑, i.e., in the lower line. According

to (10.7) this is equivalent to the T-matrix with the reduced upper line. The present

derivation is thus equivalent to the application of Soven’s scheme.

We note that here we identify the channel via frequency and momentum q ≡
(iωn,q). In Ref. [Lip08] the channel was identified only via momentum q what applies

only to non-retarded interactions and leads to slightly different results. In particular,

the identification of a channel via momentum does not provide a two-particle Green

function symmetric with respect to interchange of the upper and lower lines. The

theory in Ref. [Lip08] thus does not satisfy the condition (B) and it is not conserving

in the Baym-Kadanoff sense.

10.3 Description of the superconducting state

Here we will employ the new T-matrix approach to the superconducting phase

and we will compare its ability to describe the rigid condensate with other T-matrix

theories.

10.3.1 Gap equation

In the normal state, the single-channel contribution vanishes in the thermody-

namic limit, σq↑ ∝ 1/Ω → 0. The reduced propagator then equals to the dressed

propagator, G6 q↑ → G↑, and the present theory is identical to the GF approximation.

As discussed earlier, in the well developed superconducting state a single T-matrix

channel becomes singular and forms a major contribution to the selfenergy. In the

absence of currents and in equilibrium, it is the zero frequency and zero momentum

channel q = (0,0). It is advantageous to split the singular part off the remaining
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regular terms

Σ↑(k) = −∆2G6 0↓(−k) + Σ 6 0↑(k) . (10.15)

The reminder

Σ6 0↑(k) =
∑
q 6=0

σq↑(k) , (10.16)

covers normal processes in the background of superconductivity. From equations (10.2)

and (9.16) one can see that ∆ does not enter the reduced propagator

G6 0↑(k) = G0(k) +G0(k) Σ6 0↑(k)G6 0↑(k) . (10.17)

The Green function G6 0↑ can be viewed as a propagator of the normal metal.

Using the selfenergy (10.15), the dressed Green function (10.4) can be expressed

via the reduced propagator

G↑(k) = G6 0↑(k)−G6 0↑(k) ∆2G6 0↓(−k)G↑(k) . (10.18)

This equation shows that ∆ equals to the energy and momentum independent anoma-

lous selfenergy giving the superconducting gap in the Eliashberg theory [VIK82]. The

anomalous selfenergy itself follows from the equation for the T-matrix (10.5) which

we rewrite as
1

T (q)
=

1

V
+

1

βΩ

∑
k′

G↑(k)G6 q↓(q − k) . (10.19)

For the singular channel q = 0 we have 1/T (q)→ 0 and we finally obtain

1

|V|
=

1

βΩ

∑
iωn,k′

1(
G0−1
↑ (k)− Σ6 0↑(k)

) (
G0−1
↓ (−k)− Σ 6 0↓(−k)

)
+ ∆2

. (10.20)

Apparently, in the well developed superconducting state the present theory asymp-

totically approaches the Eliashberg theory. There are some differences, however. In

the present theory all processes, normal and pairing, are treated within the same

T-matrix approximation. In the Eliashberg theory the normal processes are in the

Migdal (or Born) approximation while the pairing covered by equations for anomalous

functions is described by the approximation corresponding to the T-matrix.
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10.3.2 Rigidity of the condensate

Let us now study the rigidity of the condensate as described by the proposed

T-matrix theory. Below the critical temperature the proposed theory yields the gap

∆. Therefore the fermionic excitations obey the correct BCS-like dispersion and the

condensate is with respect to these excitations stable.

Now we focus on the excited Cooper pairs. For the nonsingular channel q′, the

T-matrix T (q′) is finite. From the equation (10.3) we see that σq′↑ → 0 with Ω → 0

and also G6 q′↓(q
′ − k)→ G↓(q

′ − k). Accordingly we have

1

T (q′)
=

1

V
+

1

βΩ

∑
k′

G↑(k)G↓(q
′ − k) . (10.21)

Using again the results of Gor’kov we from (10.19) obtain equation identical with

(9.29) except for values of A and B which are modified by the more elaborated self-

energy. From (10.21) follows equation

C

T (q′)
=

q′2

2m∗
− A+ 2B|∆|2 , (10.22)

which differs from (9.30) by a factor of 2 in term B|∆|2.

