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Abstrakt: V předložené práci studujeme fotonové silové funkce, jejichž studium
probíhá již více než padesát let. V průběhu této doby byla vytvořena celá řada
modelů bud na základě čistě teoretických, či fenomenologických přístupu, které
se pokoušejí popsat experimentální výsledky. Korektnost těchto modelů je stále
diskutabilní a její ověření je v současnosti předmětem intenzivní experimentální i
teoretické činnosti. Výsledky analýzy měření dvoukrokových γ kaskád doprováze-
jících záchyt tepelného neutronu na jádru 176Lu jsou porovnány s výstupy Monte
Carlo simulace založené na předpokladu platnosti tzv. Extrémního Statistického
Modelu. Porovnání výsledků zpracování experimentálních dat s výsledky získanými
pomocí počítačových simulací se stává základním nástrojem studia korektnosti te-
oretických modelů. Námi analyzovaný experiment poskytuje informace zejména o
E1 a M1 fotonové silové funkci, především pak o tzv. nůžkové rezonanci.

Klíčová slova: Fotonová silová funkce, Nůžková rezonance, Hustota jaderných stavů,
Extrémní Statistický Model
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Abstract: The subject of the study made in this work are photon strength func-
tions. Many models, both based on theoretical as well as phenomenological ap-
proaches, were proposed for these quantities, describing the gamma decay of the nu-
cleus, during last 50 year. However, the correctness of these models is still ques-
tionable and its verification is the subject of intensive experimental and theo-
retical activity at the present time. The results of the analysis of measurements
of the two-step γ cascades following thermal neutron capture on the 176Lu nucleus
are compared with the outputs of the Monte Carlo simulations based on the valid-
ity of the so-called Extreme Statistical Model. Comparison of experimental data
with outcomes of simulations thus becomes the basic tool for studying correctness
of theoretical models. The experiment analyzed in the present work provides in-
formation mainly about E1 and M1 photon strength functions, especially about
the so-called scissors resonance.

Keywords: Photon strength function, Scissors resonance, Level density, Extreme
Statistical Model
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Chapter 1
Introduction

In the present work we study the emission of photons from excited atomic nu-
clei which originate from non-relativistic nuclear reactions. Thanks to incredible
complicated nuclear hamiltonian nobody is able to formulate the fundamental
equations governing the γ-ray emission. Moreover we can safely assume that even
if those equations were known solving them would be impossible thanks to their
complexity. For those reasons we need to use simplified models such as descrip-
tion using photon strength functions (PSFs), also called γ-ray or radiative strength
functions.

Introduced in 60’s [1] PSFs are supposed to describe the process of the emis-
sion of photons from highly excited nuclei. To be more precise description using
PSFs should be valid in the region of such excitation energy that nucleus radiates
at so many frequencies making observation of single transitions impossible, i.e. one
observes a ”continuum spectrum”. For that reason we predict some smooth, aver-
age properties of the γ-ray spectrum, not individual frequencies and the associated
spectral intensities.

Various experiments can be (and have been) used to obtain information on pho-
ton strength functions. At first photonuclear experiments and slow-neutron cap-
ture reaction started the study of PSFs. Variety of other reactions have been used
for last 30 years, namely both elastic and inelastic scattering of electrons, nucle-
ons and photons at various energies, and also light- and heavy-ion induced fusion
reactions. Many theoretical approaches have been introduced with aim to describe
the photon strength functions.

The present work follows former and ongoing effort of authors from Faculty
of Mathematics and Physics at Charles University in Prague and Nuclear Physics
Institute of the ASCR to learn more about PSFs. To the results on various nu-
clei (e.g. 163Dy, 168Er, 160Tb, . . . ) the contribution with those on 177Lu is made.
The PSFs are studied using data of photon deexcitation of nucleus following ther-
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CHAPTER 1. Introduction

mal neutron capture. The other possible reaction channels - elastic neutron scat-
tering - are of no importance for interaction of nucleus with thermal neutron. The
neutron resonances (i.e. capturing states above the neutron threshold) are fairly
narrow (the widths are up to tenths of eV) making the lifetime ≈ 10−14 s. That
long lifetime coresponds to the fact that the projectile energy is shared among all
other constituents - that is the Bohr’s concept of compound nucleus [2] - making
the decay mode of the compound nucleus independent on it’s origin.

Figure 1.1: An illustration of (n,γ) interaction. The figure is taken from [50].

In Fig. 1.1 the schema of (n,γ) reaction is drawn. Thermal neutron with kinetic
energy of En ≈ 0.02 eV is captured on target nucleus with mass number A. The re-
sulting nucleus with mass number A + 1 is highly excited with excitation energy
being the sum of the neutron separation energy Bn and the neutron kinetic energy
En. Typical value of the neutron separation energy is from 6 to 9 MeV, in our case
7.0724 MeV. The resulting A + 1 nucleus is a well-defined quantum mechanical
state. Its decay begins with an emission of a primary γ quantum and proceeds by
emission of secondary γ quanta until the nucleus ends up in the ground state.

The observed γ-ray spectrum is very complex thanks to the fact that the de-
excitation of a medium-heavy or heavy nucleus proceeds throught a large number
of levels. Such spectrum is dominanted by the lines corresponding to high-energy
primary transitions and the secondary transitions between (few) low-lying levels.
Besides these strong transitions there exist many weak and very weak lines be-

– 8 –



CHAPTER 1. Introduction

longing to less-energetic primary transitions and secondary transitions between
levels at medium or high excitation energies that form the ”continuous” compo-
nent of spectrum. This ”hidden part” of the spectrum is subject of our interest
and study since it contains information on PSFs. Particularly helpful for purpose
of extracting information on PSFs are coincidence measurements of the γ-ray spec-
trum. For that reason we investigate γ-ray spectra from measurements of two-step
cascades (TSC) following thermal neutron capture performed at research reactor
at Řež near Prague.

The experimental TSC spectra are compared with the spectra simulated using
the Monte-Carlo based DICEBOX code. The simulations are based on the postulates
of the so-called Extreme Statistical Model (ESM) that implicates various assump-
tions on the PSFs and level densities (LD). In spite of clear time consuming disad-
vantage of this approach it seems to have more positives than negatives compared
to the ”direct” iterative extraction of the shape and parameters of PSFs (and pos-
sibly LD). Those advantages are possibility to control the response of the detector
system and all the involved fluctuations of statistical quantities.

In the next chapter the present experimental and theoretical status of photon
strength functions as well as level density is briefly summarized. Chapter 3 con-
tains description of the coincidence experiment that produced experimental data
processed in this work and the DICEBOX algorithm used to simulate TSC spectra.
Then in Chapter 4 the experimental data are analyzed and compared with var-
ious outcomes of simulations. Finally main conclusions of the present work are
summarized in Chapter 5.
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Chapter 2
Photon strength functions and level
density

2.1 Level density

Individual levels with all their characteristics (spin, parity, decay properties, . . . )
are known experimentaly up to certain energy, in case of studied nucleus 177Lu
about 1 MeV. The levels can be measured there because the energy spacing be-
tween them is big enough (i.e. level density is sufficiently low). There exists one
additional region where individual levels can be observed. Those are the few res-
onances of certain spin in small energy range just above the neutron separation
energy. Experimental technique used for this purpose is so called the neutron time-
of-flight method. To describe the remaining intervals of excitation energy, we need
to rely on statistical models.

The formula for nuclear level-density derived by Bethe in 1936 [3] raised purely
on statistical approach. Using the idea that the complete information on the spec-
trum of a system is equivalent to the knowledge of the partition function of the sys-
tem. Concidering a gas of noninteracting fermions with equally spaced nondegen-
erated single particle levels with fixed spin Bethe obtainded for density ρ at exci-
tation energy E

ρ(E) =
exp(2

√
aE)

4
√

3E
, (2.1)

where a is so called level density parameter.
More realistic Back-Shifted Fermi Gas (BSFG) formula [4] takes into account

the fact that two types of fermions with tendency to form pairs are present in
nucleus. Extra energy is needed to separate such pair, introducing this energy is
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CHAPTER 2. Photon strength functions and level density

done by energy shift ∆ with final formula being

ρ(E, J) = f(J)
exp

(
2
√
a(E −∆)

)
12
√

2a
1
4 (E −∆)

5
4

, (2.2)

where f(J) is the spin distribution factor. Assuming the gaussian distribution
of spin projections M , f(J) is equal to [5]

f(J) = exp

(
− J2

2σ2
c

)
− exp

(
−(J + 1)2

2σ2
c

)
≈ 2J + 1

2σ2
c

exp

(
−(J + 1/2)2

2σ2
c

)
, (2.3)

where σc is the spin cut-off parameter which can be according to [5] expressed as

σ2
c = k

√
a(E −∆)A

2
3 . (2.4)

The constant k was proposed to be 0.0888 in [5], later parametrization [6] suggested
0.1146. Later, another formulas were suggested to describe spin cut-off parameter.
In our work we use the formula proposed in [9]

σ2
c = 0.0146

1 +
√

1 + 4a(E −∆)

2a
A

5
3 . (2.5)

Systematic deviation from theoretical spin distribution formula (2.3) may occur in
some nuclei, for futher information see [7, 8].
The parameters a and ∆ in formula (2.2) are unique for each nucleus. One can
adjust them to reproduce level density at low energies as well as at the resonance
region above the neutron separation energy.

