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Abstract

Interaction of the electric current, flowing through the molecular junction, with

the internal vibrations of the bridging molecule is investigated. Two different theo-

retical approaches which allow us to calculate the current and other characteristics

of the junction are compared. The first method is based on the scattering theory and

Landauer formula, and the second on the Wangsness-Bloch-Redfield master equa-

tion technique. A set of original models of the molecular bridge with anharmonic

vibrational mode and asymmetric coupling to the leads is formulated. Influence

of anharmonic vibrations and different types of symmetry in the junction on the

current-voltage dependencies of the bridge are discussed. As an example of the

phenomenon, which can only be found beyond the harmonic approximation, we

demonstrate the existence of the so called ”motor effect”, i. e. the strong depen-

dence of the average angular momentum of the molecule on the voltage, applied

across the junction. The key parameters, responsible for the effect appearance, such

as the rotational barrier height and the symmetry in the junction are discussed.
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Abstrakt

V této práci studujeme interakci elektrického proudu procházej́ıćıho molekulárńım

můstkem s vibračńımi stupni volnosti tohoto můstku. Porovnáváme dva r̊uzné

teoretické p̊ŕıstupy, které umožňuj́ı poč́ıtat procházej́ıćı proud a daľśı charakter-

istiky můstku. Prvńı z metod je založena na teorii rozptylu a Landauerově for-

muli a druhá na Wangsnessove-Blochově-Redfieldově př́ıstupu mistrovských rovnic.

Navrhujeme rovněž sadu p̊uvodńıch model̊u pro anharmonický vibračńı mód a asy-

metrické připojeńı k vodič̊um. Diskutujeme vliv anharmonicity a r̊uzných druh̊u

asymetrie můstku na vodivostńı charakteristiku. Jako př́ıklad jevu, který může

být pozorován jen nad rámec harmonické aproximace, ukazujeme př́ıtomnost tzv.

”motorového efektu”, t.j. silné závislosti momentu hybnosti molekuly na připojeném

napět́ı. Diskutujeme hlavńı proměnné ovlivňuj́ıćı možnost pozorováńı tohoto efektu,

jako jsou výška potenciálové bariéry a symetrie můstku.



Declaration

The work in this thesis is based on research carried out at the Institute of Theoretical

Physics, Faculty of Mathematics and Physics, Charles University in Prague. No part

of this thesis has been submitted elsewhere for any other degree or qualification and

it is all my own work unless referenced to the contrary in the text.

Ivan A. Pshenichnyuk

vi



Acknowledgements

It is a pleasure to thank those who made this thesis possible. I am heartily thankful
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Chapter 1

Introduction

It’s hard to overestimate the importance of microelectronics nowadays. The process

of improvement and miniaturization of microelectronic devices have reached great

results. However, there is an obstacle on this way. While the size of different

elements in the electronic chip is getting smaller1 and becomes comparable with a

size of a molecule, laws of quantum mechanics start to play an important role in the

chip and standard workhorses of the microelectronics, such as the Ohm’s law, for

example, lose their validity. In this sense, traditional microelectronics approaches

it’s natural limit and getting ready to enter the quantum world, where all basic

principles should be revised to create a new type of electronics [40].

The idea of the molecular electronics (or moletronics, as it is also called some-

times [26]) is to use molecules as a building blocks of an electronic circuits, while

electrons keep their role of data carriers. It shouldn’t be mixed with the solid state

nanoelectronics, which stands somewhere in between the microelectronics and mo-

letronics at the size scale. Manufacturing devices at this level promises both great

possibilities and challenges, and differs very much from the approaches which are

used in ordinary electronics. Following this way, the whole philosophy of device pro-

duction can be changed. Instead of going ”top down” direction, like carving elements

out of bulk materials, chemical lab can be used to synthesize necessary elements in

a ”bottom up” way. This allows to produce elements in enormous amounts with

1A transistor size in modern chips is already less than 50 nm

1
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a great reproducibility of each element. Being complicated objects, molecules have

their own internal structure and degrees of freedom. Electrons, that pass through a

molecular device, can change its geometry and properties. Moreover, since there is

an interaction between electronic and nuclear degrees of freedom in molecules, en-

ergy exchange between them should be taken into account. It was demonstrated that

atomic vibrational degrees of freedom have strong influence on the charge transport

properties of molecules [34].

At a moment hundreds of theoretical and experimental works are published where

different aspects of molecular electronics are discussed and many single-molecule

devices are proposed. Without going deep into the history, which can be tracked

down at least until the year 1940 ([21]), we would rather mention few important early

works on the subject. In the year 1974 Aviram and Ratner published the paper [2],

where they suggested and motivated theoretically the idea of single molecule diode.

In 1997 Reed et al. [41] performed conductance measurement of the single molecule.

One year later inelastic electron tunneling spectroscopy with the scanning tunneling

microscope (IETS-STM) method was used for the first time to study conductance

of the isolated acetylene molecule [45].

During decades of development few mainstream experimental methods were es-

tablished to investigate molecular conductance. Scanning probe technique ([19],

[14]) is among them. Another sort of experiments were performed manufacturing

so called molecular junctions. This contacts are produced from the single molecule

or a chain of molecules which are called molecular bridges, connected between two

(or more) solid electrodes. It was shown that they can act as both passive and ac-

tive elements in electronic circuits and, thus, may play a key role in new electronics.

Despite the obvious success in the field, this experiments are still capricious and suf-

fers from the lack of reproducibility. There are other issues, like room temperature

functionality and long-term stability. According to the way of production molecular

junctions can be mainly divided to mechanically controllable break junctions ([32],

[44]) and break junctions formed by electromigration ([35], [36]). For the review see

[43].

Before now numerous theoretical simulations were performed to show, that single
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molecules can act as a vast variety of different devices: molecular switches ([37], [25]),

memory bits, molecular rectifiers or diodes, transistors ([4], [8]) and pumps. Some

of them were demonstrated experimentally, like, for example, the single-molecule

transistor in the work [36]. Current driven molecular motors, which constitute the

subject of this work, can be classified using the modern terminology as nanoelec-

tromechanical systems (NEMS), i.e. devices integrating electrical and mechanical

functionality on the nanoscale. Another example of NEMS, which stimulates re-

search interest during the last decade, is a quantum shuttle ([33], [7], [16]).

As it was already mentioned, internal molecular mechanical degrees of freedom

play an important role in the charge transport phenomena. It is especially so in the

low coupling regime, when electrons spent significant time at the molecular bridge

and high energy exchange between electronic and vibrational degrees of freedom

should be expected. There are experimental and theoretical works which demon-

strate, that electron-phonon interactions are responsible for many specific phenom-

ena (for the review see [12]). For example, this interaction may become a reason

of heating of the bridge and even its dissociation [42]. So, the question about the

role of internal degrees of freedom is connected with the stability question. Vibra-

tional excitations often reveal itself as steps ([17]) at current voltage characteristics

(CVC) of the bridge, which correspond to certain quantized vibrational energy tran-

sitions in the molecule. And vise versa: vibrational steps at CVC provide certain

information about the internal structure of the molecule. In this sense charge trans-

port experiments can be used as some kind of spectroscopy to determine the details

of molecular structure [45]. One can also think about manipulating molecular vi-

brations (for example with an external field) to influence the current through the

junction. It was shown ([37]), for example, that an electrostatical field can be used

to influence a central benzene ring torsional dynamics in the ”phenylene ethynylene

oligomer” molecule and thus control the conductance switching.

The electron-phonon interaction phenomenon lies in the basis of the electrome-

chanical molecular motor idea, which is discussed in details in this work. Along

with current driven motors there are other possible mechanisms, like, for example,

motors driven by light or stochastic fluctuations due to interaction with thermal
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bath (Brownian motion). At this point the subject of molecular electronics seems to

have certain overlap with the molecular biology, since molecular motor mechanisms

play important roles in functional biology of the living cell. There is a whole class

of so called ”motor proteins” that are able to move along the surface of a suitable

substrate. They are powered by the hydrolysis of ATP molecules (which are the

common energy currency of the body powering everything including muscle move-

ment) and convert chemical energy into mechanical work. The kinesin protein, for

example, is a nanoscale molecular motor that carries a molecular cargo through the

cell. Another example is the prestin, which is responsible for the signal transduction

in the human ear [40]. Returning to the artificially built molecular motors it’s worth

mentioning here, that externally driven torsional motion of small parts of molecules

has been already demonstrated for molecules both in gas [29] and mounted on sur-

faces [20]. In this work molecular motor is introduced as a molecular junction with

a bridging molecule possessing certain groups which can perform rotational motion

in response to bias voltage across the junction. Such elements have already been an-

ticipated in [52]. In this form the motor can be considered as a molecular electronics

element, which can be connected to some other molecular devices.

There are few theoretical methods developed to calculate CVC and other prop-

erties of molecular junctions, taking into account vibrational effects in the junction

[12]. In the approach based on the generalized Landauer formula [48, 50] current

can be expressed through the transmission function of the bridge and the scattering

theory is used to calculate the transmission. Electron correlations are not taken into

account in this method. Another possible way is to use various rate equations the-

ories [47]. By solving the Wangsness-Bloch-Redfield master equation (ME), which

is second order in molecule-lead coupling, the reduced density matrix (RDM) of a

molecular bridge can be determined. RDM contains detailed information about the

bridge while leads in this method are treated as large particle reservoirs in the equi-

librium. The RDM can be used to calculate any observable of interest, including

a current [17] and the angular momentum of the bridge which is important for the

motor effect studies. These two approaches are discussed and compared in this work.

There are also approaches based on many body physics methodologies, in particular



Chapter 1. Introduction 5

the nonequilibrium Green function technique [18] [39], which are not covered here.

One important point that makes molecular motor models challenging from com-

putational point of view is the impossibility to use the harmonic approximation,

which suits well in other cases like, for example, in quantum shuttle studies. Molec-

ular bridges with torsional degrees of freedom, which may potentially act as rotors,

should allow for the moving part to perform 360 degrees free rotation. It’s not pos-

sible if the potential energy is parabolic. Investigation of molecules torsional motion

demonstrates, that their potentials usually resemble the sine/cosine functions of the

angle or their superposition [49]. Even though molecular dynamics beyond the har-

monic approximation was already applied in molecular junctions modeling ([51]) it

is much less well studied than harmonic approximation regime and some new effects

can be expected to appear there.

In this work few models of molecular junctions are discussed. To make the dis-

cussion continuous we start from well studied models which are used to introduce

all the main concepts and theories (models 1 and 2). Simple theoretical models

allows us to understand better the details of the processes. They are used to test

the FORTRAN code, link our studies with previous works and prepare the ground

to switch to the anharmonic regime. They are also used to discuss different theo-

retical approaches and compare them. As the next step more complicated motor

models are introduced (models 3 and 4). To analyze and understand the effect of

anharmonicity in more-less well controlled conditions we first define the model 3

which doesn’t correspond to any real molecular system and should be considered

as purely theoretical. We then switch to the more realistic model 4 of molecular

vibrations motivated by real molecular rotors used in the previous experiment with

light driven artificial molecular motors [20]. This thesis has the following structure:

first all necessary theoretical formalisms will be introduced in the chapter 2. In

the chapter 3 models of the molecular junctions will be formulated and motivated.

Later, in the chapter 4, computation process will be discussed and all necessary

analytical equations will be derived. Some attention will also be payed to numerics.

Results of calculations are presented in the chapter 5, which can be logically divided

to two parts. First theoretical methods are compared and discussed using basic
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models 1 and 2. Some possible improvements for the scattering theory approach

are proposed. In the second part the motor effect and conditions of its existence

are discussed. Charge transport properties of molecular junctions with anharmonic

vibrational degrees of freedom are also studied there. Thesis will be finished by the

conclusion in chapter 6.



Chapter 2

Theoretical overview

In this chapter all main theoretical tools and concepts, which are used in the thesis,

are brought together. It’s started from the description of the general model of a

molecular junction, which consists of two solid electrodes and a molecular bridge,

connected between them. The nearest neighbor tight-binding chain concept, taken

from the solid state physics, is used to model metallic properties of electrodes,

while the detailed discussion of different types of molecular bridges is postponed

until the chapter 3. Thus, theoretical approaches described here are quite general

and can be applied to all molecular junctions discussed in this work. The rest of

the chapter is devoted to the general description of two different approaches, which

allow to calculate CVC and other characteristics of molecular junctions. ”Scattering

theory approach” which is based on the Landauer formula for current and quantum

scattering theory concepts is discussed in the section 2.2. The approach, which is

referred throughout the work as just the ”master equation approach” for simplicity,

is described in the section 2.3. It is demonstrated there, how the second order

Wangsness-Bloch-Redfield master equation can be derived from the von Neumann

equation using the projection superoperators technique. It is also showed there how

the solution of the master equation - the reduced density matrix of a molecular

bridge, can be used to calculate the current and other observables.

7



2.1. General model of a molecular junction 8

2.1 General model of a molecular junction

2.1.1 One dimensional tight-binding chain

In this section we are going to derive few important formulas for the nearest neighbor

tight binding model (NNTBM) and introduce terminology which is used throughout

the work. It’s also important for better understanding of the physical meaning of

quantities which we parametrize in the chapter 3. Additional details about NNTBM

can be found, for example, in [1].

Let’s take one dimensional chain of atoms. Their positions are defined by the

one dimensional vector R = na, where n is integer and a is the distance between

atoms (lattice constant). All possible values of R then constitute the Bravais lattice.

Schroedinger equation for such a chain reads

(Hat + ∆U)ψ = εψ. (2.1)

The tight binding Hamiltonian is periodical (with the same periodicity as the lattice)

and consist of two terms. Hat is the potential which coincide with the Hamiltonian

of a separate atom at each atom’s side. In the vicinity of each atom equation

Hatψn = Enψn can be solved exactly, providing localized atomic orbitals ψn. Each

orbital is infinitely many times degenerate, since it may belong to any atom in the

chain. ∆U should be considered as a small perturbation, which makes it possible

for electrons to jump to other atoms.

We search the eigenfunctions of the full Hamiltonian in the form

ψ(r) =
∑
R

eikRφ(r −R), (2.2)

where summation goes through all the Bravais lattice vectors R. Quantum num-

ber k distinguishes different solutions. Sometimes it’s called quasimomentum, as a

generalization of similar quantum number of free electrons (where it has a mean-

ing of momentum) for Bloch’s electrons, when the translational symmetry of the

space is lower than in the continuous space case. Its possible values will be dis-

cussed in details later. Function φ(r) (which they call sometimes Wannier function)

for each atom side is in general a linear combination of atomic orbitals (LCAO)
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φ(r) =
∑
n

bnψn. In this decomposition we limit ourselves by just one term, which

correspond to the s-orbital ψs of the atomic Hamiltonian Hat. It is easy to show,

that the function ψ(r) taken in the form (2.2) satisfies the Bloch’s theorem

ψ(r +R) = eikRψ(r). (2.3)

Let’s multiply the Schrodinger equation from the left hand side by the function

ψs (with energy Es) and integrate it through all r

(ε− Es)
∫
ψ∗sψdr =

∫
ψ∗s∆Uψdr. (2.4)

Now we substitute φ = ψs to the equation and split the sum over R to the term

with R = 0 and R 6= 0

(ε− Es) + (ε− Es)
∑
R 6=0

eikR
∫
ψ∗sψs(r −R)dr =∫

ψ∗s∆Uψsdr +
∑
R 6=0

eikR
∫
ψ∗s∆Uψs(r −R)dr.

(2.5)

Introducing new notations ∫
ψ∗s∆Uψsdr = ∆E,∫
ψ∗s∆Uψs(r −R)dr = β(R),∫
ψ∗sψs(r −R)dr = α(R),

(2.6)

and expressing the energy ε from the equation we get the formula

ε = Es +

∆E +
∑
R 6=0

eikRβ(R)

1 +
∑
R 6=0

eikRα(R)
. (2.7)

Overlap integrals α(R) are assumed to be equal to zero, since atomic functions ψs

are well localized. We assume also, that integrals β(R), representing the coupling

between various atomic sites, differ from zero only for interaction with nearest neigh-

bors, like β(±a) = β. For the full energy of the electron, localized at the certain

atom site, we use the notation µ ≡ Es + ∆E. Finally, all necessary assumptions

about the chain are made. Resulting model schematic representation is depicted at

the fig. 2.1. We also get the final formula for the energy

ε = µ+ 2β cos ka. (2.8)
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Figure 2.1: Schematic representation of the infinite one dimensional nearest neighbor

tight-binding chain. It is defined by two parameters: atomic sites energy µ and the

nearest neighbors coupling strength β

This is the dispersion relation for our chain. All possible Bloch wave’s energies

should belong to the interval [µ− 2β;µ + 2β] which is called the conduction band.

Such a behavior, being quite typical for metals, is qualitatively different from the

”free electrons” case, where dispersion relation is parabolic. Such differences are

connected with the lower translational symmetry of the lattice discrete coordinate

space as compared with continuous space in the ”free electrons” model.

We deal with two types of electronic states in the chain: |n〉 when electron sits

on the atom n and |k〉, when electron has quasimomentum k. In the coordinate

space this two types of states are represented by wavefunctions ψs(r−na) and ψ(r)

respectively. From now on we don’t use the coordinate representation any more and

integrals µ and β are assumed to be model parameters. On the contrary, both n-

and k-representations will be used throughout the work.

We can draw the Hamiltonian H in the n-representation, where it’s a tridiagonal

infinite dimensional matrix

H =



· · · β 0

β µ β

β µ β

β µ β

0 β · · ·


. (2.9)

Diagonalizing the matrix one can find its eigenvalues ε (which is of course just (2.8)

again) and its eigenvectors

Ck
n = eikna (2.10)

which are plane waves. We are familiar with them as with decomposition coefficients

from (2.2). Now we can look at them from a bit different point of view, and use
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them as the overlap matrix 〈n|k〉 to switch between two representations

|k〉 =
∑
n

Ck
n|n〉. (2.11)

It is clear form (2.11), that in the tight binding approximation k-states are running

waves. Mean velocity of the electron with wavenumber k is given by the formula

v(k) =
∂ε

∂k
= −2aβ sin ka. (2.12)

So, decreasing the coupling β between neighbor atoms will not prevent free move-

ment of electrons through the chain. It will just decrees its velocity.

To make k-states (2.11) normalized we have to normalize vectors Ck
n (states |n〉

are normalized by definition). To do it we assume, that the number of atoms in the

chain is N and its length is L = aN (N is supposed to be very large and at all final

results we assume N →∞). And norm(
N∑
n=1

|Ck
n|2
)− 1

2

=
1√
N
. (2.13)

If we adopt this norm and assume than N is infinitely large, states are still correctly

normalized and orthogonalized since

lim
N→∞

1

N

N∑
n=1

Ck
n(Ck′

n )∗ = δkk′ . (2.14)

Thus, properly normalized Bloch’s wave for the infinite TBC reads

|k〉 =
1√
N

N∑
n=1

eikna|n〉. (2.15)

One more thing to do in this section is to apply the so-called Born von Karman

boundary conditions ψ(x+ L) = ψ(x). This type of description is a computational

trick, since those ”non-reflecting” boundary conditions applied at the ends of the

very long chain of atoms can’t change its inner properties, but allows us to use

integration instead of summation over k, if necessary. This conditions together with

Bloch’s theorem (2.3) lead to the following allowed values of the vectors k

k =
m

N

2π

a
, (2.16)
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where m is integer. In the first Brillouin zone [−π
a
; π
a
] we have N physically different

k-vectors. From this moment we work only inside this zone.