Combining equations (9.29) and (10.22) we obtain the T-matrix of the noncon-

densation mode
C

T (q′)
=

q′2

2m∗
+ A− q2

m∗
. (10.23)

First we will show that the right hand side of the equation cannot reach zero. Values

of the pair momentum q are limited by the critical current, q2 < q2
c . The current

is proportional to the square of the gap times the momentum, j ∝ q|∆|2. Using

equation (9.29) one finds j ∝ q(A − q2/2m∗). The critical current is the maximum

one, ∂j/∂q|qc = 0, which is achieved for qc = 2m∗A/3, see [Tin66]. Accordingly,

C

T (q′)
>

q′2

2m∗
+ A− q2

c

m∗
=

q′2

2m∗
+
A

3
. (10.24)

Inequality (10.24) implies that the mode of q′ 6= q cannot become singular once

the condensate in the mode q emerges. Briefly, there is a single condensate, as it is

tacitly assumed in the BCS theory.
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The right hand side of equation (10.22) represents an energy of a noncondensed

Cooper pair of four-momentum q′. In the frame moving with the condensate, q = 0,

a Cooper pair can be excited from the condensate into a noncondensed state with the

minimal energy cost A. Let us estimate under which conditions Cooper pairs can be

excited by an external perturbation. According to the Landau criterion [PS01] the

external perturbation moving with velocity v can excite the Cooper pair of momentum

q′ if the Cherenkov condition

vq′ =
q′2

2m∗
+ A (10.25)

is satisfied. This equation is solved by real q′ for

|v| >
√

2A

m∗
. (10.26)

This velocity is higher than the critical velocity of pair breaking vc = ∆/kF , where

kF is the Fermi momentum. Indeed from the equation (9.29) follows

∆ =

√
A

B
=

√
Ak2

F

3m
, (10.27)

where m = m∗/2 is the electronic mass, so that

|v| >
√

3 vc . (10.28)

Briefly, it is easier to break a Cooper pair into two quasiparticles than to excite it

from the condensate into a noncondensed Cooper pair.

As one could see, the new T-matrix theory is able to describe a condensate, which

is stable against both fermionic and bosonic excitations. Moreover it explains, why

there exists only one condensating channel. This demonstrates a superiority of this

theory above the GF and KM approximation.
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Conclusion

Motivated by the fact that both GF and KM approximation fail in the description

of the superconducting condensate, we have proposed a new T-matrix theory, which

overcomes difficulties of its predecessors.

We have found out that the GF approximation is not able to describe the super-

conductivity, because it contains nonphysical processes, which block formation of the

gap. We have removed these processes by restriction of summations over the frequen-

cies and momenta. We have managed to do this restriction in a way, which contrary

to the KM approximation preserves important Baym-Kadanoff symmetries. This im-

plies that the theory conserves thermodynamical variables. The theory keeps the

simple structure similar to the KM approximation, but is rooted in the many-body

approach known as the multiple scattering approach.

This new T-matrix theory in normal phase recovers the GF approximation in

the limit of infinite volume. Below the critical temperature it however describes the

superconducting gap. Moreover the condensate obtained by this theory is stable not

only against quasiparticle but also against Cooper pair excitations. An interesting

implication of this rigidity is that the condensate can exist only in one of a pair

four-momenta channels.