Gilbert and Cameron [5] have proposed another formula, which sufficiently well
describes the low-energy behaviour of level density

ρ(E, J) =
f(J)

T
exp

(
E − E0

T

)
. (2.6)

The two parameters E0 and T - the nuclear temperature - in this so-called Con-
stant Temperature Formula (CTF) are again unique for each nucleus and can be
obtained from fitting the formula to above-mentioned experimental data. Within
this approach the spin cut-off parameter entering the formula (2.6) via f(J) is
taken independent on excitation energy in simple form [10]

σc = (0.98± 0.23)A(0.29±0.06). (2.7)

Gilbert and Cameron also distinguish two regions of excitation energies. For low-
energy region the CTF model is used, above certain energy (typical value is in
range 4-6 MeV) the level density is described by BSFG formula. In some other
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CHAPTER 2. Photon strength functions and level density

works [9] it is suggested that the CTF formula may be a good approximation
for entire excitation energy region up to neutron separation energy. We adopted
this approach in our simulations. Naturally, other models of the level density exist
but they are not used in the present work. Recently von Edigy and Bucurescu
introduced the form of the spin cut-off parameter that can be used in both BSFG
and CTF formula [13]:

σ2 = 0.391A0.675(E − 0.5Pa′)0.312, (2.8)

with re-evaluated level-density parameters (a, ∆ and E0, T respectively). Pa′ is
the deuteron pairing energy calculated from mass or mass excess values M(A,Z)
of the mass tables [12] with formula:

Pa′ =
1

2
[M(A+ 2, Z + 1)− 2M(A,Z) +M(A− 2, Z − 1)] (2.9)

For futher details see [13]. Both BSFG and CTF models work with the assump-
tion of parity independence of level density. This dependence cannot be a pri-
ori excluded. On the other hand it is supposed to be negligable above few MeV
of excitation energy in spherical nuclei [14, 15]. Futhermore this dependence van-
ishes more quickly with a deformation of nuclei. There are indirect experimental
tests of level density. The first kind of experiment is based on analysis of shapes
of neutron evaporation spectra from variously induced (p,n,α) reactions within
the Hauser-Feshbach statistical approach. It allows determination of absolute val-
ues of level density and gives a reasonable agreement with BSFG formula for
wide variety of nuclei [16, 17]. Known exceptions are several closed-shell nuclei
with A ≈ 208 giving better agreement with CTF formula. In addition the level
density can be extracted from primary γ-ray spectrum following the (3He,αγ) and
(3He,3He’ γ) reactions in rare-earth region using the algorithm known as ”Oslo
method” [18, 19, 20]. The method used does not provide absolute values of the level
density but information about the shape of the level density energy dependence.
The rest of analysis is performed using the above mentioned regions (low excitation
energy and neutron resonances). For rare earth nuclei there is a remarkable agree-
ment with BSFG shape. In Fig. 2.1 the level density energy dependence of models
used in this work is ploted.

2.2 Photon strength functions

The partial γ-decay width from an initial state α with spin Jα to final state β
with spin Jβ through the emission of a photon of type X, multipolarity L and
energy Eγ = Eα − Eβ is given by formula
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CHAPTER 2. Photon strength functions and level density
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Figure 2.1: The energy dependence of level density. The plotted curves correspond
to tested models summed over half-integral spins of our interest, that is 7
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(2.7) for the BSFG and the CTF formula respectively. The spin cut-off parameter
(2.8) is used in the level densities marked ”09”.

Γ
(XL)
αγβ =

8π(L+ 1)

L[(2L+ 1)!!]2

(
Eγ
~c

)2L+1

B(XL) ↓, (2.10)

where B(XL) ↓ stands for the reduced transition probability of deexcitation
of the nucleus

B(XL) ↓= 2Jβ + 1

2Jα + 1
B(XL) ↑= 1

2Jα + 1
|〈αJα‖H(XL)‖βJβ〉|2. (2.11)

B(XL) ↑ stands for the reduced transition probability of photoexcitation, H(XL)

is the electromagnetic transition operator of type X and multipolarity L. Once
the level density is significantly high it is convenient to use average partial radiation
width and relate it to a function f (XL) which is called photon strength function

Γ̄(XL)(α→ β) =
f (XL)E2L+1

γ

ρ(α)
. (2.12)
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CHAPTER 2. Photon strength functions and level density

In the single-particle approach the f (XL) is assumed to be constant, i.e. does not
depend on transition energy Eα − Eβ.

Numerical relations between reduced transition probabilities, B(XL) ↓, and
photon strength functions, f (XL), can be obtained using (2.10) and (2.12). For low-
est multipolarity transitions we get

1

∆

∑
∆

B(E1) ↓ [e2fm2] = 0.955106f (E1)[MeV −3] (2.13)

1

∆

∑
∆

B(M1) ↓ [µ2
N ] = 86.6106f (M1)[MeV −3] (2.14)

1

∆

∑
∆

B(E2) ↓ [e2fm4] = 1.251012f (E2)[MeV −5] (2.15)

for deexcitation going to the zero-spin ground state. The summations on the left
hand sides run over an energy interval ∆.

Using the detailed-balance principle one can derive a relation between the par-
tial radiation width Γ

(XL)
αγβ of the γ transition in (2.10) and the XL component

of the photoabsorption cross section σ
(XL)
βγα

Γ
(XL)
αγβ =

E2
γ

(π~c)2

2Iβ + 1

2Iα + 1
σ

(XL)
βγα . (2.16)

This leads to alternative definition of photon strength function f (XL)

f (XL)(Eγ) =
1

(π~c)2

σ̄
(XL)
tot (Eβ → Eα)

(2L+ 1)Eγ
, (2.17)

using assumption that photoabsorption cross section does not depend on the prop-
erties (excitation energy, spin, parity) of the initial (β) state. Additional assump-
tion, known as Brink hypothesis [21], is usually made. It says that the average
photoabsorption cross section from any level β does depend only on transition
energy Eγ = Eα − Eβ and not on other properties of the level. The hypothesis
was originaly suggested for E1 transitions but it can be modified for any type
and multipolarity of the radiation. The Brink hypothesis is visualized in Fig. 2.2.
Nowadays it seems that such a strict Brink hypotesis is too strong simplification
of the reality. It seems that PSF does depend not only on the photon energy but
also on other characteristics of the final (β) state.
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CHAPTER 2. Photon strength functions and level density

Figure 2.2: The Brink hypothesis for photoexcitation and γ-decay following neu-
tron capture reaction. The figure is taken from [50].

2.2.1 Fluctuation properties of partial radiation widths

Looking closely at the fluctuation properties of the partial radiation widths Γ
(XL)
αγβ

they are assumed to fluctuate strongly, according to the Porter-Thomas (P-T)
distribution (see original article [69] or more detailed description in [50])

P (x)dx =
1√
2πx

e−
x
2 dx, (2.18)

where x = Γαγβ/Γ̄αγβ and Γ̄αγβ is the average radiation width for the transition
from initial state α to final state β. Note should be made that P-T distribution is
actually a χ2 distribution with the number of degrees of freedom ν = 1.

2.2.2 E1 photon strength function

By measuring photoabsorption cross section above neutron separation energy Bald-
win and Kleiber [22] found a wide resonance. This resonance was actually predicted
few years earlier [23] and was interpreted as a consequence of colective vibrations
of proton and neutron fluids. This motion has dipole character hence the name
giant dipole electric resonance (GDER). To describe the GDER existence one can
use classical models of motion. If proton and neutron fluids vibrate within a fixed
nuclear surface Fig. 2.3 a) the restoring force is proportional to the density gradient
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CHAPTER 2. Photon strength functions and level density

Figure 2.3: Models of possible GDER motions. The figure is taken from [50].

of those fluids [23, 24] making the center of resonance dependence EG ≈ A−
1
3 . As-

suming the vibrations of incompressible proton and neutron spheres against each
other, see Fig. 2.3 b) the restoring force is proportional to the nuclear surface area
[25], so the center of resonance shifts as EG ≈ A−

1
6 . The position of the resonance

is well approximated by EG = 31.2A−
1
3 + 20.6A−

1
6 , which suggests that the real

GDER is probably mixture of two described models.
The experimental data from (γ, n) reactions clearly show that the shape of the GDER

is well described by Lorentzian shape near the maximum of the resonance which
is about 15 MeV. Our region of interest is under the neutron separation energy,
i.e. on the low-energy tail of the resonance. It is not quite sure if the Lorentzian
extrapolation is valid also for energies well below the maximum of the resonance.
The Brink-Axel model is the most frequently used model of E1 PSF. Assuming
the Lorentz form of σ̄(XL)

tot (Eγ) in (2.17) the PSF formula reads

f
(E1)
BA (Eγ) =

1

3(π~c)2
CΣ

EγΓG
(E2

γ − E2
G)2 + E2

γΓ
2
G

, (2.19)

where EG is the center and ΓG halfwidth of the resonance, both usually expressed in
MeV. The normalization constant CΣ can be obtained by fitting the photonuclear
data and is expressed in form

CΣ = σGΓG, (2.20)

where σG is the cross section in the maximum of resonance usually expressed in mb.
The shape (2.19) of PSF describes well the photonuclear data around the maximum
of GDER, that is at energies Eγ ≥ 10 MeV.

In fact when dealing with a nuclei with a static quadrupole deformation,
the GDER splits, so the E1 PSF is represented by incoherent superposition of two
resonances described by (2.19) with two sets of parameters EG,ΓG and σG. This
splitting can be described using hydrodynamical model - the oscillations of nuclei
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CHAPTER 2. Photon strength functions and level density

surface govern the shape of giant resonance. The intensities of two modes - oscil-
lations along and perpendicular to the symmetry axis - are expected to be in ratio
1 : 2. That is indeed supported by photonuclear data.

The analysis of intensities of primary transitions in (n,γ) reaction leads to con-
clusion that the simple BA model (2.19) is inadequate for spherical nuclei. For
deformed nuclei this contradiction was not observed.

Another model we use for E1 PSF is so called KMF model. It was proposed by
S.G. Kadmenskij, V.P. Markushev and V.I. Furman in 80’s. Within the framework
of semi-microscopic shell-model approach using the theory of finite Fermi systems
the formula for f (E1) in spherical nuclei was derived [26]

f
(E1)
KMF (Eγ, Tf ) =

1

3(π~c)2
FKσGΓG

EGΓG(Eγ, Tf )

(E2
γ − E2

G)2
, (2.21)

where the damping width ΓG(Eγ, Tf ) depends on nuclear temperature Tf as

ΓG(Eγ, Tf ) =
ΓG
E2
G

(E2
γ + 4π2T 2

f ). (2.22)

the nuclear temperature Tf of a nuclear state at excitation energy Ef is [26]

Tf =

√
Ef −∆p

a
, (2.23)

where a is level-density parameter from (2.2) and ∆p is a pairing correction, see
[27]. The authors [26] recommended the factor Fk ≈ 0.7.

