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Abstract

The thesis is concerned with the solution of multiphysics problems described by par-
tial differential equations using higher-order finite element method (hp-FEM). Basics
of hp-FEM are described, together with some practical details and challenges. The
hp-adaptive strategy, based on the reference solution and meshes with arbitrary level
hanging nodes, is discussed. The thesis is mainly concerned with the extension of
this strategy to monolithical solution of coupled multiphysics problems, where each
physical field exhibits different qualitative behavior. In such problems, each physical
field is discretized on an individual mesh automatically obtained by the adaptive al-
gorithm to suit the best the corresponding solution component. Moreover, the meshes
can change in time, following the needs of the solution components. All described
methods and technologies are demonstrated on several examples throughout the the-
sis, where comparisons with traditionally used approaches are shown.

Abstrakt

Disertacni prace se zabyva feSenim multifyzikalnich problemt popsanych parcidlnimi
diferencidlnimi rovnicemi metodou kone¢nych prvki vyssich ¥ada (hp-FEM). Zaklady
této metody jsou popsdny spole¢né s praktickymi detaily a problémy. Déle je popsana
nova hp-adaptivni strategie zaloZend na tzv. referenénim feSeni a sitich s libovol-
nym stupném visicich uzlda. Préce se predevsim zabyva rozsifenim této metody pro
monolitické feSeni multifyzikdlnich problémt, kde kazdé fyzikalni slozka vykazuje
jiné kvalitativni chovani a je tedy diskretizovana na vlastni adaptivné ziskané siti vy-
hovujici chovani pfislusné slozky feSeni. Tyto sité se navic mohou ménit v case podle
potieb jednotlivych slozek feSeni. VSechny popsané metody jsou v praci demonstro-
vany na nékolika pfikladech spole¢né se srovndnim s tradi¢né pouzivanymi meto-
dami.
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CHAPTER 1

Introduction

Analytical solution of many physical and engineering processes described by partial
differential equations (PDEs) is usually hard to obtain, and thus the only way to solve
such problems is to apply numerical methods. In the last decades, computer and nu-
merical modeling became an important part of most engineering and scientific fields.
The most popular and the most widely used numerical method for the solution of
partial differential equations is the finite element method (FEM). With the improve-
ment of computer hardware the complexity of engineering simulations increases as
well as the necessity for more accurate numerical approximations. This resulted in
rapidly increasing popularity of adaptive higher-order finite element methods. Their
main advantages lie in better approximation properties and the capability of expo-
nential convergence [2, 3, 4, 10, 11, 38, 48]. Automatic hp-adaptivity, based on optimal
combination of spatial refinements (h-adaptivity) and different polynomial degrees on
elements (p-adaptivity), belongs to the most advanced topics in hp-FEM studied by
many researchers [10, 11, 31, 48, 44, 41]. The reason why this method is not widely
used among practitioners and in the engineering community is its algorithmic and
implementation complexity.

Numerical modeling of multiphysics problems is a challenging task because several
physical fields interact, usually in nonlinear manner. Examples of such nonlinearly
coupled problems can be found in fluid dynamics, fluid-structure interaction, nuclear
reactor analysis, magnetohydrodynamics and other areas. Furthermore, each compo-
nent of the solution may have different spatial discretization requirements since the
qualitative behavior of various physics components can differ significantly and may
evolve in time [26]. As examples of such behavior we can mention singularities in
the elastic displacement or in the electromagnetic field, boundary and internal lay-
ers in fluid flow or various sizes of vortices in the velocity field. Therefore, in order
to capture individual behaviors of the solution components more efficiently, different
physics should be discretized on individual meshes, and an adaptive method should
be used to refine each mesh based on the needs of the physics it supports.
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In the last decades, researchers solved multiphysics problems by dividing them into
several distinct problems, one for each physical field, and solving them by existing
monodisciplinary codes [19]. But since the components of the solution are usually
strongly coupled, interaction between models (and codes) is necessary. Traditional
coupling paradigms rely on solving the different physics in a loosely coupled way, a
technique mathematically described as operator-splitting (OS). This is usually done
in a simple black-box fashion, when results of one code serve as data for another
code and vice-versa, utilizing various methods of data transfer between non-matching
meshes. The major drawback of this approach is reduced accuracy and stability of
the simulations [35], originating in the fact that coupling terms between the various
physics components are handled inconsistently. Smaller time step is usually neces-
sary to overcome problems arising from the fact that nonlinearities are not treated
accurately, which results in increase of the computational time. Moreover, if different
physics are discretized on independent meshes, OS methods are biased by the error
caused by data transfers between non-matching meshes. Despite these drawbacks,
operator-splitting methods are still one of the most popular methods for solving cou-
pled multiphysics systems. This popularity dwells in the possibility of reusing existing
monodisciplinary codes whose development took many years.

An alternative to solving multiphysics problems in decoupled form is to solve them
monolithically, as one large nonlinear problem [35, 29, 21]. This involves an appli-
cation of competent numerical methods for nonlinear systems of algebraic equations,
such as standard Newton’s method or Jacobian-free Newton’s method together with
efficient iterative linear solvers and suitable preconditioning [29, 30]. All nonlinear-
ities in the coupled problem are then resolved up to a prescribed tolerance. To use
the monolithic approach in practice one has to overcome several problems. One of
them may be the necessity to use different types of finite elements in one computa-
tion, e.g., continuous elements for temperature and edge elements for electric field
in microwave heating problems. If individual meshes for solution components are re-
quired, the problem of assembling stiffness matrix over geometrically different meshes
appears and needs to be resolved. These problems usually discourage practitioners
from using the monolithic approach.

Most multiphysics problems are time-dependent and their qualitative behavior may
change significantly in time. In order to capture transient phenomena, sufficiently
fine meshes have to be used. On the other hand the size of the problem should
stay reasonably small since it has to be solved repeatedly on each time level. In
engineering applications a very fine uniform mesh usually has to be employed for all
time levels, which results in excessive computational times. Since the solution changes
its qualitative behavior from one time level to another (e.g., moving fronts, vortices,
etc.), most of the refinements in uniform meshes may not be necessary at a particular
time level. This leads to a need for dynamical meshes for such problems [37, 47, 45].
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The rest of the thesis is organized as follows: In Chapter 2, a brief overview of the
higher-order finite element method is given together with some practical details and
challenges. Chapter 3 describes an automatic hp-adaptive algorithm based on meshes
with arbitrary-level hanging nodes and using the reference solution as an error es-
timator [11]. Solution of multiphysics problems is addressed in Chapter 4, where
traditional methods such as operator-splitting and data transfer methods between
non-matching meshes are described and compared to our approach, in which mul-
tiple meshes can be used for coupled physics [43, 14, 47]. Chapter 5 extends the
hp-adaptivity and the multimesh technology to time-dependent problems, where au-
tomatically obtained hp-meshes dynamically change with the evolving solution with
no need for data transfers between meshes. Finally, Chapter 6 is devoted to the nu-
merical solution of an inductively heated flow of molten metals, where most of the
described algorithms are employed.



CHAPTER 2

Higher-order finite element method

This chapter is devoted to a brief introduction to the hierarchical higher-order finite
element method (hp-FEM). We start with the definition of a model problem, which
for simplicity is a linear second order elliptic partial differential equation. In next
chapters, the concept of hp-FEM will be extended to nonlinear coupled problems
involving several physical fields. We state the weak formulation of the model problem
and describe its discretization by hierarchical p-FEM in detail. The affine concept of
finite elements is explained and the construction of global basis functions is described
together with explicit formulas for shape functions on triangular and quadrilateral
elements. Main theoretical and practical challenges and drawbacks of the method are
mentioned. We demonstrate qualities and advantages of higher-order elements on an
example with a known solution.

2.1 Model problem

Let us assume () C RR? to be a bounded, simply-connected computational domain
with Lipschitz continuous boundary 9Q) = Tp UTy, where I'p and 'y are disjoint.
Let a1, a9, f, gp and gn be given functions satisfying the regularity requirements.

1 € CHQ), ap€C(Q)), feC(Q), gpe€C(Ip), gn€C(Ty).

These regularity requirements will be reduced after the partial differential equation
(PDE) is formulated in a weak (variational) sense. We are concerned with the follow-
ing problem: Find u : (3 — R such that

—V(a1Vu) +aou = f in O, (2.1
u=4gp on FD, (2.2)

ou
a1 % =8N on FN, (23)
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where a; and ap are space-dependent coefficients, f is so-called load function, and n
represents the unit normal vector to the boundary (). We say that a function u is
a classical solution of the above problem if u € C?>(Q)) N C}(Q)) and u satisfies (2.1) -
2.3).

For the purpose of the weak formulation of problem (2.1) - (2.3) we consider a function
u* € C2(Q)) NC(Q) such that u* = gp on I'p (the so-called Dirichlet lift of gp). Notice
that u* is not unique, but we will show later that the solution is invariant under its
choice. Writing u = U + u*, the problem (2.1) - (2.3) can be reformulated to the form:
Find U € C?(Q) such that

—V(&hVU) +al = f+ V(a1Vu*) —aou”™ in ), (2.4)
Uu=20 on I'p, (2.5)
ou+u*

The weak formulation is then derived in a standard way. Equation (2.4) is multiplied
by a smooth test function v € {C®(Q), v|r, = 0} and integrated over the domain ()

/Q(—V(alvu)anaoUv) dx:/gfvdx—k/Q(V(mVu*)v—agu*v) dx.

Then the Green’s theorem is used to reduce the order of differentiation and boundary
condition (2.6) is applied

/(alvu-VzH—aoUv)dx:/fvdx—/(a1Vu*-Vv—aou*v)dx+/ gnvdS.
0 0 0 Ty

The identity above was derived under very strong regularity assumptions, but notice
that all integrals are still well defined if these assumptions are weakened to

U veV={peH(Q), glr,=0}, feIXQ), 27)

where H'(Q) is a Sobolev space. Similarly the regularity assumptions for the coeffi-
cients a, ap and gy can be reduced to a;, a9 € L®(Q) and gy € L?>(Ty).

Let us define a bilinear form a(+,-) : V x V — R and a linear form I(-) € V' by

a(U,v) = /(alvu-Vv+a0Uv) dx, (2.8)
0

I(v) = /vadx—I—/r gn v dS. (2.9)
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Then the weak formulation of problem (2.1) - (2.3) reads:
Find u € H'(Q) such that

u=U+u*, where UV, u* € H(Q), u* =gp on Tp,

a(U, v) =1(v) —a(u*, v) forall veV. (2.10)

Assume that a;(x) > Cyiy > 0 and ap(x) > 0 a.e. in (), then it can be easily shown
(see [39]) that the bilinear form a(-,-) is V-elliptic and bounded and that the linear
form I(-) is bounded. Hence, these forms satisfy assumptions of the Lax-Milgram
lemma and the solution U exists and is unique. It remains to prove that also function
u = U+ u* is unique, in other words show that it is independent of the choice of
the Dirichlet lift u*. Suppose that there are two weak solutions u; = U; + uj and
up = Uy + uj, then

/ a1V (uy —up) - Vo+ag (w3 —up) vdx =0,

Q

for all v € V. Since u; — up € V, we can take v = uy — uy and thus,
/Q a1(V (uy — u2))* 4 ag (uy — up)?dx =0,

which implies ||u; — uz||> = 0, hence, u; = uy almost everywhere in Q).

2.2 hp-FEM discretization

We assume that the bounded domain () with a Lipschitz-continuous boundary is ap-
proximated by a computational domain (), whose boundary is piece-wise polynomial
and is more convenient for meshing. Then we cover the domain (), with a finite ele-
ment mesh.

Definition 2.1 (Finite element mesh) Finite element mesh T, , = {Ky,Ky, ..., Ky} over
a domain Q, C R? is a geometrical division of QY into a finite number of nonoverlapping
open cells (elements) K; such that

K;.

=

Oy =

i=1

Each element K;, 1 < i < M is equipped with a polynomial degree 0 < p(K;) = p;. By € we
denote the set of all edges in the mesh Ty,

Remark 2.1 In this thesis we consider the finite element mesh to contain triangles or quadri-
laterals with straight or curved edges.
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Definition 2.2 (Regular mesh) The mesh is called regular if for any two elements K; and
Kj, i # j, just one of the following alternatives holds:

il

K; is empty,

al

° i N
* K;NK;is a single common vertex,
) i N

o~

K; is a single (whole) common edge.

Remark 2.2 By assuming that the mesh is reqular we avoid the so-called hanging nodes,
which simplifies the discretization procedure. Hanging node in 2D is a mesh vertex, lying in
the interior of an mesh edge. Finite element meshes with hanging nodes will be discused in the
Chapter 3. Examples of irreqular meshes with hanging nodes are illustrated in Fig. 2.1.

Figure 2.1: Finite element meshes with hanging nodes (black dots).

Consider an element K; equipped with polynomial degree p;. Then we define local
polynomial space PFi(K;) of dimension N; which consists of polynomials of degree at
most p; on the element K;. In order to define finite element space with nonuniform
distribution of polynomial degrees in elements, we need to assign polynomial degrees
also to edges. They obey so-called minimum rule — polynomial degree assigned to
the edge e € £ is equal to the minimum of polynomial degrees in the interiors of
adjacent elements

e=KnNK; — p.=min(p; pj). (2.11)

The finite element space V},, (finite-dimensional approximation of the space V from
(2.7)) is then constructed as follows

Vip = {0 € V; vlg, € PP(K;), K; € Tpp; 0l € PP (e)), ¢ € £} (2.12)
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Then the variational formulation (2.10) can be approximated by the discrete problem:
Find uy;, such that

uhp = uhP + u;;p ’
a(upp, vpp) = L(vpy) forall vy, €V, (2.13)

where Uy, € Vj,, and ”Zp is a suitable piecewise polynomial approximation of the Di-
richlet lift u*.

Let {v1,...,on}, N = dim Vhp, be a basis of the finite-dimensional space Vhp. As
span{vy,...,oN} = Vip, the solution Uy, can be written as a linear combination of
these basis functions with unknown coefficients

N
Unp = Uy + Unp = Uy, + Y yivi.
i=1

Substituting the basis functions vy, ..., vy for v, and taking advantage of linearity of
the bilinear form a(-, -) we obtain the system of linear algebraic equations

N

yi a(vi, vj) = a(uy,, vj) +1(v;) for j=1,...,N, (2.14)
=1 ~——

Y Sii F;

which can be written in matrix form as
SY=F.

Here S is called the stiffness matrix, Y is the vector of unknown coefficients and F the
right-hand side (load) vector.

Remark 2.3 What remains to be defined is a suitable basis of the finite-dimensional space
Vip- While the Galerkin method assumes an arbitrary basis of the space Vy,,,, the finite element
method prefers basis functions with supports as small as possible, so that as many of them as
possible are disjoint. This results in sparse structure of the stiffness matrix S.

Let us define three types of global basis functions (see Fig. 2.2 for examples) that are
in agreement with the Remark 2.3:

1. Vertex functions are associated with mesh vertices. Their value is one at one
vertex and zero at all others. Hence, their support is formed by a patch of ele-
ments with one common vertex. The global basis of V},, contains vertex functions
associated with all vertices that do not lie on the Dirichlet boundary I'p.
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2. Edge functions are associated with mesh edges. They are nonzero on one edge
and they vanish on all others. Their support consists of two adjacent elements.
The global basis of V};, contains edge functions associated with edges that do
no lie on the I'p. Number of edge functions on each edge corresponds to the
polynomial degree of the edge p..

3. Bubble functions are associated with element interiors. Their support is only
one element and they vanish on its boundary. Number of bubble functions on
each element interion corresponds to the polynomial degree of the element p;.

Such a description of global basis is very vague, we will illustrate the process of
constructing the global basis of the space Vj,, in detail in the following sections.

Figure 2.2: Example of a vertex, edge and bubble function.

2.2.1 Affine concept of FEM

For piecewise linear approximation, all integrals in weak formulation can be easily
evaluated directly in the mesh using mesh vertices as quadrature points. For higher-
order finite elements situation is more complex, many integration points are required
per one element and storage of these points (coordinates, weights, function values)
would be extremely inefficient. Therefore we follow the so called affine concept, in
which a reference domain K is mapped onto mesh elements K; € Typ by smooth
bijective reference mappings
XK; - K — Kl'.

The mapping x, is affine in case K; is either a triangle with straight edges or a par-
allelogram with straight edges. Main advantage of the affine concept is that discrete
formulation (2.13) can be transformed from each mesh element K; to K by mappings
xg;, and all computational work (stiffness matrix assembly) can be done on the ref-
erence domain K. Thus, numerical quadrature (coordinates of integration points and
weights) can be defined only on the reference domain and values of functions and
their derivatives at integration points can be stored only for the reference domain(s)
resulting in distinctively smaller memory requirements.

9
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As follows from the affine concept, everything is done locally on the reference do-
main(s) and transferred to the physical mesh elements via reference mappings. The
global basis functions follow the same approach. Let us start with the definition of
a finite element.

Definition 2.3 (Finite element) A finite element is a triad K = (K, W, ¥X), where

* K is a domain in R? - we restrict ourselves to triangles and quadrilaterals

e W = ($1,¢2,...,¢n) is a space of polynomials (shape functions) on K of dimension
dim(W) = N.

e ¥ ={Ly,Ly,...,Lyx} is a set of linear forms

Li:W—R, i=12,...,N.
The elements of . are called degrees of freedom (DOF).

Following the affine concept, we define master finite element K = (K, W,fl). For
computational purposes we consider two types of reference domains K - quadrilateral
K; and triangular K;.

Ky={¢eR%;-1<¢,5 <1},

Ki ={Z € R —1 < &,8;8 + & <0}

Both reference domains with examples of reference maps are illustrated in Figs. 2.3
and 2.4.

1 CZ X4

X3

XK

=>

x2

X1

Figure 2.3: Examples of reference mappings from K onto K (quadrilaterals).
Let the local order of approximation be p” for element interior and p% for edges, and
let these orders satisfy the minimum rule p% < p’. To define the triad K = (K, W, %),
the reference domain K is equipped with the local polynomial space

W= {we P (R); wl,, € P (¢)), j=1,...,mg},

10
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Gl

1 X3
XK
0 ' 1 /\
N (: 1 X2
X1

Figure 2.4: Examples of reference mappings from K onto K (triangles).

o

where m; denotes the number of edges of the reference element K (m k=34 for triangles
and quadrilaterals, respectively). The set of degrees of freedom ¥ is uniquely defined
by the choice of a basis in W. The finite element is said to be unisolvent if it satisfies
o-property

Ll((,b]) = (51']', for all 1 S Z,] S N.

Here symbol J;; is standard Kronecker delta. In this thesis we consider hierarchic ap-
proach to finite elements since hierarchic basis allows (unlike nodal approach) nonuni-
form distribution of the polynomial degree in the mesh, which makes it suitable for
hp-adaptivity. Consider a hierarchic basis B = {¢1,¢2,...,¢nr} of the local polyno-
mial space W. By hierarchic we mean that

B c B! for every p.

Degrees of freedom are related to the basis functions, not to specific points in the mesh
as in the nodal finite elements. Let ¢ € PFi(K;) be any polynomial and B*(K;) =
{¢1, 2, ..., ¢n;} be a basis of PVi(K;), then

N; N;
g = Z:lﬁjsbj = Z;Lj(g) ®j
j= j=

where B; are real coefficients and L;(g) = B; linear forms from X. Such a choice of
degrees of freedom satisfies the J-property and yields an unisolvent finite element
[48].

Remark 2.4 Since the space H' imposes global continuity of approximation, their values are
constraint at vertices and on edges. Thus, the hierarchic local basis of space W have the same
structure as the global basis. Shape functions are associated with vertex, edge and bubble
nodes. Global basis of the space Vi, is then constructed using these shape functions since all
basis functions in the physical finite element mesh can be defined by specifying their restriction
to each element by means of shape functions and reference maps.

11
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Quadrilateral master element K,

In this paragraph we design hierarchic master element shape functions of arbitrary
polynomial degree on quadrilateral reference domain K, depicted in Fig. 2.5

U4 6‘3 U3
€1 0 ° | Jo)
U1 e1 02

Figure 2.5: Reference quadrilateral element K, with 4 vertex nodes, 4 edge nodes and
interior (bubble) node.

Optimal design of shape functions is an extremely difficult and important question. It
influences the resulting stiffness matrix, its properties, and hence numerical solution
of the resulting algebraic system. We describe the shape functions based on Lobatto
polynomials, most commonly used shape functions in consequence of their orthonor-
mality in Hé -seminorm.

To allow anisotropic polynomial order of approximation inside quadrilateral elements
(horizontal and vertical), we consider two local directional polynomial degrees p%!
and p"2. Element edges are connected with polynomial degrees p!, p2, p?, p that
originate in the physical mesh, where they satisfy the minimum rule (2.11)

€1

p , pe_o, g pb,l and pEZI p(34 S pb,Z.
Thus, the local polynomial space W, connected to K; is defined as follows

Wq = {w € Qpb,llpb,l,' ZU|gj S Ppej (6]'), ] =1,.. .,4}, (2.15)

where

Q. :span{gggg; (&1,8) € Kq,i:O,...,p,jzo,...,r}.

Before we state formulas for basis functions of the space W;, let us define Legendre
and Lobatto polynomials and mention some of their important properties.

12
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Definition 2.4 (Legendre polynomials) Legendre polynomials L,(x), n = 0,1,... are
eigenvectors of the Legendre operator,

_;; [(1 _ xZ) ddI;C”] =n(n+1)L,, x¢€(-1,1).

Legendre polynomials can be evaluated using the recursive formula

L()(x) = 1,
Li(x) = x,
2k —1 k—1
Ly(x) = p? xLi_q(x) — & Ly »(x), k=2,3,...

Legendre polynomials form an orthogonal basis of the space Lo(—1,1)

2
1 — fork=m,
/ L(x)Lm(x) dx = { 2k+1 (2.16)
1 0 otherwise.

Definition 2.5 (Lobatto functions) Let us define functions

1—x

hiv) = =, 2.17)
Lx) = sztll

1 X
L(x) = HLk—lHZ/—l L 1(8)d2, k=2,3,...

Here ||Ly_1||2 = v/2/(2k — 1), which follows from (2.16). Obviously [;(—1) = 0 and
also Ix(1) = 0 since Ly_1, k > 2 are orthogonal to Ly =1,

1 1
/ Li 1(x) dx = / L 1(x)Lo(x) dx =0, k=2,3,...
—1 J—1

Lobatto functions Iy, [y, ..., I, form a complete basis of the space Pp(—l, 1).

Two dimensional shape functions on quadrilateral reference domain (—1,1)? are con-
structed as tensor products of the one dimensional Lobatto functions. They are
grouped into 3 subsets according to which node they belong.

Lobatto vertex functions @', ..., @g* assigned to vertices vy, ..., v4 are equal to one at v;
and vanishes at all remaining vertices. They are chosen bilinear, defined via products

13
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of Lobatto functions as follows:

®q'(61,62) = 1o(G1)lo(G2), (2.18)
942(81,82) 11(81)10(62),
¢q°(1,62) L(¢1)h(82),
9q(G1,62) = 1o(G1)h(S2)

Lobatto edge functions (p;j 0 k=2,..,p% j=1,...,4 are associated with the corre-
sponding edge ¢;. Their trace on e; coincides with the Lobatto functions /; and their
trace vanishes on all remaining edges.

P (C1,02) = L(G)h(G2),  2<k<p7, (2.19)
P, (01,62) = h(8)k(E2), <k<p4,
o, (C,8) = L(@Dh(E), 2<k<p,
9, (616) = bE)KE), 2<k<p”

The hierarchic basis of the space W, is completed by Lobatto bubble functions cpﬁhnw
which vanish everywhere on the boundary of the reference domain K,

P g (61, 62) = Iy (81)1ny (82),

2<m <ph 2<m <phr (2.20)

The total number of hierarchic shape functions on quadrilateral master element is
summarized in Tab. 2.1.