We have formulated this theory for the BCS interaction potential and therefore

the obtained superconducting gap-function ∆ is a simple frequency and momentum-

independent scalar. The theory can be however easily reformulated for more compli-
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cated retarded potentials, e.g., dependent on a transferred four-momentum V(p− k)

between scattered in particle p and scattered out particle k. For the T-matrix in the

singular channel q = 0 we then write

T↑↓(k,−k; p,−p) = − 1

βΩ
∆̄(k) ∆(p) , (11.1)

and ∆ is a function of four-momenta. This shows that the theory can be applied to

more realistic problems.
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Appendix A

Experimental data

Table A.1: Results of boron doped diamond λ parameter ab initio computations

Method Reference Boron Concentration [%] λ

Super Cell Blase et al [BAC04] 1.85 0.43
Giustino et al [GYS+07] 1.85 0.34

Xiang et al [XLY+04] 6.25 0.56
Virtual Crystal Boeri et al [BKA04] 3.0 0.3

5.0 0.36
10.0 0.56

Lee et al [LP04] 2.5 0.55
Ma et al [MTC+05] 1.0 0.18

2.0 0.25
4.0 0.34
6.0 0.40
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Table A.2: Experimental Tc data of boron doped diamond

Method Reference Boron Concentration [%] Tc [K]

111 MPCVD Mukuda et al [MTH+07] 1.6 5.0
Takano et al [TNS+04] 0.53 4.2
Takano et al [TNT+05] 0.24 1.8

0.75 3.3
1.3 4.3
2.1 5.0

Takano et al [TTI+07] 4.8 7.4
Yokoya et al [YNM+05] 4.7 7.0

100 MPCVD Bustarret et al [BKcvcvM+04] 0.51 0.9
0.57 1.2
0.65 1.4
1.08 2.1

Klein et al [KAK+07] 0.27 0.45
0.36 0.55
0.68 1.2
0.74 1.2
0.91 1.3
1.1 1.55
1.5 2.0

Mukuda et al [MTH+07] 4.9 3.4
Takano et al [TTI+07] 4.8 3.2

Umezawa et al [UTT+05] 7.9 2.9
HPHT Ekimov et al [ESB+04] 2.8 2.3

Sidorov et al [SES+05] 4.0 3.4
Sidorov et al [SEB+05] 4.0 2.5



Appendix B

Review of the Belitz theory

The Belitz theory belongs to approaches within which is the occurrence of a su-

perconducting state in the electronic system of the metal associated with the presence

of what is known as the anomalous averages 〈â↓(r)â↑(r)〉 and
〈
â†↓(r)â†↑(r)

〉
[VIK82].

Here â†α(r) and âα(r) stand for the operators of creation and annihilation of an elec-

tron at point r with spin α and 〈. . .〉 is the symbol of grandcanonical averaging

〈. . .〉 = Tr{. . . e−βĤ}/Tr{e−βĤ} . (B.1)

Our ability to evaluate these anomalous averages depends on complexity of the Hamil-

tonian.

B.0.3 Hamiltonian

We start our discussion from a very realistic hamiltonian that includes the electron-

phonon interaction giving rise to an effective electron-electron attraction, the Coulomb

repulsion and an interaction with static impurities. For Hamiltonian we therefore

write

Ĥ = Ĥ0 + V̂ + Ĥint , (B.2)

Ĥint = Ĥe−e + Ĥe−ph . (B.3)

As was pointed out by Nambu [Nam60] and independently by Gor’kov [Gor58], it

is convenient to describe the superconductor with the aid of two-component field
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operators

Ψ̂(r) =

(
â↑(r)

â†↓(r)

)
, Ψ̂†(r) =

(
â†↑(r), â↓(r)

)
. (B.4)

This leads to the 2× 2 matrix structure of the theory. It is thus convenient to write

the Hamiltonian in terms of Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 i

− i 0

)
, τ3 =

(
1 0

0 −1

)
, τ0 =

(
1 0

0 1

)
, (B.5)

which help to keep a clear structure of the perturbation theory. For free electrons

and phonons we in momentum representation write

Ĥ0 =
∑
q

ε(q) Ψ̂†(q) τ3 Ψ̂(q) +
∑
l

∑
q

ωl(q) b̂†l (q) b̂l(q) . (B.6)