The KMF model is supposed to describe the E1 PSF only in low-energy re-
gion (Eγ � EG) since formula (2.21) diverges at Eγ = EG making any predic-
tion in GDER region meaningless. The comparison of predictions by KMF model
with experimental intensities of E1 primary transitions to low-energy states in
(n,γ) reactions gives reasonable agreement in spherical nuclei but it underesti-
mates the strength in well deformed nuclei [28, 29].

In order to describe the E1 PSF in both low-energy and GDER energy region
in spherical nuclei the so-called generalized Lorentzian was proposed [30]

f
(E1)
GLO(Eγ, Tf ) =

1

3(π~c)2
σGΓG

[
EγΓG(Eγ, Tf )

(E2
γ − E2

G)2 + E2
γΓ

2
G(Eγ, Tf )

+ FK
4π2T 2

f ΓG

E5
G

]
.

(2.24)
The first term in brackets, similar to that in Eq. (2.19), provides agreement
with (γ,n) experimental data near the maximum of GDER. Futhermore this for-
mula has a similar properties as KMF, Eq. (2.21), for low energies thanks to the sec-
ond term. The most important property is a non-zero limit for Eγ → 0 (if Tf 6= 0).
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CHAPTER 2. Photon strength functions and level density

This feature is desired since experimental data on 143Nd(n,γα) reaction suggest
such a behaviour [31]. Latter analysis with significantly better statistics [32] led
to the conclusion that the low-energy M1 transitions dominate over E1. As a con-
sequence the experimental confirmation of the finite limit of E1 PSF for Eγ → 0,
Tf 6= 0 remains open.

A phenomenological modification of the damping width (2.22) was proposed
[33] to achieve better agreement in case of deformed nuclei. Aditional empirical
enhancement factor k0 enters the damping width ΓG(Eγ, Tf )

ΓG(Eγ, Tf ) =

[
k0 +

Eγ − Eγ0

EG − Eγ0

(1− k0)

]
ΓG
E2
G

(E2
γ + 4π2T 2

f ), (2.25)

which is of course reduced to (2.22) for k0 = 1. For k0 > 1 ΓG(Eγ, Tf ) is enhanced
at Eγ = Eγ0 compared to value given by Eq. (2.22). Authors [34, 35] recommend
Eγ0 ≈ 4.5 MeV. The enhancement was determined by adjusting set of calculated
average total radiation widths Γ̄γ, energy dependences of (n,γ) reaction cross sec-
tion and γ-ray spectra from the (n,γ) reaction for medium-heavy and heavy nuclei.
The value of k0 as a function of mass number A differs for each level density model,
for futher details see [35]. For BSFG formula (2.2) k0 is given as

k0(A) =

{
1.0 pro A < 148
1.0 + 0.09(A− 148)2 exp[−0.18(A− 148)] pro A ≥ 148

, (2.26)

while for CTF-like formula proposed in [36]

k0(A) =

{
1.5 pro A < 145
1.5 + 0.131(A− 145)2 exp[−0.154(A− 145)] pro A ≥ 145

. (2.27)

Using ΓG(Eγ, Tf ) in form from Eq. (2.25) in (2.19) (and replacing Γ2
G in numerator

by combination ΓG.ΓG(Eγ, Tf )) one gets so-called enhanced Lorentzian with energy
dependent width model (EELO). Doing the same in (2.24) we obtain enhanced
generalized Lorentzian model(EGLO).

The resonances build above the certain states Ef as predicted by f (E1) models
used in our study are ploted in Fig. 2.4. Using obvious relation Ef = Ei − Eγ
in Eq. (2.23) the PSF becomes parametrized by the energy of initial state Ei and
thus has physical meaning for Eγ ≤ Ei. As in our case the nucleus decays, this is
the quantity of our interest, see Fig. 2.5. The parameters of splitted GDER were
taken as EG = 12.32 MeV; ΓG = 2.57 MeV; σG = 217 mb and EG = 15.47 MeV;
ΓG = 4.70 MeV; σG = 287 mb from experimental fit to (γ,n) data [37]. To test
EELO and EGLO models we set Eγ0 = 4.5 MeV and k0 = 1.4, resp. 2.8 for BSFG,
resp. CTF level density formula using formulae (2.26), resp. (2.27).
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Figure 2.4: The models of E1 PSF used in the present work. Since the KMF and
EGLO models depend on the energy of final state Ef , see Eq. (2.23), the de-
pendence is shown for two energies Ef = 0 and 2 MeV (the upper, darker lines
correspond to 2 MeV).
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Figure 2.5: The models of E1 PSF used in the present work parametrized by the en-
ergy of initial state. The BA model remains the same since it exhibits no tempera-
ture dependence. The energies of initial states are (i) 7 MeV – close to the capturing
state, the upper, darker lines and (ii) 5 MeV.

The fact that GDER is a general feature of nuclei up to excitation energy
of several hundred MeV was proved by measurements of radiative capture of light
and heavy ions. Another remarkable conclusion from these experiments is that
the position of GDER remains very stable even above highly excited nuclear states,
the dependence on excitation energy is negligable. This conclusion strongly sup-
ports Brink hypothesis in its most general formulation.

On the other hand experimental information about E1 PSF in our region of in-
terest, that is Eγ < Bn, is not that satisfactory. Apart from the above mentioned
data on intensities of primary transitions in (n,γ) reactions one can rely on mea-
surements of (γ, γ’) reactions for excitation energies Eγ ≈ 2 − 4 MeV [38] and
lately on data from (3He,αγ) and (3He,3He’ γ) experiments [18, 19, 39].

2.2.3 M1 photon strength function

Relevant experimental information about M1 photon strength function above par-
ticle emission threshold is suppressed due to dominance of E1 transitions. This fact
is not crucial for our work since only the information for energies up to about neu-
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tron separation energy Bn is needed. In this range the experimental information
about M1 PSF is comparable to that about E1 PSF. Various experiments were
performed to obtain information on M1 PSF, namely study of γ-ray emission fol-
lowing the slow neutron capture and inelastic scattering of protons, electrons and
photons on nuclei.

The simplest approximation of M1 PSF is single particle model (SP) - f (M1)
SP

is independent on transition energy. To estimate the value of f (M1)
SP by measuring

total intensities of primary γ transitions following resonance capture of neutrons
one needs to deal with Porter-Thomas fluctuations. To supress this effect partial
radiation widths of transitions from neutron capturing state to low energy state
needs to be averaged over sufficiently high number of neutron resonances. The in-
tensities of γ transitions observed in so-called average resonance neutron capture
(ARC) need to be properly normalized. This is achieved by averaging the partial
radiation widths determined for each resonance by combination of the neutron
time-of-flight and standart γ-spectroscopy methods [40]. The most important con-
clusion from ARC data is the value of ratio f (E1)/f (M1) at energy Eγ ≈ 7 MeV

f (E1)/f (M1) = 7± 1, (2.28)

that is valid for most nuclei with A ≥ 100 [40].
Single particle model is probably too simple. It has been found that resonance

structure similar to GDER (but weaker) are probably present also in M1 PSF.
The structure known for the longest time is so-called spin-flip resonance (SF).
The investigation using inelastic scatering of protons with kinetic energy Tp =
200 MeV on medium-heavy and heavy nuclei led to determination of parameters
of SF. In deformed nuclei the centers of found double-humped structure shift as
≈ 34A−

1
3 and ≈ 44A−

1
3 [41]. Analyzing some of the ARC data authors [43, 44]

proposed the spin-flip mode centered at ESF ≈ 41A−
1
3 with width ΓSF = 4 MeV

for nuclei with A ≈ 105. When we use spin-flip mode in present work the shape
of the resonance is assumed in form given in Eq. (2.19). The center of the resonance
follows the formula proposed by [43] ESF = 7.3 MeV, width is set to ΓSF = 3 MeV
and cross section is adjusted to E1 model used to satisfy the condition (2.28), that
is σSF = 2.0 mb, 0.8 mb and 1.3 mb for BA, KMF and EGLO models respectively.

In the middle of the 80’s the inelastic scattering experiments using electron
beams on deformed rare-earth nuclei confirmed the existence of colective M1 mode
[45] that was theoreticaly predicted in late 70’s to occure in deformed nuclei. A sim-
ple geometrical Two-Rotor-Model (TRM) used by authors [46] expects the M1
mode represented by a scissors-like counterrotation of the proton vs the neutron
fluid. This mode is usually called the scissors mode (SC) for evident reasons.
Futher theoretical and experimental investigation on many rare-earth nuclei de-
termined the center of SC ESC ≈ 3 MeV. The reaction (γ, γ’) aka nuclear
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resonance flourescence (NRF) turned out to be the powerful tool for scissors mode
investigation since it’s highly sensitive and selective to the low-lying dipole excita-
tions. Using NRF an important fragmentation of the photon strength was found
around 3 MeV i.e. in the interval of SC dominance [38]. These data also revealed
the dependence of the total strength of the SC mode on the deformation parameter
squared δ2. The energy center ESC of the SC mode was proposed [47] to follow
the formula deduced from NRF data

ESC = 13.4
√

1 + 9δ2A−
1
3 (2.29)

As the δ parameter is ≈ 0.1 for investigated nucleus 177Lu we have started our sim-
ulations with ESC = 3.2 MeV.

Total strength of the SC mode observed in (γ, γ’) experiments on well-deformed
even-even rare-earth nuclei is approximately 3µ2

N . In these nuclei the SC mode
strength is distributed over few states in energy range of 400 - 500 keV. For odd
and odd-odd nuclei the observed strength is usually smaller thanks to higher level
density which does not allow to observe all the transitions in NRF experiment.

The resonance structure centered at Eγ = 3 MeV was also observed in analysis
of two step γ-cascades (TSC) following thermal neutron capture on deformed 163Dy
nucleus [48, 49]. The resonance inM1 PSF was postulated in the form of Lorentzian
(2.19) yielding the mean value of the parameters ESC = 3.0 MeV, ΓSC = 0.6 MeV
and σSC = 0.9 mb. Total strength of the SC mode observed in this analysis was
established ≈ 6µ2

N . Note should be made that the TSC experiment, contrary to the
NRF measurements provide the strenght not only for the ground state but for ex-
cited states as well. The Brink hypothesis can thus be tested using these results.