Table 2.1: Hierarchic shape functions on K.

Node type Pol. degree # of shape functions # of nodes
Vertex always 1 4
Edge pi>2 pi—1 4
Bubble  p*!,pP2>2  (p" -1)(p** 1) 1

Triangular master element K;

In this paragraph we design hierarchic master element shape functions of arbitrary
polynomial degree on triangular reference domain K, depicted in Fig. 2.6

14
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U3

€3¢ €2

\ 4 -9

01 e1 02

Figure 2.6: Reference triangular element K; with 3 vertex nodes, 3 edge nodes and
interior (bubble) node.

The reference geometry K; = {& € R% —1 < ¢&,8;¢1 + & < 0} is equipped with
the affine (barycentric) coordinates

G+
2 4

G +1 _G+1

A2(C81,82) = 5 A3(C1,82) = (22D

M(C1,82) =

For the definition of the higher-order shape functions on a triangle it is convenient
to decompose the higher-order Lobatto functions I5,I3,... from Definition 2.5 into
products of the form

Ie(x) = lo(x) 1 (x)px—2(x), 2<k. (2.22)
where the kernel functions ¢,_,, k = 2,3, ... are polynomials of degree k — 2.

The edges ey, e, e3 are associated with local polynomial degrees p®!, p®2, p® and the ele-
ment interior with one local order of approximation p’. Again, these local polynomial
degrees originate in the physical mesh, obeying the minimum rule. Hence, the local
polynomial space W; on K; has the following form

Wi = {w € Pys(Kp); wle, € Py (ey), j = 1,2,3}, (2.23)

where o
Py(K:) = span {&i&h; (61,82) €Ki i,j=0,..,p; i+j<p}.

Hierarchic basis of the space W; again consist of vertex, edge and bubble functions:

Vertex functions ¢;", }?, ¢;* are assigned to vertices v1, vy, v3. Each function is equal to
one at corresponding vertex and vanishes at remaining two vertices. Vertex functions
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are linear, defined by following formulas

¢ (861,82) = M(81,8), (2.24)
92 (81,82) = A2(C1,82),
¢?(81,82) = A3(81,82).

Edge functions q);’ p k=2,...,p% j=1,23 coincide with one-dimensional Lobatto
functions on corresponding edge and vanish on all remaining edges. They can be
written using the kernel functions ¢_,, defined by (2.22), in the following form

oY, = MAapro(da—A1), 2<k<pY, (2.25)

PP, = Adadra(As—Ay), 2<k<p?
oF, = Ashigeo(h—As), 2<k<po.

Remark 2.5 On both reference domains K,, K; shape functions coincide on edges with Lobatto
q p 8

functions lo, 11,1y, . . ., which allows us to combine triangular and quadrilateral elements in one

hybrid mesh.

Bubble shape functions q)zl,nz,t complete the basis of the space W;. These functions vanish
on the whole element boundary and their choice does not affect compatibility between
quadrilateral and triangular meshes. They will be defined using affine coordinates and
kernel functions as follows

qvﬁl,nz,t = A1 A2 A3 4P, —1(Asp — Aot) Py —1(Aop — A1), (2.26)

1<n; 1<my; m+nm<ph-1

Total number of hierarchic shape functions on triangular master element is summa-
rized in Tab. 2.2.

Table 2.2: Hierarchic shape functions on K;.

Node type Pol. degree # of shape functions # of nodes

Vertex always 1 3
Edge pi>2 pi—1 3
Bubble p? >3 (p* —1)(p* —2)/2 1
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2.2.2 Construction of the reference mappings

The mapping from the reference domain K onto the physical linear element K (with
straight edges) can be simply expressed as a vertex interpolant

x(8) = ). x0°(2), 27)

where 7 is the number of element vertices, x; are coordinates of vertices in the phys-
ical mesh and ¢" are master element vertex shape functions. The reference mapping
for elements with curved edges could in general be nonpolynomial. In order to get
feasible algorithms, the reference mapping is approximated using polynomial isopara-
metric approximation constructed with the aid of all types of shape functions - vertex,
edge and bubble functions, using the same set of functions as for the approximation
of the solution.

Remark 2.6 Using the shape functions for an approximation of nonpolynomial reference maps
makes the mapping easy to store (a list of coefficients) and its values and derivatives as well as
values and derivatives of its inverse can be easily accessed.

The inversion of the reference mapping xx is required only in case we need to lo-
cate corresponding point & € K, given its image x € K. This is the case when we
want to access solution at some given point x in the computational domain. In case
the reference map is affine (i.e., for linear triangles and linear parallelograms), we have

e @)E =) = x=xc(0),

where v is, for example, one of the vertices of the reference domain and xg(v) corre-
sponding vertex in the physical mesh. Thus,

-1
f=o- (%g) (0) (xx(0) — ). (228)

In case the reference map is not affine, its inverse can be a nonpolynomial mapping
and ¢ must be sought iteratively by the Newton-Raphson technique

DxK

-1
$ir1 =78 — <D§,‘> (¢;) (xx(¢;) —x), (2.29)

where initial guess &, can be taken as any point in the reference domain K.
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2.2.3 Transformation of master element polynomial spaces

Following the affine concept described in Section 2.2.1, let us describe how the inte-
grals in the discrete problem (2.13) are transformed from the mesh elements K;, € 73, ,
to the appropriate reference domain K, where the integration takes place. Let us con-
sider reference mapping xx,, () : K — K,, and a finite master element K = (K, W, %)
from Def. 2.3. Then in the H!-conforming case the mapping @, from the polynomial
space W(K) to the polynomial space W (K,,)

WR) 2 W(K,)

requires that the function value of any polynomial @ € W(K) at each reference point
& € K coincides with the value of the transformed function w € W(K,,) at its image
x = xg,, (¢) € K. Thus,

w(x) = (P, (@) (x) = (@0 x¢, ) (x) = Dx, (), (2.30)
or
@(¢) = (woxk,)(§) = w(xk,(¢)). (2.31)
Now, using the chain rule of differentiation we obtain
Iy O k1 O Ik
agl Bxl 851 axz 861 ’

ow Jw 8x1<m,1 ow ame,Z

&%) = o e Ton o6

Thus,
90 Okl XKy 2 Iw ow
oG | 0%, o1 ox; | <anKm)T ox1
o || 9xk1 9%k ow |\ 9 ow |
9G2 95 9% dx2 0x2
where — & represents the Jacobi matrix of the mapping xx,. Hence, the gradient

g
Vw at an arbitrary point x € K, is transformed to the corresponding point & € K as

follows
dDy,

9
Applying formulas (2.31) and (2.32), the bilinear form a(-, -) can be transformed in

Vw(x) = < > - v (§). (2.32)
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the following way

a(u,v) = /Q (o1(0) Vir() - Vo) + a0(x) u(x) () ) d

h

- ¥ / <a1Vu(x)-Vv(x)—i—ao(x)u(x)v(x))dx

KieT,, ' Ki
A aDx, \ ' _ Dx, \
- KZT{ [k [m(@‘)( 5 ) w(é)]- ( - ) Vv(g)] dé
+ [ I o) a(@)2(@) di:}- (233)

Here [, denotes Jacobian of the mapping x,

Dy,
]Kl.:det< ag’)

Remark 2.7 For triangular elements with straight edges the reference mapping xx, is affine,
therefore the Jacobian |k, is constant and can be taken out of integrals. For quadrilateral
elements or elements with curved edges the Jacobi matrix and Jacobian are not constant and
must be integrated using numerical quadrature. This increases the order of the integration rule
needed to evaluate integrals in (2.33) accurately.

Remark 2.8 In order to avoid repeated transformations of shape functions and thus to speed
up evaluation of the stiffness matrix entries in the element-by-element assembly procedure,
transformed values of all shape functions and their derivatives

Dx. \ "
w<x>=< a;) via(g)

can be precalculated in advance for an active element at all integration points, and stored.
During the stiffness matrix assembly, when all possible pairs of shape functions are integrated,
these precomputed values are repeatedly used, refraining from multiple matrix-times-vector
evaluations, thus, accelerating the process. Indeed, let us look at the integral

/ Vu-Vodx =

K;

(anKm )T on <8Dxxm )T on <anKm )T 3, (anKm )T Lo
g 11 d¢ d¢ 12 9G2 a¢ 11 91 a¢ 12 9>
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(2D} 20, (0 YT (00} T30 (3D YT
9y 901 9&  Jyp 9G2 o8 Jxn 91 & )y 932 '
It contains 10 multiplication operations (multiplication by Jacobian is hidden in quadrature

weights), while its simplified form with precalculated transformed derivatives

ouodv  dudv
/K]Ki <axax + 8y8y> dg
contains just 2 multiplications. Precalculation of transformed values takes only O(p*) op-
erations since there are O(p?) shape functions evaluated at O(p?) integration points, while
evaluation of the integrand itself takes O(p®) (O(p*) pairs of shape functions at O(p?) inte-

gration points). Therefore, theoretically we can speed up the stiffness matrix assembly up to
5 times.

2.24 Design of global basis functions

Global basis of the finite-dimensional space V},;, is now constructed by gluing together
master element shape functions (transformed to the physical element by mapping ®).
It is done in such a way, that resulting basis functions satisfy conformity requirements
of the approximated space V (space H' in our model problem).

xk, (9;) = v;
xKl(ﬁj) =0j w‘Kl = (I)Kl (w)

/\

=

S

0j  xx,(0;) = v

(359

Figure 2.7: Example of an adjustment of edge shape function orientation.

In order to fulfill the conformity requirement of global continuity of basis functions,
the orientation of physical mesh edges has to be taken into account. Edges of the
reference element are oriented counterclockwise, while to each edge in the physical
mesh an unique orientation is assigned (for example from vertex with lower index to
the vertex with higher index). In case the orientation of the reference element edge
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¢ =7;0; C 9K coincides with the orientation of the edge e = v;v; C JK,
xx (07) = v, xk(9;) = v;,

then all master element shape functions associated with edge & stay unchanged. In
case orientations differ, all master element edge functions have to be transformed by
a suitable map x9 : K — K, which inverts the parametrization of the edge é. In practice,
we define edge shape functions on the reference domain with both orientations and
pick out the correct one. For an illustrative example see Fig. 2.7, where on the element
K; the master element edge function stays unchanged, while the edge function on
the element K5 has to be adjusted — its parametrization has to be inverted.

Shape function Dy

Transformed shape function

Global basis function w Patch Sy

Figure 2.8: Construction of a global basis function from shape functions on the refer-
ence domain.

In the following we define the way globally conforming basis functions on element
patches are constructed. Illustrative pictures for the vertex basis function are depicted
in Fig. 2.8.

Definition 2.6 (Vertex basis function) Let the space V from the weak formulation be a sub-
space of H'(Q) and let Vy,,, be a finite dimensional subspace of V. Vertex function w € Vy,,
associated with a mesh vertex vy, is a continuous function defined on )y, which equals to one
at vy and vanishes outside of the patch Sy formed by all elements sharing the vertex vy. For
each element K, € Sy

wlk, = P, (@),
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where W is a master element vertex shape function associated with the vertex v, where v =
-1 . . . 2>
xy (vx) is the corresponding vertex of the reference domain K.

Definition 2.7 (Edge basis function) Let the space V from the weak formulation be a sub-
space of H'(Q)) and let Vy,, be a finite dimensional subspace of V. Edge function w € Vj,,
associated with a mesh edge ey, is a continuous function defined on (Y, which vanishes outside
of the patch Sy formed by all elements sharing the edge ey. For each element K, € Sy

w|KWL = ¢KW!(Z’D © xg)’

where W is a master element edge shape function associated with the edge e, where e = xlz’i (ex)
is the corresponding edge of the reference domain K, and x9 is the orientation adjustment.

Definition 2.8 (Bubble basis function) Let the space V from the weak formulation be
a subspace of H'(Q) and let Vip be a finite dimensional subspace of V. Bubble function
w € Vi, associated with a mesh element K,,, is a continuous function defined on (), which
vanishes outside of the element K, such that

w|Km = (me (w)’

where W is a master element bubble shape function.

2.2.5 Assembling of the stiffness matrix

In linear finite elements all vertices can be simply numbered and stiffness matrix can
be assembled in vertex-by-vertex fashion. Since degrees of freedom in higher-order
finite elements are associated with vertices, edges and element interiors, vertices do
not have that unique role in assembling of the stiffness matrix. Hence, it is better to
assemble the linear system in an element-by-element fashion. Basic idea of element-
by-element assembly respecting sparsity of the stiffness matrix is described in Alg. 1.

Algorithm 1: Element-by-element assembling procedure.

forall elements Ky, € Ty, do
L = list of basis functions v; whose supp(v;) N Ky, # @;
fori c L do
forj € Ldo
Sij = Sij +a(vi, vj)|K,.;

Question of numbering of shape and basis functions arises. Local basis (shape func-
tions) on the reference domain are divided into 3 types - vertex nodes, edge nodes
and bubble nodes. Unique enumeration of shape functions is achieved by enumerat-
ing nodes (vertex, edge and interior) and then shape functions within these nodes. In
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a similar way, following natural order, global basis is numbered. First vertices are vis-
ited and vertex functions are numbered, followed by edges and corresponding edge
functions and ended by element interiors and bubble functions. One leaves out all
vertices and edges lying on the Dirichlet boundary.

Now all shape functions on the reference element must be linked to an appropriate
global basis function by so-called connectivity arrays c¢(K,w), where K € 7y, specifies
an element and w a master element shape function. Thus, the corresponding index
to the global stiffness matrix for the shape function w on the element K is given by
c(K,w). In case the shape function contributes to the Dirichlet lift and is not related
to any basis function we may indicate this by setting connectivity array to -1.

In practice, connectivity arrays are not stored for all elements, instead we assemble
so-called local stiffness matrix SX on element K using all relevant shape functions wj,
j = 1,..., Nk and the reference map xx, where Nk is number of degrees of freedom
connected with the element K (including shape functions representing the Dirichlet
lift). Then, we construct connectivity array for element K and use it to distribute values
of the local stiffness matrix S¥ to the global stiffness matrix S or to the global right-
hand side vector f in case of Dirichlet DOFs (nodes lying on the Dirichlet boundary).
See Alg. 2 for description of the assembling procedure in pseudocode. Note that we
already incorporated ideas from Remark 2.8, hence, all shape functions are pretrans-
formed at the beginning of the assembling process.

2.3 Practical and theoretical challenges of hp-FEM

Higher-order finite element method places high demands on both, mathematician
and programmer. As any other numerical method hp-FEM has its advantages and
drawbacks or challenges. As mentioned earlier, hp-FEM is theoretically capable of
exponential convergence, higher-order accuracy can be achieved easily by combining
low-order and higher-order elements. However, exponential convergence was proved
by prof. Babuska in [23] for one dimensional problems only and its numerical at-
tainment in practical problems is still a challenge. Moreover, optimal combinations of
polynomial degrees (selection of the best refinement) rely on a posteriori error esti-
mates of the finite element error, which are rarely known for hp-FEM, especially when
solving real-life coupled problems. Several refinement strategies were employed using
a priori knowledge about the solution (point singularities, boundary layers). In most
of the approaches, an initial mesh is constructed (utilizing knowledge about solution
behavior) and then uniform or adaptive p-refinements are made. In most practical
problems behavior of the solution is not know a priori or it can even change in time.
In the next Chapter we propose an automatic hp-adaptivity based on reference solution
suitable for complicated engineering problems, where the nature of the solution may
not be known.
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Algorithm 2: Assembling procedure.

forall elements K, € Tj,,, do
LPm = list of shape function indices for polynomial degree p,;
forall i € LP" do

D -T
precalculate transformed derivatives Vo;(x) = (%’””) Vi(¢);

// assemble local stiffness matrix and RHS vector
forall i € LP» do
forall j € LP" do
KWI —_ m .
‘ Sl] = 55 —I—a(vi, U]')|I<m ;

fir = fr @)k,

// distribute entries of S to the global stiffness matrix
forall i € LP" do

r=c(Ky,i); // global index for element K,, and function v;
forall j € LP» do
s =c¢(Km,j); // global index for element K, and function v;

if v; represents Dirichlet lift then
‘ fr = fr - Slljm/

else
‘ Srs = Sps + ng

fr=fr+ f

Among more practical challenges of hp-FEM belongs numerical quadrature. In low-
order FEM numerical quadrature is usually not the main issue, since integrals of
products of shape functions can be evaluated exactly using one quadrature rule (using
values at vertices, edge middlepoints, etc.). For higher-order finite elements, polyno-
mial degree of integrands in the week form may vary - product of 2 vertex functions
requires quadrature rule accurate for polynomials of the second order while product
of two 9th order edge functions requires quadrature rule of the 18th order. Hence,
using one (very accurate) quadrature rule for all integrals would result in tremen-
dous assembling times. Moreover, in case of curved or distorted element geometry,
polynomial order of inverse reference mapping has to be taken into account. For tri-
angles and parallelograms, corresponding inverse of the Jacobi matrix and Jacobian
of the reference map are constant and thus, do not affect the order of the quadra-
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ture rule needed to evaluate stiffness matrix entries exactly. The quadrature rule can
be determined from the shape functions degrees only. This is not true for deformed
quadrilaterals or elements with curved edges - here the inverse reference mapping
can be nonpolynomial in genreal and question of choice of sufficient quadrature rule
arises. From our experience insufficient quadrature rule can lead to disastrous results.

Table 2.3: Comparison of computational times for low-order and higher-order FEM.

# DOFs Assembling time Solving time  H'-error

higher-order FEM 264809 26.4 10.04 2 x 10710
linear FEM 264337 4.96 8.48 0.0025
higher-order FEM 655689 69.61 31.53 1.7 x 10711
linear FEM 658401 12.22 38.00 0.001
higher-order FEM 9869 0.41 0.12 0.0023
linear FEM 264337 4.96 8.48 0.0025

EEEEEEMEE

(a) higher-order FEM (655689 DOFs) (b) low-order FEM (658401 DOFs)

Figure 2.9: Adaptively obtained meshes for L-shape benchmark problem.

With numerical quadrature issues the computational time needed to assemble the stiff-
ness matrix and the load vector is closely connected. For low-order FEM usually the
majority of the computational time is spent in solving step, LU decomposition of the
matrix or iterative solvers. For higher-order FEM the time needed to evaluate entries
of the stiffness matrix usually exceeds the time needed to actually solve the resulting
system. Comparisons of assembling and solving times for standard L-shape bench-
mark problem is shown in Tab. 2.3. It compares the time needed to evaluate entries
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and the time the direct solver needed to solve the linear system for matrices obtained
on hp-mesh (Fig. 2.9(a)) and linear mesh (Fig. 2.9(b)). For approximately the same
sizes of matrices the assembling took more than twice longer than the direct solver
in case of hp-FEM. For linear elements the time spent in the direct solver was twice
or more times longer than the assembling time. Let us notice that resulting H'-errors
for both methods are incomparable (the last section in Tab. 2.3 shows sizes of matri-
ces and corresponding times on the same error level). Comparison of computational
times places even more emphasis on the optimal choice of quadrature rules. Possible
speed-up of the assembling time in #p-FEM was also discussed in Remark 2.8, where
pretransformed values of shape function derivatives are used.

The stiffness matrix represents another hp-FEM specialty — distinctive sparsity and
conditioning properties of the matrix. Matrices obtained from hp-FEM problems are
generally denser and worse conditioned than those coming from the linear finite el-
ements. This has an affect on numerical methods, both direct and iterative, that are
supposed to solve the resulting systems. Choices of another basis functions of the
space Vj,, in order to improve conditioning properties of resulting matrices are dis-

cussed in [42, 50].

T

(a) 24 elements of the 10th degree (b) 24 elements of the 1st degree

Figure 2.10: Adaptively refined mesh for visualization purposes of higher-order solu-
tion; comparison with already linear triangles in linear FEM.

Concerning hierarchic hp-FEM, the last issue we would like to raise here is purely
practical problem with visualization of results obtained by the method. Recall that
in hierarchical approach solution is expressed as a linear combination of basis func-
tions of various polynomial degrees and in order to visualize it, it has to be linearized
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in some way. By visualization solution values only at, let us say, element vertices
we are loosing information. To overcome this problem, elements should be “refined”
for visualization purposes and solution on these subelements can be taken as linear.
Visualization technique used in our code uses adaptive algorithm to get as accurate
representation of higher-order solution as possible. It refines elements where solution
oscillates or behaves wildly and it leaves large element where solution is more or less
linear. Division of mesh elements into linear triangles for visualization purposes is
depicted in Fig. 2.10. Each physical mesh element (triangle) is refined into subele-
ments and solution on these subelements is visualized as linear. Notice, that more
subelements is needed near the singularity due to the steep gradient there.

24 Demonstrative example

As mentioned in Chapter 1, higher-order finite element method is advantageous es-
pecially for solutions with smooth regions. By combining higher polynomial degrees
(p-refinement) for smooth parts of the solution and h-refinements towards singulari-
ties, boundary or internal layers, an exponential convergence rate can be achieved.

To demonstrate superiority of higher-order elements over low-order elements for
smooth solution, let us solve Poisson equation with known solution

—Vu =2sinxsiny in Q= (0,7)? (2.34)
with Dirichlet boundary conditions
u =sinxsiny on 0Q. (2.35)
The exact solution to problem (2.34), (2.35) is equal to

u = sinxsiny.

We apply standard uniform h-refinements on bilinear, biquadratic and bicubic ele-
ments and uniform p-refinements on mesh consisting of 4 quadrilateral elements.
Fig. 2.11 compares convergence of the relative error

|unp — 1] [
ledis

for these four approaches. Obviously, p-method gives exponential convergence, since
the solution is infinitely smooth, approximation of smooth solution by low-order el-
ements leads to very slow convergence. Approximated solutions are depicted in
Fig. 2.12, where with the same number of DOFs we obtained 100 times better ap-
proximation using p-refinements.
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Figure 2.11: Comparison of convergence rates for h- and p-refinements.

(a) p-refinements (b) h-refinements

Figure 2.12: Approximated solution u;,, obtained by (a) 4 biquartic elements (49 DOFs,
error 0.0977%) and (b) 64 bilinear elements (49 DOFs, error 9.286%)

On the other hand, solutions with singularities or steep gradients are better approx-
imated using piecewise low-order elements, hence, an optimal combination of large
higher-order elements and small low-order elements is necessary in practical exam-
ples, resulting in need for hp-adaptivity.
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CHAPTER 3

Adaptive hp-FEM

with arbitrary-level hanging nodes

The algorithmic difficulty of hp-adaptive algorithms is one of the main obstacles pre-
venting adaptive hp-FEM from being employed widely in realistic engineering com-
putations. In order to reduce its complexity, we split the algorithm into two parts
— the treatment of arbitrary-level constrained approximation (arbitrary-level hanging
nodes) and the fully local hp-refinement of elements. In addition to modularity and
relative simplicity, another advantage of the presented approach is that it completely
eliminates forced refinements which are induced by mesh regularity rules in all stan-
dard adaptivity algorithms. The algorithmic treatment of forced refinements is highly
problematic due to their recursive nature, and obviously, they slow down the perfor-
mance of the automatic adaptivity.

In this chapter we present a feasible algorithm for the treatment of multiple-level
hanging nodes and we demonstrate its positive effect on both the performance and
simplicity of automatic hp-adaptivity algorithms.

The chapter is organized as follows: Section 3.1 is devoted to the explanation of the
treatment of arbitrary-level hanging nodes in H 1—conforming space. Simplified, fully
local hp-adaptive algorithm together with several strategies how to select an optimal
hp-refinement for one element is explained in Section 3.2. Effectivity of the automatic
hp-adaptivity is demonstrated on two numerical examples in Section 3.3. Finally, an
overview of four main open source adaptive hp-FEM codes is presented in Section 3.4.