If N → ∞, minimum possible volume in k-space ∆k = 2π
Na

goes to zero and

k vector in the first Brillouin zone becomes continuous. Summation over all pos-

sible values of k of some arbitrary function F (k), which we will face later, can be

transformed to integration. We illustrate it here in few steps∑
k

F (k) = 2

+π/a∑
k=−π/a

F (k) (2.17)

(each state can contain two electrons with different spins, for this reason we double

the sum, see also [1]). Now we add ∆k under the sum

∑
k

F (k) =
Na

π

+π/a∑
k=−π/a

F (k)∆k. (2.18)

Taking the limit N →∞, ∆k → 0 we can write

lim
N→∞

1

N

∑
k

F (k) =
a

π

+π/a∫
−π/a

F (k)dk (2.19)

We also use the fact, that all functions we deal with usually depend not on k but

on κ = ka. So, we can rewrite the integral as

lim
N→∞

1

N

∑
k

F (k) =
1

π

+π∫
−π

F (κ)dκ. (2.20)

From now on we call the vector κ just k and assume that it always belong to the

interval [−π; +π] (thus, we modify the first Brillouin zone definition). At this point

we get rid of the lattice constant a completely.

In many cases F (k) depends on k through the energy ε. Using dispersion relation

(2.8) we can change variables in the integral and write

1

π

+π∫
−π

F (ε(k))dk =

+∞∫
−∞

D(ε)F (ε)dε, (2.21)

where we use the quantity D(ε), which is called the density of states. It’s defined as

D(ε) =
1

π

∂k

∂ε
=

 1
π
[4β2 − (ε− µ)2]−

1
2 , ε ∈ [µ− 2β, µ+ 2β]

0, ε /∈ [µ− 2β, µ+ 2β]
. (2.22)

To find more details about it see [1].
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2.1.2 Model of an isolated lead

As a model of the lead we adopt the half infinite tight binding chain (HITBC). The

Hamiltonian of the HITBC in n-representation we get by ”cutting it out” of the

TBC Hamiltonian matrix (2.9). It’s the half infinite tridiagonal matrix, which reads

Hl =


µ β 0

β µ β

β µ β

0 β · · ·

 . (2.23)

Cutting the chain in this way is mathematically equivalent to the additional ”fully

reflecting” boundary condition which is applied at one end of the chain. Diagonal-

ization task can be written as two equations containing energies ε and eigenvector

components Ck
n

(ε− µ)Ck
1 − βCk

2 = 0

(ε− µ)Ck
n − β(Ck

n−1 + Ck
n+1) = 0, (n = 2, 3, ..)

. (2.24)

First of them is the new boundary condition. It’s easy to check, that the solution

which satisfy both equations is

Ck
n = sin (kn). (2.25)

And the dispersion relation ε(k) is again (2.8). Normalization of vectors Ck
n should

be changed since

lim
N→∞

1

N

N∑
n=1

sin (kn) · sin (k′n) =
1

2
δk′,k −

1

2
δk′,−k. (2.26)

Properly normalized Bloch’s wave for half infinite chain reads

|k〉 =

√
2

N

N∑
n=1

sin (kn)|n〉. (2.27)

One more consequence of the new boundary condition, which is reflected in the

limit (2.26), is that states which are characterized by vectors k and −k becomes

linearly dependent. It makes usage of the first Brillouin zone for k the bad choice.

Instead of it we have to adopt another elementary cell in k-space, like, for example,

the interval [0; 2π].
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The Hamiltonian (2.23) can be written in the {|n〉} basis as

Hl =
N∑
n=1

|n〉µ〈n|+
N∑
n=1

|n〉β〈n+ 1|+
N∑
n=2

|n〉β〈n− 1|. (2.28)

But it’s easier to work with Hl in k-representation, since it’s diagonal there

Hl =
∑
k

|k〉εk〈k| (2.29)

(εk is given by the formula (2.8)). To transform the Hl we may multiply it from

both sides by the closure relation I =
∑
k

|k〉〈k| and use the explicit expression for

matrices 〈n|k〉.

Another way to writeHl is to use the second quantization representation. Passing

through the standard transformation procedure (which we omit here) we get

Hl =
∑
k

εkc
†
kck, (2.30)

where operators ck and c†k annihilate and create electrons with quasimomentum k

in the lead. There is a conceptual difference between (2.29) and (2.30), since (2.29)

defines the behavior of one electron, while (2.30) acts in the Fock space and appears

to be the many-electron Hamiltonian.

Fermionic creation/annihilation operators satisfy anticommutational relations

[ck, c
†
k′ ]+ = ckc

†
k′ + c†k′ck = δkk′ . (2.31)

Later we will also need the time evolution of this operators in Heisenberg picture.

One can write, by definition

ck(t) = e+iHltcke
−iHlt (2.32)

(where ck = ck(0)). To calculate it explicitly first we need the time derivative

∂

∂t
ck(t) = −ie+iHlt[ck, Hl]e

−iHlt (2.33)

and commutator

[ck, Hl] = εkck. (2.34)

Next they can be combined to write the differential equation for ck(t)

∂

∂t
ck(t) = −iεkck(t). (2.35)
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Solving it we get the desired formulas

ck(t) = cke
−iεkt, c†k(t) = c†ke

+iεkt (2.36)

(the formula for the creation operator c†k is obtained using the hermitian conjuga-

tion).

2.1.3 Junction Hamiltonian partitioning

Molecular junction consist of two metallic electrodes and a molecular bridge con-

nected between them. Thus, the whole Hamiltonian can be divided to the bridge,

leads and coupling parts

H = Hs +Hl +Hsl. (2.37)

Index ”s” is used in this work to denote the molecular bridge. It comes from more

general ”system”+”reservoir” notations. To address a certain lead, when it’s neces-

sary, we divide leads part Hl to the left and right lead Hamiltonians

Hl = Hll +Hrl. (2.38)

And the same with coupling

Hsl = Hs,ll +Hs,rl. (2.39)

Only lead parts are completely specified at a moment. We don’t need to know much

about other parts now, since formalism, described in the present chapter is quite

general. Moreover, it’s useful to have in mind, that we deal only with one-level

bridges in this work. Or, in other words, there is only one electron level on the

bridge, which can be used by electrons to tunnel through it. Thus, we can introduce

fermionic operators d† and d which create and annihilate electron on the bridge and

write the general expression for coupling part Hsl as

Hsl =
∑
k

Vdk(d
†ck + c†kd), (2.40)

assuming that the coupling coefficients Vdk are real (which is always the case in

this work). Expression (2.40) is used at the end of the chapter to derive the general

formula for the current. In addition to this, bridge Hamiltonian Hs contains internal
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vibrational and rotational degrees of freedom, so do the coupling Hsl (through the

coupling coefficients Vdk). The next chapter is fully dedicated to the discussion of

different bridge models and forms of coupling.

As it was already mentioned in the previous section the structure of the state

space is different in one electron formulation and in the second quantization rep-

resentation, where the Fock space is implied. We use the one electron formulation

in the scattering approach (see the section 2.2). In this case electronic spaces κs,

κll and κrl which correspond to the bridge, left lead and right lead respectively can

be considered separately. Direct sum of this spaces gives the molecular junction

electronic space κel = κll ⊕ κs ⊕ κrl. To take into account intramolecular vibrations

electronic space κel should be multiplied with the space κvib which incorporates vi-

brational degrees of freedom to the system, i.e. κ = κel ⊗ κvib. The basis in κel

is {|n〉}. Its basis vectors can be sorted into three groups, corresponding to the

left lead, bridge and the right lead. According to this partitioning concept all op-

erators in n-representation can be divided to nine blocks. For example, the ”free”

Hamiltonian

H0 = Hll +Hs +Hrl =


Hll 0 0

0 Hs 0

0 0 Hrl

 (2.41)

represents three isolated systems. And the Hsl which couples parts together reads

Hsl =


0 Vl 0

V †l 0 V †r

0 Vr 0

 . (2.42)

(we have denoted blocks of Hsl by V matrices). Assuming, that leads can’t interact

directly, but only through the bridge, (2.42) is the most general form of coupling.

We are going to apply similar partitioning to other operators, like, for example the

T -operator or Green’s operator to derive scattering theory approach formulas in the

section 2.2.

In the master equation approach (see the section 2.3) the many-electron formula-

tion is used. In this case we denote the Fock space of the junction by F . Assuming

that many-electron spaces of leads and bridge are Fl and Fs and the vibrational
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space is denoted as Fvib, the full space F = Fs ⊗ Fl ⊗ Fvib. This structure of the

space obviously differs from κ since it allows an arbitrary amount of electrons which

can occupy states at the bridge and in leads at the same time.

Dividing of the whole system to the ”continuum” with well known structure

(leads) and ”resonance”, which is in our case represented by the molecular bridge

we come to the concept of the Feshbach-Fano partitioning which is widely used

in scattering theory (see [6]). Without direct introduction of projection operators

we implicitly use the approach in the section 2.2 applying the principle described

here. Projection superoperators technique, which is again the similar idea, is used

explicitly to derive the master equation in the section 2.3.

2.2 Scattering approach

2.2.1 Landauer formula

The Landauer formula expresses a current through a transmission function ω(E) of

the molecular bridge. It’s a function of energy1 which gives the probability for an

electron to pass through the bridge. In the elastic case the Landauer formula reads

I =
1

2π

∫
ω(E)[fl(E)− fr(E)]dE. (2.43)

Atomic units are assumed here and everywhere in this thesis. In the formula (2.43)

two electron fluxes, which pass through the bridge in two opposite directions, are

summed. When energy is fixed, electron flux, which passes the bridge from the left

lead to the right

i(E) =
1

2π
ω(E)fl(E) (2.44)

is proportional to the probability to find an electron with this energy in the left lead,

which is defined by the Fermi-Dirac distribution

f(ε) =
1

1 + e
ε−µ
kT

. (2.45)

1E is a full energy of the system. In the elastic transport case it coincide with the energy of

tunneling electron. In both elastic and nonelastic tunneling events E is conserved.
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Thus, leads are assumed to be in the thermal equilibrium all the time. Formula

(2.43) also demonstrates, that if the energy E is fixed, transmission probabilities for

both tunneling directions are equal, which is true in the elastic transport regime.

Formula (2.43) is well tested and works in a case of coherent transport, but it can

fail in non coherent case, where it should be modified [5].

Using the scattering theory formalism, transmission probability ω(E) can be

easily expressed in terms of the T -matrix of the bridge [48]

ω(E) = 4π2
∑
l,r

|t(r←l)|2δ(εl − E)δ(εr − E). (2.46)

According to [46], probability of a scattering event is equal to the corresponding

S-matrix element squared. Interrelation of S- and T - matrices leads to the formula

(2.46). The sum runs through all in- and out-states which belong to different (left

or right) leads. Delta functions under the sum express the energy conservation law:

energy E should coincide with the output electron energy εr and the input energy

εl which belong to the conduction bands in the right and left lead respectively.

Situation is a bit more complicated when the transport is inelastic. In this case

T -matrix t(r,m′←l,m) depends also on initial and final vibrational states m and

m′ of the bridge and transmission from the left lead to the right reads

ωr←lmm′(E) = 4π2
∑
lr

|t(r,m′←l,m)|2δ(εl + Em − E)δ(εr + Em′ − E), (2.47)

where Em and Em′ are initial and final vibrational states energies. They participate

in the inelastic energy conservation law which reads E = εl + Em = εr + Em′ .

Transmission function for electrons tunneling from the right lead to the left is not

equal to (2.47), but, according to the principle of microscopic reversibility ωr←lmm′ =

ωl←rm′m.

In inelastic transport regime we use the modified Landauer formula ([48])

I = 1
2π

∫
dE

∑
mm′

Pm
{
ωr←lmm′(E)fl(E − Em)[1− fr(E − Em′)]

−ωl←rmm′(E)fr(E − Em)[1− fl(E − Em′)]
}
,

(2.48)

where, to compare with (2.43), the sum over all possible nuclear transitions is added.

Additional Fermi-Dirac factors are there to take into account the fact, that the final
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electron state shouldn’t be occupied to make a tunneling event possible. Molecular

bridge is assumed to be in equilibrium and its vibrational states are populated

according to the Boltzmann distribution

Pm =
e−Em/kT∑
m

e−Em/kT
. (2.49)

This assumption doesn’t allow to take into account indirect electron interactions

(when electrons exchange their energy through the bridge excitations). We thus

assume that the average time between two subsequent electron scattering events is

longer than the relaxation time for the vibrations due to interactions with some

external bath (not included explicitly in the Hamiltonian) It is a reasonable ap-

proximation if the molecule is strongly coupled to the heat bath. Otherwise, more

detailed description should be considered to get more realistic vibrational popula-

tions. One possible enhancement of the scattering theory approach is discussed in

the chapter 5.

2.2.2 Transmission probability

Transmission probability in the formulas (2.46) and (2.47) is expressed though the

T -matrix elements. According to the partitioning principle, which was described in

the section 2.1.3, T -operator2 can be written as

T =


T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (2.50)

To calculate a certain element of the T -matrix we need to specify initial and final

scattering states. Moreover, we are interested only in those scattering processes,

which start in one lead and finish in the other one, since only this processes con-

tribute to the current. In other words we can say that initial and final states belong

to the different spaces. For left to right tunneling, for example, we can write those

2Following the scattering theory tradition the T -matrix and the T -operator are denoted with

small and capital letters respectively.
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states as

|in〉 =


|l〉

0

0

 , 〈out| =
(

0 0 〈r|
)
, (2.51)

where vector |l〉 belongs to the space κll⊗κvib and vector 〈r| to the space κrl⊗κvib.

Performing the block multiplication, for the relevant T -matrix elements we get

t(r←l) = 〈out|T |in〉 = 〈r|T31|l〉. (2.52)

Thus, we need not the whole T -operator, but only the block T31.

Practically it’s more convenient to work not with the T -operator of the junction,

but with it’s Green’s operator G. This two operators contain the same information

about the system ([46]). They are connected by definition through the coupling

operator

T = Hsl +HslGHsl. (2.53)

Substituting this definition to the previous equation and using the coupling parti-

tioning (2.42) to perform the block multiplication we get

t(r←l) = 〈r|VrG22V
†
l |l〉. (2.54)

And again we are interested not in the whole Green’s operator, but only in it’s

part. Being written as a matrix in n-representation, G22 becomes a square finite

dimensional matrix. It happens because G22 belongs to the molecular bridge space

κs ⊗ κvib which has a finite number of electronic states3 or, in other words, it is

spatially limited. It’s a great computational advantage to compare with T31 which

is presented by the half infinite matrix.

2.2.3 Green’s function of the bridge

Green’s operator of the molecular junction is defined as

GR(E) = [(E + iη)I −H]−1, (2.55)

3In this work we always consider just one electronic state at the bridge
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where H is the full Hamiltonian of the junction. The usual infinitesimal imaginary

term iη where η → +0 is used to distinguish the retarded Green’s operator. Another

possible choice η → −0 would lead to the advanced Green’s operator, which is the

Hermitian conjugate of (2.55): GA = [GR]†. We are going to use only the retarded

Green’s operator and omit the index R in what follows. By definition operator G

satisfies the equation [(E + iη)I −H]G = I, where I is the unit operator.

According to the formulas (2.41) and (2.42) the Hamiltonian H = H0 + Hsl of

the junction reads

H =


Hll Vl 0

V †l Hs V †r

0 Vr Hrl

 . (2.56)

Using this partitioning, the equation for the Green’s operator can be written as
(E + iη)I −Hll −Vl 0

−V †l EI −Hs −V †r
0 −Vr (E + iη)I −Hrl

 ·

G11 G12 G13

G21 G22 G23

G31 G32 G33

 = I. (2.57)

We don’t add any complex terms in the central block of the first matrix in purpose. It

will be obvious later that it doesn’t make any changes there. From all the equations

we choose those 3, which contain the relevant part G22

[(E + iη)I −Hll]G12 − VlG22 = 0,

−V †l G12 + [EI −Hs]G22 − V †r G32 = I,

−VrG22 + [(E + iη)I −Hrl]G32 = 0.

(2.58)

We express the blocks G12 and G32 from the 1st and 3rd equations and substitute

them to the second equation for G22. At the same time we notice, that the quantities

gl ≡ [(E + iη)I −Hll]
−1,

gr ≡ [(E + iη)I −Hrl]
−1

(2.59)

are, by definition, Green’s operators for isolated left and right leads. The equation

for G22 reads

−V †l glVlG22 + [EI −Hs]G22 − V †r grVrG22 = I. (2.60)

Introducing new notations

Σl ≡ V †l glVl,

Σr ≡ V †r grVr,
(2.61)
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G22 can be expressed from (2.60) in the form

G22 = [(EI −Hs)− Σl − Σr]
−1. (2.62)

Technically, expression (2.62) is appropriate for the numerical treatment, since it

assumes an inversion of the finite-dimensional matrix.

The G22 block is the part of the whole Green’s operator of the junction, which

correspond to the molecular bridge. To compare with the Green’s operator of the

isolated bridge

G0
22 = [EI −Hs]

−1, (2.63)

operator (2.62) contains the quantities Σl and Σr which are called self energies. They

represent the influence of the leads. Self-energy of the lead possess information about

isolated lead itself through it’s Green’s operator gα and, also, about the way, how

it is connected to the bridge, through the coupling matrices Vα (α = l, r). Influence

of the leads is additive: we can remove one of them or add one, it will appear as

additional term in (2.62).

At the end we get a scheme which includes the calculation of self-energies of the

leads using formula (2.61) and the bridge’s Green’s operator (2.62) to compute the

T -matrix (2.54). Subsequently formulas (2.46) and (2.43) can be used to calculate

the current in the case of elastic transport regime and formulas (2.47) and (2.48) in

inelastic case. The details of application of this scheme to the particular models are

discussed in the chapter 4.

2.3 Master equation approach

The master equation (ME) theory is quite a general approach to describe an open

quantum systems in nonequilibrium, when a whole system can be divided to a

reservoir and a small system under interest. Such small system, in our case, is the

molecular bridge. It’s connected to two solid leads with infinite number of electronic

degrees of freedom and can exchange electrons with them. Each lead is assumed

to be in equilibrium with its own chemical potential. It provides a voltage across

the junction and, thus, absence of equilibrium at the molecular bridge. Such a

partitioning of the junction is expressed in the Hamiltonian structure (2.37).
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In this formalism a reduced density matrix (RDM) concept, introduced by Paul

Dirac in 1930, is used to describe a quantum state of an open system ([3]). If we

denote the full density matrix (DM) of the system by R, RDM is defined by the

equation

ρ ≡ Trl[R], (2.64)

where partial trace should be taken through the degrees of freedom of the leads.

Time evolution of the DM is governed by the von Neumann equation

∂

∂t
R(t) = −i[H,R(t)]. (2.65)

Similar equation for RDM is called ME. Since we are interested mainly in the state

of the bridge, which is given by RDM, the full density matrix R practically contains

unnecessary information about the leads state. Moreover, there are no chances to

solve the von Neumann equation for systems considered here, since the unknown

R(t) is an infinite dimensional matrix. On the other hand, ME can be effectively

treated numerically and for some simple models analytically. Standard ME approach

([27, 31, 17]) is a quite common method to treat the charge transport phenomena

in the weak coupling regime4.

2.3.1 Derivation of the WBR ME

Here we present one of the ways to derive the second order ME which is called

Wangsness-Bloch-Redfield (WBR) ME. There are few other types listed in the work

[47]. Superoperators will be used throughout the derivation, i.e. mapping which acts

on operators and produce another operators. Only linear superoperators are used

in this work. Being written in a basis they are presented by the 4th rank tensors.

Superoperators act in the Fock space of the junction F .

