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Chapter 1

Introduction

There is now compelling evidence of neutrino �avor changing. The most plausible theory how

to treat these transitions is neutrino oscillations. The phenomenon of neutrino oscillation was

�rst proposed by Bruno Pontecorvo in 1969 [1] as an analogy with K0 �K0 oscillation. Since

that time various neutrino experiments were performed. Finally in 2004 the Super-Kamiokande

experiment brought the �rst compelling evidence of neutrino oscillations [2].

The neutrino oscillations parameters were measured in several experiments. Currently we

know the values of mass splittings �m2
21 and �m

2
32. We also have the values for two mixing

angle �12 and �23. What remains unknown is mixing angle �13 and CP-violating phase �.

Therefore there are future experiments with goal to measure these parameters.

One of them is the Daya Bay experiment [3]. The aim of the experiment is the precision

measurement of the mixing angle �13. The present limit is given by the CHOOZ experiment

as sin2 2�13 < 0:17 [4]. For a large value of �13 the Daya Bay experiment can provide valuable

data for further studies.

The aim of this thesis is to investigate the e¤ect of the nonstandard phenomenons in neutrino

physics in the Daya Bay experiment and the possibility of its measurement. We focus on the

two issues. First is the nonstandard interactions in the matter in the source and the detector

and the other is neutrino oscillations and decays.

In the �rst part of this thesis we show the formalism for neutrino oscillation, present knowl-

edge of the oscillation parameters and we introduce the Daya Bay experiment. In the second

part we present the nonstandard interactions formalism and we perform probability calculations
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to investigate the possible e¤ect of the nonstandard interactions in the Daya Bay experiment.

Finally in the third part we introduce the formalism for neutrino oscillations and decays and

we calculate the e¤ect for the particular reactor and neutrino experiment.
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Chapter 2

Phenomenology of neutrino

oscillations

2.1 Neutrino mixing

There are three neutrino �avor eigenstates �e,�� and �� in the Standard model. These states

are not coincident with neutrino mass eigenstates but they are their linear combination. We

can express the transformation as

j��i =
X

i=1;2;3

M�
�i j�ii (� = e; �; �) (2.1)

where j��i stands for neutrino eigenstate with �avor � and j�ii stands for mass eigenstate with

mass mi.

In the three neutrino case, the unitary mixing matrix M is called the Pontecorvo-Maki-

Nakgawa-Sakata matrix. It generally depends on three mixing angles �12, �23, �13, CP-violating

phase � and two Majorana phases �1 and �2. The standard parametrization of mixing matrix

M is

M = U diag
n
eia1=2; eia; 1

o
; (2.2)
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where U is given by

U =

0BBB@
c12 s12 0

�s12 c12 0

0 0 1

1CCCA
0BBB@
1 0 0

0 c23 s23

0 �s23 c23

1CCCA
0BBB@

c13 0 s13e
�i�

0 1 0

�s13ei� 0 c13

1CCCA

=

0BBB@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s23s13ei� c12c23 � s12s23s13ei� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

1CCCA ; (2.3)

where cij � cos �ij and sij � sin �ij . As we will see later Majorana phases do not have any

e¤ect on the oscillation probability.

2.2 Neutrino time evolution

From elementary quantum mechanics we know that time propagation amplitude of neutrino is

in the rest frame given by

j�i (�)i = exp
�
� i
~
mi�

�
j�i (0)i ; (2.4)

where mi is the mass of the i-th neutrino mass eigenstate. In our calculations we take mi in

the units of energy.

Using Lorentz invariance we can come to the laboratory frame and the time evolution is

j�i (t)i = exp
�
� i

~c
(Eict� piL)

�
j�i (0)i ; (2.5)

where t is the laboratory time and L is propagation distance in the laboratory frame. Now we

can use relativistic approximation

pi =
q
E2i �m2

i ' Ei �
m2
i

2Ei
(2.6)

and ct ' L. Moreover, we are not able to measure the energy of di¤erent mass states, because

the di¤erences are small. Therefore we can set Ei = E for all mass eigenstates. The propagation
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amplitude is after these assumptions given by

j�i (L)i = exp
�
� i

~c
m2
i

2E
L

�
j�i (0)i : (2.7)

We can calculate the propagation amplitude for neutrino �avor eigenstate. Using transfor-

mation (2.1) in (2.7) we get

j�� (L)i =
X

i=1;2;3

M�
�i exp

�
� i

~c
m2
i

2E
L

�
j�i (0)i : (2.8)

2.3 Neutrino oscillation probability

Let us calculate the amplitude of probability that neutrino born in �avor state j��i is detected

as a neutrino in �avor eigenstate j��i. Using (2.1) and (2.8), we get

A(�� ! ��) = h��j�� (L)i =
X

i=1;2;3

M�iM
�
�i exp

�
� i

~c
m2
i

2E
L

�
: (2.9)

Now we prove, that the oscillation amplitude does not depend on Majorana phases. From (2.2),

we have

X
i

M�iM
�
�i =

�
MM y

�
��
=
�
U diag

�
eia1 ; eia2 ; 1

	
diag

�
e�ia1 ; e�i�2 ; 1

	
U y
�
��
(2.10)

=
�
UU y

�
��
=
X
i

U�iU
�
�i:

Therefore the amplitude of probability is

A(�� ! ��) = h�� j�� (L)i =
X

i=1;2;3

U�iU
�
�i exp

�
� i

~c
m2
i

2E
L

�
(2.11)

and does not depend on Majorana phases.
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According to (2.11) the oscillation probability is given by

P (�� ! ��) = jA(�� ! ��)j2 = (2.12)

��� � 4
X
i>j

Re
�
U�iU

�
�iU

�
�jU�j

�
sin2

"
�m2

ijL

4~cE

#

+2
X
i>j

Im
�
U�iU

�
�iU

�
�jU�j

�
sin

"
�m2

ijL

2~cE

#
;

where we have introduced notation �m2
ij � m2

i �m2
j .