3.1 Hanging nodes and irregular meshes

In order to introduce irregular meshes and hanging nodes, let us recall Definition 2.2.
The mesh is called regular if for any two elements K; and Kj, i # j, just one of the
following alternatives holds:
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[ ]
ol

K; is empty,

[ ]
o~

iN
i NKj is a single common vertex,
iN

[ ]
il

K; is a single (whole) common edge.

Otherwise the mesh is called irregular.

From all adaptive strategies let us start with the well-known red-green refinement strat-
egy. This technique first subdivides elements with large error into geometrically nice
subelements (red) and then it regularizes the mesh by additional refinements of ad-
jacent elements ( ). This approach preserves regularity of the mesh but when
repeated refinements occur in the same part of the mesh it creates elements with
sharp angles which cause problems in the finite element method. This is illustrated in
Fig. 3.1.

Figure 3.1: Red-green refinement - one level and repeated.

The “green” refinements can be avoided by introducing hanging nodes, i.e., by violating
Definition 2.2, by allowing irregular meshes where element vertices lie in the interior
of edges of other elements. In order to keep the implementation of the discretization
simple, most finite element codes working with hanging nodes limit the maximum
difference of refinement levels of adjacent elements to one (so-called 1-irregularity rule
- see Definition 3.1) — see, e.g., [32, 34, 44].

Definition 3.1 (Irregularity rules) By k-irregularity rule (or k-level hanging nodes) we
mean a restriction on the mesh where the maximum difference of refinement levels of adjacent
elements is k. In this context, k = 0 corresponds to the regular mesh and k = oo to the mesh
with arbitrary-level hanging nodes.

By using k-irregular meshes for k > 1 one can avoid badly shaped elements since
the “green” refinements can be replaced by “red” ones and the last “green” levels
of refinements (thin triangles) are avoided. Nevertheless, unwanted (forced) refine-
ments are introduced anyway unless k = oo is allowed. In practice, usually 1-irregular
meshes are sufficient when refining towards point singularities, but multiple level
hanging nodes appear in problems with boundary or internal layers.
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3.1.1 Arbitrary level hanging nodes

Arbitrary-level hanging nodes technique was first introduced in [41] in the context
of continuous higher-order elements for second-order elliptic problems and in [46]
in context of vector-valued H(curl)-conforming edge elements for Maxwell’s equa-
tions. The requirement of continuity of approximation (or its tangential component in
H(curl) space) across an edge which contains hanging nodes is equivalent to a set of
linear algebraic relations between coefficients of constraining and constrained shape
functions on that edge. In [48], these relations were derived explicitly using transi-
tion matrices between pairs of constraining and constrained polynomial bases. In our
approach the constraining-constrained relations are calculated in specific situations
on-demand.

B

A

Figure 3.2: Example of a mesh with one-level hanging node.

To begin with, assume a simple geometrical situation shown in Fig. 3.2: Two elements
K; and K3 are adjacent to the edge AB of an element Kj, and the edge AB is equipped
with the polynomial degree 1 < pap. By design, every constrained edge inherits
its orientation and polynomial degree from the constraining edge (even if this is in
contradiction with the minimum rule (2.11)).

In H'-conforming space there are pap + 1 constraining shape functions on the edge
AB which induce three different situations (Fig. 3.3 illustrates the simplest situation
with PAB = 2)

I: Constraining vertex function on K;j corresponding to the vertex A constrains the
vertex functions on the elements K, and K3 corresponding to the vertex C.

II: Constraining vertex function on K; corresponding to the vertex B also constrains
the vertex functions on the elements K; and K3 corresponding to the vertex C.

II: pap — 1 constraining edge functions of polynomial degrees p = 2,3,...,pap on
Kj corresponding to the edge AB constrain:
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(a) vertex functions on the elements K, and K3 corresponding to the vertex C,
(b) p — 1 edge functions on the element K, corresponding to the edge AC,
(c) p — 1 edge functions on the element K3 corresponding to the edge CB.

CASEI: CASE II:

CASE III:

Figure 3.3: Constraining and constrained shape functions on a quadratic edge with
one-level hanging node.

Note that interior bubble functions are neither constraining nor constrained functions
since their support is one element and their values vanish on the element boundary,
and therefore do not influence the calculation of constraint coefficients.

Remark 3.1 The minimum rule (2.11) is violated on edges with hanging nodes, where con-
straining element (K1) has higher polynomial degree than constrained elements (K, K3). On
constrained elements additional higher-order edge functions need to be added in order to con-
struct conforming basis function across the constraining edge AB.

In case of multiple-level constraints we have two types of constraints - direct and
implied. Consider, for illustration, the mesh with three-level hanging nodes shown in
Fig. 3.4.

As in the previous case, there are psp + 1 constraining shape functions on K; associ-
ated with the edge AB. Direct constraints are vertex functions associated with vertices
lying on the edge AB (Cy,C; and C3) and edge functions associated with edges ly-
ing on the edge AB (AC3, C3Cy, CCy and C1B). Since values of constrained vertex
functions are nonzero on element edges, they may further constrain vertex functions
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Figure 3.4: Example of a mesh with three-level hanging nodes.

associated with vertices lying away from the constraining edge AB (C4 and Cs). We
call these constraints implied constraints. Note that directly constrained edge functions
do not imply additional (implied) constraints (their values are zero on edges e ¢ AB)
and edge functions are never implied constraints since constrained vertex functions
are linear on edges lying away from the edge AB. Example of two vertex functions
(associated with vertex A and vertex B) and a quadratic edge basis function associated
with the edge AB is shown in Fig. 3.5.

Figure 3.5: Two vertex functions and quadratic edge function on the edge AB.
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Next, let us describe in detail how the constraint coefficients are calculated. This
algorithm requires a unique enumeration of the basis functions vy, vs,..., vy of the
finite element space V},, as well as a unique local enumeration of the shape functions
on the reference domain K. First assume a mesh element K; in the mesh whose edge
e = (a, b) is constrained by another mesh edge AB, e C AB. This element is mapped
onto the reference domain K via an inverse reference map xlzil : K; — K. Let é be the
edge of K such that xk, (é) = ¢, and by ¢ and ¢? let us denote vertex shape functions
associated with endpoints v, v1 of the edge é, and by ¢5, ¢5, ..., (p;g let us denote edge
shape functions on K associated with the edge é.

For each constrained edge we store a reference to the standard node associated with
the constraining edge AB and the index g° identifying uniquely the geometrical posi-
tion of the constrained edge e within AB. Fig. 3.6 shows the values of the index ¢° for
various geometrical cases.

Al -1 iB  level k=0 (unconstraine
At 0 f 1 1B level k=1
At 2 | ! | 4 | 5 1B level k=2
Al 6 f ! } 8 } 9 } 10 } ll% 12% 13% B level k=3

etc.
——tt—tt—t—t—t—t+—+—+—+—+—+—+—B  level k=4

Figure 3.6: Geometrical situations on a constraining edge.

Now, let us assume a constraining edge function ¢ of the space V}, on the edge
AB of the polynomial degree p. The function ¢ determines the constraint coeffi-
cients ay”, a7” ay? corresponding t tex functi 0, ¢ and edge functi

o g, ponding to vertex functions ¢f, ¢] and edge functions
93, 95, ..., ¢, on the element K; (associated with the edge ¢ C AB). Constraining

coefficients are determined as follows:

* oy’ = y(a), where a denotes one of the endpoints of the edge e.

o a7 =1p(b), where b denotes the other endpoint of the edge e.

p 4 ep

¢ Values of coefficients ocg’ ,ocg’ soee s Bp
linear algebraic equations of the form

are obtained by solving a system of p — 1

p
Y F 1) = F6) b, 1) ol ), 0<i<p,
j=2

where y¥ € [—1,1] are the p + 1 Chebyshev points of degree p on the edge ¢,
and §(t) = ¢(xk, (E(t))), where £ is a mapping from the interval [—1, 1] onto the
reference edge é. Functions ¢, ¢, §5, ¢5, ..., ¢}, are shape functions associated
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with the bottom edge e; of the reference domain. The bottom edge is used in
order to simplify the implementation, otherwise the mapping ¢ from the interval
[—1,1] onto edge é would have to used.

Then,

P
N 5 A /] ep v ep e
Pe =g @ + 0y §01+Z;“]‘ ]
j=

is a new edge function of degree p on K. After transforming . to the element K;, it
matches exactly the corresponding part of the constraining edge function ¢ across the
edge e.

More details on arbitrary-level hanging nodes technique can be found in [41, 46].

3.2 Adaptive hp-FEM

The major difference between the automatic adaptivity in the standard #-FEM and in
the hp-FEM is that in the latter case, a higher-order element can be refined in many
different ways. One can either increase its polynomial degree without spatial subdivi-
sion (p-refinement) or the element can be split in the space with various distributions
of polynomial degrees in subelements. Fig. 3.7 illustrates this for a quartic triangular
and quadrilateral element.

/A .
LC/NES S\

6 3
A\/4 314113 |3| andmany more...

Figure 3.7: Multiple element refinement options in the adaptive hp-FEM

This means that traditional error estimates (that deliver one number per element) do
not provide enough information to guide the hp-adaptivity. In order to select an
optimal refinement, one needs to use some information about the shape of the error
function &, , = u — uy,,. In principle, this information could be recovered from suit-
able estimates of higher derivatives of the solution, but such approach is not very
practical and rarely used. We prefer to estimate the error by means of the so-called
reference solutions [11]. This approach not only provides the desired information about
the shape of the error &, ,, but it is very robust in the sense that it can be used for
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various types of PDEs, and thus it is suitable for multiphysics coupled problems we
are concerned with. A reference solution is an approximation u,.r of the exact solu-
tion u, that is more accurate than the coarse mesh approximation u; ,, and thus the
difference u,.f — uy, , provides a meaningful information about the error & ,. In prac-
tice, the reference solution u,,s is sought in an enriched finite element space Vs such
that we subdivide all elements in the mesh uniformly and increase their polynomial
degrees by one, i.e., Vi, = V3 1. With an a-posteriori error estimate of the form

Enp = Urer — Upp, (3.1)

the outline of our hp-adaptivity algorithm is described in Alg. 3.

Algorithm 3: Algorithm for hp-adaptivity.

Data: Assume an initial coarse mesh 7}, ,, prescribed tolerance TOL > 0 and
refinement coefficient k € (0,1) is a user defined parameter determining
how many elements will be refined in one adaptive step.

Result: Approximated solution u,.s with ||tr.r — uy ||/ ||threr|| < TOL and

an optimal hp-mesh.

bool done = false;
repeat
Compute solution on current mesh uy, , € Vj,;
Compute reference solution u,s € Vier;
Evaluate local errors on all elements ¢; = ||}, |k, ||;
Evaluate global error estimate ||&, || = Y M, e;, where M is number of
elements;
£
118y
‘ ’“ref 1
‘ done = true;
else
Sort all elements by their error ¢;;
Denote the maximal element error by e;,4x;
foreach element K; do
if e; < k * e,y then
‘ break;

else
| Find and perform optimal refinement;

< TOL then

Adjust polynomial degrees on unconstrained edges using the minimal rule;
until not done ;
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Remark 3.2 The user defined parameter k € (0,1) prescribes how many elements will be
refined in one adaptive step. For example, condition e; < 0.3 * ey says that all elements with
error higher than one third of the maximal element error will be refined. The smaller k is, the
more elements is refined in each step.

Remark 3.3 As a suitable norm || - || in Alg. 3 either the energy norm || - ||y or H' or
L2-norms can be taken, depending on the norm in which we want the error to be minimized.

Remark 3.4 Note that the refinement of the element K; cannot cause any recursive refine-
ments in the mesh due to the technique of arbitrary-level hanging nodes. In other words, no
regularization of the mesh has to be performed after each adaptive step.

Remark 3.5 As it is obvious from Vs = V3 11, the calculation of the reference solution
is computationally expensive, mainly at later stages of the adaptive process. First, let us
point out that the output of the adaptive procedure is the last reference solution, since it is
the best approximation of the exact solution we obtained. Moreover, the computational cost
of the reference solution may be reduced by using iterative solvers, where previous reference
solution serves as a good initial guess for the next reference solution. Another possibility how
to overcome this drawback of the hp-adaptivity is to define the basis of V,.r as a hierarchic
extension of the basis for Vy,, and solve for the reference solution using Schur complement
[40]. For elliptic problems it is also possible to use a two-grid solver taking advantage of lower
frequencies from uy, (see [31]).

3.2.1 Selection of optimal refinement

Let K € 7}, be an element of polynomial degree px marked for refinement. We con-
sider the following N,y = [ + (I +1)* and N,of = I + (I + 1)* +2(I + 1)? refinement
options for triangles and quadrilaterals respectively. Here I > 0 is a user input pa-
rameter and for | = 2 it yields 83 candidates for triangle and 101 for quadrilateral.
Refinement options are divided into 3 types:

1. p-candidates.
Increase the polynomial degree of K by 1,2,...,I without spatial subdivision.
This yields I refinement candidates.

2. Isotropic hp-candidates.
Split K into four similar elements K, K3, K3, Ky (as illustrated in Fig. 3.7). Define
po to be the integer part of (px +1)/2. For each K;, 1 < i < 4 consider [ + 1
polynomial degrees pg < p; < po+ 1! < px + 1. This yields additional up to
(I +1)* refinement candidates.
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3. Anisotropic hp-candidates.
In case of quadrilateral element, split K into two subelements Ks, K¢ either verti-
cally or horizontally (see Fig. 3.7). Define py to be the integer part of 2(px +1) /3.
For both K5, K¢ consider | 4+ 1 polynomial degrees pg < p; < po+1 < px + 1.
This yields additional up to 2(I + 1)? refinement options.

Remark 3.6 The condition pyg + 1 < px + 1 eliminates candidates with polynomial degrees
greater or equal to the polynomial degrees of the reference solution. For such candidates the
reference mapping Vir = Vi /2 1 is not sufficiently accurate.

For each of these N, options, let us define a piecewise-polynomial space V4q C
V(K), dim V_,;,,y = m,, generated by basis functions on element K and its subelements

Veand = <§011 P2, ., (me>/

where either ¢; € PP(K) in case of p-candidate or ¢; € {v € V(K); v|x; € PPI(K;), j =
1,...,4} in case of isotropic hp-candidate or ¢; € {v € V(K); v|x; € PPi(K;), j = 5,6}
in case of anisotropic candidate.

Now for each refinement option we calculate an approximation of the reference solu-
tion u,,¢ in the space V4 by one of the following algorithms:

Projection-based interpolation

The interpolant u.,,; is obtained as a sum of vertex, edge and bubble inter-
polants u.,,g = u® + u + ub. Vertex interpolant is defined as

v __ N
u _Zciq)i/

where ¢f are vertex functions at all vertices of K or Kj,j =1,...,4 and ¢} values
of the reference solution u,,¢ at these vertices. Edge interpolants u* for all edges
of elements K or Kj,j = 1,...,4 are obtained as the best approximation of the
residual u,.; — u” on the edge ¢;:

w6 = Y90, (e — ) — gy — min,

where qofj are edge functions associated with the edge ¢;. In a similar way, the
bubble interpolant u” = Y"u%, where u% are obtained as the best approximation
of the residual u,, r—u’ —u’, where u® =} 1%, on elements interiors:

[ (tpy — ® = 1) — %] | gy ) — min.
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Resulting interpolant u,,; approximates the reference solution u,. exactly at all
vertices and error is minimized on all edges and in the interior of element K or
elements K;,j =1,...,4.

H! or L? projection

Projected solution u,,; = 21721 Ck @i is obtained by the standard projection onto
the space Vg4t

(Mcundr (P]) = (uref’K/ (P])/ ] =1,...,m (32)

or

M
Z ck(@x, 4’]') = (uref|K/ (Pj), j=1,...,m
k=1

where scalar product (-, -) is either H! or L2 product. Thus, the error in corre-
sponding norm is minimized on the whole area of element K:

Humnd — urefH — min.

Fast projection in reference domain

Since we are only roughly estimating possible impact of particular refinements
on the global solution, we may, in order to speed up the selection of optimal re-
finement, perform certain simplifications without bigger impact on the conver-
gence rate. We design a partial projection taking place on the reference domain,
where the shape functions are first orthonormalized on the reference element K
and then the solution u.,,; can be evaluated in a faster way (without solving a
system of linear equations for each candidate). Let us describe the procedure in
detail. In the following all norms and scalar products are either from H' or L?
space, depending in which norm we are decreasing the error in the adaptivity,
and numerical integration takes place on the reference domain only, neglecting
the effect of reference mappings on candidates’ errors.

First, the shape functions for polynomial degrees p = 1,...,10 (the maximal
allowed degree) are orthonormalized on the reference element K using Gram-
Schmidt orthogonalization process. Let ¢, k = 1,..., N be all vertex, edge and
bubble functions on element K for maximal polynomial degree. Orthonormal
set of shape functions is obtained as follows

k—1

k=P — Y (Y, 1)

I=1
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Then for p-candidates the basis of the space V,,,4 is a subset of our orthonormal
basis
{r, k=1,...,N}

and therefore the projection (3.2) reduces just to evaluation of the right hand

side
e

Ucand = Z(ﬁref’Kz li)k) l/}k/

k=1
where the values of the reference solution i, are taken untransformed, on the
reference domain.

H

Figure 3.8: Separate treatment of subelements of hp-candidate.

For hp-candidates with an isotropic spatial subdivision the u,,; is obtained as
a sum of u]C nd» ] = 1...,4, where u]C nd are projections of the reference solution

uref onto PPi(K;) obtained separately from each other (see Fig. 3.8):

: <1 S
u]cund = I; 1 (ﬁV€f|Kj’ l/)k) lIJk-
In order to have p and hp-candidates comparable, projected solutions for hp-
candidates are divided by 4, since we are integrating over four times larger
domain.

Since no connection between subelements K; is considered (degrees of freedom
are doubled on interior edges) the solution u.,,; obtained by gluing 4 projec-
tions together can be generally discontinuous on the interior edges. However
the projected solution u.,,; serves only for decision between different refine-
ment options and it turned out to be sufficient. The situation for anisotropic
refinements would be analogous to isotropic candidates.

The error of the particular candidate is then obtained as a suitable norm of the differ-
ence Uegnd — Ure f\ k. The goal is to select a candidate with small projection error but
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also reasonable number of added degrees of freedom to obtain the steepest possible
convergence rate. We are expecting the overall convergence to be exponential

~ aN
th,pH ~ Ce™.
Thus, we choose a candidate which maximizes the rate

ln(Huhph( - uref|KH) _ln(Hucand - uref’KH)

— max. (3.3)
Neang — th
Errors of candidates for top-right element Errors of candidates for top-left (bottom-right) element
T T T T T T T T T  § T o : T & T T
= 2 = °
5 . o 5
T S — deviation) | N e . «___ deviation
S is
Q mean @ . mean
© ~ . @© .
£ 21,11 . £ s, .
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Figure 3.9: Refinement candidates - red: the original element (biquadratic), gray: re-
jected candidates (high error), black: considered candidates, green: selected candidate
(black one with highest ratio (3.3)).

For illustration of the selection process, Fig. 3.9 shows candidates” errors with respect
to their number of degrees of freedom for L-shape benchmark problem. It shows
refinement options for two elements in the initial mesh, consisting of 3 biquadratic
elements. First, all candidates with error higher than error of original element (red
color) are rejected and the mean value and the deviation are computed from the rest.
In order to avoid candidates with small DOFs increase and small error decrease (pos-
sibly with good ratio (3.3), but having almost no effect on the mesh and approximated
solution), we also reject candidates with error higher than mean plus deviation. See
Alg. 4 describing the process of selection of an optimal refinement.

Remark 3.7 Note that if the arbitrary-level hanging nodes are not allowed, all hp-candidates
with spatial subdivision may influence the adjacent elements and thus this effect should be
taken into account while searching for the optimal refinement. On the other hand the arbitrary-
level hanging nodes technique makes the whole adaptive procedure local, thus simple.

41



Chapter 3 — Adaptive hp-FEM with hanging nodes

Algorithm 4: Algorithm for selection of an optimal refinement.

Data: List of N candidates for refinement with errors e.,,; and numbers of
DOFs N,,4. Original element is the first in the list (eg, Np).
Result: Optimal refinement - index “best-cand” to the list of candidates.

k=0;
mean = In(ep);
deviation = (In(ep))?;
for cand = 1..N do
if (ecqng < €o) then
mean = mean + In(eqgnq);
deviation = deviation + (In(ecznq))%;
k=k+1;

mean = mean/k;

deviation = v/deviation/k — mean?;

max-score = (;

best-cand = 0;

for cand = 1..N do

if (ecpng < mean + deviation) then

11’1(60) — ln(ecund) .
Ncand - NO ’

if (score > max-score) then

score =

max-score = score;
best-cand = cand;

3.3 Numerical examples

To demonstrate the automatic hp-adaptive process and to show its advantages over
the standard h-adaptivity with low-order finite elements, we present two numerical
examples. One is from electromagnetism and shows superiority of hp-FEM over low-
order FEM for the discretization of the magnetic potential. Second is a benchmark
problem for the incompressible flow - backward facing step, and it demonstrates that
hp-FEM can be successfully used for the flow problems as well.
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3.3.1 Continual induction heating of nonferrous cylindrical bodies

Continual induction heating of nonferrous metal bodies is a common technique used
to improve mechanical properties of metals. Its numerical solution is relatively compli-
cated problem for several reasons. First, the electromagnetic field is mutually coupled
with temperature field (parameters are temperature-dependent), boundary conditions
change in time due to the movement of the inductor, and a remeshing of the compu-
tational domain is necessary at each time level. Our goal in this section is to demon-
strate the automatic hp-adaptivity for a single equation, therefore in order to keep the
demonstrative example simple, we solve the equation for the electromagnetic field at
particular time, ignoring the temperature field. We address coupled problems, where
more physical fields are involved, in the next chapter.

Mathematical model

The computational domain, shown in Fig. 3.10, consists of a nonferrous cylinder, a
moving inductor and a sufficiently large surroundings (air). Problem is modeled in the
axisymmetric arrangement. The electromagnetic field satisfies the following equation

PA, 19A, A, PA, | A,
2 Trar T am AT = ey (G4

Here, A, is the angular component of the phasor of the magnetic vector potential A,
Jexta denotes external current prescribed in the inductor, and v, is the axial velocity of
the moving inductor. Equation (3.4) is equipped with homogeneous Dirichlet bound-
ary condition. Distribution of magnetic induction B = curlA at particular time level

is depicted in Fig. 3.11.

Numerical results

The solution contains singularities along the inductor and pipe boundaries. The initial
mesh consists of 45 quadrilateral elements of the first order. Since the exact solution
A of the problem is unknown, we use the “overkill” solution to approximate the error
of App in H'-norm.

In Fig. 3.12 we plot the estimated relative error in percents in log-log scale with respect
to the number of DOFs. For reference, we include the convergence for h-adaptivities
on meshes with elements of low-order (first and second order). Notice that stan-
dard linear elements need almost 100 times more degrees of freedom than hp-FEM.
Fig. 3.13 shows the convergence history of coarse and fine ip-meshes. Relative error in
H'-norm is estimated using the “overkill” solution with approximately 170000 DOFs
(obtained by hp-adaptivity).
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Figure 3.10: Computational domain for = Figure 3.11: Distribution of magnetic
continual induction heating problem. induction B = curlA

Final coarse hp-mesh and coarse h-meshes with low-order elements are depicted
in Fig. 3.14 together with the number of DOFs and estimated relative error in H'-
norm. In hp-meshes, different colors denote different polynomial degrees on elements
(for particular colors and degrees see the scale next to the hp-mesh in Fig. 3.14). The
algorithm automatically chooses larger elements with higher polynomial degree in ar-
eas where the solution is smooth and smaller elements with lower polynomial degree
near singularities.
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Figure 3.12: Estimated convergence curves for hp-meshes and low-order h-FEM.