Let’s define two superprojectors

PR(t) ≡ ρl ⊗ Trl[R(t)] = ρl ⊗ ρ(t), (2.66)

and

Q = I − P. (2.67)

4Coupling in this approach is treated perturbatively and it should be small



2.3. Master equation approach 24

Here, as usual, I is a notation for the unit superoperator which maps every operator

to itself and ρl is RDM of isolated leads. We assume it to be in equilibrium all the

time, because weak interaction with a small system does not change its state. These

superprojectors possess usual projector’s properties P 2 = P , Q2 = Q, PQ = 0.

Superoperator L, which is defined as

LR(t) ≡ [H,R(t)], (2.68)

is also in use here. It allows to rewrite the von Neumann equation in the form

∂

∂t
R(t) = −iLR(t), (2.69)

with symbolical solution

R(t) = e−iL(t−t0)R(t0). (2.70)

We also assume the initial condition R(t0) = ρl ⊗ ρ0. It means that PR(t0) = R(t0)

and QR(t0) = 0. Of course in some arbitrary moment of time R(t) 6= ρl ⊗ ρ(t) and

QR(t) 6= 0. It would be so, if system and reservoir parts would be independent.

Superprojectors can be used to rewrite eq. (2.69) as

PṘ = −iPLPR− iPLQR,

QṘ = −iQLPR− iQLQR.
(2.71)

To express QR(t) = u(t) from the second equation we solve the linear initial value

problem

u̇(t) + qu(t) = φ(t),

u(t) = e−q(t−t0)u(t0) +
t∫
t0

e−q(t−ξ)φ(ξ)dξ,
(2.72)

i.e.

QR(t) = e−iQLQ(t−t0)QR(t0)− i
t∫

t0

e−iQLQ(t−τ)QLPR(τ)dτ. (2.73)

To get the equation for PR we substitute this ”solution” to the first equation in

(2.71)

PṘ = −iPLPR− iPLQe−iQLQ(t−t0)QR(t0)−
t∫

t0

PLQe−iQLQ(t−τ)QLPR(τ)dτ.

(2.74)
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Similar result is obtained in [47] using the Laplace transformation. Before this

moment there were no approximations introduced and the equation is exact.

Having in mind logical partitioning of the whole system into the small bridge-

system, leads and coupling (2.37), superoperator L can be partitioned (and it’s easy

to show) in a similar way L = Ls + Ll + Lsl. We will use properties

PLs = LsP,

PLl = LlP = 0,

PLslP = 0,

(2.75)

which can either be proved by reader or taken from the work [47]. With these

properties equation can be slightly changed

∂
∂t
PR = −iPLsPR− iPLsle−iQ(Ls+Ll+Lsl)Q(t−t0)QR(t0)

−
t∫
t0

PLsle
−iQ(Ls+Ll+Lsl)Q(t−τ)LslPR(τ)dτ.

(2.76)

Second term at the right hand side disappears if we assume the initial condition

t0 = 0, QR(t0) = 0. Another step on the way of simplification is to expand the

equation to the second order in Lsl. It brings in one of the main limitations of the

ME approach, which obliges the coupling to be small. To leave only second order

terms we have to remove Lsl from decomposition of exponent in the 3-rd term. After

it we use the fact, that Q commute with Ls and Ll (it follows from the properties

(2.75)) and remove Q from the exponent

∂

∂t
PR = −iPLsPR−

t∫
0

PLsle
−i(Ls+Ll)(t−τ)LslPR(τ)dτ. (2.77)

Changing variables in the integral τ → t− τ ′ and then switching back the notation

τ ′ → τ we get

∂

∂t
PR = −iPLsPR−

t∫
0

PLsle
−i(Ls+Ll)τLslPR(t− τ)dτ. (2.78)

Formula (2.70) is used to write

PR(t− τ) = eiLτPR(t) = ei(Ls+Ll+Lsl)τPR(t). (2.79)
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When we substitute it to the equation, second order requirement removes Lsl from

this exponent. Part PR(t) can be moved out of the integral

∂

∂t
PR = −iPLsPR−

t∫
0

PLsle
−i(Ls+Ll)τLslPe

i(Ls+Ll)τdτPR(t). (2.80)

Next approximation comes to make the integral time-independent. We assume

t→∞ and write

∂

∂t
PR = −iPLsPR−

∞∫
0

PLsle
−i(Ls+Ll)τLslPe

+i(Ls+Ll)τdτPR(t). (2.81)

This is called the Markov’s approximation. It’s useful to point here, that the Q-

projection of DM at our level of approximation is

QR(t) = −i
∞∫

0

e−i(Ls+Ll)τLsle
+i(Ls+Ll)τdτ PR(t). (2.82)

It is used in the next section to derive the general formula for the current.

Using the property e−iLτA = e−iHτAe+iHτ and definitions of super operators Lsl

and P we can rewrite the next fragment through the commutators as

e−i(Ls+Ll)τLsle
+i(Ls+Ll)τPR(t) = [e−i(HS+HL)τHsle

+i(Hs+Hl)τ , ρ(t)⊗ ρl]. (2.83)

Using this, the last two equations can be modified

QR(t) = −i
∞∫

0

dτ [e−i(Hs+Hl)τHsle
+i(Hs+Hl)τ , ρ(t)⊗ ρl], (2.84)

∂

∂t
ρ(t)⊗ ρl = −i[HS, ρ(t)⊗ ρl]− P

∞∫
0

dτ [Hsl, [e
−i(Hs+Hl)τHsle

+i(Hs+Hl)τ , ρ(t)⊗ ρl]].

(2.85)

The last thing to do here is to substitute the definition of the superprojector P.

”Dividing” the equation to ρl we finally get the Wangsness-Bloch-Redfield master

equation

∂

∂t
ρ(t) = −i[Hs, ρ(t)]− Trl

∞∫
0

dτ [Hsl, [e
−i(Hs+Hl)τHsle

+i(Hs+Hl)τ , ρ(t)⊗ ρl]], (2.86)

like it’s defined in [47]



2.3. Master equation approach 27

Analogically to the von Neumann equation (2.69) for full DM, we can write ME

for RDM in the form
∂

∂t
ρ(t) = Lρ(t), (2.87)

where the right hand side of the equation is denoted by the superoperator L. It acts

to operators in the bridge variables space. As we can see from (2.86) it consists of

two terms which we denote L = L0 + L1. If the molecule is disconnected from the

leads L1 = 0 and the system’s time evolution is governed by L0, or, in other words,

by the Hamiltonian Hs. In this case equation (2.86) coincide with the von Neumann

equation for the isolated molecular bridge. It’s straightforward to deduce, that the

term L1 incorporates the influence of the leads.

If we have few reservoirs in the ME, their impact to the equation is additive.

It means, that we can add α reservoirs and each of them appears as an additional

term L1,α in the equation. Since we have two leads, which are, actually, independent

reservoirs (they can’t interact directly), we can split the leads part L1 to the left

and right lead terms

L1 = L1,l + L1,r. (2.88)

Each of them is of the same form as in the equation (2.86). But instead of operators

Hl and Hsl, which describe the total energy of leads and both couplings, we should

take analogical operators for one specific (left or right) lead.

The solution of the equation (2.86) gives the time evolution of the RDM ρ(t).

We are more interested in a state of the system after some large amount of time,

when it reaches its stationary value and doesn’t change anymore. For this reason,

in practice, we solve not the equation (2.86), but the equation

Lρ(∞) = 0 (2.89)

to determine the stationary RDM.

2.3.2 Current and other observables

DM of the whole system R completely describes it’s state. Mean value of any

observable O can be calculated using the formula

〈O〉 = Tr [RO] . (2.90)
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If O exclusively belongs to the bridge variables space the similar formula can be

used but with RDM instead of DM. It is the case for all observables of interest in

this work (like, for example, the angular momentum, which is important for motor

models), except of the current, since its operator contains leads variables as well.

Particle’s current is the number of particles, which passes through one of the

leads per unit of time. To be specific we chose the left lead5 Thus, the mean value

of the current reads

I =

〈
dNll

dt

〉
, (2.91)

where

Nll =
∑
k

c†kck (2.92)

is the number of particles operator for the left lead. Using the equation (2.65) and

calculating commutator we write

I = −i 〈[H,Nll]〉 = −i

〈∑
k

Vdk(d
†ck − c†kd)

〉
. (2.93)

Now we use the formula (2.90) to write

I = −iTr

{
R
∑
k

Vdk(d
†ck − c†kd)

}
. (2.94)

It’s time to remember about superprojectors and write DM as R = PR+QR. PR =

ρ ⊗ ρl doesn’t contribute to the current, since after substitution terms Trl(ρlck) =

Trl(ρlc
†
k) = 0. Using expression (2.84) for QR we get

I = −
∞∫

0

dτTr{[e−i(Hs+Hl)τHsle
+i(Hs+Hl)τ , ρ(t)⊗ ρl]

∑
k

Vdk(d
†ck − c†kd)}, (2.95)

which is the general formula for the current in the ME approach. It is general

enough to cover all one level model bridges in this work. In a case of necessity

the generalization to many level bridges is straightforward (reader can find it, for

example, in [17]).

5All operators without lead specification index further in this section are assumed to belong to

the left lead.



Chapter 3

Models of the molecular junction

In this chapter we describe in details 4 different models of molecular junctions for

the future discussion. Model 1 represents a junction with the purely elastic electron

transport mechanism, i.e. without energy exchange between electronic and nuclear

degrees of freedom of the molecule. It’s an important limiting case for more compli-

cated models, where electron-phonon interaction is taken into account. Moreover,

charge transport equations for the model 1 can be solved analytically and, thus, it’s

interesting from theoretical point of view. For example it allows to formulate math-

ematically the limit, when the scattering and master equation approach calculations

coincide. In the model 2 the harmonic approximation is used to include a vibra-

tional degree of freedom of the molecule, which participate in the electron-phonon

interaction. Formulae for current in the model 2 are used to outline principle differ-

ences between ME and scattering approaches in the chapter 5. It helps to formulate

one possible improvement, which makes scattering approach more accurate in the

inelastic regime. All together models 1 and 2 provide a good basis for comparison

of two approaches. They also provide a good ground to make a step beyond the

harmonic approximation. Models 3 and 4 are formulated to study the motor effect.

In the model 3 we want to capture the basic features of usual models for study of

a molecular conduction junction coupled to vibrations (like, for example, the model

2), but to allow for large amplitude anharmonic motion. The model 4 is motivated

by more realistic parameters expected for real molecular systems. Both models are

divided to few ”submodels” to investigate the influence of different types of coupling

29
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symmetry to the conductive and rotational properties of junctions.

3.1 Elastic bridge (model 1)

To construct the simplest possible model of the molecular junction we remove the

atom with n = 0 from the tight binding chain (TBC) in the fig. 2.1 and put another

atom of different type (impurity) on it’s place, like it’s depicted in the fig. 3.11. The

corresponding Hamiltonian matrix in the n-representation reads

H =



· · · β1

β1 µl β2

β2 ε0 β2

β2 µr β1

β1 · · ·


. (3.1)

Despite its simplicity, the model is very important from theoretical point of view.

It’s analytically solvable in both scattering and ME approaches and provides a basis

for discussion and comparison. The atom of impurity plays a role of the molecular

bridge, which contains one electronic level with energy ε0, available for tunneling,

and no internal degrees of freedom. Changing the notation of the basis vector |n = 0〉

to |d〉, bridge’s Hamiltonian reads

Hs = |d〉ε0〈d|. (3.2)

Leads, as always in this work, are presented by two half-infinite tight binding chains

(HITBC). Their Hamiltonian in k-representation reads

Hl =
∑
kα

|kα〉εkα〈kα|, (3.3)

where α = l, r is used to distinguish left and right lead. Chemical potential µα is in

general different for different leads. When we speak about a voltage U , applied to

the junction, we assume µl = +V
2

and µr = −V
2

.

1We also assume that chemical potentials can be different from both sides of the impurity
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Figure 3.1: Infinite one dimensional tight-binding chain with impurity may be con-

sidered as a simplest example of the molecular junction

The bridge state |d〉 is connected to the leads through its nearest neighbors, i.e.

lead states |n〉 where n = ±1, with coupling strength β2

Hsl = |d〉β2〈1|+ |1〉β2〈d|+ |d〉β2〈−1|+ | − 1〉β2〈d|. (3.4)

Or, equivalently, switching from n- to k-representation

Hsl =
∑
kα

|d〉Vdk〈kα|+ |kα〉Vdk〈d|, (3.5)

where we have introduced coupling coefficients

Vdk = β2〈1|kα〉 =

√
2

N
β2 sin (k). (3.6)

Using the leads creation/annihilation operators c†kα and ckα which were intro-

duced in the previous chapter and similar operators for the bridge d† and d, which

were also mentioned there, we can write the whole junction Hamiltonian H =

Hs +Hl +Hsl for the model 1 in the second quantization representation

Hs = ε0d
†d,

Hl =
∑
kα

εkαc
†
kαckα,

Hsl =
∑
kα

Vdk

(
d†ckα + c†kαd

)
.

(3.7)

Operators d and d† are fermionic operators and, thus, satisfy commutation rela-

tions

[d, d†]+ = dd† + d†d = 1. (3.8)
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It’s useful to mention here, that their products, i.e. operators d†d and dd†, form a

complete set of orthogonal projectors. We denote Q = d†d, P = dd† and notice that

P + Q = 1, P 2 = P , Q2 = Q, PQ = QP = 0. It means that they have also some

other useful properties of projectors, which will be used later. For example if A and

B are some operators and [A,P ] = [B,P ] = [A,Q] = [B,Q] = 0, then

eAP = eAP +Q, (3.9)

eAP+BQ = eAP + eBQ, (3.10)

as it can easily be proved decomposing the exponent to the Taylor series.

In the case of just one electronic state on the bridge (which is always the case in

this thesis) the structure of its Fock space is quite simple. The space is spanned on

two basis vectors |0〉 and |1〉, which correspond to unoccupied and occupied bridge.

In this basis creation and annihilation operators can be written as

d† = |1〉〈0|, d = |0〉〈1|,

d†d = |1〉〈1|, dd† = |0〉〈0|.
(3.11)

Any operator A, which acts inside the bridge space can be decomposed to four blocks

A = |0〉〈0|A|0〉〈0|+ |0〉〈0|A|1〉〈1|+ |1〉〈1|A|0〉〈0|+ |1〉〈1|A|1〉〈1| (3.12)

(it can be shown, multiplying A from both sides by the completeness relation I =

|1〉〈1|+ |0〉〈0|). Or, which is equivalent

A = A00dd
† + A11d

†d+ A01d+ A10d
†, (3.13)

where Aij ≡ 〈i|A|j〉. The RDM, for example, which is also an operator in the bridge

space, can be presented as

ρ = ρ00dd
† + ρ11d

†d+ ρ01d+ ρ10d
†. (3.14)

This decomposition is widely used later in this work.

Presenting the calculations results for the model 1 in the chapter 5 we assume,

if it’s not stated differently, the following parametrization: ε0 = 0.5 eV, β1 = 1.0 eV,

β2 = 0.2 eV, T = 10 K.
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Figure 3.2: Schematic representation of the molecular junction in the model 2

3.2 Bridge with one harmonic vibrational mode

(model 2)

To get a model of the molecular bridge with one vibrational mode we connect elec-

tronic state |d〉 from the model 1 to the harmonic oscillator. It doesn’t change the

full junction Hamiltonian parts Hl and Hsl, which have the same form in models 1

and 2. The molecular part Hs is represented here with the so called independent

boson model (see [30]). It reads

Hs = ε0d
†d+ Ωa†a+ λ(a+ a†)d†d. (3.15)

Harmonic oscillator with the frequency Ω is governed by the bosonic operators a†

and a, which create and annihilate a vibrational quantum (phonon) at the bridge.

Parameter λ controls the strength of the electron-phonon interaction. Such models

are often used (see, for example, [50]) to model the molecular bridges with harmonic

vibrational mode. One of the advantages of this description is that the molecular

Hamiltonian part Hs can be diagonalized analytically. Schematic representation of

the junction in the model 2 is showed in the fig. 3.2. Vibrational mode is represented

there by two parabolic potential energy curves, which correspond to the unoccupied

and occupied molecular bridge (see the rest of this section for an explanation).

Corresponding quantized vibrational energies are plotted with red and green lines.

Using commutation relation d†d+ dd† = 1 we can rewrite the molecular Hamil-

tonian part as

Hs = h0dd
† + h1d

†d, (3.16)
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where

h0 = Ωa†a, h1 = Ωa†a+ λ(a+ a†) + ε0. (3.17)

Written in this way, it reflects the important fact: when an electron jumps from the

lead to the molecular bridge, bridge changes its geometry. We can interpret h0 and

h1 physically as full energies of unoccupied and occupied molecule respectively. All

bridge Hamiltonians Hs in this work can be written in the form (3.16) (in the model

1, for example, h0 = 0 and h1 = ε0). Assuming Hs to be in this form we may use

definition

d(t) = e+iHstde−iHst (3.18)

to derive the general formula for the time evolution of d, which will be used later.

Using property (3.10) we get

d(t) = e+ih0tde−ih1t, d†(t) = e+ih1td†e−ih0t. (3.19)

Since we explicitly know the expressions for creation/annihilation operators of

the harmonic oscillator

a =
√

MΩ
2

(x+ i
MΩ

p),

a† =
√

MΩ
2

(x− i
MΩ

p),
(3.20)

Hamiltonians h0 and h1 can be rewritten in first quantization as

h0 =
p2

2M
+
MΩ2

2
x2, h1 =

p2

2M
+
MΩ2

2
x2 + xλ

√
2MΩ + ε0. (3.21)

Thus, we deal here with two potential energy curves which correspond to occu-

pied and unoccupied molecules, and both of them have parabolic form. When the

electron-phonon interaction is switched off, i.e. λ = 0, the shapes of the two poten-

tials are identical, and the only difference between them is that the occupied bridge

potential is shifted up by the energy ε0. This logic works in the opposite direction: if

the only difference between potentials of unoccupied and occupied bridges is vertical

shift, molecular vibrations are decoupled from the electronic degree of freedom.

The Hamiltonian (3.15) can be diagonalized using the so called polaron trans-

formation (see [30])

H̄ = eSHe−S, (3.22)
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Figure 3.3: Potential energies of unoccupied and occupied bridge in model 2.

where

S ≡ d†d
λ

Ω
(a† − a). (3.23)

For future convenience we introduce also the operator

X = e−
λ
Ω

(a†−a), (3.24)

which is unitary, i.e. X† = X−1 6= X. Transformed Hamiltonian reads

H̄ = (Ωa†a)dd† + (Ωa†a+ ε0 −
λ2

Ω
)d†d = h0dd

† + (X†h1X)d†d. (3.25)

To get the eigenstates of h0 and h1 the Schroedinger equations

h0|m〉 = Em|m〉,

h1|v〉 = Ev|v〉
(3.26)

must be solved. Notations for eigenfunctions and energies of h0 and h1, which follows

from (3.26), will be widely used in the thesis. We thus always reserve m for levels

of the neutral molecule and m′, m′′ are used if more than one different levels appear

in the same formula. The same convention is used for the charged molecule states

|v〉.
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Hamiltonian h0 corresponds to the harmonic oscillator with frequency Ω and

mass M . Its wavefunctions ψm(x) and eigenenergies are well known

Em = Ω(m+ 1/2),

ψm(x) =
√

1
2mm!

(MΩ
π

)1/4exp[−MΩx2

2
]Hm[x

√
MΩ].

(3.27)

To solve the second equation we transform it using the operator X: h̄1 = X†h1X.