Here ε(q) is an electron kinetic energy with zero placed at the Fermi level and ωl(q)

energy of phonon modes. The interaction with the static disorder is described by

V̂ =
∑

r

V (r) Ψ̂†(r) τ3 Ψ̂(r) , (B.7)

where V (ri) is the electron-impurity scattering potential specified in section about

the electron density of states in Chapter 4. For the Coulomb repulsion we write

Ĥe−e =
∑

p1+p2 = p′
1+p′

2 = q

Vc(q)
[
Ψ̂†(p1) τ3 Ψ̂(p′1)

] [
Ψ̂†(p2) τ3 Ψ̂(p′2)

]
, (B.8)

where Vc(r− r′) represents an effective Coulomb potential. The effective interaction

between electrons and phonons is described by

Ĥe−ph =
i

m(ρi)1/2

∑
q

q

ωL(q)

[
m t̂L(q)− 1

3
k2
F d̂(q)

]
φ̂L(q) +

+
2 i

m(ρi)1/2

∑
q

q

ωT(q)
m t̂T(q) φ̂T(q) . (B.9)

Here the t(q) are the longitudinal (L) and transverse (T) parts of the Fourier trans-

forms of the electron stress operator

t̂αβ(q) = − 1

4m

∑
q

qα qβ Ψ̂†(q) τ3 Ψ̂(2q) , (B.10)
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and

d̂(q) =
∑

r

ei q·r Ψ̂†(r) τ3 Ψ̂(r′) , (B.11)

is the Fourier transform of the electronic density operator. The phonon field operators

φl(q) are defined as

φ̂l(q) =

(
ωl(q)

2

)1/2 [
b̂l(q) + b̂†l (q)

]
, (B.12)

where ωl(q) is the dispersion relation for polarization branch l and the b†, b are phonon

creation and annihilation operators.

To compute the statistical average using such realistic Hamiltonian is very difficult

task however. One therefore has to use some method capable of calculating these

averages within controlled approximations.

B.0.4 Green’s function formalism

The widely used method for calculating of the operator statistical averages is a

Green’s function formalism, which describes evolution of an excitation in the system.

We define the Green’s function of the noninteracting system with impurity disorder

as

g0(τ − τ ′, r− r′) = −
〈
〈T {Ψ̂(τ, r)Ψ̂†(τ ′, r′)}〉

〉
av
. (B.13)

Here T is the ordering operator for the imaginary time τ , 〈. . .〉 means a thermody-

namic average (B.1) with respect to hamiltonian Ĥ0 + V̂ , and 〈. . .〉av denotes the

impurity average. The Green’s function for interacting system is defined as

g(τ − τ ′, r− r′) = −

〈
〈T {Ψ̂(τ, r)Ψ̂†(τ ′, r′)σ̂(β)}〉

〈σ̂(β)〉

〉
av

, (B.14)

with

σ̂(β) =
∞∑
n=0

(−1)n

n!

∫ β

0

dt1 · · ·
∫ β

0

dtn T {Ĥint(t1) · · · Ĥint(tn)} . (B.15)

We see that the calculation of Green’s function for a superconductor reduces to a

calculation of the averages of the T products of the field operators in the interaction

representation.
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It is effective for the perturbation theory to work in the momentum representation

defined as

Ψ̂(τ,p) =
1√
Ω

∫
dr ei p·r Ψ̂(τ, r) , (B.16)

where Ω is a quantisation volume. In disordered system momentum is not a good

quantum number. It is thus useful to define energy dependent quantities instead. Let

us assume that Ĥ0 + V̂ has been diagonalised with a complete set of orthonormal

eigenfunctions {ψn(r)}, and corresponding energies En. Then within the so-called

exact eigenstate representation [And59, KS76] we for (B.13) write

g0(iωn) =
∑
n

|En〉
1

iωn τ0 − En τ3
〈En| . (B.17)