100 ¢

T
10 E
1k E
5 [
(0] L
T I ‘ ‘ 3 3 ]
T S—-—_-.————-L
0.001 | .
| hp-FEM, coarse | i
r hp-FEM, fine ------- : 5
00001 LW T L L L
10 100 1000 10000 100000 1e+06

DOFs

Figure 3.13: Estimated convergence curve for coarse and fine sp-meshes.
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Figure 3.14: Final hp-mesh (17452 DOFs, error 0.0018%), h-mesh with p = 2 (57502
DOFs, error 0.031%) and h-mesh with p =1 (77172 DOFs, error 0.838%).
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3.3.2 Incompressible flow over a backward-facing step

Fluid flows in channels with flow separation and reattachment of the boundary layers
are encountered in many problems. Among these problems, a backward-facing step
has the simplest geometry and can be used as a benchmark problem. Flow separation
and flow reattachment depend on the Reynolds number and geometrical parameters
of the channel. We solve the incompressible flow over the step for several values of the
Reynolds number (varying from 100 to 1000) and compare computations on meshes
with uniform refinements, both 1 and p, with our adaptive strategies described in
this chapter. Computed reattachment lengths and velocity profiles are compared with
numerical study [16].

Description of the problem

— r
I fully developed w fully developed |>
I velocity profile velocity profile |5
> channel

height T 0

I'w

reattachment
length

Figure 3.15: Backward-facing step (not to scale).

Incompressible flow obeys Navier-stokes equations

0
25+M-Vu+Vp—vmu:0 (3.5)
and continuity equation

divu = 0. (3.6)

Here u(x,t) = (uy, uy) represents velocity vector, p denotes kinematic pressure (dy-
namic pressure divided by density p) and v kinematic viscosity. Computational do-
main and boundary notation is depicted in Fig. 3.15. Expansion ratio , i.e., the ratio
of the channel height downstream of the step to the channel height upstream of the
step is 2. Let us define characteristic length D to be the hydraulic diameter of the
inlet channel (which is twice the inlet channel height) and characteristic velocity U to
be the mean inlet velocity (which is two thirds of the maximum inlet velocity). Then
the dimensionless length is ' = x/D and the dimensionless velocity u’ = u/U. The
dimensionless time can be expressed as ' = Ut/D and the dimensionless pressure
satisfies p’ = p/U?. Using introduced notation Navier-stokes equations can be written
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in a dimensionless form as follows

ou’ 1
a—’t’, ' Vi +Vp — A’ =0, 3.7)
where bU
Re = —
v

denotes Reynolds number describing flow properties. For simplicity of notation we
omit apostrophes in the following.

Equations (3.7) are equipped with initial condition
u(x,0) = up(x), xeQ,

and boundary conditions

u=up on the inlet I';,
u=20 on channel walls I'yy,
ou
vy = (P — Pref) 1 on the outlet I'p.

Here up represents fully developed plane Poiseuille flow between parallel plates, so
that the velocity profile is parabolic and mean dimensionless velocity is one

ol y) = (5 40 -2-9), 0).

Numerical results

Well-known Taylor-Hood Qj1/Qy elements satisfying Babuska-Brezzi condition are
used. Here velocities uy, u, and p are approximated by continuous finite elements,
where polynomial degree on element K for velocity is px + 1, while polynomial degree
for pressure is pg.

W = {vcHY(Q),v=00onT;UTy]},
weVy = {v e W?N (C(Q))% ok € (PPFH1(K))? VK € 7},

peQu = {qeHl(ch@);q\KepPK(K),VKeT}.

Thus, there is one mesh for all three fields, but polynomial degrees on elements may
generally vary throughout the mesh.

The steady state solution was sought for several values of the Reynolds number
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Chapter 3 — Adaptive hp-FEM with hanging nodes

(Re = 100 — 1000) using the automatic hp-adaptation described in this chapter. The
automatic hp-adaptive strategy was applied to find an optimal mesh for the velocity
tield starting from a very coarse mesh depicted in Fig. 3.16.

L]

Figure 3.16: Initial coarse mesh - starting point for adaptive processes.
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Figure 3.17: Convergence history of L?-errors in magnitude of velocity - comparison
of hp-adaptivity, h-adaptivity and uniform refinements.

The adaptivity was guided by relative L?-error of the magnitude of the velocity. On
each time level, adaptivity was run to find an optimal mesh for particular time instant
until we reached steady state. In this chapter we do not describe how we deal with
different meshes for particular time steps (this will be described in Chapter 4) or how
to optimize time stepping. At this point our goal is to demonstrate advantages of
described hp-adaptive strategies over the standard h-adaptivity or uniform meshes.

Convergence history of errors of the velocity field (at steady state time level for Re =
100) is shown in Fig. 3.17. For comparison we display also convergence history for h-
adaptivity on Q%/Q! elements as well as errors obtained on several uniformly refined
meshes with Q%/Q', 0%/Q?, Q*/Q3, Q%Q* elements. Note, that with standard Q*/Q!
elements one needs more than three times more degrees of freedom than with hp-FEM
to reach the same level of accuracy and with uniformly refined meshes with uniform
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distribution of polynomial orders many more DOFs would be needed. Adapted hp-
meshes and h-meshes for all adaptive steps for Re = 100 are shown in Fig. 3.18 step by
step. The algorithm automatically focuses on the singularity at the step by choosing
smaller elements with lower polynomial orders there, while it selects larger elements
with higher orders in areas where solution is smoother.

LT T HHH

Figure 3.18: Comparison of meshes during the adaptive process (guided by the L2-
norm) for Re = 100. Left: hp-meshes (last 4942 DOFs, error 0.0042%). Right: h-meshes
(last 9759 DOFs, error 0.0102%).

Similarly, the adaptive computation was run guided by the H'-norm of |u|; compari-
son of convergence history is shown in Fig. 3.19. The adaptive process clearly targets
the singularity at the step using many spatial refinements and lower polynomial or-
ders since the singularity in the H'-norm is much stronger than in L?-norm. Obtained
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optimal meshes are displayed in Fig. 3.20.

Error convergence for Re = 100
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Figure 3.19: Convergence history of the H!-errors in magnitude of velocity (Re = 100)
- comparison of hp-adaptivity and h-adaptivity.

Figure 3.20: Optimal hp-mesh (6330 DOFs, error 0.045%) and h-mesh (37075 DOFs,
error 0.050%) for steady state velocity field for Re = 100 using adaptivity guided by
H'-norm.

Fig. 3.21 shows convergence history of hp- and h-adaptivities for Reynolds number
800. Even though hp-adaptivity behaves worse at the beginning of the process, in
asymptotic phase it converges much faster than standard Q?/Q! elements. Final hp-
meshes and for comparison final #-meshes for different values of Reynolds number
(Re = 200, 300, 400, 800) are shown in Fig. 3.22 together with sizes of resulting sys-
tems. Notice exceedingly finer meshes (3 — 5 times more DOFs) resulting from h-
adaptivity in comparison to hp-adaptive meshes, where DOFs are saved by using
higher-order elements in areas where the solution is smooth. Fig. 3.23 shows distri-
butions of the magnitude of the velocity |u| for different values of Reynolds number
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(Re = 100 — 1000) with increasing reattachment lengths. Dependence of computed
reattachment lengths on Reynolds number and comparison with data from literature
[16] is presented in Fig. 3.24. The flow field is separating and reattaching also on the
upper wall of the channel (for higher Reynolds numbers) but we restricted ourselves
in comparisons to the main reattachment length in the first recirculation region. Ve-
locity profiles for Re = 800 at various downstream locations are depicted in Fig. 3.25.
Fig. 3.26 compares our results with numerical study [16], where horizontal velocity u
and vertical velocity u, are plotted at various downstream locations, particularly for
x/c = 6,14 and 30 (c denotes the channel height upstream of the step). Horizontal
velocity u, agrees well at all locations, the vertical velocity u, agrees well at x/c = 6
and 30, while it differs a little at x/c = 14. It can be caused by insufficient length of
the channel both upstream of the step and downstream of the step.

o
[

Relative L, error [%]

10000 100000
Degrees of Freedom

Figure 3.21: Convergence of relative L2-errors of |u| for Re = 800.
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(a) Re =200 (hp-mesh: 8929 DOFs, 0.004%, h-mesh: 35493 DOFs, 0.004%)

(b) Re = 300 (hp-mesh: 13226 DOFs, 0.003%, h-mesh: 46180 DOFs, 0.004%)

(c) Re =400 (hp-mesh: 16522 DOFs, 0.003%, h-mesh: 56677 DOFs, 0.005%)

(d) Re = 800 (zoom) (hp-mesh: 28346 DOFs, 0.0025%, h-mesh: 150515 DOFs, 0.0025%)

Figure 3.22: Optimal hp-meshes and h-meshes for steady state velocity field for differ-
ent values of Reynolds number. Error minimized in L2-norm.
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Figure 3.23: Distribution of the magnitude of velocity with streamlines for Re =
100, 200, 300, 400, 500, 600, 700, 800, 1000.
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Figure 3.24: Dependence of reattachment length on Reynolds number.
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Figure 3.25: Velocity profiles at various downstream locations for Re = 800.
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Figure 3.26: Comparison of components of velocity uy, u, at various downstream

locations for Re = 800.
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3.4 Overview of open source adaptive hp-FEM softwares

In last decades, higher-order finite element methods became very popular mainly
due to their capability of high convergence rates. With rapid progress in computa-
tional technologies (super computers, parallel programming, powerfull programming
languages), hp-FEM is becoming more and more popular in both academic and com-
mercial community. The main goal of hp-FEM lies in the optimal selection of / and p
refinements, hence, the hp-adaptivity. There are several research teams working in the
field of automatic hp-adaptivity. Let us mention the following open source projects:

* hp90! - hp-adaptive finite element package (written in FORTRAN) developed
at Texas Institute for Computational and Applied Mathematics at UT Austin by
the group of prof. L. Demkowicz. Their software supports one, two and three
dimensional problems and H!, H(curl) and H(div) conforming elements. It is
capable of h, p and hp adaptivity based on reference solution and one level
constraint meshes. For more information on the research group, see [11, 32, 34,
44].

* Concepts® — a set of classes (written in C++) for elliptic partial differential equa-
tions. It supports various methods — hp-FEM, DGFEM and BEM. Concepts is
being developed by a group of PhD students of prof. Dr. Christoph Schwab
at Seminar for Applied Mathematics at Swiss Federal Institute of Technology
in Zurich. It supports meshes with hanging nodes and hp-adaptivity based on
a priori knowledge of the solution. For more information on the project, see [20].

e deal.II® — a C++ library targeted at the computational solution of partial differ-
ential equations by adaptive finite elements. It was developed at the Numer-
ical Methods Group at University of Heidelberg, Germany. Its main authors
presently work at Texas A&M University in College Station and at Institute of
Aerodynamics and Flow Technology of the German Aerospace Center (DLR) in
Braunschweig. It supports one, two and three dimensional problems, handling
locally refined meshes (one level constraints), different adaptive strategies based
on local error indicators and error estimators. Both /- and hp-refinements are
supported for both continuous and discontinuous elements. For more informa-
tion on the project, see [5].

* Hermes2D* - a C++ library for solution of partial differential equations by adap-
tive hp-FEM developed by the group at University of Nevada at Reno and In-
stitute of Thermomechanics in Prague. Developement of the software started at

Ihttp:/ /users.ices.utexas.edu/ ~leszek /2dhp90.html
2htt’p: / /www.concepts.math.ethz.ch/

Shttp:/ /www.dealii.org/

“http:/ /hpfem.org/hermes2d /
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University of Texas at El Paso by a group of students around prof. Pavel Solin.
Its main goal was solution of strongly coupled physical and engineering prob-
lems, where discretization of each physics is performed on an individual mesh
adaptively obtained by the automatic hp-adaptivity. This goal was partially
achieved also as a part of this thesis together with other PhD students (Jakub
Cerveny, David Andrs and Pavel Kiis). Hermes2D and its three-dimensional
version Hermes3D are capable of h-, p- and hp-adaptivity on meshes with ar-
bitrary level hanging nodes, multiple meshes can be used in one computation
allowing monolithic discretization of coupled problems where components ex-
hibit qualitatively different behavior and allowing dynamically changing meshes
for nonstationary problems. For more information on the research group, see
[41, 43, 14, 47].

58



CHAPTER 4

Coupling strategies

for multiphysics PDE problems

Most physical and engineering processes are described as systems of PDEs and their
numerical modeling usually requires simultaneous simulation of several physical
fields in one computation. Such multiphysics problems are difficult to solve for several
reasons:

1. In most cases these physics are strongly coupled in a nonlinear fashion. Either
some decoupling techniques have to be employed resulting in reduced accuracy
or one has to apply nonlinear methods, such as Newton’s method to resolve the
problems accurately.

2. The qualitative behavior of various physical fields may vary significantly, lead-
ing to the need for individual meshes for different solution components. In that
case, either methods for transfer of required values from one mesh to another
has to be used or an assembling over geometrically different meshes is necessary.
If Newton’s method is used, data-transfer methods are not an option anymore
since the whole problem is solved as one system. Thus, in most models in-
dividual meshes are usually not possible and a mesh containing all necessary
refinements has to be used.

3. Different components of the solution lie in different types of function spaces
resulting in the need for different types of finite elements - such as piecewise
continuous elements for elliptic problems, edge elements for electric field, H(div)
elements for magnetic fields or discontinuous L? elements for pressure.

In this chapter we first review the most common decoupling techniques used for mul-
tiphysics problems and compare their performance on an example from fluid dynam-
ics in Section 4.1. Section 4.2 is concerned with several data transfer methods for non-
matching meshes and their effect on the approximation error. In Section 4.3 monolithic
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discretization of multiphysics problems via Newton’s method and its Jacobian-free
version is discussed. Our multimesh assembling technology allowing computation on
multiple meshes is described in Section 4.4. The automatic adaptive algorithm, which
was described in Chapter 3, is extended to coupled systems of PDEs in Section 4.5.
The chapter is concluded in Section 4.6 by an example from civil engineering.

4.1 Operator-splitting methods

In conventional operator-splitting methods (or partition methods) for multiphysics
problems the phenomenon is decoupled in order to simplify the solution of the prob-
lem, all physical fields are then computationally treated as isolated problems and can
be separately solved both in space and time. Interactions between fields are then
viewed as forcing terms and all necessary data are exchanged between models using
prediction and/or substitution.

For illustration purposes, let us write down the following two-physics coupled prob-
lem

u
aftl = anuy + apuy + Fi(ug,u2),
u
aitz ax1uy + anpuy + B (uq,uz),

where F; are strictly nonlinear operators. Two most common coupling schemes for
two-physics problem are shown in Fig. 4.1 and 4.2. In Fig. 4.1 both physics are
advanced in time simultaneously and then they exchange appropriate data. This ap-
proach easily allows parallel computing. The corresponding scheme using simple
backward Euler scheme for time discretization is as follows

ultt—yn
1 1 _ n+1 n n ,n
= apuy" 4 apuy + Fi(uf,uy),
n+1 n
u —u
2 2 n n+1 n ,n
= = ayuf +apuy + F(uf, us).

In Fig. 4.2 physics are computed in strictly serial fashion, the result of one is used as
data for the other. The numerical scheme of this approach goes as follows

u111+1 — u? n+1 n non
- = apuy" +apuy + Fi(uf, uy),
ug—i—l — Mg n+1 n+1 n+l ,n
= auy +anul T + B (uf T, ub).
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time level ¢, time level t,,1
u{’ . . n+1
@ single physics problem M
uy
Uy
single physics problem -
n " n+1
uf )

Figure 4.1: Operator splitting coupling technique - simultaneous advance.

time level t, time level £,
ulf . . n+1
@ single physics problem uf
uy
single physics problem -
- ‘ n+1
ul up

Figure 4.2: Operator splitting coupling technique - staggered update.

In both cases, single-physics softwares can be easily used with some data communi-
cation in between. This makes the approach popular. Furthermore, since the whole
problem is divided, the resulting systems of equations are smaller, which makes them
easier to solve by numerical solvers (both direct and iterative). But this advantage is
not cost free. Traditional operator-splitting schemes can cause degradation in both
stability and accuracy [35]. They are known to be only first order accurate in time
regardless of the time discretization technique chosen, which makes them unsuitable
for higher-order time integration schemes. In order to achieve desired accuracy, very
small time steps have to be used, therefore increasing computational time.

To improve traditional splitting schemes one can use higher-order linearization for
treatment of nonlinear terms. Basic idea is to predict solution values on the next time
level using computed values from the previous levels, where the predictor is derived
to be of the same order of accuracy as the time integration scheme used. The first-
order and the second-order formula for predictor follow, resulting coupling scheme is
in Fig. 4.3.

n+1 n

un—l—l ~ Zun_un—l'

61



Chapter 4 — Coupling strategies for multiphysics problems

time level ¢, time level £,
”il n+1
single physics problem u
2,
Q
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B =
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A S . '
single physics problem - ‘
n - ian
uy 2

Figure 4.3: Operator splitting coupling technique - predicted solutions.

Alternatively, one can solve the nonlinear coupled system using fixed-point iterations
(i.e. Picard iterations). In this process, on each time level several iterations are per-
formed until global convergence of all physics is achieved (see Fig. 4.4). This proce-
dure can restore the accuracy of time integration scheme used, but in case the problem
is tightly coupled the iterations usually converge very slowly if at all. Also from the
point of view of the automatic adaptivity, fixed-point iterations may not converge on
initial very coarse meshes.

time level ¢, time level ;11

Picard iteration

Figure 4.4: Operator splitting coupling technique - fixed-point iterations.

Described loss of accuracy of conventional operator splitting schemes is demonstrated
on an example of incompressible flow over a backward facing step. Similar compar-
isons are also shown later in this chapter. On the example of the flame propagation
problem we will see that even the fixed-point iterations may not recover the expected
accuracy and on the heat and moisture problem we will show that even for linear
problems simple linearization reduces the order of convergence.

Example 4.1 Let us recall Example 3.3.2 from Chapter 3, where the incompressible Navier-
stokes equations were solved in the domain with a backward facing step with Reynolds number
Re = 200. Time derivative is discretized by the second-order backward difference formula and
we are interested in the solution after 5 seconds (depicted in Fig. 4.5).
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WG [

Figure 4.5: The magnitude of velocity and the pressure at t = 5s.

Fig. 4.6 shows the convergence of the velocity magnitude in L?>-norm in time for two different
treatments of the nonlinear convective term (u - V) u — simple linearization and fixed-point
iterations. For all computations the same space discretization was used and shown errors
are with respect to the “overkill” reference solution. As was said before, traditional operator-
splitting with a simple linearization reduces the order of convergence to one, while fixed-point
iterations almost recovered the expected second-order convergence. Due to a singularity in the
velocity at the step, the error in time can be influenced by the insufficient spatial discretization.
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Figure 4.6: Order of convergence for different OS schemes for Navier-stokes equations.

4.2 Data transfer between non-matching meshes

In operator splitting methods, when each physics component is solved on its own
mesh (or even its own geometric domain), simulation data (such as heat source, reac-
tion rate, fussion source or various nonlinear parameters) must be exchanged between
these meshes. The meshes can be generally non-matching, but in order to compare
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several data transfer methods with our approach (to be described in Section 4.4) we
limit ourselves in examples to meshes which share a very coarse master mesh 7,,, but
are obtained by independent refinement processes.

In the following paragraphs we present a brief overview of the most commonly used
data-transfer methods in multiphysics simulations. Our goal is not to conduct an
extensive survey but to demonstrate that even very accurate methods can fail on some
problems, and later to compare these methods with our approach described in Section
4.4.

In the higher-order finite element method, the solution associated with a mesh is de-
fined as a linear combination of higher-order basis functions associated with vertices,
edges and element interiors. Let us denote the finite dimensional subspace of H!(Q)
connected with a mesh 7,4 by V}fr\’ and the finite dimensional subspace connected with

a mesh 7 by Vth. Let us assume that function uy,, = Zfil CZAUZ-A, where viA, i=1,...N,
form a basis of the space V}f;, has to be transferred to the mesh 75. Thus, we are look-
ing for a new vector of coefficients {CZB {VI, such that i, ~ u;,, where

M

- BB B B B B

iy =Y cfvf, of € Vi = (of,...,v5). @.1)
i=1

We will mention here three most common data transfer methods. For more options
and more extensive comparisons see, e.g., [28].

4.2.1 Linear interpolation

For nodal linear finite elements, the linear interpolation is probably the most popular
and the most widely used method for transferring data between meshes. By linear
interpolation we mean construction of a linear interpolant i, that evaluates source
function uy,, exactly at vertices of mesh 7p. Therefore, coefficients {c/}}! are either
equal to c]A in case the vertices coincide (values of the source function at vertices are
equal to coefficients in nodal FEM) or obtained by 1D linear interpolation between
coefficients {c/1}V. It is clear that in areas where the source mesh 7} is finer than 73,
the transfer causes error and in case of multiple transfers between meshes it can lead
to the loss of accuracy.

4.2.2 Projection-based interpolation

For the higher-order hierarchic finite elements, the natural extension of the linear
interpolation would be a combination of the lagrange interpolation and projection
(so called projection-based interpolation [48, 10]). In hierarchic FEM, coefficients in the
linear combination (4.1) are not associated with function values at particular points (as
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in nodal FEM) but with general basis functions. In the projection-based interpolation
the interpolant is constructed as a sum of vertex, edge and bubble interpolants:

iy = u’ +u’ +u’,

where interpolants u?, u® and uY are linear combinations of vertex, edge and bub-
ble basis functions, respectively. The accuracy of interpolation is controlled by the
polynomial orders of the basis functions on the mesh 7.

The vertex interpolant matches the source function uy, at all mesh vertices and cor-
responds to the linear interpolation described in the previous paragraph,

cfvf’”, 4.2)

=
[S
I
.[T"] -

I
—_

where 7 is the number of mesh vertices, UZB ¥ are vertex functions in the space Vth and
the coefficients c} are equal to the values of uy, at the vertices of 7p. Fig. 4.7 shows
the source function, vertex interpolant and the residual Upp — u’ for a single element
mesh.

. - — 0.827 — 0.579
0.744 0.521
0.861 0.463
0.573 0.405
0.496 0.347
0.413 0.29
0.331 0.232
0.248 0.174

0.165 0.116 ///

0.0827 0.0579

Figure 4.7: Source function, vertex interpolant u” and the residual u;, — u®.

The edge interpolant is constructed as a sum of edge interpolants for each mesh edge.
m
ut = Z u®i,
j=1

where m is the number of edges in 7. The distance between the residual u;,, — u” and
the edge interpolant u¢ should be minimized on all edges in 7p. Therefore, we solve
the following minimization problems

| (upp — u”) — uef'HHé(e]_) —min, j=1,...,m. (4.3)
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Each of these problems can be transformed into a system of p% — 1 linear equations
for unknown coefficients c? , 1 =2,...,p% where p% denotes the polynomial order
equipped with the edge ¢;,

e

]

=

 Be B Be; .
C?(Ui e]/ Uk EJ)H(]] (ej) — (”hp —u’, v, E])Hé(ef) k=23,...,p% (4.4)
2

1

where the edge interpolant 1% is written as a linear combination of the edge functions

B,e;
£ B s .
v, € Vhp, i=23,...,p%9,
P
e: €j B,e]
u = E ¢; v,
i=2

Edge interpolant and resulting residual uj, — u” — u® are depicted in Fig. 4.8.

— 0.579 ] 0.438 — 0.165
0.521 0.394 0.148
0.4563 0.35 . 0.132
0.405 0.3086 0.115
0.347 0.261 0.0988
0.29 0.217 0.0524
0.232 0.173 0.0653
0.174 ; 0.129 0.0495

0.116 / 0.0845 0.033 (

0.0579 0.0403 0.0165

—o — -0.00395 —o

Figure 4.8: Residual uy,, — u”, edge interpolant u° and residual uy, — u” — u°.