Assuming CPT invariance holds we can write the relation between neutrino and antineutrino

oscillations as

P (�� ! ��) = P (�� ! ��): (2.13)

From equation (2.12) we can see that using complex conjugated elements of the matrix U , we

get the oscillation probability inverted in time. We can express this result as

P (�� ! ��; U) = P (�� ! ��; U
�): (2.14)

Using (2.14) in (2.13) we get

P (�� ! ��; U) = P (�� ! ��; U
�): (2.15)

If the PMNS matrix is real the oscillation probability is same for neutrinos and antineutrinos.

If the CP-violating phase � is not zero the probabilities are di¤erent. Anyway if � = � it holds

P (�� ! ��) = P (�� ! ��): (2.16)

The probability that neutrino with �avor � is detected with the same �avor � is equal for

neutrinos and antineutrinos.

In several cases we can use instead if three neutrino mixing the two neutrino approximation.

We consider only two �avor eigenstates and two mass eigenstates. Then the unitary mixing
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matrix is

U =

0@ cos � sin �

� sin � cos �

1A : (2.17)

Using the same procedure as we used above we get the oscillation probability

P (�� ! ��) = sin
2 2� sin2

�
�m2L

4~cE

�
(� 6= �) (2.18)

P (�� ! ��) = 1� sin2 2� sin2
�
�m2L

4~cE

�
: (2.19)

The oscillation probability is a function of two parameters, mixing angle � and mass splitting

�m.

2.4 Oscillation parameters

The oscillation probability (2.12) depends in general on six parameters. Three mixing angles

�12, �23, �13, CP-violating phase � and two independent squared-mass splittings �m2
21 and

�m2
32. The present knowledge is summarized in �gure 2-1.

Figure 2-1: Normal and inverted neutrino mass hierarchy.

Mixing angle �12 and mass splitting �m2
21 are measured in solar neutrino and reactor

neutrino experiments such as Homestake experiment, SNO, KamLAND, SAGE, Gallex. Solar

experiments use electron neutrinos, reactor experiments use electron antineutrinos. Due to the

small value of mixing angle �13 the oscillation probability can be treated as a two neutrino
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oscillations between mass eigenstates �1 and �2. The best �t combining solar and reactor

neutrino data is [5]

sin2 �12 = 0:31
+0:016
�0:023 (2.20)

�m2
21 = (7:59� 0:21)� 10�5 eV 2: (2.21)

Due to the Mikheyev-Smirnov-Wolfenstein (MSW) e¤ect presented in the neutrino propagation

through matter we know that m2 > m1.

Accelerator and atmospheric neutrino experiments are sensitive to the parameters �23 and

�m2
32 where muon neutrinos are used. Because �m

2
21 << �m2

32 ' �m2
31 most of the exper-

iments are not sensitive to the small mass splitting. Therefore we can use the two neutrino

approximation with mass eigenstate �3 and e¤ective combination of �1 and �2 for the data

interpretation.

The Super-Kamiokande experiment have brought �rst compelling evidence of neutrino os-

cillations [2]. Present value given by the Super-Kamiokande for �23 is [6]

sin2 �23 = 0:50� 0:063: (2.22)

The most precise value of �m2
32 is given by the MINOS experiment [7]

���m2
32

�� = (2:43� 0:13)� 10�3 eV 2: (2.23)

We are able to measure only the absolute values of�m2
32 so far. Therefore we can not distinguish

if m2 is lighter or heavier than m3. This leads us to two possible neutrino mass hierarchies,

normal hierarchy with m2 < m3 the inverted with m2 > m3, �gure 2-1.

At present we know only the upper bound on �13. The limit is given by the CHOOZ

experiment [4] as

sin2 2�13 < 0:17: (2.24)

Recent experiments such as Daya Bay experiment [3] plan to measure �13 more precisely.

Last parameter is CP-violating phase �. We do not have any restrictions on this parameter.
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Chapter 3

Daya Bay experiment

The Daya Bay experiment [3] is antineutrino reactor experiment. It will perform the precision

measurement of survival probability P (��e ! ��e) to �nd the value of mixing angle �13. It is

known only the upper bound of this oscillation parameter given by the CHOOZ experiment as

sin2 2�13 < 0:17 [4]. The goal of the Daya Bay experiment to reach the sensitivity of 0.01 or

better in sin2 2�13 [3].

The experiment is located near the Daya Bay nuclear power plant complex in China. The

complex consists of two pairs of nuclear reactors named Daya Bay and Ling Ao. One more pair

of reactors Ling Ao II is currently under construction and it will be �nished in 2011. These

reactors provide the source of electron antineutrinos.

3.1 Detection method

The electron antineutrino detection method is so called inverse beta-dacay

�e + p! n+ e+: (3.1)

This reaction has the threshold

Ethr� =
(mn +me)

2 �m2
p

2mp
= 1:806 MeV: (3.2)

Comparing the reactor antineutrino energy spectrum and the cross-section of inverse beta-dacay
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we get the count rate with maximum about 4MeV see �gure 3-1.

Figure 3-1: Detected antineutrino energy spectrum in the Daya Bay experiment [3].

3.2 Antineutrino detector

The detector module is designed as a cylindrical vessel consist of three nested cylindrical zones.

In the inner is 20 tons of liquid scintillator doped with the atoms of Gadolinium. This element

has large cross-section of neutron capture.

Positron from inverse beta-decay is stopped emitting s along its trajectory and annihilates

with electron and produced two s. Neutrons is captured on the Gadolinium and new nucleus

deexcite emitting also s. The liquid scintillator shifts the wavelength to the visible spectrum

and it is detected by PMTs on the surface of the outer vessel. There is pure liquid scintillator in

the middle zone for catching s which escape form the inner part. The outer zone where PMTs

are installed is �lled with the mineral oil. Its basic purpose is shielding from the  background.

The antineutrino detector module is shown on the �gure 3-2.
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Figure 3-2: Cross sectional slice of a 3-zone antineutrino detector module showing vessel holding
the Gd-doped liquid scintilator at the center (20 tons), liquid scintillator between the acrylic
vessels (20 tons) and mineral oil (40 tons) in the outer region. The PMTs are mounted on the
inside walls of the stainless steel tank [3].