Similar observation of the resonance at energy Eγ ≈ 2.5−3 MeV gave analysis
of γ-ray spectra in neutron capture experiments on deformed nuclei using higher
neutron energies, specifically 10-800 keV [56, 59] and 0.5-3.0 MeV [58]. Stability
(i.e. independence of the center of resonance on incident neutron energy) of reso-
nance confirms that observed resonance is due to shape of photon strength function
not the shape of level density.

From results [18, 19, 39] on reactions (3He,αγ) and (3He,3He’ γ) on deformed
nuclei similar strength of scissors resonance was deduced as in (n,γ) experiments.
But the halfwidth obtained by analysis in these experiments is typically ΓSC ≥
1.0 MeV contrary to smaller widths of (γ, γ’) and TSC experiments. Similar
variance holds for value of cross section in maximum of resonance: experiments
with helium probes estimate σSC = 0.5 mb [57], fast neutron experiments σSC ≈
0.2 − 0.4 mb [56]. Futher analysis of the TSC data on other nuclei didn’t re-
strict the cross section that much leaving possible interval σSC = 0.2 − 1.0 mb
[48, 49, 51]. Futhermore the NRF and TSC experiments provide the center of res-
onance ≈ 3.0 MeV contrary to fast-neutron and 3He induced reactions with result
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≈ 2.6 MeV for A ≈ 160 nuclei. The strict form of Brink hypothesis was applied
in all mentioned analyses for practical reasons.

The shapes of M1 PSF (together with some E1 for comparsion) used in present
work are plotted in Fig. 2.6. As the parameters of the SC mode are subject of our
study and adjustment, the shorthand notation is used in the form (ESC ;ΓSC ;σSC)
in the present work.
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Figure 2.6: The models of M1 PSF used in the present work. The KMF model
for E1 PSF is plotted for comparsion. Note that the M1 strength is adjusted
to fulfil the condition (2.28). The parameters of SC mode are (3.2;0.6;1.0). Note
that the height of SC resonance is lineary proportional to the σSC .

2.2.4 E2 photon strength function

In addition to the dipole transitions also the electric quadrupole transitions might
give an observable contribution to the statistical part of γ-ray spectra that re-
sult from compound nucleus reactions. Considering the decay of excited nucleus
with low spin we expect minor contribution from these transitions.

The cross section of inelastic scattering of charged particles contains multipole
matrix elements [55] making such reactions main source of information on E2
strength. In early 70’s the resonance characted of E2 strengths was observed
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in inelastic scattering of electrons, protons and α particles on nuclei, see [44]
and references therein. Interpreted as isoscalar giant quadrupole electric resonance
(GQER) this behaviour is macroscopically understood to be induced by surface
oscillation of neutrons moving together with protons. The energy center of GQER
following the formula EGQER = 63A−

1
3 [54] almost overlaps with the energy cen-

ter of GDER. Authors in [53] proposed formulas for damping width ΓGQER and
cross section at the maximum of GQER σGQER: ΓGQER = 6.11 − 0.012A MeV,
σGQER = 1.5 10−4Z2E2

RA
− 1

3/ΓGQER mb, where both EGQER and ΓGQER needs to
be given in MeV.

In (n,γ) reactions (thermal neutron capture and resonance capture) only few
(tens) primary transitions of E2 type were observed so far [52, 53]. Such a tiny
sample of individual E2 transitions with biased intensities towards higher values
(effect caused by P-T fluctuations) makes the estimation of the E2 photon strength
problematic. It is save to say that average partial radiation widths of E2 primary
transitions estimated from (n,γ) reaction are suppressed by almost two orders
of magnitude to those of E1 type. The E2 photon strength function is often ap-
proximated by single-particle model, i.e. f (E2)

SP = const. The available experimental
data don’t contradict neither one. In the present work we use both models, i.e. SP
and GQER, the single particle strength is taken as f (E2)

SP = 10−10 MeV−5. The shape
of the GQER is approximated by the Lorentzian shape, see Eq. (2.19), with reso-
nance parameters EGQER = 11.22 MeV, ΓGQER = 3.99 MeV and σGQER = 4.25 mb.

Higher multipolarity, i.e. M2, E3, . . . , transitions are considered weak, hence
contributing marginaly to the decay of compound nucleus. So we do not include
them in our simulations. Only a few weak transitions of these types have been
detected yet, mostly in low excitation region.

2.3 Total radiation width of capturing states

In the framework of photon strength functions the total radiation width Γcγ
of a neutron capturing state c can be expressed as

Γcγ =
∑
f

Γcγf ≈
∑
XL

∫ Bn

0

ρ(Bn − Eγ, Jf )
ρ(Bn, Jc)

f (XL)E2L+1
γ dEγ. (2.30)

As mentioned above the partial radiation widths Γcγf fluctuate strongly, see Sec. (2.2.1),
but the fluctuation of the total radiation width Γcγ is expected to be strongly sup-
pressed thanks to the large number of involved transitions, i.e. partial radiation
widths Γcγf . This expectation is confirmed by observations. The average total ra-
diation width, Γ̄cγ, is a subject of discussion.
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3.1 Two Step Cascades experiment

In 1958 the idea of the method called Two-Step Cascades (TSC) was introduced
[67]. Later this method was modified for Ge detectors [68]. The TSC experiment
is two-detector coincidence measurement of γ transitions following thermal neu-
tron capture. The basic layout of the experiment is shown in Fig. 3.1. Information
about each individual event consists of amplitudes of both detector signals and
their time difference. For futher study one choses such events for which sum of coin-
cident detector signals equals to a fixed energy sum EΣ. Specifically, if detected en-
ergy sum EΣ equals to the energy difference between the neutron capturing state
and a low-lying level, hereafter called TSC final level, data on TSCs depopulating
the capturing state and ending in a fixed TSC final level are selected. Under these
conditions the spectrum of energies deposited in one detector contains all tran-
sition energies involved in a TSC deexcitation process - this spectrum is called
the TSC spectrum.

In Fig. 3.2 few possible cascades ending at two final TSC levels (one of them
being the ground state) are indicated. In the TSC spectrum for the ground state
only cascade labeled D is visible1. The primary transition labeled 0, that goes
from the neutron capturing state directly to the ground state, can eventualy con-
tribute only via highly unprobable parasitic effects. Situation with cascades la-
beled A, B and C is a lot easier since all three of them are examples of desired

1There is actually non-zero probability that cascade labeled E is detected as two step cascade
adding some parasitic contribution to three energies in the TSC spectrum, see the discussion
below.
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Figure 3.1: Scheme of the experimental layout. The figure is taken from [50].

Figure 3.2: Examples of possible cascades.
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contribution to TSC spectrum of first excited state. These three cascades pro-
ceed via the well-resolved intermediate level making their contribution to the TSC
spectrum represented by a discrete line. For intermediate states of higher energies,
the corresponding contributions form a ”quasicontinuum” in the TSC spectrum.
This component is of our interest since its shape and size contain information
on the photon strength functions in energy interval circa 2-6 MeV. That is because
the intensity of a two-step cascade Iγγ from an initial state i throught an interme-
diate level m ending on a final level f is given as

Iγγ =
Γiγm
Γiγ

Γmγf
Γmγ

= const× E3
γ1
E3
γ2
f(Eγ1)f(Eγ2), (3.1)

where Γαγβ is partial radiation widths between levels α and β, Γαγ is total ra-
diation width of level α, see Eqs. (2.12) and (2.30). The transition energies are
given as Eγ1 = Ei−Em and Eγ2 = Em−Ef . The expectation value of PSF f(Eγ)
for an energy Eγ is supposed to follow a smooth energy dependence (i.e. above-
introduced models of PSFs) while P-T fluctuations influence its actual value for a cas-
cade, see Sec. 2.3.

The ”quasicontinuum” of the TSC spectrum is believed to be described by the sta-
tistical model because of the large number of transitions involved. Thus it can
provide tests of various model assumptions on PSFs and possibly level densities.
The schematic representation of obtaining both TSC and energy sum spectra is
visualized in Fig. 3.3. The experimental energy sum spectrum for investigated
nucleus 177Lu is ploted in Fig. 3.4.

A background caused by the accidental coincidences and the Compton effect is
inherently contained in the coincidence spectrum. Two γ rays with desired energy
sum EΣ but originating from two different cascades can be detected in preseted
coincidence time window producing a spurious event. The spurious events caused
by the Compton effect originate from two γ rays with the energy sum higher than
chosen energy sum EΣ when corresponding energy difference is lost via the Comp-
ton effect. Therefore a special scanning procedure is used to extract the coinci-
dence spectra and remove this background. Data contributing to various places
in the (energy-sum) × (detection-time-difference) plane are used for the subtrac-
tion. The main ”ingredients” of the procedure are [62]:

• The peak corresponding to desired events for a preselected final TSC level is
defined (in Fig. 3.5 the hatched area).

• The eight rectangular regions surrounding the central region are defined.

• From coincidence spectra of these eight regions the background correction is
derived as a suitable linear combination [63].
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Figure 3.3: Schematic representation of obtaining TSC spectra. The figure is taken
from [50].

We should note that this background correction procedure causes the so-called
”bipolar structures”, firstly described in [63]. These structures originate if one
photon escapes the detector system after Compton scattering. The shape of bipolar
structures depends on widths and locations of gate windows used for background
corrections, for detailed explanation see [64]. The bipolar structure can occur only
at the wings of TSC spectra and their overall area is zero. As they do not influence
the ”quasicontinuum” part of the TSC spectra they do not represent a problem.

Since the detectors do not distinguish between the primary and secondary
transitions, the TSC spectra behave as if they were measured using a spectrometer
with energy response function symmetric with respect to the midpoint of the TSC
spectrum. This symmetry is revealed after correcting the TSC spectrum for energy-
dependent detector efficiencies. However the resulting TSC spectrum is not strictly
symmetric due to the contribution by three- and more-step cascades. The examples
of experimental TSC spectra are shown in Fig. 3.6. One should once again stress
that such spectrum is virtually free of background.