The solution of Schroedinger equation with Hamiltonian h̄1 is easy to write (see

(3.25)), and we transform it back using the same operator X. To perform the

transformation we notice, that X acts as a shift operator T in the coordinate space.

Compare

T (a) ≡ e−a
∂
∂x , T (a)ψ(x) = ψ(x− a) (3.28)

and

X = e−
λ
Ω

(a†−a) = e
√

2λ2/MΩ3 ∂
∂x . (3.29)

For an occupied molecule states we have expressions

Ev = Ω(v + 1/2) + ε0 − λ2

Ω
,

ψv(x) = Xψm(x) = ψm(x+
√

2λ2

MΩ3 ),
(3.30)

where m = v. Thus, Hamiltonian h1, to compare with h0, describes the ”shifted”

oscillator. It’s energies are shifted up by the value ε0 − λ2

Ω
and eigenfunctions are

shifted to the left by
√

2λ2

MΩ3 . Potential energies for unoccupied and occupied molec-

ular bridges together with quantized energy states are showed in the fig. 3.3. To

parametrize the model 2 we use the following values: λ = 0.3 eV, Ω = 0.5 eV,

M = 2000 a.u. Other parameters are the same as in the model 1.

Now, when the molecular bridge Hs is completely specified we may write the full

Hamiltonian H of the junction

H = h0dd
† + h1d

†d+
∑
kα

εkαc
†
kαckα +

∑
kα

Vdkα

(
d†ckα + c†kαd

)
. (3.31)

To apply the scattering theory approach to the model 2 we have to write the same

Hamiltonian in the single electron formulation, i. e. in the {|k〉, |d〉} basis. As it

can be verified by the direct projection of (3.31) on basis vectors |d〉 ≡ d†|0〉 and
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|k〉 ≡ c†k|0〉2, single electron Hamiltonian reads

H = |d〉h1〈d|+
∑
kα

|d〉Vdk〈kα|+ |kα〉Vdk〈d|+
∑
kα

|kα〉(εkα + h0)〈kα|. (3.32)

Thus, we see that h0 is moved from Hs to Hl part. When electron belongs to the

left or right lead, it automatically means, that it doesn’t belong to the bridge. In

this case bridge is unoccupied and governed by the h0 operator.

Overall Hamiltonian matrix in n-representation reads

H =



· · · β1

β1 µl + h0 β2

β2 h1 β2

β2 µr + h0 β1

β1 · · ·


(3.33)

To compare with the matrix (3.1) from the model 1, each element here is itself an

operator in the vibrational space κvib.

Overlap matrix

Overlaps 〈m|v〉 between states of occupied and unoccupied bridge play an important

role in charge transport theories. Motivated by molecular physics they are often re-

ferred to as Franck-Condon factors [53]. In the independent boson model framework

this matrix can be calculated analytically.

Eigenstates of occupied bridge |v〉 can be produced from corresponding eigen-

states of unoccupied bridge, which we denote as |m′〉, using the X-transformation3

〈m|v = m′〉 = 〈m|X|m′〉 = 〈m|e−
λ
Ω

(a†−a)|m′〉. (3.34)

There is a theorem (see [30]) which says, that if commutator [A,B] = C commutes

with both A and B, then

eA+B = eAeBe−
1
2

[A,B] (3.35)

2Fock space vacuum state is denoted as |0〉 here.
3v and m′ are equal numbers, but according to our convention we have to use different letters

to distinguish between eigenstates of h0 and h1 operators.
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We use this theorem to split the X operator. Since comutator

[−λ
Ω
a†,+

λ

Ω
a] =

λ2

Ω2
(3.36)

itself commute with both terms under the exponent, we may write

X = e−
λ
Ω

(a†−a) = e−
λ
Ω
a†e+ λ

Ω
ae−

λ2

2Ω2 . (3.37)

The overlap matrix reads

〈m|v〉 = e−
λ2

2Ω2 〈m|e−
λ
Ω
a†e+ λ

Ω
a|m′〉 (3.38)

Decomposing the exponent

e+ λ
Ω
a|m′〉 =

∞∑
i=0

(
λ

Ω

)i
1

i!
ai|m′〉 (3.39)

and applying the annihilation operator i times

ai|m′〉 =


√

m′!
(m′−i)! |m

′ − i〉 if i ≤ m′

0 if i > m′
, (3.40)

the following formula can be derived

e+ λ
Ω
a|m′〉 =

m′∑
i=0

(
λ

Ω

)i
1

i!

√
m′!

(m′ − i)!
|m′ − i〉. (3.41)

In a similar way we derive the formula for 〈m|e− λΩa† and substitute them both to

(3.38). At this point we also remember that m′ = v. Final expression for the overlap

matrix reads

〈m|v〉 = e−
λ2

2Ω2

v∑
i=0

m∑
j=0

δm−j,v−i(−1)j
(
λ

Ω

)i+j
1

i!j!

√
m!v!

(m− j)!(v − i)!
. (3.42)

3.3 Rotating bridge (models 3 and 4)

To build a bridge model with more interesting and realistic vibrational properties one

have to go beyond the harmonic approximation. Developing the models 3 and 4 in

this section we have in mind a molecular bridge schematically depicted in the fig. 3.4.

Let’s consider a molecule consisting of the chain of three aromatic rings. While two
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Figure 3.4: Schematic representation of a molecular junction with the bridge, which

can perform rotational movement

side rings are connected to the electrodes, central ring can perform a rotational

movement. There exist a number of works ([49], [11]), where torsional degrees of

freedom of biphenyl-like molecules are investigated. Summarizing their experience

we take a simple analytic yet rather general shape of potentials. Assuming the

molecular bridge energy operator Hs in the form (3.16), unoccupied and occupied

bridge Hamiltonians reads

h0 = − 1
2I

∂2

∂ϕ2 + ε0 + A0 cos(n0ϕ),

h1 = − 1
2I

∂2

∂ϕ2 + ε1 + A1 cos(ϕ+ ϕ1),
(3.43)

where I is the moment of inertia of the rotor and ϕ is the angle of rotation (thus

it belongs to the interval [0; 2π]). Other coefficients define positions and amplitudes

of the potentials.

Eigenstates and energies equations (3.26) can’t be solved analytically for the

models 3 and 4 (with cosinusoidal potentials mathematicians call them the Mathieu

equations). Thus, numerics should be involved at early stages of calculation. Using

the free rotor basis {|n〉} (see the table 3.1), eigenstates |m〉 and |v〉 can be computed

numerically and presented in the form of decomposition

|m〉 =
∑
n

〈n|m〉|n〉,

|v〉 =
∑
n

〈n|v〉|n〉.
(3.44)

Those states constitute a convenient basis {|m〉,|v〉} in the space of molecular mo-

tion, which will be used later to present the RDM of the bridge. Energies Em and

Ev (m,v = 0,1,...) of unoccupied and occupied molecule respectively are shown in

the fig. 3.5 for the model 3 (parameters of the model are listed in the table 3.2).
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n 〈ϕ|n〉 n 〈ϕ|n〉

0 1/2π 3 1/π sin (2ϕ)

1 1/π sin (ϕ) 4 1/π cos (2ϕ)

2 1/π cos (ϕ) ... ...

Table 3.1: Free rotor basis, which was used for the numerical calculations in the

models 3 and 4

From the point of view of classical mechanics, cosinusoidal form of the potentials,

similar to those depicted in the fig. 3.5, provides a rotational barrier at the energy ε0+

A0 (ε1 +A1 for occupied bridge), which divides two types of the motion: vibrational

(when the energy of the system is below the barrier) and rotational. In quantum

mechanical description wavefunctions of the states which are located well below the

barrier are localized in space (according to the angle ϕ) and in this sense can be

called vibrational. On the contrary, states well above the barrier are delocalized

through the whole interval [0; 2π]. Those states are two times degenerate4, which is

connected with the fact that above the barrier two possible directions of rotation are

possible and they are energetically equivalent. We call them rotational states. Well

above the classical barrier, when system has a lot of energy and doesn’t feel potential

anymore, states are close to the free rotor states. Unlike in classical mechanics, in

quantum mechanics the division to vibrational and rotational states is not strictly

determined, since between localized and delocalized states there is a ”transition

region” where states smoothly change their ”degree of localization”.

System-lead coupling Hsl is taken in the same general form as for models 1 and

2

Hsl =
∑
α=l,r

∑
k

Vdkα(ϕ)(d†ckα + c†kαd), (3.45)

but coupling coefficients Vdkα(ϕ) in the model 3 are, in general, different for left and

right lead and depend on the rotational angle. We set up 3 models with different

coefficients.

4Or, to be more precise, near degenerate
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Figure 3.5: Energy levels of unoccupied (red lines) and occupied (green lines) molec-

ular bridge in model 3. Respective potentials are plotted with dark gray and light

gray.

• Model 3a. Vdkα = β2 sin(k). The angle-independent coupling is less natural

for the motor models discussed here, than the better motivated coupling pro-

posed in the next two items (3b and 3c), but it simplifies the treatment of the

dynamics significantly. Furthermore this is the case most often considered by

other studies [50] and it’s identical to one we use in models 1 and 2. For this

reasons it’s an interesting case for comparison and discussion.

• Model 3b. Vdkα = β2 sin(k) cos(ϕ−ϕα) and ϕl = ϕr. To motivate the symmet-

rical angle dependent coupling, let’s look again to the fig. 3.4. The position of

the central ring is determined by the angle ϕ. When the central ring moves,

overlap between the π-orbitals of neighbor rings changes. It affect the con-

ductivity which appears to be ϕ-dependent. When all benzene rings lie in the

same plane, i.e. ϕ = ϕl = ϕr the overlap is maximal as well as coupling. When

ϕ is perpendicular to ϕl and ϕr the coupling is equal to zero. Such behavior

is well modeled by the factor cos(ϕ − ϕα) in Vdkα. It can be also motivated

with Hückel model (see [51]).
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• Model 3c. Vdkα = β2 sin(k) cos(ϕ − ϕα) and ϕl 6= ϕr. The same form like in

model 3b, but different for left and right lead. Braking of the symmetry pro-

vides the circumstances for observation of the ”motor effect”, i.e. preferential

rotation of the rotor in one or other direction depending on the direction of

the current through the junction. In reality asymmetrically coupled bridges

may exist for different reasons. If we speak, for example, about phenyl chains,

like at the fig. 3.4, we can expect that the first and the last benzene rings of

the chain are attached to the leads in different ways.

In the next chapter we will use the notation

Vdkα = VkVdα(ϕ) (3.46)

to separate the part Vk =
√

2
N
β2 sin(k), which contains leads variable k (i. e. energy

dependence), and all the rest. Thus the only difference between models 3a, 3b

and 3c is the dimensionless coefficient Vdα(ϕ), which defines the angle-dependent

coupling strength. Coupling coefficients Vdkα and its parts shouldn’t be mixed up

with coupling matrices Vα and V †α used in the previous chapter.

Model 3, being just an anharmonic generalization of the independent boson

model, should be considered as a purely theoretical model. For this reason we

don’t pay much attention to it’s parametrization, choosing parameters to reproduce

regimes we consider to be interesting. On the contrary, in the model 4, we make

an attempt to choose parameters in the reasonable range of values and, thus, make

a step in the direction of more realistic models. All parameters from the models 3

and 4 are summarized in the table 3.2.

Potential energies for the model 4 are showed in the fig. 3.6. Unoccupied bridge

potential, taken in this way, resembles the energy of the central benzene ring tilt mo-

tion in the phenylene ethynylene oligomer (PEO) molecule, which was described in

the work [37]. From the same paper we know, that amplitudes of such potentials can

be changed under the influence of an external electrostatic field. So, we have certain

freedom to change amplitudes and stay inside the reasonable range of values. The

vibrational potential for the charged molecule is characterized by larger amplitude

and smaller number of oscillations than the potential for the neutral molecule [51].
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Model I, a.u. ε0, eV ε1, eV A0, eV A1, eV n0 ϕ1,◦ ϕl,
◦ ϕr,

◦

3a 2000 1.25 1.35 1.25 1.25 1 1.72 - -

3b 2000 1.25 1.35 1.25 1.25 1 1.72 180 180

3c 2000 1.25 1.35 1.25 1.25 1 1.72 180 270

4a 226852 -0.05 0.10 0.05 0.20 2 181.72 0 57

4b 226852 -0.05 0.10 0.05 0.20 2 181.72 0 115

Table 3.2: Parameters summary for the models 3 and 4
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Figure 3.6: Potential energies of unoccupied (dark gray) and occupied (light gray)

bridge for the model 4. Quantized energy levels are showed by vertical red and green

lines respectively.The angular dependence of molecule-lead couplings Vdα(ϕ), which

correspond to the model 4a, is shown in the inset.
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The moment of inertia I, according to the model of PEO molecule, is the moment

of the benzene ring, i.e. I = 1
2
Md2, where M is the mass of the carbon atom and d

is the diameter of the benzene ring. It is approximately 100 times larger than the

value from the model 3. Large moment of inertia leads to the small distance between

energy levels, which is clear from the the fig. 3.6 to compare with the fig. 3.5. It’s

the source of additional numerical challenges, since we need more energy levels (i.e.

larger basis) for calculation. Coupling parameters ϕl and ϕr were used, together

with potentials shifts ϕ0 and ϕ1, to set up a certain symmetry in the ϕ-space and

investigate its influence to the rotations. The existence of certain asymmetry in the

junction is one of the necessary conditions to observe the motor effect. It will be

discussed in the chapter 5.



Chapter 4

Computations

In this chapter we demonstrate how to apply theoretical tools which are reviewed

in the chapter 2 to our particular models from the chapter 3. It’s divided to two

parts where we discuss scattering and master equation approaches separately. In

both parts the charge transport problem for model 1 is solved analytically. For other

models analytical part of computation, discussed here, includes the derivation of the

equations and formulas which are appropriate for further numerical treatment.

4.1 Scattering approach

To apply the scattering approach we simply use the scheme which was described at

the end of section 2.2.3. First we calculate self-energies of the leads using the formula

(2.61). Next we show how to calculate the T -matrix and transmission probability

for elastic and inelastic cases, which can be substituted to the Landauer formula to

get current. Since the scattering approach is used for discussion and comparison in

this work, but not for the molecular motor studies, anharmonic potentials are not

discussed in this section. However, the generalization is straightforward [51].

4.1.1 Self-energy

To calculate self-energies using the formula

Σα = V †αgαVα (α = l, r), (4.1)

45
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we notice first, that the coupling matrices Vα (see (2.42)) contain only one nonzero

element each. This is valid for all models, since we consider the nearest neighbor

interactions only and the whole Hamiltonian matrix (2.56) is tridiagonal. We are

going to confine ourselves only to models 1 and 2 in this section, coupling matrices

are therefore assumed to be angle independent, i.e. according to the notation (3.46)

Vdα(ϕ) = 1. Since the calculation procedure is similar for different leads, indexes

α are omitted in this section. Performing matrix multiplication in (4.1) (in n-

representation) we find

Σ = β2
2g11. (4.2)

It means, that from the whole Green’s operator of isolated lead g we need only one

matrix element g11 = 〈n1|g|n1〉1. Using the closure relation
∑
k

|k〉〈k| = I we may

write

Σ = β2
2

∑
kk′

〈n1|k〉〈k|[(E + iη)I −Hl]
−1|k′〉〈k′|n1〉. (4.3)

Using the orthogonality of states with different k and the fact that f(Hl)|k〉 =

f(εk)|k〉 (where εk is defined by the dispersion relation (2.8)) we obtain for the

model 1

Σ = β2
2

∑
k

|〈n1|k〉|2

E + iη − εk
. (4.4)

For the model 2 lead Hamiltonian Hl contains also h0 (see (3.32)), and instead

of E in denominator we have E ′ = E − h0. We should have this difference in

mind to distinguish models at the end, however, this will not change the derivation

procedure. After substitution of 〈n1|k〉 = Ck
1 for half infinite chain (see the section

2.1.2)

Σ =
2β2

2

N

∑
k

sin2 k

E + iη − εk
. (4.5)

Now we use dispersion relation (2.8) to rewrite the nominator

Σ =
β2

2

2β2
1

1

N

∑
k

(2β1)2 − (εk − µ)2

E + iη − εk
, (4.6)

1It is called the surface Green’s function
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and transform summation to integration using formulas (2.20) and (2.21) with the

density of states (2.22)

Σ =
β2

2

2πβ2
1

µ+2β1∫
µ−2β1

dε

√
(2β1)2 − (ε− µ)2

E + iη − ε
. (4.7)

This integral can be transformed to contour integration in the complex plane and

evaluated using the residuum theorem . The result is

Σ =
β2

2

2β2
1


(E − µ) +

√
(E − µ)2 − (2β1)2 if E < (µ− 2β1),

(E − µ)− i
√

(2β1)2 − (E − µ)2 if (µ− 2β1) < E < (µ+ 2β1),

(E − µ)−
√

(E − µ)2 − (2β1)2 if E > (µ+ 2β1).

(4.8)

More details about the integral (4.7) reader can find, for example, in [38]. Formula

(4.8) specifies the self-energy function Σ = Σ(E) of the leads for the model 1. For

the vibrating bridge we should use the same formula but with a different argument:

Σ = Σ(E − h0). As a result self-energy in a case of model 2 turns into an operator

in the space of molecular vibrations κvib.

It is common to divide the self-energy to real and imaginary parts as Σ = ∆− 1
2
iΓ.

The real part ∆ is usually neglected in charge transport theories. It provides a

small energy shift (as, for example, in the formula (4.20)) and doesn’t influence the

observables much. The imaginary part Γ follows directly from (4.7) if we separate

the imaginary part of the integrand and use the well known property of the Cauchy-

Lorentz distribution

1

E − ε+ iη
=

1

E − ε
− i lim

η→+0

η

η2 + (E − ε)2
=

1

E − ε
− iπδ(E − ε). (4.9)

The integration over the delta function is straightforward and in accordance with

(4.8) we get the formula

Γ =


β2

2

β2
1

√
(2β1)2 − (E − µ)2 if E ∈ [µ− 2β1;µ+ 2β1],

0 if E 6∈ [µ− 2β1;µ+ 2β1].
(4.10)

After this transformation singularity remain only in the real part of the integral,

which must be understood in a sens of Cauchy principal value. It’s also interesting
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to notice, that the real part of the self energy ∆ can be expressed as the Hilbert

transformation of its imaginary part

∆ =
1

2π

µ+2β1∫
µ−2β1

dε
Γ

E − ε
. (4.11)

4.1.2 Elastic transport

To get the T -matrix we start from the formula (2.54), derived in the chapter 2

t(r ← l) = 〈r|VrG22V
†
l |l〉. (4.12)

Scattering states in the case of model 1 are |l〉 = |k; l〉 and 〈r| = 〈k; r|. Coupling

matrices can be written as

Vr =
∑
k

|k; r〉Vdkr〈d|,

V †l =
∑
k

|d〉Vdkl〈k; l|.
(4.13)

Substituting it to the (4.12) and using the orthogonality of states with different k

we get

t(r ← l) = VdkrGsVdkl, (4.14)

where we introduce notation Gs ≡ 〈d|G22|d〉. Now we substitute it to the formula

(2.46) to get the transmission probability in the elastic case

ω(E) = 4π2
∑
l,r

V 2
dkr |Gs|2 V 2

dkl δ(εl − E)δ(εr − E), (4.15)

or, equivalently

ω(E) = 4π2

[∑
r

V 2
dkrδ(εr − E)

]
|Gs|2

[∑
l

V 2
dklδ(εl − E)

]
. (4.16)

Sums in square brackets can be calculated, transforming them into integrals using

formulas (2.20) and (2.21). Delta functions removes those integrals and, for example,

for the first sum we get the formula∑
k∈r

V 2
dkrδ(εr − E) =

1

2π

β2
2

β2
1

√
4β2

1 − (E − µr)2, (4.17)

if energy E belongs to the band in the right lead, and zero if not. Comparing it

with the formula (4.10) we notice, that the sum is proportional to the Γr of the
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right lead. Second sum can be treated in a same way. As a result we can rewrite

the transmission probability in the form

ω(E) = Γr(E)|Gs|2Γl(E). (4.18)

Since we already know self-energies for the leads in model 1, we can easily cal-

culate the Green’s function of the bridge

Gs =
1

1− ε0 − Σl(E)− Σr(E)
. (4.19)

We substitute it to the formula for the transmission probability, and, doing elemen-

tary algebraic transformation, we get

ω(E) =
Γl(E)Γr(E)

[E − ε0 −∆l(E)−∆r(E)]2 + 1
4
[Γl(E) + Γr(E)]2

. (4.20)

To calculate the current one should substitute it to the Landauer formula (2.43),

where (4.20) is integrated over energy E

I =
1

2π

∫
dE

Γl(E)Γr(E)

[E − ε0 −∆l(E)−∆r(E)]2 + 1
4
[Γl(E) + Γr(E)]2

[fl(E)− fr(E)].