3.3 Experimental layout

The Daya Bay experiment consists of one far detector with four antineutrino detector modules

and two near detectors both with two antineutrino detector modules. They are placed in

experimental halls under the surface due to background shielding. Halls are connected with

entrance tunnels. The experimental layout is shown on the �gure 3-3.

The oscillation probability P (��e ! ��e) is using (2.12) given by

P (��e ! ��e) ' 1� 4s212c212
�
�m2

21L

4~cE

�2
� 4s213 sin2

�
�m2

32L

4~cE

�
: (3.3)

The �rst oscillation minimum is according to (3.3) in L(km)
E(MeV ) ' 0:5. The antineutrino count

rate has the maximum about 4 MeV therefore the far detector is in the distance about 2 km.

The near detectors are placed next to the reactor cores to measure precisely the antineutrino

�ux to reach better sensitivity.

In the table1 there are distances between the detectors and the center of the reactor pairs.
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Figure 3-3: Experimental layoutof the Daya Bay experiment [3].

Sites/Detectors DYB LA Far

DYB cores 363 1347 1985

LA cores 857 481 1618

LA II cores 1307 526 1613

Sites/Detectors DYB LA Far

DYB cores LDY BDY B LDY BLA LDY BFAR

LA cores LLADY B LLALA LLAFAR

LA II cores LLAIIDY B LLAIILA LLAIIFAR
Table 1: Distances in meters between detectors and center of reactor pairs [3] and their notation.
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Chapter 4

Nonstandard interactions in the

neutrino source and detector

Let us consider some possible physics beyond the Standard model in neutrino source and de-

tector. We assume that neutrino with �avor � is not always coupled to the lepton with the

same �avour in the production and the detection process. This does not conserve the family

lepton number. But neutrino oscillations themselves in general do not conserve family lepton

number. Therefore we want to investigate the e¤ect of these nonstandard interactions and the

possibility of their measurement. Now we introduce the formalism proposed in [8].

Neutrinos born in the source can be treated as a superposition of �avor eigenstates

j�s�i =
1

N s
�

0@j��i+ X
�=e;�;�

"s�� j��i

1A : (4.1)

Similarly for detector, we get

D
�d�

��� = 1

Nd
�

0@D�d����+ X
�=e;�;�

"d��

D
�d�

���
1A : (4.2)

N s
� and N

d
� are normalization factors. Matrices "

s
�� , "

d
�� parametrize size of the non-standard

interactions in the source, respectively detector. Since we are not specifying the interaction

they are in general arbitrary.
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Let us calculate the oscillation amplitude that neutrino produced in the source with �avor

� is measured in the detector with �avor �. The amplitude is using (4.2),(4.1) given by

A(�s� ! �d�) =
D
�d�j�s� (L)

E
=

1

N s
�N

d
�

 
h��j�� (L)i+

X
=e;�;�

"s� h��j� (L)i (4.3)

+
X

=e;�;�

"d� h� j�� (L)i+
X

;�=e;�;�

"s�"
d
�� h��j� (L)i

1A :

The amplitudes h��j�� (L)i appearing in (4.3) are standard amplitudes given by equation (2.11).

Therefore we can write

A(�s� ! �d�) =
X

i=1;2;3

T i�� exp

�
� i

~c
m2
i

2E
L

�
; (4.4)

where T i�� is given by

T i�� =
1

N s
�N

d
�

0@U��iU�i + X
=e;�;�

"s�U
�
iU�i +

X
=e;�;�

"d�U
�
�iUi +

X
=e;�;�

X
�=e;�;�

"s�"
d
��U

�
iU�i

1A :

(4.5)

Since we have the amplitude, we are able to calculate the oscillation probability as

P (�s� ! �d�) =
���A(�s� ! �d�)

���2 (4.6)

=
X
i;j

T i��T
j�
�� � 4

X
i>j

Re
�
T i��T

j�
��

�
sin2

 
�m2

ijL

4~cE

!

+2
X
i>j

Im
�
T i��T

j�
��

�
sin

 
�m2

ijL

2~cE

!
:

The oscillation probability (4.6) is valid for neutrinos. Let us discuss antineutrino oscillation

probability. If the identity "s = "dy is satis�ed the oscillation probability for antineutrinos is

P (��s� ! ��d�) =
X
i;j

T i���T
j
�� � 4

X
i>j

Re
�
T i���T

j
��

�
sin2

 
�m2

ijL

4~cE

!
(4.7)

+2
X
i>j

Im
�
T i���T

j
��

�
sin

 
�m2

ijL

2~cE

!
:
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We just change term T i�� to the complex conjugated term T i��� in the probability formula (4.6).

But if the process of neutrino detection is not exactly inverse to the neutrino production

process some features which violate the condition "s = "dy could be present. In this case the

oscillation probability is

P (��s� ! ��d�) =
X
i;j

T i��T
j�
�� � 4

X
i>j

Re
�
T i��T

j�
��

�
sin2

 
�m2

ijL

4~cE

!

+2
X
i>j

Im
�
T i��T

j�
��

�
sin

 
�m2

ijL

2~cE

!
;

where T i�� is given by

T i�� =
1

N s
�N

d
�

0@U�iU��i + X
=e;�;�

"s�UiU
�
�i +

X
=e;�;�

"d�U�iU
�
i +

X
=e;�;�

X
�=e;�;�

"s�"
d
��UiU

�
�i

1A
and "s�� , "

d
�� are the parameters for antineutrinos. They can be in general di¤erent from "s�� ,

"d�� for neutrinos.
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Chapter 5

Possibility of the measurement of

the nonstandard interactions in the

Daya Bay experiment

5.1 Modeling of the electron antineutrino spectra in the Daya

Bay experiment

Let us perform naive calculation of the antineutrino spectra. The Daya Bay experiment will

use three pairs of nuclear reactors as a antineutrino source. The thermal power of each core

is 2.9 GW [3]. Fission of uranium and plutonium isotopes produces daughter nuclei. They

are neutron rich therefore most of them beta decays. There is released in average 200 MeV of

energy and approximately six antineutrinos [3]. Therefore we can estimate the total number of

�ssions in the reactor site as

NF =
Number of reactors� Thermal power

Energy per fission
=
2� 2:9 GW
200 MeV

= 1:8� 1020 s�1: (5.1)

Most of the neutrinos produces in the reactor are below the detection threshold. The

neutrino energy spectrum per �ssion can be parametrized as

�(E) = exp
�
 � �E � �E2

�
(5.2)
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where � = 0:16, � = 0:091 and  = 0:87 [9].