The probability of reaching the final TSC level in three or more steps is usually
significantly higher than that in two steps. Such cascade can contribute to the TSC
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Figure 3.4: The experimental energy sum spectrum. In the sake of clarity the single
and double escape peaks are not labeled.

Figure 3.5: Scheme of the background subtraction procedure. The figure is taken
from [51].
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Figure 3.6: Examples of TSC spectra.

spectra if some of the photons are detected simultaneously by one of the detectors.
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Despite the fact that the probability that n photons are detected simultaneously
decreases with increasing n, one can not fully neglect the contribution of the three-
and more-step to the TSC spectra. To minimize this parasitic effect we include
three- and more- step cascades to our simulations.

It is evident that the final TSC level (unless it is the ground state) decays by
emitting low energy photon. This photon can be absorbed in one of the detectors
together with one of the photons from a two-step cascade eliminating the event
from the TSC spectrum by enlarging the detected energy sum. This effect called
”vetoing” reduces the TSC intensities (except those going to the ground state).
As sketched in the schema of the experimental setup, see Fig. 3.1, the effect of ve-
toing is reduced by inserting lead layers between the target and the detectors.
Futhermore one can estimate the corrections for vetoing if the energy dependence
of the absolute detection efficiency is known for both detectors.

The thin lead layers between the target and the detectors help to eliminate
the contribution of other possible processes - backscatter, annihilation and
bremsstrahlung. The important fact is that the detector efficiencies for γ-ray ener-
gies Eγ ≥ 500 keV, that is in our region of interest, remain almost unchanged after
inserting these layers. All above-mentioned parasitic effects are described in detail
in [62, 64].

The facility for TSC measurements has been built at the LWR-15 research re-
actor at Řež. A six meter long curved mirror neutron guide provides a narrow,
2 × 20 mm2 beam of thermal neutrons with a flux of 3 × 106 neutron · cm−2 ·
s−1. Pair of Ge detectors – one Ge(Li) and one HPGe with efficiencies 12% and
20% respectively – have been used to detect γ-rays emitted from the target – 2
g heavy capsule of natural lutetium. As seen in energy sum spectrum Fig. 3.4
both naturally occurring isotopes of lutetium contribute, we extract data for tar-
get nucleus 176Lu2 with spin and parity Jπ = 7−. To reduce γ-ray background
from neutron scattering and the neutron capture in structural material a massive
neutron (5 mm thick layer of 6Li2CO3) and γ shielding (lead layers) were in-
stalled as sketched in Fig. 3.1. The energy resolution in the energy sum spectrum
is about 8 keV. A acquisition time needed for the experiment is hundreds hours.
The detailed description of the experimental setup is given in [62].

The correction for the angular γ-γ correlation between primary and secondary
γ-ray is also correctly included in our simulations. The angular correlation function

2The experimental data are available for both 175Lu(n,γ)176Lu and 176Lu(n,γ)177Lu reactions.
The relation between the neutron binding energies can be seen in the energy sum spectrum
Fig. 3.4 – the extraction of experimental data for both reactions confirmed our expectations that
we should focus on the 176Lu(n,γ)177Lu reaction.
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can be expressed as [65]

W (θ) = 1 +
∑

L=2,4,...

BL(γ1)AL(γ2)QLPL(cosθ), (3.2)

where BL and AL describe properties of the first and second γ transition, respec-
tively, PL are the Legendre polynomials of the Lth order and QL are the attenuation
coefficients that describe the smearing of the angular correlation function due to fi-
nite detector solid angles. These coefficients can be calculated for a given detector
and experimental setup [66]. In the very close geometry of our experimental setup
the correction due to angular correlation does not exceed 10% for a dipole-dipole
cascade. On the other hand mixed (i.e. M1 + E2) and quadrupole-quadrupole
cascades may require a rather large correction.

3.2 Computer simulations

As shown in Chapter 2 there exist several combinations of models of photon
strenghts functions and level densities. Futhermore one can postulate and test
various irregularities in both PSFs and LDs and adjust the suggested parameters.
The aim of our work is to determine which models are able to describe experi-
mental data. In order to test all these possible combinations we simulate the elec-
tromagnetic decay of compound nucleus following the thermal neutron capture.
To make the outcome of such simulation comparable with related experimental
data our modelling contains also simulation of the detector system response.

3.2.1 Assumptions

As mentioned above the validity of the Extreme Statistical Model of nucleus
is assumed. Other simplifying assumptions are adopted as well. The algorithm
of the modelling follows namely these assumptions:

• A complete level scheme is adopted from other experiments below certain
excitation energy Ecrit. The complete level scheme means knowledge of all
level energies, spins, parities and intensity branching ratios.

• The discretization of some a priori known level-density formula provides
the levels of the product nucleus above Ecrit.

• For a transition from state α to state β in energy interval Bn > Eα > Ecrit
that is possibly, by selection rules, mixing of more multipolarities the partial
radiation width Γαγβ is assumed in form
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Γαγβ =
∑
XL

y2
αβXL(Eα − Eβ)2L+1f

(XL)(Eα − Eβ)

ρ(α)
, (3.3)

where the summation runs over all those allowed values XL whose contribu-
tion to the process of deexcitation is included in simulation, i.e. not negliga-
ble. The quantities yαβXL are independently drawn random values of the nor-
mal distribution with zero mean and unit variance, yαβXL ∈ N (0, 1), making
the partial radiation widths random quantities from χ2 distribution with one
degree of freedom (Porter-Thomas distribution) too. The distribution of Γαγβ
given by Eq. (3.3) for any set of α and/or β will be called an ideal fragmen-
tation.

• Statistical independence of partial radiation widths for different initial and/or
final states is assumed.

With these assumptions in mind, the levels in a real nucleus with all partial ra-
diation widths for transitions between these levels can be obtained as a random
discretization of the level density formula and a random set of values of par-
tial radiation widths drawn from Porter-Thomas distribution. Such set contains
1010 − 1013 partial radiation widths for a typical deformed nucleus. This ”syn-
thetic” complete level scheme is called nuclear realization. Strictly speaking one
can generate an infinite number of nuclear realizations, only one of them being
identical with the actual complete level scheme. Some implications of this fact are
discussed later. Nowadays it’s impossible to store the set of partial radiation widths
of mentioned size in a computer memory which might seem destructive to the de-
scribed simulation. This problem is solved by so-called ”precursors”, their specific
description is given below.

3.2.2 The algorithm of the simulation method

Following the assumptions in paragraph 3.2.1 electromagnetic cascades are gener-
ated using the following algorithm [60]:

1. Discretization of level density ρ(E, J, π) produces all bound levels α above the crit-
ical energy Ecrit with their essential characteristics: energy Eα, spin Jα and
parity πα.

The average number of levels in given energy interval is calculated by inte-
grating relevant level density formula, i.e. Eqs. (2.2) or (2.6). In our statistical
approach this integrated number of levels can fluctuate around the average
value according to Poisson distribution.
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2. Above mentioned precursor, generator seed ζα is assigned to each level α
with energy Eα > Ecrit, see Fig. 3.7. The random assigning of the precursors
to the levels is crucial for correct function of the algorithm. All partial radi-
ation widths Γαγα′ for fixed level α are generated after preseting the random
number generator with the precursor ζα, i.e. there is no need to store set
of partial radiation widths in computer memory since the same set of Γαγα′

is generated using the precursor ζα at any time. This means that by assign-
ing the precursors ζα to all levels α with energy Eα > Ecrit the complete
set of partial radiation widths Γαγα′ for all possible transitions α→ α′ is la-
tently known. The set of generated partial radiation widths is thus uniquely
predicted by precursors ζα making them a key element of the algorithm.

3. The precursor ζαc assigned to the neutron capturing level αc triggers the gen-
eration of partial radiation widths Γαcγα′ for a full set of transitions αc → α′

from the neutron capturing level αc to all possible levels α′ (naturallyEα′ < Bn).

4. A total radiation width Γαcγ =
∑

α′ Γαcγα′ for the neutron capturing level αc
is calculated. Now it is straight-forward to get a set of intensities Iαα′ for all
the transitions initiating at the same capturing level αc from a simple formula
Iαcα′ =

Γαcγα′

Γαcγ
. These intensities naturally satisfy a normalization condition∑

α′ Iαcα′ = 1, which in fact make them ”branching” intensities.

5. A random number generator produces a number s1 that governs to which
bound level α1 the selected capturing level αc decays throught condition:

α1−1∑
α′=1

Iαcα′ ≤ s1 <

α1∑
α′=1

Iαcα′ .

As a result, the randomly chosen bound level α1, reached by the first step
of γ-cascade, is obtained.

6. The energy Eα1 is compared with Ecrit. As mentioned earlier the branching
intensities Iα1α′ are deduced from experimental data if Eα1 ≤ Ecrit, other-
wise similar procedure described for capturing level αc is applied to level α1.
Namely the precursor ζα1 presets the random generation of realizations of par-
tial radiation widths Γα1γα′ for all possible transitions α1 → α′. After calcu-
lation of a total radiation width Γα1γ and consequently all branching intensi-
ties Iα1α′ for the intermediate level α1 a random number s2 is generated and
using similar condition as in previous item a second intermediate level α2 is
reached.
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7. The energy Eα2 is compared with Ecrit. The simulation proceeds as de-
scribed in previous item until the ground state is reached in n-th step,
in the example in Fig. 3.7 the cascade reaches the ground state in four steps.
When the ground state is reached all elements of cascade decay are avail-
able: all intermediate levels (i.e. their energies Eαi , spins Jαi and parities
παi) and all individual transitions (i.e. their multipolarities L, or multipolar-
ity mixing ratios δ, and types X). These data are now available for modelling
the desired quantity, in our case e.g. TSC spectra.

8. The procedure described in items 5-7 is repeated many times to achieve satis-
factory statistical accuracy of a modelled quantity of interested. The number
of cascades generated within a nuclear realization in the present work is 105

unless said otherwise.