(4.21)

This formula is discussed and compared with the similar formula derived using the

ME approach in the next chapter.

4.1.3 Inelastic transport

We start from the same general formula (4.12) for a T -matrix. But this time we

should take into account also the molecular bridge vibrational state change from mi

to mf , which accompanies electron tunneling events

t(r,mf ← l,mi) = 〈mf |〈k; r|VrG22V
†
l |k; l〉|mi〉. (4.22)

After substitution of coupling matrices the formula reads

t(r,mf ← l,mi) = Vdkr〈mf |Gs|mi〉Vdkl. (4.23)

Using the expression (2.47) for the transmission probability and the similar proce-

dure as in the elastic case we can write

ωr←lmimf
(E) = Γr(E − Emf )|〈mf |Gs|mi〉|2Γl(E − Emi). (4.24)
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This function gives the probability for electron to tunnel from the left lead to the

right and excite the bridge from the vibrational state mi to mf .

Vibrational state of the bridge can be changed not only by electrons, which pass

through it, but also by electrons, which are reflected from the contact back to the

same lead from where they come. The same procedure used to derive (4.24) can be

applied to write

ωl←lmimf
(E) = Γl(E − Emf )|〈mf |Gs|mi〉|2Γl(E − Emi),

ωr←rmimf
(E) = Γr(E − Emf )|〈mf |Gs|mi〉|2Γr(E − Emi).

(4.25)

Such ”reflection probabilities” don’t contribute to the current, but they participate

in the overall molecular junction’s dynamics. They are used, for example, in the

chapter 5 to write the balance equation for probability fluxes in the junction.

The transmission probability 4.24 can be substituted to the Landauer formula

(2.48). But before it Green’s function Gs of the bridge should be calculated. In

the model 2 Gs is an operator which acts in the vibrational space of the bridge. To

calculate it, according to the definition (2.62), one should invert the operator

F = E − h1 − Σl(E − h0)− Σr(E − h0). (4.26)

Matrix elements of this operator read

〈mf |F |mi〉 = δmimf [E − Σl(E − Emi)− Σr(E − Emi)]− 〈mf |h1|mi〉. (4.27)

Or, using the spectral decomposition of the operator h1,

〈mf |F |mi〉 = δmimf [E−Σl(E−Emi)−Σr(E−Emi)]−
∑
v

Ev〈mf |v〉〈v|mi〉. (4.28)

The matrix with elements (4.28) can be inverted numerically to calculate the Green’s

function. To express the current through the Green’s function we substitute trans-

mission probabilities to (2.48)

I = 1
2π

∑
mimf

Pmi
∫
dE |〈mf |Gs|mi〉|2×{

Γl(E − Emi)fl(E − Emi)Γr(E − Emf )[1− fr(E − Emf )]

−Γr(E − Emi)fr(E − Emi)Γl(E − Emf )[1− fl(E − Emf )]
}
.

(4.29)

We leave the analysis and discussion of this formula for the chapter 5.
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4.2 Master equation approach

In this section it’s demonstrated how to write the WBR ME in the tensor form,

which can be treated numerically. Since the ME approach is chosen as a main tool

to study the motor effect in this thesis, the proposed form is general enough to cover

all models from the previous chapter, including models 3 and 4 with their anhar-

monic potentials and angle dependent coupling. Formulas for different observables

of interest, including angular momentum, and the way of efficient numerical solu-

tion of ME are also discussed here. At the end of the section it’s showed how the

equation can be solved analytically for the model 1.

4.2.1 Tensor form of the ME

As it’s stressed in the chapter 2, Liouvillian operator L in WBR ME of the molecular

junction
∂

∂t
ρ(t) = Lρ(t) (4.30)

consists of three parts L = L0 + L1l + L1r which read

L0ρ(t) = −i[Hs, ρ(t)], (4.31)

L1lρ(t) = −Trll

∞∫
0

dτ [Hsll, [e
−i(Hs+Hll)τHslle

+i(Hs+Hll)τ , ρ(t)⊗ ρ0
ll]], (4.32)

L1rρ(t) = −Trrl

∞∫
0

dτ [Hsrl, [e
−i(Hs+Hrl)τHsrle

+i(Hs+Hrl)τ , ρ(t)⊗ ρ0
rl]]. (4.33)

Let’s consider them separately.

Action of L0

This part of the Liouvillian describes the dynamics of the isolated bridge. Let’s

denote the result of an action of the L0 superoperator to RDM as ρ′, i.e.

L0ρ = ρ′. (4.34)

Using the decomposition (3.14) both sides of this equation can be modified:

L0ρ = −i{dd†[h0, ρ00] + d†d[h1, ρ11] + d(h0ρ01 − ρ01h1) + d†(h1ρ10 − ρ10h0)}, (4.35)
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ρ′ = ρ′00dd
† + ρ′11d

†d+ ρ′01d+ ρ′10d
†. (4.36)

Thus, we have four expressions to calculate four block of resulting RDM indepen-

dently

ρ′00 = −i(h0ρ00 − ρ00h0),

ρ′11 = −i(h1ρ11 − ρ11h1),

ρ′01 = −i(h0ρ01 − ρ01h1),

ρ′10 = −i(h1ρ10 − ρ10h0).

(4.37)

Practically we are interested only in two diagonal blocks ρ00 and ρ11 of RDM, since we

need only them to calculate observables of interest (it’s shown later in this chapter).

Using spectral decomposition of operators h0 and h1

h0 =
∑
m

Em|m〉〈m|,

h1 =
∑
v

Ev|v〉〈v|,
(4.38)

we may rewrite the result of an action of L0 on two important diagonal blocks as

ρ′00(m1,m2) = i(Em2 − Em1)ρ00(m1,m2),

ρ′11(v1, v2) = i(Ev2 − Ev1)ρ11(v1, v2),
(4.39)

where we use notations 〈m1|ρ00|m2〉 ≡ ρ00(m1,m2) and 〈v1|ρ11|v2〉 ≡ ρ11(v1, v2).

Rewriting the same formulas in a tensor form we get

ρ′00(m1,m2) =
∑

M1M2

L00
0 (m1,m2,M1,M2)ρ00(M1,M2),

ρ′11(v1, v2) =
∑
V1V2

L11
0 (v1, v2, V1, V2)ρ11(V1, V2)

(4.40)

where

L00
0 (m1,m2,M1,M2) = i(EM2 − EM1)δm2M2δm1M1 ,

L11
0 (v1, v2, V1, V2) = i(EV2 − EV1)δv2V2δv1V1 .

(4.41)

are elements of the 4th rank tensor L0.

Action of L1

Tensor L1 is called the Redfield tensor by some authors ([9]). It represents the

perturbation to the dynamics of the molecular bridge as a result of weak interaction

with the leads. It’s enough to discuss L1 for one of the leads here, since the derivation
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procedure is identical for both of them. For the purpose of convenience we omit

all lead specifying indexes. Adopting short notation for the time dependence of

operators in Dirac representation

e−i(Hs+Hl)τAe+i(Hs+Hl)τ ≡ A(−τ), (4.42)

we expand commutators in L1 as

L1ρ = −
∞∫
0

dτ Trl {HslHsl(−τ)[ρ0
l ⊗ ρ]−Hsl[ρ

0
l ⊗ ρ]Hsl(−τ)

+[ρ0
l ⊗ ρ]Hsl(−τ)Hsl −Hsl(−τ)[ρ0

l ⊗ ρ]Hsl }
(4.43)

and substitute the coupling operators

Hsl =
∑
k

Vdk[d
†ck + c†kd],

Hsl(−τ) =
∑
k′
Vdk′(−τ)[d†(−τ)ck′(−τ) + c†k′(−τ)d(−τ)].

(4.44)

there. In the resulting 16-terms expression (which is not presented here) we calculate

leads correlation functions Trl[ckc
†
k′(−τ)ρ0

l ] and Trl[c
†
kck′(−τ)ρ0

l ]. It’s easily done

expanding the c-operators time evolution (see formulas (2.36)) and using the fact,

that the RDM of the lead ρ0
l is populated according to the Fermi-Dirac distribution

(2.45)

〈ckc†k′(−τ)〉l ≡ Trl[ckc
†
k′e
−iεk′τρ0

l ] = e−iεkτ (1− fk)δkk′ ,

〈c†kck′(−τ)〉l ≡ Trl[c
†
kck′e

+iεk′τρ0
l ] = e+iεkτ (fk)δkk′ .

(4.45)

All other correlation functions (which contain only creation or only annihilation

operators) are equal to zero. It destroys half of the terms in the equation. L1 now

reads

L1ρ = −
∞∫
0

dτ
∑
k

{

+e−iεkτ (1− fk)Vdkd†Vdk(−τ)d(−τ)ρ+ e+iεkτ (fk)VdkdVdk(−τ)d†(−τ)ρ

−e−iεkτ (fk)Vdkd†ρVdk(−τ)d(−τ)− e+iεkτ (1− fk)VdkdρVdk(−τ)d†(−τ)

+e+iεkτ (1− fk)ρVdk(−τ)d†(−τ)Vdkd+ e−iεkτ (fk)ρVdk(−τ)d(−τ)Vdkd
†

−e+iεkτ (fk)Vdk(−τ)d†(−τ)ρVdkd− e−iεkτ (1− fk)Vdk(−τ)d(−τ)ρVdkd
† }

(4.46)

Now we use formulas (3.19) for time evolution of d-operators and similarly derived

formulas for Vdk

Vdk(−τ) = dd†[e−ih0τVdke
+ih0τ ] + d†d[e−ih1τVdke

+ih1τ ] (4.47)
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to substitute explicitly to the equation. Instead of operators h0 and h1 we use again

its spectral representation (4.38). Coupling coefficients Vdk are partitioned according

to the formula (3.46), to separate part Vk which commute with ϕ-dependent vectors

and operators. For later convenience we multiply the equation to 1 = (−i)i and

introduce the notation Ev − Em ≡ ωmv. The resulting equation reads

L1ρ = −i
∑
mv

{

+ξ∗2(m, v)Vd|m〉〈m|Vd|v〉〈v|(d†dρ) + ξ∗1(m, v)Vd|v〉〈v|Vd|m〉〈m|(dd†ρ)

+ξ1(m, v)Vd(d
†ρd)|m〉〈m|Vd|v〉〈v|+ ξ2(m, v)Vd(dρd

†)|v〉〈v|Vd|m〉〈m|

−ξ2(m, v)(ρd†d)|v〉〈v|Vd|m〉〈m|Vd − ξ1(m, v)(ρdd†)|m〉〈m|Vd|v〉〈v|Vd
−ξ∗1(m, v)|v〉〈v|Vd|m〉〈m|(d†ρd)Vd − ξ∗2(m, v)|m〉〈m|Vd|v〉〈v|(dρd†)Vd }.

(4.48)

where

ξ1(m, v) ≡ i
∞∫
0

dτ
∑
k

e−i(εk−ωmv)τ (fk)V
2
k

ξ2(m, v) ≡ i
∞∫
0

dτ
∑
k

e+i(εk−ωmv)τ (1− fk)V 2
k

(4.49)

(we calculate these functions in the next section). Let’s denote the result of the

action of L1 on ρ as ρ′′ and use the decomposition (3.14) to divide the equation to

blocks, in a similar way as we did for L0

ρ′′00 = −i
∑
mv

{ ξ∗1Vd|v〉〈v|Vd|m〉〈m|ρ00 + ξ2Vdρ11|v〉〈v|Vd|m〉〈m|

−ξ1ρ00|m〉〈m|Vd|v〉〈v|Vd − ξ∗2 |m〉〈m|Vd|v〉〈v|ρ11Vd },

ρ′′11 = −i
∑
mv

{ ξ∗2Vd|m〉〈m|Vd|v〉〈v|ρ11 + ξ1Vdρ00|m〉〈m|Vd|v〉〈v|

−ξ2ρ11|v〉〈v|Vd|m〉〈m|Vd − ξ∗1 |v〉〈v|Vd|m〉〈m|ρ00Vd },

ρ′′10 = −i
∑
mv

{ ξ∗2Vd|m〉〈m|Vd|v〉〈v|ρ10 − ξ1ρ10|m〉〈m|Vd|v〉〈v|Vd },

ρ′′01 = −i
∑
mv

{ ξ∗1Vd|v〉〈v|Vd|m〉〈m|ρ01 − ξ2ρ01|v〉〈v|Vd|m〉〈m|Vd }.

(4.50)

First and second pair of equations are independent. Since only first pair contains

diagonal blocks ρ00 and ρ11 which are important for us, we don’t consider the second

pair. As in the previous subsection we adopt basis {|m〉} in unoccupied bridge

space to represent ρ00 and {|v〉} basis for ρ11. After renaming indexes and adding
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Kronecker deltas expression can be presented in a tensor form

ρ′′00(m1,m2) =
∑

M1M2

L00
1 (m1,m2,M1,M2)ρ00(M1,M2)

+
∑
V1V2

L01
1 (m1,m2, V1, V2)ρ11(V1, V2),

ρ′′11(v1, v2) =
∑

M1M2

L10
1 (v1, v2,M1,M2)ρ00(M1,M2)

+
∑
V1V2

L11
1 (v1, v2, V1, V2)ρ11(V1, V2),

(4.51)

with tensor elements

L00
1 (m1,m2,M1,M2) = iδM1m1

∑
v

ξ1(M2, v)Vd(M2, v)Vd(v,m2)

−iδM2m2

∑
v

ξ∗1(M1, v)Vd(m1, v)Vd(v,M1),

L01
1 (m1,m2, V1, V2) = iξ∗2(m1, V1)Vd(m1, V1)Vd(V2,m2)

−iξ2(m2, V2)Vd(m1, V1)Vd(V2,m2),

L11
1 (v1, v2, V1, V2) = iδV1v1

∑
m

ξ2(m,V2)Vd(V2,m)Vd(m, v2)

−iδV2v2

∑
m

ξ∗2(m,V1)Vd(v1,m)Vd(m,V1),

L10
1 (v1, v2,M1,M2) = iξ∗1(M1, v1)Vd(v1,M1)Vd(M2, v2)

−iξ1(M2, v2)Vd(v1,M1)Vd(M2, v2).

(4.52)

Functions ξ1 and ξ2

In this section we calculate functions

ξ1(E) = i
∞∫
0

dτ
∑
k

e−i(εk−E)τ (fk)V
2
k ,

ξ2(E) = i
∞∫
0

dτ
∑
k

e+i(εk−E)τ (1− fk)V 2
k .

(4.53)

The integral over τ is well known

∞∫
0

dτe±iατ = πδ(α)± iα−1. (4.54)

Expressions (4.53) reads

ξ1(E) =
∑
k

(fk)V
2
k [(εk − E)−1 + iπδ(εk − E)],

ξ2(E) =
∑
k

(1− fk)V 2
k [−(εk − E)−1 + iπδ(εk − E)].

(4.55)
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Using the scheme, described in chapter 2 (see formulas (2.20) and (2.21)), sum over

k may be transformed to integral. To do it we need also density of states (2.22).

Coefficient Vk should be modified using dispersion relation (2.8)

Vk =

√
2

N
β2 sin(k) =

1√
2N

β2

β1

√
4β2

1 − (ε− µ)2. (4.56)

As a result we have

ξ1(E) = 1
π

β2
2

2β2
1

µ+2β1∫
µ−2β1

dε [f(ε)]
√

4β2
1 − (ε− µ)2[(ε− E)−1 + iπδ(ε− E)],

ξ2(E) = 1
π

β2
2

2β2
1

µ+2β1∫
µ−2β1

dε [1− f(ε)]
√

4β2
1 − (ε− µ)2[−(ε− E)−1 + iπδ(ε− E)].

(4.57)

It’s easy to calculate imaginary parts, since delta function removes the integral

Im[ξ1(E)] =
β2

2

2β2
1
[f(E)]

√
4β2

1 − (E − µ)2,

Im[ξ2(E)] =
β2

2

2β2
1
[1− f(E)]

√
4β2

1 − (E − µ)2.
(4.58)

According to the properties of delta function imaginary parts are equal to zero

outside the band (i.e. when E 6∈ [µ− 2β1, µ+ 2β1]). Or, using definitions (4.10)

Im[ξ1(E)] = 1
2
[f(E)]Γ(E),

Im[ξ2(E)] = 1
2
[1− f(E)]Γ(E).

(4.59)

Real parts are presented by the integrals

Re[ξ1(E)] = 1
π

β2
2

2β2
1

µ+2β1∫
µ−2β1

dε

√
4β2

1−(ε−µ)2

ε−E f(E),

Re[ξ2(E)] = − 1
π

β2
2

2β2
1

µ+2β1∫
µ−2β1

dε

√
4β2

1−(ε−µ)2

ε−E [1− f(E)].

(4.60)

Those integrals are similar to self-energies real parts ∆. The difference is, that Fermi-

Dirac distributions stands under the integral. For this reason we can’t calculate

them analytically. But they can be calculated numerically. In a case, when E ∈

[µ−2β1, µ+2β1], integral contain singularity. For numerical treatment one may use

the following trick to remove singularity from the integral

b∫
a

f(t)
t−t0dt =

b∫
a

f(t)−f(t0)
t−t0 dt+ f(t0)

b∫
a

dt
t−t0 =

b∫
a

f(t)−f(t0)
t−t0 dt+ f(t0) ln

(
t0−b
a−t0

) (4.61)
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Matrices Vd(m, v)

Matrices Vd(m, v) for model 2 coincide with the overlap matrices which were dis-

cussed in the section 3.2. When coupling between the molecular bridge and leads

contains angle dependence, like in models 3 and 4, matrices Vd(m, v) can be consid-

ered as some kind of generalization of Franck-Condon factors

Vd(m, v) ≡ 〈m| cos (ϕ− ϕα)|v〉. (4.62)

Numerically we express the states |m〉 and |v〉 as a decomposition in the free rotor

basis (3.44). Expanding the cosine of sum and applying this decomposition we get

Vd(m, v) =
∑
n′n′′

〈m|n′〉〈n′′|v〉[cosϕα〈n′| cosϕ|n′′〉+ sinϕα〈n′| sinϕ|n′′〉]. (4.63)

Operators cosϕ and sinϕ can be easily expressed in the free rotor basis.