As it is mentioned above the detection method is the inverse beta decay �e + p ! n+ e+.

The cross-section of this reaction can be calculated as [10]

� (E) = 0:0952� 10�46m2 (E � (mn �mp))

q
(E � (mn �mp))

2 �m2
e

1

MeV 2
(5.3)

with the threshold E = 1:806 MeV . This reaction will be proceeded on free protons in the

liquid scintillator. There are 6:29� 1022 free protons per cm3 in the scintillator and density is

� = 0:86 g=cm3 [11]. In each detection module there is 20 tons of liquid scintillator. Therefore

there is NT = 1:46� 1030 targets in one detection module.

The number of detected neutrinos depends also on the oscillation probability. It is a function

of neutrino energy, distance and the oscillation parameters. We use denotation P (E;L; :::).

Let us calculate the number of detected neutrinos in each detector. There are two detection

modules in the DYB near detector. The distances between the detector and reactors are in

table 1. For the three years run we get

NDY B (E) = 3� 365� 24� 3600�NT � 2� eff �NF��(E)
4�

�� (E) (5.4)

�
�
P (E;LDY BDY B; :::)

L2DY BDY B
+
P (E;LLADY B; :::)

L2LADY B
+
P (E;LLAIIDY B; :::)

L2LAIIDY B

�
:

Similarly for the near LA detector and the FAR detector we get

NLA (E) = 3� 365� 24� 3600�NT � 2� eff �NF��(E)
4�

�� (E) (5.5)

�
�
P (E;LDY BLA; :::)

L2DY BLA
+
P (E;LLALA; :::)

L2LALA
+
P (E;LLAIILA; :::)

L2LAIILA

�
;

NFAR (E) = 3� 365� 24� 3600�NT � 4� eff �NF��(E)
4�

�� (E) (5.6)

�
�
P (E;LDY BFAR; :::)

L2DY BFAR
+
P (E;LLAFAR; :::)

L2LAFAR
+
P (E;LLAIIFAR; :::)

L2LAIIFAR

�
:

We apply detection e¢ ciency eff = 0:78 [3].

We integrate this energy spectrum to the several bins to obtain data like from the real

measurement. Then we are able to investigate the e¤ect of the nonstandard interactions in the
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experiment.

5.2 Oscillation probability

We investigate the possible e¤ect of the nonstandard interactions presented in the source and

in the detector in the Daya Bay experiment. The oscillation probability (4.6) depends on terms

T i�� . The Daya Bay experiment will measure the probability P (��e ! ��e). Let us calculate

appropriate terms T 3eeT
1�
ee ; T

3
eeT

2�
ee ; T

2
eeT

1�
ee . Using (4.5) we get

T 3eeT
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: (5.9)

We are omitting the normalization factor 1
Ns
�N

d
�
because it is compensated with the change of

the production and detection cross-sections in the real experiment. Using (5.7), (5.8), (5.9) in
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(4.6) the oscillation probability is P (��se ! ��de) is
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The oscillation probability for standard neutrino oscillations i.e. without nonstandard interac-

tions is using (2.12) given by

P (��e ! ��e) = 1� 4s212c212
�
�m2

21L

4~cE

�2
� 4s213 sin2

�
�m2

32L

4~cE

�
(5.11)
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21L

4~cE

��

Due to the Daya Bay experiment probability resolution which will be 0.01 [3] we have neglected

terms s313; "
3; "s213; "

2s13; "
2
�
�m2

21L
4~cE

�
; "s13

�
�m2

21L
4~cE

�
;
�
�m2

21L
4~cE

�3
which are in order of 0.001. If

we take the experiment parameters which are approximately L = 1800m and mean value of

neutrino energy E ' 4MeV it holds that �m2
21L

4~cE ' 0:04. The limit on �13 is sin �13 . 0:2 [4]

and the limit on the NSI parameters is j"j < 0:1 [12]. In the following calculations we do not

explicitly mention these neglected terms.

If the process of neutrino detection is exactly inverse to the neutrino production CPT

invariance implies "s = "dy. If this condition is satis�ed the nonstandard interactions mimic the

neutrino oscillations signal and we measure the e¤ective mixing angle which is di¤erent from
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the angle appearing in the PMNS matrix [8], [13]. Adopting "s = "dy in (5.10) we get

P (��se ! ��de) = 1� 4c212s212
�
�m2

21L

4~cE

�2
(5.12)
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s213 + 2Re
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c23s13

+
��"se���2 s223 + j"se� j2 c223 + 2Re �"se�"s�e�� s23c23i sin2��m2

32L
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�
:

If we introduce notation

s213eff = s213 + 2Re
�
"se�e

�i�
�
s23s13 + 2Re

�
"se�e

�i�
�
c23s13 (5.13)

+
��"se���2 s223 + j"se� j2 c223 + 2Re �"se�"s�e�� s23c23

the oscillation probability (5.12) get the same form as the pure oscillation probability (5.11)

only with e¤ective mixing angle �eff13 . Therefore we are not able to distinguish the e¤ect of pure

oscillations and the e¤ect of nonstandard interactions.

But if the processes of production and detection are di¤erent identity "s = "dy does not

have to hold. Violation of this condition lead not only to the e¤ective mixing angle �eff13 but

also to the change of the oscillation curve what is shown later. Let us investigate this case and

the results for the Daya Bay experiment.