Using a method given by Keck and Schmid [KS76] we construct the energy-dependent

averaged propagator of the noninteracting system as

g0(iωn, ε) =

〈
1

N(ε)

∑
n

δ(ε− En) 〈En|g0(iωn)|En〉

〉
av

. (B.18)

Here N(ε) is the density of states at the energy ε. To describe the interacting system

we define the operator of selfenergy Σ(ε, iωn) including all interaction effects. In

absence of currents the selfenergy has in general three terms

Σ(iωn, ε) = [1− Z(iωn, ε)] iωn τ0 + Y (iωn, ε) τ3 +W (iωn, ε) τ1 . (B.19)

The Green’s function of the interacting system equals

g−1(iωn, ε) = g−1
0 (iωn, ε)− Σ(iωn, ε) , (B.20)

with matrix elements of the form

g(iωn, ε) =

[
G(iωn, ε) F (iωn, ε)

F †(iωn, ε) −G(− iωn, ε)

]
. (B.21)

Inverting the matrix (B.21) with the selfenergy from (B.19) we obtain the diagonal

element

G(iωn, ε) =
iωn Z(iωn, ε) + [ε+ Y (iωn, ε)]

[iωn Z(iωn, ε)]2 − [ε+ Y (iωn, ε)]2 −W (iωn, ε)2
, (B.22)
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Figure B.1: Figure shows Feynman diagrams of Hartree-Fock approximation in which
the selfenergy is calculated. Solid line with an arrow represents the full propagator,
dotted line is the Coulomb potential, dashed line phonon propagator. Full circle repre-
sents Coulomb interaction vertex and triangle the phonon-electron coupling constant.

and anomalous one

F †(iωn, ε) =
−W (iωn, ε)

[iωn Z(iωn, ε)]2 − [ε+ Y (iωn, ε)]2 −W (iωn, ε)2
. (B.23)

The anomalous propagator F (iωn, ε) describes the anomalous average, which sig-

nalizes the occurrence of the superconducting state. Therefore we need within the

averaged eigenstate representation to calculate the functions Y (iωn, ε), W (iωn, ε) and

Z(iωn, ε).

B.0.5 Strong coupling equations

From (B.14), (B.15) and (B.20) we find expression for Σ(iωn, ε), according to

perturbation theory, by summing a certain infinite sequence of terms. We calculate

the selfenergy within an approximation called the Hartree-Fock approximation. This

sequence of terms can be represented by the Feynman diagrams that are shown in

the Figure B.1.

To illustrate the way, how the selfenergy Σ(iωn, ε) is calculated and how the

average over the disorder is performed, we write here the Fock term with the Coulomb
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interaction

− 1

β

∑
iωn

∑
q

∫
dε′RF

c (q, ε− ε′)Vc(q)×

× iωn Z(iωn, ε
′) τ0 + [ε′ + Y (iωn, ε

′)] τ3 +W (iωn, ε
′) τ1

[iωn Z(iωn, ε′)]2 − [ε′ + Y (iωn, ε′)]2 −W (iωn, ε′)2
. (B.24)

The last term is the full propagator (B.21) and the first two terms are

RF
c (q, ε− ε′)Vc(q) =

〈
1

N(ε)N(ε′)

∑
n, n′

∑
p1+p2 = p′

1+p′
2 = q

δ(ε− En) δ(ε′ − E ′n)×

× 〈En|p1〉 〈E ′n|p2〉 〈p′1|E ′n〉 〈p′2|En〉

〉
av

〈p1,p2|Vc(q)|p′1,p′2〉 . (B.25)

Here we for clarity write Vc(q) = 〈p1,p2|Vc(q)|p′1,p′2〉. The vertex function RF
c (q, ε−

ε′) is a renormalization of interaction potential and represents its transformation from

the momentum basis to the averaged basis of disordered system eigenstates. The

following diagrams are evaluated in a similar manner.