Structure of full L

Now, when we know how to write superoperators L0 and L1 in the tensor form and

how exactly they act on ρ, we can organize two relevant diagonal blocks of RDM

ρ00 and ρ11 as ”vector” and write the action of whole L operator in the form

L
(
ρ00

ρ11

)
=

L00
0 0

0 L11
0

+

L00
1l L01

1l

L10
1l L11

1l

+

L00
1r L01

1r

L10
1r L11

1r

(ρ00

ρ11

)
, (4.64)

where tensor elements L00
0 and L11

0 are given by formulas (4.41) and elements L00
1α,

L01
1α, L10

1α, L11
1α by formulas (4.52)

4.2.2 Observables

Working formula for current can be derived from the general formula (2.95). The

derivation procedure includes the similar stages we passed deriving the formula

(4.52). First we substitute the coupling (4.44) to (2.95) and expand commutator.

We also calculate explicitly a part of the trace which correspond to the leads degrees

of freedom using expressions for correlation functions (4.45). We omit again lead

number index α, but, to compare with the previous section all operators here belong
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to one specific (left) lead. After all this transformations the formula for current reads

I = −
∫
dτ Trs

∑
k

{

−e+iεkτfkVdk(−τ)d†(−τ)ρVdkd+ e−iεkτ (1− fk)Vdk(−τ)d(−τ)ρVdkd
†

+e+iεkτ (1− fk)ρVdk(−τ)d†(−τ)Vdkd− e−iεkτfkρVdk(−τ)d(−τ)Vdkd
†}.

(4.65)

Now we substitute time evolutions (3.19) and (4.47), split Vdk to Vd and Vk and use

the spectral representations (4.38) of operators h0 and h1. Finally we use definitions

(4.49) to introduce ξ-functions. Current reads

I = −iTrs
∑
mv

{

−ξ∗1(ωmv)|v〉〈v|Vd|m〉〈m|(d†ρd)Vd + ξ∗2(ωmv)|m〉〈m|Vd|v〉〈v|(dρd†)Vd
−ξ2(ωmv)(ρd

†d)|v〉〈v|Vd|m〉〈m|Vd + ξ1(ωmv)(ρdd
†)|m〉〈m|Vd|v〉〈v|Vd}.

(4.66)

The decomposition (3.14) should be substituted into the equation at this moment.

After certain manipulations with d-operators (using the commutation relation (3.8))

the whole right hand side of the equation may be presented as a superposition of

four terms, projected to dd†, d†d, d and d†

I = −iTrs
∑
mv

{

−d†d[ξ∗1(m, v)|v〉〈v|Vd|m〉〈m|ρ00Vd + ξ2(m, v)ρ11|v〉〈v|Vd|m〉〈m|Vd]

+dd†[ξ∗2(m, v)|m〉〈m|Vd|v〉〈v|ρ11Vd + ξ1(m, v)ρ00|m〉〈m|Vd|v〉〈v|Vd]

−d[ξ2(m, v)ρ01|v〉〈v|Vd|m〉〈m|Vd] + d†[ξ1(m, v)ρ10|m〉〈m|Vd|v〉〈v|Vd] }.

(4.67)

The notation ξi(ωmv) ≡ ξi(m, v) (i = 1, 2) is used here.

Each term correspond to a certain block of some matrix in the molecular bridges

space. Since we have to take the trace over bridge’s degrees of freedom, we ignore d

and d† terms which correspond to off diagonal blocks. Other two blocks we trace in

a usual way. Result reads

I = −i
∑
mv

{−ξ∗1(m, v)
∑
m′
Vd(m, v)ρ00(m,m′)Vd(m

′, v)

−ξ2(m, v)
∑
v′
ρ11(v′, v)Vd(m, v)Vd(m, v

′) + ξ∗2(m, v)
∑
v′
Vd(m, v)ρ11(v, v′)Vd(m, v

′)

+ξ1(m, v)
∑
m′
ρ00(m′,m)Vd(m, v)Vd(m

′, v)}.

(4.68)
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Since first two terms in brackets are complex conjugation of last two terms (matrices

Vd are real and RDM blocks ρ00 and ρ11 are hermitian) overall equation can be

rewritten to get the final formula for current in the form

I = 2 Im{
∑
mv

ξ1(m, v)Vd(m, v)
∑
m′
ρ00(m′,m)Vd(m

′, v)

+
∑
mv

ξ∗2(m, v)Vd(m, v)
∑
v′
ρ11(v, v′)Vd(m, v

′)}.
(4.69)

Vibrational excitation energy2

〈Hs〉 = Trs[Hsρ] (4.70)

is another observable of interest, which we calculate in this work as a function of

voltage. It gives a mean amount of energy, accumulated at the bridge. Using the

definition Hs = h0dd
†+h1d

†d and decomposition (3.14) the formula can be modified

〈Hs〉 = Trm[h0ρ00] + Trv[h1ρ11]. (4.71)

Traces here must be taken through the unoccupied and occupied bridge spaces. The

same formula in the {|m〉, |v〉} basis reads

〈Hs〉 =
∑
mm′

〈m|h0|m′〉〈m′|ρ00|m〉+
∑
vv′

〈v|h1|v′〉〈v′|ρ11|v〉. (4.72)

Since operators h0 and h1 are diagonal in m- and v-representations, it is

〈Hs〉 =
∑
m

Emρ00(m,m) +
∑
v

Evρ11(v, v). (4.73)

Thus, to calculate the mean excitation energy of the molecule it is enough to know

only populations of the RDM.

Another important observable which is used to study the motor effect in models

3 and 4 is the mean value of angular momentum 〈Lz〉. Since there is only one

rotational axis, which we call z, the operator Lz reads

Lz = −i ∂
∂ϕ

= −i ∂
∂ϕ

dd† − i ∂
∂ϕ

d†d. (4.74)

Similarly to (4.72), mean value can be written as

〈Lz〉 =
∑
mm′

〈m|Lz|m′〉〈m′|ρ00|m〉+
∑
vv′

〈v|Lz|v′〉〈v′|ρ11|v〉. (4.75)

2In principle it contains also a charging energy of the bridge
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Using the formula (3.44) angular momentum operator in m-representation can be

expressed through the angular momentum in the free rotor basis

〈m|Lz|m′〉 =
∑
n1n2

〈m|n1〉〈n1|Lz|n2〉〈n2|m′〉, (4.76)

where it can be calculated analytically. As a result we get3

〈m|Lz|m′〉 =
∑

n=2,4,...

in

2
[〈m|n− 1〉〈n|m′〉 − 〈m|n〉〈n− 1|m′〉]. (4.77)

Similar formula can be derived for Lz matrix elements in v-representation. Sub-

stituting it back to (4.75) and using the fact that ρ00 and ρ11 are hermitian we

get

〈Lz〉 =
∑

m′>m

Im{ρ00(m′,m)}
∑

n=2,4,...

n[〈m|n〉〈n− 1|m′〉 − 〈m|n− 1〉〈n|m′〉]

+
∑
v′>v

Im{ρ11(v′, v)}
∑

n=2,4,...

n[〈v|n〉〈n− 1|v′〉 − 〈v|n− 1〉〈n|v′〉].
(4.78)

It may be also convenient in some situations to express 〈Lz〉 through the RDM,

written in the basis, where momentum is diagonal, i.e. in the basis assembled from

the states |l〉, defined by the equation

Lz|l〉 = l|l〉 (4.79)

(l = 0,±1,±2, ...). Substituting the closure relation
∑
l

|l〉〈l| = 1 to (4.75) it’s easy

to show, that

〈Lz〉 =
∑
l

l ρ00(l, l) +
∑
l

l ρ11(l, l), (4.80)

where we defined populations ρ00(l, l) and ρ11(l, l) of rotational eigenstates for un-

occupied and occupied states of the molecule respectively, i. e.

ρ00(l, l) =
∑
mm′

〈l|m′〉〈m′|ρ00|m〉〈m|l〉, (4.81)

ρ11(l, l) =
∑
vv′

〈l|v′〉〈v′|ρ11|v〉〈v|l〉. (4.82)

It is apparent from (4.78) that 〈Lz〉 doesn’t depend on the diagonal elements

of RDM (the populations). If the RDM is presented in the basis {|m〉, |v〉}, where

3|n〉 here are the free rotor states, see the table 3.1
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energy is diagonal, only imaginary parts of coherences enter the formula for the mean

value of angular momentum. On the other hand, the mean values of the current

and bridge energy Hs are defined4 by diagonal terms of RDM, despite the fact that

coherences, in principle, enter the formula (4.69) for current. It’s also important

to stress here, that all final formulas for the observables contain only two diagonal

blocks ρ00 and ρ11 of the RDM, while two other blocks ρ01 and ρ10 are not important

for calculations.

4.2.3 Details of numerical implementation

To determine a stationary RDM of the bridge the equation (2.89) must be solved.

Equivalently, it can be written in a tensor form∑
j1j2

Li1i2j1j2ρj1j2 = 0. (4.83)

To get a properly normalized ρ we should add one more equation to the system,

which reads

Trρ =
∑
m

ρ00(m,m) +
∑
v

ρ11(v, v) = 1. (4.84)

For the numerical convenience we reshape the tensors L of the fourth rank into

matrix Lr. It can be done associating a unique number i with each pair of in-

dexes (i1, i2) and j with each (j1, j2). In the same way the RDM becomes a vector.

Reshaped ME and normalization condition can be written as

Lr~ρ = 0 (4.85)

and

N ~ρ =


1

0

. . .

0

 (4.86)

respectively. First row of the matrix N is composed from elements ”0” and ”1”

and, been multiplied to the vector ~ρ, should reproduce the normalization condition

4According to our calculations.
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(4.84). All other elements of N are zeros. Combining last two equations we may

express ~ρ out of them

~ρ = (Lr +N )−1


1

0

. . .

0

 . (4.87)

For numerical inversion of the matrix (Lr+N ) the LAPACK package is used. When

the ”density vector” ~ρ is determined, it can be reshaped back to become a matrix

again.

Along with the proposed approach, we tested few other numerical methods in at-

tempt to get the stationary solution of the ME. Standard time propagation method

was used to calculate the RDM of the system far enough in time to reach the sta-

tionary state. Arnoldi iterative method with and without preconditioner ([10],[15])

were also tested. For different reasons (poor convergence and fast numerical errors

accumulation) this approaches didn’t work for our motor models as efficient as the

direct one described above.

To accelerate numerical computations, which can be quite long for models 3 and

4 (see the table 4.1), some simplifications were used. It was demonstrated in this

chapter that blocks ρ01 and ρ10 of the RDM are independent from two other blocks.

They also do not enter the formulae for the observables. It allows us to exclude

from the consideration half of RDM elements. It is also often argued that the

nondiagonal elements (ρ00(m,m′) and ρ11(v, v′) for m 6= m′, v 6= v′ ) in RDM decay

fast in time and they can be neglected in search of the stationary state. In our case

the nondiagonal elements lead to the nonzero angular momentum of the rotor (see

the formula (4.78)) and we can’t neglect them completely. To increase the numerical

efficiency we assume that RDM has a band structure and ignore elements outside the

band. Validity and stability of this treatment was approved in multiple numerical

tests. Final results are presented for RDM, which includes 14 sub diagonals, while

its overall dimensions are 202×202 for the model 3 and 402×402 for the model 4

(see the table 4.1).

Another possible way to increase the numerical efficiency is connected with func-
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Model 3 Model 4

Liouvillian tensor size 130 Mb 534 Mb

Number of basis functions 202 402

Lines of RDM taken into account 15 15

Rotor’s moment of inertia 2000 a.u. 226852 a.u.

Maximum voltage 1.5 V 0.5 V

Time per graph (150 points) 3.5 hours 19 hours

Table 4.1: Computational parameters comparison for the models 3 and 4

tions ξ1 and ξ2, which can be considered as ”generalized self energies” in the ME

approach. Their real parts, similarly as in the scattering case, lead to the renor-

malization of the energy levels and they can be neglected in calculations, which is a

usual practice in the ME approach [17] (see also discussion in [28] where it is argued

that the real parts are canceled in higher orders).

The most complicated from the computational point of view is the model 4. To

calculate a current at a fixed voltage one should invert the matrix which is half of

a gigabyte in size. It takes about 19 hours at ordinary PC to calculate the CVC

inside the selected voltage window (150 points). Basis size is a parameter which is

highly responsible for speed. One should take enough |m〉 and |v〉 basis states to get

the converged results (in general more states are needed for higher voltages). Large

moment of inertia in the model 4, to compare with model 3, is responsible for higher

density of |m〉 and |v〉 states. It forces us to take more states in the basis to work

in the same voltage window. To perform the calculations for the model 4 we had to

decrees the voltage window and double the basis (see the table 4.1).

It’s interesting to mention few other numerical challenges which we faced during

the computations. One of them is the appearance of negative populations in the

resulting RDM in some regimes. This problem is mentioned also by other authors

[24] and seems to be a common issue in a ME theory. In some cases the (Lr +N )

matrix may appear to be noninvertible. It’s possible to check how ”good” the matrix

is calculating its singular values (using, for example, LAPACK subroutines). If the
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matrix has zero singular values, problems during the inversion should be expected.

Physically it may mean that the ME has more than one stationary solution. It is

not surprising for highly symmetrical motor models with many degenerate states at

the bridge. Since this issues don’t appear for models considered in this work, we

don’t discuss them here. However, they may be discussed in future works.

4.2.4 Analytical solution for the elastic model

The results which are derived in this section are well known. They are included for

completeness, general discussion and as the important special case of more compli-

cated models. We start from the general equation (4.30) and clarify the action of

Liouvillian parts L0 and L1 on ρ. The derivation procedure has a lot of similarities

with the one described in the section 4.2.1. Model 1 Hamiltonian parts are given

by formulas (3.7) with coupling coefficients (3.6). In the elastic transport regime

RDM is just 2x2 matrix and blocks ρij in the decomposition (3.14) are numbers.

Using this decomposition and commutation relations for d-operators (3.8) it’s easy

to show that

L0ρ = −iε0(ρ10d
† − ρ01d). (4.88)

To derive an action of L1 it’s useful to start from the formula (4.46). Since

h0 = 0 and h1 = ε0 in model 1, time evolution of operators d, d† and Vdk is trivial.

This operators should be substituted to (4.46) to get

L1ρ = −
∞∫
0

dτ
∑
k

{

e−i(εk−ε0)τ (1− fk)V 2
dk(d

†dρ) + e+i(εk−ε0)τfkV
2
dk(dd

†ρ)

−e−i(εk−ε0)τfkV
2
dk(d

†ρd)− e+i(εk−ε0)τ (1− fk)V 2
dk(dρd

†)

+e+i(εk−ε0)τ (1− fk)V 2
dk(ρd

†d) + e−i(εk−ε0)τfkV
2
dk(ρdd

†)

−e+i(εk−ε0)τfkV
2
dk(d

†ρd)− e−i(εk−ε0)τ (1− fk)V 2
dk(dρd

†)}.

(4.89)

Using the ξ-functions definition (4.53) and decomposition (3.14) we may write

L1ρ = −i{d†d[ρ11ξ
∗
2(ε0) + ρ00ξ1(ε0)− ρ11ξ2(ε0)− ρ00ξ

∗
1(ε0)]

+dd†[ρ00ξ
∗
1(ε0) + ρ11ξ2(ε0)− ρ00ξ1(ε0)− ρ11ξ

∗
2(ε0)]

+d†[ρ10ξ
∗
2(ε0)− ρ10ξ1(ε0)] + d[ρ01ξ

∗
1(ε0)− ρ01ξ2(ε0)]}.

(4.90)
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When L0ρ and L1ρ are calculated, they can be substituted to the full equation

(4.30) which we write as

∂

∂t
[ρ00dd

† + ρ11d
†d+ ρ01d+ ρ10d

†] = L0ρ+ L1lρ+ L1rρ, (4.91)

where superoperator L1 must be specified for left and right leads separately. As

in the section 4.2.1, the equation can be split to four, and two of them, which

describe behavior of ρ00 and ρ11, will be independent from other two for ρ01 and

ρ10. Moreover, since the equations (4.90) contain differences of complex conjugated

terms we may get rid of ξ-functions real parts (4.59). After all the transformations,

equations for two relevant blocks of RDM read

∂
∂t
ρ00 = −Γl(ε0)fl(ε0)ρ00 + Γl(ε0)[1− fl(ε0)]ρ11

−Γr(ε0)fr(ε0)ρ00 + Γr(ε0)[1− fr(ε0)]ρ11,

∂
∂t
ρ11 = +Γl(ε0)fl(ε0)ρ00 − Γl(ε0)[1− fl(ε0)]ρ11

+Γr(ε0)fr(ε0)ρ00 − Γr(ε0)[1− fr(ε0)]ρ11.

(4.92)

To find the stationary solution we assume left hand sides to be equal to zero and

add additional equation ρ00 + ρ11 = 1, which guarantee the correct normalization of

the RDM. Solutions are

ρ00 = Γl(ε0)[1−fl(ε0)]+Γr(ε0)[1−fr(ε0)]
Γl(ε0)+Γr(ε0)

,

ρ11 = Γl(ε0)fl(ε0)+Γr(ε0)fr(ε0)
Γl(ε0)+Γr(ε0)

.
(4.93)

To derive the formula for current we use (4.65) with the correct time evolution

of operators which correspond to the model 1. ξ-functions definition (4.53) and

decomposition (3.14) are applied to get

I = iTrs{d†dξ∗1(ε0)ρ00 − dd†ξ∗2(ε0)ρ11 + d†dξ2(ε0)ρ11

+dξ2(ε0)ρ01 − dd†ξ1(ε0)ρ00 − d†ξ1(ε0)ρ10}.
(4.94)

Taking the trace, excluding the real parts of ξ-functions, and substituting formulas

(4.59) for the imaginary parts, current can be expressed as

I = ρ00Γl(ε0)fl(ε0)− ρ11Γl(ε0)[1− fl(ε0)] (4.95)

(widths Γ and Fermi functions f in the formula for current are taken for the left

lead). The stationary solution (4.93) should be substituted to (4.95) to get the final
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formula

I =
Γl(ε0)Γr(ε0)[fl(ε0)− fr(ε0)]

Γl(ε0) + Γr(ε0)
. (4.96)



Chapter 5

Results and Discussion

This chapter is divided to two parts. In the first part we compare scattering approach

with the master equation approach. During the comparison, which is performed us-

ing models 1 and 2, interrelation between two approaches is discussed. The good

correspondence between results in a weak coupling regime is demonstrated for the

elastic transport model 1. The differences between two approaches are traced to the

treatment of the vibrational states population in the model 2. Boltzmann factors,

which are used in the generalized Landauer formula as an unoccupied bridge pop-

ulations, are showed to be a poor approximation in the inelastic transport regime.

An alternative way to calculate populations in a scattering approach is proposed as

a possible way of improvement.

Molecular motor models 3 and 4 are discussed in the second part. The discus-

sion starts from the charge transport properties of the model 3, where the different

angular dependence of the molecule-lead coupling and its influence on the current

is studied. The detailed analysis of CVC and vibrational excitation curves is per-

formed. Molecular motor effect for the model 3 is demonstrated in the section 5.2.2,

where the voltage dependence of the angular momentum mean value is studied.

Attention is paid to the conditions which are necessary to observe the effect, par-

ticularly to the symmetry in the junction. In the last section the realistic model 4

and its promising rotational properties are discussed.