We assume that condition "s = "dy is violated. We can parametrize relevant elements of "s

by

"se� =
��"se��� ei�se�

"se� = j"se� j ei�
s
e� : (5.14)

Then we assume that violation is only in the phase factor and not in the absolute value. Using

this assumption, we can write

"d�e =
��"se��� e�i�se�+i e�

"d�e = j"se� j e�i�
s
e�+i e� : (5.15)

Phases  e� and  e� are violating phases. If they are both equal to zero, the condition "
s = "dy
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e.g. "s�� = "d��� holds. Using (5.15),(5.14) in (5.10) we get
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We have omitted upper script s in j"�� j and �s�� . In following calculations we set  e� =  e�

and �e� = �e� . Therefore the oscillation probability (5.16) is given by
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We can simply calculate the probability di¤erence to investigate if the e¤ect of nonstandard
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interactions is measurable. Using (5.11) and (5.17) we get

P (��se ! ��de)� P (��e ! ��e) = (5.18)
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In following �gures 5-1, 5-2 and 5-3 we have plotted the probability di¤erence (5.18) for three

energies. We set s213 = 0:04 the limit given by the CHOOZ experiment [4], � = 0 and j"e�j =

j"e� j = 0:041[12]
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Figure 5-1: The probability di¤erence as a function of �e� and  e� for E=2.5 MeV, j"e�j =
j"e� j = 0:041, s13 = 0:04.

The previous plots show that the probability di¤erence is large enough to be measured in

the Daya Bay experiment. In principle we are able to reveal the NSI for a particular set of

oscillation and nonstandard interaction parameters. On the other hand there are regions, where
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Figure 5-2: The probability di¤erence as a function of �e� and  e� for E=3 MeV, j"e�j = j"e� j =
0:041, s13 = 0:04.

the oscillation probability is very close to the case with no NSI, even if the NSI parameters �e�

and  e� are not zero.

If the probability di¤erence is large it does not mean that we are able to distinguish the e¤ect

of the nonstandard interactions. For parameter  e� = 0 , e.g. "s = "dy holds, we e¤ectively

measure di¤erent mixing angle �13 and we can not distinguish the e¤ect of the pure oscillations

and the NSI.

Therefore let us investigate the oscillation probability in few interesting points [�e� ; e� ].

For revealing the nonstandard interactions it is important the term proportional to sin
�
�m2L
2E

�
in (5.18). If it is di¤erent from zero results in the shift of the �rst minimum of the oscillation

probability as we show later. The term proportional to sin
�
�m2L
2E

�
is from (5.18) given by

F = 2 fs13 [s23 j"e�j+ c23 j"e� j] [sin (�e� )� sin (�e� �  e� )] (5.19)

+sin ( e� ) [s23 j"e�j+ c23 j"e� j]2
o
:

We can �nd extremes for F = F (�e� ;  e� ). They have to satisfy equations:
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Figure 5-3: The probability di¤erence as a function of �e� and  e� for E=5 MeV, j"e�j = j"e� j =
0:041, s13 = 0:04.

cos (�e� ) = � [s23 j"e�j+ c23 j"e� j]
s13

cos ( e� ) (5.20)

cos (�e� ) = cos (�e� �  e� ) : (5.21)

Solving them, we get:

cos ( e� ) =
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�
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�21A
For j"e�j = j"e� j = 0:041, �23 = 45� and �13 = 0:2 we get the minimum of factor F in

point [�e� ; e� ] ' [4:97; 3; 65] and the maximum [�e� ; e� ] ' [1:32; 2; 63]. These results are in

agreement with �gure 5-4.
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Figure 5-4: Factor F for j"e�j = j"e� j = 0:041, s13 = 0:04 as a function of �e� and  e� ,

Now we are able to show the consequences. If  e� = 0, what is equivalent to the condition

"s = "dy, �P is proportional to sin2
�
�m2L
4E

�
. This fact leads to conclusion, that we measure

e¤ectively di¤erent mixing angle �13 as it is shown above. We are not able to reveal the NSI.

On the contrary if the factor F is di¤erent from zero the oscillation probability curve is changed

and the �rst disappearance minimum is shifted. These results are shown in the following plots

5-5, 5-6, 5-7.
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Figure 5-5: The oscillation probability with no NSI (dashed) and with NSI (full) for [�e� ; e� ] =
[0; 0], j"e�j = j"e� j = 0:041. There is only negligible shift of the �rst disappearance minimum.

From this simple calculation of the oscillation probability results that in case of large value
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Figure 5-6: The oscillation probability with no NSI (dashed) and with NSI (full) for [�e� ; e� ] =
[4:97; 3:65], j"e�j = j"e� j = 0:041. The �rst oscillation minimum is shifted by 0.68 MeV to the
higher energies.

of mixing angle �13 the Daya Bay experiment is able to reveal the nonstandard interactions for

particular set of the nonstandard interaction parameters.

5.3 Constrains given by the Daya Bay experiment

Let us �nd the regions of nonstandard interactions parameters for which we are able to reveal

the nonstandard interactions e.g. the measured data are not consistent with pure neutrino

oscillations only. Using our naive estimation of the Daya Bay experiment data we can get the

bounds on the nonstandard interactions parameters.

For our analysis we make a simpli�cation and assume j"e�j = j"e� j. Using this condition in

(5.17) and assuming �23 = 45� we get the oscillation probability as
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�
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Figure 5-7: The oscillation probability with no NSI (dashed) and with NSI (full) for [�e� ; e� ] =
[0; 0], j"e�j = j"e� j = 0:041. The �rst oscillation minimum is shifted by 0.44 MeV to the lower
energies.

Now we can combine CP-violating phases �e� and � using notation �0 = �e���. Final oscillation

probability is given by

P (��se ! ��de) = 1� 4c212s212
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21L

4~cE

�2
(5.23)
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:

It is a function of four unknown parameters j"e� j, �0,  , �13 and several oscillation parameters

for which we use current best �ts.

General idea how to search for the regions where we can reveal the nonstandard interactions

is to generate the data with the nonstandard interactions and try to �t them with data obtained

by the pure neutrino oscillations with an e¤ective mixing angle �eff13 . If we are not able to �nd

any �eff13 consistent with the nonstandard interactions data we can measure the e¤ect of them.