9. As the Porter-Thomas fluctuations influence the quantities of interest the al-
gorithm described in items 1-8 is repeated for several nuclear realizations.
The information on a modelled quantity, e.g. TSC intensity, is obtained using
various independent nuclear realizations. As a final step estimates of a mean
value and an rms value are calculated for a quantity of interest.

In the described simulations two kinds of uncertainties are unavoidably present.
The uncertainties originating from the finite number of simulated events in each nu-
clear realization can be, in principle, reduced by large enough number of events
simulated for each nuclear realization, i.e. above described items 5 to 7 need to be
repeated sufficiently many times. Contrary to this solution, the uncertainties orig-
inating from finite number of nuclear realizations cannot be reduced by enlarg-
ing the amount of simulated nuclear realizations. On the other hand, enlarging
the sample of nuclear realizations provides better estimation of these uncertain-
ties. Unless specified otherwise 25 realizations were simulated.

The described algorithm for simulating cascades following the thermal neutron
capture was implemented into code DICEBOX [60].

The fact that the statistical model is not able to involve all fineness of elec-
tromagnetic decay of compound nucleus should be stressed here. Nevertheless we
trust its ability to describe the main features of electromagnetic decay, i.e. that it
is reasonably close to reality.

3.2.3 Response of detector system

In adopted modelling approach the response of the detector system is simulated
as well. The goal of whole simulation is to obtain the measurable spectra un-
der fixed model assumptions. Specifically, TSC spectra that can be directly com-
pared with the corresponding experimental spectra.
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Figure 3.7: Schematic description of cascade simulation. The figure is taken
from [50].

The auxiliary program simulates the detection process of artificially modelled
cascades. Besides accounting the efficiency of detectors to a transition energy it
also evaluates the contribution of cascades with more than two steps as well as
the angular correlation and vetoing effects, see Sec. 3.1. Both the simulated and
experimental TSC intensities were corrected for all the above-mentioned effects.

The TSC intensity in a given spectrum at energy Eγ is divided by the product
of photopeak detector effeciencies at energies Eγ and EΣ − Eγ making the TSC
intensity corrected for the detector-effeciency. As a consequence of this proce-
dure the resulting net TSC spectrum is symmetric with respect to its midpoint.
This procedure is not proper for summing intensities since they contain the con-
tribution of three- and more-step cascades. One can not remove the contribution
of three- and more-step cascades since it is impossible to separate this contribu-
tion from experimental spectra. This is not a problem since this contribution is
taken into account in simulations. In general, one can say that these contributions
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become more important as the final TSC level energy draws near the ground state.
For each final TSC level, the correction for vetoing and angular correlation was

performed by multiplying both the simulated and experimental TSC intensities
by proper factors. These factors were obtained by averaging both mentioned effects
over an ensemble of generated cascades which in the proper interval proceed via
the final TSC level.

The detector effeciencies were determined from two types of the auxiliary
measurements of γ-ray spectra - with radioactive sources (137Cs, 60Co, 133Ba,
152Eu) and using reaction 35Cl(n,γ). For the analysis of chlorine runs (i.e. reaction
35Cl(n,γ)36Cl) the transition intensities were taken from [61]. The estimated accu-
racy of the determined detector effeciencies is better than about 7% in the whole
range of γ-ray energies. In the energy interval from 250 keV to circa 1500 keV
the accuracy is better, approximately 4%.
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Results and discussion

This chapter contains the specific description of experimental data processing
for 176Lu(n,γ)177Lu reaction. The model combinations used in our simulations are
introduced, their outcomes are compared with corresponding experimental data.
Futher aspects of our analysis are discussed.

4.1 Analysis of the experimental data

As mentioned in Chapter 3 the energy dependence of the detection efficiency is
crucial for processing the simulated data to form comparable with the experimental
data as well as for estimation and extraction of some parazitic effects. The absolute
detection efficiency of both Ge(Li) and HPGe detectors was simulated and results
of the simulation were corrected using auxiliary measurements on 137Cs and 60Co.
These data together with 133Ba, 152Eu and 35Cl(n,γ)36Cl data were used to estimate
the peak detection efficiency.

The absolute detection efficiency ηtot of single detector can be defined as the ra-
tio of number of detected γ-quanta N to number of emitted γ-quanta N0:

ηtot =
N

N0

=
N

Att
=

N

Aptt
, (4.1)

where A is the activity of the sample, the At and pt denote the activity and prob-
ability of observed transition and t is the measurement time. The energy depen-
dence of the absolute detection efficiency, necessary for inclusion of the veto effect,
is plotted in Fig. 4.1. The final dependence (black line in Fig. 4.1) is obtained by
multiplying the fit to the simulated points (red line in Fig. 4.1) so the curve fits
the experimental points. Despite the fact that the simulation of the absolute detec-
tion efficiency was performed using simplified geometry the correction to the ex-
perimental data does not exceed 10%. We justify this procedure by the argument
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Figure 4.1: The energy dependence of the absolute detection efficiency for both
used detectors.

that the shape of the energy dependence of the absolute detection efficiency does
not significantly change with small change of the geometry of the detection system.
Futhermore the correction on the veto effect is smaller than 10% so the eventual
inaccuracy in the estimation of the energy dependence of the absolute detection
efficiency does not represent significant error.

The peak efficiency η(E) for the transition with energy Eγ is defined in a way
analogous to the definition of the absolute efficiency. The number of detected
γ-quanta N in Eq. (4.1) is replaced by the peak area St corresponding to the con-
sidered transition:

η(E) =
St
Aptt

. (4.2)

The energy dependence of the peak detection efficiency is plotted in Fig. 4.2,
for the data from chlorine runs futher adjustment is necesarry due to the fact that
the activity A in Eq. (4.2) can not be reasonably established. As this adjustment
is done simply by multiplying the chlorine data to reproduce the fit on the data
from radioactive isotopes measurements in the overlap region (circa 0.7-1.7 MeV,
see Fig. 4.2) it does not introduce futher inaccuracies.
The energy sum spectrum from the measurements focused on getting the data
for 176Lu(n,γ)177Lu reaction is plotted in Fig. 3.4. We managed to identify the ori-
gin of all the peaks (the single and double escape peaks are not labeled) in the en-
ergy sum spectrum. We were able to extract the TSC spectra for all the levels
in Tab. 4.1 but for the futher analysis we focus on three pairs of levels with best
statistics, those are labeled 1-6, see Tab. 4.1. The levels labeled 7-12 are not
used because the experimental errors make any reasonable analysis impossible.
The ground state has served for normalization and some tests regarding E2 PSF,
see below.

After applying the procedure eliminating the background caused by the Comp-
ton effect and the accidental coincidences described in Chapter 3 and correcting
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Figure 4.2: The energy dependence of the peak detection efficiency for both used
detectors.

the measured TSC spectra for the detection efficiency we get essentially background-
free TSC spectra. The examples of such spectra for the states labeled G.S. and 1
are given in Fig. 3.6. These spectra are then binned and ready for the comparsion
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label EΣ [keV] Ef [keV] Jπ

G.S. 7072.4 0.00 7
2

+

1 6950.8 121.62 9
2

+

2 6922.0 150.40 9
2

−

3 6803.6 268.78 11
2

+

4 6783.4 289.01 11
2

−

5 6631.8 440.64 13
2

+

6 6620.9 451.51 13
2

−

7 6400.5 671.95 9
2

+

8 6255.7 816.70 11
2

+

9 6227.5 844.91 17
2

−

10 6218.1 854.31 17
2

+

11 6087.1 985.31 13
2

+

12 6052.5 1019.87 9
2

+

Table 4.1: The final TSC levels identified in the energy sum spectrum.

with the modelled partner, see below.

4.2 Simulation

The simulations were performed using code DICEBOX as mentioned in Chapter 3.
In the sake of clarity we use abbreviated notation when specifying the used models,
e.g. 1000, 41116. The first number corresponds to the E1 PSF model, the second
denotes whether the SP model or ”resonances” (SF and SC models) are used
for the M1 PSF – the third number in the case of a five-digit label indicates
the presence of the SC mode. The following number indicates the E2 PSF model.
The last position is used to specify the LD formula. All labels for the PSF and LD
models are defined in Tab. 4.2, for few examples see Tab. 4.3.

In addition to already introduced E1 PSF models we adopt the so-called ”KMF
– BA” model for E1 PSF in our simulations, the definition is the same as in [50],
that is

f
(E1)
KMF - BA(Eγ, Tf ) =


fKMF for Eγ < EL

Eγ−EL
4

fBA + EH−Eγ
4

fKMF for EL ≤ Eγ ≤ EH
fBA for Eγ > EH

, (4.3)

where we set EL = 4 MeV and EH = 8 MeV.
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The LD models are labeled according to which spin cut-off parameter is used.
The labels 0 and 6 refer to CTF and BSFG formula with spin cut-off parame-
ter from Eq. (2.5) and (2.7) respectively. The labels 8 and 9 refer to that given
in Eq. (2.8).

quantity model label

BA 1
KMF 4

E1 GLO 5
EGLO 6

PSF KMF – BA X
SP 0

M1 SF 10
SF+SC 11

E2 SP 0
GQER 1
CTF 0

LD BSFG 6
CTF 8

BSFG 9

Table 4.2: The labels used for PSF and LD models in the present work.

label model for
E1 M1 E2 LD

1000 BA SP SP CTF
1106 BA SF SP BSFG
11100 BA SC+SF SP CTF
11116 BA SC+SF GQER BSFG
4100 KMF SF SP CTF
41116 KMF SC+SF GQER BSFG
51116 GLO SC+SF GQER BSFG
61110 EGLO SC+SF GQER CTF
61116 EGLO SC+SF GQER BSFG

Table 4.3: The examples of abbreviated notation for the combinations of PSF and
LD models.

– 42 –



CHAPTER 4. Results and discussion

4.3 Comparsion of experimental data
with simulation results

4.3.1 Binned TSC spectra

The TSC spectra can be absolutely normalized if one knows the absolute inten-
sity of a two-step cascade, called hereafter the normalization cascade, connecting
the capturing state with a final TSC level. The intensity of a normalization cascade
Iγγ, see Eq. (3.1), is given by the absolute intensity of the primary transition mul-
tiplied by the intensity branching ratio of the intermediate level. Although there
is no free parameter, the experimental quantities may be subject to relative large
uncertainties.