67
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Figure 5.1: Transmission function and CVC for the model 1

5.1 Comparison of scattering and ME approaches

5.1.1 Weak coupling limit

To understand better the more complicated inelastic case we start with the trivial

case of elastic model 1, where the scattering approach gives the exact results. Let’s

compare analytical formulas (4.21) and (4.96) for current, derived for the model 1

using scattering and ME approaches

Iscat
1 =

1

2π

∫
dE

Γl(E)Γr(E)

[E − ε0 −∆l(E)−∆r(E)]2 + 1
4
[Γl(E) + Γr(E)]2

[fl(E)− fr(E)],

(5.1)

Ime
1 =

Γl(ε0)Γr(ε0)[fl(ε0)− fr(ε0)]

Γl(ε0) + Γr(ε0)
. (5.2)

CVC calculated using this formulas are showed at the fig. 5.1 (right). Different

approaches give curves which may look different at first glance, but, in general,

their behavior is similar. The decrease of the current after approximately 1.5 V is

connected with the fact that left and right leads have finite conduction band widths.

While we increase the voltage left lead band goes higher in energy and right lead goes

lower, decreasing the overlap between bands. As a result current decreases and, at
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certain voltage (which is not on the graph), disappears at all. Both current curves

at the fig. 5.1 have the step at the same voltage, which appears when the Fermi

sea level in the left lead µl = U/2 reaches the energy of the bridge state ε0. The

obvious difference between two curves is that the step in the scattering approach

result is much wider. Scattering calculations in this case are more precise, since the

information about the width of the bridge’s transmission function peak is lost in the

second order WBR ME (see the fig. 5.1). In ME approach the width of the step at

CVC is defined by the width of the Fermi-Dirac distribution, which is of the order

of kT .

It’s also interesting to stress here that the real parts of self energies ∆α don’t enter

the master equation version of the formula. In the scattering formula they represent

a small energy shifts (renormalization). In fig. 5.1, where scattering calculation

results with and without ∆α are plotted, we can see that their influence to the final

curves is small. Both energy levels renormalization and transmission peaks widening

should be expected at higher orders of ME theory.

ME approach is designed for the weak coupling regime. It may be demonstrated,

that the width of the transmission function peak is connected with the coupling

strength. In a case of weak coupling the width of the peak is also small and results,

obtained using different methods, are close to each other. Formulas (5.1) and (5.2)

coincide when the coupling goes to zero. To find this limit we neglect the self energies

real parts in (5.1) and rewrite the formula in the form

Iscat =

∫
dE

Γl(E)Γr(E)[fl(E)− fr(E)]

Γl(E) + Γr(E)
δη(E − ε0), (5.3)

where

δη(E − ε0) =
1

π

η

(E − ε0)2 + η2
(5.4)

is the Cauchy-Lorentz distribution with the half-width

η =
Γl(E) + Γr(E)

2
. (5.5)

It is known that

lim
η→0

δη(x) = δ(x), (5.6)
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Figure 5.2: Influence of the band width and coupling strength to the current. At

the left graph β1 = 1.0 and β2 = 0.2. At the right graph β1 = 3.0 and β2 = 0.1.

where δ(x) is the Dirac delta function. Thus, if the coupling is small enough, we

may assume that δη(E − ε0) behaves almost like a delta function. It removes the

integral and the formula (5.3) coincide with (5.2).

Half-width η depends on energy E through the functions Γα which are, thus,

responsible for the width of the transmission function peak. Its maximum value is

ηmax =
2β2

2

β1

. (5.7)

Both methods give almost identical results in the regimes where the coupling strength

β2 is small and the conduction band width β1 is large (see the fig. 5.2).

5.1.2 Importance of vibrational populations

The Model 2 is well suited to discuss principle differences between the ME and

scattering approaches. In the inelastic transport regime single electron approxima-

tion, which is assumed in the scattering approach, can be among the factors that

distinguish calculations results significantly. Despite the fact, that there is just one

electronic state at the molecular bridge and electrons can’t interact directly, they
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still can interact indirectly through the molecular vibrations. This is taken into

account in the ME approach.

We are going to compare the scattering theory formula for current (4.29) with its

ME version (4.69). Since both of them are a bit bulky, they should be modified first

to make the comparison easier. To present the formula (4.29) in a more tractable

way, we introduce the transmission rates for electron tunneling from the left lead to

the right and vise versa which read

W r←l
mm′ = 1

2π

∫
dE[1− fr(E − Em′)]Γr(E − Em′)|〈m′|Gs|m〉|2

×Γl(E − Em)fl(E − Em),

W l←r
mm′ = 1

2π

∫
dE[1− fl(E − Em′)]Γl(E − Em′)|〈m′|Gs|m〉|2

×Γr(E − Em)fr(E − Em).

(5.8)

Indexes mi and mf from (4.29) are renamed here to m and m′ respectively. Using

this notations, scattering theory approach formula reads

Iscat
2 =

∑
m

Pm
∑
m′

W r←l
mm′ −

∑
m

Pm
∑
m′

W l←r
mm′ , (5.9)

To make the ME version of the formula (4.69) more transparent we neglect

the real parts of ξ-functions. This approximation was already discussed in the

previous section as well as in the chapter 4. For the model 2 we also substitute

Vd(m, v) = 〈m|v〉 (see the chapter 3) to the formulas. Another thing which can

be done is to neglect the off-diagonal elements of RDM (coherences). Although

in all the calculations presented in this work coherences are taken into account, we

found them to play a little role in the formulas for current and vibrational excitation

energy. We, thus, neglect them just in this section to simplify the analytical form

of (4.69). The modified version of the formula we express through the rates

Ws←l
mv = fl(Ev − Em)Γl(Ev − Em)|〈m|v〉|2,

W l←s
vm = [1− fl(Ev − Em)]Γl(Ev − Em)|〈m|v〉|2,

(5.10)

which give the transmission probability for electron hoping from the left lead to the

molecule and back inducing vibrational transitions between occupied bridge states

m and unoccupied bridge states v. As usual in this work we use index ”s” to denote

the molecular bridge. The formula for current reads

Ime
2 =

∑
m

ρm
∑
v

Ws←l
mv −

∑
v

ρv
∑
m

W l←s
vm , (5.11)



5.1. Comparison of scattering and ME approaches 72

Figure 5.3: Schematic representation of formulas for current in scattering (a) and

ME (b) approaches.

where ρm ≡ ρ00(m,m) and ρv ≡ ρ11(v, v).

Before the comparison of the CVC calculated using both formulas it’s interesting

to say few words about mechanisms of tunneling which are incarnated in formulas

(5.9) and (5.11). Both of them consist of two terms which correspond to two current

fluxes which pass the junction in opposite directions. As it is clear from the structure

of the formulas, in the ME approach this fluxes move between the left lead and the

molecule (equivalently, it can be the right lead and the molecule). The stationary

state of the molecule, which is given here by populations ρm and ρv of unoccupied

and occupied bridge, is known exactly. We get it solving the ME. In the scattering

approach fluxes are composed in a way, that they describe the tunneling from the

left lead to the right lead through the molecule (see the fig. 5.3). According to the

specific of the scattering theory there is no much attention payed to the internal state

of the molecule. Populations Pm are assumed to be in thermal equilibrium. They

are given by the Boltzmann distribution. For this reason, for example, a tunneling

electron doesn’t ”feel” changes, which were made in the bridge vibrational state by

a previous electron. All the internal dynamics of the molecular bridge in scattering

approach is hidden in the Green’s operator Gs (see the formula (5.8)).

Now let’s compare CVC obtained using different approaches which are showed

in the fig. 5.4. Since the bridge has internal degree of freedom in this model and

the tunneling probability depends on the state of the bridge, the concept of the
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Figure 5.4: Transmission functions and current voltage characteristics of the bridge

in model 2. Blue line is explained in the section 5.1.3

transmission function should be clarified. Left graph at the fig. 5.4 illustrates the

probability, that the electron at certain energy will pass through the bridge and

change its vibrational state from the initial state m (m = 0 correspond to the

ground state) to any other state, i.e. it’s summed through all final states. As

we can see from the picture, existence of vibrational degrees of freedom on the

bridge, leads to the situation, when the transmission function has multiple peaks,

which correspond to different vibrational transitions. It leads also to the multiple

”vibrational steps” at the current-voltage characteristics. Such steps may appear at

the voltage U if the chemical potential µl = U/2 (or µr = −U/2) reaches a certain

resonant energy, which correspond to a certain vibrational transition at the bridge,

and a new tunneling channel opens up.

The scattering and ME approaches results, which are plotted with solid red and

green lines at the fig. 5.4, have significant differences. The curves exhibit resonant

steps at voltages U1 = 2(E0
v − E0

m) = 0.64 V, U2 = 2(E2
m − E0

v) = 1.36 V and

U3 = 2(E1
v − E0

m) = 1.64 V. Both curves behave very similar at U1. The main

difference is that the step is much wider in the scattering approach. This happens
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for the same reasons which were discussed in the previous section. ME curve drops

at U2 and U3, while scattering curve has no feature at U2 and at U3 there is a step-like

increase of the current. There are obviously no similarities at higher voltages.

One of the possible sources of disagreement can easily be found. Usage of the

Boltzmann distribution of populations Pm in the formula (5.9) leads to the situation

when the molecule is almost in its ground vibrational state1. Populations of higher

states are negligibly small. Moreover, the distribution is the same for all voltages.

If only ground state is populated, among all transmission functions (3 of them are

plotted at the fig. 5.4) we take into account only one (solid line), which describe

tunnelings through the bridge in ground state. It contains three peaks, first two

of them belong to the interval of voltages of interest and, being integrated in the

Landauer formula, forms two wide steps at U1 and U3 which we can see at the

current graph (fig. 5.4).

In contrast to the scattering theory description, in ME approach the molecular

bridge reaches some stationary state after a large amount of tunneling events. The

populations distribution in this state strongly depends on voltage and, in general, is

very different from the temperature distribution Pm at the nonzero voltages. See the

fig. 5.5, where stationary populations distributions, obtained from the ME calcula-

tions, are showed for two different voltages. It demonstrates that the Boltzmann

distribution Pm is, actually, a very poor approximation of the vibrational states

populations, especially at high voltages.

5.1.3 Balance equation

To get the realistic populations distribution within the framework of the scattering

theory, it’s possible to write the dynamical equation for the time evolution of Pm.

To do it, first, we use the definition (5.8) to introduce the quantity

Wmm′ = W r←l
mm′ +W l←r

mm′ +W l←l
mm′ +W r←r

mm′ , (5.12)

1At least up to the room temperature which is a highest temperature considered in this work
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Figure 5.5: Stationary vibrational states populations of the bridge (model 2) calcu-

lated using the ME and balance equation techniques for two different voltages.

which gives the rate to change the bridge’s vibrational state from m to m′ as a result

of all possible events connected with the dynamics of electrons. Two new terms

W l←l
mm′ = 1

2π

∫
dEωl←lmm′(E)fl(E − Em)[1− fl(E − Em′)],

W r←r
mm′ = 1

2π

∫
dEωr←rmm′(E)fr(E − Em)[1− fr(E − Em′)]

(5.13)

describe the excitation (or deexcitation) induced by electrons reflected from the

bridge. Equivalently, Wmm′ can be written as

Wmm′ = 1
2π

∫
dE|〈m′|Gs|m〉|2

×{Γl(E − Em)fl(E − Em)] + Γr(E − Em)fr(E − Em)]}

×{Γl(E − Em′)[1− fl(E − Em′)] + Γr(E − Em′)[1− fr(E − Em′)]}.

(5.14)

The rate equation for Pm reads

dPm
dt

=
∑
m′

Wm′mPm′ −
∑
m′′

Wmm′′Pm. (5.15)

It has the following interpretation: the population Pm changes itself in time as a

result of two probability fluxes. One goes from the state m to all other states m′′

and the other one comes from all states m′ to m. To get the stationary population
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distribution the time derivative in (5.15) is set to zero, must be solved. We call it a

”balance equation”. It may be written in the form∑
m′

[Wm′m − δm′m
∑
m′′

Wm′m′′ ]Pm′ = 0 (5.16)

Solution of (5.16) gives the distributions which are very similar to those obtained

from the ME (see the fig. 5.5). The principal difference is that in scattering ap-

proach we don’t have occupied bridge populations pv and the normalization condi-

tion
∑
Pm = 1 is different from the normalization in ME approach

∑
ρm+

∑
ρv = 1.

To present populations in the fig. 5.5 at the same scale we multiply Pm with 0.5.

Using population distributions obtained from the balance equation instead of

Boltzmann factors in the formula (5.9) we get the CVC which is plotted with blue

at the fig. 5.4. This result is based on the non-equilibrium population distributions

and, also, poses the information about the transmission peaks width. In this sense

it unites the advantages of both methods. From computational point of view the

necessity to solve the balance equation for each voltage makes scattering calculations

much slower. Despite the fact that the balance equation is ”twice smaller”, than the

ME (there is no occupied bridge data there), we still have to integrate matrices in

the scattering approach. Together with the balance equation, it can be even slower

than the ME approach.

5.1.4 Fluxes analysis

Having in mind the experience obtained analyzing the model 1, the reasonable ques-

tion appears, if it’s possible to make coupling smaller and improve the convergence

between green and blue curves in the fig. 5.4 ? To check it we decrees β2 from 0.2 eV

to 0.05 eV. Resulting curves are plotted at the fig. 5.6. Scattering calculations here

are enhanced using populations obtained from the balance equation.

Together with the CVC we present also the vibrational excitation voltage de-

pendence. To calculate it in the ME approach the formula (4.73) is used. Similar

formula for scattering approach doesn’t take into account occupied bridge popula-

tions ρv, it reads

〈Hs〉scat =
∑
m

EmPm. (5.17)
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Figure 5.6: Current and vibrational excitation voltage dependences for the model 2,

calculated using the ME and scattering approaches. Current fluxes from the left to

the right and from the right to the left are plotted by dashed and dash-dotted lines

respectively.
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When populations Pm are approximated by the Boltzmann factors, which doesn’t

depend on voltage, 〈Hs〉scat is constant. Using the balance equation to calculate Pm,

we get the vibrational excitation voltage dependence which is in good correspondence

with the ME result (see the fig. 5.6). It can be considered as another demonstration

of the validity of the balance equation.

Current curves are closer in the fig. 5.6 than in the fig. 5.4 but they are still

qualitatively different. In a small coupling regime all steps at U1, U2 and U3, which

were discussed in the previous section, are now clearly seen at both curves (they are

also accompanied by the steps at vibrational excitation curves at the same voltages).

The principle difference is connected with steps at U2 and U3. Current curves behave

very different at this voltages.

Since the formulas for current (5.9) and (5.11) both can be divided to two fluxes,

it may be interesting to analyze them separately to get the additional data about

differences in two approaches. ”Left to right” and ”right to left” fluxes are plotted

with dashed and dash-dotted lines in the fig. 5.6. Subtracting the second one from

the first one we get the full current (solid line). In the scattering approach flux

which goes from the right lead to the left is negligibly small and the the full current

is composed mainly from the left to right flux. In the ME approach right to left

flux is significant, and it contains those steps which produce overall current drops at

U2 and U3 in the full current. Comparing just left to right flux in ME with overall

current in scattering approach, we find them to be very similar.

5.2 Molecular motor models

5.2.1 Current and excitation function

We start the discussion of the motor models from the charge transport properties

of the junction in the model 3. The CVC and the vibrational excitation energy

of the molecular bridge for models 3a-c at temperature T = 50K are shown in

fig. 5.7. Let us first focus on the current-voltage curve. The red curve for the

model 3a exhibits the behavior expected for the model with small coupling between

vibrations and the electronic motion. We observe a resonance step at the voltage of
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function of voltage, applied to the junction, for models 3a-c at temperature T =

50 K. The shaded bars show the positions of the steps derived from the energies of

the molecular levels (see the text).
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Series Process ωmv = Ev − Em |〈m|Vdl|v〉|2 |〈m|Vdr|v〉|2

El ek +M0
m ↔M1

v=m 0.1 0.2− 1 ∼ 10−4

Ex1 ek +M0
m ↔M1

v=m+1 0.21-0.23 0.005− 0.015 0.05− 0.3

Ex2 ek +M0
m ↔M1

v=m+2 0.31-0.36 0.001− 0.06 0.001− 0.01

Ex3 ek +M0
m ↔M1

v=m+3 0.42-0.48 < 0.005 < 0.005

Dx1 ek +M0
m ↔M1

v=m−1 -(0.01-0.03) 0.005− 0.015 0.05− 0.3

Dx2 ek +M0
m ↔M1

v=m−2 -(0.16-0.12) 0.001− 0.05 0.001− 0.01

Dx3 ek +M0
m ↔M1

v=m−3 -(0.23-0.28) < 0.005 < 0.005

Table 5.1: Inelastic one-electron attachment and detachment processes. Table gives

the threshold electron energies of the inelastic processes and approximate size of the

matrix elements responsible for the transitions due to electrons from left and right

leads. All values are in units of eV.

0.2 V corresponding to twice the charging energy of the molecule 0.1 eV. The models

3b (green line) and 3c (blue line) differ by more complicated step structure and the

different stationary value of current finally reached. The second difference is easily

understood. While the coupling to the leads has the same overall strength for all

of the models (β2 = 0.07 eV), the coupling in the model 3b depends on the angular

variable which makes it effectively smaller when the system starts to vibrate. The

angular dependence is also a source of the negative differential conductance since the

coupling in the model 3b reaches the maximum for the angles near the equilibrium

position of the vibrational coordinate ϕ, which is where the system stays for low

voltages. In model 3c the coupling to the right lead Vdr(ϕ) has maximum strength in

the different position, which makes the effect of negative differential conductance to

disappear. Both models 3b and 3c have the same average value of couplings Vdα(φ)

(α = l, r) and the asymptotic value of current for large voltages is therefore identical

for both models.

To explain the details of the step-like behavior of the curves we start from the

mechanism of sequential tunneling through the bridge. Electron conduction is thus
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understood as a sequence of charging

ek +M0
m →M1

v (5.18)

and discharging

M1
v →M0

m + ek (5.19)

events on the bridge. In the first event (charging) the electron starts in one of the

leads in state k and jumps into the unoccupied bridge in the vibrational state m

turning it into occupied bridge in the vibrational state v. In the second event the

electron starts in the occupied bridge in the state v and leaves the bridge in the

state m jumping into the leads to the state k. The energy is conserved in both of

the events

εk + Em = Ev, (5.20)

where εk is the energy of an electron in a state k. In equation (3.26) we defined

Em and Ev as the vibrational energies of the unoccupied and occupied bridge re-

spectively. Each ωmv ≡ Ev − Em defines a threshold energy for one possible in/out

channel, which becomes available for tunneling at voltage U = ±2ωmv (when chem-

ical potentials of the leads are equal µα = ±U
2

= ±ωmv) and can (but not necessary

will) show itself as a step in the picture 5.7. Since the structure of energy levels is

the same for all models 3a-c, we can expect the steps at the same voltages for all

models. For the detailed analysis of the steps we show the values of the threshold

energies ωmv ≡ Ev −Em in table 5.1. The transitions are divided in several groups.

In the first group (denoted El) the vibrational state of the molecule is unchanged

and v = m. The corresponding threshold energy is ωmv = 0.1eV independent of the

value of m. This is a consequence of the shape of the two potentials in Hamiltonians

(3.43) for the model 3, which is identical except of vertical and horizontal shift (see

the fig. 3.5). There are also excitation groups Ex1-Ex3 corresponding to v = m+ 1,

v = m + 2 and v = m + 3. In the harmonic approximation the threshold energies

would also be independent of m. The table 5.1 shows the range of values of ωmv for

low states m = 0, 1, ..., 10 (the choice of this maximum value of m is guided by the

attained excitation energy show in the lower part of the figure). The last, ”deexci-

tation” groups Dx1-Dx3 are characterized by v = m− 1, v = m− 2 and v = m− 3.
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Figure 5.8: Angle distributions and populations calculated independently for unoc-

cupied and occupied bridge in model 3c.