On contrary if we are able to �nd �eff13 the data can be explained by e¤ective mixing angle and

the nonstandard interactions stay hidden.

As it was described above the data are obtained from the antineutrino energy spectra

(5.4),(5.5), (5.6) with using appropriate probability (5.23) for the nonstandard interactions and
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Figure 5-8: Detected antineutrino spectrum in the near DYB detector for the pure oscillations
with �13 = 0:2 for three years run.
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Figure 5-9: Detected antineutrino spectrum in the FAR detector for the pure oscillations with
�13 = 0:2 for three years run.

(5.11) for pure oscillations. The spectra are put into the 15 energy bins.

There is an example of antineutrino spectra. On the �gures 5-8 and 5-9 there are antineu-

trino spectra from the DYB near and FAR detector for pure oscillations with �13 = 0:2. Three

years run was considered.

On the �gure 5-10 there is a ratio between DYB near detector and FAR detector with

statistical error for pure oscillations with �13 = 0:2 and for three years run. This form of data

is used in following �2 analysis.
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Figure 5-10: Ratio between DYB and FAR detector for the pure oscillations with �13 = 0:2
with statistical error for three years run.

�2 functional is de�ned as

�2 =
X
i

�
Xi � �i
�i

�2
(5.24)

where for our purpose Xi is the value of pure oscillations, �i is the value of nonstandard

interactions data and �i is the error of the pure oscillation data for bin i. We are using only

statistical error in our calculations. If the value of �2 is lower than bound given by the P-value

and degrees of freedom the tested data can be explained by the expected hypothesis. If the

value of �2 is higher the measured data does not �t to the expected hypothesis. Because we

have one degree of freedom �eff13 and we set the P-value on 90% the critical value of �2 is 2.71.

We minimize the value of �2 in the parameter �eff13 for a particular set of parameters j"e� j, �0,

 , �13. If the minimal value is higher then 2.71 the nonstandard interactions described by j"e� j,

�0,  , �13 are revealed with at least 90% certainty. If the value of �2 is lower then 2.71 the data

can be treated on 90% as pure oscillations.

We investigated the possibility of revealing the nonstandard interactions for particular values

of �0. On the �gures 5-11,5-12 there are plotted regions for �0 = 1:32 respectively �0 = 4:97

where the Daya Bay experiment is able distinguish the e¤ect of nonstandard interactions for

any mixing angle �13. Because the present bound on j"e� j is j"e� j < 0:041 [12] experiment can

measure the nonstandard interactions e¤ect for particular values �0.

If there will be any evidence of nonstandard interactions in the Daya Bay data we do not

know anything about �0. Therefore in the �gure 5-13 is plotted the region for di¤erent values
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Figure 5-11: Shadow region shows where theDaya Bay experiment can reveal the nonstandard
interactions for �0 = 4:97 and for any mixing angle �13.

of j"e� j and violating phase  for any value of �0 and �13 where the nonstandard interactions

can be revealed.

According to the limit j"e� j < 0:041 [12] we can result from �gure 5-13 that the Daya Bay

experiment can not in general set the better constrains on the nonstandard parameter j"e� j.
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Figure 5-12: Shadow region shows where theDaya Bay experiment can reveal the nonstandard
interactions for �0 = 4:97 and for any mixing angle �13.
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Figure 5-13: Shadow region shows the excluded parameters j"e� j and  if we will not observe
any evidence for the nonstandard interactions in the Daya Bay experiment.
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Chapter 6

Neutrino decays and oscillations

formalism

The Super-Kamiokande experiment have brought �rst compelling evidence of neutrino oscilla-

tion [2]. The ratio between data and predicted muon neutrino �ux is shown in the �gure 6-1.

There is signi�cant minimum in the L=E � 600km=GeV which �ts to the neutrino oscillation

scenario. Neutrino decay hypothesis is disfavored by this minimum.

Nevertheless, we can suppose both neutrino oscillations and decays. Let us introduce the

formalism for this scenario.

We focus on three neutrino oscillations and decays. Oscillations are treated in the standard

way. In the neutrino decays we are not interested in the decay process and the products. We

describe it phenomenologically by neutrino mass eigenstate mean lifetime. Also if the neutrino

mass eigenstate is decaying to the lighter mass state, we do not consider any e¤ect in the

measured data.

Let us start with time development. For vector j (t)i we can write the Schr½oedinger�s

equation

i~
@ j  (t)i

@t
= bHeff j (t)i : (6.1)

with formal solution

j (t)i = exp
�
� i
~
bHeff t

�
j (0)i : (6.2)

Term exp
�
� i
~
bHeff t

�
is the time evolution operator.
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Figure 6-1: The ration between data and predicted atmospheric muon neutrino �ux in the
Super-Kamiokande experiment [2]. Best �t for neutrino oscillation (solid line), best �t for
neutrino decays (dashed line).

In general all three mass eigenstates can be instable. Therefore the Heff is in the neutrino

rest frame diagonal and can be expressed by

Hdiag
eff =

0BBB@
m1 � i

2�1 0 0

0 m2 � i
2�2 0

0 0 m3 � i
2�3

1CCCA ; (6.3)

where �i is appropriate total decay rate of mass state �i. Coming to the laboratory frame we

write s
p2i +

�
mi �

i

2
�i

�2
'
q
p2i +m

2
i � imi�i ' Ei �

i

2
�i
mi

Ei
: (6.4)

Using (6.4) we get the Heff in the laboratory frame as

Hdiag
eff =

0BBB@
E1 � i

2�1
m1
E1

0 0

0 E2 � i
2�2

m2
E2

0

0 0 E3 � i
2�3

m3
E3

1CCCA : (6.5)
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Instead of total decay rate �i we can introduce the mean lifetime � i. It holds that �i = ~
� i

therefore Hdiag
eff is given by

Hdiag
eff =

0BBB@
E1 � i

2
~
�1

m1
E1

0 0

0 E2 � i
2
~
�2

m2
E2

0

0 0 E3 � i
2
~
�3

m3
E3

1CCCA : (6.6)