The complete level scheme up to Ecrit was adopted from Evaluated Nuclear
Structure Data File (ENSDF), data therein for 177Lu were obtained almost ex-
clusively from [70]. The primary transition from the capturing state to the final
TSC state labeled 3 followed by the secondary transition to the ground state was
chosen as the normalization cascade. The uncertainty of the intensity of the pri-
mary transition is 8.4%, the uncertainty of the branching ratio (the other possible
transition is to the final TSC state 1) is about 20%. Despite these uncertainties
we concider the resulting normalization satisfactory.

The study of detailed shapes of TSC spectra can give us significant informa-
tion on PSFs. Summing a TSC intensity for a given final state over relatively
narrow bins, 100 keV, these possible structures of the width of several hundreds
keV can be studied. On the other hand simulated TSC intensities for such a nar-
row interval may be strongly polluted by P-T fluctuations. As mentioned above,
experimental errors may become important in the spectra with relatively small
statistics. However, the experimental errors are on the level of a few percent
in the TSC spectra with sufficiently large statistics, in our case for final TSC levels
1-6. The spectra, resulting from the above-mentioned summing, will hereafter be
called binned TSC spectra and intensities in particular bins binned TSC intensities.
As the bins are not situated symmetrically around the midpoints of the spectra
the presented binned TSC spectra are not completely symmetric with respect
to midpoints of the spectra.

A quantitative assessment of agreement between experimental and simulated
TSC intensities based on mathematical treatment is very complicated for binned
TSC spectra as individual bins in the spectra are (strongly and non-trivialy) cor-
related. Therefore no parameter was adopted to quantify the agreement of exper-
imental and simulated spectra. This could make the presented conclusions rather
subjective, but we hope that Figures 4.4 - 4.35 will give sufficient and clear in-
formation about the degree of agreement or disagreement between simulated and
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experimental binned TSC spectra.

The figures, where simulated and experimental spectra for final TSC levels
1-6 are compared, are ”organized” in the way schematically shown in Tab. 4.4.
This figure layout ensures that levels with different parities are separated by
columns. At the same time the energy of final TSC levels increases from the top
to the bottom of the figures. The experimental data are plotted as points with er-
rorbars, the simulation results are visualised by the coridor between two his-
tograms. The width of the corridor corresponds to two standard deviations - the
lower and upper edges correspond to the average minus and plus standard devia-
tion, respectively. The average and standard deviation were deduced from simula-
tions of 25 different nuclear realizations.

positive parity negative parity
final TSC level 1 final TSC level 2
final TSC level 3 final TSC level 4
final TSC level 5 final TSC level 6

Table 4.4: The general layout of the following tables.

A special attention will be paid to the scissors mode region which is situated
in the most sensitive part of the spectra. When looking at the experimental binned
TSC spectra for final TSC levels 1-6 one can clearly see1 that the TSC intensity
increases around the midpoint, that is at the energy interval 3-4 MeV, forming
a broad peak with a ”plateau” for final levels with positive parity, see Fig. 4.3.
This feature might be manifestation of presence of a resonance structure in a PSF.
In the work [50] the possible influence of some structures in the level density
on the peak structures in the TSC spectra is discussed and excluded. In the present
work this conclusion is adopted.

The basic selection of the model combinations was performed as the first step
of our analysis. As expected the combinations of models that include SP model
for M1 PSF such as 1000, 1016 or 4016, have no chance of reproducing the exper-
imental shapes of the TSC spectra, for the example of results see Fig. 4.4.

The situation does not improve after exchanging the single particle model
of M1 PSF with the SF resonance without postulating any kind of resonance
in the 3 - 4 MeV region – in our notation models 11010,41016,. . . , for the example

1The binned TSC intensities are subject to relatively large statistical (dominantly Porter-
Thomas) fluctuations, these make the spectra cranky, see Fig. 4.3. On the other hand one
should be able to see a general trend. The simulated spectra seem to be smooth as they re-
sult from the average over many nuclear realizations, the results for one chosen realization would
show fluctuations similar to experimental spectra.
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Figure 4.3: The experimental TSC spectra. One can observe the increase of the TSC
intensity around the midpoint as well as the crancky structure caused by the sta-
tistical fluctuations.

of resulting TSC spectra see Fig. 4.5.

To achieve the agreement of experimental and simulated data we postulate
the SC resonance in the M1 PSF. The initial parameters of the SC resonance were
taken as (3.2;0.6;1.0) – the energy center ESC follows the Eq. (2.29), the other pa-
rameters were adopted from the analysis of TSC spectra of 163Dy nucleus [48, 49].
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The SC resonance with these parameters is clearly unable to reproduce experimen-
tal data, see Fig. 4.7. Futhermore the simulations with models 41106 and 41116,
see Fig. 4.6, 4.7, proved the fact that the results do not depend on the choice
of the E2 model, for futher analysis we use GQER model.

To determine the parameters of the SC resonance several tens of simulations
were performed on the model combination 41116. It has been found that the en-
ergy center of the SC mode must be very close to ESC = 4 MeV to provide
reasonable agreement with the experimental binned TSC spectra. This can be
easily seen from Figs. 4.7 - 4.17, where the simulated TSC spectra are compared
to the experimental ones for several energies of the scissors mode. Such a high
energy of the mode has never been observed before. Not even significant enhance-
ment (with respect to results in [48, 50, 51]) of the SC resonance parameters, i.e.
increasing the ΓSC to 1.4 MeV and simultaneously the σSC to 2 mb, does not pro-
duce the agreement with experimental data for ESC < 3.8 MeV, for example see
Fig. 4.11. We estimate that the energy cannot be lower than 3.8 MeV and higher
than 4.1 MeV.

Contrary to rather precise determination of ESC one is not able to specify
the halfwidth and total strength of the scissors mode with high accuracy. However
it is evident that ΓSC must be ≥ 1.0 MeV and σSC must be ≥ 2.0 mb to achieve
an acceptable agreement with experiment, see Fig. 4.13 - 4.17. In our simulations
we did not tried to test ΓSC > 1.4 MeV and σSC > 3.0 mb. In any case, the total
strength of the scissors mode is significantly higher than the strength observed so
far in any other nucleus.

Using the parameters (4.0;1.0;3.0) of the SC resonance we examined which com-
binations of E1 and LD models give the reasonable reproduction of the experi-
mental binned TSC intensities, the results are plotted in Figs. 4.18 - 4.26. The BA
model of E1 PSF with CTF LD model gives reasonable agreement, but the errors
of simulate TSC intensities are significantly higher, see Fig. 4.18. In the combina-
tion with BSFG formula the BA model fails to predict the experimental data, see
Fig. 4.19.

The BSFG rather than CTF formula seems to be more suitable in combination
with KMF model, see Figs. 4.20 and 4.15.

The GLO model fails with both LD models – the results show systematic under-
estimation of the TSC intensities for positive parity and oposite effect for positive
parity, see results – Fig. 4.21 and 4.22. This is not that surprising as this model
was suggested for spherical nuclei and its generalization, the EGLO model should
describe deformed nuclei better.

We believe that for the EGLO and KMF – BA models we are able to adjust
the parameters of SC resonance to reproduce the experimental data, the param-
eters (4.0;1.0;3.0) seem reasonable for the 61110 combination. Futher simulations
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using this model combination revealed that more suitable parameters of SC mode
are (4.0;1.0;2.0), the resulting TSC spectra are given in Fig. 4.27. The futher ad-
justment was also performed on the model combination X1110, the results are
similar to those on model combination 41116.

The LD formulae 8 and 9 were tested in the combinations with 4111 and
6111 PSF models. The results with the SC parameters (4.0;1.0;3.0) are given
in Figs. 4.28 – 4.31. The resulting binned TSC spectra do not differ much from their
partners with LD models 0 and 6. Our conclusion is that these models (in proper
combination with PSFs models) are able to produce reasonable agreement of sim-
ulated and experimental data. The TSC data seems to be insensitive to the change
of level density given by different spin cut-off parameters, see Eqs. (2.5),(2.7) and
(2.8).

So far the strict form of the Brink hypothesis has been assumed for the M1
PSF. We performed some test of the violation the Brink hypothesis, in general
we concidered the parameter of the SC resonance to shift lineary with the energy
of the final level Ef . That is, if the parameter above the ground state is p0, the pa-
rameter of the SC resonance above the excited state f is pf = p0 +k×Ef , where p
can be ESC , ΓSC or σSC . No significant improvement of agreement of experimental
with simulated data was achieved.

Whenever the scissors mode was postulated in our simulations, it was present
in M1 PSF so far. The fact, that the SC resonance is not present in E1 PSF
as a so-called ”pigmy” resonance and missing in M1 PSF, can be intuitively de-
duced from the balance of experimental binned TSC intensities around the mid-
point of the spectra for the pair of final TSC levels at similar excitation en-
ergy with the same spin but opposite parity. One parity (the same as the parity
of the capturing state) is populated by the combination of transitions of the same type
and multipolarity – E1 + E1 and M1 + M1, the opposite parity by the combi-
nation E1 + M1 and M1 + E1. When removing the M1 strength and adding
the E1 strength around the Eγ ≈ 4 MeV, one clearly increases the TSC intensities
for the states with same parity as the capturing state and dramaticly decreases
the TSC intensities for the states with opposite parity. The intuitive conclusion
is confirmed by simulation result, see Fig. 4.32, we postulated pigmy resonance
(in the form of Lorentzian (2.19)) in E1 PSF and removed the SC mode from M1
PSF.

Removing the SC resonance fromM1 PSF and postulating a resonance in the E2
PSF – in the way similar to E1 case – one does not dramatically influence the TSC
intensities (with respect to those with SC mode in M1 PSF) for the low-lying final
TSC states 1-6 since for these states the selection rules for the M1 and E2 tran-
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sitions are the same. One can expect the influence of the fact that E2 transitions
can procede via greater spin range. Nevertheless differences are notable between
the TSC spectra in Fig. 4.33 and Fig. 4.15, there are probably several reasons,
one of them being the absence of SF-like structure in E2 PSF. The question raises
whether the binned TSC spectra would look the same for the M1 PSF with SC
mode but without SF resonance. These spectra are plotted in Fig. 4.34, the spectra
look significantly different compared to those in Fig. 4.33. These figures indicate
that the TSC spectra are better reproduced with the resonance structure in M1
PSF.