If we compare the predicted positions of the steps U = ±2ωmv given by the values

from the table 5.1 with the positions of the steps in the fig. 5.7, we see that the steps

correspond to voltages approximately 0.2, 0.3, 0.45 and 0.7, i. e. to series El, Dx2,

Ex1 and Ex2. Remarkable is that for the voltage |U | > 0.8V vibrational energy

of the bridge doesn’t show any steps and grows parabolically for all models. The

current-voltage characteristics also become smooth in this voltage region. The level

of excitation of the molecule is too high for the harmonic approximation to apply

and many different vibrational states are involved. We expect that quasi-classical

theory could be applied in this regime.

In the equilibrium (U = 0) only one lowest vibrational level E0
m = 0.065 eV

is populated (it correspond to the minimum at the vibrational excitation curve in

fig. 5.7). Bridge remains ”closed” for current until the first step occurs at the voltage

0.2 V, when the whole El set of channels opens. If we consider bridge originally in

its ground state with energy E0
m the first tunneling event

εk + Em=0
El−−−→ Ev=0

El−−−→ Em=0 + εk
Dx1−−−→ Em=1 + εk′

(5.21)
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can leave the bridge in the excited state Em=1 through the channel Dx1. When the

next electron comes and the bridge is already in the excited state, tunneling can

excite it even higher, but only by one quantum per tunneling event. Excitation to

the high levels is limited by competing process of deexcitation. This picture is the

same for all three models. To appreciate the differences among them we must look

at Franck-Condon factors |〈m|Vdl|v〉|2 and |〈m|Vdr|v〉|2 responsible for the strength

of each ek+M0
m ↔M1

v transition. For the model 3a it is Vdl = Vdr =constant. Since

the potentials differ only slightly, it is 〈m|v〉 ' δmv (states are almost orthogonal)

and the El channels are dominant with only small contribution of Ex1, Dx1 and

virtually no contribution for higher channels. This explains why the red curves

in current-voltage and excitation graphs show steps only at voltages corresponding

to these channels. To understand behavior for the models 3b and 3c the values

|〈m|Vdα|v〉|2 are shown in the table 5.1. We have to keep in mind that Vdl=Vdr for

the model 3b. The values of |〈m|Vdr|v〉|2 shown in the last column are the ones for

the model 3c. There is pronounced difference in the first step at U = 0.2V between

models 3b and 3c. Now we can understand that. While the both charging and

discharging of the bridge proceeds dominantly through El channel for the model

3b (giving the step similar to model 3a) the discharging to right electrode through

channel El is strongly suppressed for model 3c. The current conduction is thus

possible dominantly thanks to discharging through the channel Dx1 to right lead

for the model 3c. This gives smaller value of current, but higher value of vibrational

excitation for this model. Also for higher voltages the sizes of steps in excitation

curves follow the sizes of the Franck-Condon factors.

One striking feature apparent from the figure 5.7 is the asymmetry of the curves

for the model 3c. This is a consequence of the asymmetry |〈m|Vdl|v〉|2 6= |〈m|Vdr|v〉|2.

For the negative voltages the channel El is not available in model 3c even for U <

−0.2, because the charging has to proceed from the right electrode and Franck-

Condon factor |〈m|Vdr|v〉|2 is suppressed by 4 orders of magnitude. Charging of the

bridge becomes possible only with availability of the process Ex1. Both current flow

and vibrational excitation thus take place only for negative voltages U . −0.45.
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Figure 5.9: Angular probability distribution of the bridge p(ϕ) at different voltages.

Another way to look at this asymmetry is to inspect the angle distributions

p0(ϕ) ≡ Tr{dd†ρ|ϕ〉〈ϕ|} (5.22)

p1(ϕ) ≡ Tr{d†dρ|ϕ〉〈ϕ|} (5.23)

and populations ρv of vibrational levels on the occupied and ρm on the unoccupied

bridge respectively. They are shown in the fig. 5.8 for voltages U = ±0.5 V. We can

make an observation, that at negative voltages, when electrons tunnel from the right

to the left and the right lead is the donor of electrons, occupied bridge angle dis-

tribution ”tunes” itself to have maximums closer to the maximums of the coupling.

At positive voltages unoccupied bridge angle distribution takes profile of the right

coupling, which acts as an acceptor of the electrons this time. It can be concluded

that the angle dependent part of the coupling can influence the angle distribution in

the leads in a way, that the coupling which couples the donor lead influence the oc-

cupied bridge space and the acceptor lead coupling influence the unoccupied space.

Resulting asymmetry can be found also in population distributions in the lower part

of the fig. 5.8. Similar distributions for models 3a and 3b (not shown here) exhibit

no asymmetry for change U → −U and the distributions ρm and ρv for unoccupied
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and occupied states are almost identical.

In the figure 5.9 we compare the angular distributions p(ϕ) = Tr{ρ|ϕ〉〈ϕ|} =

p0(ϕ) + p1(ϕ) for all models 3a-c at the voltages U = 0.25, 0.5, 0.75 and 1.0. There

is a common trend for the angle to become more and more delocalized while the

voltage grows. The degree of delocalization follows from the excitation curve in the

figure 5.7 (bottom). At U = 0.25 the distribution for the model 3c is the broadest

one, but already at U = 0.50 the model 3a distribution width becomes larger. Above

the last step in the excitation and current curves the angle is completely delocalized.

Current for models 3b and 3c is asymptotically factor of two smaller than the

same value for the model 3a. At large voltages angle distribution at the bridge is

more or less homogeneous. For this reason angle-dependent part of the coupling for

models 3b and 3c, which is equal to (cos(ϕ− ϕα))2, reaches its mean value 0.5. For

the model 3a angle-dependent part of the coupling is constant and equal to 1, which

is two times larger.

5.2.2 Angular momentum and motor effect

We plot the mean value of the angular momentum 〈Lz〉 against the voltage applied

across the junction in fig. 5.10. According to our calculations for models 3a-3c the

mean value of the angular momentum 〈Lz〉 is in general non-zero and can reach

values of the order of the reduced Planck constant ~. The value strongly depends on

the voltage, applied to the junction. This is an interesting fact since we deal with

an example of the molecular scale device which can perform rotations controlled

by voltage applied to the device. For example, 〈Lz〉 can grow with the voltage and

change its sign (which means changing of the direction of rotation) when the polarity

is inverted. Note that this inversion of the rotation sign with the sign of the voltage

is observed only in the model 3c. There is no way to distinguish the sign of voltage

in the symmetric models 3a and 3b and 〈Lz〉 there is an even function of U . The

voltage dependence of angular momentum is not straightforward for these models,

containing local minima and maxima that may be difficult to understand in detail.

In all models 3a-c the molecule does not rotate when the absolute value of the

voltage is smaller than 0.4 V. The onset of each curve follows the degree of vibra-
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Figure 5.10: Mean value of the angular momentum of the molecule 〈Lz〉 as a function

of voltage for models 3a, 3b and 3c at the temperature T = 50 K

tional excitation of the molecule (confront bottom part of figure 5.7). This behavior

reflects the fact, that the molecule should be excited enough and overcome the ro-

tational barrier at 2.5-2.6 eV in order to perform rotational movement. Significant

population of the states above the barrier can be expected only when the mean

value of the vibrational energy of the bridge molecule (bottom part of the figure

5.7) is order of magnitude of 1eV. The potentials (i. e. also vibrational levels) are

the same for all three models a-c, but different couplings lead to different population

and therefore also to different rotational curves. Another way to restate this dis-

cussion is to look again at the angle distribution functions at the fig. 5.9. Molecule,

which can perform rotational movement has the angle distribution which is delocal-

ized through the whole interval [0, 2π]. We see, that at 0.5 V only model 1a has

this property. But at 0.75 V all three models can rotate. This observations are in

correspondence with the fig. 5.10, where only model 1a exhibits significant nonzero

〈Lz〉 at 0.5 V (at positive voltages).

Curves at the fig. 5.10 show in general two different types of behavior: fluctu-

ations around zero for lower voltages and the regular growth after approximately
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Figure 5.11: Populations ρ00(l, l) and ρ11(l, l) in the angular momentum basis for

Model 3c at different voltages.

±0.8 V which appears only for model 3c. To understand it better let’s look at the

energies of vibrational states in molecular potentials shown in figure 3.5 in more

details. It was already mentioned before, that the states well above the rotational

barrier are almost free rotor states. They are represented by delocalized wavefunc-

tions. On the contrary, the states which are close to the ground state are well

localized and almost coincide with the states of the harmonic oscillator. We can

check the importance of specific states for the rotational asymmetry numerically,

by excluding certain groups of states from the consideration during calculations. It

turns out that the lowest states almost don’t participate in the rotations. Large

values of angular momentum are reached only if the states above rotational barriers

are excited and the coupling to the left and right lead is different like in the model

3c.

In the ME approach the off-diagonal elements of RDM are often neglected re-

sulting in the equation only for populations ρm and ρv of the states. We used this

line of thinking in the section 5.1.2 to compare the formulas for current. If we want

to capture the motor effect we have to consider the off-diagonal elements at least for
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the near degenerate states close to or above the rotational barrier. To understand

this let us consider the states high above the barrier. They almost coincide with

free rotor states which are proportional to cosϕ and sinϕ (see the table 3.1) and

can be expressed in terms of eigenstates of angular momentum |l〉 (defined from

the equation (4.79)) as linear combinations |±〉 = |l〉 ± | − l〉. But mean value of

Lz in both |+〉 and |−〉 is zero. Considering only diagonal elements of RDM for

these two states would also give vanishing 〈Lz〉 in the formula (4.80). Only keeping

the off-diagonal elements of RDM we can recover nonzero angular momentum. For

the same reason populations ρm and ρv can’t be used to understand the details of

〈Lz〉 behavior, since they simply contain no information about it. The situation is

different in l-representation since populations ρ00(l, l) and ρ11(l, l) enter the formula

(4.80) and, thus, can be used for analysis. These populations are shown in fig. 5.11

for four voltages. According to the formula (4.80, the nonzero mean value of angular

momentum is a consequence of asymmetry of these pictures with respect to l = 0.

For example, last two pictures at the voltages U = 0.75 and U = 1.00 have small

asymmetry (about 1 per cent, not possible to see at the figure). This asymmetry

will be much more pronounced in the model 4.

Nonzero angular momentum which, after all, means, that the molecule has a

preferable direction of rotation should be the result of the asymmetry in the physical

system itself. In our models we deal with two types of them: asymmetry in potential

energies of charged and uncharged bridges and coupling asymmetry in the model

3c for left and right electrode. Both are important to observe the motor effect. In

fig. 5.12 we present the values of 〈Lz〉 for the model 3c with the voltage fixed at

U = 1.5 V. It is plotted as a function of charged bridge potential shift ϕ1 and right

coupling shift parameter ϕr. Red line on the figure mark the values actually used

in model 3c. The angular momentum first grows with ϕ1 but higher shifts suppress

the effect again. This effect is similar to the Frank-Condon blocade for the current

observed in [23]. Selecting optimum value of this parameter can enhance the angular

momentum by factor of 3. Coupling becomes symmetrical when ϕr = π or ϕr = 2π

as in model 3b. According to the fig. 5.12 it is possible to maximize the ”motor

effect” by optimizing ϕr by the factor of 2.
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Figure 5.12: Dependence of the mean value of angular momentum 〈Lz〉 at volt-

age U = 1.5V on the model parameters of potential shift ϕ1 (top) and coupling

asymmetry ϕr(bottom) in model 3c.

5.2.3 Towards realistic models

In this section we discuss the ”physical” model 4. Current and excitation function of

the molecule for three different temperatures are plotted at the fig. 5.13 as a function

of the voltage. Density of possible tunneling channels in the model 4 is much higher

than in model 3, which is the consequence of the large moment of inertia of the

rotor. Moreover, ground states energies of the unoccupied and occupied bridge

almost coincide. It means, that the bridge is opened for electrons with zero energy

and tunneling events can happen at zero voltage (current will still be zero, since

both tunneling directions are equiprobable). Despite the large amount of possible

channels, we observe a zero current plateau in the fig. 5.13. This can be explained

by the small values of Frank-Condon overlaps for the low-lying vibrational states

in both potentials. This is the same effect as discussed in [23] for the model with

harmonic vibrations. The current plateau disappears for the calculation at higher

temperature, where higher states, not subjected to Frank-Condon blockade, are

excited already for the zero voltage.
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Figure 5.13: Current and the excitation function for the model 4a are plotted as

a function of the bias voltage. The results for the three different temperatures

(including the room temperature) are shown. The inset in the bottom part shows

the contribution to vibrational energy from unoccupied and occupied bridge for the

temperature 50 K.
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model 4a.
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Figure 5.15: Populations distributions ρ00(l, l) and ρ11(l, l) of the RDM in momen-

tum basis are plotted for different bias voltages. T = 295 K.
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Temperature effects become much more important for model 4 than it was for

model 3. It is connected with the fact, that even at smallest temperatures considered

here (50K), kT is comparable with a distance between energy levels of the molecule.

It is also interesting to note, that the vibrational excitation curve in the bottom

part of figure 5.13 does not have the minimum at zero voltage, but at approximately

U = ±0.15 V. This implies the cooling effect of the current, which was already

observed experimentally [22] and also discussed theoretically [54, 13, 17].

Both the excitation function and the angular momentum voltage dependence are

strongly asymmetrical, which is not surprising, because of strongly asymmetrical

coupling. It is also obvious from the fig. 3.6, that the left lead coupling strength

is minimal in the area where unoccupied bridge wave functions are localized, which

makes the overall coupling of the left lead smaller as compared with the right lead.

Dependence of the angular momentum on voltage (fig. 5.14) is much smoother

than it was for model 3c. It is another consequence of a large moment of inertia

I of the rotor, which makes the system ”more classical” and smooth the quantum

features out of the graphs. The angular momentum also reaches much higher values

up to 12~ inside the considered voltage interval which could partially be attributed

to high moment of inertia. Temperature has some influence on the shape of angular

momentum curve but the maximum value of the angular momentum reached is

rather insensitive to the temperature. From this we can conclude, that the motor

effect can be observed at room temperature as well as at cryogenic temperatures.

As we discussed before, nonzero angular momentum mean values are connected

with asymmetries in population distributions of the states with well defined angular

momenta, as they are plotted at the fig. 5.15. Large values of 〈Lz〉 are accompanied

with a large asymmetries which are clearly seen for U = −0.3 V and U = −0.4 V.

At the end of the chapter we would like to focus once again on the ϕ-space

symmetry question. As it was already stressed in the previous section, this factor is

a very important observation condition for the motor effect. As an advanced version

of the fig. 5.12 which was used in model 3 to analyze symmetry, for the model 4

we present the figure 5.16. It shows all possible values of 〈Lz〉 as a function of ϕ1

and ϕr, while the voltage is fixed at U = −0.5 V. This picture is computationally
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Figure 5.16: Influence of the parameters ϕ1 and ϕr on the angular momentum mean

value for the voltage U = −0.5 V.

heavy and required about 50 hours of ordinary PC time to calculate it. Varying the

symmetry braking parameters (potentials and coupling shifts), one can change 〈Lz〉

between −15~ and +15~. There are also a lot of possible regimes where the motor

effect practically disappears (mainly it’s caused by a large potential shift ϕ1). The

question, what kind of symmetry a given junction should possess to maximize the

motor effect, remains open. It goes behind the topic of the thesis.



Chapter 6

Conclusion

In this work we have demonstrated how the scattering approach and the ME ap-

proach can be applied to calculate a current through the molecular junctions. To

discuss different aspects of the charge transport phenomena both approaches were

applied to the models of the junction with and without internal vibrational degrees

of freedom.

First we briefly discuss both approaches in the elastic transport regime (model

1) where the scattering approach is exact. ME calculations coincide well with the

scattering results when the coupling between the leads and the molecular bridge is

small, which is a consequence of the perturbative nature of WBR ME. This also

implies that the second order ME approach can not take into account a bridge’s

transmission function width, as well as a small energy renormalization. It is clearly

seen in comparison of CVC. The steps in CVC in the ME approach are broadened

only by the Fermi-Dirac distribution in leads.

Next we discuss the vibrationally inelastic transport regime (model 2) which can

not be treated analytically and may reveal the qualitative differences between CVC,

calculated using scattering and ME approaches. This regime suits well to discuss the

molecule’s vibrational states populations and their influence to the charge transport

calculation. It’s demonstrated, that the Boltzmann factors, used in the generalized

Landauer formula, provide a bad approximation of bridge’s stationary populations,

especially at high voltages. We have fixed this issue suggesting the balance equation

in the framework of the scattering theory to calculate the realistic bridge’s popula-
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tions and, thus, improve the method. However, since the molecular bridge can be

found with certain probability in occupied or unoccupied state, and the scattering

theory (even with the balance equation improvement) allows to work explicitly only

with unoccupied states populations, the description is still not as detailed as in the

ME approach. The last one explicitly takes into account populations of occupied

and unoccupied states. If the ME is solved and RDM is calculated we, for example,

can answer the question, what is the overall probability to find the bridge occupied

or unoccupied. Such a detailed description of the molecular bridge makes the ME

approach more accurate in the nonelastic regime than the scattering approach.

As a next step we investigate the inelastic charge transport beyond the harmonic

approximation. For this purpose original set of models of the molecular bridge,

produced from the chain of benzene rings, is formulated. There are both purely

theoretical models among them, designed to catch different interesting parametric

regimes in anharmonic junction (models 3a, 3b and 3c), and also realistic models (4a

and 4b) which are parametrized using the available data about molecular rotations.

Influence of anharmonic vibrations to the charge transport properties of the

junction is discussed in details. It is shown how the steps in the current-voltage

characteristics can be analyzed in this case. Additional data about the vibrational

excitation voltage dependence, states populations and angle distribution was also

used in the analysis. Vibrational states which are located above the potential energy

barrier against the full rotation are mainly populated at high voltages. In this case

the character of processes in the junction may switch from the purely quantum

regime, with step-like CVC, to the regime where all the dependences are smooth.

We expect that some other, less detailed level of description (probably semi-classical)

can be successfully applied to treat the system in this case. It is also shown how the

symmetry in the junction, which enters through the angle dependent coupling to the

left and right leads, may significantly change CVC. Negative differential resistance,

for example, may appear as a result of certain coupling regime.

As an example of phenomena which can’t be discovered in the harmonic approxi-

mation we have studied the motor effect, i.e. the response of the angular momentum

of the molecule to the voltage applied across the junction. Rotational moment of
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the bridge is investigated in different regimes, i.e. for different asymmetry in the

junction. We have demonstrated that the mean value of the angular momentum,

indeed, strongly depends on the voltage. In the realistic molecular motor model the

absolute value of angular momentum, depending on the symmetry, may reach sig-

nificant values (up to 15~) in the selected voltage window. For the asymmetrically

coupled bridge the direction of the angular momentum of the molecule can be con-

trolled with the polarity of the voltage. The nonzero angular momentum is reached

when levels above the rotational barrier are populated. From the computational

point of view we have to stress that although the current thorough the junction can

accurately be described from the master equation calculation with the diagonal part

of the reduced density matrix only (i.e. the populations of the molecular states) the

off-diagonal elements (coherencies) are essential for the calculation of the angular

momentum.

This work indicates that the rotational motion of a molecular group should in

fact be a very common phenomenon. There are only two conditions required: 1)

presence of some part of the molecule capable of the rotation with moderately small

potential barrier against this rotation and 2) breaking of the mirror symmetry in

the junction (chirality of the junction).
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