Using the approximation

Ei =
q
p2 +m2

i ' p+
m2
i

2p
(6.7)

and p ' E, we get

Hdiag
eff = E

0BBB@
1 0 0

0 1 0

0 0 1

1CCCA+
0BBB@
m2
1

2E �
i
2
~
�1

m1
E 0 0

0
m2
2

2E �
i
2
~
�2

m2
E 0

0 0
m2
3

2E �
i
2
~
�3

m3
E

1CCCA : (6.8)

If we transform the Hamiltonian to the �avor eigenstate base it is no more diagonal and we

can write

Hflavor
eff = E

0BBB@
1 0 0

0 1 0

0 0 1

1CCCA+ U
0BBB@
m2
1

2E �
i
2
~
�1

m1
E 0 0

0
m2
2

2E �
i
2
~
�2

m2
E 0

0 0
m2
3

2E �
i
2
~
�3

m3
E

1CCCAU y: (6.9)

Introducing Hflavor
eff to the time evolution operator exp

�
� i
~
bHeff t

�
and we get due to mixing

matrix unitarity

exp

�
� i
~
bHeff t

�
= exp

�
� i
~
Et

�
UTU y (6.10)

where

T =

0BBBB@
exp

�
�i m

2
1

2~E t�
m1
2�1E

t
�

0 0

0 exp
�
�i m

2
2

2~E t�
m2
2�2E

t
�

0

0 0 exp
�
�i m

2
3

2~E t�
m3
2�3E

t
�
1CCCCA : (6.11)
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The amplitude A(�� ! ��) is

A(�� ! ��) = h��j exp
�
� i
~
Et

�
UTU y j��i = exp

�
� i
~
Et

��
UTU y

�
��
: (6.12)

Omitting the phase factor, which does not in�uence the probability, and using approximation

L � ct the amplitude is given by

A(�� ! ��) = h��j�� (L)i =
X

i=1;2;3

U�iU
�
�i exp

�
� i

hc

m2
iL

2E
� miL

2c� iE

�
: (6.13)

Now we are able to calculate the survival probability as

P (�� ! ��) = jA(�� ! ��)j2 = (6.14)X
i;j

U�iU
�
�iU

�
�jU�j exp

�
� miL

2c� iE
� mjL

2c� jE

�

�4
X
i>j

Re
�
U�iU

�
�iU

�
�jU�j

�
exp

�
� miL

2c� iE
� mjL

2c� jE

�
sin2

"
�m2

ijL

4~cE

#

+2
X
i>j

Im
�
U�iU

�
�iU

�
�jU�j

�
exp

�
� miL

2c� iE
� mjL

2c� jE

�
sin

"
�m2

ijL

2~cE

#
:

From equation (6.14) we can see that in the case with neutrino decays the probability is in

general function of nine parameters. Six of them were discussed above. In addition we have

mean lifetimes of three neutrino mass eigenstates �1, �2 and �3.

We can see in equation (6.14) that e¤ect of the neutrino decays is contained in the term

exp
�
� miL
2c� iE

� mjL
2c�jE

�
. While parameters L and E are determined by the experiment as long as

we do not know absolute neutrino mass scales we are able to measure only � i=mi as a neutrino

mean lifetime. The best direct constrain on �1 lifetime is from supernova SN1987A neutrino

detection. The limit is about �1=m1 > 10
5 s=eV [14]. The limit on �2 lifetime is given by the

measurement of solar neutrinos and it is �2=m2 > 10�5 s=eV [15]. Finally the bound on �3

lifetime is imposed by atmospheric and accelerator neutrino measurement. Reasonable �t for

atmospheric neutrinos is �3=m3 = 2:6� 10�12 s=eV for �m2
32 = 2:6� 10�3 eV 2 and �23 = 34�

[16]. But including accelerator data this solution is disfavored dropping to the 99%CL and on

this con�dence level the �3 lifetime limit is �3=m3 & 10�10 s=eV [16].
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In the normal hierarchy the mass eigenstate �3 is the heaviest and therefore we are expecting

the shortest lifetime. On the contrary, in the inverse hierarchy is �3 the lightest therefore it is

reasonable to assume that the lifetime of �3 is longer than lifetime of two other states. As long

as the limit on �1 lifetime is �1=m1 > 10
5s=eV the lifer time of �3 has to satisfy the same limit

and we get �3=m3 > 10
5 s=eV . As we show later this limit is so strong to see any e¤ect in the

reactor and accelerator neutrino experiments. Therefore we are assuming normal hierarchy in

the neutrino decays and oscillations calculations.
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Chapter 7

Possibility of the measurement of

neutrino oscillations and decays the

Daya Bay experiment

7.1 Possibility of the measurement of neutrino decays

Let us consider the neutrino oscillation experiment with baseline L, neutrino energy E and with

given sensitivity. The e¤ect of neutrino decays is expressed by the term exp
�
� miL
2c� iE

� mjL
2c�jE

�
=

exp
�
� miL
2c� iE

�
exp

�
� mjL
2c�jE

�
in the equation (6.14). Therefore if term miL

2c� iE
for given i is small

compared to the experiment sensitivity we are not able to measure any e¤ect of �i decays.

7.2 Neutrino decays in the Daya Bay experiment

The Daya Bay experiment is described in the chapter above. Let us sum important properties.

The experiment is designed to measure oscillation probability P (�e ! �e). The neutrino energy

spectrum is about E 2 h2 MeV; 8 MeV i. The mean value is E = 4 MeV . The baseline is

approximately L = 1800 m and the expected sensitivity is 1% [3].