The bubble interpolant is constructed as a sum of bubble interpolants for each ele-
ment K;

where I denotes the number of elements of 7. Local bubble interpolants 1% are ob-
tained by projecting the residual uj,, — u” — u® onto the polynomial space generated

by the bubble functions v?'bi ,i=1,..., lp]-, where pbf is the polynomial order associ-
ated with element K; and lpj denotes the number of bubble functions for polynomial

degree p%i. The corresponding minimization problems read

|(upp —u” —u°) — ubf|H1(Kj) — min, (4.5)
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where the bubble interpolants are written as a linear combination of bubble functions

i=1

Therefore, we can rewrite minimization problem (4.5) as a system of algebraic equa-
tions

I

p] N . N .

Y el /K Vol v dx = /K V(i — ' —u) - Vo'l dx, k=1,2,...,1, (46)
1= ]

j

1
for unknown coefficients {cf] o4 ' This is illustrated in Fig. 4.9, where the final error of
our interpolation is displayed on the very right.

— 0.165
— 0.152 — 0.0129

0.148 0.137 0.0116

0.132 0.122 0.0103

0.115 0.106 0.009

0.0989 0.0912 0.00772

0.0824 0.076 0.00643
0.0659 0.0608 0.00515
0.0495 0.0456 ) 0.00386
0.033 ( 0.0304 0.00257

0.0165 0.015z 0.00129

=0 0 o

Figure 4.9: Residual u;,, — u” — u¢, bubble interpolant u® and residual Upp —u” —uf —

ub.

Remark 4.1 Notice that in Fig. 4.8 on the very right the residual uy, — iy, vanishes at all
four vertices, but it does not vanish on the edges and in the element interiors. The reason is
that meshes To and Tg are geometrically different and their elements are generally equipped
with different polynomial orders.

Remark 4.2 Hierarchic finite elements are much less suitable for interpolation between meshes
than nodal elements are. In nodal approach coefficients in linear combination are equal to
function values at particular points (vertices, edge midpoints or element centers) and thus the
evaluation of functions at these points is fast. On the other hand, in hierarchic finite elements
to evaluate function at particular point one has to locate element in which the point lies and
then evaluate all basis functions at that point, which is time consuming.

Instead one can write the source function in terms of basis functions on the mesh T, and
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rewrite linear system (4.4) as follows (system (4.6) could be rewritten in a similar way)

n

B,e; Be;
et (0f, 0, ) )~ 2.6 @ 0 - (4.7)
i=1

€ Be] Be] -
& (@0 V(e =

AMZ

Il
N
Il
—_

On the other hand this leaves us with the problem of integrating basis function v/ and vf’ej
which are defined on different meshes.

4.2.3 [? minimization

This method is based on minimizing the error uy,, — uj, globally in L?-norm. Source
function uy,, is defined on 74 and its sought approximation i, on the mesh 7. Thus,

||uhp - ﬁthLz —0
can be written in the weak sense as follows
(uhp — lpp, v);2 =0, for any function v € Vth.

This results into two integrals, where fQ iy dx is computed over elements of 7p
and [, up, v dx is computed over elements of so-called union mesh, which contains
refinements from both meshes. Similar approach can be found in [28]. Details on
numerical integration of functions defined on different meshes will be discussed in
Section 4.4.

4.24 Demonstrative example

In this paragraph we use a problem with known exact solution to compare the de-
scribed methods. Let us solve a heat transfer equation with a spatially-dependent
thermal conductivity k = k(x, ),

~V-(kVu) = f inQ=(001,1.0)?% (4.8)
u = up onJdO.

With
3
3.3 _y_ o (¥ X _1.1
k(x,y) =x"+y°, flx,y) =2 2<x3+y3> and uD(x,y)—x—I—y,

the exact solution is given by

1
u(x,y) = T +
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The weak formulation of the problem reads: Find u € H!(Q), such that

/kVu-Vvdx:/fvdx, for all v € HY(Q). 4.9)
(@) Q

For comparison purposes, two different meshes 74 and 73 were generated as follows:
A mesh 7, is a uniform piecewise-linear 256 x 256 subdivision of the computational
domain containing 65025 DOF, as shown in the left part of Fig. 4.10. A piecewise-
linear mesh 73 is obtained by solving equation (4.9) using adaptive 1-FEM. This mesh
contains 189 DOF and it is virtually optimal to represent the exact solution u (see right
part of Fig. 4.10). The thermal conductivity k(x, y) is represented on the mesh 7, via
its continuous, piecewise-linear vertex interpolant kj(x, ).

Figure 4.10: Left: uniform piecewise-linear mesh 7, with 65025 DOF where the ther-
mal conductivity k(x,y) is represented via its continuous, piecewise-linear vertex in-
terpolant kj(x,y). Right: non-uniform piecewise-linear mesh 7, with 189 DOF where
the solution u of equation (4.9) is sought.

In the following we solve equation (4.9) in three different ways and compare the results
to the exact solution u:

(1) Transferring k;(x,y) from 7, to 73 via interpolation and solving on 7p

Let us begin with linear interpolation of vertex values, which probably is the most

widely used method for transferring solution data between different meshes. The

piecewise-linear function kj(x,y) defined on the mesh 74 is approximated on the

mesh 73 by means of a continuous function k;ll)(x,y) that matches kj(x,y) exactly

at all grid vertices of the mesh 73 and is bilinear in each element of 73. The corre-
(1)

sponding approximation u, ’, computed on the mesh 73 using linear finite elements
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and the approximate thermal conductivity k,gl), is shown in part (a) of Fig. 4.11. The

approximation error e;(ll) (x,y) =u(x,y) — uél) (x,y) is shown in part (a) of Fig. 4.12.

(2) Transferring k;(x,y) from 7, to 7 via L2-projection and solving on 7j

The approximation of thermal conductivity kf) is obtained from the projection prob-

(2)

lem ||k£2) — ky||;2 — 0. The corresponding approximation u,”, computed on the

mesh 73 using linear finite elements and the approximate thermal conductivity k;{z)/ is

shown in part (b) of Fig. 4.11. The approximation error e;(lz) (x,y) = u(x,y) — uéz) (x,y)

is shown in part (b) of Fig. 4.12.

(3) Solving on 7 with the exact thermal conductivity k(x, y)

For comparison purposes we also compute a piecewise-linear approximation uf’) on
the mesh 73 using the original function k(x,y). This is the best finite element approx-
imation one can obtain on the mesh 7. The result is shown in part (c) of Fig. 4.11
and the corresponding approximation error e,(f)(x,y) = u(x,y) — ués)(x,y) is shown
in part (c) of Fig. 4.12.

The results of the three computations are summarized in Tab. 4.1 which shows H!-
norms of the approximation errors on the mesh 7p calculated with respect to the
exact solution u. Approaches (1) and (2) resulted in a large error in the solution.
In particular, notice the extreme error in case (2). As discussed in [28], one must
typically use a higher order integration on the target mesh. Thus, a second calculation
was performed using quadratic elements on 7p to yield the third row of Tab. 4.1.

Table 4.1: Comparison of relative H'-norm errors for the three methods described
above.

Approach Relative H'-error
Interpolation k](ql) 17.766%
L2-projection k;lz) (lin.) 31.808%
L?-projection k;(f) (quadr.) 6.734%
Using exact data k(x, ) 6.729%
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Figure 4.11: Finite element solutions to (4.9). Note that the both data-transfer methods
possess significant error close to the origin.
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Figure 4.12: Approximation errors on the mesh 7 with respect to the exact solution u.
Note that the scale of the error magnitude is significantly different between the plots.

4.3 Monolithic discretization of nonlinear coupled problems

As described above the conventional operator-splitting methods are flexible in the way
how different physics are solved but contain inconsistency and instability since cou-
pled (nonlinear) terms are not dealt accurately. An alternative lies in solving for all
variables simultaneously by formulating a large system of nonlinear algebraic equa-
tions on each time level

F(Y) =0, i=1,...,N. (4.10)

Discrete problem (4.10), written in the form of residual functions, was obtained by
applying an implicit time discretization scheme and by deriving the weak formulation
of the specific set of PDEs. In (4.10), F; : RN — R are nonlinear operators, Y is the
vector of N unknowns, which consists of the spatial unknowns for all physics involved
in the problem. Thus, in the finite element method the vector of unknowns Y consists
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of several sets of coefficients corresponding to the basis functions
—_vM 101 —yvMN 2.0 _vN o
up =Y Yo, w2 =N Yi05 e, e = 0 Y50

Y= (YL Yy Vi Y Vi YR,
where uj, j = 1,...,r are particular physical fields, {vﬁ}lN’ , are the basis functions
associated with the solution component u;, and r is the number of physics involved
in the problem. Thus, the Jacobian of the system (4.10), 7 : RN — RN*N is a sparse
matrix

Ju(Y) = aaF("g]). (411)

One iteration of Newton’s method can be expressed in the following form

YR = vk — 71 (vk) B(YH),
or
J YNyt = — F(Y), (4.12)
AR ) (4.13)

With this single-block approach to the solution of nonlinear coupled problems all
nonlinearities inherent to the problem are resolved accurately. Nevertheless, the main
drawbacks of the Newton’s method are the necessity to formulate the Jacobian in an-
alytical terms and the need to actually compute and store the matrix itself. Indeed,
when the number of variables increases, the matrix containing Jacobian entries grows,
and in case of strongly coupled problems it can get substantially dense, which results
in greater memory requirements. Moreover, for strongly coupled and strongly nonlin-
ear problems difficulty with formulating the entries of the Jacobian matrix mathemat-
ically appears. A remedy to these drawbacks can be a Jacobian-free Newton-Krylov
method (JFNK) [29, 21]. The Krylov iterative methods (such as GMRES) for solving
linear systems like (4.12) typically require only matrix-vector product J - v rather than
the full matrix. In the Jacobian-free Newton-Krylov method the matrix-vector product
is approximated by a finite difference formula, which results into

k k vk
:8F(1I/{)'U%F(Y +€v) F(Y), (4.14)
Y €

j(Yk)-v

where € is a small perturbation [29]. It is clear from equation (4.14) that the Jacobian
J does not have to be constructed at all, and that just the residual function F is
evaluated with different inputs. The recent research [29, 30] shows that the JFNK
can be used to solve nonlinear coupled problems more efficiently than the standard
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Newton’s method.

With Jacobian-free Newton-Krylov method the main computational cost lies in the
iterative solvers since the assembling of the Jacobian is not necessary. The crucial
problem with iterative solvers is an efficient preconditioning of the linear system aris-
ing in the Newton’s method. We may solve the right preconditioned system

T (YR P~L(PsYHT) = — F(YF) (4.15)
via two systems
J(YHPY(X) = — F(Yh), PsY*t = X, (4.16)

The goal of the preconditioned system (4.16) is to reduce the condition number of
J(YF)P~1 while the system PSY¥™! = X stays easily solvable. In case of JENK the
matrix-vector product becomes

F(Y* +eP~'v) — F(Y)

K\ p—1,) ~
JYHP v~ -

(4.17)

Traditionally, the preconditioner P~! is chosen to approximate the inverse of the Ja-
cobian matrix J. Reasonable choice for the preconditioner P! for multiphysics prob-
lems can be so called physics-based preconditioning [30]. The main idea is to simplify
the original Jacobian using operator-splitting and linearizations to obtain P and use an
approximation of its inverse as preconditioner P~1. We should note that the operator-
splitting method is used only to obtain the preconditioner not for the the solution it-
self. The fully nonlinear coupled problem is solved accurately, while the convergence
of JENK is fast since the number of Krylov iterations in GMRES method is lowered
by an effective preconditioner. Recent works [29, 30, 21] show the effectiveness of this
approach on various multiphysics problems.

Effectiveness of Newton’s method over traditional operator-splitting schemes is de-
monstrated on an combustion example since flame propagation problems exhibit
strong nonlinear behavior. Physics-based preconditioning together with a comparison
of Newton’s method and JFNK with different types of preconditioning is illustrated
on the same problem in Example 4.3.

Example 4.2 We use a simplified model of freely propagating laminar flame and its response
to a heat-absorbing obstacle represented by a set of cooled parallel rods with a rectangular
cross-section. The domain () is shown in Fig. 4.13.
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Figure 4.13: Computational domain.

The model consists of a system of two coupled nonlinear parabolic equations for 0 and Y,

‘;‘t) A0 = w(®6Y) inQx(0,T), (4.18)

Yy 1 )
> ie AY = —w(8,Y) inQx(0,Tp). (4.19)

Here, the reaction rate w(0,Y) is defined by the Arrhenius law

0,v) = £ yertis 420

el+o¢ T+a(6-1) 1 , .
w(®,Y) = 1= (4.20)
where « is the gas expansion coefficient in a flow with nonconstant density, B the non-
dimensional activation energy, and Le the Lewis number (ratio of diffusivity of heat and
diffusivity of mass).

The problem was solved by two methods. First, temperature and concentration were decoupled,
nonlinear term w(6,Y) was linearized and then the fixed-point iteration procedure was run.
In the second approach the problem was solved as fully nonlinear, thus employing Newton’s
method. For discretization of both components an uniformly refined mesh with cubic elements
was used. Average number of nonlinear iterations on one time level for both methods is shown
in Tab. 4.2. Note that for larger time steps fixed-point iterations converge slowly if at all.
Fig. 4.14 shows the error convergence of the reaction rate w(0,Y) in H'-norm in time for
three different treatments of the nonlinearity — simple linearization, fixed-point iterations and
Newton’s method. For all computations the second order scheme was used for time discretiza-
tion and shown errors are with respect to the “overkill” reference solution. As is obvious from
the graph, traditional operator-splitting schemes reduce the order of convergence to one (even
fixed-point iterations do not recover the second order accuracy), while by Newton’s method the
expected second-order convergence is obtained.

Table 4.2: Average number of nonlinear iterations.

time step =01 7=001 7=0001 t=20.0001
fixed-point iterations DNC 19 6 4
newton’s method 4 3 2 2
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Figure 4.14: Comparison of order of convergence for operator-splitting schemes and
Newton’s method for the flame propagation problem.

Example 4.3 The same problem as in Example 4.2 was solved using the Newton's method
and the Jacobian-Free Newton Krylov method with different preconditioning approaches. Let
us state the Jacobian matrix for problem (4.18) - (4.19):

%ﬁ"i(/’j +Vei-Voi - ?,Cgcpiqvj, —g;)clnqvj
J = /
ow 1 1 ow
50 Y% Z0i+ T VOV i)

where @; and ¢; correspond to the test functions for temperature and concentration, respec-
tively. For Newton’s method the matrix [J is assembled and resulting linear system is solved
in each nonlinear iteration. As mentioned in the previous paragraphs, to speed up the linear
solver suitable matrix P~ is used as preconditioner. In our computations P~! ~ J =1 is ob-
tained using Trilinos package ML [22] developed in Sandia National Laboratories, which uses
multigrid methods to approximately invert the Jacobian matrix. In the Jacobian-free Newton-
Krylov method the matrix [J does not have to be assembled, since it is approximated using the
residual F itself. Instead, the approximation of J is used as the physics-based preconditioner.
In this procedure the residual F is first linearized using the solution from the previous level
and then the Jacobian of such linearized residual is derived:

Pl g1
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1
~9i9j +Voi- Vo 0

1 1
0, Z0i T ViV

Tab. 4.3 compares computational times and numbers of linear iterations for Newton’s method
and JENK with different preconditioners. As a preconditioner was taken the full Jacobian
J and also its approximation via operator-splitting J. It can be seen that even though the
physics-based preconditioner is slightly worse than the full Jacobian as preconditioner (the
number of iterations in the linear solver is higher), the time to invert the approximation of
Jacobian J is much shorter (mainly due to the fact that the assembling of the Jacobian takes
long).

Table 4.3: Computational times and numbers of iterations in 1 nonlinear iteration.

assembling of  time to create linear # of linear

Method Jacobian J  preconditioner solver iterations
Newton’s method

with preconditioning 11.6 0.147 0.25 35
JENK with

Jacobian precond. 0 11.8 3.34 4
JENK with

physics-based precond. 0 13 6.26 9

4.4 Independent meshes for different physical fields

As we described in Section 4.3, an alternative to solving nonlinear system in a loosely
coupled manner (operator-splitting) is to solve them monolithically, thus using a tight
coupling. But in case the qualitative behavior of various physics components differs
significantly then in order to capture individual behaviors more efficiently, different
physics should be discretized on individual hp-meshes, each of them tailored to its
component. Since the solution components are coupled and the nonlinear system is
solved monolithically, independent meshes for different components are not generally
feasible. In reality, we are usually forced to use one mesh for all components, which
contains the union of all required refinements. But this is a waste of degrees of free-
dom as is illustrated in Fig. 4.15 on an example of microwave heating (for more details
on the example see [14]).
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Figure 4.15: Schematic pictures of individual meshes for a coupled problem, where
electric field heats up a load in the microwave oven. Electric field has singularities
at the corners, while temperature has a steep internal layer at the material interface.
Union mesh containing all refinements would be unnecessarily fine.

To obtain the solution of a nonlinear system we solve in each Newton’s iteration the
following system
T (YHeYH! = — F(Y5), (4.21)

where elements of Jacobi matrix J involve evaluation of various integrals. Functions
to be integrated can be from different function spaces (corresponding to different
solution components) since the problem is coupled. Thus, for instance we are forced
to integrate integrals of the type

/Q AM(T)vvjdx, (4.22)

where parameter A depends on one physics while v;, v; are basis functions for two
different physics. Now, let us assume that individual meshes 7; are necessary for all
components in order to capture different behavior of components. Here, the problem
of numerical evaluation of integral (4.22) arises.

In [43, 14, 47] we proposed a novel approach — a multimesh assembling technology
for efficient solution of coupled problems. It allows monolithic solution of nonlinear
coupled problems with solution components discretized on geometrically different
meshes. Let us describe the algorithm and its main characteristics in the following
paragraphs.

4.4.1 Multimesh assembling technology

Ideally, the meshes 7; would be completely independent. However, for algorithmic
reasons, we introduce a simplifying assumption that each of them is defined starting

77



Chapter 4 — Coupling strategies for multiphysics problems

from a common coarse master mesh 7, by a finite sequence of (mutually independent)
elementary refinement operations. The master mesh 7,, is very coarse and it may
not be used for discretization purposes. It serves as the top of a tree-like structure
of meshes which is used by the multimesh assembling procedure. The geometrical
union of all meshes in the system, containing all refinements, is called the union mesh
and denoted by 7,,. The situation is illustrated in Fig. 4.16.

master
mesh

RN

1 N\

union
mesh

anlll

Figure 4.16: Master mesh 7,,, three different component meshes 77, 75, 73 and their
geometric union 7,,.

In the assembling procedure, when evaluating integrals, we walk through the ele-
ments Qi of the union mesh and restrict the evaluation of the bilinear or linear form
to these subelements of the component meshes, as is shown in Fig. 4.17. Evaluation
of integrals on the subelements Qy is described in detail in Section 4.4.2.

Even though evaluation of integrals takes place on subelements of the union mesh
7., the union mesh does not have to be explicitly constructed. A simple recursive
algorithm for the traversal of a virtual union mesh is described in Section 4.4.3. It
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should be noted that the assembling over different meshes is not more efficient than
standard assembling over the real union mesh used for all solution components. The
time savings are expected in the solution of the resulting linear system, whose size is
smaller than when the union mesh was used for all solution components.

==l

|

Figure 4.17: Virtual element Qy in component meshes and in the union mesh 7,,.

4.4.2 Integration over virtual elements

Let us consider a virtual element Q; of the union mesh 7, and #n individual meshes for
solution components. In order to evaluate integrals in (4.21) over the virtual element
Qxk, we need to extend the affine concept from Section 2.2.1. In Fig. 4.17 we see that the
shaded areas in each mesh correspond to those depicted in Fig. 4.18 in the reference
domain.

&t Gota Cotq

¢1 ¢1 - 1

-1 -1 -1

Figure 4.18: Areas of the reference domain corresponding to Qk in each mesh from
Fig. 4.17.

In each mesh 7;, i = 1,...,n, there is exactly one element K(i) such that Q; C K(i).
Since we are only able to integrate over the whole reference domain (where the Gauss
quadrature points and weights are defined), we need to transform subelements Qj to
the reference domain K; = (—1,1)%. We know, that for any physical element K = K(i),
the corresponding reference map is denoted by xx : K; — K. It can be seen that while
x ' (K) = K,, the virtual element Qy C K transforms to a subset x'(Qx) C K,, as is
shown in Fig. 4.18. Thus, we need to introduce an additional mapping r : K; — K,
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such that (K;) = x;'(Qy). This is illustrated in Fig. 4.19. Hence, for each virtual
element Q; C K (the right part of Fig. 4.19), Gauss integration of sufficiently high
order is performed on K; (the left part of Fig. 4.19). Note that the mapping r has the
form r(¢) = R& + s, and its Jacobi matrix is diagonal.

Gota Gt
— | //—\ K
-1 0 1 -1 0 1 \
1 ¢1 5
N\ Qk
-1 -1 X1

Figure 4.19: The mappings r and xk.

For example, in Fig. 4.19 the mapping has the form

() = < 065 0(.)5 >g+ ( —g:g >

Now let us describe how the integration of the weak form (2.8) changes. Recall that
v; and v; are basis functions defined on geometrically different meshes 7;, ’Z}, respec-
tively. We transform the integral over the virtual element Qy to the reference domain
K; applying the mapping xx o r as follows

a(v;,0;) = QZT /Q @ V05(x) - Voi(x) + a0 vj(x) 0i(x) dx =

D(XK/.OT‘) - R
<D§J> ij(g'f)

+ Y [ Jao(@) 0;(8)9;(8) dE =

QreTy, 7K
(53) () w0

w0 |(52) () vare)]

+ L[ 0@ 0@0@d,

QkGZl

=) / Ja1(g)

QeT, 'K

=)

lelru
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where

0:(¢) = (vioxk ori)(S),
0i(¢) = (vjoxk orj)(E),

and the Jacobian of the mapping,

] = det (Dggl) det (gg) = det <Dg§f> det <[1;rgj> .

Here xk, and xk; are traditional reference mappings which correspond to two meshes
Ti, T;, thus Qp C K; € 7; and Qr C K; € 7;. Mappings r; and r; are restricting
mappings to two different subelements of the reference domain depending on the
position of Qy in K; and Kj, respectively.

The extended reference mapping itself should not change the performance of the code,
since the combined Jacobian and the inverse Jacobi matrices can be precalculated as
usual.

4.4.3 Union mesh traversal

As mentioned above, the union mesh is virtual, thus never constructed physically in
the memory. We just need to enumerate its elements Q; together with corresponding
restricting mappings r for each component mesh 7;. The algorithm presumes that all
component meshes are obtained from one common master mesh 7,, by elementary
refinements. This allows us to predefine all possible transformations r using the four
elementary transformations for triangles and eight elementary transformations for
quadrilaterals, as is shown in Fig. 4.20.

Figure 4.20: Predefined subelement transformations.

Mapping r for the next level of refinements is obtained as a composition of two ele-
mentary transformations, as is illustrated in Fig. 4.21 and mathematically expressed
as follows

(r7013)(8) = R7(R3¢ + s3) + 57 = (R7R3)& + (R7s3 + s7).
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Figure 4.21: Composition of basic transformations.

The traversal algorithm begins with a main loop visiting each element of the coarse
master mesh. For these elements it calls a recursive procedure which traverses the
refinement trees in all component meshes. It goes deeper and deeper in the mesh
hierarchy until it finds the virtual element Qy, such that all elements K;, i = 1,...,n,
Qx C K; € 7T; are active. Then it performs the assembling procedure on Qj as was
described in Section 4.4.2.