For the superconducting transition is relevant the interaction of electrons for en-

ergies close to the Fermi level, we therefore focus on this region. For good metals one

can in this region omit the energy dependence of Z(ω, ε) and W (ω, ε). In the case of

clean systems the frequency independent term Y (ε) has very weak energy dependence

as well and thus can be recasted into a constant shift of the chemical potential. This

is not true in the case of disordered systems however and the term Y (ω, ε) has to

be kept in the theory with its energy dependence. As a result one obtains a set of

equations for functions W (ω), Z(ω), and Y (ω, ε)

W (ω) =

∫
dν α2F F (ν)

∫
dx

π

∫
dε′ ImF (x, ε′)

[
f(x)

x− ω − ν
+

1− f(x)

x− ω − ν

]
+

+ µ

∫
dx

π
f(x)

∫
dε′ ImF (x, ε′) , (B.26)

ω[1− Z(ω)] =

∫
dν α2F F (x)

∫
dx

π
×

×
∫
dε′ ImG(x, ε′)ω

[
f(x)

(x− ν)2 − ω2
+

1− f(x)

(x+ ν)2 − ω2

]
, (B.27)
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Y (ω, ε) =

∫
dν

∫
dε′ α2F F (ν, ε− ε′)

∫
dx

π
×

× ImG(x, ε′)

[
f(x)

x− ν
(x− ν)2 − ω2

+ [1− f(x)]
x+ ν

(x+ ν)2 − ω2

]
+

+

∫
dν

∫
dε′
[

4

ν
α2FH(ν, ε− ε′) + µY (ε− ε′) δ(ν)

] ∫
dx

π
f(x) ImG(x, ε′) .

(B.28)

The f(x) denotes the Fermi distribution function and the disorder dependent Eliash-

berg functions are defined as

α2F F,H(ν, ε) =
∑
q, l

RF,H
l (q, ε)Bl(ν,q) , (B.29)

where Bl is the phonon spectral function for polarization branch l. The Coulomb

kernels are given by

µ =
∑
q

RF
c (0,q)Vc(q) , (B.30)

and

µY (ε) =
∑
q

[RF
c (q, ε)− 2RH

c (q, ε)]Vc(q) . (B.31)

The vertex functions RF,H
l (q, ε), RF,H

c (q, ε) are disorder induced renormalizations of

interaction potentials.

Important new feature of the theory is the equation for the energy dependent

Y (ω, ε). The Y (ω, ε) term is a diagonal part of Σ(ω, ε) which is even in ε and in

the disordered case also includes contributions from Fock terms. Since we use the

representation of Ĥ0 + V̂ exact eigenstates the set of equations (B.26), (B.27) and

(B.28) has a structure of those of Eliashberg for pure metals, with angular degrees of

freedom integrated away. One can naturally expect that the disorder induced changes

of the theory have impact on the critical temperature.

B.0.6 Critical temperature formula

In order to derive the critical temperature formula we see that the main obstacle

to solving (B.26) – (B.28) with the methods known from standard strong-coupling
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theory is the energy dependence of Y (ω, ε). To deal with this difficulty, we expand

Y (ω, ε) in a Taylor series with respect to ε

Y (ω, ε) = Y (ω, 0) + Y ′ ε , (B.32)

where

Y ′ =
d Y (ω, ε)

d ε

∣∣∣∣∣
ε=0

. (B.33)

It turns out that we can eliminate the first term Y (ω, 0), so we are in the theory left

with Y ′, which is found to be independent of ω. Following the approach of McMillan

[McM68] we come to the formula for Tc

Tc =
ωD
1.45

exp

[
− 1.04 (1 + λ+ Y ′)

λ− µ∗(1 + 0.62λ/(1 + Y ′))

]
, (B.34)

where

λ = 2

∫
dν

ν
α2F F (ν) , (B.35)

and

µ∗ = µ

[
1 +

µ

1 + Y ′
ln

(
ωC

0.62ωD

)]−1

. (B.36)

The ωC is the effective range of the Coulomb interaction. For the Y ′ we write

Y ′ = δµY + 4

∫
dν

ν
α2FH(ν) , (B.37)

where δµ = µ− µ(0), µ(0) is the contribution for zero disorder and α2FH(ν) is zero in

the clean limit. Setting Y ′ = 0, one recovers the original McMillan formula.