Let us investigate the e¤ect of neutrino decays in the Daya Bay experiment. We are assuming

normal hierarchy and only one instable neutrino mass eigenstate �3. Other mass eigenstates

are treated as stable because the e¤ect of their decays is again negligible. Using (??) we get
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the survival probability as

P (�e ! �e) = 1�
�
m3L

c�3E

�
s213 � 4s212c212

�
�m2

21L

4~cE

�2
(7.1)

�4s213
�
1� m3L

2c�3E

�
sin2

�
�m2

32L

4~cE

�
�4c212s213 sin

�
�m2

32L

2~cE

��
�m2

21L

4~cE

�
+O

 �
m3L

2c�3E

�2
s213; s

4
13;

�
�m2

21L

4~cE

�4
;

�
�m2

21L

4~cE

�2
s213

!
:

The oscillation probability without neutrino decays is using (2.12) given by

Pno decays (�e ! �e) = 1� 4s212c212
�
�m2

21L

4~cE

�2
� 4s213 sin2

�
�m2

32L

4~cE

�
(7.2)

�4c212s213 sin
�
�m2

32L

2~cE

��
�m2

21L

4~cE

�
+O

 
s413;

�
�m2

21L

4~cE

�4
;

�
�m2

21L

4~cE

�2
s213

!
:

It holds
�
�m2

21L
4~cE

�
= 0:04 for the baseline L = 1800m and energy E = 4MeV , s13 < 0:2 and

we assume �3=m3 = 2:6 � 10�12 s=eV [16]. Therefore we neglected terms
�
m3L
2c�3E

�2
s213, s

4
13,�

�m2
21L

4~cE

�4
,
�
�m2

21L
4~cE

�2
s213 which are in order of 10

�4.

Using (7.1),(7.2) we get the probability di¤erence

P (�e ! �e)� Pno decays (�e ! �e) = �s213
�
m3L

c�3E

�
cos

�
�m2

32L

2~cE

�
: (7.3)

In �gure 7-1 we plotted both oscillation probabilities (7.1),(7.2). We set sin �213 = 0:04,

�m2
21 = 7:5 � 10�5eV 2. We assume �t from [16] �m2

32 = 2:6 � 10�3 eV 2, �23 = 34� and

�3=m3 = 2:6� 10�12 s=eV .

In the �gure 7-2 we set sin �213 = 0:04 what is the upper bound given by CHOOZ experiment

[4]. Let us investigate the e¤ect of di¤erent values of �13. In �gure 7-2 we plot the probability

di¤erence (7.3) for three values of sin �213. For sin �13 < 0:11 is the probability di¤erence lower

than 1% which is the sensitivity of the experiment. Therefore we are able to measure any e¤ect

of neutrino decays in the Daya Bay experiment only for large mixing angle �13.
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Figure 7-1: The survival probability in the Daya Bay experiment as a function of neutrino
energy with decays (full) and without decays (dashed) for �t [16] and s13 = 0:2 .
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Figure 7-2: The probability di¤erence in the Daya Bay experiment as a function of neutrino
energy for �t [16] and for s13 = 0:2 (full), s13 = 0:16 (dashed), s13 = 0:11 (dash-dotted) .

Moreover previous plots are referring to the �t �m2
32 = 2:6 � 10�3 eV 2, �23 = 34� and

�3=m3 = 2:6� 10�12 s=eV [16]. This �t is disfavored on the 99%CL and the bound is �3=m3 &
10�10 s=eV (99%CL). In this case the probability di¤erence (7.3) is �fty times lower. Therefore

we will not be able to measure any e¤ect in the Daya Bay experiment even for large value of

�13.

7.3 Constrains given by the Daya Bay experiment

Let us focus on �t �m2
32 = 2:6� 10�3 eV 2, �23 = 34� and �3=m3 = 2:6� 10�12 s=eV [16]. We

want to investigate for which values of mixing angle �13 is Daya Bay experiment able to see the
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Figure 7-3: Shadow region shows where oscillations and decays are indistinguishable from pure
oscillations for the Daya Bay experiment for �t [16].

neutrino oscillations and decays e¤ect or which values we can this �t disfavored. The basis idea

is to obtain the oscillations and decays data and try to �nd pure oscillations e¤ective mixing

angle �eff;decay13 which can mimic decays. Using our naive model described in the previous

chapter we can perform the �2 analysis.

�2 distribution is given by

�2 =
X
i

�
Xi � �i
�i

�2
: (7.4)

�i is the value for oscillations and decays scenario obtained by using (7.1) in (5.4),(5.5), (5.6).

Xi is the pure oscillation value with e¤ective angle �
eff;decay
13 calculated using (7.2) in (5.4),(5.5),

(5.6) and �i is its statistical error. We set the con�dence level on 90%. Therefore if �2 value

is lower than 2.71 we are not able to distinguish between pure oscillations and oscillations with

decays.

On �gure 7-3 there is shown the region where the neutrino oscillations and decays can not

be distinguished from pure oscillations for �m2
32 = 2:6 � 10�3 eV 2, �23 = 34� and �3=m3 =

2:6� 10�12 s=eV .

For �13 > 0:135 we are able to measure the e¤ect of neutrino decays or disfavor �t form [16].

For the lower values of mixing angle �13 we are not able to distinguish between pure oscillations

and oscillations and decay scenario.
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Chapter 8

Conclusions

We performed calculations of the oscillation probability with nonstandard interactions in the

source and the detector for the Daya Bay experiment.

� If "s = "dy holds the e¤ect can be described by e¤ective mixing angle �eff13 , ine gen-

eral di¤erent from real �13, and the experiment is not able to distinguish between pure

oscillations and nonstandard interactions.

� If condition "s = "dy is not satis�ed we are able to measure the e¤ect for a particular set

of nonstandard interaction parameters. There can be set stronger constrains on j"e�j then

present limits.

� The Daya Bay experiment can not improve present bounds on the parameter j"e�j if we

will not observe any evidence for nonstandard interactions.

We investigated the possible e¤ect of neutrino oscillations and decays in the Daya Bay

experiment.

� We are not able to observe the e¤ect of this scenario for inverted hierarchy due to the

present limits on the neutrino mass eigenstate lifetimes.

� For the normal hierarchy and �t from [16] we are able to measure neutrino oscillations

and decays only for large mixing angle �13 > 0:135. If this �t is disfavored the Daya Bay

experiment can not see any e¤ect.
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