4.4.4 Illustrative example

Let us recall the example from Section 4.2.4, where the material parameter was defined
on the mesh different from the mesh on which the solution was sought. In order to
avoid error resulting from data-transfer methods (as illustrated in Section 4.2.4), either
the union mesh has to be constructed or the assembling over different meshes must
be employed.

Let us compare the performance of the multimesh assembling with the data-transfer
methods described in Section 4.2. The problem (4.9) was solved without necessity
of handling different meshes via the transfers between meshes. It can be seen from
Tab. 4.4 and Fig. 4.22 that by using the multimesh, the same accuracy as by using the
exact data was achieved.

Remark 4.3 Let us note that even though the resulting linear system has the same size as
in case of data-transfer methods, the assembling procedure takes place over the subelements of
the virtual union mesh, resulting in increase of computational time. Nevertheless, in case of
data-transfer methods usually an additional problem must be solved in order to transfer the
solution from the source mesh onto target mesh, which increases the computational time as
well.
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Table 4.4: Comparison of relative H Lnorm errors for the multimesh technology and
data-transfer methods.

Approach Relative H'-error
Interpolation k,(zl) 17.766%
L?-projection k,(zz) (lin.) 31.808%
Multimesh 6.727%
Using exact data k(x,y) 6.729%

z.31

z.0g

1.85

1.62

1.39

1.16

0.925

0.694

0.462

0.231

a a

(a) Using exact data (b) Multimesh

Figure 4.22: Approximation errors on the mesh 73 calculated with respect to the exact
solution u.

4.5 Automatic hp-adaptivity for coupled problems

The automatic hp-adaptive procedure for a single PDE was described in detail in
Chapter 3. Let us extend this concept to a system of coupled PDEs. Assume a system
of n coupled, possibly nonlinear equations written in the form of residual functions

F(uy,...,uy) =0, i=1,...,n, (4.23)

whereuy € VI ..., uy, € V;fp are solution components generally discretized on indi-
vidual meshes 7y, ..., 7, and equipped with different polynomial degrees. The sys-
tem is solved either via Newton’s method or fixed-point iterations. In agreement with
the standard hp-adaptivity, reference solutions uf®, ..., u™ are obtained in enriched
polynomial spaces. In constract to standart hp-FEM, the approximation error ey, is
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a vector-valued function with the components e}lp, sy (corresponding to the fields
ui,...,uy, respectively)

i ref N
e = Ui — U, i=1,...,n.

In the adaptive multimesh /p-FEM either each component error ¢/, p is prescribed to
be below given tolerance or the total error

n
[leny|* = Zl lefp |12 (4.24)
i=

need to drop below prescribed tolerance to stop the adaptive procedure. In (4.24) the
question of the suitable norm in which to measure component errors ezp arises. If

solution components do not interact with each other, then an H L_norm could be used
for each component ||e;lp || But if the problem is strongly coupled and error in one
component influences errors of the other ones, it should be also reflected in computed
error He;;pH. Thus,

Helldez = an (eillp' ellw) +a (e%zp' ell1p) +otam (eZp'e}zp)r
HeﬁpHZ = 4 (e}lp’ e%p) + aZZ(EiP’ e%p) + et a (eZp’ eﬁp)l
‘ ‘equlp ‘ ‘2 = dnl (e;zp/ eZp) + aTIZ(e%p' e;zlp) + e A (eZp’ eZp)’

where a;;(+, -) are suitable bilinear forms expressing the interactions between individ-
ual physical fields. In case the system is linear, corresponding energy norms give
a possible choice [43].

For each element K() € 7T;, the error value eg) is defined as an element contribution to

the error ||e§lp\ |. Thus,
i ] — (i)
llehll = 3 ex-
et

Elements of all meshes 77, ..., 7, are then collected in a single list and sorted according
to the values eg) in descending order. Then certain amount of them is marked for
refinement following the standard adaptivity algorithm described in Alg. 3. To select
an optimal refinement for particular element K9 e T;, corresponding error function

e;;p and the standard H' or L? projections are used as was described in Section 3.2.1.
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4.5.1 Multimesh assembling and numerical quadrature

Let us address the biggest problem of the multimesh assembling technique from the
point of view of the hp-adaptivity. The main purpose of the multimesh is to save
degrees of freedom by allowing different meshes in one computation instead of using
the union mesh for all solution components. As mentioned earlier, the time savings
related to the savings in DOFs are expected in the solving time, since the resulting stiff-
ness matrices are smaller. It was also mentioned that in the assembling stage, there are
no time savings in comparison to the single-mesh approach (the union mesh for all
components). The reason is that the evaluation of the stiffness matrix entries actually
takes place on the virtual union mesh. When all meshes have the same polynomial
degrees on corresponding elements (or for example in the whole computational do-
main), the assembling times for the multimesh and single-mesh are comparable. But
let us assume a situation when meshes differ extremely in both geometry and poly-
nomial orders in the same part of the domain (such a situation is obtained by the
automatic hp-adaptivity individually applied to the solution components). For exam-
ple, one meshes has 4 large elements of the 8th order and the other hundreds of linear
elements. Let us look at the evaluation of the integral

/ J o} @ dE,
Qk

where 0} is the 8th order basis function defined on the large element and appropriately
transformed to the Qy, and 23]2 is linear basis function defined on the small element
appropriately transformed to the Q. The quadrature rule necessary to evaluate such
an integral is the sum of polynomial orders of v}, 0]2 plus the effect of the reference
mapping. This is obviously time consuming, since the restriction of the high-order
basis function v} on the subelement Q; may not necessarily be integrated by such
a high-order quadrature rule to achieve numerically accurate results. Using single-
mesh approach, where automatic hp-adaptivity would take into account both solution
components and select an optimal refinement to suit them both as well as possible
(even though worse than multimesh), would in such a situation lead to much lower

assembling times and might lead to better overall times as well.

Possible remedy to this problem could be an adjustment of integration orders in these
situations. Tables 4.5 — 4.8 show quadrature rules necessary to evaluate integrals of
certain shape functions accurately. For illustration we take four bubble functions on
the reference domain (—1, 1) and integrate them over subelements Qy of six virtual
union meshes 77 — 7. The mesh 77 consists of one element (the same as the mesh on
which the bubble function is defined) and every consequent mesh is created by uni-
formly refining all elements, thus 7, consists of 4 elements, 73 consists of 16 elements,
etc. The exact value of all integrals is zero and green color denotes “sufficiently” accu-
rate results. It can be seen from the tables that in case the meshes differ significantly,
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Table 4.5: Integrals of the bubble basis function of the 4th degree integrated by differ-
ent quadrature rules. Integration takes place on elements Qy of meshes 77 — 7.

Mesh refinements

quadr. 1 elem. 4 elem. 16 elem. 64 elem. 256 elem. 1024 elem.

1 0.218 0.00769 0.00120  8.982e-05 5.853e-06 3.696e-07
3 0.0432 0.000168 6.593e-07 2.575e-09 1.006e-11  3.930e-14
5 -2.775e-17  5.421e-18 0 1.301e-18 9.757e-19  1.524e-20

Table 4.6: Integrals of the bubble basis function of the 6th degree integrated by differ-
ent quadrature rules. Integration takes place on elements Qy of meshes 77 — 7Z¢.

Mesh refinements

quadr. 1 elem. 4elem. 16elem. 64elem. 256 elem. 1024 elem.

1 0.0859 0.0681 0.000187  9.823e-05 8.457e-06  5.69e-07
3 0.0679 0.00663 4.377e-05 1.913e-07 7.678e-10  3.019e-12
5 0.0198 4.834e-06 1.18e-09 2.88le-13 6.992e-17  1.486e-18
7 -3.036e-18 2.385e-18 1.626e-19 -1.816e-18 5.421e-19 4.472e-19

Table 4.7: Integrals of the bubble basis function of the 8th degree integrated by differ-
ent quadrature rules. Integration takes place on elements Qjy of meshes 77 — 7.

Mesh refinements

quadr. 1 elem. 4 elem. 16 elem. 64 elem. 256 elem. 1024 elem.

1 0.0457 0.021 0.00303  2.671e-05 8.78e-06  7.281e-07
3 0.000643 0.00541 0.000385 2.904e-06 1.308e-08  5.287e-11
5 0.0345 0.00119  4.715e-07 1.277e-10  3.197e-14  8.08%e-18
7 0.0113 1.733e-07 2.644e-12 4.148e-17 2.711e-20 -6.251e-19
9 -4.025e-18 -7.996e-19 -1.64e-18 -1.804e-18 2.338e-19 1.88e-19

thus the higher-order shape function is actually integrated over very small subele-
ments, the order of the quadrature rule necessary to integrate such a shape function
can be lowered. By utilizing this observation we could lower the assembling times for
the multimesh, and thus improve its performance.
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Table 4.8: Integrals of the bubble basis function of the 10th degree integrated by dif-
ferent quadrature rules. Integration takes place on elements Qy of meshes 77 — 7.

Mesh refinements

quadr. 1 elem. 4 elem. 16 elem. 64 elem. 256 elem. 1024 elem.

1 0.0284 0.00138 0.00510  4.574e-05 5.304e-06  7.952e-07
3 0.0186 0.00638 0.000191 1.689e-05 1.036e-07  4.491e-10
5 0.00145 0.000336  2.143e-05 8.736e-09 2.393e-12  6.01le-16
7 0.021 0.000148 3.58%e-09 6.059e-14  2.337e-18  4.235e-20
9 0.00736  7.022e-09 6.697e-15 -4.167e-19 -8.743e-19  -3.558e-20
1 8.648e-19 -1.603e-18  2.86e-18 -5.624e-19 -2.965e-19 -2.101e-19

—_

4.6 Heat and moisture transfer in a nuclear reactor vessel

Let us demonstrate the monolithic discretization with adapted multiple meshes for
solution components on an example from civil engineering — heat and moisture trans-
fer in a nuclear reactor vessel described in [47]. The vessel is made of prestressed
concrete, it is approximately 36 meters high and the thickness of the walls varies be-
tween 5 and 7.5 meters. The concrete is assumed homogeneous and isotropic. For this
simulation, the vessel is assumed perfectly axisymmetric, although in reality there
are small-scale features such as vents that make it nonsymmetric. The situation is
illustrated in Fig. 4.23.

The unknown variables are the temperature T [K], and relative humidity w [-]. The
corresponding gradients are denoted by gl”! [K/m] and g[*! [1/m], respectively, and
the corresponding fluxes by gl [J/m?/s] and gl*) [kg/m?/s]. The heat flux obeys the
Fourier law,

qg)]urier = _D[TT]g[T} : (4.25)
The moisture flux is described by the Fick law,

gl = —plwlgldl, (4.26)

Coupling between the fluxes is done using the Soret flux,

qgﬂg}ret — _plwT] g[T], (4.27)
and the Dufour flux,
Gouporr = —DIgl. (4.28)
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Figure 4.23: Geometry of the reactor vessel.

The total heat and moisture fluxes have the form

g7 = _DITTlgT _ plTel gle] (4.29)
gl = _plTllT _ pluul gl (4.30)

In the case of a homogeneous and isotropic material, the matrices of material conduc-
tivities DITT] DI DTl and D®] can be replaced with scalars, and equations (4.29),
(4.30) reduce to

g7l =TTl IT] _ glre] glo], (4.31)
gvl = _geTlgln) _ glww] glu, (4.32)

The scalar conductivities have the following units: dlrTl [J/K/m/s], dlTwl [J/m/s],
d“T) [kg/K/m/s], " [kg/m/s].
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The balance equations of heat and moisture without source terms have the form

dpu divg!™ = 0, dpc | divgl® =0, (4.33)
ot ot

where p is the total density, u is the specific internal energy and c is the mass concen-
tration of moisture [6]. The last quantity is the ratio of the weight of water and the

weight of the whole system. After substitution of the fluxes (4.31), (4.32) into (4.33)
and rearrangement of the time derivatives, the balance equations for isotropic and

homogeneous materials have the form

C[Tﬂ%{ L C[Tw]%zf _ATTIAT — dTAw — o, (4.34)
C[wr]aal; L C[ww}aaif _4RTIAT _ glowlpg — o, (4.35)

Coefficients c[TT!, clTwl wT] = clww] express capacity properties. For example, Tl s

the specific heat capacity. In the following, we assume that the parameters c[™) and
cl®T] are zero, which is the usual case. Even if they were nonzero, dw/dt could be
eliminated from (4.34) and 9T /dt from (4.35) using a suitable linear combination of
(4.34), (4.35). Thus the final form of the equations to be solved is

MO AT — dAw = o, (4.36)
clwwl aETZf — AWTIAT — glwwla = 0. (4.37)

Time-dependent boundary conditions:

The boundary 0() is split into three disjoint parts: I's (axis of symmetry), 'z (reactor
wall), and I'g (exterior wall). On I's, one prescribes zero Neumann conditions for both

T and w:
or Jw

on~ ' on
where n is the unit normal vector to 0Q).

—0, (4.38)

On the reactor wall I'g, one prescribes a Dirichlet condition for the temperature T = T
and a zero normal moisture flux

al _ d[ww}aﬁ _

on on 0.

g® - = (_d[wﬂ glTl _ gl g[w]) = o]

Here, T is a prescribed temperature. It is time-dependent and it corresponds to a linear
temperature increase from Ty = 293.15 K to T;;4x = 550 K in 24 hours.
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On the exterior wall I'r, we prescribe Newton boundary conditions

qm no= K[TT] (T - Text) + K[Tw] (w - wext)r (4~39)
g = kT — Tp) + €%l (w — weyy), (4.40)

where K[TT], K[Tw], «[®T] and x[®] are transmission coefficients, Ty is the temperature
of environment surrounding the structure and we,y; is relative humidity of environ-
ment surrounding the structure. We will assume that k70l = x[@T] = 0 which is the
common case. Then the conditions (4.39), (4.40) simplify to:

aT ow
(7] ., — _gITTIZ2 _ gltw] @2 L [TT] (7 _
gl -n d o d o KT = Text), (4.41)
oT d
q[w] n = _d[WTlﬁ _ d[ww]% _ K[ww}(w . wext)- (4.42)

The condition (4.42) is usually written in the form

q[W} “h= 5(P - Pext)/ (4.43)

where p is the water vapor pressure, p.y: the water vapor pressure of the surrounding
environment and p the convection mass transfer coefficient. The relation between
vapor pressure and the relative humidity w has the form

w = ps’(”T), (4.44)

where ps(T) is the water vapor saturation pressure. Substitution of (4.44) into (4.43)
leads to the condition

g1 = B(ps(T)w — psext(Text)Wext) = Bps(w — Wext). (4.45)

In the application discussed here, the temperature of the structure T and the tempera-
ture of the surrounding environment T,,; lie within a range where the dependence of
ps on the temperature can be neglected (otherwise, the problem would be nonlinear).

Initial condition:

Initially we assume a uniform temperature Tp = 293.15 K and uniform relative hu-
midity w(0) = 50%.

4.6.1 Numerical results
Let us compare the performance of three adaptive methods: (a) h-adaptive FEM with

quadratic elements where the temperature and humidity are approximated on indi-
vidual meshes, (b) adaptive hp-FEM where both fields are approximated on the same
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mesh (standard hp-FEM), and (c) adaptive hp-FEM where both fields are approxi-
mated on individual meshes. It should be noted that we dropped h-adaptive FEM
with linear elements from this comparison due to its excessive CPU times, and also
that we dropped non-adaptive computations on fixed meshes.

To the last point, such comparison would be very interesting since non-adaptive com-
putations with fixed uniform fine meshes still prevail in practical engineering com-
putations of transient processes. However, in practice these are virtually never ac-
companied with an a-posteriori error estimate, and we believe that it is impossible to
compare methods that use a-posteriori error control with methods that do not. Even if
a non-adaptive computation was accompanied with an a-posteriori error information,
in our opinion it still cannot be compared to an adaptive method since the former
does not invest any effort into controlling the error while the latter does, and work
and CPU time used by a method to control the error should not be counted to its

disadvantage.

0.9
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Figure 4.24: Temperature and moisture distribution in the vessel after 30 years.

We use the following material parameters (see [6]): dl"T! = 2.1 [J/K/m/s], d™ =
2371072 [J/m/s], d™T] = 1.78 10~ [kg/K/m/s], d* = 3.021078 [kg/m/s], T} =
2.18 10° [J/K/m?], ™ = 0, c*T] = 0, c®] = 2.49 10" [kg/m?]. The transition
coefficients have the values x!TTl = 25 [J/K/m?/s], kTl = o, 0Tl = @, xlww] =
1.84 1077 [kg/m?/s].

Let us begin with showing the temperature and moisture distribution in the vessel
after 30 years in Fig. 4.24.
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Adaptive h-FEM with quadratic elements (with individual meshes for temperature and mois-
ture)

Fig. 4.25 shows a series of finite element meshes generated by the h-adaptive FEM with
quadratic elements. The reader can see that both mesh refinement and coarsening took
place over the 30 year period.
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Figure 4.25: Adaptive h-FEM with quadratic elements (mesh after 1 month, 1 year,
and 30 years)
Standard adaptive hp-FEM (same meshes for temperature and moisture)

Fig. 4.26 shows an analogous series of meshes generated by the standard (single-mesh)
hp-adaptive FEM.

Adaptive multimesh hp-FEM (with individual meshes for temperature and moisture)

In the multimesh FEM we allow the meshes for the temperature and moisture fields
to be different and to evolve in time independently of each other (to be described in
detail in Chapter 5). If the two fields exhibit significantly different behaviors, then
this approach can save many degrees of freedom. Figs. 4.27 and 4.28 show the corre-
sponding series of temperature and moisture meshes, respectively.

Comparison in terms of DOF and CPU time requirements

Last let us compare the performance of the three adaptive methods in terms of degrees
of freedom (DOF) and CPU time requirements. Let us remind the reader that the three
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Figure 4.26: Single-mesh hp-FEM (mesh after 1 month, 1 year, and 30 years)

comparisons are fair in the sense that all three methods achieved the same accuracy
in a given quantity of interest (total contents of moisture in the vessel after 30 years).

The reader can see in Fig. 4.29 that the h-FEM with quadratic elements consumes
many more DOF than both versions of the adaptive hp-FEM. This is a standard obser-
vation that will not surprise anyone. It is more interesting to see that the difference
between the standard and multimesh hp-FEM is more significant during the first ap-
prox. 15 years than in the second half of the time interval. This is due to the fact that
in the early stage of the computation, the moisture develops a thin boundary layer
which is not present in the temperature fields (see Figs. 4.27 and 4.28). Therefore the
meshes for temperature and moisture are very different during the initial stage of the
computation. Later, as the moisture layers become smeared, these differences vanish,
and after 30 years both meshes become very similar (compare the right-most parts of
Figs. 4.27 and 4.28).

The differences in the discrete problem sizes from Fig. 4.29 yield different CPU time
requirements of the three methods, as shown in Fig. 4.30. Here, the reader may notice
that the difference between the standard and multimesh hp-FEM is less significant
than their difference in terms of DOEF. This is due to numerical integration that is
more involved in the multimesh case [43].

In Fig. 4.31 we compare the order of the convergence in time for two different numer-
ical schemes. First, the problem was computed on an uniformly refined mesh using
the simplest operator-splitting scheme, in which the values of the solution from the
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Figure 4.27: Multimesh hp-FEM (temperature mesh after 1 month, 1 year, 30 years)
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Figure 4.28: Multimesh hp-FEM (moisture mesh after 1 month, 1 year, 30 years)
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Figure 4.29: Comparison of the three methods in terms of degrees of freedom (DOF).
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Figure 4.30: Comparison of the three methods in terms of CPU time.

previous time level are used in coupling terms. Then, on the same mesh the problem
was solved as fully coupled. In both computations the second order time discretiza-
tion was used. The experiment was obtained over the time period (0,1 month), where
the temperature is rapidly changing, having influence on the moisture. From Fig. 4.31
we see that using simple linearization of coupling terms, the order of convergence for
the moisture is reduced, while fully coupled problem achieved expected second order
accuracy.
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Figure 4.31: Comparison of the order of the convergence in time for operator splitting
scheme and monolithical approach.
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CHAPTER 5

Automatic adaptivity

for time-dependent problems

In the previous chapters we were concerned with the stationary problems. Let us
now discuss automatic adaptivity for transient problems. Time-dependent coupled
problems are challenging since one has to capture transient phenomena with sufficient
accuracy, while the size of the problem must stay reasonably small. This leads to an
obvious need for dynamically changing meshes for such problems. In most scientific
computations, where dynamical meshes are used for time-dependent problems, data-
transfer methods are necessary to move solution values between meshes for different
time levels. As shown in Section 4.2, data-transfer methods cause additional error and
in case of time-dependent problems repeated transfers (usually simple interpolation)
between meshes can have disastrous consequences.

In this thesis we propose a novel approach for the solution of transient problems using
dynamical hp-meshes obtained fully automatically by the hp-adaptive algorithm. In
this method no transfers between non-matching meshes are necessary as a result of
the multimesh approach described in Section 4.4. This technique allows us to inte-
grate weak forms with integrands from different finite element spaces (i.e. discretized
on geometrically different meshes). With the automatic hp-adaptivity and dynamical
meshes the question of coarsening meshes between time levels arises. Mesh derefine-
ment is particularly important in problems where sharp fronts (internal layers) move
through the domain leaving smooth solutions behind them. We propose an original
coarsening algorithm suitable for hp-FEM based on the super-coarse solution, which
results in substantially fewer adaptive iterations.

The adaptive hp-FEM algorithm for time-dependent problems we use is obtained by
combining the classical Rothe’s method for time discretization with adaptive hp-FEM
for the space discretization. The Rothe’s method is a natural counterpart of the widely
used Method of Lines (MOL). Recall that the MOL performs discretization in space
while keeping the time variable continuous, which leads to a system of ODEs in time.
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The Rothe’s method, on the contrary, preserves the continuity of the spatial variable
while discretizing time. In every time step, an evolutionary PDE is approximated
by means of one or more time-independent ones. For one step methods (such as
implicit Runge-Kutta), the number of the time-independent equations per time step is
proportional to the order of accuracy of the time discretization method. For example,
when employing the implicit Euler method, one has to solve one time-independent
PDE per time step:

n+1 n
‘?;t‘ = F(tu) = ”+At_” = F(¢n 1yt (5.1)
The Rothe’s method is fully equivalent to the MOL if no adaptivity in space or time
takes place, but it provides a better setting for the application of spatially adaptive
algorithms. The spatial discretization error can be controlled by solving the time-
independent equations adaptively, and the size of the time step can be adjusted using
standard ODE techniques [12, 24, 25].

The chapter is organized as follows: In Section 5.1, the multimesh technique is dis-
cussed from the point of view of time-dependent problems. In Section 5.2 we present
the refining and coarsening algorithms for such problems and Section 5.3 demon-
strates our approach on a numerical example.

5.1 Dynamical meshes and the multimesh technique

By 7., let us denote a uniform coarse mesh covering the computational domain Q).
This mesh (called master mesh) is shared by all solution components at all time levels,
in other words all meshes can be obtained from this mesh by elementary refinements.
At each time instant t, an optimal mesh is found to suit the best the solution u" (x).
On the (1 4 1)st time level, the approximated solution u"(x), that has been obtained
in the previous time step, is used as data. Note, however, that u" is defined on a
locally refined mesh that was created automatically during the nth time step, while
the unknown u"*1 is solved adaptively starting from a coarser mesh. As a result, the
meshes obtained on each time level are different, i.e., the mesh changes dynamically
in time.

In order to evaluate exactly the integrals in the discrete formulation of the problem
(5.1) when the previous solution u"(x) and the test function v"*!(x) are defined on
geometrically different meshes, we use the multimesh hp-FEM described in Section
4.4. Example of a master mesh 7,,, meshes 7,,7,,1 and the union mesh 7, (mesh
containing refinements from both subsequent time levels) for time-dependent problem
are depicted in Fig. 5.1.
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Figure 5.1: Example of a master mesh 7,,,, meshes 7,,, 7,11 and the union mesh 7,,.