Appendix C

Selfenergy contributions in the

T-matrix theory

In this appendix we will show that the Cooper pair pole of T-matrix below the Tc

forms a major contribution to the selfenergy.

Let us start from the selfenergy equation

Σ↑(k) =
1

β Ω

∑
q

T↑↓(k, q − k; k, q − k)G↓(q − k) , (C.1)

which can be with a help of Hilbert transformations of the T-matrix

T↑↓(i νm,q) = − 1

π

∫
dz′

Im T↑↓(z′,q)

i νm − z′
, (C.2)

and the full propagator

G↓(i νm − iωn,q− k) = − 1

π

∫
dz

ImG↓(z,q− k)

i νm − iωn − z
, (C.3)

rewritten in a form

Σ↑(iωn,k) =
1

β Ω

∑
i νm,q

∫∫
dz

π

dz′

π

Im T↑↓(z′,q)

i νm − z′
ImG↓(z,q− k)

i νm − iωn − z
. (C.4)

The summation over Matsubara frequencies equals

1

β

∑
i νm

1

i νm − z′
1

i νm − iωn − z
= −1

2

tanh(1
2
βz) + coth(1

2
βz′)

iωn + z − z′
. (C.5)

103
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After the summation the selfenergy reads

Σ↑(iωn,k) = − 1

2 Ω

∑
q

∫∫
dz

π

dz′

π
Im T↑↓(z′,q)×

× ImG↓(z,q− k)
tanh(1

2
βz) + coth(1

2
βz′)

iωn + z − z′
, (C.6)

and consists of two contributions

Σ↑(iωn,k) = Σtanh
↑ (iωn,k) + Σcoth

↑ (iωn,k) . (C.7)

Below the critical temperature bound states of pairs develop in the system. For

the T-matrix we thus write

T (i νm,q) ≈ a

i νm − q2/4m+ µpair

, (C.8)

where a is a constant, q2/4m is a pair dispersion and µpair is an effective chemical

potential of the pair. The imaginary part of the retarded T-matrix reads

Im T (z′ + i 0,q) = −πa δ(z′ − q2/4m+ µpair) . (C.9)

Now the Σtanh
↑ (iωn,k) term remains regular but due to the bosonic distribution

a singular contribution develops in the Σcoth
↑ (iωn,k). After integration over z′ one

obtains

Σcoth
↑ (iωn,k) =

a

2Ω

∑
q

∫
dz

π
ImG↓(z,q− k)

coth
(

1
2
β(q2/4m− µpair)

)
iωn + z

. (C.10)

For the quantization cube of length L = Ω1/3 the first excitation energy of the pair

is ~2

4mL2 = ~2

4mΩ2/3 . This in the limit of the infinite volume vanishes slower than the

chemical potential µpair ∼ −c/Ω, where c is a positive constant. From the summation

over momenta q in (C.10) we therefore take only a singular contribution for zero

momentum pair

Σcoth
↑ (iωn,k) =

a

2Ω
coth(−β

2
µpair)

∫
dz

π

ImG↓(z,−k)

iωn + z
. (C.11)

Using expansion coth(x) ≈ 1/x we come to the form

Σ↑(iωn,k) ≈ − a

2Ω

2Ω

βc
G↓(− iωn,−k) = −∆2G↓(− iωn,−k) , (C.12)

where ∆2 = a/βc. This confirms the conclusion made in (9.17).
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