In addition there seems to be another way how to check the multipolarity
of the resonance structure. One can try to check predicted TSC intensities for a
final TSC level that can be populated by the combinations of transitions that
need to contain at least one E2 transition, in our case the ground state (that is
dominantly populated by E1+E2 combination). The resulting spectra are plotted
in Fig. 4.35 – one for the M1 PSF with SC mode, the other one for the E2 PSF
with a SC-like resonance and M1 PSF without SC resonance, see labels. Consider-
ing both the negative influence on the final TSC states 1-6 (keeping the agreement
of experimental and modelled data for states 1 and 2 the simulations clearly fail
at reproducing the experimental TSC intensities for states 5 and 6) and absence
of a peak structure around the midpoint of the binned experimental TSC spec-
trum for the ground state our conclusion is that the a SC-like resonance in E2
PSF cannot reproduce the experimental data and SC resonance in M1 PSF is
thus necessary.

The mentioned simulations without SF resonance in M1 PSF also proved
the fact that the resulting binned TSC spectra are sensitive to its presence in M1
PSF. The results with SF resonance are clearly better, compare the spectra in Fig. 4.34
and Fig. 4.15.

4.3.2 Average total radiation width

The average total radiation width of capturing state Γ̄cγ, see Sec. 2.3, provides
another criterion for the analysis of model combinations. The experimental value
for the nucleus 177Lu is Γ̄cγ = 90±20 meV [71]. The errors of simulation results do
not exceed 5% and are thus negligible with respect to the experimental uncertainty
of 22%.

Tables 4.7 – 4.8 show that the Γ̄cγ depends strongly on the adopted LD formula.
The results using CTF formula are at least twice smaller than those deduced using
BSFG formula with spin cut-off parameter given in Eq. (2.5). The general feature
is the underestimation of the experimental value by the CTF formula.

The results given in Tabs. 4.5 and 4.7 confirm some conclusions given in Sec. 4.3.1.
It has been found that the E1 transitions influence the average total radiation
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width (TRW) much strongly than M1 and E2 transitions. As a consequence,
the large experimental uncertainty of TRW does not allow us to make any re-
striction to models of M1 and E2 PSFs. In fact, as shown in Tab. 4.6, TRW not
negligibly depend on the position and strength of the scissors mode but almost all
the results are still consistent with the experimental value.

On the other hand, we are able to make some general conclusions about E1
PSF. TRW obtained with the combination of BA model for E1 PSF and BSFG
model is too high while the predictions of other E1 PSF models in combination
with CTF model are too low. It means that only certain combinations of level
density and E1 PSF are allowed.

model combination ESC [MeV] ΓSC [MeV] σSC [mb] Γ̄cγ [meV]
1016 246
11016 161
11116 3.2 0.6 1.0 181
4016 88
41016 56
41106 3.2 0.6 1.0 76
41116 3.2 0.6 1.0 76

Table 4.5: The average total radiation widths for basic model combinations.

model combination ESC [MeV] ΓSC [MeV] σSC [mb] Γ̄cγ [meV]
41116 2.6 0.6 1.0 88
41116 2.9 1.0 2.0 136
41116 3.2 0.6 1.0 76
41116 3.5 0.6 1.0 71
41116 3.5 1.4 2.0 121
41116 3.8 1.0 2.0 92
41116 3.9 1.4 2.0 102
41116 4.0 0.8 2.0 80
41116 4.0 1.0 3.0 101
41116 4.0 1.4 3.0 119
41116 4.1 1.4 3.0 114

Table 4.6: The average total radiation widths for different sets of SC resonance
parameters.
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model combination ESC [MeV] ΓSC [MeV] σSC [mb] Γ̄cγ [meV]
11110 4.0 1.0 3.0 77
11116 4.0 1.0 3.0 201
41110 4.0 1.0 3.0 39
41116 4.0 1.0 3.0 101
51110 4.0 1.0 3.0 36
51116 4.0 1.0 3.0 91
61110 4.0 1.0 3.0 43
61116 4.0 1.0 3.0 97
X1110 4.0 1.0 3.0 40
X1116 4.0 1.0 3.0 104

Table 4.7: The average total radiation width for various combinations of E1 PSF
and LD models.

model combination ESC [MeV] ΓSC [MeV] σSC [mb] Γ̄cγ [meV]
41110 4.0 1.0 3.0 39
61110 4.0 1.0 3.0 47
41118 4.0 1.0 3.0 26
61118 4.0 1.0 3.0 28
41116 4.0 1.0 3.0 101
61116 4.0 1.0 3.0 97
41119 4.0 1.0 3.0 66
61119 4.0 1.0 3.0 69

Table 4.8: The influence of the LD formula on the average total radiation width.
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Figure 4.4: The TSC spectra for the model combination 1016.
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Figure 4.5: The TSC spectra for the model combination 41016.
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Figure 4.6: The TSC spectra for the model combination 41106 with SC resonance
parameters (3.2;0.6;1.0).
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Figure 4.7: The TSC spectra for the model combination 41116 with SC resonance
parameters (3.2;0.6;1.0).
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Figure 4.8: The TSC spectra for the model combination 41116 with SC resonance
parameters (2.6;0.6;1.0).
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Figure 4.9: The TSC spectra for the model combination 41116 with SC resonance
parameters (2.9;1.0;2.0).
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Figure 4.10: The TSC spectra for the model combination 41116 with SC resonance
parameters (3.5;0.6;1.0).
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Figure 4.11: The TSC spectra for the model combination 41116 with SC resonance
parameters (3.5;1.4;2.0).
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Figure 4.12: The TSC spectra for the model combination 41116 with SC resonance
parameters (3.8;1.0;2.0).
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Figure 4.13: The TSC spectra for the model combination 41116 with SC resonance
parameters (3.9;1.4;2.0).
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Figure 4.14: The TSC spectra for the model combination 41116 with SC resonance
parameters (4.0;0.8;2.0).
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Figure 4.15: The TSC spectra for the model combination 41116 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.16: The TSC spectra for the model combination 41116 with SC resonance
parameters (4.0;1.4;3.0).
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Figure 4.17: The TSC spectra for the model combination 41116 with SC resonance
parameters (4.1;1.4;3.0).
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Figure 4.18: The TSC spectra for the model combination 11110 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.19: The TSC spectra for the model combination 11116 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.20: The TSC spectra for the model combination 41110 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.21: The TSC spectra for the model combination 51110 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.22: The TSC spectra for the model combination 51116 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.23: The TSC spectra for the model combination 61110 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.24: The TSC spectra for the model combination 61116 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.25: The TSC spectra for the model combination X1110 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.26: The TSC spectra for the model combination X1116 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.27: The TSC spectra for the model combination 61110 with SC resonance
parameters (4.0;1.0;2.0).
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Figure 4.28: The TSC spectra for the model combination 41118 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.29: The TSC spectra for the model combination 41119 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.30: The TSC spectra for the model combination 61118 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.31: The TSC spectra for the model combination 61119 with SC resonance
parameters (4.0;1.0;3.0).
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Figure 4.32: The TSC spectra for the test of presence of the pigmy mode in E1 PSF.
The parameters of the pigmy mode are same as for the SC resonance, (4.0;1.0;3.0).
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Figure 4.33: The TSC spectra for the test of presence of the pigmy mode in E2
PSF. The parameters of the additional resonance in the E2 PSF are (4.0;1.0;3.0).
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Figure 4.34: The TSC spectra for the test of M1 PSF without SF mode. The
parameters of the SC resonance are (4.0;1.0;3.0).
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Figure 4.35: The ground state TSC spectra for the test of presence of the pigmy
mode in E2 PSF. The parameters of the pigmy mode are same as for the SC
resonance, (4.0;1.0;3.0).
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Summary

The experimental data from two-step cascades measurements of the 176Lu(n,γ)177Lu
reaction were processed to form comparable with simulation results produced
by the code DICEBOX. The studied nucleus 177Lu is unique thanks to relatively
high spins of the nuclear levels involved in the process of γ-deexcitation of nucleus.
These spins are higher than in any other nucleus studied so far – the spin of neutron
resonances are 13

2
and 15

2
. The main results that were obtained from comparison

of experimental spectra with simulations can be summarized as follows:

• Experimentally observed shapes of TSC spectra cannot be reproduced with-
out postulating a resonance structure in a PSF. The resonance structure was
proved to be of magnetic dipole character and it is identified with the scissors
mode vibrations.

• The energy center of the scissors mode must be very close to ESC = 4 MeV
to provide reasonable agreement with the experimental data.

• The parameters of SC mode – ESC = 4 MeV, ΓSC ≥ 1.0 MeV and σSC ≥
2.0 mb – are very different compared to the parameters that were observed
so far. Both the energy center and the total strength of the scissors mode
are significantly higher than the energy center and strength observed so far
in any other nucleus, see Fig. 5.1. This conclusion may suggest that the pa-
rameters of SC mode depend on spin.

• The scissors mode has to be build on all levels in the nucleus and, at least
its position, has to be very stable with excitation.

• We are unable to make strong restrictions on the possible models of E1
PSF. But the E1 PSF models with a non-zero limit for Eγ → 0 give better
description of experimental data.
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• Only dipole strength seems to be important in the decay. We have found
almost no dependence of simulated spectra on adopted model for E2 PSF
model.
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Figure 5.1: The comparsion of SC parameters for several nuclei - 177Lu with SC
mode parameters (4.0,1.0,3.0), 168Er with (3.2,0.6,0.9), 163Dy with (3.0,1.0,0.6)
and 160Tb with (2.7,0.6,0.5). The parameters for 156Gd and 158Gd are very similar
to those for 163Dy. The results are taken from [51] for 160Tb and from [50] for other
nuclei.
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