Note, that by using multimesh technology no additional error arises since no transfer
of information between the meshes takes place. In other words, all integrals in the
weak formulation are evaluated exactly up to the error in the numerical quadrature.

5.2 hp-adaptivity for transient problems

As mentioned above, in transient problems the optimal meshes are on each time level
obtained automatically and they can change from one time step to another, which
induces need for both refining and coarsening strategies.

5.2.1 Refining algorithm

In Chapter 3 the goal of adaptive algorithm was to decrease the error as low as pos-
sible. On the other hand for time-dependent problems we want to sustain the space
error on approximately the same level, which would result into meshes with smoothly
changing number of degrees of freedom. Thus the stopping criterion for hp-adaptivity
will slightly differ. In adaptivity for time-independent problems we refined in each
adaptive step fixed amount of elements (e.g., 30%). For time-dependent problems the
amount of elements refined in one adaptive iteration will also depend on the global
solution error estimate in that iteration. When refining elements, we sum the element
errors of already processed (refined) elements. This sum indicates approximately how
much the global error will decrease. And when this number substantially exceeds the
difference between the original global error estimate and the prescribed tolerance

M
Z errj > c (errest — TOL), (5.2)
i=0

we stop the procedure and continue with the next adaptive iteration even though
we did not refined prescribed fixed amount of elements. In equation (5.2) ¢ > 1 is
a suitable constant, err; are element contributions to the global error estimate sorted
in decreasing order and M is number of already processed elements. In this way in the
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next adaptive iteration the global tolerance is satisfied with as less degrees of freedom
as possible and we proceed to the next time level.

5.2.2 Coarsening algorithm

The most primitive strategy to coarsen the mesh on the next time level is to start on
each level from the very coarse (master) mesh and perform the automatic adaptivity
to find the optimal mesh for particular solution #"(x). Although this would result
in the most optimal meshes in each iteration, it is not virtually possible due to the
immense computational time demands. Moreover, a lot of work would be wasted
since the solutions from two adjacent time steps usually diverge mildly even though
the solution changes significantly in the whole time domain. Global derefinement
would result in similar difficulties.

We present a coarsening algorithm that prepares the mesh for the adaptive algorithm
on the next time level by local derefinements. Thus, we remove only unnecessary
refinements from previous time levels. In this way the meshes for particular time
steps are suboptimal, but the number of adaptive iterations performed in each time
step significantly decreases.

In higher-order finite element method we have two questions. First question is which
elements can be coarsened and second how to coarsen them. In hp-FEM we can
either decrease the polynomial order of the element or if it has four active sons we
can geometrically coarsen the element with various choices for assigned polynomial
order. Situation is depicted in Fig. 5.2.

2 1

N

Figure 5.2: Coarsening choices for an element.

However, the coarsening serves only to prepare the mesh for the next adaptive process,
thus we do not have to search for the best unrefinement as in case of refinements. It is
perfectly sufficient to perform any coarsening that does not cause error increase and
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the mesh will optimize itself in the next adaptive loop. So far, to keep the algorithm
reasonably simple we allow only coarsening as reversing of previous refinements of
isotropically refined elements (both triangles and quadrilaterals). In this way the tree-
like structure of meshes starting from the master mesh is preserved. Unfortunately,
the coarsening algorithm cannot be just an opposite to the refining. While with the
refining algorithm we are seeking for the best candidate in the sense of error decrease,
here we are looking for a candidate whose error will not exceed some tolerance (so
that it would not be subsequently refined).

Let us denote by e, the error of the element with maximal error from the last adap-
tive iteration. From Alg. 3 from Chapter 3 we know that errors of all elements are
below e, and that it should be satisfied as well after the coarsening procedure. First
we calculate so called super-coarse solution for polynomial orders. By that we mean
that polynomial order on all elements is decreased by one. We calculate error esti-
mates for all elements in the super-coarse mesh with respect to the reference solution
and lower the polynomial order on those elements whose error after coarsening is less
than k * e,,,r, where parameter k € (0,1) is chosen to ensure that element will not be
subsequently refined in the adaptive procedure on the next time level. Similar pro-
cedure is run for a spatial coarsening — super-coarse solution is calculated on the mesh
where all elements with four active subelements are coarsened and polynomial order
on such elements is assigned to be the maximum of orders on four subelements. In
a similar way as before we determine which elements can be also spatially unrefined
without significant increase of the error.

The whole procedure for time-dependent problems with the refining and coarsening
strategy is described in Alg. 5. Effectivity of the approach is demonstrated on the
flame propagation problem in the next section.

5.3 Flame propagation problem

Let us recall Example 4.2 from Section 4.3. All parameters” values are taken from
[37]. The behavior of both solution components, the temperature and concentration,
rapidly changes throughout the time as the laminar flame propagates through the
domain. Function w(6,Y) representing the reaction rate at different time instants is
depicted in Fig. 5.3.

These problems are typically solved on an uniformly refined mesh resulting in huge
computational and memory requirements. The automatic hp-adaptive Alg. 5 with
both refining and coarsening was applied resulting in an optimal discretization with
as few degrees of freedom as possible. Optimal hp-meshes for four different time
levels are shown in Fig. 5.4. Notice that very small elements on the flame front are
often adjacent to very large elements. This is possible due to the technique of arbitrary-
level hanging nodes described in Section 3.1, and for problems with sharp fronts or
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Chapter 5 — Automatic adaptivity for time-dependent problems

Algorithm 5: Adaptive algorithm for time-dependent problems with improved
stopping criterion.

foreach time level do
repeat
compute solution on current mesh u;
compute reference solution u,f;
evaluate global error estimate errg; and local errors on elements err;;
if errg) < TOL then
done = true;
break;
else
sort all elements by their error;
processed error = 0;
foreach element do
if (processed error > ¢ * (errgl - TOL)) or (err; < k * erry,y) then
done = true;
break;
else
find optimal refinement;
processed error + = err;;

until not done ;

calculate super-coarse solution for polynomial orders;
decrease polynomial orders when possible;

calculate super-coarse solution for spatial refinements;
geometrically coarsen elements when possible;

curvilinear material interfaces, this saves large amounts of degrees of freedom which
otherwise would be needed to keep the mesh regular.

For illustration purposes we also show in Fig 5.5 underlying low-order FEM-meshes
where biquadratic elements and the h-adaptive strategy are used. Comparison of the
number of DOFs for both approaches is in Fig. 5.6. It can be seen that low-order
FEM required on average 4-5 times more degrees of freedom than hp-FEM. It is worth
mentioning that with lowest-order (bilinear) 4-FEM the size of the problem would
either exceeds memory capabilities or we would not reach prescribed accuracy.

The effectiveness of the adaptive process with refinement and derefinement is demon-
strated in Fig. 5.7, where the number of adaptive iterations per one time iteration is
shown. As a result of optimized adaptive algorithm in almost two thirds of all time
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Figure 5.3: Reaction rate w(0,Y) at t = 1.37, 19, 47.4, 59.

levels no adaptivity is necessary and the solution satisfies prescribed tolerance imme-
diately. In about one quarter of all time steps one adaptive loop is done (problem is
solved twice) and in negligible number of steps more adaptive iterations have to be
applied.

As was said at the beginning of this chapter the multimesh assembling technology
allows us to solve problems on dynamically changing meshes without need for the
data-transfer methods, thus on each time level the discrete formulation is evaluated
accurately up to the error of the numerical quadrature. Appling data-transfer methods
such as interpolation on each time level would cause an additional error which can
after repeated transfers exceed the error caused by space or time discretization.
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Figure 5.4: hp-meshes for time levels t = 1.37, 19, 47.4, 59.

For illustration, we computed the problem on dynamically changing meshes with
bilinear elements using both, bilinear interpolation between time steps and the mul-
timesh assembling technique. In both computations the meshes were adapted using
h-adaptivity to achieve accuracy 4% in relative H'-error in w(6, Y) (the error tolerance
was lowered in comparison to the previous computations). In the first case, the so-
lution from the level " was transferred from the mesh 7, onto the mesh 7,1 and
then solution was sought without need for additional treatment - all functions (ba-
sis functions and external data) were defined on the same mesh. In the second case,
no interpolation took place, but integrals containing solution (6", Y") were assembled
using the multimesh technique. Both computations were compared with “reference

104



Chapter 5 — Automatic adaptivity for time-dependent problems
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Figure 5.5: hp-meshes for time levels t = 1.37, 19, 47.4, 59.

computation”, when very fine meshes were used. Fig. 5.8 shows the impact of data-
transfers on the approximation error

e (0", Y") = wregl ()

e, =

[y sl mn(a)

With increasing length of the time interval the error caused by interpolation accumu-
lates, while the approximation error of the solution obtained by the multimesh stays
on the same level.

105



Chapter 5 — Automatic adaptivity for time-dependent problems

Number of degrees of freedom

40000 T T T T
: : hp-adaptivity
35000 h-adaptlwty -
30000
25000
ik
O 20000
la}
15000
10000
5000
O 1 1 1 1 1
0 10 20 30 40 50 60
Time

Figure 5.6: Comparison of discrete problem size as a function of time.
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Figure 5.7: Number of adaptive iterations per time step.

Reaction rate w(0(t),Y(t)) at t = 45 for both computations and also the “reference”
solution w,f is depicted in Fig. 5.9. With correspondence to Fig. 5.8 the data-transfers
between non-matching meshes cause slowdown of the propagating flame (reference
vertical line is inserted for easier comparison).
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Figure 5.8: Effect of linear interpolation between meshes 7, and 7,41 on approxima-
tion error.
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Figure 5.9: Reaction rate w — “reference” (top), multimesh (middle), interpolation
(bottom).
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CHAPTER 6

Inductively heated
incompressible flow
of electrically conductive liquid

in pipe

Although the laws of electromagnetism and fluid flow were known already in the
nineteenth century, the complete mathematical description of the magnetofluiddy-
namic (MFD) phenomena comes only from the 1930s, when these effects started to
be studied in connection with astrophysics (particularly the behavior of plasma in
the universe) and a little later also with geophysics (origin of the Earth’s magnetic
field). Since then, a lot of systematic effort has been exerted to solve the model, first
analytically for geometrically very simple arrangements and later, since 1970s, also
numerically, even for very sophisticated cases.

From the physical and mathematical points of view probably nothing new can be
added to the model that is considered a very good approximation of the physical
reality and its validity has been confirmed many times [1, 9]. On the other hand,
its solution is a real problem. The model can usually be reduced to three nonsta-
tionary and nonlinear partial differential equations describing the time evolution of
electromagnetic, temperature, and flow fields, and one equation of continuity. How-
ever, these equations are coupled, because their coefficients (expressed in terms of the
physical parameters of involved materials and media) are functions of the tempera-
ture, pressure, and other possible state variables.

Numerous industrial technologies working with electrically conductive liquids (e.g.,
molten metals, acids or solutions of salts) are based on the force and thermal effects
of the electromagnetic field. As such processes we can mention pumping, dosing,
stirring or heating. The computer modeling of such processes is still a challenge and
in engineering community these problems are usually solved by the standard low-
order finite element methods (FEM) or finite volume methods (FVM) with one fixed
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Chapter 6 — Inductively heated incompressible flow of liquid metal

common mesh (usually uniformly refined) for all components of the problem and for
all time levels [1, 27, 33].

In this chapter we are dealing with the problem of heating of a conductive liquid flow
in a ceramic pipe. Fig. 6.1 shows the axisymmetric settings of the problem, where
the electrically conductive liquid flows from the left to the right and is warmed up by
a time-variable magnetic field generated by a harmonic current carrying inductor.

electrically conductive
inductor liquid

Vo T
Tw

basalt pipe

/ ro

Tsym z

——

Figure 6.1: Computational domain ().

6.1 Mathematical model

The mathematical model of the problem is given by three partial differential equations
describing the distribution of the magnetic field, the temperature field and the flow
field represented by radial and axial velocities and the pressure.

6.1.1 Magnetic field in conducting fluid

First, let us describe the movement of the conducting fluid in external magnetic field.
Conducting fluid moving at the velocity u in external magnetic field B produces in it
(in accordance with Faraday’s law) electric field.

If there exists, moreover, an additional external electric field E acting on the fluid,
then the electric field caused by the motion of the fluid E,, superimposes to it, thus
producing total electric field

This total field makes charged particles of the fluid move in its direction, which leads

to the generation of currents. Denoting electrical conductivity of the fluid by symbol -,
the current density at a point is given by the formula

J=vE;=v(uxB+E). (6.1)
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These currents generate secondary magnetic field that adds to the original external
magnetic field B. Thus, every particle of the fluid is affected by the Lorentz’ force,
whose volume density vector f is given by

f=JxB=9(uxB+E)XxB, (6.2)
and local Joule’s losses are produced, whose volume value pj is

_IT
Py = v

The best way of describing magnetic field in the conducting fluid is to use the magnetic
vector potential A defined by
B = curlA,

with Coulomb’s calibration condition
divA = 0.
Now the first Maxwell’s equation

oD
1H = -,
cur J+ o5
where H is magnetic field intensity and D electric induction, may be after neglecting
the displacement currents (the second term on the right-hand side) rewritten into the
form
curl(ptcurld) = J, (6.3)

where p denotes the magnetic permeability. From the second Maxwell’s equation and
equation (6.1) we obtain

oB J ocurlA 0A
curlE = T curl(;—uxB) = = — curl (815)’
and hence,
I_ _ 94 _
Y uxXB= o Vo,

where ¢ is a scalar function (mostly interpreted as the scalar electric potential).

Multiplying this expression by electrical conductivity v we get

J= _ryaai? — Ve + yu x curlA. (6.4)
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Substituting (6.4) into (6.3) finally provides us with

curl(ptcurlA) = —yVo —y <—i;;l —ux curlA) . (6.5)

Now it remains to explain the physical significance of the individual terms in (6.5):

¢ —yV¢ = Jo represents external current density delivered to the fluid from the
external source,

0A
* —y—- stands for the eddy current density due to time variation of the magnetic
field,

* qu x curlA is the eddy current density due to the motion of the fluid.

It is clear that only external current density is known beforehand. Both eddy current
densities are functions of the magnetic vector potential A (and the second one also
a function of the velocity u). That is the reason why the corresponding terms are put
on the left-hand side

curl(p'curlA) + v (2;: —u X curlA> = Joxt - (6.6)

If the system under investigation contains no ferromagnetic part, then

0A
curl(curlA) + yu (at —u X curlA) = UJext - (6.7)

Considering the magnetic vector potential A harmonic in time with the angular fre-
quency w _
A(x,t) = Re(A(x)e ™),

where i is an imaginary unit and the underlined A is the phasor (generally complex
vector), it follows that

Thus

curl(curlA) + iwypA — ypu x curlA = uJ (6.8)

ext’

where ] . stands for the phasor of the external harmonic current density in the in-
ductor. The boundary conditions on the axis of symmetry and on sufficiently distant
artificial boundary are characterized by the Dirichlet boundary condition

A=0. (6.9)
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6.1.2 Temperature field in conducting fluid

The distribution of the temperature in the fluid is generally a function of the position
and time. In other words we can write T = T(r, t), where r denotes the position vector.
Provided that A is specific thermal conductivity, the heat flux q(r, t) is defined as

q(r,t) = AVT(r,t). (6.10)

Let us consider a small part of the conducting incompressible fluid of a volume V
closed by surface S. The power balance for this volume (according to the first law of

thermodynamics) reads

P(t) = <+ Q) (611)

where dU/ dt denotes the time variation of the internal energy in the volume that is
produced by the heat flow Q(t) penetrating to the volume V through its boundary S
and by the heat power P(t) produced by the Joule losses. The internal energy U in the
volume V can be expressed by the formula

u= / pocT dV, (6.12)
1%

where p is the specific mass of the fluid and c denotes its specific heat. Since p and ¢
may be declared constants (incompressible flow with small variations of the tempera-

ture), we can write

du dT
—qp —Fe v dr dv. (6.13)

The total heat flow Q(#) may be determined from the heat flux g(r, t) integrated over
the whole surface S. Taking advantage of the Gauss theorem, it holds that

Q(t) Z/qu:/.q-ndS:/ divg dV. (6.14)
S S v
Finally, the total Joule losses in the volume V are given by the integral

_1 2
P(t) = 7/V|]| av, (6.15)

where the current density | is given by (6.1). Substituting (6.13), (6.14) and (6.15) into
(6.11) gives

1 dr ,
’)//Vm dV_pc/VEdV—i—/lequV.

Since this equation must hold for any volume V, there must hold also the equality of
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the relevant integrands

OE_ 09T
” = pc dt+dlvq’

and after substituting for g from (6.10) and some rearrangements we obtain

. ar _  |JI?
AVT) — pc—— = —1—.
div(AVT) — pc T p”
The remaining operation to be carried out is to perform the full derivative dT/ dt.
We easily get

dr _or eTax rdy orez _ar O
dt 9t O9xot odyot odzot ot '
Thus, the equation describing the nonstationary temperature field in the fluid moving
at the velocity u reads

2
div(AVT) — pc <a£ +u- VT) = —|{y’, (6.16)

where time average internal source of heat (the specific Joule losses) is determined by
the formula

IZ
E =y |AP
Y

Note that in the ceramic pipe the term u - VT vanishes. The boundary conditions (see
Fig. 6.1 for notation) equipped with equation (6.16) are as follows

T = TD on FI,
oT
i &(T — Text) on I'prpg,
oT
— =0 elsewhere,
on

where a denotes the heat transfer coefficient.

6.1.3 Flow field in conducting fluid

Liquid metals may be with practically negligible error considered incompressible, i.e.,
their density can be supposed constant, and thus the flow is governed by Navier-
Stokes equations

d
p[a?%—u-Vu} =-Vp+vAu+pg+f, (6.17)
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together with the continuity equation
divu =0, (6.18)

where p is the pressure, v dynamic viscosity and f denotes the internal volume
Lorentz forces produced by the time variable magnetic field and defined by (6.2).
Navier-Stokes equations have been derived in detail in numerous monographs, we
refer the reader for instance to [18]. For numerical computations we neglect the grav-
itational term p g in order to preserve axial symmetry of the problem. The equations
are equipped with the following boundary conditions

v, =0, v, =7 on Iy,
1 _ ou
(p—pref)n+§(u-n) u=va on Tp,
u=20 on I'y,
0
vy =0, & =0 on FSYM~
ar

6.2 Rothe’s method for time discretization

Let us first describe the discretization in time. For simplicity, we consider uniform
partition of the time domain (0, T) with time step T, hence (0, T) = (0 = to, t1,...,IN =
T), t, = nt. Then we approximate all components of the solution

Q

A(tn) ~ An/ u(tn)
n

u”,
T(ty) = T7, p(tn) = p",

%

and we use the implicit second order scheme for discretization of time derivatives

ou _ 3u"— 4yt 4y 2

or 2T ’
oT 37" —4T" 14 T2
or 27 '

Resulting time-independent coupled problem on time level ¢, reads

curl(curlA”) + iwypA" — ypu" x curlA” = pJ ., (6.19)
n __ n—1 n—2 n|2
div(AVT") — pc <3T 4T2T T +u"- VT”) = — |I’)’| , (6.20)
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3y — 4un—1 + un—Z
2T

+u" - Vu'| = -Vp" +vAu" + ", (6.21)

divu"™ = 0. (6.22)

6.3 Weak formulation of the problem

According to Chapter 2, the starting point for the discrete formulation of the problem
is the weak formulation. Let us derive the weak formulation of the problem (6.19) —
(6.22) in the axisymmetric arrangement. Let us introduce simplifying notation A =
A" T=T''u=u"and p = p".

6.3.1 Magnetic potential

First, we rewrite the vector equation (6.19) as a scalar equation for A, under the
assumption that A, = A, = 0. Let us start with cylindrical formulas for necessary
operators.

o 1o Zo
1 1[, 0 L 0
curlA = - 2 % 2 = [Zoa (rA(P)—i’an(rA(P)} =
0 rA, O

A J0A 0A JdA A JdA
Caihe ey n e (e he e

5 0, — (6.23)

oz r or

Therefore by plugging (6.23) into curl (curl A) we get

o 1o Zo
1
curl (curld) = =| 2 0 2

1 (A o0 (Ag 94
= 7 |79%; 0z o r or

or
B 9 (04, 9 [(0A, J (Ay
= (05 (%) -5 (%) -5 (5)0). 62

QU
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and using (6.23) and assuming that 1, = 0 we obtain

dA A JdA
wxeatd = @“““JX(—egﬁa,f+;#?
A JdA 0A
_ o ¢ A ¢
= (O, ur(—r + = ) uz—az , 0). (6.25)

By substituting (6.24) and (6.25) into the original vector equation for the magnetic
potential (6.19) we get the following scalar equation

3 (A, 9 [(3A,\ 0 (A,
“az (82) o <ar> T <r) (6:26)
, Ay, 3A, dA, .
HiwpyAp +y pitr (=5 + = F) Y itz = et N Q.

Multiplying by a test function v, € H}(Q)), integrating over the domain () and using
Green'’s theorem and boundary condition (6.9) we get the weak formulation for the
magnetic potential:

Find A, € H}(Q), such that

A Liwpy Apoa (6.27)

0Apduy  0Ayduy 1 v
A;{& 0z "o ar Tl

A JdA 0A
+7yur<7f+&f>vA+7yuz&f04<ﬂn@:=lﬁdmwvAdUﬁl

forall vy € HY(Q). (6.28)

Remark 6.1 The equation (6.27) is defined in the complex plane and its weak solution, phasor
A, is generally also a complex-valued function. On the other hand, temperature T, velocities
Uy, U, and pressure p are real-valued functions and the numerical simulation of the whole
coupled problem in the complex plane would be severe waste of the computational time. Instead,
the magnetic potential is written as A, = Ag + iAIq, and the equation (6.27) is splitted into
two coupled equations for Af; and Afp in the following way. Coupling terms between real and
imaginary parts of the magnetic potential are shown in red.

Ja

Aoy oAk 1,
dz 0z or or r ¢

AR AR 9AR
+7uur(77+¢)v§+7ﬂuz¢v§

or

—wuy Afpvlf\ (6.29)

— R R
_ o8| d(rz) = [ gk 0kd0,2),
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0AL gvl  9AL 9ul 1 ool
90U, 99U,y R
fA —4 A .
% 9% > or +r 9 +wy'y UA (6.30)

/s

AL 9AL oAl

e (5 58] st T o ) = [t ohatno

6.3.2 Temperature

In order to derive the weak formulation for the temperature field, let us state relations
for gradient and divergence in cylindrical coordinates

oT 10T 0T
VT = <E)r' v g’ az> / (6.31)
0
v‘uzla(rur) 10uy  du, 632)

roor rop | 0z

Using relations (6.31) and (6.32) and assuming that temperature T is independent on

@, ie. a—T = 0 and u, = 0, equation (6.20) can be written as follows

?T 10T 0°T 3T — 4T 1 4 T2 BT BT

To derive the weak formulation of (6.33) we first multiply equation (6.33) by r and
then by a test function vr € Vr, where

Vr={ve Hl(Q),v =0onTy},

and integrate over the two-dimensional domain Q).

2 2
—/\/ < oT | aT+aT>de(rz)+

0z2 = or
3T — 4771 4 T2 oT oT
pC/ (r = +ru, — 5 +ru, az> ord(r,z) =

d(r,z).
/Qrp]vT (r,z)

Now, the Green’s theorem applied on the first two terms gives
02T
1), ( a? oz ) rdinz) =
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B oT orvr  OT orvur
B A/ (81’ or T 0z 0z
. )\/ ( dT dur oT doT dur

or or +81’0T+r8232> dlrz) =4 aQVT-nrvT a5

>dx—/\ VT -nropdS =
Q)

oT
Therefore we can cancel integrals A / gvld(r, z) and the weak formulations for the
O

temperature field is as follows

aTaUT aTaZ)T
A/ < oo ez ez >d(”‘>+

3T — 4T 1 4 T2 oT oT
pC/ ( e +urar+uzaz) ropd(r,z)—
A VTonror dS:/ rpyord(r,z). (6.34)
200 @)

6.3.3 Flow field

Finally we derive the cylindrical weak formulation of the Navier-Stokes equations
(6.21). We start from the weak formulation in three dimensions, where v;, i = 1,2,3
and g are test functions

v; €W ={ve H (Qps),v=00onT; Uy}, g € L2(Qps),

where (s represents corresponding 3D computational domain and I';,I'o and T'yy
corresponding 2D surfaces, the inlet, the outlet and the wall, respectively.

The Green’s theorem implies

Buy — 4ul "+ ul 9v;
/ p! e Y vi+ (u-V)u; v i
Oy

+vVui-Vvi—pgdx:
1

2T

/ poin; —vVu;-nv;dS = / fividx, i=1,2,3 (6.35)
Q Qs

R3

Juy;  duy au3 B

The convection term in (6.35) can be rewritten using green’s theorem as follows

/Qa(u V)Mﬂ)z—z/ (u-V)u; v+ / Z]a

R R3]
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2/ (u-V)u; v; — 2/ Z
_1 o — X oW
—2/03(u-V)u,vl 2/QR3;ulaxjv

R

_1/
=5/

R3

because

u] ;)

R3]

1

8vi 1

(u-V)uivi—;/QRS (u-V)viui—i—;/aQR3(u~n)uivi

0
divu = Zaz] =
]

]

Y uiviujn;
Zuiviujnj

M 5

Hence, the weak formulation of the Navier-Stokes equations can be written as

3 1 1 avi
-/QR3 0 L_Fuivi + 5 (u-V)u; v — 5 (u-V)v; ui] +vVu; - Vo; — pa—Xidx + (6.37)

1 + _
5 rO(u-n) ulvldS—/Q

R3

4ui71—1 o
2T

unZ

vl+flvdx—/ Pref 0i i dS.

The vector velocity field u takes in cylindrical coordinates the following form

251
uz

us

Under the assumption that
ou,

A

Uy COS @,
uysin @,

Uy.

ou,

9

(6.38)

(6.39)

the relations for derivatives of the vector u in cylindrical coordinates can be summa-

rized as follows

aul auz 8u3
8x1- E)xi 8xi
5 IMr 062 4 L WM ospsing — - -
X1 P cos? @ ur sin? [ P cos @ sin ¢ . Uy COS @ sin ¢ 5 Z cos [
ox % ing — —u in % in? o+ 1u Uz
2| 5, cos @ sin ¢ . r COS ¢ sin ¢ > sin” ¢ , COS? [ P
5 ou, ou, ou,
X3 5 cos @ 5 sin ¢ e
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Thus the formula for Vu; - Vv; in (6.35) can be derived as follows

8u1 avl 8u1 avl 8u1 601

vul ‘ VU1 8x1 8x1 8x2 aXZ BX3 8x3 -

%avr + 1 — Uy sin* ¢ + 1u 90, cos? @sin® @ + 1%v cos? @ sin® g+
or Br (P r 4 "or 4 4 ror ¢ ¢
%a—sm cos® + L 5 Uy cos? @ sin® avr cos? @sin® @ — 7%0 cos? @ sin?
or or ¢ 4 mr 4 ¢ "or 4 4 ror 4 4
ou, dv, 5
g g COS (P

Similarly, the formula for Vu; - Vv;, i = 2,3 can be derived, thus
Ju, avr ou, 0v, o
Vuy - Vo, = 5 o (p—l— uvrsm (p—l—ggcos ®,
aur avr , 1 aI/l avr - 2
Vu, -V, = 5 o q)+ urvrcos (p+¥gsm ?,
ou, 0v,  Ou, sz
Vi Vs = 5o a T o o

Now let us derive convective terms

ouy ouy Ju,
Fy” + u3 Uy —— COS ¢+
X2

ouy
(u V)ul = U= aix?) = 9z

91, -I-Mz

oy 5 1. . o, : 1 .
iy cos ¢ | — - cos qo—l—;ursm ¢ | +using (7= cosgsing — —uycos gsing

Iur coOsQ +u % CcoSs
ar qD Z (P

0z

:ui’

Similarly, the other convective terms can be obtained, thus

0 0
(u-Vuy = u au CoS ¢ + Uy au Cos @,
ou, our .
(u-Vu, = urWsm(p—i—uzgsmq},
ou ou
(M'V)u?, = Mrairz—f—uzaizz.

Finally the formula (6.32) for the divergence V - u becomes (under the assumption

(6.39))

aur 1 ou,

Now let us substitute all these derived formulas into (6.35) using substitution theorem.
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First equation in (6.35) in cylindrical coordinates reads

/// St cost o+ v [ 297 +1 LI
pZTUrCOS(P v 5 or go urvrsmgo e aZCS(p

ou, 2 ou,
+p Uy "0y COS @+ u;— . v, cos> ) a— cos? ¢+ vrsm @ || rd(r, ¢ z2)
u= 2

-/l <4”” =

Similarly second N-S equation

[ o2yt g v (22 g Lo
v,smqo Vs, 5, n® ¢ urv,cosqo 3 32 sin” ¢

+polu %v in¢+u %v in? 9or in? ¢+ 10 rd(r, ¢,z)
P T’ar rS P ZaZ rS ¢|—P or s P ”COS P » P
n—2

n—1 __ -
— /// (Wz}r sin? ¢+ fror sin? q)) rd(r, ,z).

By adding these two equations together we get the equation for u,. Since the inte-
grands no longer depend on ¢, we can divide the equation by 27t and simplify as
follows

// 3u, _— ou, +uau e %%_1_ +auravr
Or 78 O Zaz or or er Jz 0z

v, 1 4ul !t — 2
—p (ar + rUr) rd(rlz) - // <2TUI’ —|—fﬂ];») Td(?’,Z). (640)

Finally, the third N-S equation, in other words the equation for u,

3u, ou, Ju, du, 0v,  Juy dV,
//P (zrvz g0 +“ZaZUZ> v (arar + azaz>

00, 4yt — 2
—Pa rd(r,z) = // <2TUZ +fzvz> rd(r,z). (6.41)

v, cos” ¢ + f,0y cos q)> rd(r, ¢,z).

The continuity equation in the weak form reads

ou, 1 ou,
//(a—i%—furl- au )grd(r,z) =0. (6.42)

7

The formula for the internal Lorentz force in (6.40) and (6.41) written in the axisym-

121



Chapter 6 — Inductively heated incompressible flow of liquid metal

metric arrangement is as follows
f =JxXB= (0,](p,0) X (Brzor Bz) = (](sz/O/_]q)Br)-

Thus

fr = |Jp| |B:| cos(arg ], + arg B;),
f: = —lJy||Bs|cos(arg ], + arg B, ).

6.4 Numerical method

The numerical solution at each time level is defined in means of finite element method.
The computational domain is first covered by a coarse partition consisting of generally
unstructured quadrilaterals. Since the particular physical fields are defined in differ-
ent parts of the domain, the meshes 7, (for A{;,AI(P), T; (for T) and 7¢ (for u,, uz, p)
can cover only parts of the whole domain to better accommodate individual needs of
the solution components. Therefore the flow field is sought only in the interior of the
pipe, temperature field also in the pipe itself and the magnetic field has to be solved
also in the inductor and in the vicinity of the arrangement. Computational domains
with initial coarse meshes for all three physics are depicted in Fig. 6.2.

Standard continuous higher-order finite elements are used for the discretization of the
magnetic potential A%, Afp and temperature T. Thus

AR, Al e vl = {v e HY(Q) N C(Q); vl € P(K), VK€ T, },
T eV, = {ve VrnC(Q); vlx € P’*(K), VK € T;} .
For the flow field, well-known Taylor-Hood Qj.1/Qx elements satisfying Babuska-

Brezzi condition are used. Here velocities u,, u, are approximated by continuous
elements, while pressure p is discretized using discontinuous L, finite elements.

ue v, = {v € Ve N (C@Q))% vk € (PF1(K))?, VK € Tf},
Ve ={vec (H(Q))?* v=00onT;UTy},

e Q= {q € [2(Q)NCQ); glk € PX(K), VK € Tf}.

Remark 6.2 We have tested Navier-Stokes equations derived in axisymmetric scheme on
a flow through a narrow pipe. Since the quadrature rules [48] used in our computations do not
have points on the boundary of elements, we did not experienced any numerical instabilities in
our computations.
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Magnetic potential - liquid, pipe, inductor, surroundings

Temperature - liquid, pipe

Flow - liquid

| :

Figure 6.2: Initial meshes 7, (for Ag,Aé), 7; (for T) and T¢ (for uy, us, p).

Since the Reynolds number for our computation is large (up to 10°), the numerical
solution can contain nonphysical spurious oscillations. In order to suppress them
the finite element method is stabilized using the streamline-diffusion and grad—div
techniques.

6.4.1 Stabilization of FEM

We define stabilization terms
L, = /51< (piu —vAu+ (" V) u+ Vp) (w1 V) v dx,
P = [wV-uV-ods,

Fn = /51< <piu”_1 +f> (u" 1. V)odx.
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In a similar way as equations (6.40), (6.41) these equations can be written in cylindrical
coordinates as follows

1 Bzu 10u, 1 %u,
/51< p;u,cosq)—v 8r2 qo—f—fa—cosqo uycoqu— 5.2 cos ¢

d 10 d d 0
+ul'” 181cosqo—|—u aicosqo—kalgcosqo) < ul~ 1avrrcosgo—|—u21;;cosgo>

1 . o%u, 10u, 1 %u,
+/5K p;ursmq)—v 52 sm(p+f§smgo u,smq) 52

ot 10U,

ing+ul” alln —l—a—Pm ”1ai ing+ul” %in
or 59 oz TP T o S ar "9 e

Jz
' 1 ?u, 1ou, 1 0%u,
_/5K<prur_v(8r2+rar ”r+azz>

d d Jd
s 1S 19 ) (1S w19 (cost g sind p)r d(r2) =

= oK\PTH a2 ror 12" 922

—{—Ll:l_lal/:r +un—1al’;”+af> <M 1aavr +u n 1aaz>rd(rlz)'

The third equation in £, is

/5 b azuz+1%+a2uz
K ‘O z o2 r or 022
ou ou 0 dv 00,
n—19Uz —19Uz p —197; n- 1
+uy P +ul” . + . ) (ur a5 +u . ) rd(r, z).

The second stabilization term reads

B ou, 1 Ju, du, 1 00,
Ph_/TK < ar T az> <8r Tyt az>rd(r’z)'

Finally, the right hand side stabilization term

1 _ 100, _100,
fh:/(SK(pTM:l 1+fr> <1/l¢ 1§+u2 1aZ>+

1 n—1 n—l% n—l%
<pTuZ +fz> <u, 5 + ul . rd(r,z).
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6.4.2 Adaptivity and individual meshes

As was described in Chapters 3, 4 and 5 the hp-adaptive process is run on each time
level for all three physics individually, i.e. the magnetic potential, temperature and
flow field have their own mesh automatically adapted to capture their individual be-
havior. For the magnetic potential and temperature hp-adaptivity was used, for the
flow field h-adaptive algorithm was applied. Thus on the time level t,, we obtain three
independent meshes 7", 7,"", 7" and to evaluate integrals in the weak formulation the
multimesh technique described in Sec. 4.4 is used. However, in contrast to the stan-
dard multimesh, here, the meshes not only differ in their refinements but also cover
different parts of the computational domain. Hence, the standard element-by-element
assembly procedure needs little modification. First, we assume that all meshes come
from one original master mesh and that in some meshes some elements are “miss-
ing”. In our particular problem, the coarse master mesh covers the computational
domain for the magnetic field and in meshes for the temperature and flow fields some
elements are “deleted”. The element-by-element procedure assembling the stiffness
matrix then skips integrals involving functions from spaces connected with meshes
with missing element (see Alg. 6).

Algorithm 6: Element-by-element assembling with missing elements.

forall elements Qy of union mesh 7, do
forall equations: m =1...6 do
if Qr C 7, then
L,, = list of basis functions whose supp(v;) N Qx # @;
else // missing element
Ly, = ©;
form=1...6do
forn=1...6do
fori € L, do
forjc L, do
Sij = Sij + amn(vi, V)|

Our approach results in smaller linear systems since no degrees of freedom are wasted
in areas where some components of the solution are not defined. Note that even
though the meshes are mutually independent, the coupled problem is still solved
monolithically, thus all components are advanced in time simultaneously and nonlin-
earities can be resolved more accurately.

Remark 6.3 Since the nonlinearities in our example are very weak and the solution changes
very slowly we treat the nonlinearities by fixed-point iterations which turned out to be sufficient
for this particular problem. But let us point out that Newton’s method could be used instead
without any difficulty.
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6.5 Numerical experiment

6.5.1 Input data

The pipe in Fig. 6.1 carries molten sodium whose inlet temperature is 150°C. At
the time fp (when the transport is considered steady-state) the inductor is switched
on in order to warm up the melt. The distributions of the velocity in the melt and
the temperature in the whole system melt-pipe for time t; are known (they follow
from the solution of the steady-state process before the inductor was switched on).
The average value of the velocity of the melt at the inlet is 0.2 ms~!. The inductor
parameters are J . = 10° Am~2, and f = 50 Hz. The physical parameters of the
molten sodium and basalt are given in Tabs. 6.1 and 6.2.

Table 6.1: Physical parameters of molten sodium.

quantity unit value
specific mass kg m~3 927
temperature of melting °C 97.72
electrical conductivity Sm™! 2.0964 x 10°
thermal conductivity Wm ! K! 142
thermal capacity Jkg 1 K! 1230

for 98°C  0.000688
dynamic viscosity Pas for 127°C  0.000599

for 227°C  0.000415

Table 6.2: Physical parameters of basalt.

quantity unit value
specific mass kg m~3 2900
electrical conductivity Sm! 0
thermal conductivity Wm 1K1t 20
thermal capacity Jkg ! K™! 840

6.5.2 Results

First, we checked the convergence of the results related to the distribution of the
magnetic field with respect to the position of its artificial boundary. It was proved
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that particularly the position of its external part (see Fig. 6.2) does not need to be too
far from the inductor. Although the magnetic field near this part of the boundary is
strongly distorted (see Fig. 6.3), its values in the melt do not change any longer.

0.0 0.00097 0.00194
[ a— E——

Figure 6.3: Distribution of the magnetic vector potential A, (Wb m™!) at two time
instants (t = 2.0, 4.0s).

0.0 0.016 0.032 0.048 0.064 0.08

Figure 6.4: Distribution of the module of magnetic flux density B (T) with isolines
(top). Magnetic flux density as a vector field (bottom).
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0.0 2e04 4e04 6e04 8e04 1e05

0.0 2e05 4e05 6e05 8e05 1e06
[ B

Figure 6.5: Lorentz forces acting on the fluid (top). Joule’s looses heating up the fluid

(bottom).
Fig. 6.3 shows the distribution of the magnetic field A, in the system at two time

levels t = 2.0, 4.0s. For low velocities of the melt its values are practically the same
as if we would omit in (6.8) the velocity term, while with increasing velocity we can
observe perturbances in the magnetic field caused by the velocity term in (6.8). Dis-
tribution of the magnetic flux density B in the domain is depicted in Fig. 6.4. Even
in this case, distribution practically does not depend on the velocity term in (6.8).
Joule’s losses causing heating of the fluid and Lorentz forces accelerating the fluid are
shown in Fig. 6.5. The temperature field does not change too much with time since
the external current J_ . is small and thus resulting heating effect is small. Its distri-
bution starts from the steady state before switching on the inductor. At time ¢t this
distribution is practically uniform both in the melt and pipe and its value lies at max-
imum several hundredths of a degree below 150°C. Fig. 6.6 shows that even 6s after
switching the inductor on its distribution does not change by more than about 0.2°C
due to the thermal inertia of the system. From Lorentz forces in Fig. 6.5 we see that
the conducting fluid is repelled away from the inductor which results in formation of
vortices in the velocity field at the end of the narrow part of the pipe. Distribution of
the magnitude of the velocity at several time instants is depicted in Fig. 6.7, and corre-
sponding pressure distributions in Fig. 6.8. The underlying meshes for the potential,
temperature and flow fields are shown in Figs. 6.10, 6.11 and 6.12, respectively. Notice
mutually independent dynamical meshes for all physical fields. Magnetic field and
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150.0 150.2 150.4 150.6 150.8 151.0
[ DI — T

Figure 6.6: Temperature field T (°C) at ¢t = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0s.

129



Chapter 6 — Inductively heated incompressible flow of liquid metal

150.0 150.2 150.4 150.6 150.8 151.0
[ I _ T

Figure 6.6: (continued) Temperature field T (°C) at t = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0s.
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Figure 6.7: Magnitude of velocity u (msfl) att=20.5,1.0,1.5,2.0, 25, 3.0s.
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0.0 0.4 0.8 1.2 1.6 2.0

Figure 6.7: (continued) Magnitude of velocity u (ms™!) at t = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0s.
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Figure 6.8: Pressure distribution p (Pa) at t = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0s.
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Figure 6.8: (continued) Pressure distribution p (Pa) at t = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0s.
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Figure 6.9: Convergence history of hp-adaptivity for magnetic potential.

B B B E = FE F E

Figure 6.10: hp-meshes for magnetic potential at ¢t = 2.0s and t = 4.0s.

temperature were approximated on hp-meshes automatically obtained by the adap-
tive algorithm. An average size of hp-meshes for the magnetic potential is around
2000 degrees of freedom (DOFs), while h-adaptivity on biquadratic elements would
result in a mesh with around 11000 DOFs (see Fig. 6.9 for comparison of convergence
history). Reaching the same level of accuracy with uniform mesh requires more than
10° DOFs. Similar, however not that severe difference could be observed on hp/h-
meshes for the temperature field. For approximation of the flow field standard #-FEM
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H B B T = = [ @

Figure 6.11: hp-meshes for temperature at t = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0s.
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Figure 6.11: (continued) hp-meshes for temperature at t = 3.5, 4.0, 4.5, 5.0, 5.5, 6.0s.
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Figure 6.12: Dynamically changing meshes for velocity at time levels t = 0.5, 1.0, 1.5,
2.0, 2.5, 3.0s.
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Figure 6.12: (continued) Dynamically changing meshes for velocity at time levels ¢

3.5,4.0,45,5.0,5.5, 6.0s.



Chapter 6 — Inductively heated incompressible flow of liquid metal

adaptivity was used. Notice that dynamically changing meshes for flow field are trav-
eling together with the moving vortices, resolving the flow features more accurately
than by using a fixed uniform mesh. Similar behavior can be observed on dynamically
changing hp-meshes for temperature, where higher-order elements are used in areas
where the fluid is heated by the Joule’s looses and the mesh stays unrefined in areas
where the temperature of the fluid remains constant. Since the magnetic potential’s
changes in the fluid are small, we see that only minor changes in the underlying mesh
are performed during the time. Notice, that by using the multimesh technology in the
problem, we spent much less degrees of freedom in meshes for magnetic potential.
They do not have to refine spatially in such a way the flow and temperature fields are.
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Conclusion

We would like to conclude the thesis with a review of its results already published
in international journals. Several remarks and possible ways how to improve our
approach and how to continue in the future are discussed.

In Chapter 2 we gave a short introduction to the higher-order finite element discretiza-
tion and described it also from the implementation point of view. Chapter 3 was
concerned with the automatic hp-adaptivity for a single partial differential equation
and the basic idea of meshes with arbitrary level hanging nodes was given. More
details on hp-adaptivity, meshes with hanging nodes and extension of this strategy to
electromagnetic problems solved in the space H(curl) can be found in [46].

The main emphasis of the thesis lies in hp-adaptivity applied to coupled systems of
PDEs. In such problems each component of the solution displays different behavior,
and thus it requires the mesh to be refined in different parts of the computational
domain. In [43, 14, 47] and in Chapter 4 we proposed the multimesh technology that
allows us to discretize each physical field in the coupled problem on its own mesh,
while the whole system is still solved monolithically. Utilizing the multimesh technol-
ogy, there is no need for data-transfers between non-matching meshes. We compared
our approach with traditionally used methods of operator-splitting and data-transfer.
These comparisons will also be published in [15]. Comparison with the so-called sin-
gle mesh approach, where all physical fields share the same mesh containing all nec-
essary refinements, was demonstrated on a problem from civil-engineering that was
published in [47]. Even though the multimesh approach has its drawbacks, such as
the computational cost of numerical quadrature addressed in Section 4.5.1, we believe
that its advantages are stronger.

Very recently researchers from the TU Dresden implemented the multimesh approach
for nodal finite elements with application to dendritic growth and solid-solid phase-
transitions. Their assembling technique is based on expressing parts of shape func-
tions on subelements of the union mesh as linear combinations of standard shape
functions. However, for their approach to work the meshes for all components must
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be equipped with the same polynomial orders. In submitted paper [49] they cited our
works [43, 47].

Chapter 5 discussed time-dependent coupled problems from the point of view of hp-
adaptivity and the multimesh technology. An adaptive strategy was used to find an
optimal mesh for the solution on each time level and the multimesh technology easily
allowed meshes to change between subsequent time steps with no transfer of solution
values between meshes. Presented results will be published in [45] in the near future.

In Chapter 6 we succeeded in applying most of the presented methods to a com-
plex multiphysics problem. Inductively heated flow of a liquid metal couples three
physical fields — magnetic field, temperature and incompressible flow. In agreement
with previous chapters, meshes for all three physics were obtained automatically by
our adaptive algorithm, hence each field was discretized on its own mesh which was
tailored to the needs of the solution component. To capture the solution evolving in
time, dynamically changing meshes were obtained using the multimesh technology.
This model, applied to several problems coupling magnetic field, temperature and in-
compressible flow, was presented in the following conference proceedings: [7, 8, 13].

A significant benefit of this thesis is also in numerous contributions to the open source
project Hermes2d, a numerical C++ library for the solution of multiphysics problems
described by partial differential equations. Computations performed in this thesis
were obtained by this library and result from author’s implementations in the Her-
mes2d core. Since it became an open source software in 2009, students and researchers
from all over the world can use it as well as contribute to it. It may be used both for
education purposes at universities and for the solution of complex scientific problems.

There are many possible improvements to the presented approach, some of them were
mentioned in the thesis. First let us point out the need to speed up the computation of
the reference solution. This was already partially studied in [40], where the reference
solution was obtained by hierarchically extending the previous reference solution with
promissing results in 1D. Another approach that is being studied at University of
Nevada at Reno consists in skipping the direct computation of the coarse solution and
replacing it by a projection of the reference solution on the coarse mesh. In case the
problem is nonlinear, the projection is faster than performing the Newton’s method
for the coarse problem.

Concerning the multimesh technology the main drawback lies in numerical quadra-
ture in cases where the meshes differ considerably in both geometry and polynomial
orders. A possible cure was proposed in Section 4.5.1. It consists in reducing the order
of integration when integrating just a small part of the shape function.

There is still a lot of room for improvement in numerical solution of the resulting
linear /nonlinear systems of algebraic equations. At this moment direct solvers are
used for the solution of linear systems arising from our FEM discretizations since
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their performance on matrices obtained by hp-FEM was very good. Nevertheless,
iterative solvers are a necessity for very complex engineering problems as well as for
the 3D version of the Hermes code, where the resulting matrices are too large for
direct solvers. More research also can be done in the Jacobian-free Newton Krylov
method and physics-based preconditioning for nonlinear coupled problems solved
by the multimesh hp-FEM, since their performance on traditional linear FEM shows
promising results [29, 21, 30].
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